1 //===-- IPO/OpenMPOpt.cpp - Collection of OpenMP specific optimizations ---===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // OpenMP specific optimizations: 10 // 11 // - Deduplication of runtime calls, e.g., omp_get_thread_num. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/IPO/OpenMPOpt.h" 16 17 #include "llvm/ADT/EnumeratedArray.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/CallGraph.h" 20 #include "llvm/Analysis/CallGraphSCCPass.h" 21 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 22 #include "llvm/Frontend/OpenMP/OMPConstants.h" 23 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 24 #include "llvm/InitializePasses.h" 25 #include "llvm/Support/CommandLine.h" 26 #include "llvm/Transforms/IPO.h" 27 #include "llvm/Transforms/IPO/Attributor.h" 28 #include "llvm/Transforms/Utils/CallGraphUpdater.h" 29 #include "llvm/Analysis/ValueTracking.h" 30 31 using namespace llvm; 32 using namespace omp; 33 34 #define DEBUG_TYPE "openmp-opt" 35 36 static cl::opt<bool> DisableOpenMPOptimizations( 37 "openmp-opt-disable", cl::ZeroOrMore, 38 cl::desc("Disable OpenMP specific optimizations."), cl::Hidden, 39 cl::init(false)); 40 41 static cl::opt<bool> PrintICVValues("openmp-print-icv-values", cl::init(false), 42 cl::Hidden); 43 static cl::opt<bool> PrintOpenMPKernels("openmp-print-gpu-kernels", 44 cl::init(false), cl::Hidden); 45 46 static cl::opt<bool> HideMemoryTransferLatency( 47 "openmp-hide-memory-transfer-latency", 48 cl::desc("[WIP] Tries to hide the latency of host to device memory" 49 " transfers"), 50 cl::Hidden, cl::init(false)); 51 52 53 STATISTIC(NumOpenMPRuntimeCallsDeduplicated, 54 "Number of OpenMP runtime calls deduplicated"); 55 STATISTIC(NumOpenMPParallelRegionsDeleted, 56 "Number of OpenMP parallel regions deleted"); 57 STATISTIC(NumOpenMPRuntimeFunctionsIdentified, 58 "Number of OpenMP runtime functions identified"); 59 STATISTIC(NumOpenMPRuntimeFunctionUsesIdentified, 60 "Number of OpenMP runtime function uses identified"); 61 STATISTIC(NumOpenMPTargetRegionKernels, 62 "Number of OpenMP target region entry points (=kernels) identified"); 63 STATISTIC( 64 NumOpenMPParallelRegionsReplacedInGPUStateMachine, 65 "Number of OpenMP parallel regions replaced with ID in GPU state machines"); 66 67 #if !defined(NDEBUG) 68 static constexpr auto TAG = "[" DEBUG_TYPE "]"; 69 #endif 70 71 namespace { 72 73 struct AAICVTracker; 74 75 /// OpenMP specific information. For now, stores RFIs and ICVs also needed for 76 /// Attributor runs. 77 struct OMPInformationCache : public InformationCache { 78 OMPInformationCache(Module &M, AnalysisGetter &AG, 79 BumpPtrAllocator &Allocator, SetVector<Function *> &CGSCC, 80 SmallPtrSetImpl<Kernel> &Kernels) 81 : InformationCache(M, AG, Allocator, &CGSCC), OMPBuilder(M), 82 Kernels(Kernels) { 83 84 OMPBuilder.initialize(); 85 initializeRuntimeFunctions(); 86 initializeInternalControlVars(); 87 } 88 89 /// Generic information that describes an internal control variable. 90 struct InternalControlVarInfo { 91 /// The kind, as described by InternalControlVar enum. 92 InternalControlVar Kind; 93 94 /// The name of the ICV. 95 StringRef Name; 96 97 /// Environment variable associated with this ICV. 98 StringRef EnvVarName; 99 100 /// Initial value kind. 101 ICVInitValue InitKind; 102 103 /// Initial value. 104 ConstantInt *InitValue; 105 106 /// Setter RTL function associated with this ICV. 107 RuntimeFunction Setter; 108 109 /// Getter RTL function associated with this ICV. 110 RuntimeFunction Getter; 111 112 /// RTL Function corresponding to the override clause of this ICV 113 RuntimeFunction Clause; 114 }; 115 116 /// Generic information that describes a runtime function 117 struct RuntimeFunctionInfo { 118 119 /// The kind, as described by the RuntimeFunction enum. 120 RuntimeFunction Kind; 121 122 /// The name of the function. 123 StringRef Name; 124 125 /// Flag to indicate a variadic function. 126 bool IsVarArg; 127 128 /// The return type of the function. 129 Type *ReturnType; 130 131 /// The argument types of the function. 132 SmallVector<Type *, 8> ArgumentTypes; 133 134 /// The declaration if available. 135 Function *Declaration = nullptr; 136 137 /// Uses of this runtime function per function containing the use. 138 using UseVector = SmallVector<Use *, 16>; 139 140 /// Clear UsesMap for runtime function. 141 void clearUsesMap() { UsesMap.clear(); } 142 143 /// Boolean conversion that is true if the runtime function was found. 144 operator bool() const { return Declaration; } 145 146 /// Return the vector of uses in function \p F. 147 UseVector &getOrCreateUseVector(Function *F) { 148 std::shared_ptr<UseVector> &UV = UsesMap[F]; 149 if (!UV) 150 UV = std::make_shared<UseVector>(); 151 return *UV; 152 } 153 154 /// Return the vector of uses in function \p F or `nullptr` if there are 155 /// none. 156 const UseVector *getUseVector(Function &F) const { 157 auto I = UsesMap.find(&F); 158 if (I != UsesMap.end()) 159 return I->second.get(); 160 return nullptr; 161 } 162 163 /// Return how many functions contain uses of this runtime function. 164 size_t getNumFunctionsWithUses() const { return UsesMap.size(); } 165 166 /// Return the number of arguments (or the minimal number for variadic 167 /// functions). 168 size_t getNumArgs() const { return ArgumentTypes.size(); } 169 170 /// Run the callback \p CB on each use and forget the use if the result is 171 /// true. The callback will be fed the function in which the use was 172 /// encountered as second argument. 173 void foreachUse(SmallVectorImpl<Function *> &SCC, 174 function_ref<bool(Use &, Function &)> CB) { 175 for (Function *F : SCC) 176 foreachUse(CB, F); 177 } 178 179 /// Run the callback \p CB on each use within the function \p F and forget 180 /// the use if the result is true. 181 void foreachUse(function_ref<bool(Use &, Function &)> CB, Function *F) { 182 SmallVector<unsigned, 8> ToBeDeleted; 183 ToBeDeleted.clear(); 184 185 unsigned Idx = 0; 186 UseVector &UV = getOrCreateUseVector(F); 187 188 for (Use *U : UV) { 189 if (CB(*U, *F)) 190 ToBeDeleted.push_back(Idx); 191 ++Idx; 192 } 193 194 // Remove the to-be-deleted indices in reverse order as prior 195 // modifications will not modify the smaller indices. 196 while (!ToBeDeleted.empty()) { 197 unsigned Idx = ToBeDeleted.pop_back_val(); 198 UV[Idx] = UV.back(); 199 UV.pop_back(); 200 } 201 } 202 203 private: 204 /// Map from functions to all uses of this runtime function contained in 205 /// them. 206 DenseMap<Function *, std::shared_ptr<UseVector>> UsesMap; 207 }; 208 209 /// An OpenMP-IR-Builder instance 210 OpenMPIRBuilder OMPBuilder; 211 212 /// Map from runtime function kind to the runtime function description. 213 EnumeratedArray<RuntimeFunctionInfo, RuntimeFunction, 214 RuntimeFunction::OMPRTL___last> 215 RFIs; 216 217 /// Map from ICV kind to the ICV description. 218 EnumeratedArray<InternalControlVarInfo, InternalControlVar, 219 InternalControlVar::ICV___last> 220 ICVs; 221 222 /// Helper to initialize all internal control variable information for those 223 /// defined in OMPKinds.def. 224 void initializeInternalControlVars() { 225 #define ICV_RT_SET(_Name, RTL) \ 226 { \ 227 auto &ICV = ICVs[_Name]; \ 228 ICV.Setter = RTL; \ 229 } 230 #define ICV_RT_GET(Name, RTL) \ 231 { \ 232 auto &ICV = ICVs[Name]; \ 233 ICV.Getter = RTL; \ 234 } 235 #define ICV_DATA_ENV(Enum, _Name, _EnvVarName, Init) \ 236 { \ 237 auto &ICV = ICVs[Enum]; \ 238 ICV.Name = _Name; \ 239 ICV.Kind = Enum; \ 240 ICV.InitKind = Init; \ 241 ICV.EnvVarName = _EnvVarName; \ 242 switch (ICV.InitKind) { \ 243 case ICV_IMPLEMENTATION_DEFINED: \ 244 ICV.InitValue = nullptr; \ 245 break; \ 246 case ICV_ZERO: \ 247 ICV.InitValue = ConstantInt::get( \ 248 Type::getInt32Ty(OMPBuilder.Int32->getContext()), 0); \ 249 break; \ 250 case ICV_FALSE: \ 251 ICV.InitValue = ConstantInt::getFalse(OMPBuilder.Int1->getContext()); \ 252 break; \ 253 case ICV_LAST: \ 254 break; \ 255 } \ 256 } 257 #include "llvm/Frontend/OpenMP/OMPKinds.def" 258 } 259 260 /// Returns true if the function declaration \p F matches the runtime 261 /// function types, that is, return type \p RTFRetType, and argument types 262 /// \p RTFArgTypes. 263 static bool declMatchesRTFTypes(Function *F, Type *RTFRetType, 264 SmallVector<Type *, 8> &RTFArgTypes) { 265 // TODO: We should output information to the user (under debug output 266 // and via remarks). 267 268 if (!F) 269 return false; 270 if (F->getReturnType() != RTFRetType) 271 return false; 272 if (F->arg_size() != RTFArgTypes.size()) 273 return false; 274 275 auto RTFTyIt = RTFArgTypes.begin(); 276 for (Argument &Arg : F->args()) { 277 if (Arg.getType() != *RTFTyIt) 278 return false; 279 280 ++RTFTyIt; 281 } 282 283 return true; 284 } 285 286 // Helper to collect all uses of the declaration in the UsesMap. 287 unsigned collectUses(RuntimeFunctionInfo &RFI, bool CollectStats = true) { 288 unsigned NumUses = 0; 289 if (!RFI.Declaration) 290 return NumUses; 291 OMPBuilder.addAttributes(RFI.Kind, *RFI.Declaration); 292 293 if (CollectStats) { 294 NumOpenMPRuntimeFunctionsIdentified += 1; 295 NumOpenMPRuntimeFunctionUsesIdentified += RFI.Declaration->getNumUses(); 296 } 297 298 // TODO: We directly convert uses into proper calls and unknown uses. 299 for (Use &U : RFI.Declaration->uses()) { 300 if (Instruction *UserI = dyn_cast<Instruction>(U.getUser())) { 301 if (ModuleSlice.count(UserI->getFunction())) { 302 RFI.getOrCreateUseVector(UserI->getFunction()).push_back(&U); 303 ++NumUses; 304 } 305 } else { 306 RFI.getOrCreateUseVector(nullptr).push_back(&U); 307 ++NumUses; 308 } 309 } 310 return NumUses; 311 } 312 313 // Helper function to recollect uses of all runtime functions. 314 void recollectUses() { 315 for (int Idx = 0; Idx < RFIs.size(); ++Idx) { 316 auto &RFI = RFIs[static_cast<RuntimeFunction>(Idx)]; 317 RFI.clearUsesMap(); 318 collectUses(RFI, /*CollectStats*/ false); 319 } 320 } 321 322 /// Helper to initialize all runtime function information for those defined 323 /// in OpenMPKinds.def. 324 void initializeRuntimeFunctions() { 325 Module &M = *((*ModuleSlice.begin())->getParent()); 326 327 // Helper macros for handling __VA_ARGS__ in OMP_RTL 328 #define OMP_TYPE(VarName, ...) \ 329 Type *VarName = OMPBuilder.VarName; \ 330 (void)VarName; 331 332 #define OMP_ARRAY_TYPE(VarName, ...) \ 333 ArrayType *VarName##Ty = OMPBuilder.VarName##Ty; \ 334 (void)VarName##Ty; \ 335 PointerType *VarName##PtrTy = OMPBuilder.VarName##PtrTy; \ 336 (void)VarName##PtrTy; 337 338 #define OMP_FUNCTION_TYPE(VarName, ...) \ 339 FunctionType *VarName = OMPBuilder.VarName; \ 340 (void)VarName; \ 341 PointerType *VarName##Ptr = OMPBuilder.VarName##Ptr; \ 342 (void)VarName##Ptr; 343 344 #define OMP_STRUCT_TYPE(VarName, ...) \ 345 StructType *VarName = OMPBuilder.VarName; \ 346 (void)VarName; \ 347 PointerType *VarName##Ptr = OMPBuilder.VarName##Ptr; \ 348 (void)VarName##Ptr; 349 350 #define OMP_RTL(_Enum, _Name, _IsVarArg, _ReturnType, ...) \ 351 { \ 352 SmallVector<Type *, 8> ArgsTypes({__VA_ARGS__}); \ 353 Function *F = M.getFunction(_Name); \ 354 if (declMatchesRTFTypes(F, OMPBuilder._ReturnType, ArgsTypes)) { \ 355 auto &RFI = RFIs[_Enum]; \ 356 RFI.Kind = _Enum; \ 357 RFI.Name = _Name; \ 358 RFI.IsVarArg = _IsVarArg; \ 359 RFI.ReturnType = OMPBuilder._ReturnType; \ 360 RFI.ArgumentTypes = std::move(ArgsTypes); \ 361 RFI.Declaration = F; \ 362 unsigned NumUses = collectUses(RFI); \ 363 (void)NumUses; \ 364 LLVM_DEBUG({ \ 365 dbgs() << TAG << RFI.Name << (RFI.Declaration ? "" : " not") \ 366 << " found\n"; \ 367 if (RFI.Declaration) \ 368 dbgs() << TAG << "-> got " << NumUses << " uses in " \ 369 << RFI.getNumFunctionsWithUses() \ 370 << " different functions.\n"; \ 371 }); \ 372 } \ 373 } 374 #include "llvm/Frontend/OpenMP/OMPKinds.def" 375 376 // TODO: We should attach the attributes defined in OMPKinds.def. 377 } 378 379 /// Collection of known kernels (\see Kernel) in the module. 380 SmallPtrSetImpl<Kernel> &Kernels; 381 }; 382 383 /// Used to map the values physically (in the IR) stored in an offload 384 /// array, to a vector in memory. 385 struct OffloadArray { 386 /// Physical array (in the IR). 387 AllocaInst *Array = nullptr; 388 /// Mapped values. 389 SmallVector<Value *, 8> StoredValues; 390 /// Last stores made in the offload array. 391 SmallVector<StoreInst *, 8> LastAccesses; 392 393 OffloadArray() = default; 394 395 /// Initializes the OffloadArray with the values stored in \p Array before 396 /// instruction \p Before is reached. Returns false if the initialization 397 /// fails. 398 /// This MUST be used immediately after the construction of the object. 399 bool initialize(AllocaInst &Array, Instruction &Before) { 400 if (!Array.getAllocatedType()->isArrayTy()) 401 return false; 402 403 if (!getValues(Array, Before)) 404 return false; 405 406 this->Array = &Array; 407 return true; 408 } 409 410 static const unsigned BasePtrsArgNum = 2; 411 static const unsigned PtrsArgNum = 3; 412 static const unsigned SizesArgNum = 4; 413 414 private: 415 /// Traverses the BasicBlock where \p Array is, collecting the stores made to 416 /// \p Array, leaving StoredValues with the values stored before the 417 /// instruction \p Before is reached. 418 bool getValues(AllocaInst &Array, Instruction &Before) { 419 // Initialize container. 420 const uint64_t NumValues = 421 Array.getAllocatedType()->getArrayNumElements(); 422 StoredValues.assign(NumValues, nullptr); 423 LastAccesses.assign(NumValues, nullptr); 424 425 // TODO: This assumes the instruction \p Before is in the same 426 // BasicBlock as Array. Make it general, for any control flow graph. 427 BasicBlock *BB = Array.getParent(); 428 if (BB != Before.getParent()) 429 return false; 430 431 const DataLayout &DL = Array.getModule()->getDataLayout(); 432 const unsigned int PointerSize = DL.getPointerSize(); 433 434 for (Instruction &I : *BB) { 435 if (&I == &Before) 436 break; 437 438 if (!isa<StoreInst>(&I)) 439 continue; 440 441 auto *S = cast<StoreInst>(&I); 442 int64_t Offset = -1; 443 auto *Dst = GetPointerBaseWithConstantOffset(S->getPointerOperand(), 444 Offset, DL); 445 if (Dst == &Array) { 446 int64_t Idx = Offset / PointerSize; 447 StoredValues[Idx] = getUnderlyingObject(S->getValueOperand()); 448 LastAccesses[Idx] = S; 449 } 450 } 451 452 return isFilled(); 453 } 454 455 /// Returns true if all values in StoredValues and 456 /// LastAccesses are not nullptrs. 457 bool isFilled() { 458 const unsigned NumValues = StoredValues.size(); 459 for (unsigned I = 0; I < NumValues; ++I) { 460 if (!StoredValues[I] || !LastAccesses[I]) 461 return false; 462 } 463 464 return true; 465 } 466 }; 467 468 struct OpenMPOpt { 469 470 using OptimizationRemarkGetter = 471 function_ref<OptimizationRemarkEmitter &(Function *)>; 472 473 OpenMPOpt(SmallVectorImpl<Function *> &SCC, CallGraphUpdater &CGUpdater, 474 OptimizationRemarkGetter OREGetter, 475 OMPInformationCache &OMPInfoCache, Attributor &A) 476 : M(*(*SCC.begin())->getParent()), SCC(SCC), CGUpdater(CGUpdater), 477 OREGetter(OREGetter), OMPInfoCache(OMPInfoCache), A(A) {} 478 479 /// Run all OpenMP optimizations on the underlying SCC/ModuleSlice. 480 bool run() { 481 if (SCC.empty()) 482 return false; 483 484 bool Changed = false; 485 486 LLVM_DEBUG(dbgs() << TAG << "Run on SCC with " << SCC.size() 487 << " functions in a slice with " 488 << OMPInfoCache.ModuleSlice.size() << " functions\n"); 489 490 if (PrintICVValues) 491 printICVs(); 492 if (PrintOpenMPKernels) 493 printKernels(); 494 495 Changed |= rewriteDeviceCodeStateMachine(); 496 497 Changed |= runAttributor(); 498 499 // Recollect uses, in case Attributor deleted any. 500 OMPInfoCache.recollectUses(); 501 502 Changed |= deduplicateRuntimeCalls(); 503 Changed |= deleteParallelRegions(); 504 if (HideMemoryTransferLatency) 505 Changed |= hideMemTransfersLatency(); 506 507 return Changed; 508 } 509 510 /// Print initial ICV values for testing. 511 /// FIXME: This should be done from the Attributor once it is added. 512 void printICVs() const { 513 InternalControlVar ICVs[] = {ICV_nthreads, ICV_active_levels, ICV_cancel}; 514 515 for (Function *F : OMPInfoCache.ModuleSlice) { 516 for (auto ICV : ICVs) { 517 auto ICVInfo = OMPInfoCache.ICVs[ICV]; 518 auto Remark = [&](OptimizationRemark OR) { 519 return OR << "OpenMP ICV " << ore::NV("OpenMPICV", ICVInfo.Name) 520 << " Value: " 521 << (ICVInfo.InitValue 522 ? ICVInfo.InitValue->getValue().toString(10, true) 523 : "IMPLEMENTATION_DEFINED"); 524 }; 525 526 emitRemarkOnFunction(F, "OpenMPICVTracker", Remark); 527 } 528 } 529 } 530 531 /// Print OpenMP GPU kernels for testing. 532 void printKernels() const { 533 for (Function *F : SCC) { 534 if (!OMPInfoCache.Kernels.count(F)) 535 continue; 536 537 auto Remark = [&](OptimizationRemark OR) { 538 return OR << "OpenMP GPU kernel " 539 << ore::NV("OpenMPGPUKernel", F->getName()) << "\n"; 540 }; 541 542 emitRemarkOnFunction(F, "OpenMPGPU", Remark); 543 } 544 } 545 546 /// Return the call if \p U is a callee use in a regular call. If \p RFI is 547 /// given it has to be the callee or a nullptr is returned. 548 static CallInst *getCallIfRegularCall( 549 Use &U, OMPInformationCache::RuntimeFunctionInfo *RFI = nullptr) { 550 CallInst *CI = dyn_cast<CallInst>(U.getUser()); 551 if (CI && CI->isCallee(&U) && !CI->hasOperandBundles() && 552 (!RFI || CI->getCalledFunction() == RFI->Declaration)) 553 return CI; 554 return nullptr; 555 } 556 557 /// Return the call if \p V is a regular call. If \p RFI is given it has to be 558 /// the callee or a nullptr is returned. 559 static CallInst *getCallIfRegularCall( 560 Value &V, OMPInformationCache::RuntimeFunctionInfo *RFI = nullptr) { 561 CallInst *CI = dyn_cast<CallInst>(&V); 562 if (CI && !CI->hasOperandBundles() && 563 (!RFI || CI->getCalledFunction() == RFI->Declaration)) 564 return CI; 565 return nullptr; 566 } 567 568 private: 569 /// Try to delete parallel regions if possible. 570 bool deleteParallelRegions() { 571 const unsigned CallbackCalleeOperand = 2; 572 573 OMPInformationCache::RuntimeFunctionInfo &RFI = 574 OMPInfoCache.RFIs[OMPRTL___kmpc_fork_call]; 575 576 if (!RFI.Declaration) 577 return false; 578 579 bool Changed = false; 580 auto DeleteCallCB = [&](Use &U, Function &) { 581 CallInst *CI = getCallIfRegularCall(U); 582 if (!CI) 583 return false; 584 auto *Fn = dyn_cast<Function>( 585 CI->getArgOperand(CallbackCalleeOperand)->stripPointerCasts()); 586 if (!Fn) 587 return false; 588 if (!Fn->onlyReadsMemory()) 589 return false; 590 if (!Fn->hasFnAttribute(Attribute::WillReturn)) 591 return false; 592 593 LLVM_DEBUG(dbgs() << TAG << "Delete read-only parallel region in " 594 << CI->getCaller()->getName() << "\n"); 595 596 auto Remark = [&](OptimizationRemark OR) { 597 return OR << "Parallel region in " 598 << ore::NV("OpenMPParallelDelete", CI->getCaller()->getName()) 599 << " deleted"; 600 }; 601 emitRemark<OptimizationRemark>(CI, "OpenMPParallelRegionDeletion", 602 Remark); 603 604 CGUpdater.removeCallSite(*CI); 605 CI->eraseFromParent(); 606 Changed = true; 607 ++NumOpenMPParallelRegionsDeleted; 608 return true; 609 }; 610 611 RFI.foreachUse(SCC, DeleteCallCB); 612 613 return Changed; 614 } 615 616 /// Try to eliminate runtime calls by reusing existing ones. 617 bool deduplicateRuntimeCalls() { 618 bool Changed = false; 619 620 RuntimeFunction DeduplicableRuntimeCallIDs[] = { 621 OMPRTL_omp_get_num_threads, 622 OMPRTL_omp_in_parallel, 623 OMPRTL_omp_get_cancellation, 624 OMPRTL_omp_get_thread_limit, 625 OMPRTL_omp_get_supported_active_levels, 626 OMPRTL_omp_get_level, 627 OMPRTL_omp_get_ancestor_thread_num, 628 OMPRTL_omp_get_team_size, 629 OMPRTL_omp_get_active_level, 630 OMPRTL_omp_in_final, 631 OMPRTL_omp_get_proc_bind, 632 OMPRTL_omp_get_num_places, 633 OMPRTL_omp_get_num_procs, 634 OMPRTL_omp_get_place_num, 635 OMPRTL_omp_get_partition_num_places, 636 OMPRTL_omp_get_partition_place_nums}; 637 638 // Global-tid is handled separately. 639 SmallSetVector<Value *, 16> GTIdArgs; 640 collectGlobalThreadIdArguments(GTIdArgs); 641 LLVM_DEBUG(dbgs() << TAG << "Found " << GTIdArgs.size() 642 << " global thread ID arguments\n"); 643 644 for (Function *F : SCC) { 645 for (auto DeduplicableRuntimeCallID : DeduplicableRuntimeCallIDs) 646 Changed |= deduplicateRuntimeCalls( 647 *F, OMPInfoCache.RFIs[DeduplicableRuntimeCallID]); 648 649 // __kmpc_global_thread_num is special as we can replace it with an 650 // argument in enough cases to make it worth trying. 651 Value *GTIdArg = nullptr; 652 for (Argument &Arg : F->args()) 653 if (GTIdArgs.count(&Arg)) { 654 GTIdArg = &Arg; 655 break; 656 } 657 Changed |= deduplicateRuntimeCalls( 658 *F, OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num], GTIdArg); 659 } 660 661 return Changed; 662 } 663 664 /// Tries to hide the latency of runtime calls that involve host to 665 /// device memory transfers by splitting them into their "issue" and "wait" 666 /// versions. The "issue" is moved upwards as much as possible. The "wait" is 667 /// moved downards as much as possible. The "issue" issues the memory transfer 668 /// asynchronously, returning a handle. The "wait" waits in the returned 669 /// handle for the memory transfer to finish. 670 bool hideMemTransfersLatency() { 671 auto &RFI = OMPInfoCache.RFIs[OMPRTL___tgt_target_data_begin_mapper]; 672 bool Changed = false; 673 auto SplitMemTransfers = [&](Use &U, Function &Decl) { 674 auto *RTCall = getCallIfRegularCall(U, &RFI); 675 if (!RTCall) 676 return false; 677 678 OffloadArray OffloadArrays[3]; 679 if (!getValuesInOffloadArrays(*RTCall, OffloadArrays)) 680 return false; 681 682 LLVM_DEBUG(dumpValuesInOffloadArrays(OffloadArrays)); 683 684 // TODO: Check if can be moved upwards. 685 bool WasSplit = false; 686 Instruction *WaitMovementPoint = canBeMovedDownwards(*RTCall); 687 if (WaitMovementPoint) 688 WasSplit = splitTargetDataBeginRTC(*RTCall, *WaitMovementPoint); 689 690 Changed |= WasSplit; 691 return WasSplit; 692 }; 693 RFI.foreachUse(SCC, SplitMemTransfers); 694 695 return Changed; 696 } 697 698 /// Maps the values stored in the offload arrays passed as arguments to 699 /// \p RuntimeCall into the offload arrays in \p OAs. 700 bool getValuesInOffloadArrays(CallInst &RuntimeCall, 701 MutableArrayRef<OffloadArray> OAs) { 702 assert(OAs.size() == 3 && "Need space for three offload arrays!"); 703 704 // A runtime call that involves memory offloading looks something like: 705 // call void @__tgt_target_data_begin_mapper(arg0, arg1, 706 // i8** %offload_baseptrs, i8** %offload_ptrs, i64* %offload_sizes, 707 // ...) 708 // So, the idea is to access the allocas that allocate space for these 709 // offload arrays, offload_baseptrs, offload_ptrs, offload_sizes. 710 // Therefore: 711 // i8** %offload_baseptrs. 712 Value *BasePtrsArg = 713 RuntimeCall.getArgOperand(OffloadArray::BasePtrsArgNum); 714 // i8** %offload_ptrs. 715 Value *PtrsArg = RuntimeCall.getArgOperand(OffloadArray::PtrsArgNum); 716 // i8** %offload_sizes. 717 Value *SizesArg = RuntimeCall.getArgOperand(OffloadArray::SizesArgNum); 718 719 // Get values stored in **offload_baseptrs. 720 auto *V = getUnderlyingObject(BasePtrsArg); 721 if (!isa<AllocaInst>(V)) 722 return false; 723 auto *BasePtrsArray = cast<AllocaInst>(V); 724 if (!OAs[0].initialize(*BasePtrsArray, RuntimeCall)) 725 return false; 726 727 // Get values stored in **offload_baseptrs. 728 V = getUnderlyingObject(PtrsArg); 729 if (!isa<AllocaInst>(V)) 730 return false; 731 auto *PtrsArray = cast<AllocaInst>(V); 732 if (!OAs[1].initialize(*PtrsArray, RuntimeCall)) 733 return false; 734 735 // Get values stored in **offload_sizes. 736 V = getUnderlyingObject(SizesArg); 737 // If it's a [constant] global array don't analyze it. 738 if (isa<GlobalValue>(V)) 739 return isa<Constant>(V); 740 if (!isa<AllocaInst>(V)) 741 return false; 742 743 auto *SizesArray = cast<AllocaInst>(V); 744 if (!OAs[2].initialize(*SizesArray, RuntimeCall)) 745 return false; 746 747 return true; 748 } 749 750 /// Prints the values in the OffloadArrays \p OAs using LLVM_DEBUG. 751 /// For now this is a way to test that the function getValuesInOffloadArrays 752 /// is working properly. 753 /// TODO: Move this to a unittest when unittests are available for OpenMPOpt. 754 void dumpValuesInOffloadArrays(ArrayRef<OffloadArray> OAs) { 755 assert(OAs.size() == 3 && "There are three offload arrays to debug!"); 756 757 LLVM_DEBUG(dbgs() << TAG << " Successfully got offload values:\n"); 758 std::string ValuesStr; 759 raw_string_ostream Printer(ValuesStr); 760 std::string Separator = " --- "; 761 762 for (auto *BP : OAs[0].StoredValues) { 763 BP->print(Printer); 764 Printer << Separator; 765 } 766 LLVM_DEBUG(dbgs() << "\t\toffload_baseptrs: " << Printer.str() << "\n"); 767 ValuesStr.clear(); 768 769 for (auto *P : OAs[1].StoredValues) { 770 P->print(Printer); 771 Printer << Separator; 772 } 773 LLVM_DEBUG(dbgs() << "\t\toffload_ptrs: " << Printer.str() << "\n"); 774 ValuesStr.clear(); 775 776 for (auto *S : OAs[2].StoredValues) { 777 S->print(Printer); 778 Printer << Separator; 779 } 780 LLVM_DEBUG(dbgs() << "\t\toffload_sizes: " << Printer.str() << "\n"); 781 } 782 783 /// Returns the instruction where the "wait" counterpart \p RuntimeCall can be 784 /// moved. Returns nullptr if the movement is not possible, or not worth it. 785 Instruction *canBeMovedDownwards(CallInst &RuntimeCall) { 786 // FIXME: This traverses only the BasicBlock where RuntimeCall is. 787 // Make it traverse the CFG. 788 789 Instruction *CurrentI = &RuntimeCall; 790 bool IsWorthIt = false; 791 while ((CurrentI = CurrentI->getNextNode())) { 792 793 // TODO: Once we detect the regions to be offloaded we should use the 794 // alias analysis manager to check if CurrentI may modify one of 795 // the offloaded regions. 796 if (CurrentI->mayHaveSideEffects() || CurrentI->mayReadFromMemory()) { 797 if (IsWorthIt) 798 return CurrentI; 799 800 return nullptr; 801 } 802 803 // FIXME: For now if we move it over anything without side effect 804 // is worth it. 805 IsWorthIt = true; 806 } 807 808 // Return end of BasicBlock. 809 return RuntimeCall.getParent()->getTerminator(); 810 } 811 812 /// Splits \p RuntimeCall into its "issue" and "wait" counterparts. 813 bool splitTargetDataBeginRTC(CallInst &RuntimeCall, 814 Instruction &WaitMovementPoint) { 815 auto &IRBuilder = OMPInfoCache.OMPBuilder; 816 // Add "issue" runtime call declaration: 817 // declare %struct.tgt_async_info @__tgt_target_data_begin_issue(i64, i32, 818 // i8**, i8**, i64*, i64*) 819 FunctionCallee IssueDecl = IRBuilder.getOrCreateRuntimeFunction( 820 M, OMPRTL___tgt_target_data_begin_mapper_issue); 821 822 // Change RuntimeCall call site for its asynchronous version. 823 SmallVector<Value *, 8> Args; 824 for (auto &Arg : RuntimeCall.args()) 825 Args.push_back(Arg.get()); 826 827 CallInst *IssueCallsite = 828 CallInst::Create(IssueDecl, Args, "handle", &RuntimeCall); 829 RuntimeCall.eraseFromParent(); 830 831 // Add "wait" runtime call declaration: 832 // declare void @__tgt_target_data_begin_wait(i64, %struct.__tgt_async_info) 833 FunctionCallee WaitDecl = IRBuilder.getOrCreateRuntimeFunction( 834 M, OMPRTL___tgt_target_data_begin_mapper_wait); 835 836 // Add call site to WaitDecl. 837 Value *WaitParams[2] = { 838 IssueCallsite->getArgOperand(0), // device_id. 839 IssueCallsite // returned handle. 840 }; 841 CallInst::Create(WaitDecl, WaitParams, /*NameStr=*/"", &WaitMovementPoint); 842 843 return true; 844 } 845 846 static Value *combinedIdentStruct(Value *CurrentIdent, Value *NextIdent, 847 bool GlobalOnly, bool &SingleChoice) { 848 if (CurrentIdent == NextIdent) 849 return CurrentIdent; 850 851 // TODO: Figure out how to actually combine multiple debug locations. For 852 // now we just keep an existing one if there is a single choice. 853 if (!GlobalOnly || isa<GlobalValue>(NextIdent)) { 854 SingleChoice = !CurrentIdent; 855 return NextIdent; 856 } 857 return nullptr; 858 } 859 860 /// Return an `struct ident_t*` value that represents the ones used in the 861 /// calls of \p RFI inside of \p F. If \p GlobalOnly is true, we will not 862 /// return a local `struct ident_t*`. For now, if we cannot find a suitable 863 /// return value we create one from scratch. We also do not yet combine 864 /// information, e.g., the source locations, see combinedIdentStruct. 865 Value * 866 getCombinedIdentFromCallUsesIn(OMPInformationCache::RuntimeFunctionInfo &RFI, 867 Function &F, bool GlobalOnly) { 868 bool SingleChoice = true; 869 Value *Ident = nullptr; 870 auto CombineIdentStruct = [&](Use &U, Function &Caller) { 871 CallInst *CI = getCallIfRegularCall(U, &RFI); 872 if (!CI || &F != &Caller) 873 return false; 874 Ident = combinedIdentStruct(Ident, CI->getArgOperand(0), 875 /* GlobalOnly */ true, SingleChoice); 876 return false; 877 }; 878 RFI.foreachUse(SCC, CombineIdentStruct); 879 880 if (!Ident || !SingleChoice) { 881 // The IRBuilder uses the insertion block to get to the module, this is 882 // unfortunate but we work around it for now. 883 if (!OMPInfoCache.OMPBuilder.getInsertionPoint().getBlock()) 884 OMPInfoCache.OMPBuilder.updateToLocation(OpenMPIRBuilder::InsertPointTy( 885 &F.getEntryBlock(), F.getEntryBlock().begin())); 886 // Create a fallback location if non was found. 887 // TODO: Use the debug locations of the calls instead. 888 Constant *Loc = OMPInfoCache.OMPBuilder.getOrCreateDefaultSrcLocStr(); 889 Ident = OMPInfoCache.OMPBuilder.getOrCreateIdent(Loc); 890 } 891 return Ident; 892 } 893 894 /// Try to eliminate calls of \p RFI in \p F by reusing an existing one or 895 /// \p ReplVal if given. 896 bool deduplicateRuntimeCalls(Function &F, 897 OMPInformationCache::RuntimeFunctionInfo &RFI, 898 Value *ReplVal = nullptr) { 899 auto *UV = RFI.getUseVector(F); 900 if (!UV || UV->size() + (ReplVal != nullptr) < 2) 901 return false; 902 903 LLVM_DEBUG( 904 dbgs() << TAG << "Deduplicate " << UV->size() << " uses of " << RFI.Name 905 << (ReplVal ? " with an existing value\n" : "\n") << "\n"); 906 907 assert((!ReplVal || (isa<Argument>(ReplVal) && 908 cast<Argument>(ReplVal)->getParent() == &F)) && 909 "Unexpected replacement value!"); 910 911 // TODO: Use dominance to find a good position instead. 912 auto CanBeMoved = [this](CallBase &CB) { 913 unsigned NumArgs = CB.getNumArgOperands(); 914 if (NumArgs == 0) 915 return true; 916 if (CB.getArgOperand(0)->getType() != OMPInfoCache.OMPBuilder.IdentPtr) 917 return false; 918 for (unsigned u = 1; u < NumArgs; ++u) 919 if (isa<Instruction>(CB.getArgOperand(u))) 920 return false; 921 return true; 922 }; 923 924 if (!ReplVal) { 925 for (Use *U : *UV) 926 if (CallInst *CI = getCallIfRegularCall(*U, &RFI)) { 927 if (!CanBeMoved(*CI)) 928 continue; 929 930 auto Remark = [&](OptimizationRemark OR) { 931 auto newLoc = &*F.getEntryBlock().getFirstInsertionPt(); 932 return OR << "OpenMP runtime call " 933 << ore::NV("OpenMPOptRuntime", RFI.Name) << " moved to " 934 << ore::NV("OpenMPRuntimeMoves", newLoc->getDebugLoc()); 935 }; 936 emitRemark<OptimizationRemark>(CI, "OpenMPRuntimeCodeMotion", Remark); 937 938 CI->moveBefore(&*F.getEntryBlock().getFirstInsertionPt()); 939 ReplVal = CI; 940 break; 941 } 942 if (!ReplVal) 943 return false; 944 } 945 946 // If we use a call as a replacement value we need to make sure the ident is 947 // valid at the new location. For now we just pick a global one, either 948 // existing and used by one of the calls, or created from scratch. 949 if (CallBase *CI = dyn_cast<CallBase>(ReplVal)) { 950 if (CI->getNumArgOperands() > 0 && 951 CI->getArgOperand(0)->getType() == OMPInfoCache.OMPBuilder.IdentPtr) { 952 Value *Ident = getCombinedIdentFromCallUsesIn(RFI, F, 953 /* GlobalOnly */ true); 954 CI->setArgOperand(0, Ident); 955 } 956 } 957 958 bool Changed = false; 959 auto ReplaceAndDeleteCB = [&](Use &U, Function &Caller) { 960 CallInst *CI = getCallIfRegularCall(U, &RFI); 961 if (!CI || CI == ReplVal || &F != &Caller) 962 return false; 963 assert(CI->getCaller() == &F && "Unexpected call!"); 964 965 auto Remark = [&](OptimizationRemark OR) { 966 return OR << "OpenMP runtime call " 967 << ore::NV("OpenMPOptRuntime", RFI.Name) << " deduplicated"; 968 }; 969 emitRemark<OptimizationRemark>(CI, "OpenMPRuntimeDeduplicated", Remark); 970 971 CGUpdater.removeCallSite(*CI); 972 CI->replaceAllUsesWith(ReplVal); 973 CI->eraseFromParent(); 974 ++NumOpenMPRuntimeCallsDeduplicated; 975 Changed = true; 976 return true; 977 }; 978 RFI.foreachUse(SCC, ReplaceAndDeleteCB); 979 980 return Changed; 981 } 982 983 /// Collect arguments that represent the global thread id in \p GTIdArgs. 984 void collectGlobalThreadIdArguments(SmallSetVector<Value *, 16> >IdArgs) { 985 // TODO: Below we basically perform a fixpoint iteration with a pessimistic 986 // initialization. We could define an AbstractAttribute instead and 987 // run the Attributor here once it can be run as an SCC pass. 988 989 // Helper to check the argument \p ArgNo at all call sites of \p F for 990 // a GTId. 991 auto CallArgOpIsGTId = [&](Function &F, unsigned ArgNo, CallInst &RefCI) { 992 if (!F.hasLocalLinkage()) 993 return false; 994 for (Use &U : F.uses()) { 995 if (CallInst *CI = getCallIfRegularCall(U)) { 996 Value *ArgOp = CI->getArgOperand(ArgNo); 997 if (CI == &RefCI || GTIdArgs.count(ArgOp) || 998 getCallIfRegularCall( 999 *ArgOp, &OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num])) 1000 continue; 1001 } 1002 return false; 1003 } 1004 return true; 1005 }; 1006 1007 // Helper to identify uses of a GTId as GTId arguments. 1008 auto AddUserArgs = [&](Value >Id) { 1009 for (Use &U : GTId.uses()) 1010 if (CallInst *CI = dyn_cast<CallInst>(U.getUser())) 1011 if (CI->isArgOperand(&U)) 1012 if (Function *Callee = CI->getCalledFunction()) 1013 if (CallArgOpIsGTId(*Callee, U.getOperandNo(), *CI)) 1014 GTIdArgs.insert(Callee->getArg(U.getOperandNo())); 1015 }; 1016 1017 // The argument users of __kmpc_global_thread_num calls are GTIds. 1018 OMPInformationCache::RuntimeFunctionInfo &GlobThreadNumRFI = 1019 OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num]; 1020 1021 GlobThreadNumRFI.foreachUse(SCC, [&](Use &U, Function &F) { 1022 if (CallInst *CI = getCallIfRegularCall(U, &GlobThreadNumRFI)) 1023 AddUserArgs(*CI); 1024 return false; 1025 }); 1026 1027 // Transitively search for more arguments by looking at the users of the 1028 // ones we know already. During the search the GTIdArgs vector is extended 1029 // so we cannot cache the size nor can we use a range based for. 1030 for (unsigned u = 0; u < GTIdArgs.size(); ++u) 1031 AddUserArgs(*GTIdArgs[u]); 1032 } 1033 1034 /// Kernel (=GPU) optimizations and utility functions 1035 /// 1036 ///{{ 1037 1038 /// Check if \p F is a kernel, hence entry point for target offloading. 1039 bool isKernel(Function &F) { return OMPInfoCache.Kernels.count(&F); } 1040 1041 /// Cache to remember the unique kernel for a function. 1042 DenseMap<Function *, Optional<Kernel>> UniqueKernelMap; 1043 1044 /// Find the unique kernel that will execute \p F, if any. 1045 Kernel getUniqueKernelFor(Function &F); 1046 1047 /// Find the unique kernel that will execute \p I, if any. 1048 Kernel getUniqueKernelFor(Instruction &I) { 1049 return getUniqueKernelFor(*I.getFunction()); 1050 } 1051 1052 /// Rewrite the device (=GPU) code state machine create in non-SPMD mode in 1053 /// the cases we can avoid taking the address of a function. 1054 bool rewriteDeviceCodeStateMachine(); 1055 1056 /// 1057 ///}} 1058 1059 /// Emit a remark generically 1060 /// 1061 /// This template function can be used to generically emit a remark. The 1062 /// RemarkKind should be one of the following: 1063 /// - OptimizationRemark to indicate a successful optimization attempt 1064 /// - OptimizationRemarkMissed to report a failed optimization attempt 1065 /// - OptimizationRemarkAnalysis to provide additional information about an 1066 /// optimization attempt 1067 /// 1068 /// The remark is built using a callback function provided by the caller that 1069 /// takes a RemarkKind as input and returns a RemarkKind. 1070 template <typename RemarkKind, 1071 typename RemarkCallBack = function_ref<RemarkKind(RemarkKind &&)>> 1072 void emitRemark(Instruction *Inst, StringRef RemarkName, 1073 RemarkCallBack &&RemarkCB) const { 1074 Function *F = Inst->getParent()->getParent(); 1075 auto &ORE = OREGetter(F); 1076 1077 ORE.emit( 1078 [&]() { return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, Inst)); }); 1079 } 1080 1081 /// Emit a remark on a function. Since only OptimizationRemark is supporting 1082 /// this, it can't be made generic. 1083 void 1084 emitRemarkOnFunction(Function *F, StringRef RemarkName, 1085 function_ref<OptimizationRemark(OptimizationRemark &&)> 1086 &&RemarkCB) const { 1087 auto &ORE = OREGetter(F); 1088 1089 ORE.emit([&]() { 1090 return RemarkCB(OptimizationRemark(DEBUG_TYPE, RemarkName, F)); 1091 }); 1092 } 1093 1094 /// The underlying module. 1095 Module &M; 1096 1097 /// The SCC we are operating on. 1098 SmallVectorImpl<Function *> &SCC; 1099 1100 /// Callback to update the call graph, the first argument is a removed call, 1101 /// the second an optional replacement call. 1102 CallGraphUpdater &CGUpdater; 1103 1104 /// Callback to get an OptimizationRemarkEmitter from a Function * 1105 OptimizationRemarkGetter OREGetter; 1106 1107 /// OpenMP-specific information cache. Also Used for Attributor runs. 1108 OMPInformationCache &OMPInfoCache; 1109 1110 /// Attributor instance. 1111 Attributor &A; 1112 1113 /// Helper function to run Attributor on SCC. 1114 bool runAttributor() { 1115 if (SCC.empty()) 1116 return false; 1117 1118 registerAAs(); 1119 1120 ChangeStatus Changed = A.run(); 1121 1122 LLVM_DEBUG(dbgs() << "[Attributor] Done with " << SCC.size() 1123 << " functions, result: " << Changed << ".\n"); 1124 1125 return Changed == ChangeStatus::CHANGED; 1126 } 1127 1128 /// Populate the Attributor with abstract attribute opportunities in the 1129 /// function. 1130 void registerAAs() { 1131 if (SCC.empty()) 1132 return; 1133 1134 // Create CallSite AA for all Getters. 1135 for (int Idx = 0; Idx < OMPInfoCache.ICVs.size() - 1; ++Idx) { 1136 auto ICVInfo = OMPInfoCache.ICVs[static_cast<InternalControlVar>(Idx)]; 1137 1138 auto &GetterRFI = OMPInfoCache.RFIs[ICVInfo.Getter]; 1139 1140 auto CreateAA = [&](Use &U, Function &Caller) { 1141 CallInst *CI = OpenMPOpt::getCallIfRegularCall(U, &GetterRFI); 1142 if (!CI) 1143 return false; 1144 1145 auto &CB = cast<CallBase>(*CI); 1146 1147 IRPosition CBPos = IRPosition::callsite_function(CB); 1148 A.getOrCreateAAFor<AAICVTracker>(CBPos); 1149 return false; 1150 }; 1151 1152 GetterRFI.foreachUse(SCC, CreateAA); 1153 } 1154 } 1155 }; 1156 1157 Kernel OpenMPOpt::getUniqueKernelFor(Function &F) { 1158 if (!OMPInfoCache.ModuleSlice.count(&F)) 1159 return nullptr; 1160 1161 // Use a scope to keep the lifetime of the CachedKernel short. 1162 { 1163 Optional<Kernel> &CachedKernel = UniqueKernelMap[&F]; 1164 if (CachedKernel) 1165 return *CachedKernel; 1166 1167 // TODO: We should use an AA to create an (optimistic and callback 1168 // call-aware) call graph. For now we stick to simple patterns that 1169 // are less powerful, basically the worst fixpoint. 1170 if (isKernel(F)) { 1171 CachedKernel = Kernel(&F); 1172 return *CachedKernel; 1173 } 1174 1175 CachedKernel = nullptr; 1176 if (!F.hasLocalLinkage()) 1177 return nullptr; 1178 } 1179 1180 auto GetUniqueKernelForUse = [&](const Use &U) -> Kernel { 1181 if (auto *Cmp = dyn_cast<ICmpInst>(U.getUser())) { 1182 // Allow use in equality comparisons. 1183 if (Cmp->isEquality()) 1184 return getUniqueKernelFor(*Cmp); 1185 return nullptr; 1186 } 1187 if (auto *CB = dyn_cast<CallBase>(U.getUser())) { 1188 // Allow direct calls. 1189 if (CB->isCallee(&U)) 1190 return getUniqueKernelFor(*CB); 1191 // Allow the use in __kmpc_kernel_prepare_parallel calls. 1192 if (Function *Callee = CB->getCalledFunction()) 1193 if (Callee->getName() == "__kmpc_kernel_prepare_parallel") 1194 return getUniqueKernelFor(*CB); 1195 return nullptr; 1196 } 1197 // Disallow every other use. 1198 return nullptr; 1199 }; 1200 1201 // TODO: In the future we want to track more than just a unique kernel. 1202 SmallPtrSet<Kernel, 2> PotentialKernels; 1203 OMPInformationCache::foreachUse(F, [&](const Use &U) { 1204 PotentialKernels.insert(GetUniqueKernelForUse(U)); 1205 }); 1206 1207 Kernel K = nullptr; 1208 if (PotentialKernels.size() == 1) 1209 K = *PotentialKernels.begin(); 1210 1211 // Cache the result. 1212 UniqueKernelMap[&F] = K; 1213 1214 return K; 1215 } 1216 1217 bool OpenMPOpt::rewriteDeviceCodeStateMachine() { 1218 OMPInformationCache::RuntimeFunctionInfo &KernelPrepareParallelRFI = 1219 OMPInfoCache.RFIs[OMPRTL___kmpc_kernel_prepare_parallel]; 1220 1221 bool Changed = false; 1222 if (!KernelPrepareParallelRFI) 1223 return Changed; 1224 1225 for (Function *F : SCC) { 1226 1227 // Check if the function is uses in a __kmpc_kernel_prepare_parallel call at 1228 // all. 1229 bool UnknownUse = false; 1230 bool KernelPrepareUse = false; 1231 unsigned NumDirectCalls = 0; 1232 1233 SmallVector<Use *, 2> ToBeReplacedStateMachineUses; 1234 OMPInformationCache::foreachUse(*F, [&](Use &U) { 1235 if (auto *CB = dyn_cast<CallBase>(U.getUser())) 1236 if (CB->isCallee(&U)) { 1237 ++NumDirectCalls; 1238 return; 1239 } 1240 1241 if (isa<ICmpInst>(U.getUser())) { 1242 ToBeReplacedStateMachineUses.push_back(&U); 1243 return; 1244 } 1245 if (!KernelPrepareUse && OpenMPOpt::getCallIfRegularCall( 1246 *U.getUser(), &KernelPrepareParallelRFI)) { 1247 KernelPrepareUse = true; 1248 ToBeReplacedStateMachineUses.push_back(&U); 1249 return; 1250 } 1251 UnknownUse = true; 1252 }); 1253 1254 // Do not emit a remark if we haven't seen a __kmpc_kernel_prepare_parallel 1255 // use. 1256 if (!KernelPrepareUse) 1257 continue; 1258 1259 { 1260 auto Remark = [&](OptimizationRemark OR) { 1261 return OR << "Found a parallel region that is called in a target " 1262 "region but not part of a combined target construct nor " 1263 "nesed inside a target construct without intermediate " 1264 "code. This can lead to excessive register usage for " 1265 "unrelated target regions in the same translation unit " 1266 "due to spurious call edges assumed by ptxas."; 1267 }; 1268 emitRemarkOnFunction(F, "OpenMPParallelRegionInNonSPMD", Remark); 1269 } 1270 1271 // If this ever hits, we should investigate. 1272 // TODO: Checking the number of uses is not a necessary restriction and 1273 // should be lifted. 1274 if (UnknownUse || NumDirectCalls != 1 || 1275 ToBeReplacedStateMachineUses.size() != 2) { 1276 { 1277 auto Remark = [&](OptimizationRemark OR) { 1278 return OR << "Parallel region is used in " 1279 << (UnknownUse ? "unknown" : "unexpected") 1280 << " ways; will not attempt to rewrite the state machine."; 1281 }; 1282 emitRemarkOnFunction(F, "OpenMPParallelRegionInNonSPMD", Remark); 1283 } 1284 continue; 1285 } 1286 1287 // Even if we have __kmpc_kernel_prepare_parallel calls, we (for now) give 1288 // up if the function is not called from a unique kernel. 1289 Kernel K = getUniqueKernelFor(*F); 1290 if (!K) { 1291 { 1292 auto Remark = [&](OptimizationRemark OR) { 1293 return OR << "Parallel region is not known to be called from a " 1294 "unique single target region, maybe the surrounding " 1295 "function has external linkage?; will not attempt to " 1296 "rewrite the state machine use."; 1297 }; 1298 emitRemarkOnFunction(F, "OpenMPParallelRegionInMultipleKernesl", 1299 Remark); 1300 } 1301 continue; 1302 } 1303 1304 // We now know F is a parallel body function called only from the kernel K. 1305 // We also identified the state machine uses in which we replace the 1306 // function pointer by a new global symbol for identification purposes. This 1307 // ensures only direct calls to the function are left. 1308 1309 { 1310 auto RemarkParalleRegion = [&](OptimizationRemark OR) { 1311 return OR << "Specialize parallel region that is only reached from a " 1312 "single target region to avoid spurious call edges and " 1313 "excessive register usage in other target regions. " 1314 "(parallel region ID: " 1315 << ore::NV("OpenMPParallelRegion", F->getName()) 1316 << ", kernel ID: " 1317 << ore::NV("OpenMPTargetRegion", K->getName()) << ")"; 1318 }; 1319 emitRemarkOnFunction(F, "OpenMPParallelRegionInNonSPMD", 1320 RemarkParalleRegion); 1321 auto RemarkKernel = [&](OptimizationRemark OR) { 1322 return OR << "Target region containing the parallel region that is " 1323 "specialized. (parallel region ID: " 1324 << ore::NV("OpenMPParallelRegion", F->getName()) 1325 << ", kernel ID: " 1326 << ore::NV("OpenMPTargetRegion", K->getName()) << ")"; 1327 }; 1328 emitRemarkOnFunction(K, "OpenMPParallelRegionInNonSPMD", RemarkKernel); 1329 } 1330 1331 Module &M = *F->getParent(); 1332 Type *Int8Ty = Type::getInt8Ty(M.getContext()); 1333 1334 auto *ID = new GlobalVariable( 1335 M, Int8Ty, /* isConstant */ true, GlobalValue::PrivateLinkage, 1336 UndefValue::get(Int8Ty), F->getName() + ".ID"); 1337 1338 for (Use *U : ToBeReplacedStateMachineUses) 1339 U->set(ConstantExpr::getBitCast(ID, U->get()->getType())); 1340 1341 ++NumOpenMPParallelRegionsReplacedInGPUStateMachine; 1342 1343 Changed = true; 1344 } 1345 1346 return Changed; 1347 } 1348 1349 /// Abstract Attribute for tracking ICV values. 1350 struct AAICVTracker : public StateWrapper<BooleanState, AbstractAttribute> { 1351 using Base = StateWrapper<BooleanState, AbstractAttribute>; 1352 AAICVTracker(const IRPosition &IRP, Attributor &A) : Base(IRP) {} 1353 1354 void initialize(Attributor &A) override { 1355 Function *F = getAnchorScope(); 1356 if (!F || !A.isFunctionIPOAmendable(*F)) 1357 indicatePessimisticFixpoint(); 1358 } 1359 1360 /// Returns true if value is assumed to be tracked. 1361 bool isAssumedTracked() const { return getAssumed(); } 1362 1363 /// Returns true if value is known to be tracked. 1364 bool isKnownTracked() const { return getAssumed(); } 1365 1366 /// Create an abstract attribute biew for the position \p IRP. 1367 static AAICVTracker &createForPosition(const IRPosition &IRP, Attributor &A); 1368 1369 /// Return the value with which \p I can be replaced for specific \p ICV. 1370 virtual Optional<Value *> getReplacementValue(InternalControlVar ICV, 1371 const Instruction *I, 1372 Attributor &A) const { 1373 return None; 1374 } 1375 1376 /// Return an assumed unique ICV value if a single candidate is found. If 1377 /// there cannot be one, return a nullptr. If it is not clear yet, return the 1378 /// Optional::NoneType. 1379 virtual Optional<Value *> 1380 getUniqueReplacementValue(InternalControlVar ICV) const = 0; 1381 1382 // Currently only nthreads is being tracked. 1383 // this array will only grow with time. 1384 InternalControlVar TrackableICVs[1] = {ICV_nthreads}; 1385 1386 /// See AbstractAttribute::getName() 1387 const std::string getName() const override { return "AAICVTracker"; } 1388 1389 /// See AbstractAttribute::getIdAddr() 1390 const char *getIdAddr() const override { return &ID; } 1391 1392 /// This function should return true if the type of the \p AA is AAICVTracker 1393 static bool classof(const AbstractAttribute *AA) { 1394 return (AA->getIdAddr() == &ID); 1395 } 1396 1397 static const char ID; 1398 }; 1399 1400 struct AAICVTrackerFunction : public AAICVTracker { 1401 AAICVTrackerFunction(const IRPosition &IRP, Attributor &A) 1402 : AAICVTracker(IRP, A) {} 1403 1404 // FIXME: come up with better string. 1405 const std::string getAsStr() const override { return "ICVTrackerFunction"; } 1406 1407 // FIXME: come up with some stats. 1408 void trackStatistics() const override {} 1409 1410 /// We don't manifest anything for this AA. 1411 ChangeStatus manifest(Attributor &A) override { 1412 return ChangeStatus::UNCHANGED; 1413 } 1414 1415 // Map of ICV to their values at specific program point. 1416 EnumeratedArray<DenseMap<Instruction *, Value *>, InternalControlVar, 1417 InternalControlVar::ICV___last> 1418 ICVReplacementValuesMap; 1419 1420 ChangeStatus updateImpl(Attributor &A) override { 1421 ChangeStatus HasChanged = ChangeStatus::UNCHANGED; 1422 1423 Function *F = getAnchorScope(); 1424 1425 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 1426 1427 for (InternalControlVar ICV : TrackableICVs) { 1428 auto &SetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Setter]; 1429 1430 auto &ValuesMap = ICVReplacementValuesMap[ICV]; 1431 auto TrackValues = [&](Use &U, Function &) { 1432 CallInst *CI = OpenMPOpt::getCallIfRegularCall(U); 1433 if (!CI) 1434 return false; 1435 1436 // FIXME: handle setters with more that 1 arguments. 1437 /// Track new value. 1438 if (ValuesMap.insert(std::make_pair(CI, CI->getArgOperand(0))).second) 1439 HasChanged = ChangeStatus::CHANGED; 1440 1441 return false; 1442 }; 1443 1444 auto CallCheck = [&](Instruction &I) { 1445 Optional<Value *> ReplVal = getValueForCall(A, &I, ICV); 1446 if (ReplVal.hasValue() && 1447 ValuesMap.insert(std::make_pair(&I, *ReplVal)).second) 1448 HasChanged = ChangeStatus::CHANGED; 1449 1450 return true; 1451 }; 1452 1453 // Track all changes of an ICV. 1454 SetterRFI.foreachUse(TrackValues, F); 1455 1456 A.checkForAllInstructions(CallCheck, *this, {Instruction::Call}, 1457 /* CheckBBLivenessOnly */ true); 1458 1459 /// TODO: Figure out a way to avoid adding entry in 1460 /// ICVReplacementValuesMap 1461 Instruction *Entry = &F->getEntryBlock().front(); 1462 if (HasChanged == ChangeStatus::CHANGED && !ValuesMap.count(Entry)) 1463 ValuesMap.insert(std::make_pair(Entry, nullptr)); 1464 } 1465 1466 return HasChanged; 1467 } 1468 1469 /// Hepler to check if \p I is a call and get the value for it if it is 1470 /// unique. 1471 Optional<Value *> getValueForCall(Attributor &A, const Instruction *I, 1472 InternalControlVar &ICV) const { 1473 1474 const auto *CB = dyn_cast<CallBase>(I); 1475 if (!CB) 1476 return None; 1477 1478 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 1479 auto &GetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Getter]; 1480 auto &SetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Setter]; 1481 Function *CalledFunction = CB->getCalledFunction(); 1482 1483 // Indirect call, assume ICV changes. 1484 if (CalledFunction == nullptr) 1485 return nullptr; 1486 if (CalledFunction == GetterRFI.Declaration) 1487 return None; 1488 if (CalledFunction == SetterRFI.Declaration) { 1489 if (ICVReplacementValuesMap[ICV].count(I)) 1490 return ICVReplacementValuesMap[ICV].lookup(I); 1491 1492 return nullptr; 1493 } 1494 1495 // Since we don't know, assume it changes the ICV. 1496 if (CalledFunction->isDeclaration()) 1497 return nullptr; 1498 1499 const auto &ICVTrackingAA = 1500 A.getAAFor<AAICVTracker>(*this, IRPosition::callsite_returned(*CB)); 1501 1502 if (ICVTrackingAA.isAssumedTracked()) 1503 return ICVTrackingAA.getUniqueReplacementValue(ICV); 1504 1505 // If we don't know, assume it changes. 1506 return nullptr; 1507 } 1508 1509 // We don't check unique value for a function, so return None. 1510 Optional<Value *> 1511 getUniqueReplacementValue(InternalControlVar ICV) const override { 1512 return None; 1513 } 1514 1515 /// Return the value with which \p I can be replaced for specific \p ICV. 1516 Optional<Value *> getReplacementValue(InternalControlVar ICV, 1517 const Instruction *I, 1518 Attributor &A) const override { 1519 const auto &ValuesMap = ICVReplacementValuesMap[ICV]; 1520 if (ValuesMap.count(I)) 1521 return ValuesMap.lookup(I); 1522 1523 SmallVector<const Instruction *, 16> Worklist; 1524 SmallPtrSet<const Instruction *, 16> Visited; 1525 Worklist.push_back(I); 1526 1527 Optional<Value *> ReplVal; 1528 1529 while (!Worklist.empty()) { 1530 const Instruction *CurrInst = Worklist.pop_back_val(); 1531 if (!Visited.insert(CurrInst).second) 1532 continue; 1533 1534 const BasicBlock *CurrBB = CurrInst->getParent(); 1535 1536 // Go up and look for all potential setters/calls that might change the 1537 // ICV. 1538 while ((CurrInst = CurrInst->getPrevNode())) { 1539 if (ValuesMap.count(CurrInst)) { 1540 Optional<Value *> NewReplVal = ValuesMap.lookup(CurrInst); 1541 // Unknown value, track new. 1542 if (!ReplVal.hasValue()) { 1543 ReplVal = NewReplVal; 1544 break; 1545 } 1546 1547 // If we found a new value, we can't know the icv value anymore. 1548 if (NewReplVal.hasValue()) 1549 if (ReplVal != NewReplVal) 1550 return nullptr; 1551 1552 break; 1553 } 1554 1555 Optional<Value *> NewReplVal = getValueForCall(A, CurrInst, ICV); 1556 if (!NewReplVal.hasValue()) 1557 continue; 1558 1559 // Unknown value, track new. 1560 if (!ReplVal.hasValue()) { 1561 ReplVal = NewReplVal; 1562 break; 1563 } 1564 1565 // if (NewReplVal.hasValue()) 1566 // We found a new value, we can't know the icv value anymore. 1567 if (ReplVal != NewReplVal) 1568 return nullptr; 1569 } 1570 1571 // If we are in the same BB and we have a value, we are done. 1572 if (CurrBB == I->getParent() && ReplVal.hasValue()) 1573 return ReplVal; 1574 1575 // Go through all predecessors and add terminators for analysis. 1576 for (const BasicBlock *Pred : predecessors(CurrBB)) 1577 if (const Instruction *Terminator = Pred->getTerminator()) 1578 Worklist.push_back(Terminator); 1579 } 1580 1581 return ReplVal; 1582 } 1583 }; 1584 1585 struct AAICVTrackerFunctionReturned : AAICVTracker { 1586 AAICVTrackerFunctionReturned(const IRPosition &IRP, Attributor &A) 1587 : AAICVTracker(IRP, A) {} 1588 1589 // FIXME: come up with better string. 1590 const std::string getAsStr() const override { 1591 return "ICVTrackerFunctionReturned"; 1592 } 1593 1594 // FIXME: come up with some stats. 1595 void trackStatistics() const override {} 1596 1597 /// We don't manifest anything for this AA. 1598 ChangeStatus manifest(Attributor &A) override { 1599 return ChangeStatus::UNCHANGED; 1600 } 1601 1602 // Map of ICV to their values at specific program point. 1603 EnumeratedArray<Optional<Value *>, InternalControlVar, 1604 InternalControlVar::ICV___last> 1605 ICVReplacementValuesMap; 1606 1607 /// Return the value with which \p I can be replaced for specific \p ICV. 1608 Optional<Value *> 1609 getUniqueReplacementValue(InternalControlVar ICV) const override { 1610 return ICVReplacementValuesMap[ICV]; 1611 } 1612 1613 ChangeStatus updateImpl(Attributor &A) override { 1614 ChangeStatus Changed = ChangeStatus::UNCHANGED; 1615 const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>( 1616 *this, IRPosition::function(*getAnchorScope())); 1617 1618 if (!ICVTrackingAA.isAssumedTracked()) 1619 return indicatePessimisticFixpoint(); 1620 1621 for (InternalControlVar ICV : TrackableICVs) { 1622 Optional<Value *> &ReplVal = ICVReplacementValuesMap[ICV]; 1623 Optional<Value *> UniqueICVValue; 1624 1625 auto CheckReturnInst = [&](Instruction &I) { 1626 Optional<Value *> NewReplVal = 1627 ICVTrackingAA.getReplacementValue(ICV, &I, A); 1628 1629 // If we found a second ICV value there is no unique returned value. 1630 if (UniqueICVValue.hasValue() && UniqueICVValue != NewReplVal) 1631 return false; 1632 1633 UniqueICVValue = NewReplVal; 1634 1635 return true; 1636 }; 1637 1638 if (!A.checkForAllInstructions(CheckReturnInst, *this, {Instruction::Ret}, 1639 /* CheckBBLivenessOnly */ true)) 1640 UniqueICVValue = nullptr; 1641 1642 if (UniqueICVValue == ReplVal) 1643 continue; 1644 1645 ReplVal = UniqueICVValue; 1646 Changed = ChangeStatus::CHANGED; 1647 } 1648 1649 return Changed; 1650 } 1651 }; 1652 1653 struct AAICVTrackerCallSite : AAICVTracker { 1654 AAICVTrackerCallSite(const IRPosition &IRP, Attributor &A) 1655 : AAICVTracker(IRP, A) {} 1656 1657 void initialize(Attributor &A) override { 1658 Function *F = getAnchorScope(); 1659 if (!F || !A.isFunctionIPOAmendable(*F)) 1660 indicatePessimisticFixpoint(); 1661 1662 // We only initialize this AA for getters, so we need to know which ICV it 1663 // gets. 1664 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 1665 for (InternalControlVar ICV : TrackableICVs) { 1666 auto ICVInfo = OMPInfoCache.ICVs[ICV]; 1667 auto &Getter = OMPInfoCache.RFIs[ICVInfo.Getter]; 1668 if (Getter.Declaration == getAssociatedFunction()) { 1669 AssociatedICV = ICVInfo.Kind; 1670 return; 1671 } 1672 } 1673 1674 /// Unknown ICV. 1675 indicatePessimisticFixpoint(); 1676 } 1677 1678 ChangeStatus manifest(Attributor &A) override { 1679 if (!ReplVal.hasValue() || !ReplVal.getValue()) 1680 return ChangeStatus::UNCHANGED; 1681 1682 A.changeValueAfterManifest(*getCtxI(), **ReplVal); 1683 A.deleteAfterManifest(*getCtxI()); 1684 1685 return ChangeStatus::CHANGED; 1686 } 1687 1688 // FIXME: come up with better string. 1689 const std::string getAsStr() const override { return "ICVTrackerCallSite"; } 1690 1691 // FIXME: come up with some stats. 1692 void trackStatistics() const override {} 1693 1694 InternalControlVar AssociatedICV; 1695 Optional<Value *> ReplVal; 1696 1697 ChangeStatus updateImpl(Attributor &A) override { 1698 const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>( 1699 *this, IRPosition::function(*getAnchorScope())); 1700 1701 // We don't have any information, so we assume it changes the ICV. 1702 if (!ICVTrackingAA.isAssumedTracked()) 1703 return indicatePessimisticFixpoint(); 1704 1705 Optional<Value *> NewReplVal = 1706 ICVTrackingAA.getReplacementValue(AssociatedICV, getCtxI(), A); 1707 1708 if (ReplVal == NewReplVal) 1709 return ChangeStatus::UNCHANGED; 1710 1711 ReplVal = NewReplVal; 1712 return ChangeStatus::CHANGED; 1713 } 1714 1715 // Return the value with which associated value can be replaced for specific 1716 // \p ICV. 1717 Optional<Value *> 1718 getUniqueReplacementValue(InternalControlVar ICV) const override { 1719 return ReplVal; 1720 } 1721 }; 1722 1723 struct AAICVTrackerCallSiteReturned : AAICVTracker { 1724 AAICVTrackerCallSiteReturned(const IRPosition &IRP, Attributor &A) 1725 : AAICVTracker(IRP, A) {} 1726 1727 // FIXME: come up with better string. 1728 const std::string getAsStr() const override { 1729 return "ICVTrackerCallSiteReturned"; 1730 } 1731 1732 // FIXME: come up with some stats. 1733 void trackStatistics() const override {} 1734 1735 /// We don't manifest anything for this AA. 1736 ChangeStatus manifest(Attributor &A) override { 1737 return ChangeStatus::UNCHANGED; 1738 } 1739 1740 // Map of ICV to their values at specific program point. 1741 EnumeratedArray<Optional<Value *>, InternalControlVar, 1742 InternalControlVar::ICV___last> 1743 ICVReplacementValuesMap; 1744 1745 /// Return the value with which associated value can be replaced for specific 1746 /// \p ICV. 1747 Optional<Value *> 1748 getUniqueReplacementValue(InternalControlVar ICV) const override { 1749 return ICVReplacementValuesMap[ICV]; 1750 } 1751 1752 ChangeStatus updateImpl(Attributor &A) override { 1753 ChangeStatus Changed = ChangeStatus::UNCHANGED; 1754 const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>( 1755 *this, IRPosition::returned(*getAssociatedFunction())); 1756 1757 // We don't have any information, so we assume it changes the ICV. 1758 if (!ICVTrackingAA.isAssumedTracked()) 1759 return indicatePessimisticFixpoint(); 1760 1761 for (InternalControlVar ICV : TrackableICVs) { 1762 Optional<Value *> &ReplVal = ICVReplacementValuesMap[ICV]; 1763 Optional<Value *> NewReplVal = 1764 ICVTrackingAA.getUniqueReplacementValue(ICV); 1765 1766 if (ReplVal == NewReplVal) 1767 continue; 1768 1769 ReplVal = NewReplVal; 1770 Changed = ChangeStatus::CHANGED; 1771 } 1772 return Changed; 1773 } 1774 }; 1775 } // namespace 1776 1777 const char AAICVTracker::ID = 0; 1778 1779 AAICVTracker &AAICVTracker::createForPosition(const IRPosition &IRP, 1780 Attributor &A) { 1781 AAICVTracker *AA = nullptr; 1782 switch (IRP.getPositionKind()) { 1783 case IRPosition::IRP_INVALID: 1784 case IRPosition::IRP_FLOAT: 1785 case IRPosition::IRP_ARGUMENT: 1786 case IRPosition::IRP_CALL_SITE_ARGUMENT: 1787 llvm_unreachable("ICVTracker can only be created for function position!"); 1788 case IRPosition::IRP_RETURNED: 1789 AA = new (A.Allocator) AAICVTrackerFunctionReturned(IRP, A); 1790 break; 1791 case IRPosition::IRP_CALL_SITE_RETURNED: 1792 AA = new (A.Allocator) AAICVTrackerCallSiteReturned(IRP, A); 1793 break; 1794 case IRPosition::IRP_CALL_SITE: 1795 AA = new (A.Allocator) AAICVTrackerCallSite(IRP, A); 1796 break; 1797 case IRPosition::IRP_FUNCTION: 1798 AA = new (A.Allocator) AAICVTrackerFunction(IRP, A); 1799 break; 1800 } 1801 1802 return *AA; 1803 } 1804 1805 PreservedAnalyses OpenMPOptPass::run(LazyCallGraph::SCC &C, 1806 CGSCCAnalysisManager &AM, 1807 LazyCallGraph &CG, CGSCCUpdateResult &UR) { 1808 if (!containsOpenMP(*C.begin()->getFunction().getParent(), OMPInModule)) 1809 return PreservedAnalyses::all(); 1810 1811 if (DisableOpenMPOptimizations) 1812 return PreservedAnalyses::all(); 1813 1814 SmallVector<Function *, 16> SCC; 1815 // If there are kernels in the module, we have to run on all SCC's. 1816 bool SCCIsInteresting = !OMPInModule.getKernels().empty(); 1817 for (LazyCallGraph::Node &N : C) { 1818 Function *Fn = &N.getFunction(); 1819 SCC.push_back(Fn); 1820 1821 // Do we already know that the SCC contains kernels, 1822 // or that OpenMP functions are called from this SCC? 1823 if (SCCIsInteresting) 1824 continue; 1825 // If not, let's check that. 1826 SCCIsInteresting |= OMPInModule.containsOMPRuntimeCalls(Fn); 1827 } 1828 1829 if (!SCCIsInteresting || SCC.empty()) 1830 return PreservedAnalyses::all(); 1831 1832 FunctionAnalysisManager &FAM = 1833 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager(); 1834 1835 AnalysisGetter AG(FAM); 1836 1837 auto OREGetter = [&FAM](Function *F) -> OptimizationRemarkEmitter & { 1838 return FAM.getResult<OptimizationRemarkEmitterAnalysis>(*F); 1839 }; 1840 1841 CallGraphUpdater CGUpdater; 1842 CGUpdater.initialize(CG, C, AM, UR); 1843 1844 SetVector<Function *> Functions(SCC.begin(), SCC.end()); 1845 BumpPtrAllocator Allocator; 1846 OMPInformationCache InfoCache(*(Functions.back()->getParent()), AG, Allocator, 1847 /*CGSCC*/ Functions, OMPInModule.getKernels()); 1848 1849 Attributor A(Functions, InfoCache, CGUpdater); 1850 1851 OpenMPOpt OMPOpt(SCC, CGUpdater, OREGetter, InfoCache, A); 1852 bool Changed = OMPOpt.run(); 1853 if (Changed) 1854 return PreservedAnalyses::none(); 1855 1856 return PreservedAnalyses::all(); 1857 } 1858 1859 namespace { 1860 1861 struct OpenMPOptLegacyPass : public CallGraphSCCPass { 1862 CallGraphUpdater CGUpdater; 1863 OpenMPInModule OMPInModule; 1864 static char ID; 1865 1866 OpenMPOptLegacyPass() : CallGraphSCCPass(ID) { 1867 initializeOpenMPOptLegacyPassPass(*PassRegistry::getPassRegistry()); 1868 } 1869 1870 void getAnalysisUsage(AnalysisUsage &AU) const override { 1871 CallGraphSCCPass::getAnalysisUsage(AU); 1872 } 1873 1874 bool doInitialization(CallGraph &CG) override { 1875 // Disable the pass if there is no OpenMP (runtime call) in the module. 1876 containsOpenMP(CG.getModule(), OMPInModule); 1877 return false; 1878 } 1879 1880 bool runOnSCC(CallGraphSCC &CGSCC) override { 1881 if (!containsOpenMP(CGSCC.getCallGraph().getModule(), OMPInModule)) 1882 return false; 1883 if (DisableOpenMPOptimizations || skipSCC(CGSCC)) 1884 return false; 1885 1886 SmallVector<Function *, 16> SCC; 1887 // If there are kernels in the module, we have to run on all SCC's. 1888 bool SCCIsInteresting = !OMPInModule.getKernels().empty(); 1889 for (CallGraphNode *CGN : CGSCC) { 1890 Function *Fn = CGN->getFunction(); 1891 if (!Fn || Fn->isDeclaration()) 1892 continue; 1893 SCC.push_back(Fn); 1894 1895 // Do we already know that the SCC contains kernels, 1896 // or that OpenMP functions are called from this SCC? 1897 if (SCCIsInteresting) 1898 continue; 1899 // If not, let's check that. 1900 SCCIsInteresting |= OMPInModule.containsOMPRuntimeCalls(Fn); 1901 } 1902 1903 if (!SCCIsInteresting || SCC.empty()) 1904 return false; 1905 1906 CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph(); 1907 CGUpdater.initialize(CG, CGSCC); 1908 1909 // Maintain a map of functions to avoid rebuilding the ORE 1910 DenseMap<Function *, std::unique_ptr<OptimizationRemarkEmitter>> OREMap; 1911 auto OREGetter = [&OREMap](Function *F) -> OptimizationRemarkEmitter & { 1912 std::unique_ptr<OptimizationRemarkEmitter> &ORE = OREMap[F]; 1913 if (!ORE) 1914 ORE = std::make_unique<OptimizationRemarkEmitter>(F); 1915 return *ORE; 1916 }; 1917 1918 AnalysisGetter AG; 1919 SetVector<Function *> Functions(SCC.begin(), SCC.end()); 1920 BumpPtrAllocator Allocator; 1921 OMPInformationCache InfoCache( 1922 *(Functions.back()->getParent()), AG, Allocator, 1923 /*CGSCC*/ Functions, OMPInModule.getKernels()); 1924 1925 Attributor A(Functions, InfoCache, CGUpdater); 1926 1927 OpenMPOpt OMPOpt(SCC, CGUpdater, OREGetter, InfoCache, A); 1928 return OMPOpt.run(); 1929 } 1930 1931 bool doFinalization(CallGraph &CG) override { return CGUpdater.finalize(); } 1932 }; 1933 1934 } // end anonymous namespace 1935 1936 void OpenMPInModule::identifyKernels(Module &M) { 1937 1938 NamedMDNode *MD = M.getOrInsertNamedMetadata("nvvm.annotations"); 1939 if (!MD) 1940 return; 1941 1942 for (auto *Op : MD->operands()) { 1943 if (Op->getNumOperands() < 2) 1944 continue; 1945 MDString *KindID = dyn_cast<MDString>(Op->getOperand(1)); 1946 if (!KindID || KindID->getString() != "kernel") 1947 continue; 1948 1949 Function *KernelFn = 1950 mdconst::dyn_extract_or_null<Function>(Op->getOperand(0)); 1951 if (!KernelFn) 1952 continue; 1953 1954 ++NumOpenMPTargetRegionKernels; 1955 1956 Kernels.insert(KernelFn); 1957 } 1958 } 1959 1960 bool llvm::omp::containsOpenMP(Module &M, OpenMPInModule &OMPInModule) { 1961 if (OMPInModule.isKnown()) 1962 return OMPInModule; 1963 1964 auto RecordFunctionsContainingUsesOf = [&](Function *F) { 1965 for (User *U : F->users()) 1966 if (auto *I = dyn_cast<Instruction>(U)) 1967 OMPInModule.FuncsWithOMPRuntimeCalls.insert(I->getFunction()); 1968 }; 1969 1970 // MSVC doesn't like long if-else chains for some reason and instead just 1971 // issues an error. Work around it.. 1972 do { 1973 #define OMP_RTL(_Enum, _Name, ...) \ 1974 if (Function *F = M.getFunction(_Name)) { \ 1975 RecordFunctionsContainingUsesOf(F); \ 1976 OMPInModule = true; \ 1977 } 1978 #include "llvm/Frontend/OpenMP/OMPKinds.def" 1979 } while (false); 1980 1981 // Identify kernels once. TODO: We should split the OMPInformationCache into a 1982 // module and an SCC part. The kernel information, among other things, could 1983 // go into the module part. 1984 if (OMPInModule.isKnown() && OMPInModule) { 1985 OMPInModule.identifyKernels(M); 1986 return true; 1987 } 1988 1989 return OMPInModule = false; 1990 } 1991 1992 char OpenMPOptLegacyPass::ID = 0; 1993 1994 INITIALIZE_PASS_BEGIN(OpenMPOptLegacyPass, "openmpopt", 1995 "OpenMP specific optimizations", false, false) 1996 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass) 1997 INITIALIZE_PASS_END(OpenMPOptLegacyPass, "openmpopt", 1998 "OpenMP specific optimizations", false, false) 1999 2000 Pass *llvm::createOpenMPOptLegacyPass() { return new OpenMPOptLegacyPass(); } 2001