1 //===-- IPO/OpenMPOpt.cpp - Collection of OpenMP specific optimizations ---===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // OpenMP specific optimizations: 10 // 11 // - Deduplication of runtime calls, e.g., omp_get_thread_num. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/IPO/OpenMPOpt.h" 16 17 #include "llvm/ADT/EnumeratedArray.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/CallGraph.h" 20 #include "llvm/Analysis/CallGraphSCCPass.h" 21 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 22 #include "llvm/Frontend/OpenMP/OMPConstants.h" 23 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 24 #include "llvm/InitializePasses.h" 25 #include "llvm/Support/CommandLine.h" 26 #include "llvm/Transforms/IPO.h" 27 #include "llvm/Transforms/IPO/Attributor.h" 28 #include "llvm/Transforms/Utils/CallGraphUpdater.h" 29 #include "llvm/Analysis/ValueTracking.h" 30 31 using namespace llvm; 32 using namespace omp; 33 34 #define DEBUG_TYPE "openmp-opt" 35 36 static cl::opt<bool> DisableOpenMPOptimizations( 37 "openmp-opt-disable", cl::ZeroOrMore, 38 cl::desc("Disable OpenMP specific optimizations."), cl::Hidden, 39 cl::init(false)); 40 41 static cl::opt<bool> PrintICVValues("openmp-print-icv-values", cl::init(false), 42 cl::Hidden); 43 static cl::opt<bool> PrintOpenMPKernels("openmp-print-gpu-kernels", 44 cl::init(false), cl::Hidden); 45 46 static cl::opt<bool> HideMemoryTransferLatency( 47 "openmp-hide-memory-transfer-latency", 48 cl::desc("[WIP] Tries to hide the latency of host to device memory" 49 " transfers"), 50 cl::Hidden, cl::init(false)); 51 52 53 STATISTIC(NumOpenMPRuntimeCallsDeduplicated, 54 "Number of OpenMP runtime calls deduplicated"); 55 STATISTIC(NumOpenMPParallelRegionsDeleted, 56 "Number of OpenMP parallel regions deleted"); 57 STATISTIC(NumOpenMPRuntimeFunctionsIdentified, 58 "Number of OpenMP runtime functions identified"); 59 STATISTIC(NumOpenMPRuntimeFunctionUsesIdentified, 60 "Number of OpenMP runtime function uses identified"); 61 STATISTIC(NumOpenMPTargetRegionKernels, 62 "Number of OpenMP target region entry points (=kernels) identified"); 63 STATISTIC( 64 NumOpenMPParallelRegionsReplacedInGPUStateMachine, 65 "Number of OpenMP parallel regions replaced with ID in GPU state machines"); 66 67 #if !defined(NDEBUG) 68 static constexpr auto TAG = "[" DEBUG_TYPE "]"; 69 #endif 70 71 namespace { 72 73 struct AAICVTracker; 74 75 /// OpenMP specific information. For now, stores RFIs and ICVs also needed for 76 /// Attributor runs. 77 struct OMPInformationCache : public InformationCache { 78 OMPInformationCache(Module &M, AnalysisGetter &AG, 79 BumpPtrAllocator &Allocator, SetVector<Function *> &CGSCC, 80 SmallPtrSetImpl<Kernel> &Kernels) 81 : InformationCache(M, AG, Allocator, &CGSCC), OMPBuilder(M), 82 Kernels(Kernels) { 83 84 OMPBuilder.initialize(); 85 initializeRuntimeFunctions(); 86 initializeInternalControlVars(); 87 } 88 89 /// Generic information that describes an internal control variable. 90 struct InternalControlVarInfo { 91 /// The kind, as described by InternalControlVar enum. 92 InternalControlVar Kind; 93 94 /// The name of the ICV. 95 StringRef Name; 96 97 /// Environment variable associated with this ICV. 98 StringRef EnvVarName; 99 100 /// Initial value kind. 101 ICVInitValue InitKind; 102 103 /// Initial value. 104 ConstantInt *InitValue; 105 106 /// Setter RTL function associated with this ICV. 107 RuntimeFunction Setter; 108 109 /// Getter RTL function associated with this ICV. 110 RuntimeFunction Getter; 111 112 /// RTL Function corresponding to the override clause of this ICV 113 RuntimeFunction Clause; 114 }; 115 116 /// Generic information that describes a runtime function 117 struct RuntimeFunctionInfo { 118 119 /// The kind, as described by the RuntimeFunction enum. 120 RuntimeFunction Kind; 121 122 /// The name of the function. 123 StringRef Name; 124 125 /// Flag to indicate a variadic function. 126 bool IsVarArg; 127 128 /// The return type of the function. 129 Type *ReturnType; 130 131 /// The argument types of the function. 132 SmallVector<Type *, 8> ArgumentTypes; 133 134 /// The declaration if available. 135 Function *Declaration = nullptr; 136 137 /// Uses of this runtime function per function containing the use. 138 using UseVector = SmallVector<Use *, 16>; 139 140 /// Clear UsesMap for runtime function. 141 void clearUsesMap() { UsesMap.clear(); } 142 143 /// Boolean conversion that is true if the runtime function was found. 144 operator bool() const { return Declaration; } 145 146 /// Return the vector of uses in function \p F. 147 UseVector &getOrCreateUseVector(Function *F) { 148 std::shared_ptr<UseVector> &UV = UsesMap[F]; 149 if (!UV) 150 UV = std::make_shared<UseVector>(); 151 return *UV; 152 } 153 154 /// Return the vector of uses in function \p F or `nullptr` if there are 155 /// none. 156 const UseVector *getUseVector(Function &F) const { 157 auto I = UsesMap.find(&F); 158 if (I != UsesMap.end()) 159 return I->second.get(); 160 return nullptr; 161 } 162 163 /// Return how many functions contain uses of this runtime function. 164 size_t getNumFunctionsWithUses() const { return UsesMap.size(); } 165 166 /// Return the number of arguments (or the minimal number for variadic 167 /// functions). 168 size_t getNumArgs() const { return ArgumentTypes.size(); } 169 170 /// Run the callback \p CB on each use and forget the use if the result is 171 /// true. The callback will be fed the function in which the use was 172 /// encountered as second argument. 173 void foreachUse(SmallVectorImpl<Function *> &SCC, 174 function_ref<bool(Use &, Function &)> CB) { 175 for (Function *F : SCC) 176 foreachUse(CB, F); 177 } 178 179 /// Run the callback \p CB on each use within the function \p F and forget 180 /// the use if the result is true. 181 void foreachUse(function_ref<bool(Use &, Function &)> CB, Function *F) { 182 SmallVector<unsigned, 8> ToBeDeleted; 183 ToBeDeleted.clear(); 184 185 unsigned Idx = 0; 186 UseVector &UV = getOrCreateUseVector(F); 187 188 for (Use *U : UV) { 189 if (CB(*U, *F)) 190 ToBeDeleted.push_back(Idx); 191 ++Idx; 192 } 193 194 // Remove the to-be-deleted indices in reverse order as prior 195 // modifications will not modify the smaller indices. 196 while (!ToBeDeleted.empty()) { 197 unsigned Idx = ToBeDeleted.pop_back_val(); 198 UV[Idx] = UV.back(); 199 UV.pop_back(); 200 } 201 } 202 203 private: 204 /// Map from functions to all uses of this runtime function contained in 205 /// them. 206 DenseMap<Function *, std::shared_ptr<UseVector>> UsesMap; 207 }; 208 209 /// An OpenMP-IR-Builder instance 210 OpenMPIRBuilder OMPBuilder; 211 212 /// Map from runtime function kind to the runtime function description. 213 EnumeratedArray<RuntimeFunctionInfo, RuntimeFunction, 214 RuntimeFunction::OMPRTL___last> 215 RFIs; 216 217 /// Map from ICV kind to the ICV description. 218 EnumeratedArray<InternalControlVarInfo, InternalControlVar, 219 InternalControlVar::ICV___last> 220 ICVs; 221 222 /// Helper to initialize all internal control variable information for those 223 /// defined in OMPKinds.def. 224 void initializeInternalControlVars() { 225 #define ICV_RT_SET(_Name, RTL) \ 226 { \ 227 auto &ICV = ICVs[_Name]; \ 228 ICV.Setter = RTL; \ 229 } 230 #define ICV_RT_GET(Name, RTL) \ 231 { \ 232 auto &ICV = ICVs[Name]; \ 233 ICV.Getter = RTL; \ 234 } 235 #define ICV_DATA_ENV(Enum, _Name, _EnvVarName, Init) \ 236 { \ 237 auto &ICV = ICVs[Enum]; \ 238 ICV.Name = _Name; \ 239 ICV.Kind = Enum; \ 240 ICV.InitKind = Init; \ 241 ICV.EnvVarName = _EnvVarName; \ 242 switch (ICV.InitKind) { \ 243 case ICV_IMPLEMENTATION_DEFINED: \ 244 ICV.InitValue = nullptr; \ 245 break; \ 246 case ICV_ZERO: \ 247 ICV.InitValue = ConstantInt::get( \ 248 Type::getInt32Ty(OMPBuilder.Int32->getContext()), 0); \ 249 break; \ 250 case ICV_FALSE: \ 251 ICV.InitValue = ConstantInt::getFalse(OMPBuilder.Int1->getContext()); \ 252 break; \ 253 case ICV_LAST: \ 254 break; \ 255 } \ 256 } 257 #include "llvm/Frontend/OpenMP/OMPKinds.def" 258 } 259 260 /// Returns true if the function declaration \p F matches the runtime 261 /// function types, that is, return type \p RTFRetType, and argument types 262 /// \p RTFArgTypes. 263 static bool declMatchesRTFTypes(Function *F, Type *RTFRetType, 264 SmallVector<Type *, 8> &RTFArgTypes) { 265 // TODO: We should output information to the user (under debug output 266 // and via remarks). 267 268 if (!F) 269 return false; 270 if (F->getReturnType() != RTFRetType) 271 return false; 272 if (F->arg_size() != RTFArgTypes.size()) 273 return false; 274 275 auto RTFTyIt = RTFArgTypes.begin(); 276 for (Argument &Arg : F->args()) { 277 if (Arg.getType() != *RTFTyIt) 278 return false; 279 280 ++RTFTyIt; 281 } 282 283 return true; 284 } 285 286 // Helper to collect all uses of the declaration in the UsesMap. 287 unsigned collectUses(RuntimeFunctionInfo &RFI, bool CollectStats = true) { 288 unsigned NumUses = 0; 289 if (!RFI.Declaration) 290 return NumUses; 291 OMPBuilder.addAttributes(RFI.Kind, *RFI.Declaration); 292 293 if (CollectStats) { 294 NumOpenMPRuntimeFunctionsIdentified += 1; 295 NumOpenMPRuntimeFunctionUsesIdentified += RFI.Declaration->getNumUses(); 296 } 297 298 // TODO: We directly convert uses into proper calls and unknown uses. 299 for (Use &U : RFI.Declaration->uses()) { 300 if (Instruction *UserI = dyn_cast<Instruction>(U.getUser())) { 301 if (ModuleSlice.count(UserI->getFunction())) { 302 RFI.getOrCreateUseVector(UserI->getFunction()).push_back(&U); 303 ++NumUses; 304 } 305 } else { 306 RFI.getOrCreateUseVector(nullptr).push_back(&U); 307 ++NumUses; 308 } 309 } 310 return NumUses; 311 } 312 313 // Helper function to recollect uses of all runtime functions. 314 void recollectUses() { 315 for (int Idx = 0; Idx < RFIs.size(); ++Idx) { 316 auto &RFI = RFIs[static_cast<RuntimeFunction>(Idx)]; 317 RFI.clearUsesMap(); 318 collectUses(RFI, /*CollectStats*/ false); 319 } 320 } 321 322 /// Helper to initialize all runtime function information for those defined 323 /// in OpenMPKinds.def. 324 void initializeRuntimeFunctions() { 325 Module &M = *((*ModuleSlice.begin())->getParent()); 326 327 // Helper macros for handling __VA_ARGS__ in OMP_RTL 328 #define OMP_TYPE(VarName, ...) \ 329 Type *VarName = OMPBuilder.VarName; \ 330 (void)VarName; 331 332 #define OMP_ARRAY_TYPE(VarName, ...) \ 333 ArrayType *VarName##Ty = OMPBuilder.VarName##Ty; \ 334 (void)VarName##Ty; \ 335 PointerType *VarName##PtrTy = OMPBuilder.VarName##PtrTy; \ 336 (void)VarName##PtrTy; 337 338 #define OMP_FUNCTION_TYPE(VarName, ...) \ 339 FunctionType *VarName = OMPBuilder.VarName; \ 340 (void)VarName; \ 341 PointerType *VarName##Ptr = OMPBuilder.VarName##Ptr; \ 342 (void)VarName##Ptr; 343 344 #define OMP_STRUCT_TYPE(VarName, ...) \ 345 StructType *VarName = OMPBuilder.VarName; \ 346 (void)VarName; \ 347 PointerType *VarName##Ptr = OMPBuilder.VarName##Ptr; \ 348 (void)VarName##Ptr; 349 350 #define OMP_RTL(_Enum, _Name, _IsVarArg, _ReturnType, ...) \ 351 { \ 352 SmallVector<Type *, 8> ArgsTypes({__VA_ARGS__}); \ 353 Function *F = M.getFunction(_Name); \ 354 if (declMatchesRTFTypes(F, OMPBuilder._ReturnType, ArgsTypes)) { \ 355 auto &RFI = RFIs[_Enum]; \ 356 RFI.Kind = _Enum; \ 357 RFI.Name = _Name; \ 358 RFI.IsVarArg = _IsVarArg; \ 359 RFI.ReturnType = OMPBuilder._ReturnType; \ 360 RFI.ArgumentTypes = std::move(ArgsTypes); \ 361 RFI.Declaration = F; \ 362 unsigned NumUses = collectUses(RFI); \ 363 (void)NumUses; \ 364 LLVM_DEBUG({ \ 365 dbgs() << TAG << RFI.Name << (RFI.Declaration ? "" : " not") \ 366 << " found\n"; \ 367 if (RFI.Declaration) \ 368 dbgs() << TAG << "-> got " << NumUses << " uses in " \ 369 << RFI.getNumFunctionsWithUses() \ 370 << " different functions.\n"; \ 371 }); \ 372 } \ 373 } 374 #include "llvm/Frontend/OpenMP/OMPKinds.def" 375 376 // TODO: We should attach the attributes defined in OMPKinds.def. 377 } 378 379 /// Collection of known kernels (\see Kernel) in the module. 380 SmallPtrSetImpl<Kernel> &Kernels; 381 }; 382 383 /// Used to map the values physically (in the IR) stored in an offload 384 /// array, to a vector in memory. 385 struct OffloadArray { 386 /// Physical array (in the IR). 387 AllocaInst *Array = nullptr; 388 /// Mapped values. 389 SmallVector<Value *, 8> StoredValues; 390 /// Last stores made in the offload array. 391 SmallVector<StoreInst *, 8> LastAccesses; 392 393 OffloadArray() = default; 394 395 /// Initializes the OffloadArray with the values stored in \p Array before 396 /// instruction \p Before is reached. Returns false if the initialization 397 /// fails. 398 /// This MUST be used immediately after the construction of the object. 399 bool initialize(AllocaInst &Array, Instruction &Before) { 400 if (!Array.getAllocatedType()->isArrayTy()) 401 return false; 402 403 if (!getValues(Array, Before)) 404 return false; 405 406 this->Array = &Array; 407 return true; 408 } 409 410 static const unsigned BasePtrsArgNum = 2; 411 static const unsigned PtrsArgNum = 3; 412 static const unsigned SizesArgNum = 4; 413 414 private: 415 /// Traverses the BasicBlock where \p Array is, collecting the stores made to 416 /// \p Array, leaving StoredValues with the values stored before the 417 /// instruction \p Before is reached. 418 bool getValues(AllocaInst &Array, Instruction &Before) { 419 // Initialize container. 420 const uint64_t NumValues = 421 Array.getAllocatedType()->getArrayNumElements(); 422 StoredValues.assign(NumValues, nullptr); 423 LastAccesses.assign(NumValues, nullptr); 424 425 // TODO: This assumes the instruction \p Before is in the same 426 // BasicBlock as Array. Make it general, for any control flow graph. 427 BasicBlock *BB = Array.getParent(); 428 if (BB != Before.getParent()) 429 return false; 430 431 const DataLayout &DL = Array.getModule()->getDataLayout(); 432 const unsigned int PointerSize = DL.getPointerSize(); 433 434 for (Instruction &I : *BB) { 435 if (&I == &Before) 436 break; 437 438 if (!isa<StoreInst>(&I)) 439 continue; 440 441 auto *S = cast<StoreInst>(&I); 442 int64_t Offset = -1; 443 auto *Dst = GetPointerBaseWithConstantOffset(S->getPointerOperand(), 444 Offset, DL); 445 if (Dst == &Array) { 446 int64_t Idx = Offset / PointerSize; 447 StoredValues[Idx] = getUnderlyingObject(S->getValueOperand()); 448 LastAccesses[Idx] = S; 449 } 450 } 451 452 return isFilled(); 453 } 454 455 /// Returns true if all values in StoredValues and 456 /// LastAccesses are not nullptrs. 457 bool isFilled() { 458 const unsigned NumValues = StoredValues.size(); 459 for (unsigned I = 0; I < NumValues; ++I) { 460 if (!StoredValues[I] || !LastAccesses[I]) 461 return false; 462 } 463 464 return true; 465 } 466 }; 467 468 struct OpenMPOpt { 469 470 using OptimizationRemarkGetter = 471 function_ref<OptimizationRemarkEmitter &(Function *)>; 472 473 OpenMPOpt(SmallVectorImpl<Function *> &SCC, CallGraphUpdater &CGUpdater, 474 OptimizationRemarkGetter OREGetter, 475 OMPInformationCache &OMPInfoCache, Attributor &A) 476 : M(*(*SCC.begin())->getParent()), SCC(SCC), CGUpdater(CGUpdater), 477 OREGetter(OREGetter), OMPInfoCache(OMPInfoCache), A(A) {} 478 479 /// Check if any remarks are enabled for openmp-opt 480 bool remarksEnabled() { 481 auto &Ctx = M.getContext(); 482 return Ctx.getDiagHandlerPtr()->isAnyRemarkEnabled(DEBUG_TYPE); 483 } 484 485 /// Run all OpenMP optimizations on the underlying SCC/ModuleSlice. 486 bool run() { 487 if (SCC.empty()) 488 return false; 489 490 bool Changed = false; 491 492 LLVM_DEBUG(dbgs() << TAG << "Run on SCC with " << SCC.size() 493 << " functions in a slice with " 494 << OMPInfoCache.ModuleSlice.size() << " functions\n"); 495 496 if (PrintICVValues) 497 printICVs(); 498 if (PrintOpenMPKernels) 499 printKernels(); 500 501 Changed |= rewriteDeviceCodeStateMachine(); 502 503 Changed |= runAttributor(); 504 505 // Recollect uses, in case Attributor deleted any. 506 OMPInfoCache.recollectUses(); 507 508 Changed |= deduplicateRuntimeCalls(); 509 Changed |= deleteParallelRegions(); 510 if (HideMemoryTransferLatency) 511 Changed |= hideMemTransfersLatency(); 512 if (remarksEnabled()) 513 analysisGlobalization(); 514 515 return Changed; 516 } 517 518 /// Print initial ICV values for testing. 519 /// FIXME: This should be done from the Attributor once it is added. 520 void printICVs() const { 521 InternalControlVar ICVs[] = {ICV_nthreads, ICV_active_levels, ICV_cancel, 522 ICV_proc_bind}; 523 524 for (Function *F : OMPInfoCache.ModuleSlice) { 525 for (auto ICV : ICVs) { 526 auto ICVInfo = OMPInfoCache.ICVs[ICV]; 527 auto Remark = [&](OptimizationRemark OR) { 528 return OR << "OpenMP ICV " << ore::NV("OpenMPICV", ICVInfo.Name) 529 << " Value: " 530 << (ICVInfo.InitValue 531 ? ICVInfo.InitValue->getValue().toString(10, true) 532 : "IMPLEMENTATION_DEFINED"); 533 }; 534 535 emitRemarkOnFunction(F, "OpenMPICVTracker", Remark); 536 } 537 } 538 } 539 540 /// Print OpenMP GPU kernels for testing. 541 void printKernels() const { 542 for (Function *F : SCC) { 543 if (!OMPInfoCache.Kernels.count(F)) 544 continue; 545 546 auto Remark = [&](OptimizationRemark OR) { 547 return OR << "OpenMP GPU kernel " 548 << ore::NV("OpenMPGPUKernel", F->getName()) << "\n"; 549 }; 550 551 emitRemarkOnFunction(F, "OpenMPGPU", Remark); 552 } 553 } 554 555 /// Return the call if \p U is a callee use in a regular call. If \p RFI is 556 /// given it has to be the callee or a nullptr is returned. 557 static CallInst *getCallIfRegularCall( 558 Use &U, OMPInformationCache::RuntimeFunctionInfo *RFI = nullptr) { 559 CallInst *CI = dyn_cast<CallInst>(U.getUser()); 560 if (CI && CI->isCallee(&U) && !CI->hasOperandBundles() && 561 (!RFI || CI->getCalledFunction() == RFI->Declaration)) 562 return CI; 563 return nullptr; 564 } 565 566 /// Return the call if \p V is a regular call. If \p RFI is given it has to be 567 /// the callee or a nullptr is returned. 568 static CallInst *getCallIfRegularCall( 569 Value &V, OMPInformationCache::RuntimeFunctionInfo *RFI = nullptr) { 570 CallInst *CI = dyn_cast<CallInst>(&V); 571 if (CI && !CI->hasOperandBundles() && 572 (!RFI || CI->getCalledFunction() == RFI->Declaration)) 573 return CI; 574 return nullptr; 575 } 576 577 private: 578 /// Try to delete parallel regions if possible. 579 bool deleteParallelRegions() { 580 const unsigned CallbackCalleeOperand = 2; 581 582 OMPInformationCache::RuntimeFunctionInfo &RFI = 583 OMPInfoCache.RFIs[OMPRTL___kmpc_fork_call]; 584 585 if (!RFI.Declaration) 586 return false; 587 588 bool Changed = false; 589 auto DeleteCallCB = [&](Use &U, Function &) { 590 CallInst *CI = getCallIfRegularCall(U); 591 if (!CI) 592 return false; 593 auto *Fn = dyn_cast<Function>( 594 CI->getArgOperand(CallbackCalleeOperand)->stripPointerCasts()); 595 if (!Fn) 596 return false; 597 if (!Fn->onlyReadsMemory()) 598 return false; 599 if (!Fn->hasFnAttribute(Attribute::WillReturn)) 600 return false; 601 602 LLVM_DEBUG(dbgs() << TAG << "Delete read-only parallel region in " 603 << CI->getCaller()->getName() << "\n"); 604 605 auto Remark = [&](OptimizationRemark OR) { 606 return OR << "Parallel region in " 607 << ore::NV("OpenMPParallelDelete", CI->getCaller()->getName()) 608 << " deleted"; 609 }; 610 emitRemark<OptimizationRemark>(CI, "OpenMPParallelRegionDeletion", 611 Remark); 612 613 CGUpdater.removeCallSite(*CI); 614 CI->eraseFromParent(); 615 Changed = true; 616 ++NumOpenMPParallelRegionsDeleted; 617 return true; 618 }; 619 620 RFI.foreachUse(SCC, DeleteCallCB); 621 622 return Changed; 623 } 624 625 /// Try to eliminate runtime calls by reusing existing ones. 626 bool deduplicateRuntimeCalls() { 627 bool Changed = false; 628 629 RuntimeFunction DeduplicableRuntimeCallIDs[] = { 630 OMPRTL_omp_get_num_threads, 631 OMPRTL_omp_in_parallel, 632 OMPRTL_omp_get_cancellation, 633 OMPRTL_omp_get_thread_limit, 634 OMPRTL_omp_get_supported_active_levels, 635 OMPRTL_omp_get_level, 636 OMPRTL_omp_get_ancestor_thread_num, 637 OMPRTL_omp_get_team_size, 638 OMPRTL_omp_get_active_level, 639 OMPRTL_omp_in_final, 640 OMPRTL_omp_get_proc_bind, 641 OMPRTL_omp_get_num_places, 642 OMPRTL_omp_get_num_procs, 643 OMPRTL_omp_get_place_num, 644 OMPRTL_omp_get_partition_num_places, 645 OMPRTL_omp_get_partition_place_nums}; 646 647 // Global-tid is handled separately. 648 SmallSetVector<Value *, 16> GTIdArgs; 649 collectGlobalThreadIdArguments(GTIdArgs); 650 LLVM_DEBUG(dbgs() << TAG << "Found " << GTIdArgs.size() 651 << " global thread ID arguments\n"); 652 653 for (Function *F : SCC) { 654 for (auto DeduplicableRuntimeCallID : DeduplicableRuntimeCallIDs) 655 Changed |= deduplicateRuntimeCalls( 656 *F, OMPInfoCache.RFIs[DeduplicableRuntimeCallID]); 657 658 // __kmpc_global_thread_num is special as we can replace it with an 659 // argument in enough cases to make it worth trying. 660 Value *GTIdArg = nullptr; 661 for (Argument &Arg : F->args()) 662 if (GTIdArgs.count(&Arg)) { 663 GTIdArg = &Arg; 664 break; 665 } 666 Changed |= deduplicateRuntimeCalls( 667 *F, OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num], GTIdArg); 668 } 669 670 return Changed; 671 } 672 673 /// Tries to hide the latency of runtime calls that involve host to 674 /// device memory transfers by splitting them into their "issue" and "wait" 675 /// versions. The "issue" is moved upwards as much as possible. The "wait" is 676 /// moved downards as much as possible. The "issue" issues the memory transfer 677 /// asynchronously, returning a handle. The "wait" waits in the returned 678 /// handle for the memory transfer to finish. 679 bool hideMemTransfersLatency() { 680 auto &RFI = OMPInfoCache.RFIs[OMPRTL___tgt_target_data_begin_mapper]; 681 bool Changed = false; 682 auto SplitMemTransfers = [&](Use &U, Function &Decl) { 683 auto *RTCall = getCallIfRegularCall(U, &RFI); 684 if (!RTCall) 685 return false; 686 687 OffloadArray OffloadArrays[3]; 688 if (!getValuesInOffloadArrays(*RTCall, OffloadArrays)) 689 return false; 690 691 LLVM_DEBUG(dumpValuesInOffloadArrays(OffloadArrays)); 692 693 // TODO: Check if can be moved upwards. 694 bool WasSplit = false; 695 Instruction *WaitMovementPoint = canBeMovedDownwards(*RTCall); 696 if (WaitMovementPoint) 697 WasSplit = splitTargetDataBeginRTC(*RTCall, *WaitMovementPoint); 698 699 Changed |= WasSplit; 700 return WasSplit; 701 }; 702 RFI.foreachUse(SCC, SplitMemTransfers); 703 704 return Changed; 705 } 706 707 void analysisGlobalization() { 708 auto &RFI = 709 OMPInfoCache.RFIs[OMPRTL___kmpc_data_sharing_coalesced_push_stack]; 710 711 auto checkGlobalization = [&](Use &U, Function &Decl) { 712 if (CallInst *CI = getCallIfRegularCall(U, &RFI)) { 713 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 714 return ORA 715 << "Found thread data sharing on the GPU. " 716 << "Expect degraded performance due to data globalization."; 717 }; 718 emitRemark<OptimizationRemarkAnalysis>(CI, "OpenMPGlobalization", 719 Remark); 720 } 721 722 return false; 723 }; 724 725 RFI.foreachUse(SCC, checkGlobalization); 726 return; 727 } 728 729 /// Maps the values stored in the offload arrays passed as arguments to 730 /// \p RuntimeCall into the offload arrays in \p OAs. 731 bool getValuesInOffloadArrays(CallInst &RuntimeCall, 732 MutableArrayRef<OffloadArray> OAs) { 733 assert(OAs.size() == 3 && "Need space for three offload arrays!"); 734 735 // A runtime call that involves memory offloading looks something like: 736 // call void @__tgt_target_data_begin_mapper(arg0, arg1, 737 // i8** %offload_baseptrs, i8** %offload_ptrs, i64* %offload_sizes, 738 // ...) 739 // So, the idea is to access the allocas that allocate space for these 740 // offload arrays, offload_baseptrs, offload_ptrs, offload_sizes. 741 // Therefore: 742 // i8** %offload_baseptrs. 743 Value *BasePtrsArg = 744 RuntimeCall.getArgOperand(OffloadArray::BasePtrsArgNum); 745 // i8** %offload_ptrs. 746 Value *PtrsArg = RuntimeCall.getArgOperand(OffloadArray::PtrsArgNum); 747 // i8** %offload_sizes. 748 Value *SizesArg = RuntimeCall.getArgOperand(OffloadArray::SizesArgNum); 749 750 // Get values stored in **offload_baseptrs. 751 auto *V = getUnderlyingObject(BasePtrsArg); 752 if (!isa<AllocaInst>(V)) 753 return false; 754 auto *BasePtrsArray = cast<AllocaInst>(V); 755 if (!OAs[0].initialize(*BasePtrsArray, RuntimeCall)) 756 return false; 757 758 // Get values stored in **offload_baseptrs. 759 V = getUnderlyingObject(PtrsArg); 760 if (!isa<AllocaInst>(V)) 761 return false; 762 auto *PtrsArray = cast<AllocaInst>(V); 763 if (!OAs[1].initialize(*PtrsArray, RuntimeCall)) 764 return false; 765 766 // Get values stored in **offload_sizes. 767 V = getUnderlyingObject(SizesArg); 768 // If it's a [constant] global array don't analyze it. 769 if (isa<GlobalValue>(V)) 770 return isa<Constant>(V); 771 if (!isa<AllocaInst>(V)) 772 return false; 773 774 auto *SizesArray = cast<AllocaInst>(V); 775 if (!OAs[2].initialize(*SizesArray, RuntimeCall)) 776 return false; 777 778 return true; 779 } 780 781 /// Prints the values in the OffloadArrays \p OAs using LLVM_DEBUG. 782 /// For now this is a way to test that the function getValuesInOffloadArrays 783 /// is working properly. 784 /// TODO: Move this to a unittest when unittests are available for OpenMPOpt. 785 void dumpValuesInOffloadArrays(ArrayRef<OffloadArray> OAs) { 786 assert(OAs.size() == 3 && "There are three offload arrays to debug!"); 787 788 LLVM_DEBUG(dbgs() << TAG << " Successfully got offload values:\n"); 789 std::string ValuesStr; 790 raw_string_ostream Printer(ValuesStr); 791 std::string Separator = " --- "; 792 793 for (auto *BP : OAs[0].StoredValues) { 794 BP->print(Printer); 795 Printer << Separator; 796 } 797 LLVM_DEBUG(dbgs() << "\t\toffload_baseptrs: " << Printer.str() << "\n"); 798 ValuesStr.clear(); 799 800 for (auto *P : OAs[1].StoredValues) { 801 P->print(Printer); 802 Printer << Separator; 803 } 804 LLVM_DEBUG(dbgs() << "\t\toffload_ptrs: " << Printer.str() << "\n"); 805 ValuesStr.clear(); 806 807 for (auto *S : OAs[2].StoredValues) { 808 S->print(Printer); 809 Printer << Separator; 810 } 811 LLVM_DEBUG(dbgs() << "\t\toffload_sizes: " << Printer.str() << "\n"); 812 } 813 814 /// Returns the instruction where the "wait" counterpart \p RuntimeCall can be 815 /// moved. Returns nullptr if the movement is not possible, or not worth it. 816 Instruction *canBeMovedDownwards(CallInst &RuntimeCall) { 817 // FIXME: This traverses only the BasicBlock where RuntimeCall is. 818 // Make it traverse the CFG. 819 820 Instruction *CurrentI = &RuntimeCall; 821 bool IsWorthIt = false; 822 while ((CurrentI = CurrentI->getNextNode())) { 823 824 // TODO: Once we detect the regions to be offloaded we should use the 825 // alias analysis manager to check if CurrentI may modify one of 826 // the offloaded regions. 827 if (CurrentI->mayHaveSideEffects() || CurrentI->mayReadFromMemory()) { 828 if (IsWorthIt) 829 return CurrentI; 830 831 return nullptr; 832 } 833 834 // FIXME: For now if we move it over anything without side effect 835 // is worth it. 836 IsWorthIt = true; 837 } 838 839 // Return end of BasicBlock. 840 return RuntimeCall.getParent()->getTerminator(); 841 } 842 843 /// Splits \p RuntimeCall into its "issue" and "wait" counterparts. 844 bool splitTargetDataBeginRTC(CallInst &RuntimeCall, 845 Instruction &WaitMovementPoint) { 846 // Create stack allocated handle (__tgt_async_info) at the beginning of the 847 // function. Used for storing information of the async transfer, allowing to 848 // wait on it later. 849 auto &IRBuilder = OMPInfoCache.OMPBuilder; 850 auto *F = RuntimeCall.getCaller(); 851 Instruction *FirstInst = &(F->getEntryBlock().front()); 852 AllocaInst *Handle = new AllocaInst( 853 IRBuilder.AsyncInfo, F->getAddressSpace(), "handle", FirstInst); 854 855 // Add "issue" runtime call declaration: 856 // declare %struct.tgt_async_info @__tgt_target_data_begin_issue(i64, i32, 857 // i8**, i8**, i64*, i64*) 858 FunctionCallee IssueDecl = IRBuilder.getOrCreateRuntimeFunction( 859 M, OMPRTL___tgt_target_data_begin_mapper_issue); 860 861 // Change RuntimeCall call site for its asynchronous version. 862 SmallVector<Value *, 8> Args; 863 for (auto &Arg : RuntimeCall.args()) 864 Args.push_back(Arg.get()); 865 Args.push_back(Handle); 866 867 CallInst *IssueCallsite = 868 CallInst::Create(IssueDecl, Args, /*NameStr=*/"", &RuntimeCall); 869 RuntimeCall.eraseFromParent(); 870 871 // Add "wait" runtime call declaration: 872 // declare void @__tgt_target_data_begin_wait(i64, %struct.__tgt_async_info) 873 FunctionCallee WaitDecl = IRBuilder.getOrCreateRuntimeFunction( 874 M, OMPRTL___tgt_target_data_begin_mapper_wait); 875 876 // Add call site to WaitDecl. 877 const unsigned DeviceIDArgNum = 0; 878 Value *WaitParams[2] = { 879 IssueCallsite->getArgOperand(DeviceIDArgNum), // device_id. 880 Handle // handle to wait on. 881 }; 882 CallInst::Create(WaitDecl, WaitParams, /*NameStr=*/"", &WaitMovementPoint); 883 884 return true; 885 } 886 887 static Value *combinedIdentStruct(Value *CurrentIdent, Value *NextIdent, 888 bool GlobalOnly, bool &SingleChoice) { 889 if (CurrentIdent == NextIdent) 890 return CurrentIdent; 891 892 // TODO: Figure out how to actually combine multiple debug locations. For 893 // now we just keep an existing one if there is a single choice. 894 if (!GlobalOnly || isa<GlobalValue>(NextIdent)) { 895 SingleChoice = !CurrentIdent; 896 return NextIdent; 897 } 898 return nullptr; 899 } 900 901 /// Return an `struct ident_t*` value that represents the ones used in the 902 /// calls of \p RFI inside of \p F. If \p GlobalOnly is true, we will not 903 /// return a local `struct ident_t*`. For now, if we cannot find a suitable 904 /// return value we create one from scratch. We also do not yet combine 905 /// information, e.g., the source locations, see combinedIdentStruct. 906 Value * 907 getCombinedIdentFromCallUsesIn(OMPInformationCache::RuntimeFunctionInfo &RFI, 908 Function &F, bool GlobalOnly) { 909 bool SingleChoice = true; 910 Value *Ident = nullptr; 911 auto CombineIdentStruct = [&](Use &U, Function &Caller) { 912 CallInst *CI = getCallIfRegularCall(U, &RFI); 913 if (!CI || &F != &Caller) 914 return false; 915 Ident = combinedIdentStruct(Ident, CI->getArgOperand(0), 916 /* GlobalOnly */ true, SingleChoice); 917 return false; 918 }; 919 RFI.foreachUse(SCC, CombineIdentStruct); 920 921 if (!Ident || !SingleChoice) { 922 // The IRBuilder uses the insertion block to get to the module, this is 923 // unfortunate but we work around it for now. 924 if (!OMPInfoCache.OMPBuilder.getInsertionPoint().getBlock()) 925 OMPInfoCache.OMPBuilder.updateToLocation(OpenMPIRBuilder::InsertPointTy( 926 &F.getEntryBlock(), F.getEntryBlock().begin())); 927 // Create a fallback location if non was found. 928 // TODO: Use the debug locations of the calls instead. 929 Constant *Loc = OMPInfoCache.OMPBuilder.getOrCreateDefaultSrcLocStr(); 930 Ident = OMPInfoCache.OMPBuilder.getOrCreateIdent(Loc); 931 } 932 return Ident; 933 } 934 935 /// Try to eliminate calls of \p RFI in \p F by reusing an existing one or 936 /// \p ReplVal if given. 937 bool deduplicateRuntimeCalls(Function &F, 938 OMPInformationCache::RuntimeFunctionInfo &RFI, 939 Value *ReplVal = nullptr) { 940 auto *UV = RFI.getUseVector(F); 941 if (!UV || UV->size() + (ReplVal != nullptr) < 2) 942 return false; 943 944 LLVM_DEBUG( 945 dbgs() << TAG << "Deduplicate " << UV->size() << " uses of " << RFI.Name 946 << (ReplVal ? " with an existing value\n" : "\n") << "\n"); 947 948 assert((!ReplVal || (isa<Argument>(ReplVal) && 949 cast<Argument>(ReplVal)->getParent() == &F)) && 950 "Unexpected replacement value!"); 951 952 // TODO: Use dominance to find a good position instead. 953 auto CanBeMoved = [this](CallBase &CB) { 954 unsigned NumArgs = CB.getNumArgOperands(); 955 if (NumArgs == 0) 956 return true; 957 if (CB.getArgOperand(0)->getType() != OMPInfoCache.OMPBuilder.IdentPtr) 958 return false; 959 for (unsigned u = 1; u < NumArgs; ++u) 960 if (isa<Instruction>(CB.getArgOperand(u))) 961 return false; 962 return true; 963 }; 964 965 if (!ReplVal) { 966 for (Use *U : *UV) 967 if (CallInst *CI = getCallIfRegularCall(*U, &RFI)) { 968 if (!CanBeMoved(*CI)) 969 continue; 970 971 auto Remark = [&](OptimizationRemark OR) { 972 auto newLoc = &*F.getEntryBlock().getFirstInsertionPt(); 973 return OR << "OpenMP runtime call " 974 << ore::NV("OpenMPOptRuntime", RFI.Name) << " moved to " 975 << ore::NV("OpenMPRuntimeMoves", newLoc->getDebugLoc()); 976 }; 977 emitRemark<OptimizationRemark>(CI, "OpenMPRuntimeCodeMotion", Remark); 978 979 CI->moveBefore(&*F.getEntryBlock().getFirstInsertionPt()); 980 ReplVal = CI; 981 break; 982 } 983 if (!ReplVal) 984 return false; 985 } 986 987 // If we use a call as a replacement value we need to make sure the ident is 988 // valid at the new location. For now we just pick a global one, either 989 // existing and used by one of the calls, or created from scratch. 990 if (CallBase *CI = dyn_cast<CallBase>(ReplVal)) { 991 if (CI->getNumArgOperands() > 0 && 992 CI->getArgOperand(0)->getType() == OMPInfoCache.OMPBuilder.IdentPtr) { 993 Value *Ident = getCombinedIdentFromCallUsesIn(RFI, F, 994 /* GlobalOnly */ true); 995 CI->setArgOperand(0, Ident); 996 } 997 } 998 999 bool Changed = false; 1000 auto ReplaceAndDeleteCB = [&](Use &U, Function &Caller) { 1001 CallInst *CI = getCallIfRegularCall(U, &RFI); 1002 if (!CI || CI == ReplVal || &F != &Caller) 1003 return false; 1004 assert(CI->getCaller() == &F && "Unexpected call!"); 1005 1006 auto Remark = [&](OptimizationRemark OR) { 1007 return OR << "OpenMP runtime call " 1008 << ore::NV("OpenMPOptRuntime", RFI.Name) << " deduplicated"; 1009 }; 1010 emitRemark<OptimizationRemark>(CI, "OpenMPRuntimeDeduplicated", Remark); 1011 1012 CGUpdater.removeCallSite(*CI); 1013 CI->replaceAllUsesWith(ReplVal); 1014 CI->eraseFromParent(); 1015 ++NumOpenMPRuntimeCallsDeduplicated; 1016 Changed = true; 1017 return true; 1018 }; 1019 RFI.foreachUse(SCC, ReplaceAndDeleteCB); 1020 1021 return Changed; 1022 } 1023 1024 /// Collect arguments that represent the global thread id in \p GTIdArgs. 1025 void collectGlobalThreadIdArguments(SmallSetVector<Value *, 16> >IdArgs) { 1026 // TODO: Below we basically perform a fixpoint iteration with a pessimistic 1027 // initialization. We could define an AbstractAttribute instead and 1028 // run the Attributor here once it can be run as an SCC pass. 1029 1030 // Helper to check the argument \p ArgNo at all call sites of \p F for 1031 // a GTId. 1032 auto CallArgOpIsGTId = [&](Function &F, unsigned ArgNo, CallInst &RefCI) { 1033 if (!F.hasLocalLinkage()) 1034 return false; 1035 for (Use &U : F.uses()) { 1036 if (CallInst *CI = getCallIfRegularCall(U)) { 1037 Value *ArgOp = CI->getArgOperand(ArgNo); 1038 if (CI == &RefCI || GTIdArgs.count(ArgOp) || 1039 getCallIfRegularCall( 1040 *ArgOp, &OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num])) 1041 continue; 1042 } 1043 return false; 1044 } 1045 return true; 1046 }; 1047 1048 // Helper to identify uses of a GTId as GTId arguments. 1049 auto AddUserArgs = [&](Value >Id) { 1050 for (Use &U : GTId.uses()) 1051 if (CallInst *CI = dyn_cast<CallInst>(U.getUser())) 1052 if (CI->isArgOperand(&U)) 1053 if (Function *Callee = CI->getCalledFunction()) 1054 if (CallArgOpIsGTId(*Callee, U.getOperandNo(), *CI)) 1055 GTIdArgs.insert(Callee->getArg(U.getOperandNo())); 1056 }; 1057 1058 // The argument users of __kmpc_global_thread_num calls are GTIds. 1059 OMPInformationCache::RuntimeFunctionInfo &GlobThreadNumRFI = 1060 OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num]; 1061 1062 GlobThreadNumRFI.foreachUse(SCC, [&](Use &U, Function &F) { 1063 if (CallInst *CI = getCallIfRegularCall(U, &GlobThreadNumRFI)) 1064 AddUserArgs(*CI); 1065 return false; 1066 }); 1067 1068 // Transitively search for more arguments by looking at the users of the 1069 // ones we know already. During the search the GTIdArgs vector is extended 1070 // so we cannot cache the size nor can we use a range based for. 1071 for (unsigned u = 0; u < GTIdArgs.size(); ++u) 1072 AddUserArgs(*GTIdArgs[u]); 1073 } 1074 1075 /// Kernel (=GPU) optimizations and utility functions 1076 /// 1077 ///{{ 1078 1079 /// Check if \p F is a kernel, hence entry point for target offloading. 1080 bool isKernel(Function &F) { return OMPInfoCache.Kernels.count(&F); } 1081 1082 /// Cache to remember the unique kernel for a function. 1083 DenseMap<Function *, Optional<Kernel>> UniqueKernelMap; 1084 1085 /// Find the unique kernel that will execute \p F, if any. 1086 Kernel getUniqueKernelFor(Function &F); 1087 1088 /// Find the unique kernel that will execute \p I, if any. 1089 Kernel getUniqueKernelFor(Instruction &I) { 1090 return getUniqueKernelFor(*I.getFunction()); 1091 } 1092 1093 /// Rewrite the device (=GPU) code state machine create in non-SPMD mode in 1094 /// the cases we can avoid taking the address of a function. 1095 bool rewriteDeviceCodeStateMachine(); 1096 1097 /// 1098 ///}} 1099 1100 /// Emit a remark generically 1101 /// 1102 /// This template function can be used to generically emit a remark. The 1103 /// RemarkKind should be one of the following: 1104 /// - OptimizationRemark to indicate a successful optimization attempt 1105 /// - OptimizationRemarkMissed to report a failed optimization attempt 1106 /// - OptimizationRemarkAnalysis to provide additional information about an 1107 /// optimization attempt 1108 /// 1109 /// The remark is built using a callback function provided by the caller that 1110 /// takes a RemarkKind as input and returns a RemarkKind. 1111 template <typename RemarkKind, 1112 typename RemarkCallBack = function_ref<RemarkKind(RemarkKind &&)>> 1113 void emitRemark(Instruction *Inst, StringRef RemarkName, 1114 RemarkCallBack &&RemarkCB) const { 1115 Function *F = Inst->getParent()->getParent(); 1116 auto &ORE = OREGetter(F); 1117 1118 ORE.emit( 1119 [&]() { return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, Inst)); }); 1120 } 1121 1122 /// Emit a remark on a function. Since only OptimizationRemark is supporting 1123 /// this, it can't be made generic. 1124 void 1125 emitRemarkOnFunction(Function *F, StringRef RemarkName, 1126 function_ref<OptimizationRemark(OptimizationRemark &&)> 1127 &&RemarkCB) const { 1128 auto &ORE = OREGetter(F); 1129 1130 ORE.emit([&]() { 1131 return RemarkCB(OptimizationRemark(DEBUG_TYPE, RemarkName, F)); 1132 }); 1133 } 1134 1135 /// The underlying module. 1136 Module &M; 1137 1138 /// The SCC we are operating on. 1139 SmallVectorImpl<Function *> &SCC; 1140 1141 /// Callback to update the call graph, the first argument is a removed call, 1142 /// the second an optional replacement call. 1143 CallGraphUpdater &CGUpdater; 1144 1145 /// Callback to get an OptimizationRemarkEmitter from a Function * 1146 OptimizationRemarkGetter OREGetter; 1147 1148 /// OpenMP-specific information cache. Also Used for Attributor runs. 1149 OMPInformationCache &OMPInfoCache; 1150 1151 /// Attributor instance. 1152 Attributor &A; 1153 1154 /// Helper function to run Attributor on SCC. 1155 bool runAttributor() { 1156 if (SCC.empty()) 1157 return false; 1158 1159 registerAAs(); 1160 1161 ChangeStatus Changed = A.run(); 1162 1163 LLVM_DEBUG(dbgs() << "[Attributor] Done with " << SCC.size() 1164 << " functions, result: " << Changed << ".\n"); 1165 1166 return Changed == ChangeStatus::CHANGED; 1167 } 1168 1169 /// Populate the Attributor with abstract attribute opportunities in the 1170 /// function. 1171 void registerAAs() { 1172 if (SCC.empty()) 1173 return; 1174 1175 // Create CallSite AA for all Getters. 1176 for (int Idx = 0; Idx < OMPInfoCache.ICVs.size() - 1; ++Idx) { 1177 auto ICVInfo = OMPInfoCache.ICVs[static_cast<InternalControlVar>(Idx)]; 1178 1179 auto &GetterRFI = OMPInfoCache.RFIs[ICVInfo.Getter]; 1180 1181 auto CreateAA = [&](Use &U, Function &Caller) { 1182 CallInst *CI = OpenMPOpt::getCallIfRegularCall(U, &GetterRFI); 1183 if (!CI) 1184 return false; 1185 1186 auto &CB = cast<CallBase>(*CI); 1187 1188 IRPosition CBPos = IRPosition::callsite_function(CB); 1189 A.getOrCreateAAFor<AAICVTracker>(CBPos); 1190 return false; 1191 }; 1192 1193 GetterRFI.foreachUse(SCC, CreateAA); 1194 } 1195 } 1196 }; 1197 1198 Kernel OpenMPOpt::getUniqueKernelFor(Function &F) { 1199 if (!OMPInfoCache.ModuleSlice.count(&F)) 1200 return nullptr; 1201 1202 // Use a scope to keep the lifetime of the CachedKernel short. 1203 { 1204 Optional<Kernel> &CachedKernel = UniqueKernelMap[&F]; 1205 if (CachedKernel) 1206 return *CachedKernel; 1207 1208 // TODO: We should use an AA to create an (optimistic and callback 1209 // call-aware) call graph. For now we stick to simple patterns that 1210 // are less powerful, basically the worst fixpoint. 1211 if (isKernel(F)) { 1212 CachedKernel = Kernel(&F); 1213 return *CachedKernel; 1214 } 1215 1216 CachedKernel = nullptr; 1217 if (!F.hasLocalLinkage()) 1218 return nullptr; 1219 } 1220 1221 auto GetUniqueKernelForUse = [&](const Use &U) -> Kernel { 1222 if (auto *Cmp = dyn_cast<ICmpInst>(U.getUser())) { 1223 // Allow use in equality comparisons. 1224 if (Cmp->isEquality()) 1225 return getUniqueKernelFor(*Cmp); 1226 return nullptr; 1227 } 1228 if (auto *CB = dyn_cast<CallBase>(U.getUser())) { 1229 // Allow direct calls. 1230 if (CB->isCallee(&U)) 1231 return getUniqueKernelFor(*CB); 1232 // Allow the use in __kmpc_kernel_prepare_parallel calls. 1233 if (Function *Callee = CB->getCalledFunction()) 1234 if (Callee->getName() == "__kmpc_kernel_prepare_parallel") 1235 return getUniqueKernelFor(*CB); 1236 return nullptr; 1237 } 1238 // Disallow every other use. 1239 return nullptr; 1240 }; 1241 1242 // TODO: In the future we want to track more than just a unique kernel. 1243 SmallPtrSet<Kernel, 2> PotentialKernels; 1244 OMPInformationCache::foreachUse(F, [&](const Use &U) { 1245 PotentialKernels.insert(GetUniqueKernelForUse(U)); 1246 }); 1247 1248 Kernel K = nullptr; 1249 if (PotentialKernels.size() == 1) 1250 K = *PotentialKernels.begin(); 1251 1252 // Cache the result. 1253 UniqueKernelMap[&F] = K; 1254 1255 return K; 1256 } 1257 1258 bool OpenMPOpt::rewriteDeviceCodeStateMachine() { 1259 OMPInformationCache::RuntimeFunctionInfo &KernelPrepareParallelRFI = 1260 OMPInfoCache.RFIs[OMPRTL___kmpc_kernel_prepare_parallel]; 1261 1262 bool Changed = false; 1263 if (!KernelPrepareParallelRFI) 1264 return Changed; 1265 1266 for (Function *F : SCC) { 1267 1268 // Check if the function is uses in a __kmpc_kernel_prepare_parallel call at 1269 // all. 1270 bool UnknownUse = false; 1271 bool KernelPrepareUse = false; 1272 unsigned NumDirectCalls = 0; 1273 1274 SmallVector<Use *, 2> ToBeReplacedStateMachineUses; 1275 OMPInformationCache::foreachUse(*F, [&](Use &U) { 1276 if (auto *CB = dyn_cast<CallBase>(U.getUser())) 1277 if (CB->isCallee(&U)) { 1278 ++NumDirectCalls; 1279 return; 1280 } 1281 1282 if (isa<ICmpInst>(U.getUser())) { 1283 ToBeReplacedStateMachineUses.push_back(&U); 1284 return; 1285 } 1286 if (!KernelPrepareUse && OpenMPOpt::getCallIfRegularCall( 1287 *U.getUser(), &KernelPrepareParallelRFI)) { 1288 KernelPrepareUse = true; 1289 ToBeReplacedStateMachineUses.push_back(&U); 1290 return; 1291 } 1292 UnknownUse = true; 1293 }); 1294 1295 // Do not emit a remark if we haven't seen a __kmpc_kernel_prepare_parallel 1296 // use. 1297 if (!KernelPrepareUse) 1298 continue; 1299 1300 { 1301 auto Remark = [&](OptimizationRemark OR) { 1302 return OR << "Found a parallel region that is called in a target " 1303 "region but not part of a combined target construct nor " 1304 "nesed inside a target construct without intermediate " 1305 "code. This can lead to excessive register usage for " 1306 "unrelated target regions in the same translation unit " 1307 "due to spurious call edges assumed by ptxas."; 1308 }; 1309 emitRemarkOnFunction(F, "OpenMPParallelRegionInNonSPMD", Remark); 1310 } 1311 1312 // If this ever hits, we should investigate. 1313 // TODO: Checking the number of uses is not a necessary restriction and 1314 // should be lifted. 1315 if (UnknownUse || NumDirectCalls != 1 || 1316 ToBeReplacedStateMachineUses.size() != 2) { 1317 { 1318 auto Remark = [&](OptimizationRemark OR) { 1319 return OR << "Parallel region is used in " 1320 << (UnknownUse ? "unknown" : "unexpected") 1321 << " ways; will not attempt to rewrite the state machine."; 1322 }; 1323 emitRemarkOnFunction(F, "OpenMPParallelRegionInNonSPMD", Remark); 1324 } 1325 continue; 1326 } 1327 1328 // Even if we have __kmpc_kernel_prepare_parallel calls, we (for now) give 1329 // up if the function is not called from a unique kernel. 1330 Kernel K = getUniqueKernelFor(*F); 1331 if (!K) { 1332 { 1333 auto Remark = [&](OptimizationRemark OR) { 1334 return OR << "Parallel region is not known to be called from a " 1335 "unique single target region, maybe the surrounding " 1336 "function has external linkage?; will not attempt to " 1337 "rewrite the state machine use."; 1338 }; 1339 emitRemarkOnFunction(F, "OpenMPParallelRegionInMultipleKernesl", 1340 Remark); 1341 } 1342 continue; 1343 } 1344 1345 // We now know F is a parallel body function called only from the kernel K. 1346 // We also identified the state machine uses in which we replace the 1347 // function pointer by a new global symbol for identification purposes. This 1348 // ensures only direct calls to the function are left. 1349 1350 { 1351 auto RemarkParalleRegion = [&](OptimizationRemark OR) { 1352 return OR << "Specialize parallel region that is only reached from a " 1353 "single target region to avoid spurious call edges and " 1354 "excessive register usage in other target regions. " 1355 "(parallel region ID: " 1356 << ore::NV("OpenMPParallelRegion", F->getName()) 1357 << ", kernel ID: " 1358 << ore::NV("OpenMPTargetRegion", K->getName()) << ")"; 1359 }; 1360 emitRemarkOnFunction(F, "OpenMPParallelRegionInNonSPMD", 1361 RemarkParalleRegion); 1362 auto RemarkKernel = [&](OptimizationRemark OR) { 1363 return OR << "Target region containing the parallel region that is " 1364 "specialized. (parallel region ID: " 1365 << ore::NV("OpenMPParallelRegion", F->getName()) 1366 << ", kernel ID: " 1367 << ore::NV("OpenMPTargetRegion", K->getName()) << ")"; 1368 }; 1369 emitRemarkOnFunction(K, "OpenMPParallelRegionInNonSPMD", RemarkKernel); 1370 } 1371 1372 Module &M = *F->getParent(); 1373 Type *Int8Ty = Type::getInt8Ty(M.getContext()); 1374 1375 auto *ID = new GlobalVariable( 1376 M, Int8Ty, /* isConstant */ true, GlobalValue::PrivateLinkage, 1377 UndefValue::get(Int8Ty), F->getName() + ".ID"); 1378 1379 for (Use *U : ToBeReplacedStateMachineUses) 1380 U->set(ConstantExpr::getBitCast(ID, U->get()->getType())); 1381 1382 ++NumOpenMPParallelRegionsReplacedInGPUStateMachine; 1383 1384 Changed = true; 1385 } 1386 1387 return Changed; 1388 } 1389 1390 /// Abstract Attribute for tracking ICV values. 1391 struct AAICVTracker : public StateWrapper<BooleanState, AbstractAttribute> { 1392 using Base = StateWrapper<BooleanState, AbstractAttribute>; 1393 AAICVTracker(const IRPosition &IRP, Attributor &A) : Base(IRP) {} 1394 1395 void initialize(Attributor &A) override { 1396 Function *F = getAnchorScope(); 1397 if (!F || !A.isFunctionIPOAmendable(*F)) 1398 indicatePessimisticFixpoint(); 1399 } 1400 1401 /// Returns true if value is assumed to be tracked. 1402 bool isAssumedTracked() const { return getAssumed(); } 1403 1404 /// Returns true if value is known to be tracked. 1405 bool isKnownTracked() const { return getAssumed(); } 1406 1407 /// Create an abstract attribute biew for the position \p IRP. 1408 static AAICVTracker &createForPosition(const IRPosition &IRP, Attributor &A); 1409 1410 /// Return the value with which \p I can be replaced for specific \p ICV. 1411 virtual Optional<Value *> getReplacementValue(InternalControlVar ICV, 1412 const Instruction *I, 1413 Attributor &A) const { 1414 return None; 1415 } 1416 1417 /// Return an assumed unique ICV value if a single candidate is found. If 1418 /// there cannot be one, return a nullptr. If it is not clear yet, return the 1419 /// Optional::NoneType. 1420 virtual Optional<Value *> 1421 getUniqueReplacementValue(InternalControlVar ICV) const = 0; 1422 1423 // Currently only nthreads is being tracked. 1424 // this array will only grow with time. 1425 InternalControlVar TrackableICVs[1] = {ICV_nthreads}; 1426 1427 /// See AbstractAttribute::getName() 1428 const std::string getName() const override { return "AAICVTracker"; } 1429 1430 /// See AbstractAttribute::getIdAddr() 1431 const char *getIdAddr() const override { return &ID; } 1432 1433 /// This function should return true if the type of the \p AA is AAICVTracker 1434 static bool classof(const AbstractAttribute *AA) { 1435 return (AA->getIdAddr() == &ID); 1436 } 1437 1438 static const char ID; 1439 }; 1440 1441 struct AAICVTrackerFunction : public AAICVTracker { 1442 AAICVTrackerFunction(const IRPosition &IRP, Attributor &A) 1443 : AAICVTracker(IRP, A) {} 1444 1445 // FIXME: come up with better string. 1446 const std::string getAsStr() const override { return "ICVTrackerFunction"; } 1447 1448 // FIXME: come up with some stats. 1449 void trackStatistics() const override {} 1450 1451 /// We don't manifest anything for this AA. 1452 ChangeStatus manifest(Attributor &A) override { 1453 return ChangeStatus::UNCHANGED; 1454 } 1455 1456 // Map of ICV to their values at specific program point. 1457 EnumeratedArray<DenseMap<Instruction *, Value *>, InternalControlVar, 1458 InternalControlVar::ICV___last> 1459 ICVReplacementValuesMap; 1460 1461 ChangeStatus updateImpl(Attributor &A) override { 1462 ChangeStatus HasChanged = ChangeStatus::UNCHANGED; 1463 1464 Function *F = getAnchorScope(); 1465 1466 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 1467 1468 for (InternalControlVar ICV : TrackableICVs) { 1469 auto &SetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Setter]; 1470 1471 auto &ValuesMap = ICVReplacementValuesMap[ICV]; 1472 auto TrackValues = [&](Use &U, Function &) { 1473 CallInst *CI = OpenMPOpt::getCallIfRegularCall(U); 1474 if (!CI) 1475 return false; 1476 1477 // FIXME: handle setters with more that 1 arguments. 1478 /// Track new value. 1479 if (ValuesMap.insert(std::make_pair(CI, CI->getArgOperand(0))).second) 1480 HasChanged = ChangeStatus::CHANGED; 1481 1482 return false; 1483 }; 1484 1485 auto CallCheck = [&](Instruction &I) { 1486 Optional<Value *> ReplVal = getValueForCall(A, &I, ICV); 1487 if (ReplVal.hasValue() && 1488 ValuesMap.insert(std::make_pair(&I, *ReplVal)).second) 1489 HasChanged = ChangeStatus::CHANGED; 1490 1491 return true; 1492 }; 1493 1494 // Track all changes of an ICV. 1495 SetterRFI.foreachUse(TrackValues, F); 1496 1497 A.checkForAllInstructions(CallCheck, *this, {Instruction::Call}, 1498 /* CheckBBLivenessOnly */ true); 1499 1500 /// TODO: Figure out a way to avoid adding entry in 1501 /// ICVReplacementValuesMap 1502 Instruction *Entry = &F->getEntryBlock().front(); 1503 if (HasChanged == ChangeStatus::CHANGED && !ValuesMap.count(Entry)) 1504 ValuesMap.insert(std::make_pair(Entry, nullptr)); 1505 } 1506 1507 return HasChanged; 1508 } 1509 1510 /// Hepler to check if \p I is a call and get the value for it if it is 1511 /// unique. 1512 Optional<Value *> getValueForCall(Attributor &A, const Instruction *I, 1513 InternalControlVar &ICV) const { 1514 1515 const auto *CB = dyn_cast<CallBase>(I); 1516 if (!CB) 1517 return None; 1518 1519 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 1520 auto &GetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Getter]; 1521 auto &SetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Setter]; 1522 Function *CalledFunction = CB->getCalledFunction(); 1523 1524 // Indirect call, assume ICV changes. 1525 if (CalledFunction == nullptr) 1526 return nullptr; 1527 if (CalledFunction == GetterRFI.Declaration) 1528 return None; 1529 if (CalledFunction == SetterRFI.Declaration) { 1530 if (ICVReplacementValuesMap[ICV].count(I)) 1531 return ICVReplacementValuesMap[ICV].lookup(I); 1532 1533 return nullptr; 1534 } 1535 1536 // Since we don't know, assume it changes the ICV. 1537 if (CalledFunction->isDeclaration()) 1538 return nullptr; 1539 1540 const auto &ICVTrackingAA = 1541 A.getAAFor<AAICVTracker>(*this, IRPosition::callsite_returned(*CB)); 1542 1543 if (ICVTrackingAA.isAssumedTracked()) 1544 return ICVTrackingAA.getUniqueReplacementValue(ICV); 1545 1546 // If we don't know, assume it changes. 1547 return nullptr; 1548 } 1549 1550 // We don't check unique value for a function, so return None. 1551 Optional<Value *> 1552 getUniqueReplacementValue(InternalControlVar ICV) const override { 1553 return None; 1554 } 1555 1556 /// Return the value with which \p I can be replaced for specific \p ICV. 1557 Optional<Value *> getReplacementValue(InternalControlVar ICV, 1558 const Instruction *I, 1559 Attributor &A) const override { 1560 const auto &ValuesMap = ICVReplacementValuesMap[ICV]; 1561 if (ValuesMap.count(I)) 1562 return ValuesMap.lookup(I); 1563 1564 SmallVector<const Instruction *, 16> Worklist; 1565 SmallPtrSet<const Instruction *, 16> Visited; 1566 Worklist.push_back(I); 1567 1568 Optional<Value *> ReplVal; 1569 1570 while (!Worklist.empty()) { 1571 const Instruction *CurrInst = Worklist.pop_back_val(); 1572 if (!Visited.insert(CurrInst).second) 1573 continue; 1574 1575 const BasicBlock *CurrBB = CurrInst->getParent(); 1576 1577 // Go up and look for all potential setters/calls that might change the 1578 // ICV. 1579 while ((CurrInst = CurrInst->getPrevNode())) { 1580 if (ValuesMap.count(CurrInst)) { 1581 Optional<Value *> NewReplVal = ValuesMap.lookup(CurrInst); 1582 // Unknown value, track new. 1583 if (!ReplVal.hasValue()) { 1584 ReplVal = NewReplVal; 1585 break; 1586 } 1587 1588 // If we found a new value, we can't know the icv value anymore. 1589 if (NewReplVal.hasValue()) 1590 if (ReplVal != NewReplVal) 1591 return nullptr; 1592 1593 break; 1594 } 1595 1596 Optional<Value *> NewReplVal = getValueForCall(A, CurrInst, ICV); 1597 if (!NewReplVal.hasValue()) 1598 continue; 1599 1600 // Unknown value, track new. 1601 if (!ReplVal.hasValue()) { 1602 ReplVal = NewReplVal; 1603 break; 1604 } 1605 1606 // if (NewReplVal.hasValue()) 1607 // We found a new value, we can't know the icv value anymore. 1608 if (ReplVal != NewReplVal) 1609 return nullptr; 1610 } 1611 1612 // If we are in the same BB and we have a value, we are done. 1613 if (CurrBB == I->getParent() && ReplVal.hasValue()) 1614 return ReplVal; 1615 1616 // Go through all predecessors and add terminators for analysis. 1617 for (const BasicBlock *Pred : predecessors(CurrBB)) 1618 if (const Instruction *Terminator = Pred->getTerminator()) 1619 Worklist.push_back(Terminator); 1620 } 1621 1622 return ReplVal; 1623 } 1624 }; 1625 1626 struct AAICVTrackerFunctionReturned : AAICVTracker { 1627 AAICVTrackerFunctionReturned(const IRPosition &IRP, Attributor &A) 1628 : AAICVTracker(IRP, A) {} 1629 1630 // FIXME: come up with better string. 1631 const std::string getAsStr() const override { 1632 return "ICVTrackerFunctionReturned"; 1633 } 1634 1635 // FIXME: come up with some stats. 1636 void trackStatistics() const override {} 1637 1638 /// We don't manifest anything for this AA. 1639 ChangeStatus manifest(Attributor &A) override { 1640 return ChangeStatus::UNCHANGED; 1641 } 1642 1643 // Map of ICV to their values at specific program point. 1644 EnumeratedArray<Optional<Value *>, InternalControlVar, 1645 InternalControlVar::ICV___last> 1646 ICVReplacementValuesMap; 1647 1648 /// Return the value with which \p I can be replaced for specific \p ICV. 1649 Optional<Value *> 1650 getUniqueReplacementValue(InternalControlVar ICV) const override { 1651 return ICVReplacementValuesMap[ICV]; 1652 } 1653 1654 ChangeStatus updateImpl(Attributor &A) override { 1655 ChangeStatus Changed = ChangeStatus::UNCHANGED; 1656 const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>( 1657 *this, IRPosition::function(*getAnchorScope())); 1658 1659 if (!ICVTrackingAA.isAssumedTracked()) 1660 return indicatePessimisticFixpoint(); 1661 1662 for (InternalControlVar ICV : TrackableICVs) { 1663 Optional<Value *> &ReplVal = ICVReplacementValuesMap[ICV]; 1664 Optional<Value *> UniqueICVValue; 1665 1666 auto CheckReturnInst = [&](Instruction &I) { 1667 Optional<Value *> NewReplVal = 1668 ICVTrackingAA.getReplacementValue(ICV, &I, A); 1669 1670 // If we found a second ICV value there is no unique returned value. 1671 if (UniqueICVValue.hasValue() && UniqueICVValue != NewReplVal) 1672 return false; 1673 1674 UniqueICVValue = NewReplVal; 1675 1676 return true; 1677 }; 1678 1679 if (!A.checkForAllInstructions(CheckReturnInst, *this, {Instruction::Ret}, 1680 /* CheckBBLivenessOnly */ true)) 1681 UniqueICVValue = nullptr; 1682 1683 if (UniqueICVValue == ReplVal) 1684 continue; 1685 1686 ReplVal = UniqueICVValue; 1687 Changed = ChangeStatus::CHANGED; 1688 } 1689 1690 return Changed; 1691 } 1692 }; 1693 1694 struct AAICVTrackerCallSite : AAICVTracker { 1695 AAICVTrackerCallSite(const IRPosition &IRP, Attributor &A) 1696 : AAICVTracker(IRP, A) {} 1697 1698 void initialize(Attributor &A) override { 1699 Function *F = getAnchorScope(); 1700 if (!F || !A.isFunctionIPOAmendable(*F)) 1701 indicatePessimisticFixpoint(); 1702 1703 // We only initialize this AA for getters, so we need to know which ICV it 1704 // gets. 1705 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 1706 for (InternalControlVar ICV : TrackableICVs) { 1707 auto ICVInfo = OMPInfoCache.ICVs[ICV]; 1708 auto &Getter = OMPInfoCache.RFIs[ICVInfo.Getter]; 1709 if (Getter.Declaration == getAssociatedFunction()) { 1710 AssociatedICV = ICVInfo.Kind; 1711 return; 1712 } 1713 } 1714 1715 /// Unknown ICV. 1716 indicatePessimisticFixpoint(); 1717 } 1718 1719 ChangeStatus manifest(Attributor &A) override { 1720 if (!ReplVal.hasValue() || !ReplVal.getValue()) 1721 return ChangeStatus::UNCHANGED; 1722 1723 A.changeValueAfterManifest(*getCtxI(), **ReplVal); 1724 A.deleteAfterManifest(*getCtxI()); 1725 1726 return ChangeStatus::CHANGED; 1727 } 1728 1729 // FIXME: come up with better string. 1730 const std::string getAsStr() const override { return "ICVTrackerCallSite"; } 1731 1732 // FIXME: come up with some stats. 1733 void trackStatistics() const override {} 1734 1735 InternalControlVar AssociatedICV; 1736 Optional<Value *> ReplVal; 1737 1738 ChangeStatus updateImpl(Attributor &A) override { 1739 const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>( 1740 *this, IRPosition::function(*getAnchorScope())); 1741 1742 // We don't have any information, so we assume it changes the ICV. 1743 if (!ICVTrackingAA.isAssumedTracked()) 1744 return indicatePessimisticFixpoint(); 1745 1746 Optional<Value *> NewReplVal = 1747 ICVTrackingAA.getReplacementValue(AssociatedICV, getCtxI(), A); 1748 1749 if (ReplVal == NewReplVal) 1750 return ChangeStatus::UNCHANGED; 1751 1752 ReplVal = NewReplVal; 1753 return ChangeStatus::CHANGED; 1754 } 1755 1756 // Return the value with which associated value can be replaced for specific 1757 // \p ICV. 1758 Optional<Value *> 1759 getUniqueReplacementValue(InternalControlVar ICV) const override { 1760 return ReplVal; 1761 } 1762 }; 1763 1764 struct AAICVTrackerCallSiteReturned : AAICVTracker { 1765 AAICVTrackerCallSiteReturned(const IRPosition &IRP, Attributor &A) 1766 : AAICVTracker(IRP, A) {} 1767 1768 // FIXME: come up with better string. 1769 const std::string getAsStr() const override { 1770 return "ICVTrackerCallSiteReturned"; 1771 } 1772 1773 // FIXME: come up with some stats. 1774 void trackStatistics() const override {} 1775 1776 /// We don't manifest anything for this AA. 1777 ChangeStatus manifest(Attributor &A) override { 1778 return ChangeStatus::UNCHANGED; 1779 } 1780 1781 // Map of ICV to their values at specific program point. 1782 EnumeratedArray<Optional<Value *>, InternalControlVar, 1783 InternalControlVar::ICV___last> 1784 ICVReplacementValuesMap; 1785 1786 /// Return the value with which associated value can be replaced for specific 1787 /// \p ICV. 1788 Optional<Value *> 1789 getUniqueReplacementValue(InternalControlVar ICV) const override { 1790 return ICVReplacementValuesMap[ICV]; 1791 } 1792 1793 ChangeStatus updateImpl(Attributor &A) override { 1794 ChangeStatus Changed = ChangeStatus::UNCHANGED; 1795 const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>( 1796 *this, IRPosition::returned(*getAssociatedFunction())); 1797 1798 // We don't have any information, so we assume it changes the ICV. 1799 if (!ICVTrackingAA.isAssumedTracked()) 1800 return indicatePessimisticFixpoint(); 1801 1802 for (InternalControlVar ICV : TrackableICVs) { 1803 Optional<Value *> &ReplVal = ICVReplacementValuesMap[ICV]; 1804 Optional<Value *> NewReplVal = 1805 ICVTrackingAA.getUniqueReplacementValue(ICV); 1806 1807 if (ReplVal == NewReplVal) 1808 continue; 1809 1810 ReplVal = NewReplVal; 1811 Changed = ChangeStatus::CHANGED; 1812 } 1813 return Changed; 1814 } 1815 }; 1816 } // namespace 1817 1818 const char AAICVTracker::ID = 0; 1819 1820 AAICVTracker &AAICVTracker::createForPosition(const IRPosition &IRP, 1821 Attributor &A) { 1822 AAICVTracker *AA = nullptr; 1823 switch (IRP.getPositionKind()) { 1824 case IRPosition::IRP_INVALID: 1825 case IRPosition::IRP_FLOAT: 1826 case IRPosition::IRP_ARGUMENT: 1827 case IRPosition::IRP_CALL_SITE_ARGUMENT: 1828 llvm_unreachable("ICVTracker can only be created for function position!"); 1829 case IRPosition::IRP_RETURNED: 1830 AA = new (A.Allocator) AAICVTrackerFunctionReturned(IRP, A); 1831 break; 1832 case IRPosition::IRP_CALL_SITE_RETURNED: 1833 AA = new (A.Allocator) AAICVTrackerCallSiteReturned(IRP, A); 1834 break; 1835 case IRPosition::IRP_CALL_SITE: 1836 AA = new (A.Allocator) AAICVTrackerCallSite(IRP, A); 1837 break; 1838 case IRPosition::IRP_FUNCTION: 1839 AA = new (A.Allocator) AAICVTrackerFunction(IRP, A); 1840 break; 1841 } 1842 1843 return *AA; 1844 } 1845 1846 PreservedAnalyses OpenMPOptPass::run(LazyCallGraph::SCC &C, 1847 CGSCCAnalysisManager &AM, 1848 LazyCallGraph &CG, CGSCCUpdateResult &UR) { 1849 if (!containsOpenMP(*C.begin()->getFunction().getParent(), OMPInModule)) 1850 return PreservedAnalyses::all(); 1851 1852 if (DisableOpenMPOptimizations) 1853 return PreservedAnalyses::all(); 1854 1855 SmallVector<Function *, 16> SCC; 1856 // If there are kernels in the module, we have to run on all SCC's. 1857 bool SCCIsInteresting = !OMPInModule.getKernels().empty(); 1858 for (LazyCallGraph::Node &N : C) { 1859 Function *Fn = &N.getFunction(); 1860 SCC.push_back(Fn); 1861 1862 // Do we already know that the SCC contains kernels, 1863 // or that OpenMP functions are called from this SCC? 1864 if (SCCIsInteresting) 1865 continue; 1866 // If not, let's check that. 1867 SCCIsInteresting |= OMPInModule.containsOMPRuntimeCalls(Fn); 1868 } 1869 1870 if (!SCCIsInteresting || SCC.empty()) 1871 return PreservedAnalyses::all(); 1872 1873 FunctionAnalysisManager &FAM = 1874 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager(); 1875 1876 AnalysisGetter AG(FAM); 1877 1878 auto OREGetter = [&FAM](Function *F) -> OptimizationRemarkEmitter & { 1879 return FAM.getResult<OptimizationRemarkEmitterAnalysis>(*F); 1880 }; 1881 1882 CallGraphUpdater CGUpdater; 1883 CGUpdater.initialize(CG, C, AM, UR); 1884 1885 SetVector<Function *> Functions(SCC.begin(), SCC.end()); 1886 BumpPtrAllocator Allocator; 1887 OMPInformationCache InfoCache(*(Functions.back()->getParent()), AG, Allocator, 1888 /*CGSCC*/ Functions, OMPInModule.getKernels()); 1889 1890 Attributor A(Functions, InfoCache, CGUpdater); 1891 1892 OpenMPOpt OMPOpt(SCC, CGUpdater, OREGetter, InfoCache, A); 1893 bool Changed = OMPOpt.run(); 1894 if (Changed) 1895 return PreservedAnalyses::none(); 1896 1897 return PreservedAnalyses::all(); 1898 } 1899 1900 namespace { 1901 1902 struct OpenMPOptLegacyPass : public CallGraphSCCPass { 1903 CallGraphUpdater CGUpdater; 1904 OpenMPInModule OMPInModule; 1905 static char ID; 1906 1907 OpenMPOptLegacyPass() : CallGraphSCCPass(ID) { 1908 initializeOpenMPOptLegacyPassPass(*PassRegistry::getPassRegistry()); 1909 } 1910 1911 void getAnalysisUsage(AnalysisUsage &AU) const override { 1912 CallGraphSCCPass::getAnalysisUsage(AU); 1913 } 1914 1915 bool doInitialization(CallGraph &CG) override { 1916 // Disable the pass if there is no OpenMP (runtime call) in the module. 1917 containsOpenMP(CG.getModule(), OMPInModule); 1918 return false; 1919 } 1920 1921 bool runOnSCC(CallGraphSCC &CGSCC) override { 1922 if (!containsOpenMP(CGSCC.getCallGraph().getModule(), OMPInModule)) 1923 return false; 1924 if (DisableOpenMPOptimizations || skipSCC(CGSCC)) 1925 return false; 1926 1927 SmallVector<Function *, 16> SCC; 1928 // If there are kernels in the module, we have to run on all SCC's. 1929 bool SCCIsInteresting = !OMPInModule.getKernels().empty(); 1930 for (CallGraphNode *CGN : CGSCC) { 1931 Function *Fn = CGN->getFunction(); 1932 if (!Fn || Fn->isDeclaration()) 1933 continue; 1934 SCC.push_back(Fn); 1935 1936 // Do we already know that the SCC contains kernels, 1937 // or that OpenMP functions are called from this SCC? 1938 if (SCCIsInteresting) 1939 continue; 1940 // If not, let's check that. 1941 SCCIsInteresting |= OMPInModule.containsOMPRuntimeCalls(Fn); 1942 } 1943 1944 if (!SCCIsInteresting || SCC.empty()) 1945 return false; 1946 1947 CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph(); 1948 CGUpdater.initialize(CG, CGSCC); 1949 1950 // Maintain a map of functions to avoid rebuilding the ORE 1951 DenseMap<Function *, std::unique_ptr<OptimizationRemarkEmitter>> OREMap; 1952 auto OREGetter = [&OREMap](Function *F) -> OptimizationRemarkEmitter & { 1953 std::unique_ptr<OptimizationRemarkEmitter> &ORE = OREMap[F]; 1954 if (!ORE) 1955 ORE = std::make_unique<OptimizationRemarkEmitter>(F); 1956 return *ORE; 1957 }; 1958 1959 AnalysisGetter AG; 1960 SetVector<Function *> Functions(SCC.begin(), SCC.end()); 1961 BumpPtrAllocator Allocator; 1962 OMPInformationCache InfoCache( 1963 *(Functions.back()->getParent()), AG, Allocator, 1964 /*CGSCC*/ Functions, OMPInModule.getKernels()); 1965 1966 Attributor A(Functions, InfoCache, CGUpdater); 1967 1968 OpenMPOpt OMPOpt(SCC, CGUpdater, OREGetter, InfoCache, A); 1969 return OMPOpt.run(); 1970 } 1971 1972 bool doFinalization(CallGraph &CG) override { return CGUpdater.finalize(); } 1973 }; 1974 1975 } // end anonymous namespace 1976 1977 void OpenMPInModule::identifyKernels(Module &M) { 1978 1979 NamedMDNode *MD = M.getOrInsertNamedMetadata("nvvm.annotations"); 1980 if (!MD) 1981 return; 1982 1983 for (auto *Op : MD->operands()) { 1984 if (Op->getNumOperands() < 2) 1985 continue; 1986 MDString *KindID = dyn_cast<MDString>(Op->getOperand(1)); 1987 if (!KindID || KindID->getString() != "kernel") 1988 continue; 1989 1990 Function *KernelFn = 1991 mdconst::dyn_extract_or_null<Function>(Op->getOperand(0)); 1992 if (!KernelFn) 1993 continue; 1994 1995 ++NumOpenMPTargetRegionKernels; 1996 1997 Kernels.insert(KernelFn); 1998 } 1999 } 2000 2001 bool llvm::omp::containsOpenMP(Module &M, OpenMPInModule &OMPInModule) { 2002 if (OMPInModule.isKnown()) 2003 return OMPInModule; 2004 2005 auto RecordFunctionsContainingUsesOf = [&](Function *F) { 2006 for (User *U : F->users()) 2007 if (auto *I = dyn_cast<Instruction>(U)) 2008 OMPInModule.FuncsWithOMPRuntimeCalls.insert(I->getFunction()); 2009 }; 2010 2011 // MSVC doesn't like long if-else chains for some reason and instead just 2012 // issues an error. Work around it.. 2013 do { 2014 #define OMP_RTL(_Enum, _Name, ...) \ 2015 if (Function *F = M.getFunction(_Name)) { \ 2016 RecordFunctionsContainingUsesOf(F); \ 2017 OMPInModule = true; \ 2018 } 2019 #include "llvm/Frontend/OpenMP/OMPKinds.def" 2020 } while (false); 2021 2022 // Identify kernels once. TODO: We should split the OMPInformationCache into a 2023 // module and an SCC part. The kernel information, among other things, could 2024 // go into the module part. 2025 if (OMPInModule.isKnown() && OMPInModule) { 2026 OMPInModule.identifyKernels(M); 2027 return true; 2028 } 2029 2030 return OMPInModule = false; 2031 } 2032 2033 char OpenMPOptLegacyPass::ID = 0; 2034 2035 INITIALIZE_PASS_BEGIN(OpenMPOptLegacyPass, "openmpopt", 2036 "OpenMP specific optimizations", false, false) 2037 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass) 2038 INITIALIZE_PASS_END(OpenMPOptLegacyPass, "openmpopt", 2039 "OpenMP specific optimizations", false, false) 2040 2041 Pass *llvm::createOpenMPOptLegacyPass() { return new OpenMPOptLegacyPass(); } 2042