1 //===-- IPO/OpenMPOpt.cpp - Collection of OpenMP specific optimizations ---===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // OpenMP specific optimizations: 10 // 11 // - Deduplication of runtime calls, e.g., omp_get_thread_num. 12 // - Replacing globalized device memory with stack memory. 13 // - Replacing globalized device memory with shared memory. 14 // - Parallel region merging. 15 // - Transforming generic-mode device kernels to SPMD mode. 16 // - Specializing the state machine for generic-mode device kernels. 17 // 18 //===----------------------------------------------------------------------===// 19 20 #include "llvm/Transforms/IPO/OpenMPOpt.h" 21 22 #include "llvm/ADT/EnumeratedArray.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/Analysis/CallGraph.h" 26 #include "llvm/Analysis/CallGraphSCCPass.h" 27 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 28 #include "llvm/Analysis/ValueTracking.h" 29 #include "llvm/Frontend/OpenMP/OMPConstants.h" 30 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 31 #include "llvm/IR/Assumptions.h" 32 #include "llvm/IR/DiagnosticInfo.h" 33 #include "llvm/IR/GlobalValue.h" 34 #include "llvm/IR/Instruction.h" 35 #include "llvm/IR/IntrinsicInst.h" 36 #include "llvm/InitializePasses.h" 37 #include "llvm/Support/CommandLine.h" 38 #include "llvm/Transforms/IPO.h" 39 #include "llvm/Transforms/IPO/Attributor.h" 40 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 41 #include "llvm/Transforms/Utils/CallGraphUpdater.h" 42 #include "llvm/Transforms/Utils/CodeExtractor.h" 43 44 using namespace llvm; 45 using namespace omp; 46 47 #define DEBUG_TYPE "openmp-opt" 48 49 static cl::opt<bool> DisableOpenMPOptimizations( 50 "openmp-opt-disable", cl::ZeroOrMore, 51 cl::desc("Disable OpenMP specific optimizations."), cl::Hidden, 52 cl::init(false)); 53 54 static cl::opt<bool> EnableParallelRegionMerging( 55 "openmp-opt-enable-merging", cl::ZeroOrMore, 56 cl::desc("Enable the OpenMP region merging optimization."), cl::Hidden, 57 cl::init(false)); 58 59 static cl::opt<bool> 60 DisableInternalization("openmp-opt-disable-internalization", cl::ZeroOrMore, 61 cl::desc("Disable function internalization."), 62 cl::Hidden, cl::init(false)); 63 64 static cl::opt<bool> PrintICVValues("openmp-print-icv-values", cl::init(false), 65 cl::Hidden); 66 static cl::opt<bool> PrintOpenMPKernels("openmp-print-gpu-kernels", 67 cl::init(false), cl::Hidden); 68 69 static cl::opt<bool> HideMemoryTransferLatency( 70 "openmp-hide-memory-transfer-latency", 71 cl::desc("[WIP] Tries to hide the latency of host to device memory" 72 " transfers"), 73 cl::Hidden, cl::init(false)); 74 75 STATISTIC(NumOpenMPRuntimeCallsDeduplicated, 76 "Number of OpenMP runtime calls deduplicated"); 77 STATISTIC(NumOpenMPParallelRegionsDeleted, 78 "Number of OpenMP parallel regions deleted"); 79 STATISTIC(NumOpenMPRuntimeFunctionsIdentified, 80 "Number of OpenMP runtime functions identified"); 81 STATISTIC(NumOpenMPRuntimeFunctionUsesIdentified, 82 "Number of OpenMP runtime function uses identified"); 83 STATISTIC(NumOpenMPTargetRegionKernels, 84 "Number of OpenMP target region entry points (=kernels) identified"); 85 STATISTIC(NumOpenMPTargetRegionKernelsSPMD, 86 "Number of OpenMP target region entry points (=kernels) executed in " 87 "SPMD-mode instead of generic-mode"); 88 STATISTIC(NumOpenMPTargetRegionKernelsWithoutStateMachine, 89 "Number of OpenMP target region entry points (=kernels) executed in " 90 "generic-mode without a state machines"); 91 STATISTIC(NumOpenMPTargetRegionKernelsCustomStateMachineWithFallback, 92 "Number of OpenMP target region entry points (=kernels) executed in " 93 "generic-mode with customized state machines with fallback"); 94 STATISTIC(NumOpenMPTargetRegionKernelsCustomStateMachineWithoutFallback, 95 "Number of OpenMP target region entry points (=kernels) executed in " 96 "generic-mode with customized state machines without fallback"); 97 STATISTIC( 98 NumOpenMPParallelRegionsReplacedInGPUStateMachine, 99 "Number of OpenMP parallel regions replaced with ID in GPU state machines"); 100 STATISTIC(NumOpenMPParallelRegionsMerged, 101 "Number of OpenMP parallel regions merged"); 102 STATISTIC(NumBytesMovedToSharedMemory, 103 "Amount of memory pushed to shared memory"); 104 105 #if !defined(NDEBUG) 106 static constexpr auto TAG = "[" DEBUG_TYPE "]"; 107 #endif 108 109 namespace { 110 111 enum class AddressSpace : unsigned { 112 Generic = 0, 113 Global = 1, 114 Shared = 3, 115 Constant = 4, 116 Local = 5, 117 }; 118 119 struct AAHeapToShared; 120 121 struct AAICVTracker; 122 123 /// OpenMP specific information. For now, stores RFIs and ICVs also needed for 124 /// Attributor runs. 125 struct OMPInformationCache : public InformationCache { 126 OMPInformationCache(Module &M, AnalysisGetter &AG, 127 BumpPtrAllocator &Allocator, SetVector<Function *> &CGSCC, 128 SmallPtrSetImpl<Kernel> &Kernels) 129 : InformationCache(M, AG, Allocator, &CGSCC), OMPBuilder(M), 130 Kernels(Kernels) { 131 132 OMPBuilder.initialize(); 133 initializeRuntimeFunctions(); 134 initializeInternalControlVars(); 135 } 136 137 /// Generic information that describes an internal control variable. 138 struct InternalControlVarInfo { 139 /// The kind, as described by InternalControlVar enum. 140 InternalControlVar Kind; 141 142 /// The name of the ICV. 143 StringRef Name; 144 145 /// Environment variable associated with this ICV. 146 StringRef EnvVarName; 147 148 /// Initial value kind. 149 ICVInitValue InitKind; 150 151 /// Initial value. 152 ConstantInt *InitValue; 153 154 /// Setter RTL function associated with this ICV. 155 RuntimeFunction Setter; 156 157 /// Getter RTL function associated with this ICV. 158 RuntimeFunction Getter; 159 160 /// RTL Function corresponding to the override clause of this ICV 161 RuntimeFunction Clause; 162 }; 163 164 /// Generic information that describes a runtime function 165 struct RuntimeFunctionInfo { 166 167 /// The kind, as described by the RuntimeFunction enum. 168 RuntimeFunction Kind; 169 170 /// The name of the function. 171 StringRef Name; 172 173 /// Flag to indicate a variadic function. 174 bool IsVarArg; 175 176 /// The return type of the function. 177 Type *ReturnType; 178 179 /// The argument types of the function. 180 SmallVector<Type *, 8> ArgumentTypes; 181 182 /// The declaration if available. 183 Function *Declaration = nullptr; 184 185 /// Uses of this runtime function per function containing the use. 186 using UseVector = SmallVector<Use *, 16>; 187 188 /// Clear UsesMap for runtime function. 189 void clearUsesMap() { UsesMap.clear(); } 190 191 /// Boolean conversion that is true if the runtime function was found. 192 operator bool() const { return Declaration; } 193 194 /// Return the vector of uses in function \p F. 195 UseVector &getOrCreateUseVector(Function *F) { 196 std::shared_ptr<UseVector> &UV = UsesMap[F]; 197 if (!UV) 198 UV = std::make_shared<UseVector>(); 199 return *UV; 200 } 201 202 /// Return the vector of uses in function \p F or `nullptr` if there are 203 /// none. 204 const UseVector *getUseVector(Function &F) const { 205 auto I = UsesMap.find(&F); 206 if (I != UsesMap.end()) 207 return I->second.get(); 208 return nullptr; 209 } 210 211 /// Return how many functions contain uses of this runtime function. 212 size_t getNumFunctionsWithUses() const { return UsesMap.size(); } 213 214 /// Return the number of arguments (or the minimal number for variadic 215 /// functions). 216 size_t getNumArgs() const { return ArgumentTypes.size(); } 217 218 /// Run the callback \p CB on each use and forget the use if the result is 219 /// true. The callback will be fed the function in which the use was 220 /// encountered as second argument. 221 void foreachUse(SmallVectorImpl<Function *> &SCC, 222 function_ref<bool(Use &, Function &)> CB) { 223 for (Function *F : SCC) 224 foreachUse(CB, F); 225 } 226 227 /// Run the callback \p CB on each use within the function \p F and forget 228 /// the use if the result is true. 229 void foreachUse(function_ref<bool(Use &, Function &)> CB, Function *F) { 230 SmallVector<unsigned, 8> ToBeDeleted; 231 ToBeDeleted.clear(); 232 233 unsigned Idx = 0; 234 UseVector &UV = getOrCreateUseVector(F); 235 236 for (Use *U : UV) { 237 if (CB(*U, *F)) 238 ToBeDeleted.push_back(Idx); 239 ++Idx; 240 } 241 242 // Remove the to-be-deleted indices in reverse order as prior 243 // modifications will not modify the smaller indices. 244 while (!ToBeDeleted.empty()) { 245 unsigned Idx = ToBeDeleted.pop_back_val(); 246 UV[Idx] = UV.back(); 247 UV.pop_back(); 248 } 249 } 250 251 private: 252 /// Map from functions to all uses of this runtime function contained in 253 /// them. 254 DenseMap<Function *, std::shared_ptr<UseVector>> UsesMap; 255 256 public: 257 /// Iterators for the uses of this runtime function. 258 decltype(UsesMap)::iterator begin() { return UsesMap.begin(); } 259 decltype(UsesMap)::iterator end() { return UsesMap.end(); } 260 }; 261 262 /// An OpenMP-IR-Builder instance 263 OpenMPIRBuilder OMPBuilder; 264 265 /// Map from runtime function kind to the runtime function description. 266 EnumeratedArray<RuntimeFunctionInfo, RuntimeFunction, 267 RuntimeFunction::OMPRTL___last> 268 RFIs; 269 270 /// Map from function declarations/definitions to their runtime enum type. 271 DenseMap<Function *, RuntimeFunction> RuntimeFunctionIDMap; 272 273 /// Map from ICV kind to the ICV description. 274 EnumeratedArray<InternalControlVarInfo, InternalControlVar, 275 InternalControlVar::ICV___last> 276 ICVs; 277 278 /// Helper to initialize all internal control variable information for those 279 /// defined in OMPKinds.def. 280 void initializeInternalControlVars() { 281 #define ICV_RT_SET(_Name, RTL) \ 282 { \ 283 auto &ICV = ICVs[_Name]; \ 284 ICV.Setter = RTL; \ 285 } 286 #define ICV_RT_GET(Name, RTL) \ 287 { \ 288 auto &ICV = ICVs[Name]; \ 289 ICV.Getter = RTL; \ 290 } 291 #define ICV_DATA_ENV(Enum, _Name, _EnvVarName, Init) \ 292 { \ 293 auto &ICV = ICVs[Enum]; \ 294 ICV.Name = _Name; \ 295 ICV.Kind = Enum; \ 296 ICV.InitKind = Init; \ 297 ICV.EnvVarName = _EnvVarName; \ 298 switch (ICV.InitKind) { \ 299 case ICV_IMPLEMENTATION_DEFINED: \ 300 ICV.InitValue = nullptr; \ 301 break; \ 302 case ICV_ZERO: \ 303 ICV.InitValue = ConstantInt::get( \ 304 Type::getInt32Ty(OMPBuilder.Int32->getContext()), 0); \ 305 break; \ 306 case ICV_FALSE: \ 307 ICV.InitValue = ConstantInt::getFalse(OMPBuilder.Int1->getContext()); \ 308 break; \ 309 case ICV_LAST: \ 310 break; \ 311 } \ 312 } 313 #include "llvm/Frontend/OpenMP/OMPKinds.def" 314 } 315 316 /// Returns true if the function declaration \p F matches the runtime 317 /// function types, that is, return type \p RTFRetType, and argument types 318 /// \p RTFArgTypes. 319 static bool declMatchesRTFTypes(Function *F, Type *RTFRetType, 320 SmallVector<Type *, 8> &RTFArgTypes) { 321 // TODO: We should output information to the user (under debug output 322 // and via remarks). 323 324 if (!F) 325 return false; 326 if (F->getReturnType() != RTFRetType) 327 return false; 328 if (F->arg_size() != RTFArgTypes.size()) 329 return false; 330 331 auto RTFTyIt = RTFArgTypes.begin(); 332 for (Argument &Arg : F->args()) { 333 if (Arg.getType() != *RTFTyIt) 334 return false; 335 336 ++RTFTyIt; 337 } 338 339 return true; 340 } 341 342 // Helper to collect all uses of the declaration in the UsesMap. 343 unsigned collectUses(RuntimeFunctionInfo &RFI, bool CollectStats = true) { 344 unsigned NumUses = 0; 345 if (!RFI.Declaration) 346 return NumUses; 347 OMPBuilder.addAttributes(RFI.Kind, *RFI.Declaration); 348 349 if (CollectStats) { 350 NumOpenMPRuntimeFunctionsIdentified += 1; 351 NumOpenMPRuntimeFunctionUsesIdentified += RFI.Declaration->getNumUses(); 352 } 353 354 // TODO: We directly convert uses into proper calls and unknown uses. 355 for (Use &U : RFI.Declaration->uses()) { 356 if (Instruction *UserI = dyn_cast<Instruction>(U.getUser())) { 357 if (ModuleSlice.count(UserI->getFunction())) { 358 RFI.getOrCreateUseVector(UserI->getFunction()).push_back(&U); 359 ++NumUses; 360 } 361 } else { 362 RFI.getOrCreateUseVector(nullptr).push_back(&U); 363 ++NumUses; 364 } 365 } 366 return NumUses; 367 } 368 369 // Helper function to recollect uses of a runtime function. 370 void recollectUsesForFunction(RuntimeFunction RTF) { 371 auto &RFI = RFIs[RTF]; 372 RFI.clearUsesMap(); 373 collectUses(RFI, /*CollectStats*/ false); 374 } 375 376 // Helper function to recollect uses of all runtime functions. 377 void recollectUses() { 378 for (int Idx = 0; Idx < RFIs.size(); ++Idx) 379 recollectUsesForFunction(static_cast<RuntimeFunction>(Idx)); 380 } 381 382 /// Helper to initialize all runtime function information for those defined 383 /// in OpenMPKinds.def. 384 void initializeRuntimeFunctions() { 385 Module &M = *((*ModuleSlice.begin())->getParent()); 386 387 // Helper macros for handling __VA_ARGS__ in OMP_RTL 388 #define OMP_TYPE(VarName, ...) \ 389 Type *VarName = OMPBuilder.VarName; \ 390 (void)VarName; 391 392 #define OMP_ARRAY_TYPE(VarName, ...) \ 393 ArrayType *VarName##Ty = OMPBuilder.VarName##Ty; \ 394 (void)VarName##Ty; \ 395 PointerType *VarName##PtrTy = OMPBuilder.VarName##PtrTy; \ 396 (void)VarName##PtrTy; 397 398 #define OMP_FUNCTION_TYPE(VarName, ...) \ 399 FunctionType *VarName = OMPBuilder.VarName; \ 400 (void)VarName; \ 401 PointerType *VarName##Ptr = OMPBuilder.VarName##Ptr; \ 402 (void)VarName##Ptr; 403 404 #define OMP_STRUCT_TYPE(VarName, ...) \ 405 StructType *VarName = OMPBuilder.VarName; \ 406 (void)VarName; \ 407 PointerType *VarName##Ptr = OMPBuilder.VarName##Ptr; \ 408 (void)VarName##Ptr; 409 410 #define OMP_RTL(_Enum, _Name, _IsVarArg, _ReturnType, ...) \ 411 { \ 412 SmallVector<Type *, 8> ArgsTypes({__VA_ARGS__}); \ 413 Function *F = M.getFunction(_Name); \ 414 RTLFunctions.insert(F); \ 415 if (declMatchesRTFTypes(F, OMPBuilder._ReturnType, ArgsTypes)) { \ 416 RuntimeFunctionIDMap[F] = _Enum; \ 417 F->removeFnAttr(Attribute::NoInline); \ 418 auto &RFI = RFIs[_Enum]; \ 419 RFI.Kind = _Enum; \ 420 RFI.Name = _Name; \ 421 RFI.IsVarArg = _IsVarArg; \ 422 RFI.ReturnType = OMPBuilder._ReturnType; \ 423 RFI.ArgumentTypes = std::move(ArgsTypes); \ 424 RFI.Declaration = F; \ 425 unsigned NumUses = collectUses(RFI); \ 426 (void)NumUses; \ 427 LLVM_DEBUG({ \ 428 dbgs() << TAG << RFI.Name << (RFI.Declaration ? "" : " not") \ 429 << " found\n"; \ 430 if (RFI.Declaration) \ 431 dbgs() << TAG << "-> got " << NumUses << " uses in " \ 432 << RFI.getNumFunctionsWithUses() \ 433 << " different functions.\n"; \ 434 }); \ 435 } \ 436 } 437 #include "llvm/Frontend/OpenMP/OMPKinds.def" 438 439 // TODO: We should attach the attributes defined in OMPKinds.def. 440 } 441 442 /// Collection of known kernels (\see Kernel) in the module. 443 SmallPtrSetImpl<Kernel> &Kernels; 444 445 /// Collection of known OpenMP runtime functions.. 446 DenseSet<const Function *> RTLFunctions; 447 }; 448 449 template <typename Ty, bool InsertInvalidates = true> 450 struct BooleanStateWithSetVector : public BooleanState { 451 bool contains(const Ty &Elem) const { return Set.contains(Elem); } 452 bool insert(const Ty &Elem) { 453 if (InsertInvalidates) 454 BooleanState::indicatePessimisticFixpoint(); 455 return Set.insert(Elem); 456 } 457 458 const Ty &operator[](int Idx) const { return Set[Idx]; } 459 bool operator==(const BooleanStateWithSetVector &RHS) const { 460 return BooleanState::operator==(RHS) && Set == RHS.Set; 461 } 462 bool operator!=(const BooleanStateWithSetVector &RHS) const { 463 return !(*this == RHS); 464 } 465 466 bool empty() const { return Set.empty(); } 467 size_t size() const { return Set.size(); } 468 469 /// "Clamp" this state with \p RHS. 470 BooleanStateWithSetVector &operator^=(const BooleanStateWithSetVector &RHS) { 471 BooleanState::operator^=(RHS); 472 Set.insert(RHS.Set.begin(), RHS.Set.end()); 473 return *this; 474 } 475 476 private: 477 /// A set to keep track of elements. 478 SetVector<Ty> Set; 479 480 public: 481 typename decltype(Set)::iterator begin() { return Set.begin(); } 482 typename decltype(Set)::iterator end() { return Set.end(); } 483 typename decltype(Set)::const_iterator begin() const { return Set.begin(); } 484 typename decltype(Set)::const_iterator end() const { return Set.end(); } 485 }; 486 487 template <typename Ty, bool InsertInvalidates = true> 488 using BooleanStateWithPtrSetVector = 489 BooleanStateWithSetVector<Ty *, InsertInvalidates>; 490 491 struct KernelInfoState : AbstractState { 492 /// Flag to track if we reached a fixpoint. 493 bool IsAtFixpoint = false; 494 495 /// The parallel regions (identified by the outlined parallel functions) that 496 /// can be reached from the associated function. 497 BooleanStateWithPtrSetVector<Function, /* InsertInvalidates */ false> 498 ReachedKnownParallelRegions; 499 500 /// State to track what parallel region we might reach. 501 BooleanStateWithPtrSetVector<CallBase> ReachedUnknownParallelRegions; 502 503 /// State to track if we are in SPMD-mode, assumed or know, and why we decided 504 /// we cannot be. If it is assumed, then RequiresFullRuntime should also be 505 /// false. 506 BooleanStateWithPtrSetVector<Instruction> SPMDCompatibilityTracker; 507 508 /// The __kmpc_target_init call in this kernel, if any. If we find more than 509 /// one we abort as the kernel is malformed. 510 CallBase *KernelInitCB = nullptr; 511 512 /// The __kmpc_target_deinit call in this kernel, if any. If we find more than 513 /// one we abort as the kernel is malformed. 514 CallBase *KernelDeinitCB = nullptr; 515 516 /// Flag to indicate if the associated function is a kernel entry. 517 bool IsKernelEntry = false; 518 519 /// State to track what kernel entries can reach the associated function. 520 BooleanStateWithPtrSetVector<Function, false> ReachingKernelEntries; 521 522 /// Abstract State interface 523 ///{ 524 525 KernelInfoState() {} 526 KernelInfoState(bool BestState) { 527 if (!BestState) 528 indicatePessimisticFixpoint(); 529 } 530 531 /// See AbstractState::isValidState(...) 532 bool isValidState() const override { return true; } 533 534 /// See AbstractState::isAtFixpoint(...) 535 bool isAtFixpoint() const override { return IsAtFixpoint; } 536 537 /// See AbstractState::indicatePessimisticFixpoint(...) 538 ChangeStatus indicatePessimisticFixpoint() override { 539 IsAtFixpoint = true; 540 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 541 ReachedUnknownParallelRegions.indicatePessimisticFixpoint(); 542 return ChangeStatus::CHANGED; 543 } 544 545 /// See AbstractState::indicateOptimisticFixpoint(...) 546 ChangeStatus indicateOptimisticFixpoint() override { 547 IsAtFixpoint = true; 548 return ChangeStatus::UNCHANGED; 549 } 550 551 /// Return the assumed state 552 KernelInfoState &getAssumed() { return *this; } 553 const KernelInfoState &getAssumed() const { return *this; } 554 555 bool operator==(const KernelInfoState &RHS) const { 556 if (SPMDCompatibilityTracker != RHS.SPMDCompatibilityTracker) 557 return false; 558 if (ReachedKnownParallelRegions != RHS.ReachedKnownParallelRegions) 559 return false; 560 if (ReachedUnknownParallelRegions != RHS.ReachedUnknownParallelRegions) 561 return false; 562 if (ReachingKernelEntries != RHS.ReachingKernelEntries) 563 return false; 564 return true; 565 } 566 567 /// Return empty set as the best state of potential values. 568 static KernelInfoState getBestState() { return KernelInfoState(true); } 569 570 static KernelInfoState getBestState(KernelInfoState &KIS) { 571 return getBestState(); 572 } 573 574 /// Return full set as the worst state of potential values. 575 static KernelInfoState getWorstState() { return KernelInfoState(false); } 576 577 /// "Clamp" this state with \p KIS. 578 KernelInfoState operator^=(const KernelInfoState &KIS) { 579 // Do not merge two different _init and _deinit call sites. 580 if (KIS.KernelInitCB) { 581 if (KernelInitCB && KernelInitCB != KIS.KernelInitCB) 582 indicatePessimisticFixpoint(); 583 KernelInitCB = KIS.KernelInitCB; 584 } 585 if (KIS.KernelDeinitCB) { 586 if (KernelDeinitCB && KernelDeinitCB != KIS.KernelDeinitCB) 587 indicatePessimisticFixpoint(); 588 KernelDeinitCB = KIS.KernelDeinitCB; 589 } 590 SPMDCompatibilityTracker ^= KIS.SPMDCompatibilityTracker; 591 ReachedKnownParallelRegions ^= KIS.ReachedKnownParallelRegions; 592 ReachedUnknownParallelRegions ^= KIS.ReachedUnknownParallelRegions; 593 return *this; 594 } 595 596 KernelInfoState operator&=(const KernelInfoState &KIS) { 597 return (*this ^= KIS); 598 } 599 600 ///} 601 }; 602 603 /// Used to map the values physically (in the IR) stored in an offload 604 /// array, to a vector in memory. 605 struct OffloadArray { 606 /// Physical array (in the IR). 607 AllocaInst *Array = nullptr; 608 /// Mapped values. 609 SmallVector<Value *, 8> StoredValues; 610 /// Last stores made in the offload array. 611 SmallVector<StoreInst *, 8> LastAccesses; 612 613 OffloadArray() = default; 614 615 /// Initializes the OffloadArray with the values stored in \p Array before 616 /// instruction \p Before is reached. Returns false if the initialization 617 /// fails. 618 /// This MUST be used immediately after the construction of the object. 619 bool initialize(AllocaInst &Array, Instruction &Before) { 620 if (!Array.getAllocatedType()->isArrayTy()) 621 return false; 622 623 if (!getValues(Array, Before)) 624 return false; 625 626 this->Array = &Array; 627 return true; 628 } 629 630 static const unsigned DeviceIDArgNum = 1; 631 static const unsigned BasePtrsArgNum = 3; 632 static const unsigned PtrsArgNum = 4; 633 static const unsigned SizesArgNum = 5; 634 635 private: 636 /// Traverses the BasicBlock where \p Array is, collecting the stores made to 637 /// \p Array, leaving StoredValues with the values stored before the 638 /// instruction \p Before is reached. 639 bool getValues(AllocaInst &Array, Instruction &Before) { 640 // Initialize container. 641 const uint64_t NumValues = Array.getAllocatedType()->getArrayNumElements(); 642 StoredValues.assign(NumValues, nullptr); 643 LastAccesses.assign(NumValues, nullptr); 644 645 // TODO: This assumes the instruction \p Before is in the same 646 // BasicBlock as Array. Make it general, for any control flow graph. 647 BasicBlock *BB = Array.getParent(); 648 if (BB != Before.getParent()) 649 return false; 650 651 const DataLayout &DL = Array.getModule()->getDataLayout(); 652 const unsigned int PointerSize = DL.getPointerSize(); 653 654 for (Instruction &I : *BB) { 655 if (&I == &Before) 656 break; 657 658 if (!isa<StoreInst>(&I)) 659 continue; 660 661 auto *S = cast<StoreInst>(&I); 662 int64_t Offset = -1; 663 auto *Dst = 664 GetPointerBaseWithConstantOffset(S->getPointerOperand(), Offset, DL); 665 if (Dst == &Array) { 666 int64_t Idx = Offset / PointerSize; 667 StoredValues[Idx] = getUnderlyingObject(S->getValueOperand()); 668 LastAccesses[Idx] = S; 669 } 670 } 671 672 return isFilled(); 673 } 674 675 /// Returns true if all values in StoredValues and 676 /// LastAccesses are not nullptrs. 677 bool isFilled() { 678 const unsigned NumValues = StoredValues.size(); 679 for (unsigned I = 0; I < NumValues; ++I) { 680 if (!StoredValues[I] || !LastAccesses[I]) 681 return false; 682 } 683 684 return true; 685 } 686 }; 687 688 struct OpenMPOpt { 689 690 using OptimizationRemarkGetter = 691 function_ref<OptimizationRemarkEmitter &(Function *)>; 692 693 OpenMPOpt(SmallVectorImpl<Function *> &SCC, CallGraphUpdater &CGUpdater, 694 OptimizationRemarkGetter OREGetter, 695 OMPInformationCache &OMPInfoCache, Attributor &A) 696 : M(*(*SCC.begin())->getParent()), SCC(SCC), CGUpdater(CGUpdater), 697 OREGetter(OREGetter), OMPInfoCache(OMPInfoCache), A(A) {} 698 699 /// Check if any remarks are enabled for openmp-opt 700 bool remarksEnabled() { 701 auto &Ctx = M.getContext(); 702 return Ctx.getDiagHandlerPtr()->isAnyRemarkEnabled(DEBUG_TYPE); 703 } 704 705 /// Run all OpenMP optimizations on the underlying SCC/ModuleSlice. 706 bool run(bool IsModulePass) { 707 if (SCC.empty()) 708 return false; 709 710 bool Changed = false; 711 712 LLVM_DEBUG(dbgs() << TAG << "Run on SCC with " << SCC.size() 713 << " functions in a slice with " 714 << OMPInfoCache.ModuleSlice.size() << " functions\n"); 715 716 if (IsModulePass) { 717 Changed |= runAttributor(IsModulePass); 718 719 // Recollect uses, in case Attributor deleted any. 720 OMPInfoCache.recollectUses(); 721 722 if (remarksEnabled()) 723 analysisGlobalization(); 724 } else { 725 if (PrintICVValues) 726 printICVs(); 727 if (PrintOpenMPKernels) 728 printKernels(); 729 730 Changed |= runAttributor(IsModulePass); 731 732 // Recollect uses, in case Attributor deleted any. 733 OMPInfoCache.recollectUses(); 734 735 Changed |= deleteParallelRegions(); 736 Changed |= rewriteDeviceCodeStateMachine(); 737 738 if (HideMemoryTransferLatency) 739 Changed |= hideMemTransfersLatency(); 740 Changed |= deduplicateRuntimeCalls(); 741 if (EnableParallelRegionMerging) { 742 if (mergeParallelRegions()) { 743 deduplicateRuntimeCalls(); 744 Changed = true; 745 } 746 } 747 } 748 749 return Changed; 750 } 751 752 /// Print initial ICV values for testing. 753 /// FIXME: This should be done from the Attributor once it is added. 754 void printICVs() const { 755 InternalControlVar ICVs[] = {ICV_nthreads, ICV_active_levels, ICV_cancel, 756 ICV_proc_bind}; 757 758 for (Function *F : OMPInfoCache.ModuleSlice) { 759 for (auto ICV : ICVs) { 760 auto ICVInfo = OMPInfoCache.ICVs[ICV]; 761 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 762 return ORA << "OpenMP ICV " << ore::NV("OpenMPICV", ICVInfo.Name) 763 << " Value: " 764 << (ICVInfo.InitValue 765 ? toString(ICVInfo.InitValue->getValue(), 10, true) 766 : "IMPLEMENTATION_DEFINED"); 767 }; 768 769 emitRemark<OptimizationRemarkAnalysis>(F, "OpenMPICVTracker", Remark); 770 } 771 } 772 } 773 774 /// Print OpenMP GPU kernels for testing. 775 void printKernels() const { 776 for (Function *F : SCC) { 777 if (!OMPInfoCache.Kernels.count(F)) 778 continue; 779 780 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 781 return ORA << "OpenMP GPU kernel " 782 << ore::NV("OpenMPGPUKernel", F->getName()) << "\n"; 783 }; 784 785 emitRemark<OptimizationRemarkAnalysis>(F, "OpenMPGPU", Remark); 786 } 787 } 788 789 /// Return the call if \p U is a callee use in a regular call. If \p RFI is 790 /// given it has to be the callee or a nullptr is returned. 791 static CallInst *getCallIfRegularCall( 792 Use &U, OMPInformationCache::RuntimeFunctionInfo *RFI = nullptr) { 793 CallInst *CI = dyn_cast<CallInst>(U.getUser()); 794 if (CI && CI->isCallee(&U) && !CI->hasOperandBundles() && 795 (!RFI || 796 (RFI->Declaration && CI->getCalledFunction() == RFI->Declaration))) 797 return CI; 798 return nullptr; 799 } 800 801 /// Return the call if \p V is a regular call. If \p RFI is given it has to be 802 /// the callee or a nullptr is returned. 803 static CallInst *getCallIfRegularCall( 804 Value &V, OMPInformationCache::RuntimeFunctionInfo *RFI = nullptr) { 805 CallInst *CI = dyn_cast<CallInst>(&V); 806 if (CI && !CI->hasOperandBundles() && 807 (!RFI || 808 (RFI->Declaration && CI->getCalledFunction() == RFI->Declaration))) 809 return CI; 810 return nullptr; 811 } 812 813 private: 814 /// Merge parallel regions when it is safe. 815 bool mergeParallelRegions() { 816 const unsigned CallbackCalleeOperand = 2; 817 const unsigned CallbackFirstArgOperand = 3; 818 using InsertPointTy = OpenMPIRBuilder::InsertPointTy; 819 820 // Check if there are any __kmpc_fork_call calls to merge. 821 OMPInformationCache::RuntimeFunctionInfo &RFI = 822 OMPInfoCache.RFIs[OMPRTL___kmpc_fork_call]; 823 824 if (!RFI.Declaration) 825 return false; 826 827 // Unmergable calls that prevent merging a parallel region. 828 OMPInformationCache::RuntimeFunctionInfo UnmergableCallsInfo[] = { 829 OMPInfoCache.RFIs[OMPRTL___kmpc_push_proc_bind], 830 OMPInfoCache.RFIs[OMPRTL___kmpc_push_num_threads], 831 }; 832 833 bool Changed = false; 834 LoopInfo *LI = nullptr; 835 DominatorTree *DT = nullptr; 836 837 SmallDenseMap<BasicBlock *, SmallPtrSet<Instruction *, 4>> BB2PRMap; 838 839 BasicBlock *StartBB = nullptr, *EndBB = nullptr; 840 auto BodyGenCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, 841 BasicBlock &ContinuationIP) { 842 BasicBlock *CGStartBB = CodeGenIP.getBlock(); 843 BasicBlock *CGEndBB = 844 SplitBlock(CGStartBB, &*CodeGenIP.getPoint(), DT, LI); 845 assert(StartBB != nullptr && "StartBB should not be null"); 846 CGStartBB->getTerminator()->setSuccessor(0, StartBB); 847 assert(EndBB != nullptr && "EndBB should not be null"); 848 EndBB->getTerminator()->setSuccessor(0, CGEndBB); 849 }; 850 851 auto PrivCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, Value &, 852 Value &Inner, Value *&ReplacementValue) -> InsertPointTy { 853 ReplacementValue = &Inner; 854 return CodeGenIP; 855 }; 856 857 auto FiniCB = [&](InsertPointTy CodeGenIP) {}; 858 859 /// Create a sequential execution region within a merged parallel region, 860 /// encapsulated in a master construct with a barrier for synchronization. 861 auto CreateSequentialRegion = [&](Function *OuterFn, 862 BasicBlock *OuterPredBB, 863 Instruction *SeqStartI, 864 Instruction *SeqEndI) { 865 // Isolate the instructions of the sequential region to a separate 866 // block. 867 BasicBlock *ParentBB = SeqStartI->getParent(); 868 BasicBlock *SeqEndBB = 869 SplitBlock(ParentBB, SeqEndI->getNextNode(), DT, LI); 870 BasicBlock *SeqAfterBB = 871 SplitBlock(SeqEndBB, &*SeqEndBB->getFirstInsertionPt(), DT, LI); 872 BasicBlock *SeqStartBB = 873 SplitBlock(ParentBB, SeqStartI, DT, LI, nullptr, "seq.par.merged"); 874 875 assert(ParentBB->getUniqueSuccessor() == SeqStartBB && 876 "Expected a different CFG"); 877 const DebugLoc DL = ParentBB->getTerminator()->getDebugLoc(); 878 ParentBB->getTerminator()->eraseFromParent(); 879 880 auto BodyGenCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, 881 BasicBlock &ContinuationIP) { 882 BasicBlock *CGStartBB = CodeGenIP.getBlock(); 883 BasicBlock *CGEndBB = 884 SplitBlock(CGStartBB, &*CodeGenIP.getPoint(), DT, LI); 885 assert(SeqStartBB != nullptr && "SeqStartBB should not be null"); 886 CGStartBB->getTerminator()->setSuccessor(0, SeqStartBB); 887 assert(SeqEndBB != nullptr && "SeqEndBB should not be null"); 888 SeqEndBB->getTerminator()->setSuccessor(0, CGEndBB); 889 }; 890 auto FiniCB = [&](InsertPointTy CodeGenIP) {}; 891 892 // Find outputs from the sequential region to outside users and 893 // broadcast their values to them. 894 for (Instruction &I : *SeqStartBB) { 895 SmallPtrSet<Instruction *, 4> OutsideUsers; 896 for (User *Usr : I.users()) { 897 Instruction &UsrI = *cast<Instruction>(Usr); 898 // Ignore outputs to LT intrinsics, code extraction for the merged 899 // parallel region will fix them. 900 if (UsrI.isLifetimeStartOrEnd()) 901 continue; 902 903 if (UsrI.getParent() != SeqStartBB) 904 OutsideUsers.insert(&UsrI); 905 } 906 907 if (OutsideUsers.empty()) 908 continue; 909 910 // Emit an alloca in the outer region to store the broadcasted 911 // value. 912 const DataLayout &DL = M.getDataLayout(); 913 AllocaInst *AllocaI = new AllocaInst( 914 I.getType(), DL.getAllocaAddrSpace(), nullptr, 915 I.getName() + ".seq.output.alloc", &OuterFn->front().front()); 916 917 // Emit a store instruction in the sequential BB to update the 918 // value. 919 new StoreInst(&I, AllocaI, SeqStartBB->getTerminator()); 920 921 // Emit a load instruction and replace the use of the output value 922 // with it. 923 for (Instruction *UsrI : OutsideUsers) { 924 LoadInst *LoadI = new LoadInst( 925 I.getType(), AllocaI, I.getName() + ".seq.output.load", UsrI); 926 UsrI->replaceUsesOfWith(&I, LoadI); 927 } 928 } 929 930 OpenMPIRBuilder::LocationDescription Loc( 931 InsertPointTy(ParentBB, ParentBB->end()), DL); 932 InsertPointTy SeqAfterIP = 933 OMPInfoCache.OMPBuilder.createMaster(Loc, BodyGenCB, FiniCB); 934 935 OMPInfoCache.OMPBuilder.createBarrier(SeqAfterIP, OMPD_parallel); 936 937 BranchInst::Create(SeqAfterBB, SeqAfterIP.getBlock()); 938 939 LLVM_DEBUG(dbgs() << TAG << "After sequential inlining " << *OuterFn 940 << "\n"); 941 }; 942 943 // Helper to merge the __kmpc_fork_call calls in MergableCIs. They are all 944 // contained in BB and only separated by instructions that can be 945 // redundantly executed in parallel. The block BB is split before the first 946 // call (in MergableCIs) and after the last so the entire region we merge 947 // into a single parallel region is contained in a single basic block 948 // without any other instructions. We use the OpenMPIRBuilder to outline 949 // that block and call the resulting function via __kmpc_fork_call. 950 auto Merge = [&](SmallVectorImpl<CallInst *> &MergableCIs, BasicBlock *BB) { 951 // TODO: Change the interface to allow single CIs expanded, e.g, to 952 // include an outer loop. 953 assert(MergableCIs.size() > 1 && "Assumed multiple mergable CIs"); 954 955 auto Remark = [&](OptimizationRemark OR) { 956 OR << "Parallel region merged with parallel region" 957 << (MergableCIs.size() > 2 ? "s" : "") << " at "; 958 for (auto *CI : llvm::drop_begin(MergableCIs)) { 959 OR << ore::NV("OpenMPParallelMerge", CI->getDebugLoc()); 960 if (CI != MergableCIs.back()) 961 OR << ", "; 962 } 963 return OR << "."; 964 }; 965 966 emitRemark<OptimizationRemark>(MergableCIs.front(), "OMP150", Remark); 967 968 Function *OriginalFn = BB->getParent(); 969 LLVM_DEBUG(dbgs() << TAG << "Merge " << MergableCIs.size() 970 << " parallel regions in " << OriginalFn->getName() 971 << "\n"); 972 973 // Isolate the calls to merge in a separate block. 974 EndBB = SplitBlock(BB, MergableCIs.back()->getNextNode(), DT, LI); 975 BasicBlock *AfterBB = 976 SplitBlock(EndBB, &*EndBB->getFirstInsertionPt(), DT, LI); 977 StartBB = SplitBlock(BB, MergableCIs.front(), DT, LI, nullptr, 978 "omp.par.merged"); 979 980 assert(BB->getUniqueSuccessor() == StartBB && "Expected a different CFG"); 981 const DebugLoc DL = BB->getTerminator()->getDebugLoc(); 982 BB->getTerminator()->eraseFromParent(); 983 984 // Create sequential regions for sequential instructions that are 985 // in-between mergable parallel regions. 986 for (auto *It = MergableCIs.begin(), *End = MergableCIs.end() - 1; 987 It != End; ++It) { 988 Instruction *ForkCI = *It; 989 Instruction *NextForkCI = *(It + 1); 990 991 // Continue if there are not in-between instructions. 992 if (ForkCI->getNextNode() == NextForkCI) 993 continue; 994 995 CreateSequentialRegion(OriginalFn, BB, ForkCI->getNextNode(), 996 NextForkCI->getPrevNode()); 997 } 998 999 OpenMPIRBuilder::LocationDescription Loc(InsertPointTy(BB, BB->end()), 1000 DL); 1001 IRBuilder<>::InsertPoint AllocaIP( 1002 &OriginalFn->getEntryBlock(), 1003 OriginalFn->getEntryBlock().getFirstInsertionPt()); 1004 // Create the merged parallel region with default proc binding, to 1005 // avoid overriding binding settings, and without explicit cancellation. 1006 InsertPointTy AfterIP = OMPInfoCache.OMPBuilder.createParallel( 1007 Loc, AllocaIP, BodyGenCB, PrivCB, FiniCB, nullptr, nullptr, 1008 OMP_PROC_BIND_default, /* IsCancellable */ false); 1009 BranchInst::Create(AfterBB, AfterIP.getBlock()); 1010 1011 // Perform the actual outlining. 1012 OMPInfoCache.OMPBuilder.finalize(OriginalFn, 1013 /* AllowExtractorSinking */ true); 1014 1015 Function *OutlinedFn = MergableCIs.front()->getCaller(); 1016 1017 // Replace the __kmpc_fork_call calls with direct calls to the outlined 1018 // callbacks. 1019 SmallVector<Value *, 8> Args; 1020 for (auto *CI : MergableCIs) { 1021 Value *Callee = 1022 CI->getArgOperand(CallbackCalleeOperand)->stripPointerCasts(); 1023 FunctionType *FT = 1024 cast<FunctionType>(Callee->getType()->getPointerElementType()); 1025 Args.clear(); 1026 Args.push_back(OutlinedFn->getArg(0)); 1027 Args.push_back(OutlinedFn->getArg(1)); 1028 for (unsigned U = CallbackFirstArgOperand, E = CI->getNumArgOperands(); 1029 U < E; ++U) 1030 Args.push_back(CI->getArgOperand(U)); 1031 1032 CallInst *NewCI = CallInst::Create(FT, Callee, Args, "", CI); 1033 if (CI->getDebugLoc()) 1034 NewCI->setDebugLoc(CI->getDebugLoc()); 1035 1036 // Forward parameter attributes from the callback to the callee. 1037 for (unsigned U = CallbackFirstArgOperand, E = CI->getNumArgOperands(); 1038 U < E; ++U) 1039 for (const Attribute &A : CI->getAttributes().getParamAttributes(U)) 1040 NewCI->addParamAttr( 1041 U - (CallbackFirstArgOperand - CallbackCalleeOperand), A); 1042 1043 // Emit an explicit barrier to replace the implicit fork-join barrier. 1044 if (CI != MergableCIs.back()) { 1045 // TODO: Remove barrier if the merged parallel region includes the 1046 // 'nowait' clause. 1047 OMPInfoCache.OMPBuilder.createBarrier( 1048 InsertPointTy(NewCI->getParent(), 1049 NewCI->getNextNode()->getIterator()), 1050 OMPD_parallel); 1051 } 1052 1053 CI->eraseFromParent(); 1054 } 1055 1056 assert(OutlinedFn != OriginalFn && "Outlining failed"); 1057 CGUpdater.registerOutlinedFunction(*OriginalFn, *OutlinedFn); 1058 CGUpdater.reanalyzeFunction(*OriginalFn); 1059 1060 NumOpenMPParallelRegionsMerged += MergableCIs.size(); 1061 1062 return true; 1063 }; 1064 1065 // Helper function that identifes sequences of 1066 // __kmpc_fork_call uses in a basic block. 1067 auto DetectPRsCB = [&](Use &U, Function &F) { 1068 CallInst *CI = getCallIfRegularCall(U, &RFI); 1069 BB2PRMap[CI->getParent()].insert(CI); 1070 1071 return false; 1072 }; 1073 1074 BB2PRMap.clear(); 1075 RFI.foreachUse(SCC, DetectPRsCB); 1076 SmallVector<SmallVector<CallInst *, 4>, 4> MergableCIsVector; 1077 // Find mergable parallel regions within a basic block that are 1078 // safe to merge, that is any in-between instructions can safely 1079 // execute in parallel after merging. 1080 // TODO: support merging across basic-blocks. 1081 for (auto &It : BB2PRMap) { 1082 auto &CIs = It.getSecond(); 1083 if (CIs.size() < 2) 1084 continue; 1085 1086 BasicBlock *BB = It.getFirst(); 1087 SmallVector<CallInst *, 4> MergableCIs; 1088 1089 /// Returns true if the instruction is mergable, false otherwise. 1090 /// A terminator instruction is unmergable by definition since merging 1091 /// works within a BB. Instructions before the mergable region are 1092 /// mergable if they are not calls to OpenMP runtime functions that may 1093 /// set different execution parameters for subsequent parallel regions. 1094 /// Instructions in-between parallel regions are mergable if they are not 1095 /// calls to any non-intrinsic function since that may call a non-mergable 1096 /// OpenMP runtime function. 1097 auto IsMergable = [&](Instruction &I, bool IsBeforeMergableRegion) { 1098 // We do not merge across BBs, hence return false (unmergable) if the 1099 // instruction is a terminator. 1100 if (I.isTerminator()) 1101 return false; 1102 1103 if (!isa<CallInst>(&I)) 1104 return true; 1105 1106 CallInst *CI = cast<CallInst>(&I); 1107 if (IsBeforeMergableRegion) { 1108 Function *CalledFunction = CI->getCalledFunction(); 1109 if (!CalledFunction) 1110 return false; 1111 // Return false (unmergable) if the call before the parallel 1112 // region calls an explicit affinity (proc_bind) or number of 1113 // threads (num_threads) compiler-generated function. Those settings 1114 // may be incompatible with following parallel regions. 1115 // TODO: ICV tracking to detect compatibility. 1116 for (const auto &RFI : UnmergableCallsInfo) { 1117 if (CalledFunction == RFI.Declaration) 1118 return false; 1119 } 1120 } else { 1121 // Return false (unmergable) if there is a call instruction 1122 // in-between parallel regions when it is not an intrinsic. It 1123 // may call an unmergable OpenMP runtime function in its callpath. 1124 // TODO: Keep track of possible OpenMP calls in the callpath. 1125 if (!isa<IntrinsicInst>(CI)) 1126 return false; 1127 } 1128 1129 return true; 1130 }; 1131 // Find maximal number of parallel region CIs that are safe to merge. 1132 for (auto It = BB->begin(), End = BB->end(); It != End;) { 1133 Instruction &I = *It; 1134 ++It; 1135 1136 if (CIs.count(&I)) { 1137 MergableCIs.push_back(cast<CallInst>(&I)); 1138 continue; 1139 } 1140 1141 // Continue expanding if the instruction is mergable. 1142 if (IsMergable(I, MergableCIs.empty())) 1143 continue; 1144 1145 // Forward the instruction iterator to skip the next parallel region 1146 // since there is an unmergable instruction which can affect it. 1147 for (; It != End; ++It) { 1148 Instruction &SkipI = *It; 1149 if (CIs.count(&SkipI)) { 1150 LLVM_DEBUG(dbgs() << TAG << "Skip parallel region " << SkipI 1151 << " due to " << I << "\n"); 1152 ++It; 1153 break; 1154 } 1155 } 1156 1157 // Store mergable regions found. 1158 if (MergableCIs.size() > 1) { 1159 MergableCIsVector.push_back(MergableCIs); 1160 LLVM_DEBUG(dbgs() << TAG << "Found " << MergableCIs.size() 1161 << " parallel regions in block " << BB->getName() 1162 << " of function " << BB->getParent()->getName() 1163 << "\n";); 1164 } 1165 1166 MergableCIs.clear(); 1167 } 1168 1169 if (!MergableCIsVector.empty()) { 1170 Changed = true; 1171 1172 for (auto &MergableCIs : MergableCIsVector) 1173 Merge(MergableCIs, BB); 1174 MergableCIsVector.clear(); 1175 } 1176 } 1177 1178 if (Changed) { 1179 /// Re-collect use for fork calls, emitted barrier calls, and 1180 /// any emitted master/end_master calls. 1181 OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_fork_call); 1182 OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_barrier); 1183 OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_master); 1184 OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_end_master); 1185 } 1186 1187 return Changed; 1188 } 1189 1190 /// Try to delete parallel regions if possible. 1191 bool deleteParallelRegions() { 1192 const unsigned CallbackCalleeOperand = 2; 1193 1194 OMPInformationCache::RuntimeFunctionInfo &RFI = 1195 OMPInfoCache.RFIs[OMPRTL___kmpc_fork_call]; 1196 1197 if (!RFI.Declaration) 1198 return false; 1199 1200 bool Changed = false; 1201 auto DeleteCallCB = [&](Use &U, Function &) { 1202 CallInst *CI = getCallIfRegularCall(U); 1203 if (!CI) 1204 return false; 1205 auto *Fn = dyn_cast<Function>( 1206 CI->getArgOperand(CallbackCalleeOperand)->stripPointerCasts()); 1207 if (!Fn) 1208 return false; 1209 if (!Fn->onlyReadsMemory()) 1210 return false; 1211 if (!Fn->hasFnAttribute(Attribute::WillReturn)) 1212 return false; 1213 1214 LLVM_DEBUG(dbgs() << TAG << "Delete read-only parallel region in " 1215 << CI->getCaller()->getName() << "\n"); 1216 1217 auto Remark = [&](OptimizationRemark OR) { 1218 return OR << "Removing parallel region with no side-effects."; 1219 }; 1220 emitRemark<OptimizationRemark>(CI, "OMP160", Remark); 1221 1222 CGUpdater.removeCallSite(*CI); 1223 CI->eraseFromParent(); 1224 Changed = true; 1225 ++NumOpenMPParallelRegionsDeleted; 1226 return true; 1227 }; 1228 1229 RFI.foreachUse(SCC, DeleteCallCB); 1230 1231 return Changed; 1232 } 1233 1234 /// Try to eliminate runtime calls by reusing existing ones. 1235 bool deduplicateRuntimeCalls() { 1236 bool Changed = false; 1237 1238 RuntimeFunction DeduplicableRuntimeCallIDs[] = { 1239 OMPRTL_omp_get_num_threads, 1240 OMPRTL_omp_in_parallel, 1241 OMPRTL_omp_get_cancellation, 1242 OMPRTL_omp_get_thread_limit, 1243 OMPRTL_omp_get_supported_active_levels, 1244 OMPRTL_omp_get_level, 1245 OMPRTL_omp_get_ancestor_thread_num, 1246 OMPRTL_omp_get_team_size, 1247 OMPRTL_omp_get_active_level, 1248 OMPRTL_omp_in_final, 1249 OMPRTL_omp_get_proc_bind, 1250 OMPRTL_omp_get_num_places, 1251 OMPRTL_omp_get_num_procs, 1252 OMPRTL_omp_get_place_num, 1253 OMPRTL_omp_get_partition_num_places, 1254 OMPRTL_omp_get_partition_place_nums}; 1255 1256 // Global-tid is handled separately. 1257 SmallSetVector<Value *, 16> GTIdArgs; 1258 collectGlobalThreadIdArguments(GTIdArgs); 1259 LLVM_DEBUG(dbgs() << TAG << "Found " << GTIdArgs.size() 1260 << " global thread ID arguments\n"); 1261 1262 for (Function *F : SCC) { 1263 for (auto DeduplicableRuntimeCallID : DeduplicableRuntimeCallIDs) 1264 Changed |= deduplicateRuntimeCalls( 1265 *F, OMPInfoCache.RFIs[DeduplicableRuntimeCallID]); 1266 1267 // __kmpc_global_thread_num is special as we can replace it with an 1268 // argument in enough cases to make it worth trying. 1269 Value *GTIdArg = nullptr; 1270 for (Argument &Arg : F->args()) 1271 if (GTIdArgs.count(&Arg)) { 1272 GTIdArg = &Arg; 1273 break; 1274 } 1275 Changed |= deduplicateRuntimeCalls( 1276 *F, OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num], GTIdArg); 1277 } 1278 1279 return Changed; 1280 } 1281 1282 /// Tries to hide the latency of runtime calls that involve host to 1283 /// device memory transfers by splitting them into their "issue" and "wait" 1284 /// versions. The "issue" is moved upwards as much as possible. The "wait" is 1285 /// moved downards as much as possible. The "issue" issues the memory transfer 1286 /// asynchronously, returning a handle. The "wait" waits in the returned 1287 /// handle for the memory transfer to finish. 1288 bool hideMemTransfersLatency() { 1289 auto &RFI = OMPInfoCache.RFIs[OMPRTL___tgt_target_data_begin_mapper]; 1290 bool Changed = false; 1291 auto SplitMemTransfers = [&](Use &U, Function &Decl) { 1292 auto *RTCall = getCallIfRegularCall(U, &RFI); 1293 if (!RTCall) 1294 return false; 1295 1296 OffloadArray OffloadArrays[3]; 1297 if (!getValuesInOffloadArrays(*RTCall, OffloadArrays)) 1298 return false; 1299 1300 LLVM_DEBUG(dumpValuesInOffloadArrays(OffloadArrays)); 1301 1302 // TODO: Check if can be moved upwards. 1303 bool WasSplit = false; 1304 Instruction *WaitMovementPoint = canBeMovedDownwards(*RTCall); 1305 if (WaitMovementPoint) 1306 WasSplit = splitTargetDataBeginRTC(*RTCall, *WaitMovementPoint); 1307 1308 Changed |= WasSplit; 1309 return WasSplit; 1310 }; 1311 RFI.foreachUse(SCC, SplitMemTransfers); 1312 1313 return Changed; 1314 } 1315 1316 void analysisGlobalization() { 1317 auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared]; 1318 1319 auto CheckGlobalization = [&](Use &U, Function &Decl) { 1320 if (CallInst *CI = getCallIfRegularCall(U, &RFI)) { 1321 auto Remark = [&](OptimizationRemarkMissed ORM) { 1322 return ORM 1323 << "Found thread data sharing on the GPU. " 1324 << "Expect degraded performance due to data globalization."; 1325 }; 1326 emitRemark<OptimizationRemarkMissed>(CI, "OMP112", Remark); 1327 } 1328 1329 return false; 1330 }; 1331 1332 RFI.foreachUse(SCC, CheckGlobalization); 1333 } 1334 1335 /// Maps the values stored in the offload arrays passed as arguments to 1336 /// \p RuntimeCall into the offload arrays in \p OAs. 1337 bool getValuesInOffloadArrays(CallInst &RuntimeCall, 1338 MutableArrayRef<OffloadArray> OAs) { 1339 assert(OAs.size() == 3 && "Need space for three offload arrays!"); 1340 1341 // A runtime call that involves memory offloading looks something like: 1342 // call void @__tgt_target_data_begin_mapper(arg0, arg1, 1343 // i8** %offload_baseptrs, i8** %offload_ptrs, i64* %offload_sizes, 1344 // ...) 1345 // So, the idea is to access the allocas that allocate space for these 1346 // offload arrays, offload_baseptrs, offload_ptrs, offload_sizes. 1347 // Therefore: 1348 // i8** %offload_baseptrs. 1349 Value *BasePtrsArg = 1350 RuntimeCall.getArgOperand(OffloadArray::BasePtrsArgNum); 1351 // i8** %offload_ptrs. 1352 Value *PtrsArg = RuntimeCall.getArgOperand(OffloadArray::PtrsArgNum); 1353 // i8** %offload_sizes. 1354 Value *SizesArg = RuntimeCall.getArgOperand(OffloadArray::SizesArgNum); 1355 1356 // Get values stored in **offload_baseptrs. 1357 auto *V = getUnderlyingObject(BasePtrsArg); 1358 if (!isa<AllocaInst>(V)) 1359 return false; 1360 auto *BasePtrsArray = cast<AllocaInst>(V); 1361 if (!OAs[0].initialize(*BasePtrsArray, RuntimeCall)) 1362 return false; 1363 1364 // Get values stored in **offload_baseptrs. 1365 V = getUnderlyingObject(PtrsArg); 1366 if (!isa<AllocaInst>(V)) 1367 return false; 1368 auto *PtrsArray = cast<AllocaInst>(V); 1369 if (!OAs[1].initialize(*PtrsArray, RuntimeCall)) 1370 return false; 1371 1372 // Get values stored in **offload_sizes. 1373 V = getUnderlyingObject(SizesArg); 1374 // If it's a [constant] global array don't analyze it. 1375 if (isa<GlobalValue>(V)) 1376 return isa<Constant>(V); 1377 if (!isa<AllocaInst>(V)) 1378 return false; 1379 1380 auto *SizesArray = cast<AllocaInst>(V); 1381 if (!OAs[2].initialize(*SizesArray, RuntimeCall)) 1382 return false; 1383 1384 return true; 1385 } 1386 1387 /// Prints the values in the OffloadArrays \p OAs using LLVM_DEBUG. 1388 /// For now this is a way to test that the function getValuesInOffloadArrays 1389 /// is working properly. 1390 /// TODO: Move this to a unittest when unittests are available for OpenMPOpt. 1391 void dumpValuesInOffloadArrays(ArrayRef<OffloadArray> OAs) { 1392 assert(OAs.size() == 3 && "There are three offload arrays to debug!"); 1393 1394 LLVM_DEBUG(dbgs() << TAG << " Successfully got offload values:\n"); 1395 std::string ValuesStr; 1396 raw_string_ostream Printer(ValuesStr); 1397 std::string Separator = " --- "; 1398 1399 for (auto *BP : OAs[0].StoredValues) { 1400 BP->print(Printer); 1401 Printer << Separator; 1402 } 1403 LLVM_DEBUG(dbgs() << "\t\toffload_baseptrs: " << Printer.str() << "\n"); 1404 ValuesStr.clear(); 1405 1406 for (auto *P : OAs[1].StoredValues) { 1407 P->print(Printer); 1408 Printer << Separator; 1409 } 1410 LLVM_DEBUG(dbgs() << "\t\toffload_ptrs: " << Printer.str() << "\n"); 1411 ValuesStr.clear(); 1412 1413 for (auto *S : OAs[2].StoredValues) { 1414 S->print(Printer); 1415 Printer << Separator; 1416 } 1417 LLVM_DEBUG(dbgs() << "\t\toffload_sizes: " << Printer.str() << "\n"); 1418 } 1419 1420 /// Returns the instruction where the "wait" counterpart \p RuntimeCall can be 1421 /// moved. Returns nullptr if the movement is not possible, or not worth it. 1422 Instruction *canBeMovedDownwards(CallInst &RuntimeCall) { 1423 // FIXME: This traverses only the BasicBlock where RuntimeCall is. 1424 // Make it traverse the CFG. 1425 1426 Instruction *CurrentI = &RuntimeCall; 1427 bool IsWorthIt = false; 1428 while ((CurrentI = CurrentI->getNextNode())) { 1429 1430 // TODO: Once we detect the regions to be offloaded we should use the 1431 // alias analysis manager to check if CurrentI may modify one of 1432 // the offloaded regions. 1433 if (CurrentI->mayHaveSideEffects() || CurrentI->mayReadFromMemory()) { 1434 if (IsWorthIt) 1435 return CurrentI; 1436 1437 return nullptr; 1438 } 1439 1440 // FIXME: For now if we move it over anything without side effect 1441 // is worth it. 1442 IsWorthIt = true; 1443 } 1444 1445 // Return end of BasicBlock. 1446 return RuntimeCall.getParent()->getTerminator(); 1447 } 1448 1449 /// Splits \p RuntimeCall into its "issue" and "wait" counterparts. 1450 bool splitTargetDataBeginRTC(CallInst &RuntimeCall, 1451 Instruction &WaitMovementPoint) { 1452 // Create stack allocated handle (__tgt_async_info) at the beginning of the 1453 // function. Used for storing information of the async transfer, allowing to 1454 // wait on it later. 1455 auto &IRBuilder = OMPInfoCache.OMPBuilder; 1456 auto *F = RuntimeCall.getCaller(); 1457 Instruction *FirstInst = &(F->getEntryBlock().front()); 1458 AllocaInst *Handle = new AllocaInst( 1459 IRBuilder.AsyncInfo, F->getAddressSpace(), "handle", FirstInst); 1460 1461 // Add "issue" runtime call declaration: 1462 // declare %struct.tgt_async_info @__tgt_target_data_begin_issue(i64, i32, 1463 // i8**, i8**, i64*, i64*) 1464 FunctionCallee IssueDecl = IRBuilder.getOrCreateRuntimeFunction( 1465 M, OMPRTL___tgt_target_data_begin_mapper_issue); 1466 1467 // Change RuntimeCall call site for its asynchronous version. 1468 SmallVector<Value *, 16> Args; 1469 for (auto &Arg : RuntimeCall.args()) 1470 Args.push_back(Arg.get()); 1471 Args.push_back(Handle); 1472 1473 CallInst *IssueCallsite = 1474 CallInst::Create(IssueDecl, Args, /*NameStr=*/"", &RuntimeCall); 1475 RuntimeCall.eraseFromParent(); 1476 1477 // Add "wait" runtime call declaration: 1478 // declare void @__tgt_target_data_begin_wait(i64, %struct.__tgt_async_info) 1479 FunctionCallee WaitDecl = IRBuilder.getOrCreateRuntimeFunction( 1480 M, OMPRTL___tgt_target_data_begin_mapper_wait); 1481 1482 Value *WaitParams[2] = { 1483 IssueCallsite->getArgOperand( 1484 OffloadArray::DeviceIDArgNum), // device_id. 1485 Handle // handle to wait on. 1486 }; 1487 CallInst::Create(WaitDecl, WaitParams, /*NameStr=*/"", &WaitMovementPoint); 1488 1489 return true; 1490 } 1491 1492 static Value *combinedIdentStruct(Value *CurrentIdent, Value *NextIdent, 1493 bool GlobalOnly, bool &SingleChoice) { 1494 if (CurrentIdent == NextIdent) 1495 return CurrentIdent; 1496 1497 // TODO: Figure out how to actually combine multiple debug locations. For 1498 // now we just keep an existing one if there is a single choice. 1499 if (!GlobalOnly || isa<GlobalValue>(NextIdent)) { 1500 SingleChoice = !CurrentIdent; 1501 return NextIdent; 1502 } 1503 return nullptr; 1504 } 1505 1506 /// Return an `struct ident_t*` value that represents the ones used in the 1507 /// calls of \p RFI inside of \p F. If \p GlobalOnly is true, we will not 1508 /// return a local `struct ident_t*`. For now, if we cannot find a suitable 1509 /// return value we create one from scratch. We also do not yet combine 1510 /// information, e.g., the source locations, see combinedIdentStruct. 1511 Value * 1512 getCombinedIdentFromCallUsesIn(OMPInformationCache::RuntimeFunctionInfo &RFI, 1513 Function &F, bool GlobalOnly) { 1514 bool SingleChoice = true; 1515 Value *Ident = nullptr; 1516 auto CombineIdentStruct = [&](Use &U, Function &Caller) { 1517 CallInst *CI = getCallIfRegularCall(U, &RFI); 1518 if (!CI || &F != &Caller) 1519 return false; 1520 Ident = combinedIdentStruct(Ident, CI->getArgOperand(0), 1521 /* GlobalOnly */ true, SingleChoice); 1522 return false; 1523 }; 1524 RFI.foreachUse(SCC, CombineIdentStruct); 1525 1526 if (!Ident || !SingleChoice) { 1527 // The IRBuilder uses the insertion block to get to the module, this is 1528 // unfortunate but we work around it for now. 1529 if (!OMPInfoCache.OMPBuilder.getInsertionPoint().getBlock()) 1530 OMPInfoCache.OMPBuilder.updateToLocation(OpenMPIRBuilder::InsertPointTy( 1531 &F.getEntryBlock(), F.getEntryBlock().begin())); 1532 // Create a fallback location if non was found. 1533 // TODO: Use the debug locations of the calls instead. 1534 Constant *Loc = OMPInfoCache.OMPBuilder.getOrCreateDefaultSrcLocStr(); 1535 Ident = OMPInfoCache.OMPBuilder.getOrCreateIdent(Loc); 1536 } 1537 return Ident; 1538 } 1539 1540 /// Try to eliminate calls of \p RFI in \p F by reusing an existing one or 1541 /// \p ReplVal if given. 1542 bool deduplicateRuntimeCalls(Function &F, 1543 OMPInformationCache::RuntimeFunctionInfo &RFI, 1544 Value *ReplVal = nullptr) { 1545 auto *UV = RFI.getUseVector(F); 1546 if (!UV || UV->size() + (ReplVal != nullptr) < 2) 1547 return false; 1548 1549 LLVM_DEBUG( 1550 dbgs() << TAG << "Deduplicate " << UV->size() << " uses of " << RFI.Name 1551 << (ReplVal ? " with an existing value\n" : "\n") << "\n"); 1552 1553 assert((!ReplVal || (isa<Argument>(ReplVal) && 1554 cast<Argument>(ReplVal)->getParent() == &F)) && 1555 "Unexpected replacement value!"); 1556 1557 // TODO: Use dominance to find a good position instead. 1558 auto CanBeMoved = [this](CallBase &CB) { 1559 unsigned NumArgs = CB.getNumArgOperands(); 1560 if (NumArgs == 0) 1561 return true; 1562 if (CB.getArgOperand(0)->getType() != OMPInfoCache.OMPBuilder.IdentPtr) 1563 return false; 1564 for (unsigned u = 1; u < NumArgs; ++u) 1565 if (isa<Instruction>(CB.getArgOperand(u))) 1566 return false; 1567 return true; 1568 }; 1569 1570 if (!ReplVal) { 1571 for (Use *U : *UV) 1572 if (CallInst *CI = getCallIfRegularCall(*U, &RFI)) { 1573 if (!CanBeMoved(*CI)) 1574 continue; 1575 1576 // If the function is a kernel, dedup will move 1577 // the runtime call right after the kernel init callsite. Otherwise, 1578 // it will move it to the beginning of the caller function. 1579 if (isKernel(F)) { 1580 auto &KernelInitRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_target_init]; 1581 auto *KernelInitUV = KernelInitRFI.getUseVector(F); 1582 1583 if (KernelInitUV->empty()) 1584 continue; 1585 1586 assert(KernelInitUV->size() == 1 && 1587 "Expected a single __kmpc_target_init in kernel\n"); 1588 1589 CallInst *KernelInitCI = 1590 getCallIfRegularCall(*KernelInitUV->front(), &KernelInitRFI); 1591 assert(KernelInitCI && 1592 "Expected a call to __kmpc_target_init in kernel\n"); 1593 1594 CI->moveAfter(KernelInitCI); 1595 } else 1596 CI->moveBefore(&*F.getEntryBlock().getFirstInsertionPt()); 1597 ReplVal = CI; 1598 break; 1599 } 1600 if (!ReplVal) 1601 return false; 1602 } 1603 1604 // If we use a call as a replacement value we need to make sure the ident is 1605 // valid at the new location. For now we just pick a global one, either 1606 // existing and used by one of the calls, or created from scratch. 1607 if (CallBase *CI = dyn_cast<CallBase>(ReplVal)) { 1608 if (CI->getNumArgOperands() > 0 && 1609 CI->getArgOperand(0)->getType() == OMPInfoCache.OMPBuilder.IdentPtr) { 1610 Value *Ident = getCombinedIdentFromCallUsesIn(RFI, F, 1611 /* GlobalOnly */ true); 1612 CI->setArgOperand(0, Ident); 1613 } 1614 } 1615 1616 bool Changed = false; 1617 auto ReplaceAndDeleteCB = [&](Use &U, Function &Caller) { 1618 CallInst *CI = getCallIfRegularCall(U, &RFI); 1619 if (!CI || CI == ReplVal || &F != &Caller) 1620 return false; 1621 assert(CI->getCaller() == &F && "Unexpected call!"); 1622 1623 auto Remark = [&](OptimizationRemark OR) { 1624 return OR << "OpenMP runtime call " 1625 << ore::NV("OpenMPOptRuntime", RFI.Name) << " deduplicated."; 1626 }; 1627 if (CI->getDebugLoc()) 1628 emitRemark<OptimizationRemark>(CI, "OMP170", Remark); 1629 else 1630 emitRemark<OptimizationRemark>(&F, "OMP170", Remark); 1631 1632 CGUpdater.removeCallSite(*CI); 1633 CI->replaceAllUsesWith(ReplVal); 1634 CI->eraseFromParent(); 1635 ++NumOpenMPRuntimeCallsDeduplicated; 1636 Changed = true; 1637 return true; 1638 }; 1639 RFI.foreachUse(SCC, ReplaceAndDeleteCB); 1640 1641 return Changed; 1642 } 1643 1644 /// Collect arguments that represent the global thread id in \p GTIdArgs. 1645 void collectGlobalThreadIdArguments(SmallSetVector<Value *, 16> >IdArgs) { 1646 // TODO: Below we basically perform a fixpoint iteration with a pessimistic 1647 // initialization. We could define an AbstractAttribute instead and 1648 // run the Attributor here once it can be run as an SCC pass. 1649 1650 // Helper to check the argument \p ArgNo at all call sites of \p F for 1651 // a GTId. 1652 auto CallArgOpIsGTId = [&](Function &F, unsigned ArgNo, CallInst &RefCI) { 1653 if (!F.hasLocalLinkage()) 1654 return false; 1655 for (Use &U : F.uses()) { 1656 if (CallInst *CI = getCallIfRegularCall(U)) { 1657 Value *ArgOp = CI->getArgOperand(ArgNo); 1658 if (CI == &RefCI || GTIdArgs.count(ArgOp) || 1659 getCallIfRegularCall( 1660 *ArgOp, &OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num])) 1661 continue; 1662 } 1663 return false; 1664 } 1665 return true; 1666 }; 1667 1668 // Helper to identify uses of a GTId as GTId arguments. 1669 auto AddUserArgs = [&](Value >Id) { 1670 for (Use &U : GTId.uses()) 1671 if (CallInst *CI = dyn_cast<CallInst>(U.getUser())) 1672 if (CI->isArgOperand(&U)) 1673 if (Function *Callee = CI->getCalledFunction()) 1674 if (CallArgOpIsGTId(*Callee, U.getOperandNo(), *CI)) 1675 GTIdArgs.insert(Callee->getArg(U.getOperandNo())); 1676 }; 1677 1678 // The argument users of __kmpc_global_thread_num calls are GTIds. 1679 OMPInformationCache::RuntimeFunctionInfo &GlobThreadNumRFI = 1680 OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num]; 1681 1682 GlobThreadNumRFI.foreachUse(SCC, [&](Use &U, Function &F) { 1683 if (CallInst *CI = getCallIfRegularCall(U, &GlobThreadNumRFI)) 1684 AddUserArgs(*CI); 1685 return false; 1686 }); 1687 1688 // Transitively search for more arguments by looking at the users of the 1689 // ones we know already. During the search the GTIdArgs vector is extended 1690 // so we cannot cache the size nor can we use a range based for. 1691 for (unsigned u = 0; u < GTIdArgs.size(); ++u) 1692 AddUserArgs(*GTIdArgs[u]); 1693 } 1694 1695 /// Kernel (=GPU) optimizations and utility functions 1696 /// 1697 ///{{ 1698 1699 /// Check if \p F is a kernel, hence entry point for target offloading. 1700 bool isKernel(Function &F) { return OMPInfoCache.Kernels.count(&F); } 1701 1702 /// Cache to remember the unique kernel for a function. 1703 DenseMap<Function *, Optional<Kernel>> UniqueKernelMap; 1704 1705 /// Find the unique kernel that will execute \p F, if any. 1706 Kernel getUniqueKernelFor(Function &F); 1707 1708 /// Find the unique kernel that will execute \p I, if any. 1709 Kernel getUniqueKernelFor(Instruction &I) { 1710 return getUniqueKernelFor(*I.getFunction()); 1711 } 1712 1713 /// Rewrite the device (=GPU) code state machine create in non-SPMD mode in 1714 /// the cases we can avoid taking the address of a function. 1715 bool rewriteDeviceCodeStateMachine(); 1716 1717 /// 1718 ///}} 1719 1720 /// Emit a remark generically 1721 /// 1722 /// This template function can be used to generically emit a remark. The 1723 /// RemarkKind should be one of the following: 1724 /// - OptimizationRemark to indicate a successful optimization attempt 1725 /// - OptimizationRemarkMissed to report a failed optimization attempt 1726 /// - OptimizationRemarkAnalysis to provide additional information about an 1727 /// optimization attempt 1728 /// 1729 /// The remark is built using a callback function provided by the caller that 1730 /// takes a RemarkKind as input and returns a RemarkKind. 1731 template <typename RemarkKind, typename RemarkCallBack> 1732 void emitRemark(Instruction *I, StringRef RemarkName, 1733 RemarkCallBack &&RemarkCB) const { 1734 Function *F = I->getParent()->getParent(); 1735 auto &ORE = OREGetter(F); 1736 1737 if (RemarkName.startswith("OMP")) 1738 ORE.emit([&]() { 1739 return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, I)) 1740 << " [" << RemarkName << "]"; 1741 }); 1742 else 1743 ORE.emit( 1744 [&]() { return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, I)); }); 1745 } 1746 1747 /// Emit a remark on a function. 1748 template <typename RemarkKind, typename RemarkCallBack> 1749 void emitRemark(Function *F, StringRef RemarkName, 1750 RemarkCallBack &&RemarkCB) const { 1751 auto &ORE = OREGetter(F); 1752 1753 if (RemarkName.startswith("OMP")) 1754 ORE.emit([&]() { 1755 return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, F)) 1756 << " [" << RemarkName << "]"; 1757 }); 1758 else 1759 ORE.emit( 1760 [&]() { return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, F)); }); 1761 } 1762 1763 /// RAII struct to temporarily change an RTL function's linkage to external. 1764 /// This prevents it from being mistakenly removed by other optimizations. 1765 struct ExternalizationRAII { 1766 ExternalizationRAII(OMPInformationCache &OMPInfoCache, 1767 RuntimeFunction RFKind) 1768 : OMPInfoCache(OMPInfoCache), 1769 Declaration(OMPInfoCache.RFIs[RFKind].Declaration) { 1770 if (!Declaration) 1771 return; 1772 1773 LinkageType = Declaration->getLinkage(); 1774 Declaration->setLinkage(GlobalValue::ExternalLinkage); 1775 } 1776 1777 ~ExternalizationRAII() { 1778 if (!Declaration) 1779 return; 1780 1781 Declaration->setLinkage(LinkageType); 1782 } 1783 1784 OMPInformationCache &OMPInfoCache; 1785 Function *Declaration; 1786 GlobalValue::LinkageTypes LinkageType; 1787 }; 1788 1789 /// The underlying module. 1790 Module &M; 1791 1792 /// The SCC we are operating on. 1793 SmallVectorImpl<Function *> &SCC; 1794 1795 /// Callback to update the call graph, the first argument is a removed call, 1796 /// the second an optional replacement call. 1797 CallGraphUpdater &CGUpdater; 1798 1799 /// Callback to get an OptimizationRemarkEmitter from a Function * 1800 OptimizationRemarkGetter OREGetter; 1801 1802 /// OpenMP-specific information cache. Also Used for Attributor runs. 1803 OMPInformationCache &OMPInfoCache; 1804 1805 /// Attributor instance. 1806 Attributor &A; 1807 1808 /// Helper function to run Attributor on SCC. 1809 bool runAttributor(bool IsModulePass) { 1810 if (SCC.empty()) 1811 return false; 1812 1813 // Temporarily make these function have external linkage so the Attributor 1814 // doesn't remove them when we try to look them up later. 1815 ExternalizationRAII Parallel(OMPInfoCache, OMPRTL___kmpc_kernel_parallel); 1816 ExternalizationRAII EndParallel(OMPInfoCache, 1817 OMPRTL___kmpc_kernel_end_parallel); 1818 ExternalizationRAII BarrierSPMD(OMPInfoCache, 1819 OMPRTL___kmpc_barrier_simple_spmd); 1820 1821 registerAAs(IsModulePass); 1822 1823 ChangeStatus Changed = A.run(); 1824 1825 LLVM_DEBUG(dbgs() << "[Attributor] Done with " << SCC.size() 1826 << " functions, result: " << Changed << ".\n"); 1827 1828 return Changed == ChangeStatus::CHANGED; 1829 } 1830 1831 /// Populate the Attributor with abstract attribute opportunities in the 1832 /// function. 1833 void registerAAs(bool IsModulePass); 1834 }; 1835 1836 Kernel OpenMPOpt::getUniqueKernelFor(Function &F) { 1837 if (!OMPInfoCache.ModuleSlice.count(&F)) 1838 return nullptr; 1839 1840 // Use a scope to keep the lifetime of the CachedKernel short. 1841 { 1842 Optional<Kernel> &CachedKernel = UniqueKernelMap[&F]; 1843 if (CachedKernel) 1844 return *CachedKernel; 1845 1846 // TODO: We should use an AA to create an (optimistic and callback 1847 // call-aware) call graph. For now we stick to simple patterns that 1848 // are less powerful, basically the worst fixpoint. 1849 if (isKernel(F)) { 1850 CachedKernel = Kernel(&F); 1851 return *CachedKernel; 1852 } 1853 1854 CachedKernel = nullptr; 1855 if (!F.hasLocalLinkage()) { 1856 1857 // See https://openmp.llvm.org/remarks/OptimizationRemarks.html 1858 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 1859 return ORA << "Potentially unknown OpenMP target region caller."; 1860 }; 1861 emitRemark<OptimizationRemarkAnalysis>(&F, "OMP100", Remark); 1862 1863 return nullptr; 1864 } 1865 } 1866 1867 auto GetUniqueKernelForUse = [&](const Use &U) -> Kernel { 1868 if (auto *Cmp = dyn_cast<ICmpInst>(U.getUser())) { 1869 // Allow use in equality comparisons. 1870 if (Cmp->isEquality()) 1871 return getUniqueKernelFor(*Cmp); 1872 return nullptr; 1873 } 1874 if (auto *CB = dyn_cast<CallBase>(U.getUser())) { 1875 // Allow direct calls. 1876 if (CB->isCallee(&U)) 1877 return getUniqueKernelFor(*CB); 1878 1879 OMPInformationCache::RuntimeFunctionInfo &KernelParallelRFI = 1880 OMPInfoCache.RFIs[OMPRTL___kmpc_parallel_51]; 1881 // Allow the use in __kmpc_parallel_51 calls. 1882 if (OpenMPOpt::getCallIfRegularCall(*U.getUser(), &KernelParallelRFI)) 1883 return getUniqueKernelFor(*CB); 1884 return nullptr; 1885 } 1886 // Disallow every other use. 1887 return nullptr; 1888 }; 1889 1890 // TODO: In the future we want to track more than just a unique kernel. 1891 SmallPtrSet<Kernel, 2> PotentialKernels; 1892 OMPInformationCache::foreachUse(F, [&](const Use &U) { 1893 PotentialKernels.insert(GetUniqueKernelForUse(U)); 1894 }); 1895 1896 Kernel K = nullptr; 1897 if (PotentialKernels.size() == 1) 1898 K = *PotentialKernels.begin(); 1899 1900 // Cache the result. 1901 UniqueKernelMap[&F] = K; 1902 1903 return K; 1904 } 1905 1906 bool OpenMPOpt::rewriteDeviceCodeStateMachine() { 1907 OMPInformationCache::RuntimeFunctionInfo &KernelParallelRFI = 1908 OMPInfoCache.RFIs[OMPRTL___kmpc_parallel_51]; 1909 1910 bool Changed = false; 1911 if (!KernelParallelRFI) 1912 return Changed; 1913 1914 for (Function *F : SCC) { 1915 1916 // Check if the function is a use in a __kmpc_parallel_51 call at 1917 // all. 1918 bool UnknownUse = false; 1919 bool KernelParallelUse = false; 1920 unsigned NumDirectCalls = 0; 1921 1922 SmallVector<Use *, 2> ToBeReplacedStateMachineUses; 1923 OMPInformationCache::foreachUse(*F, [&](Use &U) { 1924 if (auto *CB = dyn_cast<CallBase>(U.getUser())) 1925 if (CB->isCallee(&U)) { 1926 ++NumDirectCalls; 1927 return; 1928 } 1929 1930 if (isa<ICmpInst>(U.getUser())) { 1931 ToBeReplacedStateMachineUses.push_back(&U); 1932 return; 1933 } 1934 1935 // Find wrapper functions that represent parallel kernels. 1936 CallInst *CI = 1937 OpenMPOpt::getCallIfRegularCall(*U.getUser(), &KernelParallelRFI); 1938 const unsigned int WrapperFunctionArgNo = 6; 1939 if (!KernelParallelUse && CI && 1940 CI->getArgOperandNo(&U) == WrapperFunctionArgNo) { 1941 KernelParallelUse = true; 1942 ToBeReplacedStateMachineUses.push_back(&U); 1943 return; 1944 } 1945 UnknownUse = true; 1946 }); 1947 1948 // Do not emit a remark if we haven't seen a __kmpc_parallel_51 1949 // use. 1950 if (!KernelParallelUse) 1951 continue; 1952 1953 // If this ever hits, we should investigate. 1954 // TODO: Checking the number of uses is not a necessary restriction and 1955 // should be lifted. 1956 if (UnknownUse || NumDirectCalls != 1 || 1957 ToBeReplacedStateMachineUses.size() > 2) { 1958 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 1959 return ORA << "Parallel region is used in " 1960 << (UnknownUse ? "unknown" : "unexpected") 1961 << " ways. Will not attempt to rewrite the state machine."; 1962 }; 1963 emitRemark<OptimizationRemarkAnalysis>(F, "OMP101", Remark); 1964 continue; 1965 } 1966 1967 // Even if we have __kmpc_parallel_51 calls, we (for now) give 1968 // up if the function is not called from a unique kernel. 1969 Kernel K = getUniqueKernelFor(*F); 1970 if (!K) { 1971 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 1972 return ORA << "Parallel region is not called from a unique kernel. " 1973 "Will not attempt to rewrite the state machine."; 1974 }; 1975 emitRemark<OptimizationRemarkAnalysis>(F, "OMP102", Remark); 1976 continue; 1977 } 1978 1979 // We now know F is a parallel body function called only from the kernel K. 1980 // We also identified the state machine uses in which we replace the 1981 // function pointer by a new global symbol for identification purposes. This 1982 // ensures only direct calls to the function are left. 1983 1984 Module &M = *F->getParent(); 1985 Type *Int8Ty = Type::getInt8Ty(M.getContext()); 1986 1987 auto *ID = new GlobalVariable( 1988 M, Int8Ty, /* isConstant */ true, GlobalValue::PrivateLinkage, 1989 UndefValue::get(Int8Ty), F->getName() + ".ID"); 1990 1991 for (Use *U : ToBeReplacedStateMachineUses) 1992 U->set(ConstantExpr::getBitCast(ID, U->get()->getType())); 1993 1994 ++NumOpenMPParallelRegionsReplacedInGPUStateMachine; 1995 1996 Changed = true; 1997 } 1998 1999 return Changed; 2000 } 2001 2002 /// Abstract Attribute for tracking ICV values. 2003 struct AAICVTracker : public StateWrapper<BooleanState, AbstractAttribute> { 2004 using Base = StateWrapper<BooleanState, AbstractAttribute>; 2005 AAICVTracker(const IRPosition &IRP, Attributor &A) : Base(IRP) {} 2006 2007 void initialize(Attributor &A) override { 2008 Function *F = getAnchorScope(); 2009 if (!F || !A.isFunctionIPOAmendable(*F)) 2010 indicatePessimisticFixpoint(); 2011 } 2012 2013 /// Returns true if value is assumed to be tracked. 2014 bool isAssumedTracked() const { return getAssumed(); } 2015 2016 /// Returns true if value is known to be tracked. 2017 bool isKnownTracked() const { return getAssumed(); } 2018 2019 /// Create an abstract attribute biew for the position \p IRP. 2020 static AAICVTracker &createForPosition(const IRPosition &IRP, Attributor &A); 2021 2022 /// Return the value with which \p I can be replaced for specific \p ICV. 2023 virtual Optional<Value *> getReplacementValue(InternalControlVar ICV, 2024 const Instruction *I, 2025 Attributor &A) const { 2026 return None; 2027 } 2028 2029 /// Return an assumed unique ICV value if a single candidate is found. If 2030 /// there cannot be one, return a nullptr. If it is not clear yet, return the 2031 /// Optional::NoneType. 2032 virtual Optional<Value *> 2033 getUniqueReplacementValue(InternalControlVar ICV) const = 0; 2034 2035 // Currently only nthreads is being tracked. 2036 // this array will only grow with time. 2037 InternalControlVar TrackableICVs[1] = {ICV_nthreads}; 2038 2039 /// See AbstractAttribute::getName() 2040 const std::string getName() const override { return "AAICVTracker"; } 2041 2042 /// See AbstractAttribute::getIdAddr() 2043 const char *getIdAddr() const override { return &ID; } 2044 2045 /// This function should return true if the type of the \p AA is AAICVTracker 2046 static bool classof(const AbstractAttribute *AA) { 2047 return (AA->getIdAddr() == &ID); 2048 } 2049 2050 static const char ID; 2051 }; 2052 2053 struct AAICVTrackerFunction : public AAICVTracker { 2054 AAICVTrackerFunction(const IRPosition &IRP, Attributor &A) 2055 : AAICVTracker(IRP, A) {} 2056 2057 // FIXME: come up with better string. 2058 const std::string getAsStr() const override { return "ICVTrackerFunction"; } 2059 2060 // FIXME: come up with some stats. 2061 void trackStatistics() const override {} 2062 2063 /// We don't manifest anything for this AA. 2064 ChangeStatus manifest(Attributor &A) override { 2065 return ChangeStatus::UNCHANGED; 2066 } 2067 2068 // Map of ICV to their values at specific program point. 2069 EnumeratedArray<DenseMap<Instruction *, Value *>, InternalControlVar, 2070 InternalControlVar::ICV___last> 2071 ICVReplacementValuesMap; 2072 2073 ChangeStatus updateImpl(Attributor &A) override { 2074 ChangeStatus HasChanged = ChangeStatus::UNCHANGED; 2075 2076 Function *F = getAnchorScope(); 2077 2078 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2079 2080 for (InternalControlVar ICV : TrackableICVs) { 2081 auto &SetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Setter]; 2082 2083 auto &ValuesMap = ICVReplacementValuesMap[ICV]; 2084 auto TrackValues = [&](Use &U, Function &) { 2085 CallInst *CI = OpenMPOpt::getCallIfRegularCall(U); 2086 if (!CI) 2087 return false; 2088 2089 // FIXME: handle setters with more that 1 arguments. 2090 /// Track new value. 2091 if (ValuesMap.insert(std::make_pair(CI, CI->getArgOperand(0))).second) 2092 HasChanged = ChangeStatus::CHANGED; 2093 2094 return false; 2095 }; 2096 2097 auto CallCheck = [&](Instruction &I) { 2098 Optional<Value *> ReplVal = getValueForCall(A, &I, ICV); 2099 if (ReplVal.hasValue() && 2100 ValuesMap.insert(std::make_pair(&I, *ReplVal)).second) 2101 HasChanged = ChangeStatus::CHANGED; 2102 2103 return true; 2104 }; 2105 2106 // Track all changes of an ICV. 2107 SetterRFI.foreachUse(TrackValues, F); 2108 2109 bool UsedAssumedInformation = false; 2110 A.checkForAllInstructions(CallCheck, *this, {Instruction::Call}, 2111 UsedAssumedInformation, 2112 /* CheckBBLivenessOnly */ true); 2113 2114 /// TODO: Figure out a way to avoid adding entry in 2115 /// ICVReplacementValuesMap 2116 Instruction *Entry = &F->getEntryBlock().front(); 2117 if (HasChanged == ChangeStatus::CHANGED && !ValuesMap.count(Entry)) 2118 ValuesMap.insert(std::make_pair(Entry, nullptr)); 2119 } 2120 2121 return HasChanged; 2122 } 2123 2124 /// Hepler to check if \p I is a call and get the value for it if it is 2125 /// unique. 2126 Optional<Value *> getValueForCall(Attributor &A, const Instruction *I, 2127 InternalControlVar &ICV) const { 2128 2129 const auto *CB = dyn_cast<CallBase>(I); 2130 if (!CB || CB->hasFnAttr("no_openmp") || 2131 CB->hasFnAttr("no_openmp_routines")) 2132 return None; 2133 2134 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2135 auto &GetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Getter]; 2136 auto &SetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Setter]; 2137 Function *CalledFunction = CB->getCalledFunction(); 2138 2139 // Indirect call, assume ICV changes. 2140 if (CalledFunction == nullptr) 2141 return nullptr; 2142 if (CalledFunction == GetterRFI.Declaration) 2143 return None; 2144 if (CalledFunction == SetterRFI.Declaration) { 2145 if (ICVReplacementValuesMap[ICV].count(I)) 2146 return ICVReplacementValuesMap[ICV].lookup(I); 2147 2148 return nullptr; 2149 } 2150 2151 // Since we don't know, assume it changes the ICV. 2152 if (CalledFunction->isDeclaration()) 2153 return nullptr; 2154 2155 const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>( 2156 *this, IRPosition::callsite_returned(*CB), DepClassTy::REQUIRED); 2157 2158 if (ICVTrackingAA.isAssumedTracked()) 2159 return ICVTrackingAA.getUniqueReplacementValue(ICV); 2160 2161 // If we don't know, assume it changes. 2162 return nullptr; 2163 } 2164 2165 // We don't check unique value for a function, so return None. 2166 Optional<Value *> 2167 getUniqueReplacementValue(InternalControlVar ICV) const override { 2168 return None; 2169 } 2170 2171 /// Return the value with which \p I can be replaced for specific \p ICV. 2172 Optional<Value *> getReplacementValue(InternalControlVar ICV, 2173 const Instruction *I, 2174 Attributor &A) const override { 2175 const auto &ValuesMap = ICVReplacementValuesMap[ICV]; 2176 if (ValuesMap.count(I)) 2177 return ValuesMap.lookup(I); 2178 2179 SmallVector<const Instruction *, 16> Worklist; 2180 SmallPtrSet<const Instruction *, 16> Visited; 2181 Worklist.push_back(I); 2182 2183 Optional<Value *> ReplVal; 2184 2185 while (!Worklist.empty()) { 2186 const Instruction *CurrInst = Worklist.pop_back_val(); 2187 if (!Visited.insert(CurrInst).second) 2188 continue; 2189 2190 const BasicBlock *CurrBB = CurrInst->getParent(); 2191 2192 // Go up and look for all potential setters/calls that might change the 2193 // ICV. 2194 while ((CurrInst = CurrInst->getPrevNode())) { 2195 if (ValuesMap.count(CurrInst)) { 2196 Optional<Value *> NewReplVal = ValuesMap.lookup(CurrInst); 2197 // Unknown value, track new. 2198 if (!ReplVal.hasValue()) { 2199 ReplVal = NewReplVal; 2200 break; 2201 } 2202 2203 // If we found a new value, we can't know the icv value anymore. 2204 if (NewReplVal.hasValue()) 2205 if (ReplVal != NewReplVal) 2206 return nullptr; 2207 2208 break; 2209 } 2210 2211 Optional<Value *> NewReplVal = getValueForCall(A, CurrInst, ICV); 2212 if (!NewReplVal.hasValue()) 2213 continue; 2214 2215 // Unknown value, track new. 2216 if (!ReplVal.hasValue()) { 2217 ReplVal = NewReplVal; 2218 break; 2219 } 2220 2221 // if (NewReplVal.hasValue()) 2222 // We found a new value, we can't know the icv value anymore. 2223 if (ReplVal != NewReplVal) 2224 return nullptr; 2225 } 2226 2227 // If we are in the same BB and we have a value, we are done. 2228 if (CurrBB == I->getParent() && ReplVal.hasValue()) 2229 return ReplVal; 2230 2231 // Go through all predecessors and add terminators for analysis. 2232 for (const BasicBlock *Pred : predecessors(CurrBB)) 2233 if (const Instruction *Terminator = Pred->getTerminator()) 2234 Worklist.push_back(Terminator); 2235 } 2236 2237 return ReplVal; 2238 } 2239 }; 2240 2241 struct AAICVTrackerFunctionReturned : AAICVTracker { 2242 AAICVTrackerFunctionReturned(const IRPosition &IRP, Attributor &A) 2243 : AAICVTracker(IRP, A) {} 2244 2245 // FIXME: come up with better string. 2246 const std::string getAsStr() const override { 2247 return "ICVTrackerFunctionReturned"; 2248 } 2249 2250 // FIXME: come up with some stats. 2251 void trackStatistics() const override {} 2252 2253 /// We don't manifest anything for this AA. 2254 ChangeStatus manifest(Attributor &A) override { 2255 return ChangeStatus::UNCHANGED; 2256 } 2257 2258 // Map of ICV to their values at specific program point. 2259 EnumeratedArray<Optional<Value *>, InternalControlVar, 2260 InternalControlVar::ICV___last> 2261 ICVReplacementValuesMap; 2262 2263 /// Return the value with which \p I can be replaced for specific \p ICV. 2264 Optional<Value *> 2265 getUniqueReplacementValue(InternalControlVar ICV) const override { 2266 return ICVReplacementValuesMap[ICV]; 2267 } 2268 2269 ChangeStatus updateImpl(Attributor &A) override { 2270 ChangeStatus Changed = ChangeStatus::UNCHANGED; 2271 const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>( 2272 *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED); 2273 2274 if (!ICVTrackingAA.isAssumedTracked()) 2275 return indicatePessimisticFixpoint(); 2276 2277 for (InternalControlVar ICV : TrackableICVs) { 2278 Optional<Value *> &ReplVal = ICVReplacementValuesMap[ICV]; 2279 Optional<Value *> UniqueICVValue; 2280 2281 auto CheckReturnInst = [&](Instruction &I) { 2282 Optional<Value *> NewReplVal = 2283 ICVTrackingAA.getReplacementValue(ICV, &I, A); 2284 2285 // If we found a second ICV value there is no unique returned value. 2286 if (UniqueICVValue.hasValue() && UniqueICVValue != NewReplVal) 2287 return false; 2288 2289 UniqueICVValue = NewReplVal; 2290 2291 return true; 2292 }; 2293 2294 bool UsedAssumedInformation = false; 2295 if (!A.checkForAllInstructions(CheckReturnInst, *this, {Instruction::Ret}, 2296 UsedAssumedInformation, 2297 /* CheckBBLivenessOnly */ true)) 2298 UniqueICVValue = nullptr; 2299 2300 if (UniqueICVValue == ReplVal) 2301 continue; 2302 2303 ReplVal = UniqueICVValue; 2304 Changed = ChangeStatus::CHANGED; 2305 } 2306 2307 return Changed; 2308 } 2309 }; 2310 2311 struct AAICVTrackerCallSite : AAICVTracker { 2312 AAICVTrackerCallSite(const IRPosition &IRP, Attributor &A) 2313 : AAICVTracker(IRP, A) {} 2314 2315 void initialize(Attributor &A) override { 2316 Function *F = getAnchorScope(); 2317 if (!F || !A.isFunctionIPOAmendable(*F)) 2318 indicatePessimisticFixpoint(); 2319 2320 // We only initialize this AA for getters, so we need to know which ICV it 2321 // gets. 2322 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2323 for (InternalControlVar ICV : TrackableICVs) { 2324 auto ICVInfo = OMPInfoCache.ICVs[ICV]; 2325 auto &Getter = OMPInfoCache.RFIs[ICVInfo.Getter]; 2326 if (Getter.Declaration == getAssociatedFunction()) { 2327 AssociatedICV = ICVInfo.Kind; 2328 return; 2329 } 2330 } 2331 2332 /// Unknown ICV. 2333 indicatePessimisticFixpoint(); 2334 } 2335 2336 ChangeStatus manifest(Attributor &A) override { 2337 if (!ReplVal.hasValue() || !ReplVal.getValue()) 2338 return ChangeStatus::UNCHANGED; 2339 2340 A.changeValueAfterManifest(*getCtxI(), **ReplVal); 2341 A.deleteAfterManifest(*getCtxI()); 2342 2343 return ChangeStatus::CHANGED; 2344 } 2345 2346 // FIXME: come up with better string. 2347 const std::string getAsStr() const override { return "ICVTrackerCallSite"; } 2348 2349 // FIXME: come up with some stats. 2350 void trackStatistics() const override {} 2351 2352 InternalControlVar AssociatedICV; 2353 Optional<Value *> ReplVal; 2354 2355 ChangeStatus updateImpl(Attributor &A) override { 2356 const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>( 2357 *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED); 2358 2359 // We don't have any information, so we assume it changes the ICV. 2360 if (!ICVTrackingAA.isAssumedTracked()) 2361 return indicatePessimisticFixpoint(); 2362 2363 Optional<Value *> NewReplVal = 2364 ICVTrackingAA.getReplacementValue(AssociatedICV, getCtxI(), A); 2365 2366 if (ReplVal == NewReplVal) 2367 return ChangeStatus::UNCHANGED; 2368 2369 ReplVal = NewReplVal; 2370 return ChangeStatus::CHANGED; 2371 } 2372 2373 // Return the value with which associated value can be replaced for specific 2374 // \p ICV. 2375 Optional<Value *> 2376 getUniqueReplacementValue(InternalControlVar ICV) const override { 2377 return ReplVal; 2378 } 2379 }; 2380 2381 struct AAICVTrackerCallSiteReturned : AAICVTracker { 2382 AAICVTrackerCallSiteReturned(const IRPosition &IRP, Attributor &A) 2383 : AAICVTracker(IRP, A) {} 2384 2385 // FIXME: come up with better string. 2386 const std::string getAsStr() const override { 2387 return "ICVTrackerCallSiteReturned"; 2388 } 2389 2390 // FIXME: come up with some stats. 2391 void trackStatistics() const override {} 2392 2393 /// We don't manifest anything for this AA. 2394 ChangeStatus manifest(Attributor &A) override { 2395 return ChangeStatus::UNCHANGED; 2396 } 2397 2398 // Map of ICV to their values at specific program point. 2399 EnumeratedArray<Optional<Value *>, InternalControlVar, 2400 InternalControlVar::ICV___last> 2401 ICVReplacementValuesMap; 2402 2403 /// Return the value with which associated value can be replaced for specific 2404 /// \p ICV. 2405 Optional<Value *> 2406 getUniqueReplacementValue(InternalControlVar ICV) const override { 2407 return ICVReplacementValuesMap[ICV]; 2408 } 2409 2410 ChangeStatus updateImpl(Attributor &A) override { 2411 ChangeStatus Changed = ChangeStatus::UNCHANGED; 2412 const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>( 2413 *this, IRPosition::returned(*getAssociatedFunction()), 2414 DepClassTy::REQUIRED); 2415 2416 // We don't have any information, so we assume it changes the ICV. 2417 if (!ICVTrackingAA.isAssumedTracked()) 2418 return indicatePessimisticFixpoint(); 2419 2420 for (InternalControlVar ICV : TrackableICVs) { 2421 Optional<Value *> &ReplVal = ICVReplacementValuesMap[ICV]; 2422 Optional<Value *> NewReplVal = 2423 ICVTrackingAA.getUniqueReplacementValue(ICV); 2424 2425 if (ReplVal == NewReplVal) 2426 continue; 2427 2428 ReplVal = NewReplVal; 2429 Changed = ChangeStatus::CHANGED; 2430 } 2431 return Changed; 2432 } 2433 }; 2434 2435 struct AAExecutionDomainFunction : public AAExecutionDomain { 2436 AAExecutionDomainFunction(const IRPosition &IRP, Attributor &A) 2437 : AAExecutionDomain(IRP, A) {} 2438 2439 const std::string getAsStr() const override { 2440 return "[AAExecutionDomain] " + std::to_string(SingleThreadedBBs.size()) + 2441 "/" + std::to_string(NumBBs) + " BBs thread 0 only."; 2442 } 2443 2444 /// See AbstractAttribute::trackStatistics(). 2445 void trackStatistics() const override {} 2446 2447 void initialize(Attributor &A) override { 2448 Function *F = getAnchorScope(); 2449 for (const auto &BB : *F) 2450 SingleThreadedBBs.insert(&BB); 2451 NumBBs = SingleThreadedBBs.size(); 2452 } 2453 2454 ChangeStatus manifest(Attributor &A) override { 2455 LLVM_DEBUG({ 2456 for (const BasicBlock *BB : SingleThreadedBBs) 2457 dbgs() << TAG << " Basic block @" << getAnchorScope()->getName() << " " 2458 << BB->getName() << " is executed by a single thread.\n"; 2459 }); 2460 return ChangeStatus::UNCHANGED; 2461 } 2462 2463 ChangeStatus updateImpl(Attributor &A) override; 2464 2465 /// Check if an instruction is executed by a single thread. 2466 bool isExecutedByInitialThreadOnly(const Instruction &I) const override { 2467 return isExecutedByInitialThreadOnly(*I.getParent()); 2468 } 2469 2470 bool isExecutedByInitialThreadOnly(const BasicBlock &BB) const override { 2471 return isValidState() && SingleThreadedBBs.contains(&BB); 2472 } 2473 2474 /// Set of basic blocks that are executed by a single thread. 2475 DenseSet<const BasicBlock *> SingleThreadedBBs; 2476 2477 /// Total number of basic blocks in this function. 2478 long unsigned NumBBs; 2479 }; 2480 2481 ChangeStatus AAExecutionDomainFunction::updateImpl(Attributor &A) { 2482 Function *F = getAnchorScope(); 2483 ReversePostOrderTraversal<Function *> RPOT(F); 2484 auto NumSingleThreadedBBs = SingleThreadedBBs.size(); 2485 2486 bool AllCallSitesKnown; 2487 auto PredForCallSite = [&](AbstractCallSite ACS) { 2488 const auto &ExecutionDomainAA = A.getAAFor<AAExecutionDomain>( 2489 *this, IRPosition::function(*ACS.getInstruction()->getFunction()), 2490 DepClassTy::REQUIRED); 2491 return ACS.isDirectCall() && 2492 ExecutionDomainAA.isExecutedByInitialThreadOnly( 2493 *ACS.getInstruction()); 2494 }; 2495 2496 if (!A.checkForAllCallSites(PredForCallSite, *this, 2497 /* RequiresAllCallSites */ true, 2498 AllCallSitesKnown)) 2499 SingleThreadedBBs.erase(&F->getEntryBlock()); 2500 2501 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2502 auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_target_init]; 2503 2504 // Check if the edge into the successor block compares the __kmpc_target_init 2505 // result with -1. If we are in non-SPMD-mode that signals only the main 2506 // thread will execute the edge. 2507 auto IsInitialThreadOnly = [&](BranchInst *Edge, BasicBlock *SuccessorBB) { 2508 if (!Edge || !Edge->isConditional()) 2509 return false; 2510 if (Edge->getSuccessor(0) != SuccessorBB) 2511 return false; 2512 2513 auto *Cmp = dyn_cast<CmpInst>(Edge->getCondition()); 2514 if (!Cmp || !Cmp->isTrueWhenEqual() || !Cmp->isEquality()) 2515 return false; 2516 2517 ConstantInt *C = dyn_cast<ConstantInt>(Cmp->getOperand(1)); 2518 if (!C) 2519 return false; 2520 2521 // Match: -1 == __kmpc_target_init (for non-SPMD kernels only!) 2522 if (C->isAllOnesValue()) { 2523 auto *CB = dyn_cast<CallBase>(Cmp->getOperand(0)); 2524 CB = CB ? OpenMPOpt::getCallIfRegularCall(*CB, &RFI) : nullptr; 2525 if (!CB) 2526 return false; 2527 const int InitIsSPMDArgNo = 1; 2528 auto *IsSPMDModeCI = 2529 dyn_cast<ConstantInt>(CB->getOperand(InitIsSPMDArgNo)); 2530 return IsSPMDModeCI && IsSPMDModeCI->isZero(); 2531 } 2532 2533 return false; 2534 }; 2535 2536 // Merge all the predecessor states into the current basic block. A basic 2537 // block is executed by a single thread if all of its predecessors are. 2538 auto MergePredecessorStates = [&](BasicBlock *BB) { 2539 if (pred_begin(BB) == pred_end(BB)) 2540 return SingleThreadedBBs.contains(BB); 2541 2542 bool IsInitialThread = true; 2543 for (auto PredBB = pred_begin(BB), PredEndBB = pred_end(BB); 2544 PredBB != PredEndBB; ++PredBB) { 2545 if (!IsInitialThreadOnly(dyn_cast<BranchInst>((*PredBB)->getTerminator()), 2546 BB)) 2547 IsInitialThread &= SingleThreadedBBs.contains(*PredBB); 2548 } 2549 2550 return IsInitialThread; 2551 }; 2552 2553 for (auto *BB : RPOT) { 2554 if (!MergePredecessorStates(BB)) 2555 SingleThreadedBBs.erase(BB); 2556 } 2557 2558 return (NumSingleThreadedBBs == SingleThreadedBBs.size()) 2559 ? ChangeStatus::UNCHANGED 2560 : ChangeStatus::CHANGED; 2561 } 2562 2563 /// Try to replace memory allocation calls called by a single thread with a 2564 /// static buffer of shared memory. 2565 struct AAHeapToShared : public StateWrapper<BooleanState, AbstractAttribute> { 2566 using Base = StateWrapper<BooleanState, AbstractAttribute>; 2567 AAHeapToShared(const IRPosition &IRP, Attributor &A) : Base(IRP) {} 2568 2569 /// Create an abstract attribute view for the position \p IRP. 2570 static AAHeapToShared &createForPosition(const IRPosition &IRP, 2571 Attributor &A); 2572 2573 /// Returns true if HeapToShared conversion is assumed to be possible. 2574 virtual bool isAssumedHeapToShared(CallBase &CB) const = 0; 2575 2576 /// Returns true if HeapToShared conversion is assumed and the CB is a 2577 /// callsite to a free operation to be removed. 2578 virtual bool isAssumedHeapToSharedRemovedFree(CallBase &CB) const = 0; 2579 2580 /// See AbstractAttribute::getName(). 2581 const std::string getName() const override { return "AAHeapToShared"; } 2582 2583 /// See AbstractAttribute::getIdAddr(). 2584 const char *getIdAddr() const override { return &ID; } 2585 2586 /// This function should return true if the type of the \p AA is 2587 /// AAHeapToShared. 2588 static bool classof(const AbstractAttribute *AA) { 2589 return (AA->getIdAddr() == &ID); 2590 } 2591 2592 /// Unique ID (due to the unique address) 2593 static const char ID; 2594 }; 2595 2596 struct AAHeapToSharedFunction : public AAHeapToShared { 2597 AAHeapToSharedFunction(const IRPosition &IRP, Attributor &A) 2598 : AAHeapToShared(IRP, A) {} 2599 2600 const std::string getAsStr() const override { 2601 return "[AAHeapToShared] " + std::to_string(MallocCalls.size()) + 2602 " malloc calls eligible."; 2603 } 2604 2605 /// See AbstractAttribute::trackStatistics(). 2606 void trackStatistics() const override {} 2607 2608 /// This functions finds free calls that will be removed by the 2609 /// HeapToShared transformation. 2610 void findPotentialRemovedFreeCalls(Attributor &A) { 2611 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2612 auto &FreeRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_free_shared]; 2613 2614 PotentialRemovedFreeCalls.clear(); 2615 // Update free call users of found malloc calls. 2616 for (CallBase *CB : MallocCalls) { 2617 SmallVector<CallBase *, 4> FreeCalls; 2618 for (auto *U : CB->users()) { 2619 CallBase *C = dyn_cast<CallBase>(U); 2620 if (C && C->getCalledFunction() == FreeRFI.Declaration) 2621 FreeCalls.push_back(C); 2622 } 2623 2624 if (FreeCalls.size() != 1) 2625 continue; 2626 2627 PotentialRemovedFreeCalls.insert(FreeCalls.front()); 2628 } 2629 } 2630 2631 void initialize(Attributor &A) override { 2632 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2633 auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared]; 2634 2635 for (User *U : RFI.Declaration->users()) 2636 if (CallBase *CB = dyn_cast<CallBase>(U)) 2637 MallocCalls.insert(CB); 2638 2639 findPotentialRemovedFreeCalls(A); 2640 } 2641 2642 bool isAssumedHeapToShared(CallBase &CB) const override { 2643 return isValidState() && MallocCalls.count(&CB); 2644 } 2645 2646 bool isAssumedHeapToSharedRemovedFree(CallBase &CB) const override { 2647 return isValidState() && PotentialRemovedFreeCalls.count(&CB); 2648 } 2649 2650 ChangeStatus manifest(Attributor &A) override { 2651 if (MallocCalls.empty()) 2652 return ChangeStatus::UNCHANGED; 2653 2654 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2655 auto &FreeCall = OMPInfoCache.RFIs[OMPRTL___kmpc_free_shared]; 2656 2657 Function *F = getAnchorScope(); 2658 auto *HS = A.lookupAAFor<AAHeapToStack>(IRPosition::function(*F), this, 2659 DepClassTy::OPTIONAL); 2660 2661 ChangeStatus Changed = ChangeStatus::UNCHANGED; 2662 for (CallBase *CB : MallocCalls) { 2663 // Skip replacing this if HeapToStack has already claimed it. 2664 if (HS && HS->isAssumedHeapToStack(*CB)) 2665 continue; 2666 2667 // Find the unique free call to remove it. 2668 SmallVector<CallBase *, 4> FreeCalls; 2669 for (auto *U : CB->users()) { 2670 CallBase *C = dyn_cast<CallBase>(U); 2671 if (C && C->getCalledFunction() == FreeCall.Declaration) 2672 FreeCalls.push_back(C); 2673 } 2674 if (FreeCalls.size() != 1) 2675 continue; 2676 2677 ConstantInt *AllocSize = dyn_cast<ConstantInt>(CB->getArgOperand(0)); 2678 2679 LLVM_DEBUG(dbgs() << TAG << "Replace globalization call in " 2680 << CB->getCaller()->getName() << " with " 2681 << AllocSize->getZExtValue() 2682 << " bytes of shared memory\n"); 2683 2684 // Create a new shared memory buffer of the same size as the allocation 2685 // and replace all the uses of the original allocation with it. 2686 Module *M = CB->getModule(); 2687 Type *Int8Ty = Type::getInt8Ty(M->getContext()); 2688 Type *Int8ArrTy = ArrayType::get(Int8Ty, AllocSize->getZExtValue()); 2689 auto *SharedMem = new GlobalVariable( 2690 *M, Int8ArrTy, /* IsConstant */ false, GlobalValue::InternalLinkage, 2691 UndefValue::get(Int8ArrTy), CB->getName(), nullptr, 2692 GlobalValue::NotThreadLocal, 2693 static_cast<unsigned>(AddressSpace::Shared)); 2694 auto *NewBuffer = 2695 ConstantExpr::getPointerCast(SharedMem, Int8Ty->getPointerTo()); 2696 2697 auto Remark = [&](OptimizationRemark OR) { 2698 return OR << "Replaced globalized variable with " 2699 << ore::NV("SharedMemory", AllocSize->getZExtValue()) 2700 << ((AllocSize->getZExtValue() != 1) ? " bytes " : " byte ") 2701 << "of shared memory."; 2702 }; 2703 A.emitRemark<OptimizationRemark>(CB, "OMP111", Remark); 2704 2705 SharedMem->setAlignment(MaybeAlign(32)); 2706 2707 A.changeValueAfterManifest(*CB, *NewBuffer); 2708 A.deleteAfterManifest(*CB); 2709 A.deleteAfterManifest(*FreeCalls.front()); 2710 2711 NumBytesMovedToSharedMemory += AllocSize->getZExtValue(); 2712 Changed = ChangeStatus::CHANGED; 2713 } 2714 2715 return Changed; 2716 } 2717 2718 ChangeStatus updateImpl(Attributor &A) override { 2719 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2720 auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared]; 2721 Function *F = getAnchorScope(); 2722 2723 auto NumMallocCalls = MallocCalls.size(); 2724 2725 // Only consider malloc calls executed by a single thread with a constant. 2726 for (User *U : RFI.Declaration->users()) { 2727 const auto &ED = A.getAAFor<AAExecutionDomain>( 2728 *this, IRPosition::function(*F), DepClassTy::REQUIRED); 2729 if (CallBase *CB = dyn_cast<CallBase>(U)) 2730 if (!dyn_cast<ConstantInt>(CB->getArgOperand(0)) || 2731 !ED.isExecutedByInitialThreadOnly(*CB)) 2732 MallocCalls.erase(CB); 2733 } 2734 2735 findPotentialRemovedFreeCalls(A); 2736 2737 if (NumMallocCalls != MallocCalls.size()) 2738 return ChangeStatus::CHANGED; 2739 2740 return ChangeStatus::UNCHANGED; 2741 } 2742 2743 /// Collection of all malloc calls in a function. 2744 SmallPtrSet<CallBase *, 4> MallocCalls; 2745 /// Collection of potentially removed free calls in a function. 2746 SmallPtrSet<CallBase *, 4> PotentialRemovedFreeCalls; 2747 }; 2748 2749 struct AAKernelInfo : public StateWrapper<KernelInfoState, AbstractAttribute> { 2750 using Base = StateWrapper<KernelInfoState, AbstractAttribute>; 2751 AAKernelInfo(const IRPosition &IRP, Attributor &A) : Base(IRP) {} 2752 2753 /// Statistics are tracked as part of manifest for now. 2754 void trackStatistics() const override {} 2755 2756 /// See AbstractAttribute::getAsStr() 2757 const std::string getAsStr() const override { 2758 if (!isValidState()) 2759 return "<invalid>"; 2760 return std::string(SPMDCompatibilityTracker.isAssumed() ? "SPMD" 2761 : "generic") + 2762 std::string(SPMDCompatibilityTracker.isAtFixpoint() ? " [FIX]" 2763 : "") + 2764 std::string(" #PRs: ") + 2765 std::to_string(ReachedKnownParallelRegions.size()) + 2766 ", #Unknown PRs: " + 2767 std::to_string(ReachedUnknownParallelRegions.size()); 2768 } 2769 2770 /// Create an abstract attribute biew for the position \p IRP. 2771 static AAKernelInfo &createForPosition(const IRPosition &IRP, Attributor &A); 2772 2773 /// See AbstractAttribute::getName() 2774 const std::string getName() const override { return "AAKernelInfo"; } 2775 2776 /// See AbstractAttribute::getIdAddr() 2777 const char *getIdAddr() const override { return &ID; } 2778 2779 /// This function should return true if the type of the \p AA is AAKernelInfo 2780 static bool classof(const AbstractAttribute *AA) { 2781 return (AA->getIdAddr() == &ID); 2782 } 2783 2784 static const char ID; 2785 }; 2786 2787 /// The function kernel info abstract attribute, basically, what can we say 2788 /// about a function with regards to the KernelInfoState. 2789 struct AAKernelInfoFunction : AAKernelInfo { 2790 AAKernelInfoFunction(const IRPosition &IRP, Attributor &A) 2791 : AAKernelInfo(IRP, A) {} 2792 2793 /// See AbstractAttribute::initialize(...). 2794 void initialize(Attributor &A) override { 2795 // This is a high-level transform that might change the constant arguments 2796 // of the init and dinit calls. We need to tell the Attributor about this 2797 // to avoid other parts using the current constant value for simpliication. 2798 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2799 2800 Function *Fn = getAnchorScope(); 2801 if (!OMPInfoCache.Kernels.count(Fn)) 2802 return; 2803 2804 // Add itself to the reaching kernel and set IsKernelEntry. 2805 ReachingKernelEntries.insert(Fn); 2806 IsKernelEntry = true; 2807 2808 OMPInformationCache::RuntimeFunctionInfo &InitRFI = 2809 OMPInfoCache.RFIs[OMPRTL___kmpc_target_init]; 2810 OMPInformationCache::RuntimeFunctionInfo &DeinitRFI = 2811 OMPInfoCache.RFIs[OMPRTL___kmpc_target_deinit]; 2812 2813 // For kernels we perform more initialization work, first we find the init 2814 // and deinit calls. 2815 auto StoreCallBase = [](Use &U, 2816 OMPInformationCache::RuntimeFunctionInfo &RFI, 2817 CallBase *&Storage) { 2818 CallBase *CB = OpenMPOpt::getCallIfRegularCall(U, &RFI); 2819 assert(CB && 2820 "Unexpected use of __kmpc_target_init or __kmpc_target_deinit!"); 2821 assert(!Storage && 2822 "Multiple uses of __kmpc_target_init or __kmpc_target_deinit!"); 2823 Storage = CB; 2824 return false; 2825 }; 2826 InitRFI.foreachUse( 2827 [&](Use &U, Function &) { 2828 StoreCallBase(U, InitRFI, KernelInitCB); 2829 return false; 2830 }, 2831 Fn); 2832 DeinitRFI.foreachUse( 2833 [&](Use &U, Function &) { 2834 StoreCallBase(U, DeinitRFI, KernelDeinitCB); 2835 return false; 2836 }, 2837 Fn); 2838 2839 assert((KernelInitCB && KernelDeinitCB) && 2840 "Kernel without __kmpc_target_init or __kmpc_target_deinit!"); 2841 2842 // For kernels we might need to initialize/finalize the IsSPMD state and 2843 // we need to register a simplification callback so that the Attributor 2844 // knows the constant arguments to __kmpc_target_init and 2845 // __kmpc_target_deinit might actually change. 2846 2847 Attributor::SimplifictionCallbackTy StateMachineSimplifyCB = 2848 [&](const IRPosition &IRP, const AbstractAttribute *AA, 2849 bool &UsedAssumedInformation) -> Optional<Value *> { 2850 // IRP represents the "use generic state machine" argument of an 2851 // __kmpc_target_init call. We will answer this one with the internal 2852 // state. As long as we are not in an invalid state, we will create a 2853 // custom state machine so the value should be a `i1 false`. If we are 2854 // in an invalid state, we won't change the value that is in the IR. 2855 if (!isValidState()) 2856 return nullptr; 2857 if (AA) 2858 A.recordDependence(*this, *AA, DepClassTy::OPTIONAL); 2859 UsedAssumedInformation = !isAtFixpoint(); 2860 auto *FalseVal = 2861 ConstantInt::getBool(IRP.getAnchorValue().getContext(), 0); 2862 return FalseVal; 2863 }; 2864 2865 Attributor::SimplifictionCallbackTy IsSPMDModeSimplifyCB = 2866 [&](const IRPosition &IRP, const AbstractAttribute *AA, 2867 bool &UsedAssumedInformation) -> Optional<Value *> { 2868 // IRP represents the "SPMDCompatibilityTracker" argument of an 2869 // __kmpc_target_init or 2870 // __kmpc_target_deinit call. We will answer this one with the internal 2871 // state. 2872 if (!SPMDCompatibilityTracker.isValidState()) 2873 return nullptr; 2874 if (!SPMDCompatibilityTracker.isAtFixpoint()) { 2875 if (AA) 2876 A.recordDependence(*this, *AA, DepClassTy::OPTIONAL); 2877 UsedAssumedInformation = true; 2878 } else { 2879 UsedAssumedInformation = false; 2880 } 2881 auto *Val = ConstantInt::getBool(IRP.getAnchorValue().getContext(), 2882 SPMDCompatibilityTracker.isAssumed()); 2883 return Val; 2884 }; 2885 2886 Attributor::SimplifictionCallbackTy IsGenericModeSimplifyCB = 2887 [&](const IRPosition &IRP, const AbstractAttribute *AA, 2888 bool &UsedAssumedInformation) -> Optional<Value *> { 2889 // IRP represents the "RequiresFullRuntime" argument of an 2890 // __kmpc_target_init or __kmpc_target_deinit call. We will answer this 2891 // one with the internal state of the SPMDCompatibilityTracker, so if 2892 // generic then true, if SPMD then false. 2893 if (!SPMDCompatibilityTracker.isValidState()) 2894 return nullptr; 2895 if (!SPMDCompatibilityTracker.isAtFixpoint()) { 2896 if (AA) 2897 A.recordDependence(*this, *AA, DepClassTy::OPTIONAL); 2898 UsedAssumedInformation = true; 2899 } else { 2900 UsedAssumedInformation = false; 2901 } 2902 auto *Val = ConstantInt::getBool(IRP.getAnchorValue().getContext(), 2903 !SPMDCompatibilityTracker.isAssumed()); 2904 return Val; 2905 }; 2906 2907 constexpr const int InitIsSPMDArgNo = 1; 2908 constexpr const int DeinitIsSPMDArgNo = 1; 2909 constexpr const int InitUseStateMachineArgNo = 2; 2910 constexpr const int InitRequiresFullRuntimeArgNo = 3; 2911 constexpr const int DeinitRequiresFullRuntimeArgNo = 2; 2912 A.registerSimplificationCallback( 2913 IRPosition::callsite_argument(*KernelInitCB, InitUseStateMachineArgNo), 2914 StateMachineSimplifyCB); 2915 A.registerSimplificationCallback( 2916 IRPosition::callsite_argument(*KernelInitCB, InitIsSPMDArgNo), 2917 IsSPMDModeSimplifyCB); 2918 A.registerSimplificationCallback( 2919 IRPosition::callsite_argument(*KernelDeinitCB, DeinitIsSPMDArgNo), 2920 IsSPMDModeSimplifyCB); 2921 A.registerSimplificationCallback( 2922 IRPosition::callsite_argument(*KernelInitCB, 2923 InitRequiresFullRuntimeArgNo), 2924 IsGenericModeSimplifyCB); 2925 A.registerSimplificationCallback( 2926 IRPosition::callsite_argument(*KernelDeinitCB, 2927 DeinitRequiresFullRuntimeArgNo), 2928 IsGenericModeSimplifyCB); 2929 2930 // Check if we know we are in SPMD-mode already. 2931 ConstantInt *IsSPMDArg = 2932 dyn_cast<ConstantInt>(KernelInitCB->getArgOperand(InitIsSPMDArgNo)); 2933 if (IsSPMDArg && !IsSPMDArg->isZero()) 2934 SPMDCompatibilityTracker.indicateOptimisticFixpoint(); 2935 } 2936 2937 /// Modify the IR based on the KernelInfoState as the fixpoint iteration is 2938 /// finished now. 2939 ChangeStatus manifest(Attributor &A) override { 2940 // If we are not looking at a kernel with __kmpc_target_init and 2941 // __kmpc_target_deinit call we cannot actually manifest the information. 2942 if (!KernelInitCB || !KernelDeinitCB) 2943 return ChangeStatus::UNCHANGED; 2944 2945 // Known SPMD-mode kernels need no manifest changes. 2946 if (SPMDCompatibilityTracker.isKnown()) 2947 return ChangeStatus::UNCHANGED; 2948 2949 // If we can we change the execution mode to SPMD-mode otherwise we build a 2950 // custom state machine. 2951 if (!changeToSPMDMode(A)) 2952 buildCustomStateMachine(A); 2953 2954 return ChangeStatus::CHANGED; 2955 } 2956 2957 bool changeToSPMDMode(Attributor &A) { 2958 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2959 2960 if (!SPMDCompatibilityTracker.isAssumed()) { 2961 for (Instruction *NonCompatibleI : SPMDCompatibilityTracker) { 2962 if (!NonCompatibleI) 2963 continue; 2964 2965 // Skip diagnostics on calls to known OpenMP runtime functions for now. 2966 if (auto *CB = dyn_cast<CallBase>(NonCompatibleI)) 2967 if (OMPInfoCache.RTLFunctions.contains(CB->getCalledFunction())) 2968 continue; 2969 2970 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 2971 ORA << "Value has potential side effects preventing SPMD-mode " 2972 "execution"; 2973 if (isa<CallBase>(NonCompatibleI)) { 2974 ORA << ". Add `__attribute__((assume(\"ompx_spmd_amenable\")))` to " 2975 "the called function to override"; 2976 } 2977 return ORA << "."; 2978 }; 2979 A.emitRemark<OptimizationRemarkAnalysis>(NonCompatibleI, "OMP121", 2980 Remark); 2981 2982 LLVM_DEBUG(dbgs() << TAG << "SPMD-incompatible side-effect: " 2983 << *NonCompatibleI << "\n"); 2984 } 2985 2986 return false; 2987 } 2988 2989 // Adjust the global exec mode flag that tells the runtime what mode this 2990 // kernel is executed in. 2991 Function *Kernel = getAnchorScope(); 2992 GlobalVariable *ExecMode = Kernel->getParent()->getGlobalVariable( 2993 (Kernel->getName() + "_exec_mode").str()); 2994 assert(ExecMode && "Kernel without exec mode?"); 2995 assert(ExecMode->getInitializer() && 2996 ExecMode->getInitializer()->isOneValue() && 2997 "Initially non-SPMD kernel has SPMD exec mode!"); 2998 2999 // Set the global exec mode flag to indicate SPMD-Generic mode. 3000 constexpr int SPMDGeneric = 2; 3001 if (!ExecMode->getInitializer()->isZeroValue()) 3002 ExecMode->setInitializer( 3003 ConstantInt::get(ExecMode->getInitializer()->getType(), SPMDGeneric)); 3004 3005 // Next rewrite the init and deinit calls to indicate we use SPMD-mode now. 3006 const int InitIsSPMDArgNo = 1; 3007 const int DeinitIsSPMDArgNo = 1; 3008 const int InitUseStateMachineArgNo = 2; 3009 const int InitRequiresFullRuntimeArgNo = 3; 3010 const int DeinitRequiresFullRuntimeArgNo = 2; 3011 3012 auto &Ctx = getAnchorValue().getContext(); 3013 A.changeUseAfterManifest(KernelInitCB->getArgOperandUse(InitIsSPMDArgNo), 3014 *ConstantInt::getBool(Ctx, 1)); 3015 A.changeUseAfterManifest( 3016 KernelInitCB->getArgOperandUse(InitUseStateMachineArgNo), 3017 *ConstantInt::getBool(Ctx, 0)); 3018 A.changeUseAfterManifest( 3019 KernelDeinitCB->getArgOperandUse(DeinitIsSPMDArgNo), 3020 *ConstantInt::getBool(Ctx, 1)); 3021 A.changeUseAfterManifest( 3022 KernelInitCB->getArgOperandUse(InitRequiresFullRuntimeArgNo), 3023 *ConstantInt::getBool(Ctx, 0)); 3024 A.changeUseAfterManifest( 3025 KernelDeinitCB->getArgOperandUse(DeinitRequiresFullRuntimeArgNo), 3026 *ConstantInt::getBool(Ctx, 0)); 3027 3028 ++NumOpenMPTargetRegionKernelsSPMD; 3029 3030 auto Remark = [&](OptimizationRemark OR) { 3031 return OR << "Transformed generic-mode kernel to SPMD-mode."; 3032 }; 3033 A.emitRemark<OptimizationRemark>(KernelInitCB, "OMP120", Remark); 3034 return true; 3035 }; 3036 3037 ChangeStatus buildCustomStateMachine(Attributor &A) { 3038 assert(ReachedKnownParallelRegions.isValidState() && 3039 "Custom state machine with invalid parallel region states?"); 3040 3041 const int InitIsSPMDArgNo = 1; 3042 const int InitUseStateMachineArgNo = 2; 3043 3044 // Check if the current configuration is non-SPMD and generic state machine. 3045 // If we already have SPMD mode or a custom state machine we do not need to 3046 // go any further. If it is anything but a constant something is weird and 3047 // we give up. 3048 ConstantInt *UseStateMachine = dyn_cast<ConstantInt>( 3049 KernelInitCB->getArgOperand(InitUseStateMachineArgNo)); 3050 ConstantInt *IsSPMD = 3051 dyn_cast<ConstantInt>(KernelInitCB->getArgOperand(InitIsSPMDArgNo)); 3052 3053 // If we are stuck with generic mode, try to create a custom device (=GPU) 3054 // state machine which is specialized for the parallel regions that are 3055 // reachable by the kernel. 3056 if (!UseStateMachine || UseStateMachine->isZero() || !IsSPMD || 3057 !IsSPMD->isZero()) 3058 return ChangeStatus::UNCHANGED; 3059 3060 // If not SPMD mode, indicate we use a custom state machine now. 3061 auto &Ctx = getAnchorValue().getContext(); 3062 auto *FalseVal = ConstantInt::getBool(Ctx, 0); 3063 A.changeUseAfterManifest( 3064 KernelInitCB->getArgOperandUse(InitUseStateMachineArgNo), *FalseVal); 3065 3066 // If we don't actually need a state machine we are done here. This can 3067 // happen if there simply are no parallel regions. In the resulting kernel 3068 // all worker threads will simply exit right away, leaving the main thread 3069 // to do the work alone. 3070 if (ReachedKnownParallelRegions.empty() && 3071 ReachedUnknownParallelRegions.empty()) { 3072 ++NumOpenMPTargetRegionKernelsWithoutStateMachine; 3073 3074 auto Remark = [&](OptimizationRemark OR) { 3075 return OR << "Removing unused state machine from generic-mode kernel."; 3076 }; 3077 A.emitRemark<OptimizationRemark>(KernelInitCB, "OMP130", Remark); 3078 3079 return ChangeStatus::CHANGED; 3080 } 3081 3082 // Keep track in the statistics of our new shiny custom state machine. 3083 if (ReachedUnknownParallelRegions.empty()) { 3084 ++NumOpenMPTargetRegionKernelsCustomStateMachineWithoutFallback; 3085 3086 auto Remark = [&](OptimizationRemark OR) { 3087 return OR << "Rewriting generic-mode kernel with a customized state " 3088 "machine."; 3089 }; 3090 A.emitRemark<OptimizationRemark>(KernelInitCB, "OMP131", Remark); 3091 } else { 3092 ++NumOpenMPTargetRegionKernelsCustomStateMachineWithFallback; 3093 3094 auto Remark = [&](OptimizationRemarkAnalysis OR) { 3095 return OR << "Generic-mode kernel is executed with a customized state " 3096 "machine that requires a fallback."; 3097 }; 3098 A.emitRemark<OptimizationRemarkAnalysis>(KernelInitCB, "OMP132", Remark); 3099 3100 // Tell the user why we ended up with a fallback. 3101 for (CallBase *UnknownParallelRegionCB : ReachedUnknownParallelRegions) { 3102 if (!UnknownParallelRegionCB) 3103 continue; 3104 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 3105 return ORA << "Call may contain unknown parallel regions. Use " 3106 << "`__attribute__((assume(\"omp_no_parallelism\")))` to " 3107 "override."; 3108 }; 3109 A.emitRemark<OptimizationRemarkAnalysis>(UnknownParallelRegionCB, 3110 "OMP133", Remark); 3111 } 3112 } 3113 3114 // Create all the blocks: 3115 // 3116 // InitCB = __kmpc_target_init(...) 3117 // bool IsWorker = InitCB >= 0; 3118 // if (IsWorker) { 3119 // SMBeginBB: __kmpc_barrier_simple_spmd(...); 3120 // void *WorkFn; 3121 // bool Active = __kmpc_kernel_parallel(&WorkFn); 3122 // if (!WorkFn) return; 3123 // SMIsActiveCheckBB: if (Active) { 3124 // SMIfCascadeCurrentBB: if (WorkFn == <ParFn0>) 3125 // ParFn0(...); 3126 // SMIfCascadeCurrentBB: else if (WorkFn == <ParFn1>) 3127 // ParFn1(...); 3128 // ... 3129 // SMIfCascadeCurrentBB: else 3130 // ((WorkFnTy*)WorkFn)(...); 3131 // SMEndParallelBB: __kmpc_kernel_end_parallel(...); 3132 // } 3133 // SMDoneBB: __kmpc_barrier_simple_spmd(...); 3134 // goto SMBeginBB; 3135 // } 3136 // UserCodeEntryBB: // user code 3137 // __kmpc_target_deinit(...) 3138 // 3139 Function *Kernel = getAssociatedFunction(); 3140 assert(Kernel && "Expected an associated function!"); 3141 3142 BasicBlock *InitBB = KernelInitCB->getParent(); 3143 BasicBlock *UserCodeEntryBB = InitBB->splitBasicBlock( 3144 KernelInitCB->getNextNode(), "thread.user_code.check"); 3145 BasicBlock *StateMachineBeginBB = BasicBlock::Create( 3146 Ctx, "worker_state_machine.begin", Kernel, UserCodeEntryBB); 3147 BasicBlock *StateMachineFinishedBB = BasicBlock::Create( 3148 Ctx, "worker_state_machine.finished", Kernel, UserCodeEntryBB); 3149 BasicBlock *StateMachineIsActiveCheckBB = BasicBlock::Create( 3150 Ctx, "worker_state_machine.is_active.check", Kernel, UserCodeEntryBB); 3151 BasicBlock *StateMachineIfCascadeCurrentBB = 3152 BasicBlock::Create(Ctx, "worker_state_machine.parallel_region.check", 3153 Kernel, UserCodeEntryBB); 3154 BasicBlock *StateMachineEndParallelBB = 3155 BasicBlock::Create(Ctx, "worker_state_machine.parallel_region.end", 3156 Kernel, UserCodeEntryBB); 3157 BasicBlock *StateMachineDoneBarrierBB = BasicBlock::Create( 3158 Ctx, "worker_state_machine.done.barrier", Kernel, UserCodeEntryBB); 3159 A.registerManifestAddedBasicBlock(*InitBB); 3160 A.registerManifestAddedBasicBlock(*UserCodeEntryBB); 3161 A.registerManifestAddedBasicBlock(*StateMachineBeginBB); 3162 A.registerManifestAddedBasicBlock(*StateMachineFinishedBB); 3163 A.registerManifestAddedBasicBlock(*StateMachineIsActiveCheckBB); 3164 A.registerManifestAddedBasicBlock(*StateMachineIfCascadeCurrentBB); 3165 A.registerManifestAddedBasicBlock(*StateMachineEndParallelBB); 3166 A.registerManifestAddedBasicBlock(*StateMachineDoneBarrierBB); 3167 3168 const DebugLoc &DLoc = KernelInitCB->getDebugLoc(); 3169 ReturnInst::Create(Ctx, StateMachineFinishedBB)->setDebugLoc(DLoc); 3170 3171 InitBB->getTerminator()->eraseFromParent(); 3172 Instruction *IsWorker = 3173 ICmpInst::Create(ICmpInst::ICmp, llvm::CmpInst::ICMP_NE, KernelInitCB, 3174 ConstantInt::get(KernelInitCB->getType(), -1), 3175 "thread.is_worker", InitBB); 3176 IsWorker->setDebugLoc(DLoc); 3177 BranchInst::Create(StateMachineBeginBB, UserCodeEntryBB, IsWorker, InitBB); 3178 3179 // Create local storage for the work function pointer. 3180 Type *VoidPtrTy = Type::getInt8PtrTy(Ctx); 3181 AllocaInst *WorkFnAI = new AllocaInst(VoidPtrTy, 0, "worker.work_fn.addr", 3182 &Kernel->getEntryBlock().front()); 3183 WorkFnAI->setDebugLoc(DLoc); 3184 3185 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 3186 OMPInfoCache.OMPBuilder.updateToLocation( 3187 OpenMPIRBuilder::LocationDescription( 3188 IRBuilder<>::InsertPoint(StateMachineBeginBB, 3189 StateMachineBeginBB->end()), 3190 DLoc)); 3191 3192 Value *Ident = KernelInitCB->getArgOperand(0); 3193 Value *GTid = KernelInitCB; 3194 3195 Module &M = *Kernel->getParent(); 3196 FunctionCallee BarrierFn = 3197 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( 3198 M, OMPRTL___kmpc_barrier_simple_spmd); 3199 CallInst::Create(BarrierFn, {Ident, GTid}, "", StateMachineBeginBB) 3200 ->setDebugLoc(DLoc); 3201 3202 FunctionCallee KernelParallelFn = 3203 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( 3204 M, OMPRTL___kmpc_kernel_parallel); 3205 Instruction *IsActiveWorker = CallInst::Create( 3206 KernelParallelFn, {WorkFnAI}, "worker.is_active", StateMachineBeginBB); 3207 IsActiveWorker->setDebugLoc(DLoc); 3208 Instruction *WorkFn = new LoadInst(VoidPtrTy, WorkFnAI, "worker.work_fn", 3209 StateMachineBeginBB); 3210 WorkFn->setDebugLoc(DLoc); 3211 3212 FunctionType *ParallelRegionFnTy = FunctionType::get( 3213 Type::getVoidTy(Ctx), {Type::getInt16Ty(Ctx), Type::getInt32Ty(Ctx)}, 3214 false); 3215 Value *WorkFnCast = BitCastInst::CreatePointerBitCastOrAddrSpaceCast( 3216 WorkFn, ParallelRegionFnTy->getPointerTo(), "worker.work_fn.addr_cast", 3217 StateMachineBeginBB); 3218 3219 Instruction *IsDone = 3220 ICmpInst::Create(ICmpInst::ICmp, llvm::CmpInst::ICMP_EQ, WorkFn, 3221 Constant::getNullValue(VoidPtrTy), "worker.is_done", 3222 StateMachineBeginBB); 3223 IsDone->setDebugLoc(DLoc); 3224 BranchInst::Create(StateMachineFinishedBB, StateMachineIsActiveCheckBB, 3225 IsDone, StateMachineBeginBB) 3226 ->setDebugLoc(DLoc); 3227 3228 BranchInst::Create(StateMachineIfCascadeCurrentBB, 3229 StateMachineDoneBarrierBB, IsActiveWorker, 3230 StateMachineIsActiveCheckBB) 3231 ->setDebugLoc(DLoc); 3232 3233 Value *ZeroArg = 3234 Constant::getNullValue(ParallelRegionFnTy->getParamType(0)); 3235 3236 // Now that we have most of the CFG skeleton it is time for the if-cascade 3237 // that checks the function pointer we got from the runtime against the 3238 // parallel regions we expect, if there are any. 3239 for (int i = 0, e = ReachedKnownParallelRegions.size(); i < e; ++i) { 3240 auto *ParallelRegion = ReachedKnownParallelRegions[i]; 3241 BasicBlock *PRExecuteBB = BasicBlock::Create( 3242 Ctx, "worker_state_machine.parallel_region.execute", Kernel, 3243 StateMachineEndParallelBB); 3244 CallInst::Create(ParallelRegion, {ZeroArg, GTid}, "", PRExecuteBB) 3245 ->setDebugLoc(DLoc); 3246 BranchInst::Create(StateMachineEndParallelBB, PRExecuteBB) 3247 ->setDebugLoc(DLoc); 3248 3249 BasicBlock *PRNextBB = 3250 BasicBlock::Create(Ctx, "worker_state_machine.parallel_region.check", 3251 Kernel, StateMachineEndParallelBB); 3252 3253 // Check if we need to compare the pointer at all or if we can just 3254 // call the parallel region function. 3255 Value *IsPR; 3256 if (i + 1 < e || !ReachedUnknownParallelRegions.empty()) { 3257 Instruction *CmpI = ICmpInst::Create( 3258 ICmpInst::ICmp, llvm::CmpInst::ICMP_EQ, WorkFnCast, ParallelRegion, 3259 "worker.check_parallel_region", StateMachineIfCascadeCurrentBB); 3260 CmpI->setDebugLoc(DLoc); 3261 IsPR = CmpI; 3262 } else { 3263 IsPR = ConstantInt::getTrue(Ctx); 3264 } 3265 3266 BranchInst::Create(PRExecuteBB, PRNextBB, IsPR, 3267 StateMachineIfCascadeCurrentBB) 3268 ->setDebugLoc(DLoc); 3269 StateMachineIfCascadeCurrentBB = PRNextBB; 3270 } 3271 3272 // At the end of the if-cascade we place the indirect function pointer call 3273 // in case we might need it, that is if there can be parallel regions we 3274 // have not handled in the if-cascade above. 3275 if (!ReachedUnknownParallelRegions.empty()) { 3276 StateMachineIfCascadeCurrentBB->setName( 3277 "worker_state_machine.parallel_region.fallback.execute"); 3278 CallInst::Create(ParallelRegionFnTy, WorkFnCast, {ZeroArg, GTid}, "", 3279 StateMachineIfCascadeCurrentBB) 3280 ->setDebugLoc(DLoc); 3281 } 3282 BranchInst::Create(StateMachineEndParallelBB, 3283 StateMachineIfCascadeCurrentBB) 3284 ->setDebugLoc(DLoc); 3285 3286 CallInst::Create(OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( 3287 M, OMPRTL___kmpc_kernel_end_parallel), 3288 {}, "", StateMachineEndParallelBB) 3289 ->setDebugLoc(DLoc); 3290 BranchInst::Create(StateMachineDoneBarrierBB, StateMachineEndParallelBB) 3291 ->setDebugLoc(DLoc); 3292 3293 CallInst::Create(BarrierFn, {Ident, GTid}, "", StateMachineDoneBarrierBB) 3294 ->setDebugLoc(DLoc); 3295 BranchInst::Create(StateMachineBeginBB, StateMachineDoneBarrierBB) 3296 ->setDebugLoc(DLoc); 3297 3298 return ChangeStatus::CHANGED; 3299 } 3300 3301 /// Fixpoint iteration update function. Will be called every time a dependence 3302 /// changed its state (and in the beginning). 3303 ChangeStatus updateImpl(Attributor &A) override { 3304 KernelInfoState StateBefore = getState(); 3305 3306 // Callback to check a read/write instruction. 3307 auto CheckRWInst = [&](Instruction &I) { 3308 // We handle calls later. 3309 if (isa<CallBase>(I)) 3310 return true; 3311 // We only care about write effects. 3312 if (!I.mayWriteToMemory()) 3313 return true; 3314 if (auto *SI = dyn_cast<StoreInst>(&I)) { 3315 SmallVector<const Value *> Objects; 3316 getUnderlyingObjects(SI->getPointerOperand(), Objects); 3317 if (llvm::all_of(Objects, 3318 [](const Value *Obj) { return isa<AllocaInst>(Obj); })) 3319 return true; 3320 } 3321 // For now we give up on everything but stores. 3322 SPMDCompatibilityTracker.insert(&I); 3323 return true; 3324 }; 3325 3326 bool UsedAssumedInformationInCheckRWInst = false; 3327 if (!SPMDCompatibilityTracker.isAtFixpoint()) 3328 if (!A.checkForAllReadWriteInstructions( 3329 CheckRWInst, *this, UsedAssumedInformationInCheckRWInst)) 3330 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 3331 3332 if (!IsKernelEntry) 3333 updateReachingKernelEntries(A); 3334 3335 // Callback to check a call instruction. 3336 bool AllSPMDStatesWereFixed = true; 3337 auto CheckCallInst = [&](Instruction &I) { 3338 auto &CB = cast<CallBase>(I); 3339 auto &CBAA = A.getAAFor<AAKernelInfo>( 3340 *this, IRPosition::callsite_function(CB), DepClassTy::OPTIONAL); 3341 getState() ^= CBAA.getState(); 3342 AllSPMDStatesWereFixed &= CBAA.SPMDCompatibilityTracker.isAtFixpoint(); 3343 return true; 3344 }; 3345 3346 bool UsedAssumedInformationInCheckCallInst = false; 3347 if (!A.checkForAllCallLikeInstructions( 3348 CheckCallInst, *this, UsedAssumedInformationInCheckCallInst)) 3349 return indicatePessimisticFixpoint(); 3350 3351 // If we haven't used any assumed information for the SPMD state we can fix 3352 // it. 3353 if (!UsedAssumedInformationInCheckRWInst && 3354 !UsedAssumedInformationInCheckCallInst && AllSPMDStatesWereFixed) 3355 SPMDCompatibilityTracker.indicateOptimisticFixpoint(); 3356 3357 return StateBefore == getState() ? ChangeStatus::UNCHANGED 3358 : ChangeStatus::CHANGED; 3359 } 3360 3361 private: 3362 /// Update info regarding reaching kernels. 3363 void updateReachingKernelEntries(Attributor &A) { 3364 auto PredCallSite = [&](AbstractCallSite ACS) { 3365 Function *Caller = ACS.getInstruction()->getFunction(); 3366 3367 assert(Caller && "Caller is nullptr"); 3368 3369 auto &CAA = A.getOrCreateAAFor<AAKernelInfo>( 3370 IRPosition::function(*Caller), this, DepClassTy::REQUIRED); 3371 if (CAA.ReachingKernelEntries.isValidState()) { 3372 ReachingKernelEntries ^= CAA.ReachingKernelEntries; 3373 return true; 3374 } 3375 3376 // We lost track of the caller of the associated function, any kernel 3377 // could reach now. 3378 ReachingKernelEntries.indicatePessimisticFixpoint(); 3379 3380 return true; 3381 }; 3382 3383 bool AllCallSitesKnown; 3384 if (!A.checkForAllCallSites(PredCallSite, *this, 3385 true /* RequireAllCallSites */, 3386 AllCallSitesKnown)) 3387 ReachingKernelEntries.indicatePessimisticFixpoint(); 3388 } 3389 }; 3390 3391 /// The call site kernel info abstract attribute, basically, what can we say 3392 /// about a call site with regards to the KernelInfoState. For now this simply 3393 /// forwards the information from the callee. 3394 struct AAKernelInfoCallSite : AAKernelInfo { 3395 AAKernelInfoCallSite(const IRPosition &IRP, Attributor &A) 3396 : AAKernelInfo(IRP, A) {} 3397 3398 /// See AbstractAttribute::initialize(...). 3399 void initialize(Attributor &A) override { 3400 AAKernelInfo::initialize(A); 3401 3402 CallBase &CB = cast<CallBase>(getAssociatedValue()); 3403 Function *Callee = getAssociatedFunction(); 3404 3405 // Helper to lookup an assumption string. 3406 auto HasAssumption = [](Function *Fn, StringRef AssumptionStr) { 3407 return Fn && hasAssumption(*Fn, AssumptionStr); 3408 }; 3409 3410 // Check for SPMD-mode assumptions. 3411 if (HasAssumption(Callee, "ompx_spmd_amenable")) 3412 SPMDCompatibilityTracker.indicateOptimisticFixpoint(); 3413 3414 // First weed out calls we do not care about, that is readonly/readnone 3415 // calls, intrinsics, and "no_openmp" calls. Neither of these can reach a 3416 // parallel region or anything else we are looking for. 3417 if (!CB.mayWriteToMemory() || isa<IntrinsicInst>(CB)) { 3418 indicateOptimisticFixpoint(); 3419 return; 3420 } 3421 3422 // Next we check if we know the callee. If it is a known OpenMP function 3423 // we will handle them explicitly in the switch below. If it is not, we 3424 // will use an AAKernelInfo object on the callee to gather information and 3425 // merge that into the current state. The latter happens in the updateImpl. 3426 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 3427 const auto &It = OMPInfoCache.RuntimeFunctionIDMap.find(Callee); 3428 if (It == OMPInfoCache.RuntimeFunctionIDMap.end()) { 3429 // Unknown caller or declarations are not analyzable, we give up. 3430 if (!Callee || !A.isFunctionIPOAmendable(*Callee)) { 3431 3432 // Unknown callees might contain parallel regions, except if they have 3433 // an appropriate assumption attached. 3434 if (!(HasAssumption(Callee, "omp_no_openmp") || 3435 HasAssumption(Callee, "omp_no_parallelism"))) 3436 ReachedUnknownParallelRegions.insert(&CB); 3437 3438 // If SPMDCompatibilityTracker is not fixed, we need to give up on the 3439 // idea we can run something unknown in SPMD-mode. 3440 if (!SPMDCompatibilityTracker.isAtFixpoint()) 3441 SPMDCompatibilityTracker.insert(&CB); 3442 3443 // We have updated the state for this unknown call properly, there won't 3444 // be any change so we indicate a fixpoint. 3445 indicateOptimisticFixpoint(); 3446 } 3447 // If the callee is known and can be used in IPO, we will update the state 3448 // based on the callee state in updateImpl. 3449 return; 3450 } 3451 3452 const unsigned int WrapperFunctionArgNo = 6; 3453 RuntimeFunction RF = It->getSecond(); 3454 switch (RF) { 3455 // All the functions we know are compatible with SPMD mode. 3456 case OMPRTL___kmpc_is_spmd_exec_mode: 3457 case OMPRTL___kmpc_for_static_fini: 3458 case OMPRTL___kmpc_global_thread_num: 3459 case OMPRTL___kmpc_single: 3460 case OMPRTL___kmpc_end_single: 3461 case OMPRTL___kmpc_master: 3462 case OMPRTL___kmpc_end_master: 3463 case OMPRTL___kmpc_barrier: 3464 break; 3465 case OMPRTL___kmpc_for_static_init_4: 3466 case OMPRTL___kmpc_for_static_init_4u: 3467 case OMPRTL___kmpc_for_static_init_8: 3468 case OMPRTL___kmpc_for_static_init_8u: { 3469 // Check the schedule and allow static schedule in SPMD mode. 3470 unsigned ScheduleArgOpNo = 2; 3471 auto *ScheduleTypeCI = 3472 dyn_cast<ConstantInt>(CB.getArgOperand(ScheduleArgOpNo)); 3473 unsigned ScheduleTypeVal = 3474 ScheduleTypeCI ? ScheduleTypeCI->getZExtValue() : 0; 3475 switch (OMPScheduleType(ScheduleTypeVal)) { 3476 case OMPScheduleType::Static: 3477 case OMPScheduleType::StaticChunked: 3478 case OMPScheduleType::Distribute: 3479 case OMPScheduleType::DistributeChunked: 3480 break; 3481 default: 3482 SPMDCompatibilityTracker.insert(&CB); 3483 break; 3484 }; 3485 } break; 3486 case OMPRTL___kmpc_target_init: 3487 KernelInitCB = &CB; 3488 break; 3489 case OMPRTL___kmpc_target_deinit: 3490 KernelDeinitCB = &CB; 3491 break; 3492 case OMPRTL___kmpc_parallel_51: 3493 if (auto *ParallelRegion = dyn_cast<Function>( 3494 CB.getArgOperand(WrapperFunctionArgNo)->stripPointerCasts())) { 3495 ReachedKnownParallelRegions.insert(ParallelRegion); 3496 break; 3497 } 3498 // The condition above should usually get the parallel region function 3499 // pointer and record it. In the off chance it doesn't we assume the 3500 // worst. 3501 ReachedUnknownParallelRegions.insert(&CB); 3502 break; 3503 case OMPRTL___kmpc_omp_task: 3504 // We do not look into tasks right now, just give up. 3505 SPMDCompatibilityTracker.insert(&CB); 3506 ReachedUnknownParallelRegions.insert(&CB); 3507 break; 3508 case OMPRTL___kmpc_alloc_shared: 3509 case OMPRTL___kmpc_free_shared: 3510 // Return without setting a fixpoint, to be resolved in updateImpl. 3511 return; 3512 default: 3513 // Unknown OpenMP runtime calls cannot be executed in SPMD-mode, 3514 // generally. 3515 SPMDCompatibilityTracker.insert(&CB); 3516 break; 3517 } 3518 // All other OpenMP runtime calls will not reach parallel regions so they 3519 // can be safely ignored for now. Since it is a known OpenMP runtime call we 3520 // have now modeled all effects and there is no need for any update. 3521 indicateOptimisticFixpoint(); 3522 } 3523 3524 ChangeStatus updateImpl(Attributor &A) override { 3525 // TODO: Once we have call site specific value information we can provide 3526 // call site specific liveness information and then it makes 3527 // sense to specialize attributes for call sites arguments instead of 3528 // redirecting requests to the callee argument. 3529 Function *F = getAssociatedFunction(); 3530 3531 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 3532 const auto &It = OMPInfoCache.RuntimeFunctionIDMap.find(F); 3533 3534 // If F is not a runtime function, propagate the AAKernelInfo of the callee. 3535 if (It == OMPInfoCache.RuntimeFunctionIDMap.end()) { 3536 const IRPosition &FnPos = IRPosition::function(*F); 3537 auto &FnAA = A.getAAFor<AAKernelInfo>(*this, FnPos, DepClassTy::REQUIRED); 3538 if (getState() == FnAA.getState()) 3539 return ChangeStatus::UNCHANGED; 3540 getState() = FnAA.getState(); 3541 return ChangeStatus::CHANGED; 3542 } 3543 3544 // F is a runtime function that allocates or frees memory, check 3545 // AAHeapToStack and AAHeapToShared. 3546 KernelInfoState StateBefore = getState(); 3547 assert((It->getSecond() == OMPRTL___kmpc_alloc_shared || 3548 It->getSecond() == OMPRTL___kmpc_free_shared) && 3549 "Expected a __kmpc_alloc_shared or __kmpc_free_shared runtime call"); 3550 3551 CallBase &CB = cast<CallBase>(getAssociatedValue()); 3552 3553 auto &HeapToStackAA = A.getAAFor<AAHeapToStack>( 3554 *this, IRPosition::function(*CB.getCaller()), DepClassTy::OPTIONAL); 3555 auto &HeapToSharedAA = A.getAAFor<AAHeapToShared>( 3556 *this, IRPosition::function(*CB.getCaller()), DepClassTy::OPTIONAL); 3557 3558 RuntimeFunction RF = It->getSecond(); 3559 3560 switch (RF) { 3561 // If neither HeapToStack nor HeapToShared assume the call is removed, 3562 // assume SPMD incompatibility. 3563 case OMPRTL___kmpc_alloc_shared: 3564 if (!HeapToStackAA.isAssumedHeapToStack(CB) && 3565 !HeapToSharedAA.isAssumedHeapToShared(CB)) 3566 SPMDCompatibilityTracker.insert(&CB); 3567 break; 3568 case OMPRTL___kmpc_free_shared: 3569 if (!HeapToStackAA.isAssumedHeapToStackRemovedFree(CB) && 3570 !HeapToSharedAA.isAssumedHeapToSharedRemovedFree(CB)) 3571 SPMDCompatibilityTracker.insert(&CB); 3572 break; 3573 default: 3574 SPMDCompatibilityTracker.insert(&CB); 3575 } 3576 3577 return StateBefore == getState() ? ChangeStatus::UNCHANGED 3578 : ChangeStatus::CHANGED; 3579 } 3580 }; 3581 3582 struct AAFoldRuntimeCall 3583 : public StateWrapper<BooleanState, AbstractAttribute> { 3584 using Base = StateWrapper<BooleanState, AbstractAttribute>; 3585 3586 AAFoldRuntimeCall(const IRPosition &IRP, Attributor &A) : Base(IRP) {} 3587 3588 /// Statistics are tracked as part of manifest for now. 3589 void trackStatistics() const override {} 3590 3591 /// Create an abstract attribute biew for the position \p IRP. 3592 static AAFoldRuntimeCall &createForPosition(const IRPosition &IRP, 3593 Attributor &A); 3594 3595 /// See AbstractAttribute::getName() 3596 const std::string getName() const override { return "AAFoldRuntimeCall"; } 3597 3598 /// See AbstractAttribute::getIdAddr() 3599 const char *getIdAddr() const override { return &ID; } 3600 3601 /// This function should return true if the type of the \p AA is 3602 /// AAFoldRuntimeCall 3603 static bool classof(const AbstractAttribute *AA) { 3604 return (AA->getIdAddr() == &ID); 3605 } 3606 3607 static const char ID; 3608 }; 3609 3610 struct AAFoldRuntimeCallCallSiteReturned : AAFoldRuntimeCall { 3611 AAFoldRuntimeCallCallSiteReturned(const IRPosition &IRP, Attributor &A) 3612 : AAFoldRuntimeCall(IRP, A) {} 3613 3614 /// See AbstractAttribute::getAsStr() 3615 const std::string getAsStr() const override { 3616 if (!isValidState()) 3617 return "<invalid>"; 3618 3619 std::string Str("simplified value: "); 3620 3621 if (!SimplifiedValue.hasValue()) 3622 return Str + std::string("none"); 3623 3624 if (!SimplifiedValue.getValue()) 3625 return Str + std::string("nullptr"); 3626 3627 if (ConstantInt *CI = dyn_cast<ConstantInt>(SimplifiedValue.getValue())) 3628 return Str + std::to_string(CI->getSExtValue()); 3629 3630 return Str + std::string("unknown"); 3631 } 3632 3633 void initialize(Attributor &A) override { 3634 Function *Callee = getAssociatedFunction(); 3635 3636 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 3637 const auto &It = OMPInfoCache.RuntimeFunctionIDMap.find(Callee); 3638 assert(It != OMPInfoCache.RuntimeFunctionIDMap.end() && 3639 "Expected a known OpenMP runtime function"); 3640 3641 RFKind = It->getSecond(); 3642 3643 CallBase &CB = cast<CallBase>(getAssociatedValue()); 3644 A.registerSimplificationCallback( 3645 IRPosition::callsite_returned(CB), 3646 [&](const IRPosition &IRP, const AbstractAttribute *AA, 3647 bool &UsedAssumedInformation) -> Optional<Value *> { 3648 assert((isValidState() || (SimplifiedValue.hasValue() && 3649 SimplifiedValue.getValue() == nullptr)) && 3650 "Unexpected invalid state!"); 3651 3652 if (!isAtFixpoint()) { 3653 UsedAssumedInformation = true; 3654 if (AA) 3655 A.recordDependence(*this, *AA, DepClassTy::OPTIONAL); 3656 } 3657 return SimplifiedValue; 3658 }); 3659 } 3660 3661 ChangeStatus updateImpl(Attributor &A) override { 3662 ChangeStatus Changed = ChangeStatus::UNCHANGED; 3663 3664 switch (RFKind) { 3665 case OMPRTL___kmpc_is_spmd_exec_mode: 3666 Changed |= foldIsSPMDExecMode(A); 3667 break; 3668 case OMPRTL___kmpc_is_generic_main_thread_id: 3669 Changed |= foldIsGenericMainThread(A); 3670 break; 3671 default: 3672 llvm_unreachable("Unhandled OpenMP runtime function!"); 3673 } 3674 3675 return Changed; 3676 } 3677 3678 ChangeStatus manifest(Attributor &A) override { 3679 ChangeStatus Changed = ChangeStatus::UNCHANGED; 3680 3681 if (SimplifiedValue.hasValue() && SimplifiedValue.getValue()) { 3682 Instruction &CB = *getCtxI(); 3683 A.changeValueAfterManifest(CB, **SimplifiedValue); 3684 A.deleteAfterManifest(CB); 3685 3686 LLVM_DEBUG(dbgs() << TAG << "Folding runtime call: " << CB << " with " 3687 << **SimplifiedValue << "\n"); 3688 3689 Changed = ChangeStatus::CHANGED; 3690 } 3691 3692 return Changed; 3693 } 3694 3695 ChangeStatus indicatePessimisticFixpoint() override { 3696 SimplifiedValue = nullptr; 3697 return AAFoldRuntimeCall::indicatePessimisticFixpoint(); 3698 } 3699 3700 private: 3701 /// Fold __kmpc_is_spmd_exec_mode into a constant if possible. 3702 ChangeStatus foldIsSPMDExecMode(Attributor &A) { 3703 Optional<Value *> SimplifiedValueBefore = SimplifiedValue; 3704 3705 unsigned AssumedSPMDCount = 0, KnownSPMDCount = 0; 3706 unsigned AssumedNonSPMDCount = 0, KnownNonSPMDCount = 0; 3707 auto &CallerKernelInfoAA = A.getAAFor<AAKernelInfo>( 3708 *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED); 3709 3710 if (!CallerKernelInfoAA.ReachingKernelEntries.isValidState()) 3711 return indicatePessimisticFixpoint(); 3712 3713 for (Kernel K : CallerKernelInfoAA.ReachingKernelEntries) { 3714 auto &AA = A.getAAFor<AAKernelInfo>(*this, IRPosition::function(*K), 3715 DepClassTy::REQUIRED); 3716 3717 if (!AA.isValidState()) { 3718 SimplifiedValue = nullptr; 3719 return indicatePessimisticFixpoint(); 3720 } 3721 3722 if (AA.SPMDCompatibilityTracker.isAssumed()) { 3723 if (AA.SPMDCompatibilityTracker.isAtFixpoint()) 3724 ++KnownSPMDCount; 3725 else 3726 ++AssumedSPMDCount; 3727 } else { 3728 if (AA.SPMDCompatibilityTracker.isAtFixpoint()) 3729 ++KnownNonSPMDCount; 3730 else 3731 ++AssumedNonSPMDCount; 3732 } 3733 } 3734 3735 if ((AssumedSPMDCount + KnownSPMDCount) && 3736 (AssumedNonSPMDCount + KnownNonSPMDCount)) 3737 return indicatePessimisticFixpoint(); 3738 3739 auto &Ctx = getAnchorValue().getContext(); 3740 if (KnownSPMDCount || AssumedSPMDCount) { 3741 assert(KnownNonSPMDCount == 0 && AssumedNonSPMDCount == 0 && 3742 "Expected only SPMD kernels!"); 3743 // All reaching kernels are in SPMD mode. Update all function calls to 3744 // __kmpc_is_spmd_exec_mode to 1. 3745 SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), true); 3746 } else if (KnownNonSPMDCount || AssumedNonSPMDCount) { 3747 assert(KnownSPMDCount == 0 && AssumedSPMDCount == 0 && 3748 "Expected only non-SPMD kernels!"); 3749 // All reaching kernels are in non-SPMD mode. Update all function 3750 // calls to __kmpc_is_spmd_exec_mode to 0. 3751 SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), false); 3752 } else { 3753 // We have empty reaching kernels, therefore we cannot tell if the 3754 // associated call site can be folded. At this moment, SimplifiedValue 3755 // must be none. 3756 assert(!SimplifiedValue.hasValue() && "SimplifiedValue should be none"); 3757 } 3758 3759 return SimplifiedValue == SimplifiedValueBefore ? ChangeStatus::UNCHANGED 3760 : ChangeStatus::CHANGED; 3761 } 3762 3763 /// Fold __kmpc_is_generic_main_thread_id into a constant if possible. 3764 ChangeStatus foldIsGenericMainThread(Attributor &A) { 3765 Optional<Value *> SimplifiedValueBefore = SimplifiedValue; 3766 3767 CallBase &CB = cast<CallBase>(getAssociatedValue()); 3768 Function *F = CB.getFunction(); 3769 const auto &ExecutionDomainAA = A.getAAFor<AAExecutionDomain>( 3770 *this, IRPosition::function(*F), DepClassTy::REQUIRED); 3771 3772 if (!ExecutionDomainAA.isValidState()) 3773 return indicatePessimisticFixpoint(); 3774 3775 auto &Ctx = getAnchorValue().getContext(); 3776 if (ExecutionDomainAA.isExecutedByInitialThreadOnly(CB)) 3777 SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), true); 3778 else 3779 return indicatePessimisticFixpoint(); 3780 3781 return SimplifiedValue == SimplifiedValueBefore ? ChangeStatus::UNCHANGED 3782 : ChangeStatus::CHANGED; 3783 } 3784 3785 /// An optional value the associated value is assumed to fold to. That is, we 3786 /// assume the associated value (which is a call) can be replaced by this 3787 /// simplified value. 3788 Optional<Value *> SimplifiedValue; 3789 3790 /// The runtime function kind of the callee of the associated call site. 3791 RuntimeFunction RFKind; 3792 }; 3793 3794 } // namespace 3795 3796 void OpenMPOpt::registerAAs(bool IsModulePass) { 3797 if (SCC.empty()) 3798 3799 return; 3800 if (IsModulePass) { 3801 // Ensure we create the AAKernelInfo AAs first and without triggering an 3802 // update. This will make sure we register all value simplification 3803 // callbacks before any other AA has the chance to create an AAValueSimplify 3804 // or similar. 3805 for (Function *Kernel : OMPInfoCache.Kernels) 3806 A.getOrCreateAAFor<AAKernelInfo>( 3807 IRPosition::function(*Kernel), /* QueryingAA */ nullptr, 3808 DepClassTy::NONE, /* ForceUpdate */ false, 3809 /* UpdateAfterInit */ false); 3810 3811 auto &IsMainRFI = 3812 OMPInfoCache.RFIs[OMPRTL___kmpc_is_generic_main_thread_id]; 3813 IsMainRFI.foreachUse(SCC, [&](Use &U, Function &F) { 3814 CallInst *CI = OpenMPOpt::getCallIfRegularCall(U, &IsMainRFI); 3815 if (!CI) 3816 return false; 3817 A.getOrCreateAAFor<AAFoldRuntimeCall>( 3818 IRPosition::callsite_returned(*CI), /* QueryingAA */ nullptr, 3819 DepClassTy::NONE, /* ForceUpdate */ false, 3820 /* UpdateAfterInit */ false); 3821 return false; 3822 }); 3823 3824 auto &IsSPMDRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_is_spmd_exec_mode]; 3825 IsSPMDRFI.foreachUse(SCC, [&](Use &U, Function &) { 3826 CallInst *CI = OpenMPOpt::getCallIfRegularCall(U, &IsSPMDRFI); 3827 if (!CI) 3828 return false; 3829 A.getOrCreateAAFor<AAFoldRuntimeCall>( 3830 IRPosition::callsite_returned(*CI), /* QueryingAA */ nullptr, 3831 DepClassTy::NONE, /* ForceUpdate */ false, 3832 /* UpdateAfterInit */ false); 3833 return false; 3834 }); 3835 } 3836 3837 // Create CallSite AA for all Getters. 3838 for (int Idx = 0; Idx < OMPInfoCache.ICVs.size() - 1; ++Idx) { 3839 auto ICVInfo = OMPInfoCache.ICVs[static_cast<InternalControlVar>(Idx)]; 3840 3841 auto &GetterRFI = OMPInfoCache.RFIs[ICVInfo.Getter]; 3842 3843 auto CreateAA = [&](Use &U, Function &Caller) { 3844 CallInst *CI = OpenMPOpt::getCallIfRegularCall(U, &GetterRFI); 3845 if (!CI) 3846 return false; 3847 3848 auto &CB = cast<CallBase>(*CI); 3849 3850 IRPosition CBPos = IRPosition::callsite_function(CB); 3851 A.getOrCreateAAFor<AAICVTracker>(CBPos); 3852 return false; 3853 }; 3854 3855 GetterRFI.foreachUse(SCC, CreateAA); 3856 } 3857 auto &GlobalizationRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared]; 3858 auto CreateAA = [&](Use &U, Function &F) { 3859 A.getOrCreateAAFor<AAHeapToShared>(IRPosition::function(F)); 3860 return false; 3861 }; 3862 GlobalizationRFI.foreachUse(SCC, CreateAA); 3863 3864 // Create an ExecutionDomain AA for every function and a HeapToStack AA for 3865 // every function if there is a device kernel. 3866 for (auto *F : SCC) { 3867 if (!F->isDeclaration()) 3868 A.getOrCreateAAFor<AAExecutionDomain>(IRPosition::function(*F)); 3869 if (isOpenMPDevice(M)) 3870 A.getOrCreateAAFor<AAHeapToStack>(IRPosition::function(*F)); 3871 } 3872 } 3873 3874 const char AAICVTracker::ID = 0; 3875 const char AAKernelInfo::ID = 0; 3876 const char AAExecutionDomain::ID = 0; 3877 const char AAHeapToShared::ID = 0; 3878 const char AAFoldRuntimeCall::ID = 0; 3879 3880 AAICVTracker &AAICVTracker::createForPosition(const IRPosition &IRP, 3881 Attributor &A) { 3882 AAICVTracker *AA = nullptr; 3883 switch (IRP.getPositionKind()) { 3884 case IRPosition::IRP_INVALID: 3885 case IRPosition::IRP_FLOAT: 3886 case IRPosition::IRP_ARGUMENT: 3887 case IRPosition::IRP_CALL_SITE_ARGUMENT: 3888 llvm_unreachable("ICVTracker can only be created for function position!"); 3889 case IRPosition::IRP_RETURNED: 3890 AA = new (A.Allocator) AAICVTrackerFunctionReturned(IRP, A); 3891 break; 3892 case IRPosition::IRP_CALL_SITE_RETURNED: 3893 AA = new (A.Allocator) AAICVTrackerCallSiteReturned(IRP, A); 3894 break; 3895 case IRPosition::IRP_CALL_SITE: 3896 AA = new (A.Allocator) AAICVTrackerCallSite(IRP, A); 3897 break; 3898 case IRPosition::IRP_FUNCTION: 3899 AA = new (A.Allocator) AAICVTrackerFunction(IRP, A); 3900 break; 3901 } 3902 3903 return *AA; 3904 } 3905 3906 AAExecutionDomain &AAExecutionDomain::createForPosition(const IRPosition &IRP, 3907 Attributor &A) { 3908 AAExecutionDomainFunction *AA = nullptr; 3909 switch (IRP.getPositionKind()) { 3910 case IRPosition::IRP_INVALID: 3911 case IRPosition::IRP_FLOAT: 3912 case IRPosition::IRP_ARGUMENT: 3913 case IRPosition::IRP_CALL_SITE_ARGUMENT: 3914 case IRPosition::IRP_RETURNED: 3915 case IRPosition::IRP_CALL_SITE_RETURNED: 3916 case IRPosition::IRP_CALL_SITE: 3917 llvm_unreachable( 3918 "AAExecutionDomain can only be created for function position!"); 3919 case IRPosition::IRP_FUNCTION: 3920 AA = new (A.Allocator) AAExecutionDomainFunction(IRP, A); 3921 break; 3922 } 3923 3924 return *AA; 3925 } 3926 3927 AAHeapToShared &AAHeapToShared::createForPosition(const IRPosition &IRP, 3928 Attributor &A) { 3929 AAHeapToSharedFunction *AA = nullptr; 3930 switch (IRP.getPositionKind()) { 3931 case IRPosition::IRP_INVALID: 3932 case IRPosition::IRP_FLOAT: 3933 case IRPosition::IRP_ARGUMENT: 3934 case IRPosition::IRP_CALL_SITE_ARGUMENT: 3935 case IRPosition::IRP_RETURNED: 3936 case IRPosition::IRP_CALL_SITE_RETURNED: 3937 case IRPosition::IRP_CALL_SITE: 3938 llvm_unreachable( 3939 "AAHeapToShared can only be created for function position!"); 3940 case IRPosition::IRP_FUNCTION: 3941 AA = new (A.Allocator) AAHeapToSharedFunction(IRP, A); 3942 break; 3943 } 3944 3945 return *AA; 3946 } 3947 3948 AAKernelInfo &AAKernelInfo::createForPosition(const IRPosition &IRP, 3949 Attributor &A) { 3950 AAKernelInfo *AA = nullptr; 3951 switch (IRP.getPositionKind()) { 3952 case IRPosition::IRP_INVALID: 3953 case IRPosition::IRP_FLOAT: 3954 case IRPosition::IRP_ARGUMENT: 3955 case IRPosition::IRP_RETURNED: 3956 case IRPosition::IRP_CALL_SITE_RETURNED: 3957 case IRPosition::IRP_CALL_SITE_ARGUMENT: 3958 llvm_unreachable("KernelInfo can only be created for function position!"); 3959 case IRPosition::IRP_CALL_SITE: 3960 AA = new (A.Allocator) AAKernelInfoCallSite(IRP, A); 3961 break; 3962 case IRPosition::IRP_FUNCTION: 3963 AA = new (A.Allocator) AAKernelInfoFunction(IRP, A); 3964 break; 3965 } 3966 3967 return *AA; 3968 } 3969 3970 AAFoldRuntimeCall &AAFoldRuntimeCall::createForPosition(const IRPosition &IRP, 3971 Attributor &A) { 3972 AAFoldRuntimeCall *AA = nullptr; 3973 switch (IRP.getPositionKind()) { 3974 case IRPosition::IRP_INVALID: 3975 case IRPosition::IRP_FLOAT: 3976 case IRPosition::IRP_ARGUMENT: 3977 case IRPosition::IRP_RETURNED: 3978 case IRPosition::IRP_FUNCTION: 3979 case IRPosition::IRP_CALL_SITE: 3980 case IRPosition::IRP_CALL_SITE_ARGUMENT: 3981 llvm_unreachable("KernelInfo can only be created for call site position!"); 3982 case IRPosition::IRP_CALL_SITE_RETURNED: 3983 AA = new (A.Allocator) AAFoldRuntimeCallCallSiteReturned(IRP, A); 3984 break; 3985 } 3986 3987 return *AA; 3988 } 3989 3990 PreservedAnalyses OpenMPOptPass::run(Module &M, ModuleAnalysisManager &AM) { 3991 if (!containsOpenMP(M)) 3992 return PreservedAnalyses::all(); 3993 if (DisableOpenMPOptimizations) 3994 return PreservedAnalyses::all(); 3995 3996 FunctionAnalysisManager &FAM = 3997 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 3998 KernelSet Kernels = getDeviceKernels(M); 3999 4000 auto IsCalled = [&](Function &F) { 4001 if (Kernels.contains(&F)) 4002 return true; 4003 for (const User *U : F.users()) 4004 if (!isa<BlockAddress>(U)) 4005 return true; 4006 return false; 4007 }; 4008 4009 auto EmitRemark = [&](Function &F) { 4010 auto &ORE = FAM.getResult<OptimizationRemarkEmitterAnalysis>(F); 4011 ORE.emit([&]() { 4012 OptimizationRemarkAnalysis ORA(DEBUG_TYPE, "OMP140", &F); 4013 return ORA << "Could not internalize function. " 4014 << "Some optimizations may not be possible."; 4015 }); 4016 }; 4017 4018 // Create internal copies of each function if this is a kernel Module. This 4019 // allows iterprocedural passes to see every call edge. 4020 DenseSet<const Function *> InternalizedFuncs; 4021 if (isOpenMPDevice(M)) 4022 for (Function &F : M) 4023 if (!F.isDeclaration() && !Kernels.contains(&F) && IsCalled(F) && 4024 !DisableInternalization) { 4025 if (Attributor::internalizeFunction(F, /* Force */ true)) { 4026 InternalizedFuncs.insert(&F); 4027 } else if (!F.hasLocalLinkage() && !F.hasFnAttribute(Attribute::Cold)) { 4028 EmitRemark(F); 4029 } 4030 } 4031 4032 // Look at every function in the Module unless it was internalized. 4033 SmallVector<Function *, 16> SCC; 4034 for (Function &F : M) 4035 if (!F.isDeclaration() && !InternalizedFuncs.contains(&F)) 4036 SCC.push_back(&F); 4037 4038 if (SCC.empty()) 4039 return PreservedAnalyses::all(); 4040 4041 AnalysisGetter AG(FAM); 4042 4043 auto OREGetter = [&FAM](Function *F) -> OptimizationRemarkEmitter & { 4044 return FAM.getResult<OptimizationRemarkEmitterAnalysis>(*F); 4045 }; 4046 4047 BumpPtrAllocator Allocator; 4048 CallGraphUpdater CGUpdater; 4049 4050 SetVector<Function *> Functions(SCC.begin(), SCC.end()); 4051 OMPInformationCache InfoCache(M, AG, Allocator, /*CGSCC*/ Functions, Kernels); 4052 4053 unsigned MaxFixpointIterations = (isOpenMPDevice(M)) ? 128 : 32; 4054 Attributor A(Functions, InfoCache, CGUpdater, nullptr, true, false, 4055 MaxFixpointIterations, OREGetter, DEBUG_TYPE); 4056 4057 OpenMPOpt OMPOpt(SCC, CGUpdater, OREGetter, InfoCache, A); 4058 bool Changed = OMPOpt.run(true); 4059 if (Changed) 4060 return PreservedAnalyses::none(); 4061 4062 return PreservedAnalyses::all(); 4063 } 4064 4065 PreservedAnalyses OpenMPOptCGSCCPass::run(LazyCallGraph::SCC &C, 4066 CGSCCAnalysisManager &AM, 4067 LazyCallGraph &CG, 4068 CGSCCUpdateResult &UR) { 4069 if (!containsOpenMP(*C.begin()->getFunction().getParent())) 4070 return PreservedAnalyses::all(); 4071 if (DisableOpenMPOptimizations) 4072 return PreservedAnalyses::all(); 4073 4074 SmallVector<Function *, 16> SCC; 4075 // If there are kernels in the module, we have to run on all SCC's. 4076 for (LazyCallGraph::Node &N : C) { 4077 Function *Fn = &N.getFunction(); 4078 SCC.push_back(Fn); 4079 } 4080 4081 if (SCC.empty()) 4082 return PreservedAnalyses::all(); 4083 4084 Module &M = *C.begin()->getFunction().getParent(); 4085 4086 KernelSet Kernels = getDeviceKernels(M); 4087 4088 FunctionAnalysisManager &FAM = 4089 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager(); 4090 4091 AnalysisGetter AG(FAM); 4092 4093 auto OREGetter = [&FAM](Function *F) -> OptimizationRemarkEmitter & { 4094 return FAM.getResult<OptimizationRemarkEmitterAnalysis>(*F); 4095 }; 4096 4097 BumpPtrAllocator Allocator; 4098 CallGraphUpdater CGUpdater; 4099 CGUpdater.initialize(CG, C, AM, UR); 4100 4101 SetVector<Function *> Functions(SCC.begin(), SCC.end()); 4102 OMPInformationCache InfoCache(*(Functions.back()->getParent()), AG, Allocator, 4103 /*CGSCC*/ Functions, Kernels); 4104 4105 unsigned MaxFixpointIterations = (isOpenMPDevice(M)) ? 128 : 32; 4106 Attributor A(Functions, InfoCache, CGUpdater, nullptr, false, true, 4107 MaxFixpointIterations, OREGetter, DEBUG_TYPE); 4108 4109 OpenMPOpt OMPOpt(SCC, CGUpdater, OREGetter, InfoCache, A); 4110 bool Changed = OMPOpt.run(false); 4111 if (Changed) 4112 return PreservedAnalyses::none(); 4113 4114 return PreservedAnalyses::all(); 4115 } 4116 4117 namespace { 4118 4119 struct OpenMPOptCGSCCLegacyPass : public CallGraphSCCPass { 4120 CallGraphUpdater CGUpdater; 4121 static char ID; 4122 4123 OpenMPOptCGSCCLegacyPass() : CallGraphSCCPass(ID) { 4124 initializeOpenMPOptCGSCCLegacyPassPass(*PassRegistry::getPassRegistry()); 4125 } 4126 4127 void getAnalysisUsage(AnalysisUsage &AU) const override { 4128 CallGraphSCCPass::getAnalysisUsage(AU); 4129 } 4130 4131 bool runOnSCC(CallGraphSCC &CGSCC) override { 4132 if (!containsOpenMP(CGSCC.getCallGraph().getModule())) 4133 return false; 4134 if (DisableOpenMPOptimizations || skipSCC(CGSCC)) 4135 return false; 4136 4137 SmallVector<Function *, 16> SCC; 4138 // If there are kernels in the module, we have to run on all SCC's. 4139 for (CallGraphNode *CGN : CGSCC) { 4140 Function *Fn = CGN->getFunction(); 4141 if (!Fn || Fn->isDeclaration()) 4142 continue; 4143 SCC.push_back(Fn); 4144 } 4145 4146 if (SCC.empty()) 4147 return false; 4148 4149 Module &M = CGSCC.getCallGraph().getModule(); 4150 KernelSet Kernels = getDeviceKernels(M); 4151 4152 CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph(); 4153 CGUpdater.initialize(CG, CGSCC); 4154 4155 // Maintain a map of functions to avoid rebuilding the ORE 4156 DenseMap<Function *, std::unique_ptr<OptimizationRemarkEmitter>> OREMap; 4157 auto OREGetter = [&OREMap](Function *F) -> OptimizationRemarkEmitter & { 4158 std::unique_ptr<OptimizationRemarkEmitter> &ORE = OREMap[F]; 4159 if (!ORE) 4160 ORE = std::make_unique<OptimizationRemarkEmitter>(F); 4161 return *ORE; 4162 }; 4163 4164 AnalysisGetter AG; 4165 SetVector<Function *> Functions(SCC.begin(), SCC.end()); 4166 BumpPtrAllocator Allocator; 4167 OMPInformationCache InfoCache(*(Functions.back()->getParent()), AG, 4168 Allocator, 4169 /*CGSCC*/ Functions, Kernels); 4170 4171 unsigned MaxFixpointIterations = (isOpenMPDevice(M)) ? 128 : 32; 4172 Attributor A(Functions, InfoCache, CGUpdater, nullptr, false, true, 4173 MaxFixpointIterations, OREGetter, DEBUG_TYPE); 4174 4175 OpenMPOpt OMPOpt(SCC, CGUpdater, OREGetter, InfoCache, A); 4176 return OMPOpt.run(false); 4177 } 4178 4179 bool doFinalization(CallGraph &CG) override { return CGUpdater.finalize(); } 4180 }; 4181 4182 } // end anonymous namespace 4183 4184 KernelSet llvm::omp::getDeviceKernels(Module &M) { 4185 // TODO: Create a more cross-platform way of determining device kernels. 4186 NamedMDNode *MD = M.getOrInsertNamedMetadata("nvvm.annotations"); 4187 KernelSet Kernels; 4188 4189 if (!MD) 4190 return Kernels; 4191 4192 for (auto *Op : MD->operands()) { 4193 if (Op->getNumOperands() < 2) 4194 continue; 4195 MDString *KindID = dyn_cast<MDString>(Op->getOperand(1)); 4196 if (!KindID || KindID->getString() != "kernel") 4197 continue; 4198 4199 Function *KernelFn = 4200 mdconst::dyn_extract_or_null<Function>(Op->getOperand(0)); 4201 if (!KernelFn) 4202 continue; 4203 4204 ++NumOpenMPTargetRegionKernels; 4205 4206 Kernels.insert(KernelFn); 4207 } 4208 4209 return Kernels; 4210 } 4211 4212 bool llvm::omp::containsOpenMP(Module &M) { 4213 Metadata *MD = M.getModuleFlag("openmp"); 4214 if (!MD) 4215 return false; 4216 4217 return true; 4218 } 4219 4220 bool llvm::omp::isOpenMPDevice(Module &M) { 4221 Metadata *MD = M.getModuleFlag("openmp-device"); 4222 if (!MD) 4223 return false; 4224 4225 return true; 4226 } 4227 4228 char OpenMPOptCGSCCLegacyPass::ID = 0; 4229 4230 INITIALIZE_PASS_BEGIN(OpenMPOptCGSCCLegacyPass, "openmp-opt-cgscc", 4231 "OpenMP specific optimizations", false, false) 4232 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass) 4233 INITIALIZE_PASS_END(OpenMPOptCGSCCLegacyPass, "openmp-opt-cgscc", 4234 "OpenMP specific optimizations", false, false) 4235 4236 Pass *llvm::createOpenMPOptCGSCCLegacyPass() { 4237 return new OpenMPOptCGSCCLegacyPass(); 4238 } 4239