1 //===-- IPO/OpenMPOpt.cpp - Collection of OpenMP specific optimizations ---===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // OpenMP specific optimizations: 10 // 11 // - Deduplication of runtime calls, e.g., omp_get_thread_num. 12 // - Replacing globalized device memory with stack memory. 13 // - Replacing globalized device memory with shared memory. 14 // - Parallel region merging. 15 // - Transforming generic-mode device kernels to SPMD mode. 16 // - Specializing the state machine for generic-mode device kernels. 17 // 18 //===----------------------------------------------------------------------===// 19 20 #include "llvm/Transforms/IPO/OpenMPOpt.h" 21 22 #include "llvm/ADT/EnumeratedArray.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/ADT/SetVector.h" 25 #include "llvm/ADT/Statistic.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/Analysis/CallGraph.h" 28 #include "llvm/Analysis/CallGraphSCCPass.h" 29 #include "llvm/Analysis/MemoryLocation.h" 30 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 31 #include "llvm/Analysis/ValueTracking.h" 32 #include "llvm/Frontend/OpenMP/OMPConstants.h" 33 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 34 #include "llvm/IR/Assumptions.h" 35 #include "llvm/IR/Constants.h" 36 #include "llvm/IR/DiagnosticInfo.h" 37 #include "llvm/IR/GlobalValue.h" 38 #include "llvm/IR/GlobalVariable.h" 39 #include "llvm/IR/Instruction.h" 40 #include "llvm/IR/Instructions.h" 41 #include "llvm/IR/IntrinsicInst.h" 42 #include "llvm/IR/IntrinsicsAMDGPU.h" 43 #include "llvm/IR/IntrinsicsNVPTX.h" 44 #include "llvm/IR/LLVMContext.h" 45 #include "llvm/InitializePasses.h" 46 #include "llvm/Support/CommandLine.h" 47 #include "llvm/Support/Debug.h" 48 #include "llvm/Transforms/IPO.h" 49 #include "llvm/Transforms/IPO/Attributor.h" 50 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 51 #include "llvm/Transforms/Utils/CallGraphUpdater.h" 52 53 #include <algorithm> 54 55 using namespace llvm; 56 using namespace omp; 57 58 #define DEBUG_TYPE "openmp-opt" 59 60 static cl::opt<bool> DisableOpenMPOptimizations( 61 "openmp-opt-disable", cl::desc("Disable OpenMP specific optimizations."), 62 cl::Hidden, cl::init(false)); 63 64 static cl::opt<bool> EnableParallelRegionMerging( 65 "openmp-opt-enable-merging", 66 cl::desc("Enable the OpenMP region merging optimization."), cl::Hidden, 67 cl::init(false)); 68 69 static cl::opt<bool> 70 DisableInternalization("openmp-opt-disable-internalization", 71 cl::desc("Disable function internalization."), 72 cl::Hidden, cl::init(false)); 73 74 static cl::opt<bool> PrintICVValues("openmp-print-icv-values", cl::init(false), 75 cl::Hidden); 76 static cl::opt<bool> PrintOpenMPKernels("openmp-print-gpu-kernels", 77 cl::init(false), cl::Hidden); 78 79 static cl::opt<bool> HideMemoryTransferLatency( 80 "openmp-hide-memory-transfer-latency", 81 cl::desc("[WIP] Tries to hide the latency of host to device memory" 82 " transfers"), 83 cl::Hidden, cl::init(false)); 84 85 static cl::opt<bool> DisableOpenMPOptDeglobalization( 86 "openmp-opt-disable-deglobalization", 87 cl::desc("Disable OpenMP optimizations involving deglobalization."), 88 cl::Hidden, cl::init(false)); 89 90 static cl::opt<bool> DisableOpenMPOptSPMDization( 91 "openmp-opt-disable-spmdization", 92 cl::desc("Disable OpenMP optimizations involving SPMD-ization."), 93 cl::Hidden, cl::init(false)); 94 95 static cl::opt<bool> DisableOpenMPOptFolding( 96 "openmp-opt-disable-folding", 97 cl::desc("Disable OpenMP optimizations involving folding."), cl::Hidden, 98 cl::init(false)); 99 100 static cl::opt<bool> DisableOpenMPOptStateMachineRewrite( 101 "openmp-opt-disable-state-machine-rewrite", 102 cl::desc("Disable OpenMP optimizations that replace the state machine."), 103 cl::Hidden, cl::init(false)); 104 105 static cl::opt<bool> DisableOpenMPOptBarrierElimination( 106 "openmp-opt-disable-barrier-elimination", 107 cl::desc("Disable OpenMP optimizations that eliminate barriers."), 108 cl::Hidden, cl::init(false)); 109 110 static cl::opt<bool> PrintModuleAfterOptimizations( 111 "openmp-opt-print-module-after", 112 cl::desc("Print the current module after OpenMP optimizations."), 113 cl::Hidden, cl::init(false)); 114 115 static cl::opt<bool> PrintModuleBeforeOptimizations( 116 "openmp-opt-print-module-before", 117 cl::desc("Print the current module before OpenMP optimizations."), 118 cl::Hidden, cl::init(false)); 119 120 static cl::opt<bool> AlwaysInlineDeviceFunctions( 121 "openmp-opt-inline-device", 122 cl::desc("Inline all applicible functions on the device."), cl::Hidden, 123 cl::init(false)); 124 125 static cl::opt<bool> 126 EnableVerboseRemarks("openmp-opt-verbose-remarks", 127 cl::desc("Enables more verbose remarks."), cl::Hidden, 128 cl::init(false)); 129 130 static cl::opt<unsigned> 131 SetFixpointIterations("openmp-opt-max-iterations", cl::Hidden, 132 cl::desc("Maximal number of attributor iterations."), 133 cl::init(256)); 134 135 static cl::opt<unsigned> 136 SharedMemoryLimit("openmp-opt-shared-limit", cl::Hidden, 137 cl::desc("Maximum amount of shared memory to use."), 138 cl::init(std::numeric_limits<unsigned>::max())); 139 140 STATISTIC(NumOpenMPRuntimeCallsDeduplicated, 141 "Number of OpenMP runtime calls deduplicated"); 142 STATISTIC(NumOpenMPParallelRegionsDeleted, 143 "Number of OpenMP parallel regions deleted"); 144 STATISTIC(NumOpenMPRuntimeFunctionsIdentified, 145 "Number of OpenMP runtime functions identified"); 146 STATISTIC(NumOpenMPRuntimeFunctionUsesIdentified, 147 "Number of OpenMP runtime function uses identified"); 148 STATISTIC(NumOpenMPTargetRegionKernels, 149 "Number of OpenMP target region entry points (=kernels) identified"); 150 STATISTIC(NumOpenMPTargetRegionKernelsSPMD, 151 "Number of OpenMP target region entry points (=kernels) executed in " 152 "SPMD-mode instead of generic-mode"); 153 STATISTIC(NumOpenMPTargetRegionKernelsWithoutStateMachine, 154 "Number of OpenMP target region entry points (=kernels) executed in " 155 "generic-mode without a state machines"); 156 STATISTIC(NumOpenMPTargetRegionKernelsCustomStateMachineWithFallback, 157 "Number of OpenMP target region entry points (=kernels) executed in " 158 "generic-mode with customized state machines with fallback"); 159 STATISTIC(NumOpenMPTargetRegionKernelsCustomStateMachineWithoutFallback, 160 "Number of OpenMP target region entry points (=kernels) executed in " 161 "generic-mode with customized state machines without fallback"); 162 STATISTIC( 163 NumOpenMPParallelRegionsReplacedInGPUStateMachine, 164 "Number of OpenMP parallel regions replaced with ID in GPU state machines"); 165 STATISTIC(NumOpenMPParallelRegionsMerged, 166 "Number of OpenMP parallel regions merged"); 167 STATISTIC(NumBytesMovedToSharedMemory, 168 "Amount of memory pushed to shared memory"); 169 STATISTIC(NumBarriersEliminated, "Number of redundant barriers eliminated"); 170 171 #if !defined(NDEBUG) 172 static constexpr auto TAG = "[" DEBUG_TYPE "]"; 173 #endif 174 175 namespace { 176 177 struct AAHeapToShared; 178 179 struct AAICVTracker; 180 181 /// OpenMP specific information. For now, stores RFIs and ICVs also needed for 182 /// Attributor runs. 183 struct OMPInformationCache : public InformationCache { 184 OMPInformationCache(Module &M, AnalysisGetter &AG, 185 BumpPtrAllocator &Allocator, SetVector<Function *> &CGSCC, 186 KernelSet &Kernels) 187 : InformationCache(M, AG, Allocator, &CGSCC), OMPBuilder(M), 188 Kernels(Kernels) { 189 190 OMPBuilder.initialize(); 191 initializeRuntimeFunctions(); 192 initializeInternalControlVars(); 193 } 194 195 /// Generic information that describes an internal control variable. 196 struct InternalControlVarInfo { 197 /// The kind, as described by InternalControlVar enum. 198 InternalControlVar Kind; 199 200 /// The name of the ICV. 201 StringRef Name; 202 203 /// Environment variable associated with this ICV. 204 StringRef EnvVarName; 205 206 /// Initial value kind. 207 ICVInitValue InitKind; 208 209 /// Initial value. 210 ConstantInt *InitValue; 211 212 /// Setter RTL function associated with this ICV. 213 RuntimeFunction Setter; 214 215 /// Getter RTL function associated with this ICV. 216 RuntimeFunction Getter; 217 218 /// RTL Function corresponding to the override clause of this ICV 219 RuntimeFunction Clause; 220 }; 221 222 /// Generic information that describes a runtime function 223 struct RuntimeFunctionInfo { 224 225 /// The kind, as described by the RuntimeFunction enum. 226 RuntimeFunction Kind; 227 228 /// The name of the function. 229 StringRef Name; 230 231 /// Flag to indicate a variadic function. 232 bool IsVarArg; 233 234 /// The return type of the function. 235 Type *ReturnType; 236 237 /// The argument types of the function. 238 SmallVector<Type *, 8> ArgumentTypes; 239 240 /// The declaration if available. 241 Function *Declaration = nullptr; 242 243 /// Uses of this runtime function per function containing the use. 244 using UseVector = SmallVector<Use *, 16>; 245 246 /// Clear UsesMap for runtime function. 247 void clearUsesMap() { UsesMap.clear(); } 248 249 /// Boolean conversion that is true if the runtime function was found. 250 operator bool() const { return Declaration; } 251 252 /// Return the vector of uses in function \p F. 253 UseVector &getOrCreateUseVector(Function *F) { 254 std::shared_ptr<UseVector> &UV = UsesMap[F]; 255 if (!UV) 256 UV = std::make_shared<UseVector>(); 257 return *UV; 258 } 259 260 /// Return the vector of uses in function \p F or `nullptr` if there are 261 /// none. 262 const UseVector *getUseVector(Function &F) const { 263 auto I = UsesMap.find(&F); 264 if (I != UsesMap.end()) 265 return I->second.get(); 266 return nullptr; 267 } 268 269 /// Return how many functions contain uses of this runtime function. 270 size_t getNumFunctionsWithUses() const { return UsesMap.size(); } 271 272 /// Return the number of arguments (or the minimal number for variadic 273 /// functions). 274 size_t getNumArgs() const { return ArgumentTypes.size(); } 275 276 /// Run the callback \p CB on each use and forget the use if the result is 277 /// true. The callback will be fed the function in which the use was 278 /// encountered as second argument. 279 void foreachUse(SmallVectorImpl<Function *> &SCC, 280 function_ref<bool(Use &, Function &)> CB) { 281 for (Function *F : SCC) 282 foreachUse(CB, F); 283 } 284 285 /// Run the callback \p CB on each use within the function \p F and forget 286 /// the use if the result is true. 287 void foreachUse(function_ref<bool(Use &, Function &)> CB, Function *F) { 288 SmallVector<unsigned, 8> ToBeDeleted; 289 ToBeDeleted.clear(); 290 291 unsigned Idx = 0; 292 UseVector &UV = getOrCreateUseVector(F); 293 294 for (Use *U : UV) { 295 if (CB(*U, *F)) 296 ToBeDeleted.push_back(Idx); 297 ++Idx; 298 } 299 300 // Remove the to-be-deleted indices in reverse order as prior 301 // modifications will not modify the smaller indices. 302 while (!ToBeDeleted.empty()) { 303 unsigned Idx = ToBeDeleted.pop_back_val(); 304 UV[Idx] = UV.back(); 305 UV.pop_back(); 306 } 307 } 308 309 private: 310 /// Map from functions to all uses of this runtime function contained in 311 /// them. 312 DenseMap<Function *, std::shared_ptr<UseVector>> UsesMap; 313 314 public: 315 /// Iterators for the uses of this runtime function. 316 decltype(UsesMap)::iterator begin() { return UsesMap.begin(); } 317 decltype(UsesMap)::iterator end() { return UsesMap.end(); } 318 }; 319 320 /// An OpenMP-IR-Builder instance 321 OpenMPIRBuilder OMPBuilder; 322 323 /// Map from runtime function kind to the runtime function description. 324 EnumeratedArray<RuntimeFunctionInfo, RuntimeFunction, 325 RuntimeFunction::OMPRTL___last> 326 RFIs; 327 328 /// Map from function declarations/definitions to their runtime enum type. 329 DenseMap<Function *, RuntimeFunction> RuntimeFunctionIDMap; 330 331 /// Map from ICV kind to the ICV description. 332 EnumeratedArray<InternalControlVarInfo, InternalControlVar, 333 InternalControlVar::ICV___last> 334 ICVs; 335 336 /// Helper to initialize all internal control variable information for those 337 /// defined in OMPKinds.def. 338 void initializeInternalControlVars() { 339 #define ICV_RT_SET(_Name, RTL) \ 340 { \ 341 auto &ICV = ICVs[_Name]; \ 342 ICV.Setter = RTL; \ 343 } 344 #define ICV_RT_GET(Name, RTL) \ 345 { \ 346 auto &ICV = ICVs[Name]; \ 347 ICV.Getter = RTL; \ 348 } 349 #define ICV_DATA_ENV(Enum, _Name, _EnvVarName, Init) \ 350 { \ 351 auto &ICV = ICVs[Enum]; \ 352 ICV.Name = _Name; \ 353 ICV.Kind = Enum; \ 354 ICV.InitKind = Init; \ 355 ICV.EnvVarName = _EnvVarName; \ 356 switch (ICV.InitKind) { \ 357 case ICV_IMPLEMENTATION_DEFINED: \ 358 ICV.InitValue = nullptr; \ 359 break; \ 360 case ICV_ZERO: \ 361 ICV.InitValue = ConstantInt::get( \ 362 Type::getInt32Ty(OMPBuilder.Int32->getContext()), 0); \ 363 break; \ 364 case ICV_FALSE: \ 365 ICV.InitValue = ConstantInt::getFalse(OMPBuilder.Int1->getContext()); \ 366 break; \ 367 case ICV_LAST: \ 368 break; \ 369 } \ 370 } 371 #include "llvm/Frontend/OpenMP/OMPKinds.def" 372 } 373 374 /// Returns true if the function declaration \p F matches the runtime 375 /// function types, that is, return type \p RTFRetType, and argument types 376 /// \p RTFArgTypes. 377 static bool declMatchesRTFTypes(Function *F, Type *RTFRetType, 378 SmallVector<Type *, 8> &RTFArgTypes) { 379 // TODO: We should output information to the user (under debug output 380 // and via remarks). 381 382 if (!F) 383 return false; 384 if (F->getReturnType() != RTFRetType) 385 return false; 386 if (F->arg_size() != RTFArgTypes.size()) 387 return false; 388 389 auto *RTFTyIt = RTFArgTypes.begin(); 390 for (Argument &Arg : F->args()) { 391 if (Arg.getType() != *RTFTyIt) 392 return false; 393 394 ++RTFTyIt; 395 } 396 397 return true; 398 } 399 400 // Helper to collect all uses of the declaration in the UsesMap. 401 unsigned collectUses(RuntimeFunctionInfo &RFI, bool CollectStats = true) { 402 unsigned NumUses = 0; 403 if (!RFI.Declaration) 404 return NumUses; 405 OMPBuilder.addAttributes(RFI.Kind, *RFI.Declaration); 406 407 if (CollectStats) { 408 NumOpenMPRuntimeFunctionsIdentified += 1; 409 NumOpenMPRuntimeFunctionUsesIdentified += RFI.Declaration->getNumUses(); 410 } 411 412 // TODO: We directly convert uses into proper calls and unknown uses. 413 for (Use &U : RFI.Declaration->uses()) { 414 if (Instruction *UserI = dyn_cast<Instruction>(U.getUser())) { 415 if (ModuleSlice.count(UserI->getFunction())) { 416 RFI.getOrCreateUseVector(UserI->getFunction()).push_back(&U); 417 ++NumUses; 418 } 419 } else { 420 RFI.getOrCreateUseVector(nullptr).push_back(&U); 421 ++NumUses; 422 } 423 } 424 return NumUses; 425 } 426 427 // Helper function to recollect uses of a runtime function. 428 void recollectUsesForFunction(RuntimeFunction RTF) { 429 auto &RFI = RFIs[RTF]; 430 RFI.clearUsesMap(); 431 collectUses(RFI, /*CollectStats*/ false); 432 } 433 434 // Helper function to recollect uses of all runtime functions. 435 void recollectUses() { 436 for (int Idx = 0; Idx < RFIs.size(); ++Idx) 437 recollectUsesForFunction(static_cast<RuntimeFunction>(Idx)); 438 } 439 440 // Helper function to inherit the calling convention of the function callee. 441 void setCallingConvention(FunctionCallee Callee, CallInst *CI) { 442 if (Function *Fn = dyn_cast<Function>(Callee.getCallee())) 443 CI->setCallingConv(Fn->getCallingConv()); 444 } 445 446 /// Helper to initialize all runtime function information for those defined 447 /// in OpenMPKinds.def. 448 void initializeRuntimeFunctions() { 449 Module &M = *((*ModuleSlice.begin())->getParent()); 450 451 // Helper macros for handling __VA_ARGS__ in OMP_RTL 452 #define OMP_TYPE(VarName, ...) \ 453 Type *VarName = OMPBuilder.VarName; \ 454 (void)VarName; 455 456 #define OMP_ARRAY_TYPE(VarName, ...) \ 457 ArrayType *VarName##Ty = OMPBuilder.VarName##Ty; \ 458 (void)VarName##Ty; \ 459 PointerType *VarName##PtrTy = OMPBuilder.VarName##PtrTy; \ 460 (void)VarName##PtrTy; 461 462 #define OMP_FUNCTION_TYPE(VarName, ...) \ 463 FunctionType *VarName = OMPBuilder.VarName; \ 464 (void)VarName; \ 465 PointerType *VarName##Ptr = OMPBuilder.VarName##Ptr; \ 466 (void)VarName##Ptr; 467 468 #define OMP_STRUCT_TYPE(VarName, ...) \ 469 StructType *VarName = OMPBuilder.VarName; \ 470 (void)VarName; \ 471 PointerType *VarName##Ptr = OMPBuilder.VarName##Ptr; \ 472 (void)VarName##Ptr; 473 474 #define OMP_RTL(_Enum, _Name, _IsVarArg, _ReturnType, ...) \ 475 { \ 476 SmallVector<Type *, 8> ArgsTypes({__VA_ARGS__}); \ 477 Function *F = M.getFunction(_Name); \ 478 RTLFunctions.insert(F); \ 479 if (declMatchesRTFTypes(F, OMPBuilder._ReturnType, ArgsTypes)) { \ 480 RuntimeFunctionIDMap[F] = _Enum; \ 481 auto &RFI = RFIs[_Enum]; \ 482 RFI.Kind = _Enum; \ 483 RFI.Name = _Name; \ 484 RFI.IsVarArg = _IsVarArg; \ 485 RFI.ReturnType = OMPBuilder._ReturnType; \ 486 RFI.ArgumentTypes = std::move(ArgsTypes); \ 487 RFI.Declaration = F; \ 488 unsigned NumUses = collectUses(RFI); \ 489 (void)NumUses; \ 490 LLVM_DEBUG({ \ 491 dbgs() << TAG << RFI.Name << (RFI.Declaration ? "" : " not") \ 492 << " found\n"; \ 493 if (RFI.Declaration) \ 494 dbgs() << TAG << "-> got " << NumUses << " uses in " \ 495 << RFI.getNumFunctionsWithUses() \ 496 << " different functions.\n"; \ 497 }); \ 498 } \ 499 } 500 #include "llvm/Frontend/OpenMP/OMPKinds.def" 501 502 // Remove the `noinline` attribute from `__kmpc`, `_OMP::` and `omp_` 503 // functions, except if `optnone` is present. 504 for (Function &F : M) { 505 for (StringRef Prefix : {"__kmpc", "_ZN4_OMP", "omp_"}) 506 if (F.getName().startswith(Prefix) && 507 !F.hasFnAttribute(Attribute::OptimizeNone)) 508 F.removeFnAttr(Attribute::NoInline); 509 } 510 511 // TODO: We should attach the attributes defined in OMPKinds.def. 512 } 513 514 /// Collection of known kernels (\see Kernel) in the module. 515 KernelSet &Kernels; 516 517 /// Collection of known OpenMP runtime functions.. 518 DenseSet<const Function *> RTLFunctions; 519 }; 520 521 template <typename Ty, bool InsertInvalidates = true> 522 struct BooleanStateWithSetVector : public BooleanState { 523 bool contains(const Ty &Elem) const { return Set.contains(Elem); } 524 bool insert(const Ty &Elem) { 525 if (InsertInvalidates) 526 BooleanState::indicatePessimisticFixpoint(); 527 return Set.insert(Elem); 528 } 529 530 const Ty &operator[](int Idx) const { return Set[Idx]; } 531 bool operator==(const BooleanStateWithSetVector &RHS) const { 532 return BooleanState::operator==(RHS) && Set == RHS.Set; 533 } 534 bool operator!=(const BooleanStateWithSetVector &RHS) const { 535 return !(*this == RHS); 536 } 537 538 bool empty() const { return Set.empty(); } 539 size_t size() const { return Set.size(); } 540 541 /// "Clamp" this state with \p RHS. 542 BooleanStateWithSetVector &operator^=(const BooleanStateWithSetVector &RHS) { 543 BooleanState::operator^=(RHS); 544 Set.insert(RHS.Set.begin(), RHS.Set.end()); 545 return *this; 546 } 547 548 private: 549 /// A set to keep track of elements. 550 SetVector<Ty> Set; 551 552 public: 553 typename decltype(Set)::iterator begin() { return Set.begin(); } 554 typename decltype(Set)::iterator end() { return Set.end(); } 555 typename decltype(Set)::const_iterator begin() const { return Set.begin(); } 556 typename decltype(Set)::const_iterator end() const { return Set.end(); } 557 }; 558 559 template <typename Ty, bool InsertInvalidates = true> 560 using BooleanStateWithPtrSetVector = 561 BooleanStateWithSetVector<Ty *, InsertInvalidates>; 562 563 struct KernelInfoState : AbstractState { 564 /// Flag to track if we reached a fixpoint. 565 bool IsAtFixpoint = false; 566 567 /// The parallel regions (identified by the outlined parallel functions) that 568 /// can be reached from the associated function. 569 BooleanStateWithPtrSetVector<Function, /* InsertInvalidates */ false> 570 ReachedKnownParallelRegions; 571 572 /// State to track what parallel region we might reach. 573 BooleanStateWithPtrSetVector<CallBase> ReachedUnknownParallelRegions; 574 575 /// State to track if we are in SPMD-mode, assumed or know, and why we decided 576 /// we cannot be. If it is assumed, then RequiresFullRuntime should also be 577 /// false. 578 BooleanStateWithPtrSetVector<Instruction, false> SPMDCompatibilityTracker; 579 580 /// The __kmpc_target_init call in this kernel, if any. If we find more than 581 /// one we abort as the kernel is malformed. 582 CallBase *KernelInitCB = nullptr; 583 584 /// The __kmpc_target_deinit call in this kernel, if any. If we find more than 585 /// one we abort as the kernel is malformed. 586 CallBase *KernelDeinitCB = nullptr; 587 588 /// Flag to indicate if the associated function is a kernel entry. 589 bool IsKernelEntry = false; 590 591 /// State to track what kernel entries can reach the associated function. 592 BooleanStateWithPtrSetVector<Function, false> ReachingKernelEntries; 593 594 /// State to indicate if we can track parallel level of the associated 595 /// function. We will give up tracking if we encounter unknown caller or the 596 /// caller is __kmpc_parallel_51. 597 BooleanStateWithSetVector<uint8_t> ParallelLevels; 598 599 /// Abstract State interface 600 ///{ 601 602 KernelInfoState() = default; 603 KernelInfoState(bool BestState) { 604 if (!BestState) 605 indicatePessimisticFixpoint(); 606 } 607 608 /// See AbstractState::isValidState(...) 609 bool isValidState() const override { return true; } 610 611 /// See AbstractState::isAtFixpoint(...) 612 bool isAtFixpoint() const override { return IsAtFixpoint; } 613 614 /// See AbstractState::indicatePessimisticFixpoint(...) 615 ChangeStatus indicatePessimisticFixpoint() override { 616 IsAtFixpoint = true; 617 ReachingKernelEntries.indicatePessimisticFixpoint(); 618 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 619 ReachedKnownParallelRegions.indicatePessimisticFixpoint(); 620 ReachedUnknownParallelRegions.indicatePessimisticFixpoint(); 621 return ChangeStatus::CHANGED; 622 } 623 624 /// See AbstractState::indicateOptimisticFixpoint(...) 625 ChangeStatus indicateOptimisticFixpoint() override { 626 IsAtFixpoint = true; 627 ReachingKernelEntries.indicateOptimisticFixpoint(); 628 SPMDCompatibilityTracker.indicateOptimisticFixpoint(); 629 ReachedKnownParallelRegions.indicateOptimisticFixpoint(); 630 ReachedUnknownParallelRegions.indicateOptimisticFixpoint(); 631 return ChangeStatus::UNCHANGED; 632 } 633 634 /// Return the assumed state 635 KernelInfoState &getAssumed() { return *this; } 636 const KernelInfoState &getAssumed() const { return *this; } 637 638 bool operator==(const KernelInfoState &RHS) const { 639 if (SPMDCompatibilityTracker != RHS.SPMDCompatibilityTracker) 640 return false; 641 if (ReachedKnownParallelRegions != RHS.ReachedKnownParallelRegions) 642 return false; 643 if (ReachedUnknownParallelRegions != RHS.ReachedUnknownParallelRegions) 644 return false; 645 if (ReachingKernelEntries != RHS.ReachingKernelEntries) 646 return false; 647 return true; 648 } 649 650 /// Returns true if this kernel contains any OpenMP parallel regions. 651 bool mayContainParallelRegion() { 652 return !ReachedKnownParallelRegions.empty() || 653 !ReachedUnknownParallelRegions.empty(); 654 } 655 656 /// Return empty set as the best state of potential values. 657 static KernelInfoState getBestState() { return KernelInfoState(true); } 658 659 static KernelInfoState getBestState(KernelInfoState &KIS) { 660 return getBestState(); 661 } 662 663 /// Return full set as the worst state of potential values. 664 static KernelInfoState getWorstState() { return KernelInfoState(false); } 665 666 /// "Clamp" this state with \p KIS. 667 KernelInfoState operator^=(const KernelInfoState &KIS) { 668 // Do not merge two different _init and _deinit call sites. 669 if (KIS.KernelInitCB) { 670 if (KernelInitCB && KernelInitCB != KIS.KernelInitCB) 671 llvm_unreachable("Kernel that calls another kernel violates OpenMP-Opt " 672 "assumptions."); 673 KernelInitCB = KIS.KernelInitCB; 674 } 675 if (KIS.KernelDeinitCB) { 676 if (KernelDeinitCB && KernelDeinitCB != KIS.KernelDeinitCB) 677 llvm_unreachable("Kernel that calls another kernel violates OpenMP-Opt " 678 "assumptions."); 679 KernelDeinitCB = KIS.KernelDeinitCB; 680 } 681 SPMDCompatibilityTracker ^= KIS.SPMDCompatibilityTracker; 682 ReachedKnownParallelRegions ^= KIS.ReachedKnownParallelRegions; 683 ReachedUnknownParallelRegions ^= KIS.ReachedUnknownParallelRegions; 684 return *this; 685 } 686 687 KernelInfoState operator&=(const KernelInfoState &KIS) { 688 return (*this ^= KIS); 689 } 690 691 ///} 692 }; 693 694 /// Used to map the values physically (in the IR) stored in an offload 695 /// array, to a vector in memory. 696 struct OffloadArray { 697 /// Physical array (in the IR). 698 AllocaInst *Array = nullptr; 699 /// Mapped values. 700 SmallVector<Value *, 8> StoredValues; 701 /// Last stores made in the offload array. 702 SmallVector<StoreInst *, 8> LastAccesses; 703 704 OffloadArray() = default; 705 706 /// Initializes the OffloadArray with the values stored in \p Array before 707 /// instruction \p Before is reached. Returns false if the initialization 708 /// fails. 709 /// This MUST be used immediately after the construction of the object. 710 bool initialize(AllocaInst &Array, Instruction &Before) { 711 if (!Array.getAllocatedType()->isArrayTy()) 712 return false; 713 714 if (!getValues(Array, Before)) 715 return false; 716 717 this->Array = &Array; 718 return true; 719 } 720 721 static const unsigned DeviceIDArgNum = 1; 722 static const unsigned BasePtrsArgNum = 3; 723 static const unsigned PtrsArgNum = 4; 724 static const unsigned SizesArgNum = 5; 725 726 private: 727 /// Traverses the BasicBlock where \p Array is, collecting the stores made to 728 /// \p Array, leaving StoredValues with the values stored before the 729 /// instruction \p Before is reached. 730 bool getValues(AllocaInst &Array, Instruction &Before) { 731 // Initialize container. 732 const uint64_t NumValues = Array.getAllocatedType()->getArrayNumElements(); 733 StoredValues.assign(NumValues, nullptr); 734 LastAccesses.assign(NumValues, nullptr); 735 736 // TODO: This assumes the instruction \p Before is in the same 737 // BasicBlock as Array. Make it general, for any control flow graph. 738 BasicBlock *BB = Array.getParent(); 739 if (BB != Before.getParent()) 740 return false; 741 742 const DataLayout &DL = Array.getModule()->getDataLayout(); 743 const unsigned int PointerSize = DL.getPointerSize(); 744 745 for (Instruction &I : *BB) { 746 if (&I == &Before) 747 break; 748 749 if (!isa<StoreInst>(&I)) 750 continue; 751 752 auto *S = cast<StoreInst>(&I); 753 int64_t Offset = -1; 754 auto *Dst = 755 GetPointerBaseWithConstantOffset(S->getPointerOperand(), Offset, DL); 756 if (Dst == &Array) { 757 int64_t Idx = Offset / PointerSize; 758 StoredValues[Idx] = getUnderlyingObject(S->getValueOperand()); 759 LastAccesses[Idx] = S; 760 } 761 } 762 763 return isFilled(); 764 } 765 766 /// Returns true if all values in StoredValues and 767 /// LastAccesses are not nullptrs. 768 bool isFilled() { 769 const unsigned NumValues = StoredValues.size(); 770 for (unsigned I = 0; I < NumValues; ++I) { 771 if (!StoredValues[I] || !LastAccesses[I]) 772 return false; 773 } 774 775 return true; 776 } 777 }; 778 779 struct OpenMPOpt { 780 781 using OptimizationRemarkGetter = 782 function_ref<OptimizationRemarkEmitter &(Function *)>; 783 784 OpenMPOpt(SmallVectorImpl<Function *> &SCC, CallGraphUpdater &CGUpdater, 785 OptimizationRemarkGetter OREGetter, 786 OMPInformationCache &OMPInfoCache, Attributor &A) 787 : M(*(*SCC.begin())->getParent()), SCC(SCC), CGUpdater(CGUpdater), 788 OREGetter(OREGetter), OMPInfoCache(OMPInfoCache), A(A) {} 789 790 /// Check if any remarks are enabled for openmp-opt 791 bool remarksEnabled() { 792 auto &Ctx = M.getContext(); 793 return Ctx.getDiagHandlerPtr()->isAnyRemarkEnabled(DEBUG_TYPE); 794 } 795 796 /// Run all OpenMP optimizations on the underlying SCC/ModuleSlice. 797 bool run(bool IsModulePass) { 798 if (SCC.empty()) 799 return false; 800 801 bool Changed = false; 802 803 LLVM_DEBUG(dbgs() << TAG << "Run on SCC with " << SCC.size() 804 << " functions in a slice with " 805 << OMPInfoCache.ModuleSlice.size() << " functions\n"); 806 807 if (IsModulePass) { 808 Changed |= runAttributor(IsModulePass); 809 810 // Recollect uses, in case Attributor deleted any. 811 OMPInfoCache.recollectUses(); 812 813 // TODO: This should be folded into buildCustomStateMachine. 814 Changed |= rewriteDeviceCodeStateMachine(); 815 816 if (remarksEnabled()) 817 analysisGlobalization(); 818 819 Changed |= eliminateBarriers(); 820 } else { 821 if (PrintICVValues) 822 printICVs(); 823 if (PrintOpenMPKernels) 824 printKernels(); 825 826 Changed |= runAttributor(IsModulePass); 827 828 // Recollect uses, in case Attributor deleted any. 829 OMPInfoCache.recollectUses(); 830 831 Changed |= deleteParallelRegions(); 832 833 if (HideMemoryTransferLatency) 834 Changed |= hideMemTransfersLatency(); 835 Changed |= deduplicateRuntimeCalls(); 836 if (EnableParallelRegionMerging) { 837 if (mergeParallelRegions()) { 838 deduplicateRuntimeCalls(); 839 Changed = true; 840 } 841 } 842 843 Changed |= eliminateBarriers(); 844 } 845 846 return Changed; 847 } 848 849 /// Print initial ICV values for testing. 850 /// FIXME: This should be done from the Attributor once it is added. 851 void printICVs() const { 852 InternalControlVar ICVs[] = {ICV_nthreads, ICV_active_levels, ICV_cancel, 853 ICV_proc_bind}; 854 855 for (Function *F : OMPInfoCache.ModuleSlice) { 856 for (auto ICV : ICVs) { 857 auto ICVInfo = OMPInfoCache.ICVs[ICV]; 858 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 859 return ORA << "OpenMP ICV " << ore::NV("OpenMPICV", ICVInfo.Name) 860 << " Value: " 861 << (ICVInfo.InitValue 862 ? toString(ICVInfo.InitValue->getValue(), 10, true) 863 : "IMPLEMENTATION_DEFINED"); 864 }; 865 866 emitRemark<OptimizationRemarkAnalysis>(F, "OpenMPICVTracker", Remark); 867 } 868 } 869 } 870 871 /// Print OpenMP GPU kernels for testing. 872 void printKernels() const { 873 for (Function *F : SCC) { 874 if (!OMPInfoCache.Kernels.count(F)) 875 continue; 876 877 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 878 return ORA << "OpenMP GPU kernel " 879 << ore::NV("OpenMPGPUKernel", F->getName()) << "\n"; 880 }; 881 882 emitRemark<OptimizationRemarkAnalysis>(F, "OpenMPGPU", Remark); 883 } 884 } 885 886 /// Return the call if \p U is a callee use in a regular call. If \p RFI is 887 /// given it has to be the callee or a nullptr is returned. 888 static CallInst *getCallIfRegularCall( 889 Use &U, OMPInformationCache::RuntimeFunctionInfo *RFI = nullptr) { 890 CallInst *CI = dyn_cast<CallInst>(U.getUser()); 891 if (CI && CI->isCallee(&U) && !CI->hasOperandBundles() && 892 (!RFI || 893 (RFI->Declaration && CI->getCalledFunction() == RFI->Declaration))) 894 return CI; 895 return nullptr; 896 } 897 898 /// Return the call if \p V is a regular call. If \p RFI is given it has to be 899 /// the callee or a nullptr is returned. 900 static CallInst *getCallIfRegularCall( 901 Value &V, OMPInformationCache::RuntimeFunctionInfo *RFI = nullptr) { 902 CallInst *CI = dyn_cast<CallInst>(&V); 903 if (CI && !CI->hasOperandBundles() && 904 (!RFI || 905 (RFI->Declaration && CI->getCalledFunction() == RFI->Declaration))) 906 return CI; 907 return nullptr; 908 } 909 910 private: 911 /// Merge parallel regions when it is safe. 912 bool mergeParallelRegions() { 913 const unsigned CallbackCalleeOperand = 2; 914 const unsigned CallbackFirstArgOperand = 3; 915 using InsertPointTy = OpenMPIRBuilder::InsertPointTy; 916 917 // Check if there are any __kmpc_fork_call calls to merge. 918 OMPInformationCache::RuntimeFunctionInfo &RFI = 919 OMPInfoCache.RFIs[OMPRTL___kmpc_fork_call]; 920 921 if (!RFI.Declaration) 922 return false; 923 924 // Unmergable calls that prevent merging a parallel region. 925 OMPInformationCache::RuntimeFunctionInfo UnmergableCallsInfo[] = { 926 OMPInfoCache.RFIs[OMPRTL___kmpc_push_proc_bind], 927 OMPInfoCache.RFIs[OMPRTL___kmpc_push_num_threads], 928 }; 929 930 bool Changed = false; 931 LoopInfo *LI = nullptr; 932 DominatorTree *DT = nullptr; 933 934 SmallDenseMap<BasicBlock *, SmallPtrSet<Instruction *, 4>> BB2PRMap; 935 936 BasicBlock *StartBB = nullptr, *EndBB = nullptr; 937 auto BodyGenCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP) { 938 BasicBlock *CGStartBB = CodeGenIP.getBlock(); 939 BasicBlock *CGEndBB = 940 SplitBlock(CGStartBB, &*CodeGenIP.getPoint(), DT, LI); 941 assert(StartBB != nullptr && "StartBB should not be null"); 942 CGStartBB->getTerminator()->setSuccessor(0, StartBB); 943 assert(EndBB != nullptr && "EndBB should not be null"); 944 EndBB->getTerminator()->setSuccessor(0, CGEndBB); 945 }; 946 947 auto PrivCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, Value &, 948 Value &Inner, Value *&ReplacementValue) -> InsertPointTy { 949 ReplacementValue = &Inner; 950 return CodeGenIP; 951 }; 952 953 auto FiniCB = [&](InsertPointTy CodeGenIP) {}; 954 955 /// Create a sequential execution region within a merged parallel region, 956 /// encapsulated in a master construct with a barrier for synchronization. 957 auto CreateSequentialRegion = [&](Function *OuterFn, 958 BasicBlock *OuterPredBB, 959 Instruction *SeqStartI, 960 Instruction *SeqEndI) { 961 // Isolate the instructions of the sequential region to a separate 962 // block. 963 BasicBlock *ParentBB = SeqStartI->getParent(); 964 BasicBlock *SeqEndBB = 965 SplitBlock(ParentBB, SeqEndI->getNextNode(), DT, LI); 966 BasicBlock *SeqAfterBB = 967 SplitBlock(SeqEndBB, &*SeqEndBB->getFirstInsertionPt(), DT, LI); 968 BasicBlock *SeqStartBB = 969 SplitBlock(ParentBB, SeqStartI, DT, LI, nullptr, "seq.par.merged"); 970 971 assert(ParentBB->getUniqueSuccessor() == SeqStartBB && 972 "Expected a different CFG"); 973 const DebugLoc DL = ParentBB->getTerminator()->getDebugLoc(); 974 ParentBB->getTerminator()->eraseFromParent(); 975 976 auto BodyGenCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP) { 977 BasicBlock *CGStartBB = CodeGenIP.getBlock(); 978 BasicBlock *CGEndBB = 979 SplitBlock(CGStartBB, &*CodeGenIP.getPoint(), DT, LI); 980 assert(SeqStartBB != nullptr && "SeqStartBB should not be null"); 981 CGStartBB->getTerminator()->setSuccessor(0, SeqStartBB); 982 assert(SeqEndBB != nullptr && "SeqEndBB should not be null"); 983 SeqEndBB->getTerminator()->setSuccessor(0, CGEndBB); 984 }; 985 auto FiniCB = [&](InsertPointTy CodeGenIP) {}; 986 987 // Find outputs from the sequential region to outside users and 988 // broadcast their values to them. 989 for (Instruction &I : *SeqStartBB) { 990 SmallPtrSet<Instruction *, 4> OutsideUsers; 991 for (User *Usr : I.users()) { 992 Instruction &UsrI = *cast<Instruction>(Usr); 993 // Ignore outputs to LT intrinsics, code extraction for the merged 994 // parallel region will fix them. 995 if (UsrI.isLifetimeStartOrEnd()) 996 continue; 997 998 if (UsrI.getParent() != SeqStartBB) 999 OutsideUsers.insert(&UsrI); 1000 } 1001 1002 if (OutsideUsers.empty()) 1003 continue; 1004 1005 // Emit an alloca in the outer region to store the broadcasted 1006 // value. 1007 const DataLayout &DL = M.getDataLayout(); 1008 AllocaInst *AllocaI = new AllocaInst( 1009 I.getType(), DL.getAllocaAddrSpace(), nullptr, 1010 I.getName() + ".seq.output.alloc", &OuterFn->front().front()); 1011 1012 // Emit a store instruction in the sequential BB to update the 1013 // value. 1014 new StoreInst(&I, AllocaI, SeqStartBB->getTerminator()); 1015 1016 // Emit a load instruction and replace the use of the output value 1017 // with it. 1018 for (Instruction *UsrI : OutsideUsers) { 1019 LoadInst *LoadI = new LoadInst( 1020 I.getType(), AllocaI, I.getName() + ".seq.output.load", UsrI); 1021 UsrI->replaceUsesOfWith(&I, LoadI); 1022 } 1023 } 1024 1025 OpenMPIRBuilder::LocationDescription Loc( 1026 InsertPointTy(ParentBB, ParentBB->end()), DL); 1027 InsertPointTy SeqAfterIP = 1028 OMPInfoCache.OMPBuilder.createMaster(Loc, BodyGenCB, FiniCB); 1029 1030 OMPInfoCache.OMPBuilder.createBarrier(SeqAfterIP, OMPD_parallel); 1031 1032 BranchInst::Create(SeqAfterBB, SeqAfterIP.getBlock()); 1033 1034 LLVM_DEBUG(dbgs() << TAG << "After sequential inlining " << *OuterFn 1035 << "\n"); 1036 }; 1037 1038 // Helper to merge the __kmpc_fork_call calls in MergableCIs. They are all 1039 // contained in BB and only separated by instructions that can be 1040 // redundantly executed in parallel. The block BB is split before the first 1041 // call (in MergableCIs) and after the last so the entire region we merge 1042 // into a single parallel region is contained in a single basic block 1043 // without any other instructions. We use the OpenMPIRBuilder to outline 1044 // that block and call the resulting function via __kmpc_fork_call. 1045 auto Merge = [&](const SmallVectorImpl<CallInst *> &MergableCIs, 1046 BasicBlock *BB) { 1047 // TODO: Change the interface to allow single CIs expanded, e.g, to 1048 // include an outer loop. 1049 assert(MergableCIs.size() > 1 && "Assumed multiple mergable CIs"); 1050 1051 auto Remark = [&](OptimizationRemark OR) { 1052 OR << "Parallel region merged with parallel region" 1053 << (MergableCIs.size() > 2 ? "s" : "") << " at "; 1054 for (auto *CI : llvm::drop_begin(MergableCIs)) { 1055 OR << ore::NV("OpenMPParallelMerge", CI->getDebugLoc()); 1056 if (CI != MergableCIs.back()) 1057 OR << ", "; 1058 } 1059 return OR << "."; 1060 }; 1061 1062 emitRemark<OptimizationRemark>(MergableCIs.front(), "OMP150", Remark); 1063 1064 Function *OriginalFn = BB->getParent(); 1065 LLVM_DEBUG(dbgs() << TAG << "Merge " << MergableCIs.size() 1066 << " parallel regions in " << OriginalFn->getName() 1067 << "\n"); 1068 1069 // Isolate the calls to merge in a separate block. 1070 EndBB = SplitBlock(BB, MergableCIs.back()->getNextNode(), DT, LI); 1071 BasicBlock *AfterBB = 1072 SplitBlock(EndBB, &*EndBB->getFirstInsertionPt(), DT, LI); 1073 StartBB = SplitBlock(BB, MergableCIs.front(), DT, LI, nullptr, 1074 "omp.par.merged"); 1075 1076 assert(BB->getUniqueSuccessor() == StartBB && "Expected a different CFG"); 1077 const DebugLoc DL = BB->getTerminator()->getDebugLoc(); 1078 BB->getTerminator()->eraseFromParent(); 1079 1080 // Create sequential regions for sequential instructions that are 1081 // in-between mergable parallel regions. 1082 for (auto *It = MergableCIs.begin(), *End = MergableCIs.end() - 1; 1083 It != End; ++It) { 1084 Instruction *ForkCI = *It; 1085 Instruction *NextForkCI = *(It + 1); 1086 1087 // Continue if there are not in-between instructions. 1088 if (ForkCI->getNextNode() == NextForkCI) 1089 continue; 1090 1091 CreateSequentialRegion(OriginalFn, BB, ForkCI->getNextNode(), 1092 NextForkCI->getPrevNode()); 1093 } 1094 1095 OpenMPIRBuilder::LocationDescription Loc(InsertPointTy(BB, BB->end()), 1096 DL); 1097 IRBuilder<>::InsertPoint AllocaIP( 1098 &OriginalFn->getEntryBlock(), 1099 OriginalFn->getEntryBlock().getFirstInsertionPt()); 1100 // Create the merged parallel region with default proc binding, to 1101 // avoid overriding binding settings, and without explicit cancellation. 1102 InsertPointTy AfterIP = OMPInfoCache.OMPBuilder.createParallel( 1103 Loc, AllocaIP, BodyGenCB, PrivCB, FiniCB, nullptr, nullptr, 1104 OMP_PROC_BIND_default, /* IsCancellable */ false); 1105 BranchInst::Create(AfterBB, AfterIP.getBlock()); 1106 1107 // Perform the actual outlining. 1108 OMPInfoCache.OMPBuilder.finalize(OriginalFn); 1109 1110 Function *OutlinedFn = MergableCIs.front()->getCaller(); 1111 1112 // Replace the __kmpc_fork_call calls with direct calls to the outlined 1113 // callbacks. 1114 SmallVector<Value *, 8> Args; 1115 for (auto *CI : MergableCIs) { 1116 Value *Callee = CI->getArgOperand(CallbackCalleeOperand); 1117 FunctionType *FT = OMPInfoCache.OMPBuilder.ParallelTask; 1118 Args.clear(); 1119 Args.push_back(OutlinedFn->getArg(0)); 1120 Args.push_back(OutlinedFn->getArg(1)); 1121 for (unsigned U = CallbackFirstArgOperand, E = CI->arg_size(); U < E; 1122 ++U) 1123 Args.push_back(CI->getArgOperand(U)); 1124 1125 CallInst *NewCI = CallInst::Create(FT, Callee, Args, "", CI); 1126 if (CI->getDebugLoc()) 1127 NewCI->setDebugLoc(CI->getDebugLoc()); 1128 1129 // Forward parameter attributes from the callback to the callee. 1130 for (unsigned U = CallbackFirstArgOperand, E = CI->arg_size(); U < E; 1131 ++U) 1132 for (const Attribute &A : CI->getAttributes().getParamAttrs(U)) 1133 NewCI->addParamAttr( 1134 U - (CallbackFirstArgOperand - CallbackCalleeOperand), A); 1135 1136 // Emit an explicit barrier to replace the implicit fork-join barrier. 1137 if (CI != MergableCIs.back()) { 1138 // TODO: Remove barrier if the merged parallel region includes the 1139 // 'nowait' clause. 1140 OMPInfoCache.OMPBuilder.createBarrier( 1141 InsertPointTy(NewCI->getParent(), 1142 NewCI->getNextNode()->getIterator()), 1143 OMPD_parallel); 1144 } 1145 1146 CI->eraseFromParent(); 1147 } 1148 1149 assert(OutlinedFn != OriginalFn && "Outlining failed"); 1150 CGUpdater.registerOutlinedFunction(*OriginalFn, *OutlinedFn); 1151 CGUpdater.reanalyzeFunction(*OriginalFn); 1152 1153 NumOpenMPParallelRegionsMerged += MergableCIs.size(); 1154 1155 return true; 1156 }; 1157 1158 // Helper function that identifes sequences of 1159 // __kmpc_fork_call uses in a basic block. 1160 auto DetectPRsCB = [&](Use &U, Function &F) { 1161 CallInst *CI = getCallIfRegularCall(U, &RFI); 1162 BB2PRMap[CI->getParent()].insert(CI); 1163 1164 return false; 1165 }; 1166 1167 BB2PRMap.clear(); 1168 RFI.foreachUse(SCC, DetectPRsCB); 1169 SmallVector<SmallVector<CallInst *, 4>, 4> MergableCIsVector; 1170 // Find mergable parallel regions within a basic block that are 1171 // safe to merge, that is any in-between instructions can safely 1172 // execute in parallel after merging. 1173 // TODO: support merging across basic-blocks. 1174 for (auto &It : BB2PRMap) { 1175 auto &CIs = It.getSecond(); 1176 if (CIs.size() < 2) 1177 continue; 1178 1179 BasicBlock *BB = It.getFirst(); 1180 SmallVector<CallInst *, 4> MergableCIs; 1181 1182 /// Returns true if the instruction is mergable, false otherwise. 1183 /// A terminator instruction is unmergable by definition since merging 1184 /// works within a BB. Instructions before the mergable region are 1185 /// mergable if they are not calls to OpenMP runtime functions that may 1186 /// set different execution parameters for subsequent parallel regions. 1187 /// Instructions in-between parallel regions are mergable if they are not 1188 /// calls to any non-intrinsic function since that may call a non-mergable 1189 /// OpenMP runtime function. 1190 auto IsMergable = [&](Instruction &I, bool IsBeforeMergableRegion) { 1191 // We do not merge across BBs, hence return false (unmergable) if the 1192 // instruction is a terminator. 1193 if (I.isTerminator()) 1194 return false; 1195 1196 if (!isa<CallInst>(&I)) 1197 return true; 1198 1199 CallInst *CI = cast<CallInst>(&I); 1200 if (IsBeforeMergableRegion) { 1201 Function *CalledFunction = CI->getCalledFunction(); 1202 if (!CalledFunction) 1203 return false; 1204 // Return false (unmergable) if the call before the parallel 1205 // region calls an explicit affinity (proc_bind) or number of 1206 // threads (num_threads) compiler-generated function. Those settings 1207 // may be incompatible with following parallel regions. 1208 // TODO: ICV tracking to detect compatibility. 1209 for (const auto &RFI : UnmergableCallsInfo) { 1210 if (CalledFunction == RFI.Declaration) 1211 return false; 1212 } 1213 } else { 1214 // Return false (unmergable) if there is a call instruction 1215 // in-between parallel regions when it is not an intrinsic. It 1216 // may call an unmergable OpenMP runtime function in its callpath. 1217 // TODO: Keep track of possible OpenMP calls in the callpath. 1218 if (!isa<IntrinsicInst>(CI)) 1219 return false; 1220 } 1221 1222 return true; 1223 }; 1224 // Find maximal number of parallel region CIs that are safe to merge. 1225 for (auto It = BB->begin(), End = BB->end(); It != End;) { 1226 Instruction &I = *It; 1227 ++It; 1228 1229 if (CIs.count(&I)) { 1230 MergableCIs.push_back(cast<CallInst>(&I)); 1231 continue; 1232 } 1233 1234 // Continue expanding if the instruction is mergable. 1235 if (IsMergable(I, MergableCIs.empty())) 1236 continue; 1237 1238 // Forward the instruction iterator to skip the next parallel region 1239 // since there is an unmergable instruction which can affect it. 1240 for (; It != End; ++It) { 1241 Instruction &SkipI = *It; 1242 if (CIs.count(&SkipI)) { 1243 LLVM_DEBUG(dbgs() << TAG << "Skip parallel region " << SkipI 1244 << " due to " << I << "\n"); 1245 ++It; 1246 break; 1247 } 1248 } 1249 1250 // Store mergable regions found. 1251 if (MergableCIs.size() > 1) { 1252 MergableCIsVector.push_back(MergableCIs); 1253 LLVM_DEBUG(dbgs() << TAG << "Found " << MergableCIs.size() 1254 << " parallel regions in block " << BB->getName() 1255 << " of function " << BB->getParent()->getName() 1256 << "\n";); 1257 } 1258 1259 MergableCIs.clear(); 1260 } 1261 1262 if (!MergableCIsVector.empty()) { 1263 Changed = true; 1264 1265 for (auto &MergableCIs : MergableCIsVector) 1266 Merge(MergableCIs, BB); 1267 MergableCIsVector.clear(); 1268 } 1269 } 1270 1271 if (Changed) { 1272 /// Re-collect use for fork calls, emitted barrier calls, and 1273 /// any emitted master/end_master calls. 1274 OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_fork_call); 1275 OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_barrier); 1276 OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_master); 1277 OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_end_master); 1278 } 1279 1280 return Changed; 1281 } 1282 1283 /// Try to delete parallel regions if possible. 1284 bool deleteParallelRegions() { 1285 const unsigned CallbackCalleeOperand = 2; 1286 1287 OMPInformationCache::RuntimeFunctionInfo &RFI = 1288 OMPInfoCache.RFIs[OMPRTL___kmpc_fork_call]; 1289 1290 if (!RFI.Declaration) 1291 return false; 1292 1293 bool Changed = false; 1294 auto DeleteCallCB = [&](Use &U, Function &) { 1295 CallInst *CI = getCallIfRegularCall(U); 1296 if (!CI) 1297 return false; 1298 auto *Fn = dyn_cast<Function>( 1299 CI->getArgOperand(CallbackCalleeOperand)->stripPointerCasts()); 1300 if (!Fn) 1301 return false; 1302 if (!Fn->onlyReadsMemory()) 1303 return false; 1304 if (!Fn->hasFnAttribute(Attribute::WillReturn)) 1305 return false; 1306 1307 LLVM_DEBUG(dbgs() << TAG << "Delete read-only parallel region in " 1308 << CI->getCaller()->getName() << "\n"); 1309 1310 auto Remark = [&](OptimizationRemark OR) { 1311 return OR << "Removing parallel region with no side-effects."; 1312 }; 1313 emitRemark<OptimizationRemark>(CI, "OMP160", Remark); 1314 1315 CGUpdater.removeCallSite(*CI); 1316 CI->eraseFromParent(); 1317 Changed = true; 1318 ++NumOpenMPParallelRegionsDeleted; 1319 return true; 1320 }; 1321 1322 RFI.foreachUse(SCC, DeleteCallCB); 1323 1324 return Changed; 1325 } 1326 1327 /// Try to eliminate runtime calls by reusing existing ones. 1328 bool deduplicateRuntimeCalls() { 1329 bool Changed = false; 1330 1331 RuntimeFunction DeduplicableRuntimeCallIDs[] = { 1332 OMPRTL_omp_get_num_threads, 1333 OMPRTL_omp_in_parallel, 1334 OMPRTL_omp_get_cancellation, 1335 OMPRTL_omp_get_thread_limit, 1336 OMPRTL_omp_get_supported_active_levels, 1337 OMPRTL_omp_get_level, 1338 OMPRTL_omp_get_ancestor_thread_num, 1339 OMPRTL_omp_get_team_size, 1340 OMPRTL_omp_get_active_level, 1341 OMPRTL_omp_in_final, 1342 OMPRTL_omp_get_proc_bind, 1343 OMPRTL_omp_get_num_places, 1344 OMPRTL_omp_get_num_procs, 1345 OMPRTL_omp_get_place_num, 1346 OMPRTL_omp_get_partition_num_places, 1347 OMPRTL_omp_get_partition_place_nums}; 1348 1349 // Global-tid is handled separately. 1350 SmallSetVector<Value *, 16> GTIdArgs; 1351 collectGlobalThreadIdArguments(GTIdArgs); 1352 LLVM_DEBUG(dbgs() << TAG << "Found " << GTIdArgs.size() 1353 << " global thread ID arguments\n"); 1354 1355 for (Function *F : SCC) { 1356 for (auto DeduplicableRuntimeCallID : DeduplicableRuntimeCallIDs) 1357 Changed |= deduplicateRuntimeCalls( 1358 *F, OMPInfoCache.RFIs[DeduplicableRuntimeCallID]); 1359 1360 // __kmpc_global_thread_num is special as we can replace it with an 1361 // argument in enough cases to make it worth trying. 1362 Value *GTIdArg = nullptr; 1363 for (Argument &Arg : F->args()) 1364 if (GTIdArgs.count(&Arg)) { 1365 GTIdArg = &Arg; 1366 break; 1367 } 1368 Changed |= deduplicateRuntimeCalls( 1369 *F, OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num], GTIdArg); 1370 } 1371 1372 return Changed; 1373 } 1374 1375 /// Tries to hide the latency of runtime calls that involve host to 1376 /// device memory transfers by splitting them into their "issue" and "wait" 1377 /// versions. The "issue" is moved upwards as much as possible. The "wait" is 1378 /// moved downards as much as possible. The "issue" issues the memory transfer 1379 /// asynchronously, returning a handle. The "wait" waits in the returned 1380 /// handle for the memory transfer to finish. 1381 bool hideMemTransfersLatency() { 1382 auto &RFI = OMPInfoCache.RFIs[OMPRTL___tgt_target_data_begin_mapper]; 1383 bool Changed = false; 1384 auto SplitMemTransfers = [&](Use &U, Function &Decl) { 1385 auto *RTCall = getCallIfRegularCall(U, &RFI); 1386 if (!RTCall) 1387 return false; 1388 1389 OffloadArray OffloadArrays[3]; 1390 if (!getValuesInOffloadArrays(*RTCall, OffloadArrays)) 1391 return false; 1392 1393 LLVM_DEBUG(dumpValuesInOffloadArrays(OffloadArrays)); 1394 1395 // TODO: Check if can be moved upwards. 1396 bool WasSplit = false; 1397 Instruction *WaitMovementPoint = canBeMovedDownwards(*RTCall); 1398 if (WaitMovementPoint) 1399 WasSplit = splitTargetDataBeginRTC(*RTCall, *WaitMovementPoint); 1400 1401 Changed |= WasSplit; 1402 return WasSplit; 1403 }; 1404 RFI.foreachUse(SCC, SplitMemTransfers); 1405 1406 return Changed; 1407 } 1408 1409 /// Eliminates redundant, aligned barriers in OpenMP offloaded kernels. 1410 /// TODO: Make this an AA and expand it to work across blocks and functions. 1411 bool eliminateBarriers() { 1412 bool Changed = false; 1413 1414 if (DisableOpenMPOptBarrierElimination) 1415 return /*Changed=*/false; 1416 1417 if (OMPInfoCache.Kernels.empty()) 1418 return /*Changed=*/false; 1419 1420 enum ImplicitBarrierType { IBT_ENTRY, IBT_EXIT }; 1421 1422 class BarrierInfo { 1423 Instruction *I; 1424 enum ImplicitBarrierType Type; 1425 1426 public: 1427 BarrierInfo(enum ImplicitBarrierType Type) : I(nullptr), Type(Type) {} 1428 BarrierInfo(Instruction &I) : I(&I) {} 1429 1430 bool isImplicit() { return !I; } 1431 1432 bool isImplicitEntry() { return isImplicit() && Type == IBT_ENTRY; } 1433 1434 bool isImplicitExit() { return isImplicit() && Type == IBT_EXIT; } 1435 1436 Instruction *getInstruction() { return I; } 1437 }; 1438 1439 for (Function *Kernel : OMPInfoCache.Kernels) { 1440 for (BasicBlock &BB : *Kernel) { 1441 SmallVector<BarrierInfo, 8> BarriersInBlock; 1442 SmallPtrSet<Instruction *, 8> BarriersToBeDeleted; 1443 1444 // Add the kernel entry implicit barrier. 1445 if (&Kernel->getEntryBlock() == &BB) 1446 BarriersInBlock.push_back(IBT_ENTRY); 1447 1448 // Find implicit and explicit aligned barriers in the same basic block. 1449 for (Instruction &I : BB) { 1450 if (isa<ReturnInst>(I)) { 1451 // Add the implicit barrier when exiting the kernel. 1452 BarriersInBlock.push_back(IBT_EXIT); 1453 continue; 1454 } 1455 CallBase *CB = dyn_cast<CallBase>(&I); 1456 if (!CB) 1457 continue; 1458 1459 auto IsAlignBarrierCB = [&](CallBase &CB) { 1460 switch (CB.getIntrinsicID()) { 1461 case Intrinsic::nvvm_barrier0: 1462 case Intrinsic::nvvm_barrier0_and: 1463 case Intrinsic::nvvm_barrier0_or: 1464 case Intrinsic::nvvm_barrier0_popc: 1465 return true; 1466 default: 1467 break; 1468 } 1469 return hasAssumption(CB, 1470 KnownAssumptionString("ompx_aligned_barrier")); 1471 }; 1472 1473 if (IsAlignBarrierCB(*CB)) { 1474 // Add an explicit aligned barrier. 1475 BarriersInBlock.push_back(I); 1476 } 1477 } 1478 1479 if (BarriersInBlock.size() <= 1) 1480 continue; 1481 1482 // A barrier in a barrier pair is removeable if all instructions 1483 // between the barriers in the pair are side-effect free modulo the 1484 // barrier operation. 1485 auto IsBarrierRemoveable = [&Kernel](BarrierInfo *StartBI, 1486 BarrierInfo *EndBI) { 1487 assert( 1488 !StartBI->isImplicitExit() && 1489 "Expected start barrier to be other than a kernel exit barrier"); 1490 assert( 1491 !EndBI->isImplicitEntry() && 1492 "Expected end barrier to be other than a kernel entry barrier"); 1493 // If StarBI instructions is null then this the implicit 1494 // kernel entry barrier, so iterate from the first instruction in the 1495 // entry block. 1496 Instruction *I = (StartBI->isImplicitEntry()) 1497 ? &Kernel->getEntryBlock().front() 1498 : StartBI->getInstruction()->getNextNode(); 1499 assert(I && "Expected non-null start instruction"); 1500 Instruction *E = (EndBI->isImplicitExit()) 1501 ? I->getParent()->getTerminator() 1502 : EndBI->getInstruction(); 1503 assert(E && "Expected non-null end instruction"); 1504 1505 for (; I != E; I = I->getNextNode()) { 1506 if (!I->mayHaveSideEffects() && !I->mayReadFromMemory()) 1507 continue; 1508 1509 auto IsPotentiallyAffectedByBarrier = 1510 [](Optional<MemoryLocation> Loc) { 1511 const Value *Obj = (Loc && Loc->Ptr) 1512 ? getUnderlyingObject(Loc->Ptr) 1513 : nullptr; 1514 if (!Obj) { 1515 LLVM_DEBUG( 1516 dbgs() 1517 << "Access to unknown location requires barriers\n"); 1518 return true; 1519 } 1520 if (isa<UndefValue>(Obj)) 1521 return false; 1522 if (isa<AllocaInst>(Obj)) 1523 return false; 1524 if (auto *GV = dyn_cast<GlobalVariable>(Obj)) { 1525 if (GV->isConstant()) 1526 return false; 1527 if (GV->isThreadLocal()) 1528 return false; 1529 if (GV->getAddressSpace() == (int)AddressSpace::Local) 1530 return false; 1531 if (GV->getAddressSpace() == (int)AddressSpace::Constant) 1532 return false; 1533 } 1534 LLVM_DEBUG(dbgs() << "Access to '" << *Obj 1535 << "' requires barriers\n"); 1536 return true; 1537 }; 1538 1539 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) { 1540 Optional<MemoryLocation> Loc = MemoryLocation::getForDest(MI); 1541 if (IsPotentiallyAffectedByBarrier(Loc)) 1542 return false; 1543 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(I)) { 1544 Optional<MemoryLocation> Loc = 1545 MemoryLocation::getForSource(MTI); 1546 if (IsPotentiallyAffectedByBarrier(Loc)) 1547 return false; 1548 } 1549 continue; 1550 } 1551 1552 if (auto *LI = dyn_cast<LoadInst>(I)) 1553 if (LI->hasMetadata(LLVMContext::MD_invariant_load)) 1554 continue; 1555 1556 Optional<MemoryLocation> Loc = MemoryLocation::getOrNone(I); 1557 if (IsPotentiallyAffectedByBarrier(Loc)) 1558 return false; 1559 } 1560 1561 return true; 1562 }; 1563 1564 // Iterate barrier pairs and remove an explicit barrier if analysis 1565 // deems it removeable. 1566 for (auto *It = BarriersInBlock.begin(), 1567 *End = BarriersInBlock.end() - 1; 1568 It != End; ++It) { 1569 1570 BarrierInfo *StartBI = It; 1571 BarrierInfo *EndBI = (It + 1); 1572 1573 // Cannot remove when both are implicit barriers, continue. 1574 if (StartBI->isImplicit() && EndBI->isImplicit()) 1575 continue; 1576 1577 if (!IsBarrierRemoveable(StartBI, EndBI)) 1578 continue; 1579 1580 assert(!(StartBI->isImplicit() && EndBI->isImplicit()) && 1581 "Expected at least one explicit barrier to remove."); 1582 1583 // Remove an explicit barrier, check first, then second. 1584 if (!StartBI->isImplicit()) { 1585 LLVM_DEBUG(dbgs() << "Remove start barrier " 1586 << *StartBI->getInstruction() << "\n"); 1587 BarriersToBeDeleted.insert(StartBI->getInstruction()); 1588 } else { 1589 LLVM_DEBUG(dbgs() << "Remove end barrier " 1590 << *EndBI->getInstruction() << "\n"); 1591 BarriersToBeDeleted.insert(EndBI->getInstruction()); 1592 } 1593 } 1594 1595 if (BarriersToBeDeleted.empty()) 1596 continue; 1597 1598 Changed = true; 1599 for (Instruction *I : BarriersToBeDeleted) { 1600 ++NumBarriersEliminated; 1601 auto Remark = [&](OptimizationRemark OR) { 1602 return OR << "Redundant barrier eliminated."; 1603 }; 1604 1605 if (EnableVerboseRemarks) 1606 emitRemark<OptimizationRemark>(I, "OMP190", Remark); 1607 I->eraseFromParent(); 1608 } 1609 } 1610 } 1611 1612 return Changed; 1613 } 1614 1615 void analysisGlobalization() { 1616 auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared]; 1617 1618 auto CheckGlobalization = [&](Use &U, Function &Decl) { 1619 if (CallInst *CI = getCallIfRegularCall(U, &RFI)) { 1620 auto Remark = [&](OptimizationRemarkMissed ORM) { 1621 return ORM 1622 << "Found thread data sharing on the GPU. " 1623 << "Expect degraded performance due to data globalization."; 1624 }; 1625 emitRemark<OptimizationRemarkMissed>(CI, "OMP112", Remark); 1626 } 1627 1628 return false; 1629 }; 1630 1631 RFI.foreachUse(SCC, CheckGlobalization); 1632 } 1633 1634 /// Maps the values stored in the offload arrays passed as arguments to 1635 /// \p RuntimeCall into the offload arrays in \p OAs. 1636 bool getValuesInOffloadArrays(CallInst &RuntimeCall, 1637 MutableArrayRef<OffloadArray> OAs) { 1638 assert(OAs.size() == 3 && "Need space for three offload arrays!"); 1639 1640 // A runtime call that involves memory offloading looks something like: 1641 // call void @__tgt_target_data_begin_mapper(arg0, arg1, 1642 // i8** %offload_baseptrs, i8** %offload_ptrs, i64* %offload_sizes, 1643 // ...) 1644 // So, the idea is to access the allocas that allocate space for these 1645 // offload arrays, offload_baseptrs, offload_ptrs, offload_sizes. 1646 // Therefore: 1647 // i8** %offload_baseptrs. 1648 Value *BasePtrsArg = 1649 RuntimeCall.getArgOperand(OffloadArray::BasePtrsArgNum); 1650 // i8** %offload_ptrs. 1651 Value *PtrsArg = RuntimeCall.getArgOperand(OffloadArray::PtrsArgNum); 1652 // i8** %offload_sizes. 1653 Value *SizesArg = RuntimeCall.getArgOperand(OffloadArray::SizesArgNum); 1654 1655 // Get values stored in **offload_baseptrs. 1656 auto *V = getUnderlyingObject(BasePtrsArg); 1657 if (!isa<AllocaInst>(V)) 1658 return false; 1659 auto *BasePtrsArray = cast<AllocaInst>(V); 1660 if (!OAs[0].initialize(*BasePtrsArray, RuntimeCall)) 1661 return false; 1662 1663 // Get values stored in **offload_baseptrs. 1664 V = getUnderlyingObject(PtrsArg); 1665 if (!isa<AllocaInst>(V)) 1666 return false; 1667 auto *PtrsArray = cast<AllocaInst>(V); 1668 if (!OAs[1].initialize(*PtrsArray, RuntimeCall)) 1669 return false; 1670 1671 // Get values stored in **offload_sizes. 1672 V = getUnderlyingObject(SizesArg); 1673 // If it's a [constant] global array don't analyze it. 1674 if (isa<GlobalValue>(V)) 1675 return isa<Constant>(V); 1676 if (!isa<AllocaInst>(V)) 1677 return false; 1678 1679 auto *SizesArray = cast<AllocaInst>(V); 1680 if (!OAs[2].initialize(*SizesArray, RuntimeCall)) 1681 return false; 1682 1683 return true; 1684 } 1685 1686 /// Prints the values in the OffloadArrays \p OAs using LLVM_DEBUG. 1687 /// For now this is a way to test that the function getValuesInOffloadArrays 1688 /// is working properly. 1689 /// TODO: Move this to a unittest when unittests are available for OpenMPOpt. 1690 void dumpValuesInOffloadArrays(ArrayRef<OffloadArray> OAs) { 1691 assert(OAs.size() == 3 && "There are three offload arrays to debug!"); 1692 1693 LLVM_DEBUG(dbgs() << TAG << " Successfully got offload values:\n"); 1694 std::string ValuesStr; 1695 raw_string_ostream Printer(ValuesStr); 1696 std::string Separator = " --- "; 1697 1698 for (auto *BP : OAs[0].StoredValues) { 1699 BP->print(Printer); 1700 Printer << Separator; 1701 } 1702 LLVM_DEBUG(dbgs() << "\t\toffload_baseptrs: " << Printer.str() << "\n"); 1703 ValuesStr.clear(); 1704 1705 for (auto *P : OAs[1].StoredValues) { 1706 P->print(Printer); 1707 Printer << Separator; 1708 } 1709 LLVM_DEBUG(dbgs() << "\t\toffload_ptrs: " << Printer.str() << "\n"); 1710 ValuesStr.clear(); 1711 1712 for (auto *S : OAs[2].StoredValues) { 1713 S->print(Printer); 1714 Printer << Separator; 1715 } 1716 LLVM_DEBUG(dbgs() << "\t\toffload_sizes: " << Printer.str() << "\n"); 1717 } 1718 1719 /// Returns the instruction where the "wait" counterpart \p RuntimeCall can be 1720 /// moved. Returns nullptr if the movement is not possible, or not worth it. 1721 Instruction *canBeMovedDownwards(CallInst &RuntimeCall) { 1722 // FIXME: This traverses only the BasicBlock where RuntimeCall is. 1723 // Make it traverse the CFG. 1724 1725 Instruction *CurrentI = &RuntimeCall; 1726 bool IsWorthIt = false; 1727 while ((CurrentI = CurrentI->getNextNode())) { 1728 1729 // TODO: Once we detect the regions to be offloaded we should use the 1730 // alias analysis manager to check if CurrentI may modify one of 1731 // the offloaded regions. 1732 if (CurrentI->mayHaveSideEffects() || CurrentI->mayReadFromMemory()) { 1733 if (IsWorthIt) 1734 return CurrentI; 1735 1736 return nullptr; 1737 } 1738 1739 // FIXME: For now if we move it over anything without side effect 1740 // is worth it. 1741 IsWorthIt = true; 1742 } 1743 1744 // Return end of BasicBlock. 1745 return RuntimeCall.getParent()->getTerminator(); 1746 } 1747 1748 /// Splits \p RuntimeCall into its "issue" and "wait" counterparts. 1749 bool splitTargetDataBeginRTC(CallInst &RuntimeCall, 1750 Instruction &WaitMovementPoint) { 1751 // Create stack allocated handle (__tgt_async_info) at the beginning of the 1752 // function. Used for storing information of the async transfer, allowing to 1753 // wait on it later. 1754 auto &IRBuilder = OMPInfoCache.OMPBuilder; 1755 auto *F = RuntimeCall.getCaller(); 1756 Instruction *FirstInst = &(F->getEntryBlock().front()); 1757 AllocaInst *Handle = new AllocaInst( 1758 IRBuilder.AsyncInfo, F->getAddressSpace(), "handle", FirstInst); 1759 1760 // Add "issue" runtime call declaration: 1761 // declare %struct.tgt_async_info @__tgt_target_data_begin_issue(i64, i32, 1762 // i8**, i8**, i64*, i64*) 1763 FunctionCallee IssueDecl = IRBuilder.getOrCreateRuntimeFunction( 1764 M, OMPRTL___tgt_target_data_begin_mapper_issue); 1765 1766 // Change RuntimeCall call site for its asynchronous version. 1767 SmallVector<Value *, 16> Args; 1768 for (auto &Arg : RuntimeCall.args()) 1769 Args.push_back(Arg.get()); 1770 Args.push_back(Handle); 1771 1772 CallInst *IssueCallsite = 1773 CallInst::Create(IssueDecl, Args, /*NameStr=*/"", &RuntimeCall); 1774 OMPInfoCache.setCallingConvention(IssueDecl, IssueCallsite); 1775 RuntimeCall.eraseFromParent(); 1776 1777 // Add "wait" runtime call declaration: 1778 // declare void @__tgt_target_data_begin_wait(i64, %struct.__tgt_async_info) 1779 FunctionCallee WaitDecl = IRBuilder.getOrCreateRuntimeFunction( 1780 M, OMPRTL___tgt_target_data_begin_mapper_wait); 1781 1782 Value *WaitParams[2] = { 1783 IssueCallsite->getArgOperand( 1784 OffloadArray::DeviceIDArgNum), // device_id. 1785 Handle // handle to wait on. 1786 }; 1787 CallInst *WaitCallsite = CallInst::Create( 1788 WaitDecl, WaitParams, /*NameStr=*/"", &WaitMovementPoint); 1789 OMPInfoCache.setCallingConvention(WaitDecl, WaitCallsite); 1790 1791 return true; 1792 } 1793 1794 static Value *combinedIdentStruct(Value *CurrentIdent, Value *NextIdent, 1795 bool GlobalOnly, bool &SingleChoice) { 1796 if (CurrentIdent == NextIdent) 1797 return CurrentIdent; 1798 1799 // TODO: Figure out how to actually combine multiple debug locations. For 1800 // now we just keep an existing one if there is a single choice. 1801 if (!GlobalOnly || isa<GlobalValue>(NextIdent)) { 1802 SingleChoice = !CurrentIdent; 1803 return NextIdent; 1804 } 1805 return nullptr; 1806 } 1807 1808 /// Return an `struct ident_t*` value that represents the ones used in the 1809 /// calls of \p RFI inside of \p F. If \p GlobalOnly is true, we will not 1810 /// return a local `struct ident_t*`. For now, if we cannot find a suitable 1811 /// return value we create one from scratch. We also do not yet combine 1812 /// information, e.g., the source locations, see combinedIdentStruct. 1813 Value * 1814 getCombinedIdentFromCallUsesIn(OMPInformationCache::RuntimeFunctionInfo &RFI, 1815 Function &F, bool GlobalOnly) { 1816 bool SingleChoice = true; 1817 Value *Ident = nullptr; 1818 auto CombineIdentStruct = [&](Use &U, Function &Caller) { 1819 CallInst *CI = getCallIfRegularCall(U, &RFI); 1820 if (!CI || &F != &Caller) 1821 return false; 1822 Ident = combinedIdentStruct(Ident, CI->getArgOperand(0), 1823 /* GlobalOnly */ true, SingleChoice); 1824 return false; 1825 }; 1826 RFI.foreachUse(SCC, CombineIdentStruct); 1827 1828 if (!Ident || !SingleChoice) { 1829 // The IRBuilder uses the insertion block to get to the module, this is 1830 // unfortunate but we work around it for now. 1831 if (!OMPInfoCache.OMPBuilder.getInsertionPoint().getBlock()) 1832 OMPInfoCache.OMPBuilder.updateToLocation(OpenMPIRBuilder::InsertPointTy( 1833 &F.getEntryBlock(), F.getEntryBlock().begin())); 1834 // Create a fallback location if non was found. 1835 // TODO: Use the debug locations of the calls instead. 1836 uint32_t SrcLocStrSize; 1837 Constant *Loc = 1838 OMPInfoCache.OMPBuilder.getOrCreateDefaultSrcLocStr(SrcLocStrSize); 1839 Ident = OMPInfoCache.OMPBuilder.getOrCreateIdent(Loc, SrcLocStrSize); 1840 } 1841 return Ident; 1842 } 1843 1844 /// Try to eliminate calls of \p RFI in \p F by reusing an existing one or 1845 /// \p ReplVal if given. 1846 bool deduplicateRuntimeCalls(Function &F, 1847 OMPInformationCache::RuntimeFunctionInfo &RFI, 1848 Value *ReplVal = nullptr) { 1849 auto *UV = RFI.getUseVector(F); 1850 if (!UV || UV->size() + (ReplVal != nullptr) < 2) 1851 return false; 1852 1853 LLVM_DEBUG( 1854 dbgs() << TAG << "Deduplicate " << UV->size() << " uses of " << RFI.Name 1855 << (ReplVal ? " with an existing value\n" : "\n") << "\n"); 1856 1857 assert((!ReplVal || (isa<Argument>(ReplVal) && 1858 cast<Argument>(ReplVal)->getParent() == &F)) && 1859 "Unexpected replacement value!"); 1860 1861 // TODO: Use dominance to find a good position instead. 1862 auto CanBeMoved = [this](CallBase &CB) { 1863 unsigned NumArgs = CB.arg_size(); 1864 if (NumArgs == 0) 1865 return true; 1866 if (CB.getArgOperand(0)->getType() != OMPInfoCache.OMPBuilder.IdentPtr) 1867 return false; 1868 for (unsigned U = 1; U < NumArgs; ++U) 1869 if (isa<Instruction>(CB.getArgOperand(U))) 1870 return false; 1871 return true; 1872 }; 1873 1874 if (!ReplVal) { 1875 for (Use *U : *UV) 1876 if (CallInst *CI = getCallIfRegularCall(*U, &RFI)) { 1877 if (!CanBeMoved(*CI)) 1878 continue; 1879 1880 // If the function is a kernel, dedup will move 1881 // the runtime call right after the kernel init callsite. Otherwise, 1882 // it will move it to the beginning of the caller function. 1883 if (isKernel(F)) { 1884 auto &KernelInitRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_target_init]; 1885 auto *KernelInitUV = KernelInitRFI.getUseVector(F); 1886 1887 if (KernelInitUV->empty()) 1888 continue; 1889 1890 assert(KernelInitUV->size() == 1 && 1891 "Expected a single __kmpc_target_init in kernel\n"); 1892 1893 CallInst *KernelInitCI = 1894 getCallIfRegularCall(*KernelInitUV->front(), &KernelInitRFI); 1895 assert(KernelInitCI && 1896 "Expected a call to __kmpc_target_init in kernel\n"); 1897 1898 CI->moveAfter(KernelInitCI); 1899 } else 1900 CI->moveBefore(&*F.getEntryBlock().getFirstInsertionPt()); 1901 ReplVal = CI; 1902 break; 1903 } 1904 if (!ReplVal) 1905 return false; 1906 } 1907 1908 // If we use a call as a replacement value we need to make sure the ident is 1909 // valid at the new location. For now we just pick a global one, either 1910 // existing and used by one of the calls, or created from scratch. 1911 if (CallBase *CI = dyn_cast<CallBase>(ReplVal)) { 1912 if (!CI->arg_empty() && 1913 CI->getArgOperand(0)->getType() == OMPInfoCache.OMPBuilder.IdentPtr) { 1914 Value *Ident = getCombinedIdentFromCallUsesIn(RFI, F, 1915 /* GlobalOnly */ true); 1916 CI->setArgOperand(0, Ident); 1917 } 1918 } 1919 1920 bool Changed = false; 1921 auto ReplaceAndDeleteCB = [&](Use &U, Function &Caller) { 1922 CallInst *CI = getCallIfRegularCall(U, &RFI); 1923 if (!CI || CI == ReplVal || &F != &Caller) 1924 return false; 1925 assert(CI->getCaller() == &F && "Unexpected call!"); 1926 1927 auto Remark = [&](OptimizationRemark OR) { 1928 return OR << "OpenMP runtime call " 1929 << ore::NV("OpenMPOptRuntime", RFI.Name) << " deduplicated."; 1930 }; 1931 if (CI->getDebugLoc()) 1932 emitRemark<OptimizationRemark>(CI, "OMP170", Remark); 1933 else 1934 emitRemark<OptimizationRemark>(&F, "OMP170", Remark); 1935 1936 CGUpdater.removeCallSite(*CI); 1937 CI->replaceAllUsesWith(ReplVal); 1938 CI->eraseFromParent(); 1939 ++NumOpenMPRuntimeCallsDeduplicated; 1940 Changed = true; 1941 return true; 1942 }; 1943 RFI.foreachUse(SCC, ReplaceAndDeleteCB); 1944 1945 return Changed; 1946 } 1947 1948 /// Collect arguments that represent the global thread id in \p GTIdArgs. 1949 void collectGlobalThreadIdArguments(SmallSetVector<Value *, 16> >IdArgs) { 1950 // TODO: Below we basically perform a fixpoint iteration with a pessimistic 1951 // initialization. We could define an AbstractAttribute instead and 1952 // run the Attributor here once it can be run as an SCC pass. 1953 1954 // Helper to check the argument \p ArgNo at all call sites of \p F for 1955 // a GTId. 1956 auto CallArgOpIsGTId = [&](Function &F, unsigned ArgNo, CallInst &RefCI) { 1957 if (!F.hasLocalLinkage()) 1958 return false; 1959 for (Use &U : F.uses()) { 1960 if (CallInst *CI = getCallIfRegularCall(U)) { 1961 Value *ArgOp = CI->getArgOperand(ArgNo); 1962 if (CI == &RefCI || GTIdArgs.count(ArgOp) || 1963 getCallIfRegularCall( 1964 *ArgOp, &OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num])) 1965 continue; 1966 } 1967 return false; 1968 } 1969 return true; 1970 }; 1971 1972 // Helper to identify uses of a GTId as GTId arguments. 1973 auto AddUserArgs = [&](Value >Id) { 1974 for (Use &U : GTId.uses()) 1975 if (CallInst *CI = dyn_cast<CallInst>(U.getUser())) 1976 if (CI->isArgOperand(&U)) 1977 if (Function *Callee = CI->getCalledFunction()) 1978 if (CallArgOpIsGTId(*Callee, U.getOperandNo(), *CI)) 1979 GTIdArgs.insert(Callee->getArg(U.getOperandNo())); 1980 }; 1981 1982 // The argument users of __kmpc_global_thread_num calls are GTIds. 1983 OMPInformationCache::RuntimeFunctionInfo &GlobThreadNumRFI = 1984 OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num]; 1985 1986 GlobThreadNumRFI.foreachUse(SCC, [&](Use &U, Function &F) { 1987 if (CallInst *CI = getCallIfRegularCall(U, &GlobThreadNumRFI)) 1988 AddUserArgs(*CI); 1989 return false; 1990 }); 1991 1992 // Transitively search for more arguments by looking at the users of the 1993 // ones we know already. During the search the GTIdArgs vector is extended 1994 // so we cannot cache the size nor can we use a range based for. 1995 for (unsigned U = 0; U < GTIdArgs.size(); ++U) 1996 AddUserArgs(*GTIdArgs[U]); 1997 } 1998 1999 /// Kernel (=GPU) optimizations and utility functions 2000 /// 2001 ///{{ 2002 2003 /// Check if \p F is a kernel, hence entry point for target offloading. 2004 bool isKernel(Function &F) { return OMPInfoCache.Kernels.count(&F); } 2005 2006 /// Cache to remember the unique kernel for a function. 2007 DenseMap<Function *, Optional<Kernel>> UniqueKernelMap; 2008 2009 /// Find the unique kernel that will execute \p F, if any. 2010 Kernel getUniqueKernelFor(Function &F); 2011 2012 /// Find the unique kernel that will execute \p I, if any. 2013 Kernel getUniqueKernelFor(Instruction &I) { 2014 return getUniqueKernelFor(*I.getFunction()); 2015 } 2016 2017 /// Rewrite the device (=GPU) code state machine create in non-SPMD mode in 2018 /// the cases we can avoid taking the address of a function. 2019 bool rewriteDeviceCodeStateMachine(); 2020 2021 /// 2022 ///}} 2023 2024 /// Emit a remark generically 2025 /// 2026 /// This template function can be used to generically emit a remark. The 2027 /// RemarkKind should be one of the following: 2028 /// - OptimizationRemark to indicate a successful optimization attempt 2029 /// - OptimizationRemarkMissed to report a failed optimization attempt 2030 /// - OptimizationRemarkAnalysis to provide additional information about an 2031 /// optimization attempt 2032 /// 2033 /// The remark is built using a callback function provided by the caller that 2034 /// takes a RemarkKind as input and returns a RemarkKind. 2035 template <typename RemarkKind, typename RemarkCallBack> 2036 void emitRemark(Instruction *I, StringRef RemarkName, 2037 RemarkCallBack &&RemarkCB) const { 2038 Function *F = I->getParent()->getParent(); 2039 auto &ORE = OREGetter(F); 2040 2041 if (RemarkName.startswith("OMP")) 2042 ORE.emit([&]() { 2043 return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, I)) 2044 << " [" << RemarkName << "]"; 2045 }); 2046 else 2047 ORE.emit( 2048 [&]() { return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, I)); }); 2049 } 2050 2051 /// Emit a remark on a function. 2052 template <typename RemarkKind, typename RemarkCallBack> 2053 void emitRemark(Function *F, StringRef RemarkName, 2054 RemarkCallBack &&RemarkCB) const { 2055 auto &ORE = OREGetter(F); 2056 2057 if (RemarkName.startswith("OMP")) 2058 ORE.emit([&]() { 2059 return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, F)) 2060 << " [" << RemarkName << "]"; 2061 }); 2062 else 2063 ORE.emit( 2064 [&]() { return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, F)); }); 2065 } 2066 2067 /// RAII struct to temporarily change an RTL function's linkage to external. 2068 /// This prevents it from being mistakenly removed by other optimizations. 2069 struct ExternalizationRAII { 2070 ExternalizationRAII(OMPInformationCache &OMPInfoCache, 2071 RuntimeFunction RFKind) 2072 : Declaration(OMPInfoCache.RFIs[RFKind].Declaration) { 2073 if (!Declaration) 2074 return; 2075 2076 LinkageType = Declaration->getLinkage(); 2077 Declaration->setLinkage(GlobalValue::ExternalLinkage); 2078 } 2079 2080 ~ExternalizationRAII() { 2081 if (!Declaration) 2082 return; 2083 2084 Declaration->setLinkage(LinkageType); 2085 } 2086 2087 Function *Declaration; 2088 GlobalValue::LinkageTypes LinkageType; 2089 }; 2090 2091 /// The underlying module. 2092 Module &M; 2093 2094 /// The SCC we are operating on. 2095 SmallVectorImpl<Function *> &SCC; 2096 2097 /// Callback to update the call graph, the first argument is a removed call, 2098 /// the second an optional replacement call. 2099 CallGraphUpdater &CGUpdater; 2100 2101 /// Callback to get an OptimizationRemarkEmitter from a Function * 2102 OptimizationRemarkGetter OREGetter; 2103 2104 /// OpenMP-specific information cache. Also Used for Attributor runs. 2105 OMPInformationCache &OMPInfoCache; 2106 2107 /// Attributor instance. 2108 Attributor &A; 2109 2110 /// Helper function to run Attributor on SCC. 2111 bool runAttributor(bool IsModulePass) { 2112 if (SCC.empty()) 2113 return false; 2114 2115 // Temporarily make these function have external linkage so the Attributor 2116 // doesn't remove them when we try to look them up later. 2117 ExternalizationRAII Parallel(OMPInfoCache, OMPRTL___kmpc_kernel_parallel); 2118 ExternalizationRAII EndParallel(OMPInfoCache, 2119 OMPRTL___kmpc_kernel_end_parallel); 2120 ExternalizationRAII BarrierSPMD(OMPInfoCache, 2121 OMPRTL___kmpc_barrier_simple_spmd); 2122 ExternalizationRAII BarrierGeneric(OMPInfoCache, 2123 OMPRTL___kmpc_barrier_simple_generic); 2124 ExternalizationRAII ThreadId(OMPInfoCache, 2125 OMPRTL___kmpc_get_hardware_thread_id_in_block); 2126 ExternalizationRAII NumThreads( 2127 OMPInfoCache, OMPRTL___kmpc_get_hardware_num_threads_in_block); 2128 ExternalizationRAII WarpSize(OMPInfoCache, OMPRTL___kmpc_get_warp_size); 2129 2130 registerAAs(IsModulePass); 2131 2132 ChangeStatus Changed = A.run(); 2133 2134 LLVM_DEBUG(dbgs() << "[Attributor] Done with " << SCC.size() 2135 << " functions, result: " << Changed << ".\n"); 2136 2137 return Changed == ChangeStatus::CHANGED; 2138 } 2139 2140 void registerFoldRuntimeCall(RuntimeFunction RF); 2141 2142 /// Populate the Attributor with abstract attribute opportunities in the 2143 /// function. 2144 void registerAAs(bool IsModulePass); 2145 }; 2146 2147 Kernel OpenMPOpt::getUniqueKernelFor(Function &F) { 2148 if (!OMPInfoCache.ModuleSlice.count(&F)) 2149 return nullptr; 2150 2151 // Use a scope to keep the lifetime of the CachedKernel short. 2152 { 2153 Optional<Kernel> &CachedKernel = UniqueKernelMap[&F]; 2154 if (CachedKernel) 2155 return *CachedKernel; 2156 2157 // TODO: We should use an AA to create an (optimistic and callback 2158 // call-aware) call graph. For now we stick to simple patterns that 2159 // are less powerful, basically the worst fixpoint. 2160 if (isKernel(F)) { 2161 CachedKernel = Kernel(&F); 2162 return *CachedKernel; 2163 } 2164 2165 CachedKernel = nullptr; 2166 if (!F.hasLocalLinkage()) { 2167 2168 // See https://openmp.llvm.org/remarks/OptimizationRemarks.html 2169 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 2170 return ORA << "Potentially unknown OpenMP target region caller."; 2171 }; 2172 emitRemark<OptimizationRemarkAnalysis>(&F, "OMP100", Remark); 2173 2174 return nullptr; 2175 } 2176 } 2177 2178 auto GetUniqueKernelForUse = [&](const Use &U) -> Kernel { 2179 if (auto *Cmp = dyn_cast<ICmpInst>(U.getUser())) { 2180 // Allow use in equality comparisons. 2181 if (Cmp->isEquality()) 2182 return getUniqueKernelFor(*Cmp); 2183 return nullptr; 2184 } 2185 if (auto *CB = dyn_cast<CallBase>(U.getUser())) { 2186 // Allow direct calls. 2187 if (CB->isCallee(&U)) 2188 return getUniqueKernelFor(*CB); 2189 2190 OMPInformationCache::RuntimeFunctionInfo &KernelParallelRFI = 2191 OMPInfoCache.RFIs[OMPRTL___kmpc_parallel_51]; 2192 // Allow the use in __kmpc_parallel_51 calls. 2193 if (OpenMPOpt::getCallIfRegularCall(*U.getUser(), &KernelParallelRFI)) 2194 return getUniqueKernelFor(*CB); 2195 return nullptr; 2196 } 2197 // Disallow every other use. 2198 return nullptr; 2199 }; 2200 2201 // TODO: In the future we want to track more than just a unique kernel. 2202 SmallPtrSet<Kernel, 2> PotentialKernels; 2203 OMPInformationCache::foreachUse(F, [&](const Use &U) { 2204 PotentialKernels.insert(GetUniqueKernelForUse(U)); 2205 }); 2206 2207 Kernel K = nullptr; 2208 if (PotentialKernels.size() == 1) 2209 K = *PotentialKernels.begin(); 2210 2211 // Cache the result. 2212 UniqueKernelMap[&F] = K; 2213 2214 return K; 2215 } 2216 2217 bool OpenMPOpt::rewriteDeviceCodeStateMachine() { 2218 OMPInformationCache::RuntimeFunctionInfo &KernelParallelRFI = 2219 OMPInfoCache.RFIs[OMPRTL___kmpc_parallel_51]; 2220 2221 bool Changed = false; 2222 if (!KernelParallelRFI) 2223 return Changed; 2224 2225 // If we have disabled state machine changes, exit 2226 if (DisableOpenMPOptStateMachineRewrite) 2227 return Changed; 2228 2229 for (Function *F : SCC) { 2230 2231 // Check if the function is a use in a __kmpc_parallel_51 call at 2232 // all. 2233 bool UnknownUse = false; 2234 bool KernelParallelUse = false; 2235 unsigned NumDirectCalls = 0; 2236 2237 SmallVector<Use *, 2> ToBeReplacedStateMachineUses; 2238 OMPInformationCache::foreachUse(*F, [&](Use &U) { 2239 if (auto *CB = dyn_cast<CallBase>(U.getUser())) 2240 if (CB->isCallee(&U)) { 2241 ++NumDirectCalls; 2242 return; 2243 } 2244 2245 if (isa<ICmpInst>(U.getUser())) { 2246 ToBeReplacedStateMachineUses.push_back(&U); 2247 return; 2248 } 2249 2250 // Find wrapper functions that represent parallel kernels. 2251 CallInst *CI = 2252 OpenMPOpt::getCallIfRegularCall(*U.getUser(), &KernelParallelRFI); 2253 const unsigned int WrapperFunctionArgNo = 6; 2254 if (!KernelParallelUse && CI && 2255 CI->getArgOperandNo(&U) == WrapperFunctionArgNo) { 2256 KernelParallelUse = true; 2257 ToBeReplacedStateMachineUses.push_back(&U); 2258 return; 2259 } 2260 UnknownUse = true; 2261 }); 2262 2263 // Do not emit a remark if we haven't seen a __kmpc_parallel_51 2264 // use. 2265 if (!KernelParallelUse) 2266 continue; 2267 2268 // If this ever hits, we should investigate. 2269 // TODO: Checking the number of uses is not a necessary restriction and 2270 // should be lifted. 2271 if (UnknownUse || NumDirectCalls != 1 || 2272 ToBeReplacedStateMachineUses.size() > 2) { 2273 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 2274 return ORA << "Parallel region is used in " 2275 << (UnknownUse ? "unknown" : "unexpected") 2276 << " ways. Will not attempt to rewrite the state machine."; 2277 }; 2278 emitRemark<OptimizationRemarkAnalysis>(F, "OMP101", Remark); 2279 continue; 2280 } 2281 2282 // Even if we have __kmpc_parallel_51 calls, we (for now) give 2283 // up if the function is not called from a unique kernel. 2284 Kernel K = getUniqueKernelFor(*F); 2285 if (!K) { 2286 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 2287 return ORA << "Parallel region is not called from a unique kernel. " 2288 "Will not attempt to rewrite the state machine."; 2289 }; 2290 emitRemark<OptimizationRemarkAnalysis>(F, "OMP102", Remark); 2291 continue; 2292 } 2293 2294 // We now know F is a parallel body function called only from the kernel K. 2295 // We also identified the state machine uses in which we replace the 2296 // function pointer by a new global symbol for identification purposes. This 2297 // ensures only direct calls to the function are left. 2298 2299 Module &M = *F->getParent(); 2300 Type *Int8Ty = Type::getInt8Ty(M.getContext()); 2301 2302 auto *ID = new GlobalVariable( 2303 M, Int8Ty, /* isConstant */ true, GlobalValue::PrivateLinkage, 2304 UndefValue::get(Int8Ty), F->getName() + ".ID"); 2305 2306 for (Use *U : ToBeReplacedStateMachineUses) 2307 U->set(ConstantExpr::getPointerBitCastOrAddrSpaceCast( 2308 ID, U->get()->getType())); 2309 2310 ++NumOpenMPParallelRegionsReplacedInGPUStateMachine; 2311 2312 Changed = true; 2313 } 2314 2315 return Changed; 2316 } 2317 2318 /// Abstract Attribute for tracking ICV values. 2319 struct AAICVTracker : public StateWrapper<BooleanState, AbstractAttribute> { 2320 using Base = StateWrapper<BooleanState, AbstractAttribute>; 2321 AAICVTracker(const IRPosition &IRP, Attributor &A) : Base(IRP) {} 2322 2323 void initialize(Attributor &A) override { 2324 Function *F = getAnchorScope(); 2325 if (!F || !A.isFunctionIPOAmendable(*F)) 2326 indicatePessimisticFixpoint(); 2327 } 2328 2329 /// Returns true if value is assumed to be tracked. 2330 bool isAssumedTracked() const { return getAssumed(); } 2331 2332 /// Returns true if value is known to be tracked. 2333 bool isKnownTracked() const { return getAssumed(); } 2334 2335 /// Create an abstract attribute biew for the position \p IRP. 2336 static AAICVTracker &createForPosition(const IRPosition &IRP, Attributor &A); 2337 2338 /// Return the value with which \p I can be replaced for specific \p ICV. 2339 virtual Optional<Value *> getReplacementValue(InternalControlVar ICV, 2340 const Instruction *I, 2341 Attributor &A) const { 2342 return None; 2343 } 2344 2345 /// Return an assumed unique ICV value if a single candidate is found. If 2346 /// there cannot be one, return a nullptr. If it is not clear yet, return the 2347 /// Optional::NoneType. 2348 virtual Optional<Value *> 2349 getUniqueReplacementValue(InternalControlVar ICV) const = 0; 2350 2351 // Currently only nthreads is being tracked. 2352 // this array will only grow with time. 2353 InternalControlVar TrackableICVs[1] = {ICV_nthreads}; 2354 2355 /// See AbstractAttribute::getName() 2356 const std::string getName() const override { return "AAICVTracker"; } 2357 2358 /// See AbstractAttribute::getIdAddr() 2359 const char *getIdAddr() const override { return &ID; } 2360 2361 /// This function should return true if the type of the \p AA is AAICVTracker 2362 static bool classof(const AbstractAttribute *AA) { 2363 return (AA->getIdAddr() == &ID); 2364 } 2365 2366 static const char ID; 2367 }; 2368 2369 struct AAICVTrackerFunction : public AAICVTracker { 2370 AAICVTrackerFunction(const IRPosition &IRP, Attributor &A) 2371 : AAICVTracker(IRP, A) {} 2372 2373 // FIXME: come up with better string. 2374 const std::string getAsStr() const override { return "ICVTrackerFunction"; } 2375 2376 // FIXME: come up with some stats. 2377 void trackStatistics() const override {} 2378 2379 /// We don't manifest anything for this AA. 2380 ChangeStatus manifest(Attributor &A) override { 2381 return ChangeStatus::UNCHANGED; 2382 } 2383 2384 // Map of ICV to their values at specific program point. 2385 EnumeratedArray<DenseMap<Instruction *, Value *>, InternalControlVar, 2386 InternalControlVar::ICV___last> 2387 ICVReplacementValuesMap; 2388 2389 ChangeStatus updateImpl(Attributor &A) override { 2390 ChangeStatus HasChanged = ChangeStatus::UNCHANGED; 2391 2392 Function *F = getAnchorScope(); 2393 2394 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2395 2396 for (InternalControlVar ICV : TrackableICVs) { 2397 auto &SetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Setter]; 2398 2399 auto &ValuesMap = ICVReplacementValuesMap[ICV]; 2400 auto TrackValues = [&](Use &U, Function &) { 2401 CallInst *CI = OpenMPOpt::getCallIfRegularCall(U); 2402 if (!CI) 2403 return false; 2404 2405 // FIXME: handle setters with more that 1 arguments. 2406 /// Track new value. 2407 if (ValuesMap.insert(std::make_pair(CI, CI->getArgOperand(0))).second) 2408 HasChanged = ChangeStatus::CHANGED; 2409 2410 return false; 2411 }; 2412 2413 auto CallCheck = [&](Instruction &I) { 2414 Optional<Value *> ReplVal = getValueForCall(A, I, ICV); 2415 if (ReplVal && ValuesMap.insert(std::make_pair(&I, *ReplVal)).second) 2416 HasChanged = ChangeStatus::CHANGED; 2417 2418 return true; 2419 }; 2420 2421 // Track all changes of an ICV. 2422 SetterRFI.foreachUse(TrackValues, F); 2423 2424 bool UsedAssumedInformation = false; 2425 A.checkForAllInstructions(CallCheck, *this, {Instruction::Call}, 2426 UsedAssumedInformation, 2427 /* CheckBBLivenessOnly */ true); 2428 2429 /// TODO: Figure out a way to avoid adding entry in 2430 /// ICVReplacementValuesMap 2431 Instruction *Entry = &F->getEntryBlock().front(); 2432 if (HasChanged == ChangeStatus::CHANGED && !ValuesMap.count(Entry)) 2433 ValuesMap.insert(std::make_pair(Entry, nullptr)); 2434 } 2435 2436 return HasChanged; 2437 } 2438 2439 /// Helper to check if \p I is a call and get the value for it if it is 2440 /// unique. 2441 Optional<Value *> getValueForCall(Attributor &A, const Instruction &I, 2442 InternalControlVar &ICV) const { 2443 2444 const auto *CB = dyn_cast<CallBase>(&I); 2445 if (!CB || CB->hasFnAttr("no_openmp") || 2446 CB->hasFnAttr("no_openmp_routines")) 2447 return None; 2448 2449 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2450 auto &GetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Getter]; 2451 auto &SetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Setter]; 2452 Function *CalledFunction = CB->getCalledFunction(); 2453 2454 // Indirect call, assume ICV changes. 2455 if (CalledFunction == nullptr) 2456 return nullptr; 2457 if (CalledFunction == GetterRFI.Declaration) 2458 return None; 2459 if (CalledFunction == SetterRFI.Declaration) { 2460 if (ICVReplacementValuesMap[ICV].count(&I)) 2461 return ICVReplacementValuesMap[ICV].lookup(&I); 2462 2463 return nullptr; 2464 } 2465 2466 // Since we don't know, assume it changes the ICV. 2467 if (CalledFunction->isDeclaration()) 2468 return nullptr; 2469 2470 const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>( 2471 *this, IRPosition::callsite_returned(*CB), DepClassTy::REQUIRED); 2472 2473 if (ICVTrackingAA.isAssumedTracked()) { 2474 Optional<Value *> URV = ICVTrackingAA.getUniqueReplacementValue(ICV); 2475 if (!URV || (*URV && AA::isValidAtPosition(AA::ValueAndContext(**URV, I), 2476 OMPInfoCache))) 2477 return URV; 2478 } 2479 2480 // If we don't know, assume it changes. 2481 return nullptr; 2482 } 2483 2484 // We don't check unique value for a function, so return None. 2485 Optional<Value *> 2486 getUniqueReplacementValue(InternalControlVar ICV) const override { 2487 return None; 2488 } 2489 2490 /// Return the value with which \p I can be replaced for specific \p ICV. 2491 Optional<Value *> getReplacementValue(InternalControlVar ICV, 2492 const Instruction *I, 2493 Attributor &A) const override { 2494 const auto &ValuesMap = ICVReplacementValuesMap[ICV]; 2495 if (ValuesMap.count(I)) 2496 return ValuesMap.lookup(I); 2497 2498 SmallVector<const Instruction *, 16> Worklist; 2499 SmallPtrSet<const Instruction *, 16> Visited; 2500 Worklist.push_back(I); 2501 2502 Optional<Value *> ReplVal; 2503 2504 while (!Worklist.empty()) { 2505 const Instruction *CurrInst = Worklist.pop_back_val(); 2506 if (!Visited.insert(CurrInst).second) 2507 continue; 2508 2509 const BasicBlock *CurrBB = CurrInst->getParent(); 2510 2511 // Go up and look for all potential setters/calls that might change the 2512 // ICV. 2513 while ((CurrInst = CurrInst->getPrevNode())) { 2514 if (ValuesMap.count(CurrInst)) { 2515 Optional<Value *> NewReplVal = ValuesMap.lookup(CurrInst); 2516 // Unknown value, track new. 2517 if (!ReplVal) { 2518 ReplVal = NewReplVal; 2519 break; 2520 } 2521 2522 // If we found a new value, we can't know the icv value anymore. 2523 if (NewReplVal) 2524 if (ReplVal != NewReplVal) 2525 return nullptr; 2526 2527 break; 2528 } 2529 2530 Optional<Value *> NewReplVal = getValueForCall(A, *CurrInst, ICV); 2531 if (!NewReplVal) 2532 continue; 2533 2534 // Unknown value, track new. 2535 if (!ReplVal) { 2536 ReplVal = NewReplVal; 2537 break; 2538 } 2539 2540 // if (NewReplVal.hasValue()) 2541 // We found a new value, we can't know the icv value anymore. 2542 if (ReplVal != NewReplVal) 2543 return nullptr; 2544 } 2545 2546 // If we are in the same BB and we have a value, we are done. 2547 if (CurrBB == I->getParent() && ReplVal) 2548 return ReplVal; 2549 2550 // Go through all predecessors and add terminators for analysis. 2551 for (const BasicBlock *Pred : predecessors(CurrBB)) 2552 if (const Instruction *Terminator = Pred->getTerminator()) 2553 Worklist.push_back(Terminator); 2554 } 2555 2556 return ReplVal; 2557 } 2558 }; 2559 2560 struct AAICVTrackerFunctionReturned : AAICVTracker { 2561 AAICVTrackerFunctionReturned(const IRPosition &IRP, Attributor &A) 2562 : AAICVTracker(IRP, A) {} 2563 2564 // FIXME: come up with better string. 2565 const std::string getAsStr() const override { 2566 return "ICVTrackerFunctionReturned"; 2567 } 2568 2569 // FIXME: come up with some stats. 2570 void trackStatistics() const override {} 2571 2572 /// We don't manifest anything for this AA. 2573 ChangeStatus manifest(Attributor &A) override { 2574 return ChangeStatus::UNCHANGED; 2575 } 2576 2577 // Map of ICV to their values at specific program point. 2578 EnumeratedArray<Optional<Value *>, InternalControlVar, 2579 InternalControlVar::ICV___last> 2580 ICVReplacementValuesMap; 2581 2582 /// Return the value with which \p I can be replaced for specific \p ICV. 2583 Optional<Value *> 2584 getUniqueReplacementValue(InternalControlVar ICV) const override { 2585 return ICVReplacementValuesMap[ICV]; 2586 } 2587 2588 ChangeStatus updateImpl(Attributor &A) override { 2589 ChangeStatus Changed = ChangeStatus::UNCHANGED; 2590 const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>( 2591 *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED); 2592 2593 if (!ICVTrackingAA.isAssumedTracked()) 2594 return indicatePessimisticFixpoint(); 2595 2596 for (InternalControlVar ICV : TrackableICVs) { 2597 Optional<Value *> &ReplVal = ICVReplacementValuesMap[ICV]; 2598 Optional<Value *> UniqueICVValue; 2599 2600 auto CheckReturnInst = [&](Instruction &I) { 2601 Optional<Value *> NewReplVal = 2602 ICVTrackingAA.getReplacementValue(ICV, &I, A); 2603 2604 // If we found a second ICV value there is no unique returned value. 2605 if (UniqueICVValue && UniqueICVValue != NewReplVal) 2606 return false; 2607 2608 UniqueICVValue = NewReplVal; 2609 2610 return true; 2611 }; 2612 2613 bool UsedAssumedInformation = false; 2614 if (!A.checkForAllInstructions(CheckReturnInst, *this, {Instruction::Ret}, 2615 UsedAssumedInformation, 2616 /* CheckBBLivenessOnly */ true)) 2617 UniqueICVValue = nullptr; 2618 2619 if (UniqueICVValue == ReplVal) 2620 continue; 2621 2622 ReplVal = UniqueICVValue; 2623 Changed = ChangeStatus::CHANGED; 2624 } 2625 2626 return Changed; 2627 } 2628 }; 2629 2630 struct AAICVTrackerCallSite : AAICVTracker { 2631 AAICVTrackerCallSite(const IRPosition &IRP, Attributor &A) 2632 : AAICVTracker(IRP, A) {} 2633 2634 void initialize(Attributor &A) override { 2635 Function *F = getAnchorScope(); 2636 if (!F || !A.isFunctionIPOAmendable(*F)) 2637 indicatePessimisticFixpoint(); 2638 2639 // We only initialize this AA for getters, so we need to know which ICV it 2640 // gets. 2641 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2642 for (InternalControlVar ICV : TrackableICVs) { 2643 auto ICVInfo = OMPInfoCache.ICVs[ICV]; 2644 auto &Getter = OMPInfoCache.RFIs[ICVInfo.Getter]; 2645 if (Getter.Declaration == getAssociatedFunction()) { 2646 AssociatedICV = ICVInfo.Kind; 2647 return; 2648 } 2649 } 2650 2651 /// Unknown ICV. 2652 indicatePessimisticFixpoint(); 2653 } 2654 2655 ChangeStatus manifest(Attributor &A) override { 2656 if (!ReplVal || !*ReplVal) 2657 return ChangeStatus::UNCHANGED; 2658 2659 A.changeAfterManifest(IRPosition::inst(*getCtxI()), **ReplVal); 2660 A.deleteAfterManifest(*getCtxI()); 2661 2662 return ChangeStatus::CHANGED; 2663 } 2664 2665 // FIXME: come up with better string. 2666 const std::string getAsStr() const override { return "ICVTrackerCallSite"; } 2667 2668 // FIXME: come up with some stats. 2669 void trackStatistics() const override {} 2670 2671 InternalControlVar AssociatedICV; 2672 Optional<Value *> ReplVal; 2673 2674 ChangeStatus updateImpl(Attributor &A) override { 2675 const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>( 2676 *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED); 2677 2678 // We don't have any information, so we assume it changes the ICV. 2679 if (!ICVTrackingAA.isAssumedTracked()) 2680 return indicatePessimisticFixpoint(); 2681 2682 Optional<Value *> NewReplVal = 2683 ICVTrackingAA.getReplacementValue(AssociatedICV, getCtxI(), A); 2684 2685 if (ReplVal == NewReplVal) 2686 return ChangeStatus::UNCHANGED; 2687 2688 ReplVal = NewReplVal; 2689 return ChangeStatus::CHANGED; 2690 } 2691 2692 // Return the value with which associated value can be replaced for specific 2693 // \p ICV. 2694 Optional<Value *> 2695 getUniqueReplacementValue(InternalControlVar ICV) const override { 2696 return ReplVal; 2697 } 2698 }; 2699 2700 struct AAICVTrackerCallSiteReturned : AAICVTracker { 2701 AAICVTrackerCallSiteReturned(const IRPosition &IRP, Attributor &A) 2702 : AAICVTracker(IRP, A) {} 2703 2704 // FIXME: come up with better string. 2705 const std::string getAsStr() const override { 2706 return "ICVTrackerCallSiteReturned"; 2707 } 2708 2709 // FIXME: come up with some stats. 2710 void trackStatistics() const override {} 2711 2712 /// We don't manifest anything for this AA. 2713 ChangeStatus manifest(Attributor &A) override { 2714 return ChangeStatus::UNCHANGED; 2715 } 2716 2717 // Map of ICV to their values at specific program point. 2718 EnumeratedArray<Optional<Value *>, InternalControlVar, 2719 InternalControlVar::ICV___last> 2720 ICVReplacementValuesMap; 2721 2722 /// Return the value with which associated value can be replaced for specific 2723 /// \p ICV. 2724 Optional<Value *> 2725 getUniqueReplacementValue(InternalControlVar ICV) const override { 2726 return ICVReplacementValuesMap[ICV]; 2727 } 2728 2729 ChangeStatus updateImpl(Attributor &A) override { 2730 ChangeStatus Changed = ChangeStatus::UNCHANGED; 2731 const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>( 2732 *this, IRPosition::returned(*getAssociatedFunction()), 2733 DepClassTy::REQUIRED); 2734 2735 // We don't have any information, so we assume it changes the ICV. 2736 if (!ICVTrackingAA.isAssumedTracked()) 2737 return indicatePessimisticFixpoint(); 2738 2739 for (InternalControlVar ICV : TrackableICVs) { 2740 Optional<Value *> &ReplVal = ICVReplacementValuesMap[ICV]; 2741 Optional<Value *> NewReplVal = 2742 ICVTrackingAA.getUniqueReplacementValue(ICV); 2743 2744 if (ReplVal == NewReplVal) 2745 continue; 2746 2747 ReplVal = NewReplVal; 2748 Changed = ChangeStatus::CHANGED; 2749 } 2750 return Changed; 2751 } 2752 }; 2753 2754 struct AAExecutionDomainFunction : public AAExecutionDomain { 2755 AAExecutionDomainFunction(const IRPosition &IRP, Attributor &A) 2756 : AAExecutionDomain(IRP, A) {} 2757 2758 const std::string getAsStr() const override { 2759 return "[AAExecutionDomain] " + std::to_string(SingleThreadedBBs.size()) + 2760 "/" + std::to_string(NumBBs) + " BBs thread 0 only."; 2761 } 2762 2763 /// See AbstractAttribute::trackStatistics(). 2764 void trackStatistics() const override {} 2765 2766 void initialize(Attributor &A) override { 2767 Function *F = getAnchorScope(); 2768 for (const auto &BB : *F) 2769 SingleThreadedBBs.insert(&BB); 2770 NumBBs = SingleThreadedBBs.size(); 2771 } 2772 2773 ChangeStatus manifest(Attributor &A) override { 2774 LLVM_DEBUG({ 2775 for (const BasicBlock *BB : SingleThreadedBBs) 2776 dbgs() << TAG << " Basic block @" << getAnchorScope()->getName() << " " 2777 << BB->getName() << " is executed by a single thread.\n"; 2778 }); 2779 return ChangeStatus::UNCHANGED; 2780 } 2781 2782 ChangeStatus updateImpl(Attributor &A) override; 2783 2784 /// Check if an instruction is executed by a single thread. 2785 bool isExecutedByInitialThreadOnly(const Instruction &I) const override { 2786 return isExecutedByInitialThreadOnly(*I.getParent()); 2787 } 2788 2789 bool isExecutedByInitialThreadOnly(const BasicBlock &BB) const override { 2790 return isValidState() && SingleThreadedBBs.contains(&BB); 2791 } 2792 2793 /// Set of basic blocks that are executed by a single thread. 2794 SmallSetVector<const BasicBlock *, 16> SingleThreadedBBs; 2795 2796 /// Total number of basic blocks in this function. 2797 long unsigned NumBBs = 0; 2798 }; 2799 2800 ChangeStatus AAExecutionDomainFunction::updateImpl(Attributor &A) { 2801 Function *F = getAnchorScope(); 2802 ReversePostOrderTraversal<Function *> RPOT(F); 2803 auto NumSingleThreadedBBs = SingleThreadedBBs.size(); 2804 2805 bool AllCallSitesKnown; 2806 auto PredForCallSite = [&](AbstractCallSite ACS) { 2807 const auto &ExecutionDomainAA = A.getAAFor<AAExecutionDomain>( 2808 *this, IRPosition::function(*ACS.getInstruction()->getFunction()), 2809 DepClassTy::REQUIRED); 2810 return ACS.isDirectCall() && 2811 ExecutionDomainAA.isExecutedByInitialThreadOnly( 2812 *ACS.getInstruction()); 2813 }; 2814 2815 if (!A.checkForAllCallSites(PredForCallSite, *this, 2816 /* RequiresAllCallSites */ true, 2817 AllCallSitesKnown)) 2818 SingleThreadedBBs.remove(&F->getEntryBlock()); 2819 2820 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2821 auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_target_init]; 2822 2823 // Check if the edge into the successor block contains a condition that only 2824 // lets the main thread execute it. 2825 auto IsInitialThreadOnly = [&](BranchInst *Edge, BasicBlock *SuccessorBB) { 2826 if (!Edge || !Edge->isConditional()) 2827 return false; 2828 if (Edge->getSuccessor(0) != SuccessorBB) 2829 return false; 2830 2831 auto *Cmp = dyn_cast<CmpInst>(Edge->getCondition()); 2832 if (!Cmp || !Cmp->isTrueWhenEqual() || !Cmp->isEquality()) 2833 return false; 2834 2835 ConstantInt *C = dyn_cast<ConstantInt>(Cmp->getOperand(1)); 2836 if (!C) 2837 return false; 2838 2839 // Match: -1 == __kmpc_target_init (for non-SPMD kernels only!) 2840 if (C->isAllOnesValue()) { 2841 auto *CB = dyn_cast<CallBase>(Cmp->getOperand(0)); 2842 CB = CB ? OpenMPOpt::getCallIfRegularCall(*CB, &RFI) : nullptr; 2843 if (!CB) 2844 return false; 2845 const int InitModeArgNo = 1; 2846 auto *ModeCI = dyn_cast<ConstantInt>(CB->getOperand(InitModeArgNo)); 2847 return ModeCI && (ModeCI->getSExtValue() & OMP_TGT_EXEC_MODE_GENERIC); 2848 } 2849 2850 if (C->isZero()) { 2851 // Match: 0 == llvm.nvvm.read.ptx.sreg.tid.x() 2852 if (auto *II = dyn_cast<IntrinsicInst>(Cmp->getOperand(0))) 2853 if (II->getIntrinsicID() == Intrinsic::nvvm_read_ptx_sreg_tid_x) 2854 return true; 2855 2856 // Match: 0 == llvm.amdgcn.workitem.id.x() 2857 if (auto *II = dyn_cast<IntrinsicInst>(Cmp->getOperand(0))) 2858 if (II->getIntrinsicID() == Intrinsic::amdgcn_workitem_id_x) 2859 return true; 2860 } 2861 2862 return false; 2863 }; 2864 2865 // Merge all the predecessor states into the current basic block. A basic 2866 // block is executed by a single thread if all of its predecessors are. 2867 auto MergePredecessorStates = [&](BasicBlock *BB) { 2868 if (pred_empty(BB)) 2869 return SingleThreadedBBs.contains(BB); 2870 2871 bool IsInitialThread = true; 2872 for (BasicBlock *PredBB : predecessors(BB)) { 2873 if (!IsInitialThreadOnly(dyn_cast<BranchInst>(PredBB->getTerminator()), 2874 BB)) 2875 IsInitialThread &= SingleThreadedBBs.contains(PredBB); 2876 } 2877 2878 return IsInitialThread; 2879 }; 2880 2881 for (auto *BB : RPOT) { 2882 if (!MergePredecessorStates(BB)) 2883 SingleThreadedBBs.remove(BB); 2884 } 2885 2886 return (NumSingleThreadedBBs == SingleThreadedBBs.size()) 2887 ? ChangeStatus::UNCHANGED 2888 : ChangeStatus::CHANGED; 2889 } 2890 2891 /// Try to replace memory allocation calls called by a single thread with a 2892 /// static buffer of shared memory. 2893 struct AAHeapToShared : public StateWrapper<BooleanState, AbstractAttribute> { 2894 using Base = StateWrapper<BooleanState, AbstractAttribute>; 2895 AAHeapToShared(const IRPosition &IRP, Attributor &A) : Base(IRP) {} 2896 2897 /// Create an abstract attribute view for the position \p IRP. 2898 static AAHeapToShared &createForPosition(const IRPosition &IRP, 2899 Attributor &A); 2900 2901 /// Returns true if HeapToShared conversion is assumed to be possible. 2902 virtual bool isAssumedHeapToShared(CallBase &CB) const = 0; 2903 2904 /// Returns true if HeapToShared conversion is assumed and the CB is a 2905 /// callsite to a free operation to be removed. 2906 virtual bool isAssumedHeapToSharedRemovedFree(CallBase &CB) const = 0; 2907 2908 /// See AbstractAttribute::getName(). 2909 const std::string getName() const override { return "AAHeapToShared"; } 2910 2911 /// See AbstractAttribute::getIdAddr(). 2912 const char *getIdAddr() const override { return &ID; } 2913 2914 /// This function should return true if the type of the \p AA is 2915 /// AAHeapToShared. 2916 static bool classof(const AbstractAttribute *AA) { 2917 return (AA->getIdAddr() == &ID); 2918 } 2919 2920 /// Unique ID (due to the unique address) 2921 static const char ID; 2922 }; 2923 2924 struct AAHeapToSharedFunction : public AAHeapToShared { 2925 AAHeapToSharedFunction(const IRPosition &IRP, Attributor &A) 2926 : AAHeapToShared(IRP, A) {} 2927 2928 const std::string getAsStr() const override { 2929 return "[AAHeapToShared] " + std::to_string(MallocCalls.size()) + 2930 " malloc calls eligible."; 2931 } 2932 2933 /// See AbstractAttribute::trackStatistics(). 2934 void trackStatistics() const override {} 2935 2936 /// This functions finds free calls that will be removed by the 2937 /// HeapToShared transformation. 2938 void findPotentialRemovedFreeCalls(Attributor &A) { 2939 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2940 auto &FreeRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_free_shared]; 2941 2942 PotentialRemovedFreeCalls.clear(); 2943 // Update free call users of found malloc calls. 2944 for (CallBase *CB : MallocCalls) { 2945 SmallVector<CallBase *, 4> FreeCalls; 2946 for (auto *U : CB->users()) { 2947 CallBase *C = dyn_cast<CallBase>(U); 2948 if (C && C->getCalledFunction() == FreeRFI.Declaration) 2949 FreeCalls.push_back(C); 2950 } 2951 2952 if (FreeCalls.size() != 1) 2953 continue; 2954 2955 PotentialRemovedFreeCalls.insert(FreeCalls.front()); 2956 } 2957 } 2958 2959 void initialize(Attributor &A) override { 2960 if (DisableOpenMPOptDeglobalization) { 2961 indicatePessimisticFixpoint(); 2962 return; 2963 } 2964 2965 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2966 auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared]; 2967 2968 Attributor::SimplifictionCallbackTy SCB = 2969 [](const IRPosition &, const AbstractAttribute *, 2970 bool &) -> Optional<Value *> { return nullptr; }; 2971 for (User *U : RFI.Declaration->users()) 2972 if (CallBase *CB = dyn_cast<CallBase>(U)) { 2973 MallocCalls.insert(CB); 2974 A.registerSimplificationCallback(IRPosition::callsite_returned(*CB), 2975 SCB); 2976 } 2977 2978 findPotentialRemovedFreeCalls(A); 2979 } 2980 2981 bool isAssumedHeapToShared(CallBase &CB) const override { 2982 return isValidState() && MallocCalls.count(&CB); 2983 } 2984 2985 bool isAssumedHeapToSharedRemovedFree(CallBase &CB) const override { 2986 return isValidState() && PotentialRemovedFreeCalls.count(&CB); 2987 } 2988 2989 ChangeStatus manifest(Attributor &A) override { 2990 if (MallocCalls.empty()) 2991 return ChangeStatus::UNCHANGED; 2992 2993 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2994 auto &FreeCall = OMPInfoCache.RFIs[OMPRTL___kmpc_free_shared]; 2995 2996 Function *F = getAnchorScope(); 2997 auto *HS = A.lookupAAFor<AAHeapToStack>(IRPosition::function(*F), this, 2998 DepClassTy::OPTIONAL); 2999 3000 ChangeStatus Changed = ChangeStatus::UNCHANGED; 3001 for (CallBase *CB : MallocCalls) { 3002 // Skip replacing this if HeapToStack has already claimed it. 3003 if (HS && HS->isAssumedHeapToStack(*CB)) 3004 continue; 3005 3006 // Find the unique free call to remove it. 3007 SmallVector<CallBase *, 4> FreeCalls; 3008 for (auto *U : CB->users()) { 3009 CallBase *C = dyn_cast<CallBase>(U); 3010 if (C && C->getCalledFunction() == FreeCall.Declaration) 3011 FreeCalls.push_back(C); 3012 } 3013 if (FreeCalls.size() != 1) 3014 continue; 3015 3016 auto *AllocSize = cast<ConstantInt>(CB->getArgOperand(0)); 3017 3018 if (AllocSize->getZExtValue() + SharedMemoryUsed > SharedMemoryLimit) { 3019 LLVM_DEBUG(dbgs() << TAG << "Cannot replace call " << *CB 3020 << " with shared memory." 3021 << " Shared memory usage is limited to " 3022 << SharedMemoryLimit << " bytes\n"); 3023 continue; 3024 } 3025 3026 LLVM_DEBUG(dbgs() << TAG << "Replace globalization call " << *CB 3027 << " with " << AllocSize->getZExtValue() 3028 << " bytes of shared memory\n"); 3029 3030 // Create a new shared memory buffer of the same size as the allocation 3031 // and replace all the uses of the original allocation with it. 3032 Module *M = CB->getModule(); 3033 Type *Int8Ty = Type::getInt8Ty(M->getContext()); 3034 Type *Int8ArrTy = ArrayType::get(Int8Ty, AllocSize->getZExtValue()); 3035 auto *SharedMem = new GlobalVariable( 3036 *M, Int8ArrTy, /* IsConstant */ false, GlobalValue::InternalLinkage, 3037 UndefValue::get(Int8ArrTy), CB->getName() + "_shared", nullptr, 3038 GlobalValue::NotThreadLocal, 3039 static_cast<unsigned>(AddressSpace::Shared)); 3040 auto *NewBuffer = 3041 ConstantExpr::getPointerCast(SharedMem, Int8Ty->getPointerTo()); 3042 3043 auto Remark = [&](OptimizationRemark OR) { 3044 return OR << "Replaced globalized variable with " 3045 << ore::NV("SharedMemory", AllocSize->getZExtValue()) 3046 << ((AllocSize->getZExtValue() != 1) ? " bytes " : " byte ") 3047 << "of shared memory."; 3048 }; 3049 A.emitRemark<OptimizationRemark>(CB, "OMP111", Remark); 3050 3051 MaybeAlign Alignment = CB->getRetAlign(); 3052 assert(Alignment && 3053 "HeapToShared on allocation without alignment attribute"); 3054 SharedMem->setAlignment(MaybeAlign(Alignment)); 3055 3056 A.changeAfterManifest(IRPosition::callsite_returned(*CB), *NewBuffer); 3057 A.deleteAfterManifest(*CB); 3058 A.deleteAfterManifest(*FreeCalls.front()); 3059 3060 SharedMemoryUsed += AllocSize->getZExtValue(); 3061 NumBytesMovedToSharedMemory = SharedMemoryUsed; 3062 Changed = ChangeStatus::CHANGED; 3063 } 3064 3065 return Changed; 3066 } 3067 3068 ChangeStatus updateImpl(Attributor &A) override { 3069 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 3070 auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared]; 3071 Function *F = getAnchorScope(); 3072 3073 auto NumMallocCalls = MallocCalls.size(); 3074 3075 // Only consider malloc calls executed by a single thread with a constant. 3076 for (User *U : RFI.Declaration->users()) { 3077 const auto &ED = A.getAAFor<AAExecutionDomain>( 3078 *this, IRPosition::function(*F), DepClassTy::REQUIRED); 3079 if (CallBase *CB = dyn_cast<CallBase>(U)) 3080 if (!isa<ConstantInt>(CB->getArgOperand(0)) || 3081 !ED.isExecutedByInitialThreadOnly(*CB)) 3082 MallocCalls.remove(CB); 3083 } 3084 3085 findPotentialRemovedFreeCalls(A); 3086 3087 if (NumMallocCalls != MallocCalls.size()) 3088 return ChangeStatus::CHANGED; 3089 3090 return ChangeStatus::UNCHANGED; 3091 } 3092 3093 /// Collection of all malloc calls in a function. 3094 SmallSetVector<CallBase *, 4> MallocCalls; 3095 /// Collection of potentially removed free calls in a function. 3096 SmallPtrSet<CallBase *, 4> PotentialRemovedFreeCalls; 3097 /// The total amount of shared memory that has been used for HeapToShared. 3098 unsigned SharedMemoryUsed = 0; 3099 }; 3100 3101 struct AAKernelInfo : public StateWrapper<KernelInfoState, AbstractAttribute> { 3102 using Base = StateWrapper<KernelInfoState, AbstractAttribute>; 3103 AAKernelInfo(const IRPosition &IRP, Attributor &A) : Base(IRP) {} 3104 3105 /// Statistics are tracked as part of manifest for now. 3106 void trackStatistics() const override {} 3107 3108 /// See AbstractAttribute::getAsStr() 3109 const std::string getAsStr() const override { 3110 if (!isValidState()) 3111 return "<invalid>"; 3112 return std::string(SPMDCompatibilityTracker.isAssumed() ? "SPMD" 3113 : "generic") + 3114 std::string(SPMDCompatibilityTracker.isAtFixpoint() ? " [FIX]" 3115 : "") + 3116 std::string(" #PRs: ") + 3117 (ReachedKnownParallelRegions.isValidState() 3118 ? std::to_string(ReachedKnownParallelRegions.size()) 3119 : "<invalid>") + 3120 ", #Unknown PRs: " + 3121 (ReachedUnknownParallelRegions.isValidState() 3122 ? std::to_string(ReachedUnknownParallelRegions.size()) 3123 : "<invalid>") + 3124 ", #Reaching Kernels: " + 3125 (ReachingKernelEntries.isValidState() 3126 ? std::to_string(ReachingKernelEntries.size()) 3127 : "<invalid>"); 3128 } 3129 3130 /// Create an abstract attribute biew for the position \p IRP. 3131 static AAKernelInfo &createForPosition(const IRPosition &IRP, Attributor &A); 3132 3133 /// See AbstractAttribute::getName() 3134 const std::string getName() const override { return "AAKernelInfo"; } 3135 3136 /// See AbstractAttribute::getIdAddr() 3137 const char *getIdAddr() const override { return &ID; } 3138 3139 /// This function should return true if the type of the \p AA is AAKernelInfo 3140 static bool classof(const AbstractAttribute *AA) { 3141 return (AA->getIdAddr() == &ID); 3142 } 3143 3144 static const char ID; 3145 }; 3146 3147 /// The function kernel info abstract attribute, basically, what can we say 3148 /// about a function with regards to the KernelInfoState. 3149 struct AAKernelInfoFunction : AAKernelInfo { 3150 AAKernelInfoFunction(const IRPosition &IRP, Attributor &A) 3151 : AAKernelInfo(IRP, A) {} 3152 3153 SmallPtrSet<Instruction *, 4> GuardedInstructions; 3154 3155 SmallPtrSetImpl<Instruction *> &getGuardedInstructions() { 3156 return GuardedInstructions; 3157 } 3158 3159 /// See AbstractAttribute::initialize(...). 3160 void initialize(Attributor &A) override { 3161 // This is a high-level transform that might change the constant arguments 3162 // of the init and dinit calls. We need to tell the Attributor about this 3163 // to avoid other parts using the current constant value for simpliication. 3164 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 3165 3166 Function *Fn = getAnchorScope(); 3167 3168 OMPInformationCache::RuntimeFunctionInfo &InitRFI = 3169 OMPInfoCache.RFIs[OMPRTL___kmpc_target_init]; 3170 OMPInformationCache::RuntimeFunctionInfo &DeinitRFI = 3171 OMPInfoCache.RFIs[OMPRTL___kmpc_target_deinit]; 3172 3173 // For kernels we perform more initialization work, first we find the init 3174 // and deinit calls. 3175 auto StoreCallBase = [](Use &U, 3176 OMPInformationCache::RuntimeFunctionInfo &RFI, 3177 CallBase *&Storage) { 3178 CallBase *CB = OpenMPOpt::getCallIfRegularCall(U, &RFI); 3179 assert(CB && 3180 "Unexpected use of __kmpc_target_init or __kmpc_target_deinit!"); 3181 assert(!Storage && 3182 "Multiple uses of __kmpc_target_init or __kmpc_target_deinit!"); 3183 Storage = CB; 3184 return false; 3185 }; 3186 InitRFI.foreachUse( 3187 [&](Use &U, Function &) { 3188 StoreCallBase(U, InitRFI, KernelInitCB); 3189 return false; 3190 }, 3191 Fn); 3192 DeinitRFI.foreachUse( 3193 [&](Use &U, Function &) { 3194 StoreCallBase(U, DeinitRFI, KernelDeinitCB); 3195 return false; 3196 }, 3197 Fn); 3198 3199 // Ignore kernels without initializers such as global constructors. 3200 if (!KernelInitCB || !KernelDeinitCB) 3201 return; 3202 3203 // Add itself to the reaching kernel and set IsKernelEntry. 3204 ReachingKernelEntries.insert(Fn); 3205 IsKernelEntry = true; 3206 3207 // For kernels we might need to initialize/finalize the IsSPMD state and 3208 // we need to register a simplification callback so that the Attributor 3209 // knows the constant arguments to __kmpc_target_init and 3210 // __kmpc_target_deinit might actually change. 3211 3212 Attributor::SimplifictionCallbackTy StateMachineSimplifyCB = 3213 [&](const IRPosition &IRP, const AbstractAttribute *AA, 3214 bool &UsedAssumedInformation) -> Optional<Value *> { 3215 // IRP represents the "use generic state machine" argument of an 3216 // __kmpc_target_init call. We will answer this one with the internal 3217 // state. As long as we are not in an invalid state, we will create a 3218 // custom state machine so the value should be a `i1 false`. If we are 3219 // in an invalid state, we won't change the value that is in the IR. 3220 if (!ReachedKnownParallelRegions.isValidState()) 3221 return nullptr; 3222 // If we have disabled state machine rewrites, don't make a custom one. 3223 if (DisableOpenMPOptStateMachineRewrite) 3224 return nullptr; 3225 if (AA) 3226 A.recordDependence(*this, *AA, DepClassTy::OPTIONAL); 3227 UsedAssumedInformation = !isAtFixpoint(); 3228 auto *FalseVal = 3229 ConstantInt::getBool(IRP.getAnchorValue().getContext(), false); 3230 return FalseVal; 3231 }; 3232 3233 Attributor::SimplifictionCallbackTy ModeSimplifyCB = 3234 [&](const IRPosition &IRP, const AbstractAttribute *AA, 3235 bool &UsedAssumedInformation) -> Optional<Value *> { 3236 // IRP represents the "SPMDCompatibilityTracker" argument of an 3237 // __kmpc_target_init or 3238 // __kmpc_target_deinit call. We will answer this one with the internal 3239 // state. 3240 if (!SPMDCompatibilityTracker.isValidState()) 3241 return nullptr; 3242 if (!SPMDCompatibilityTracker.isAtFixpoint()) { 3243 if (AA) 3244 A.recordDependence(*this, *AA, DepClassTy::OPTIONAL); 3245 UsedAssumedInformation = true; 3246 } else { 3247 UsedAssumedInformation = false; 3248 } 3249 auto *Val = ConstantInt::getSigned( 3250 IntegerType::getInt8Ty(IRP.getAnchorValue().getContext()), 3251 SPMDCompatibilityTracker.isAssumed() ? OMP_TGT_EXEC_MODE_SPMD 3252 : OMP_TGT_EXEC_MODE_GENERIC); 3253 return Val; 3254 }; 3255 3256 Attributor::SimplifictionCallbackTy IsGenericModeSimplifyCB = 3257 [&](const IRPosition &IRP, const AbstractAttribute *AA, 3258 bool &UsedAssumedInformation) -> Optional<Value *> { 3259 // IRP represents the "RequiresFullRuntime" argument of an 3260 // __kmpc_target_init or __kmpc_target_deinit call. We will answer this 3261 // one with the internal state of the SPMDCompatibilityTracker, so if 3262 // generic then true, if SPMD then false. 3263 if (!SPMDCompatibilityTracker.isValidState()) 3264 return nullptr; 3265 if (!SPMDCompatibilityTracker.isAtFixpoint()) { 3266 if (AA) 3267 A.recordDependence(*this, *AA, DepClassTy::OPTIONAL); 3268 UsedAssumedInformation = true; 3269 } else { 3270 UsedAssumedInformation = false; 3271 } 3272 auto *Val = ConstantInt::getBool(IRP.getAnchorValue().getContext(), 3273 !SPMDCompatibilityTracker.isAssumed()); 3274 return Val; 3275 }; 3276 3277 constexpr const int InitModeArgNo = 1; 3278 constexpr const int DeinitModeArgNo = 1; 3279 constexpr const int InitUseStateMachineArgNo = 2; 3280 constexpr const int InitRequiresFullRuntimeArgNo = 3; 3281 constexpr const int DeinitRequiresFullRuntimeArgNo = 2; 3282 A.registerSimplificationCallback( 3283 IRPosition::callsite_argument(*KernelInitCB, InitUseStateMachineArgNo), 3284 StateMachineSimplifyCB); 3285 A.registerSimplificationCallback( 3286 IRPosition::callsite_argument(*KernelInitCB, InitModeArgNo), 3287 ModeSimplifyCB); 3288 A.registerSimplificationCallback( 3289 IRPosition::callsite_argument(*KernelDeinitCB, DeinitModeArgNo), 3290 ModeSimplifyCB); 3291 A.registerSimplificationCallback( 3292 IRPosition::callsite_argument(*KernelInitCB, 3293 InitRequiresFullRuntimeArgNo), 3294 IsGenericModeSimplifyCB); 3295 A.registerSimplificationCallback( 3296 IRPosition::callsite_argument(*KernelDeinitCB, 3297 DeinitRequiresFullRuntimeArgNo), 3298 IsGenericModeSimplifyCB); 3299 3300 // Check if we know we are in SPMD-mode already. 3301 ConstantInt *ModeArg = 3302 dyn_cast<ConstantInt>(KernelInitCB->getArgOperand(InitModeArgNo)); 3303 if (ModeArg && (ModeArg->getSExtValue() & OMP_TGT_EXEC_MODE_SPMD)) 3304 SPMDCompatibilityTracker.indicateOptimisticFixpoint(); 3305 // This is a generic region but SPMDization is disabled so stop tracking. 3306 else if (DisableOpenMPOptSPMDization) 3307 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 3308 } 3309 3310 /// Sanitize the string \p S such that it is a suitable global symbol name. 3311 static std::string sanitizeForGlobalName(std::string S) { 3312 std::replace_if( 3313 S.begin(), S.end(), 3314 [](const char C) { 3315 return !((C >= 'a' && C <= 'z') || (C >= 'A' && C <= 'Z') || 3316 (C >= '0' && C <= '9') || C == '_'); 3317 }, 3318 '.'); 3319 return S; 3320 } 3321 3322 /// Modify the IR based on the KernelInfoState as the fixpoint iteration is 3323 /// finished now. 3324 ChangeStatus manifest(Attributor &A) override { 3325 // If we are not looking at a kernel with __kmpc_target_init and 3326 // __kmpc_target_deinit call we cannot actually manifest the information. 3327 if (!KernelInitCB || !KernelDeinitCB) 3328 return ChangeStatus::UNCHANGED; 3329 3330 // If we can we change the execution mode to SPMD-mode otherwise we build a 3331 // custom state machine. 3332 ChangeStatus Changed = ChangeStatus::UNCHANGED; 3333 if (!changeToSPMDMode(A, Changed)) 3334 return buildCustomStateMachine(A); 3335 3336 return Changed; 3337 } 3338 3339 bool changeToSPMDMode(Attributor &A, ChangeStatus &Changed) { 3340 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 3341 3342 if (!SPMDCompatibilityTracker.isAssumed()) { 3343 for (Instruction *NonCompatibleI : SPMDCompatibilityTracker) { 3344 if (!NonCompatibleI) 3345 continue; 3346 3347 // Skip diagnostics on calls to known OpenMP runtime functions for now. 3348 if (auto *CB = dyn_cast<CallBase>(NonCompatibleI)) 3349 if (OMPInfoCache.RTLFunctions.contains(CB->getCalledFunction())) 3350 continue; 3351 3352 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 3353 ORA << "Value has potential side effects preventing SPMD-mode " 3354 "execution"; 3355 if (isa<CallBase>(NonCompatibleI)) { 3356 ORA << ". Add `__attribute__((assume(\"ompx_spmd_amenable\")))` to " 3357 "the called function to override"; 3358 } 3359 return ORA << "."; 3360 }; 3361 A.emitRemark<OptimizationRemarkAnalysis>(NonCompatibleI, "OMP121", 3362 Remark); 3363 3364 LLVM_DEBUG(dbgs() << TAG << "SPMD-incompatible side-effect: " 3365 << *NonCompatibleI << "\n"); 3366 } 3367 3368 return false; 3369 } 3370 3371 // Get the actual kernel, could be the caller of the anchor scope if we have 3372 // a debug wrapper. 3373 Function *Kernel = getAnchorScope(); 3374 if (Kernel->hasLocalLinkage()) { 3375 assert(Kernel->hasOneUse() && "Unexpected use of debug kernel wrapper."); 3376 auto *CB = cast<CallBase>(Kernel->user_back()); 3377 Kernel = CB->getCaller(); 3378 } 3379 assert(OMPInfoCache.Kernels.count(Kernel) && "Expected kernel function!"); 3380 3381 // Check if the kernel is already in SPMD mode, if so, return success. 3382 GlobalVariable *ExecMode = Kernel->getParent()->getGlobalVariable( 3383 (Kernel->getName() + "_exec_mode").str()); 3384 assert(ExecMode && "Kernel without exec mode?"); 3385 assert(ExecMode->getInitializer() && "ExecMode doesn't have initializer!"); 3386 3387 // Set the global exec mode flag to indicate SPMD-Generic mode. 3388 assert(isa<ConstantInt>(ExecMode->getInitializer()) && 3389 "ExecMode is not an integer!"); 3390 const int8_t ExecModeVal = 3391 cast<ConstantInt>(ExecMode->getInitializer())->getSExtValue(); 3392 if (ExecModeVal != OMP_TGT_EXEC_MODE_GENERIC) 3393 return true; 3394 3395 // We will now unconditionally modify the IR, indicate a change. 3396 Changed = ChangeStatus::CHANGED; 3397 3398 auto CreateGuardedRegion = [&](Instruction *RegionStartI, 3399 Instruction *RegionEndI) { 3400 LoopInfo *LI = nullptr; 3401 DominatorTree *DT = nullptr; 3402 MemorySSAUpdater *MSU = nullptr; 3403 using InsertPointTy = OpenMPIRBuilder::InsertPointTy; 3404 3405 BasicBlock *ParentBB = RegionStartI->getParent(); 3406 Function *Fn = ParentBB->getParent(); 3407 Module &M = *Fn->getParent(); 3408 3409 // Create all the blocks and logic. 3410 // ParentBB: 3411 // goto RegionCheckTidBB 3412 // RegionCheckTidBB: 3413 // Tid = __kmpc_hardware_thread_id() 3414 // if (Tid != 0) 3415 // goto RegionBarrierBB 3416 // RegionStartBB: 3417 // <execute instructions guarded> 3418 // goto RegionEndBB 3419 // RegionEndBB: 3420 // <store escaping values to shared mem> 3421 // goto RegionBarrierBB 3422 // RegionBarrierBB: 3423 // __kmpc_simple_barrier_spmd() 3424 // // second barrier is omitted if lacking escaping values. 3425 // <load escaping values from shared mem> 3426 // __kmpc_simple_barrier_spmd() 3427 // goto RegionExitBB 3428 // RegionExitBB: 3429 // <execute rest of instructions> 3430 3431 BasicBlock *RegionEndBB = SplitBlock(ParentBB, RegionEndI->getNextNode(), 3432 DT, LI, MSU, "region.guarded.end"); 3433 BasicBlock *RegionBarrierBB = 3434 SplitBlock(RegionEndBB, &*RegionEndBB->getFirstInsertionPt(), DT, LI, 3435 MSU, "region.barrier"); 3436 BasicBlock *RegionExitBB = 3437 SplitBlock(RegionBarrierBB, &*RegionBarrierBB->getFirstInsertionPt(), 3438 DT, LI, MSU, "region.exit"); 3439 BasicBlock *RegionStartBB = 3440 SplitBlock(ParentBB, RegionStartI, DT, LI, MSU, "region.guarded"); 3441 3442 assert(ParentBB->getUniqueSuccessor() == RegionStartBB && 3443 "Expected a different CFG"); 3444 3445 BasicBlock *RegionCheckTidBB = SplitBlock( 3446 ParentBB, ParentBB->getTerminator(), DT, LI, MSU, "region.check.tid"); 3447 3448 // Register basic blocks with the Attributor. 3449 A.registerManifestAddedBasicBlock(*RegionEndBB); 3450 A.registerManifestAddedBasicBlock(*RegionBarrierBB); 3451 A.registerManifestAddedBasicBlock(*RegionExitBB); 3452 A.registerManifestAddedBasicBlock(*RegionStartBB); 3453 A.registerManifestAddedBasicBlock(*RegionCheckTidBB); 3454 3455 bool HasBroadcastValues = false; 3456 // Find escaping outputs from the guarded region to outside users and 3457 // broadcast their values to them. 3458 for (Instruction &I : *RegionStartBB) { 3459 SmallPtrSet<Instruction *, 4> OutsideUsers; 3460 for (User *Usr : I.users()) { 3461 Instruction &UsrI = *cast<Instruction>(Usr); 3462 if (UsrI.getParent() != RegionStartBB) 3463 OutsideUsers.insert(&UsrI); 3464 } 3465 3466 if (OutsideUsers.empty()) 3467 continue; 3468 3469 HasBroadcastValues = true; 3470 3471 // Emit a global variable in shared memory to store the broadcasted 3472 // value. 3473 auto *SharedMem = new GlobalVariable( 3474 M, I.getType(), /* IsConstant */ false, 3475 GlobalValue::InternalLinkage, UndefValue::get(I.getType()), 3476 sanitizeForGlobalName( 3477 (I.getName() + ".guarded.output.alloc").str()), 3478 nullptr, GlobalValue::NotThreadLocal, 3479 static_cast<unsigned>(AddressSpace::Shared)); 3480 3481 // Emit a store instruction to update the value. 3482 new StoreInst(&I, SharedMem, RegionEndBB->getTerminator()); 3483 3484 LoadInst *LoadI = new LoadInst(I.getType(), SharedMem, 3485 I.getName() + ".guarded.output.load", 3486 RegionBarrierBB->getTerminator()); 3487 3488 // Emit a load instruction and replace uses of the output value. 3489 for (Instruction *UsrI : OutsideUsers) 3490 UsrI->replaceUsesOfWith(&I, LoadI); 3491 } 3492 3493 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 3494 3495 // Go to tid check BB in ParentBB. 3496 const DebugLoc DL = ParentBB->getTerminator()->getDebugLoc(); 3497 ParentBB->getTerminator()->eraseFromParent(); 3498 OpenMPIRBuilder::LocationDescription Loc( 3499 InsertPointTy(ParentBB, ParentBB->end()), DL); 3500 OMPInfoCache.OMPBuilder.updateToLocation(Loc); 3501 uint32_t SrcLocStrSize; 3502 auto *SrcLocStr = 3503 OMPInfoCache.OMPBuilder.getOrCreateSrcLocStr(Loc, SrcLocStrSize); 3504 Value *Ident = 3505 OMPInfoCache.OMPBuilder.getOrCreateIdent(SrcLocStr, SrcLocStrSize); 3506 BranchInst::Create(RegionCheckTidBB, ParentBB)->setDebugLoc(DL); 3507 3508 // Add check for Tid in RegionCheckTidBB 3509 RegionCheckTidBB->getTerminator()->eraseFromParent(); 3510 OpenMPIRBuilder::LocationDescription LocRegionCheckTid( 3511 InsertPointTy(RegionCheckTidBB, RegionCheckTidBB->end()), DL); 3512 OMPInfoCache.OMPBuilder.updateToLocation(LocRegionCheckTid); 3513 FunctionCallee HardwareTidFn = 3514 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( 3515 M, OMPRTL___kmpc_get_hardware_thread_id_in_block); 3516 CallInst *Tid = 3517 OMPInfoCache.OMPBuilder.Builder.CreateCall(HardwareTidFn, {}); 3518 Tid->setDebugLoc(DL); 3519 OMPInfoCache.setCallingConvention(HardwareTidFn, Tid); 3520 Value *TidCheck = OMPInfoCache.OMPBuilder.Builder.CreateIsNull(Tid); 3521 OMPInfoCache.OMPBuilder.Builder 3522 .CreateCondBr(TidCheck, RegionStartBB, RegionBarrierBB) 3523 ->setDebugLoc(DL); 3524 3525 // First barrier for synchronization, ensures main thread has updated 3526 // values. 3527 FunctionCallee BarrierFn = 3528 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( 3529 M, OMPRTL___kmpc_barrier_simple_spmd); 3530 OMPInfoCache.OMPBuilder.updateToLocation(InsertPointTy( 3531 RegionBarrierBB, RegionBarrierBB->getFirstInsertionPt())); 3532 CallInst *Barrier = 3533 OMPInfoCache.OMPBuilder.Builder.CreateCall(BarrierFn, {Ident, Tid}); 3534 Barrier->setDebugLoc(DL); 3535 OMPInfoCache.setCallingConvention(BarrierFn, Barrier); 3536 3537 // Second barrier ensures workers have read broadcast values. 3538 if (HasBroadcastValues) { 3539 CallInst *Barrier = CallInst::Create(BarrierFn, {Ident, Tid}, "", 3540 RegionBarrierBB->getTerminator()); 3541 Barrier->setDebugLoc(DL); 3542 OMPInfoCache.setCallingConvention(BarrierFn, Barrier); 3543 } 3544 }; 3545 3546 auto &AllocSharedRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared]; 3547 SmallPtrSet<BasicBlock *, 8> Visited; 3548 for (Instruction *GuardedI : SPMDCompatibilityTracker) { 3549 BasicBlock *BB = GuardedI->getParent(); 3550 if (!Visited.insert(BB).second) 3551 continue; 3552 3553 SmallVector<std::pair<Instruction *, Instruction *>> Reorders; 3554 Instruction *LastEffect = nullptr; 3555 BasicBlock::reverse_iterator IP = BB->rbegin(), IPEnd = BB->rend(); 3556 while (++IP != IPEnd) { 3557 if (!IP->mayHaveSideEffects() && !IP->mayReadFromMemory()) 3558 continue; 3559 Instruction *I = &*IP; 3560 if (OpenMPOpt::getCallIfRegularCall(*I, &AllocSharedRFI)) 3561 continue; 3562 if (!I->user_empty() || !SPMDCompatibilityTracker.contains(I)) { 3563 LastEffect = nullptr; 3564 continue; 3565 } 3566 if (LastEffect) 3567 Reorders.push_back({I, LastEffect}); 3568 LastEffect = &*IP; 3569 } 3570 for (auto &Reorder : Reorders) 3571 Reorder.first->moveBefore(Reorder.second); 3572 } 3573 3574 SmallVector<std::pair<Instruction *, Instruction *>, 4> GuardedRegions; 3575 3576 for (Instruction *GuardedI : SPMDCompatibilityTracker) { 3577 BasicBlock *BB = GuardedI->getParent(); 3578 auto *CalleeAA = A.lookupAAFor<AAKernelInfo>( 3579 IRPosition::function(*GuardedI->getFunction()), nullptr, 3580 DepClassTy::NONE); 3581 assert(CalleeAA != nullptr && "Expected Callee AAKernelInfo"); 3582 auto &CalleeAAFunction = *cast<AAKernelInfoFunction>(CalleeAA); 3583 // Continue if instruction is already guarded. 3584 if (CalleeAAFunction.getGuardedInstructions().contains(GuardedI)) 3585 continue; 3586 3587 Instruction *GuardedRegionStart = nullptr, *GuardedRegionEnd = nullptr; 3588 for (Instruction &I : *BB) { 3589 // If instruction I needs to be guarded update the guarded region 3590 // bounds. 3591 if (SPMDCompatibilityTracker.contains(&I)) { 3592 CalleeAAFunction.getGuardedInstructions().insert(&I); 3593 if (GuardedRegionStart) 3594 GuardedRegionEnd = &I; 3595 else 3596 GuardedRegionStart = GuardedRegionEnd = &I; 3597 3598 continue; 3599 } 3600 3601 // Instruction I does not need guarding, store 3602 // any region found and reset bounds. 3603 if (GuardedRegionStart) { 3604 GuardedRegions.push_back( 3605 std::make_pair(GuardedRegionStart, GuardedRegionEnd)); 3606 GuardedRegionStart = nullptr; 3607 GuardedRegionEnd = nullptr; 3608 } 3609 } 3610 } 3611 3612 for (auto &GR : GuardedRegions) 3613 CreateGuardedRegion(GR.first, GR.second); 3614 3615 // Adjust the global exec mode flag that tells the runtime what mode this 3616 // kernel is executed in. 3617 assert(ExecModeVal == OMP_TGT_EXEC_MODE_GENERIC && 3618 "Initially non-SPMD kernel has SPMD exec mode!"); 3619 ExecMode->setInitializer( 3620 ConstantInt::get(ExecMode->getInitializer()->getType(), 3621 ExecModeVal | OMP_TGT_EXEC_MODE_GENERIC_SPMD)); 3622 3623 // Next rewrite the init and deinit calls to indicate we use SPMD-mode now. 3624 const int InitModeArgNo = 1; 3625 const int DeinitModeArgNo = 1; 3626 const int InitUseStateMachineArgNo = 2; 3627 const int InitRequiresFullRuntimeArgNo = 3; 3628 const int DeinitRequiresFullRuntimeArgNo = 2; 3629 3630 auto &Ctx = getAnchorValue().getContext(); 3631 A.changeUseAfterManifest( 3632 KernelInitCB->getArgOperandUse(InitModeArgNo), 3633 *ConstantInt::getSigned(IntegerType::getInt8Ty(Ctx), 3634 OMP_TGT_EXEC_MODE_SPMD)); 3635 A.changeUseAfterManifest( 3636 KernelInitCB->getArgOperandUse(InitUseStateMachineArgNo), 3637 *ConstantInt::getBool(Ctx, false)); 3638 A.changeUseAfterManifest( 3639 KernelDeinitCB->getArgOperandUse(DeinitModeArgNo), 3640 *ConstantInt::getSigned(IntegerType::getInt8Ty(Ctx), 3641 OMP_TGT_EXEC_MODE_SPMD)); 3642 A.changeUseAfterManifest( 3643 KernelInitCB->getArgOperandUse(InitRequiresFullRuntimeArgNo), 3644 *ConstantInt::getBool(Ctx, false)); 3645 A.changeUseAfterManifest( 3646 KernelDeinitCB->getArgOperandUse(DeinitRequiresFullRuntimeArgNo), 3647 *ConstantInt::getBool(Ctx, false)); 3648 3649 ++NumOpenMPTargetRegionKernelsSPMD; 3650 3651 auto Remark = [&](OptimizationRemark OR) { 3652 return OR << "Transformed generic-mode kernel to SPMD-mode."; 3653 }; 3654 A.emitRemark<OptimizationRemark>(KernelInitCB, "OMP120", Remark); 3655 return true; 3656 }; 3657 3658 ChangeStatus buildCustomStateMachine(Attributor &A) { 3659 // If we have disabled state machine rewrites, don't make a custom one 3660 if (DisableOpenMPOptStateMachineRewrite) 3661 return ChangeStatus::UNCHANGED; 3662 3663 // Don't rewrite the state machine if we are not in a valid state. 3664 if (!ReachedKnownParallelRegions.isValidState()) 3665 return ChangeStatus::UNCHANGED; 3666 3667 const int InitModeArgNo = 1; 3668 const int InitUseStateMachineArgNo = 2; 3669 3670 // Check if the current configuration is non-SPMD and generic state machine. 3671 // If we already have SPMD mode or a custom state machine we do not need to 3672 // go any further. If it is anything but a constant something is weird and 3673 // we give up. 3674 ConstantInt *UseStateMachine = dyn_cast<ConstantInt>( 3675 KernelInitCB->getArgOperand(InitUseStateMachineArgNo)); 3676 ConstantInt *Mode = 3677 dyn_cast<ConstantInt>(KernelInitCB->getArgOperand(InitModeArgNo)); 3678 3679 // If we are stuck with generic mode, try to create a custom device (=GPU) 3680 // state machine which is specialized for the parallel regions that are 3681 // reachable by the kernel. 3682 if (!UseStateMachine || UseStateMachine->isZero() || !Mode || 3683 (Mode->getSExtValue() & OMP_TGT_EXEC_MODE_SPMD)) 3684 return ChangeStatus::UNCHANGED; 3685 3686 // If not SPMD mode, indicate we use a custom state machine now. 3687 auto &Ctx = getAnchorValue().getContext(); 3688 auto *FalseVal = ConstantInt::getBool(Ctx, false); 3689 A.changeUseAfterManifest( 3690 KernelInitCB->getArgOperandUse(InitUseStateMachineArgNo), *FalseVal); 3691 3692 // If we don't actually need a state machine we are done here. This can 3693 // happen if there simply are no parallel regions. In the resulting kernel 3694 // all worker threads will simply exit right away, leaving the main thread 3695 // to do the work alone. 3696 if (!mayContainParallelRegion()) { 3697 ++NumOpenMPTargetRegionKernelsWithoutStateMachine; 3698 3699 auto Remark = [&](OptimizationRemark OR) { 3700 return OR << "Removing unused state machine from generic-mode kernel."; 3701 }; 3702 A.emitRemark<OptimizationRemark>(KernelInitCB, "OMP130", Remark); 3703 3704 return ChangeStatus::CHANGED; 3705 } 3706 3707 // Keep track in the statistics of our new shiny custom state machine. 3708 if (ReachedUnknownParallelRegions.empty()) { 3709 ++NumOpenMPTargetRegionKernelsCustomStateMachineWithoutFallback; 3710 3711 auto Remark = [&](OptimizationRemark OR) { 3712 return OR << "Rewriting generic-mode kernel with a customized state " 3713 "machine."; 3714 }; 3715 A.emitRemark<OptimizationRemark>(KernelInitCB, "OMP131", Remark); 3716 } else { 3717 ++NumOpenMPTargetRegionKernelsCustomStateMachineWithFallback; 3718 3719 auto Remark = [&](OptimizationRemarkAnalysis OR) { 3720 return OR << "Generic-mode kernel is executed with a customized state " 3721 "machine that requires a fallback."; 3722 }; 3723 A.emitRemark<OptimizationRemarkAnalysis>(KernelInitCB, "OMP132", Remark); 3724 3725 // Tell the user why we ended up with a fallback. 3726 for (CallBase *UnknownParallelRegionCB : ReachedUnknownParallelRegions) { 3727 if (!UnknownParallelRegionCB) 3728 continue; 3729 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 3730 return ORA << "Call may contain unknown parallel regions. Use " 3731 << "`__attribute__((assume(\"omp_no_parallelism\")))` to " 3732 "override."; 3733 }; 3734 A.emitRemark<OptimizationRemarkAnalysis>(UnknownParallelRegionCB, 3735 "OMP133", Remark); 3736 } 3737 } 3738 3739 // Create all the blocks: 3740 // 3741 // InitCB = __kmpc_target_init(...) 3742 // BlockHwSize = 3743 // __kmpc_get_hardware_num_threads_in_block(); 3744 // WarpSize = __kmpc_get_warp_size(); 3745 // BlockSize = BlockHwSize - WarpSize; 3746 // IsWorkerCheckBB: bool IsWorker = InitCB != -1; 3747 // if (IsWorker) { 3748 // if (InitCB >= BlockSize) return; 3749 // SMBeginBB: __kmpc_barrier_simple_generic(...); 3750 // void *WorkFn; 3751 // bool Active = __kmpc_kernel_parallel(&WorkFn); 3752 // if (!WorkFn) return; 3753 // SMIsActiveCheckBB: if (Active) { 3754 // SMIfCascadeCurrentBB: if (WorkFn == <ParFn0>) 3755 // ParFn0(...); 3756 // SMIfCascadeCurrentBB: else if (WorkFn == <ParFn1>) 3757 // ParFn1(...); 3758 // ... 3759 // SMIfCascadeCurrentBB: else 3760 // ((WorkFnTy*)WorkFn)(...); 3761 // SMEndParallelBB: __kmpc_kernel_end_parallel(...); 3762 // } 3763 // SMDoneBB: __kmpc_barrier_simple_generic(...); 3764 // goto SMBeginBB; 3765 // } 3766 // UserCodeEntryBB: // user code 3767 // __kmpc_target_deinit(...) 3768 // 3769 Function *Kernel = getAssociatedFunction(); 3770 assert(Kernel && "Expected an associated function!"); 3771 3772 BasicBlock *InitBB = KernelInitCB->getParent(); 3773 BasicBlock *UserCodeEntryBB = InitBB->splitBasicBlock( 3774 KernelInitCB->getNextNode(), "thread.user_code.check"); 3775 BasicBlock *IsWorkerCheckBB = 3776 BasicBlock::Create(Ctx, "is_worker_check", Kernel, UserCodeEntryBB); 3777 BasicBlock *StateMachineBeginBB = BasicBlock::Create( 3778 Ctx, "worker_state_machine.begin", Kernel, UserCodeEntryBB); 3779 BasicBlock *StateMachineFinishedBB = BasicBlock::Create( 3780 Ctx, "worker_state_machine.finished", Kernel, UserCodeEntryBB); 3781 BasicBlock *StateMachineIsActiveCheckBB = BasicBlock::Create( 3782 Ctx, "worker_state_machine.is_active.check", Kernel, UserCodeEntryBB); 3783 BasicBlock *StateMachineIfCascadeCurrentBB = 3784 BasicBlock::Create(Ctx, "worker_state_machine.parallel_region.check", 3785 Kernel, UserCodeEntryBB); 3786 BasicBlock *StateMachineEndParallelBB = 3787 BasicBlock::Create(Ctx, "worker_state_machine.parallel_region.end", 3788 Kernel, UserCodeEntryBB); 3789 BasicBlock *StateMachineDoneBarrierBB = BasicBlock::Create( 3790 Ctx, "worker_state_machine.done.barrier", Kernel, UserCodeEntryBB); 3791 A.registerManifestAddedBasicBlock(*InitBB); 3792 A.registerManifestAddedBasicBlock(*UserCodeEntryBB); 3793 A.registerManifestAddedBasicBlock(*IsWorkerCheckBB); 3794 A.registerManifestAddedBasicBlock(*StateMachineBeginBB); 3795 A.registerManifestAddedBasicBlock(*StateMachineFinishedBB); 3796 A.registerManifestAddedBasicBlock(*StateMachineIsActiveCheckBB); 3797 A.registerManifestAddedBasicBlock(*StateMachineIfCascadeCurrentBB); 3798 A.registerManifestAddedBasicBlock(*StateMachineEndParallelBB); 3799 A.registerManifestAddedBasicBlock(*StateMachineDoneBarrierBB); 3800 3801 const DebugLoc &DLoc = KernelInitCB->getDebugLoc(); 3802 ReturnInst::Create(Ctx, StateMachineFinishedBB)->setDebugLoc(DLoc); 3803 InitBB->getTerminator()->eraseFromParent(); 3804 3805 Instruction *IsWorker = 3806 ICmpInst::Create(ICmpInst::ICmp, llvm::CmpInst::ICMP_NE, KernelInitCB, 3807 ConstantInt::get(KernelInitCB->getType(), -1), 3808 "thread.is_worker", InitBB); 3809 IsWorker->setDebugLoc(DLoc); 3810 BranchInst::Create(IsWorkerCheckBB, UserCodeEntryBB, IsWorker, InitBB); 3811 3812 Module &M = *Kernel->getParent(); 3813 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 3814 FunctionCallee BlockHwSizeFn = 3815 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( 3816 M, OMPRTL___kmpc_get_hardware_num_threads_in_block); 3817 FunctionCallee WarpSizeFn = 3818 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( 3819 M, OMPRTL___kmpc_get_warp_size); 3820 CallInst *BlockHwSize = 3821 CallInst::Create(BlockHwSizeFn, "block.hw_size", IsWorkerCheckBB); 3822 OMPInfoCache.setCallingConvention(BlockHwSizeFn, BlockHwSize); 3823 BlockHwSize->setDebugLoc(DLoc); 3824 CallInst *WarpSize = 3825 CallInst::Create(WarpSizeFn, "warp.size", IsWorkerCheckBB); 3826 OMPInfoCache.setCallingConvention(WarpSizeFn, WarpSize); 3827 WarpSize->setDebugLoc(DLoc); 3828 Instruction *BlockSize = BinaryOperator::CreateSub( 3829 BlockHwSize, WarpSize, "block.size", IsWorkerCheckBB); 3830 BlockSize->setDebugLoc(DLoc); 3831 Instruction *IsMainOrWorker = ICmpInst::Create( 3832 ICmpInst::ICmp, llvm::CmpInst::ICMP_SLT, KernelInitCB, BlockSize, 3833 "thread.is_main_or_worker", IsWorkerCheckBB); 3834 IsMainOrWorker->setDebugLoc(DLoc); 3835 BranchInst::Create(StateMachineBeginBB, StateMachineFinishedBB, 3836 IsMainOrWorker, IsWorkerCheckBB); 3837 3838 // Create local storage for the work function pointer. 3839 const DataLayout &DL = M.getDataLayout(); 3840 Type *VoidPtrTy = Type::getInt8PtrTy(Ctx); 3841 Instruction *WorkFnAI = 3842 new AllocaInst(VoidPtrTy, DL.getAllocaAddrSpace(), nullptr, 3843 "worker.work_fn.addr", &Kernel->getEntryBlock().front()); 3844 WorkFnAI->setDebugLoc(DLoc); 3845 3846 OMPInfoCache.OMPBuilder.updateToLocation( 3847 OpenMPIRBuilder::LocationDescription( 3848 IRBuilder<>::InsertPoint(StateMachineBeginBB, 3849 StateMachineBeginBB->end()), 3850 DLoc)); 3851 3852 Value *Ident = KernelInitCB->getArgOperand(0); 3853 Value *GTid = KernelInitCB; 3854 3855 FunctionCallee BarrierFn = 3856 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( 3857 M, OMPRTL___kmpc_barrier_simple_generic); 3858 CallInst *Barrier = 3859 CallInst::Create(BarrierFn, {Ident, GTid}, "", StateMachineBeginBB); 3860 OMPInfoCache.setCallingConvention(BarrierFn, Barrier); 3861 Barrier->setDebugLoc(DLoc); 3862 3863 if (WorkFnAI->getType()->getPointerAddressSpace() != 3864 (unsigned int)AddressSpace::Generic) { 3865 WorkFnAI = new AddrSpaceCastInst( 3866 WorkFnAI, 3867 PointerType::getWithSamePointeeType( 3868 cast<PointerType>(WorkFnAI->getType()), 3869 (unsigned int)AddressSpace::Generic), 3870 WorkFnAI->getName() + ".generic", StateMachineBeginBB); 3871 WorkFnAI->setDebugLoc(DLoc); 3872 } 3873 3874 FunctionCallee KernelParallelFn = 3875 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( 3876 M, OMPRTL___kmpc_kernel_parallel); 3877 CallInst *IsActiveWorker = CallInst::Create( 3878 KernelParallelFn, {WorkFnAI}, "worker.is_active", StateMachineBeginBB); 3879 OMPInfoCache.setCallingConvention(KernelParallelFn, IsActiveWorker); 3880 IsActiveWorker->setDebugLoc(DLoc); 3881 Instruction *WorkFn = new LoadInst(VoidPtrTy, WorkFnAI, "worker.work_fn", 3882 StateMachineBeginBB); 3883 WorkFn->setDebugLoc(DLoc); 3884 3885 FunctionType *ParallelRegionFnTy = FunctionType::get( 3886 Type::getVoidTy(Ctx), {Type::getInt16Ty(Ctx), Type::getInt32Ty(Ctx)}, 3887 false); 3888 Value *WorkFnCast = BitCastInst::CreatePointerBitCastOrAddrSpaceCast( 3889 WorkFn, ParallelRegionFnTy->getPointerTo(), "worker.work_fn.addr_cast", 3890 StateMachineBeginBB); 3891 3892 Instruction *IsDone = 3893 ICmpInst::Create(ICmpInst::ICmp, llvm::CmpInst::ICMP_EQ, WorkFn, 3894 Constant::getNullValue(VoidPtrTy), "worker.is_done", 3895 StateMachineBeginBB); 3896 IsDone->setDebugLoc(DLoc); 3897 BranchInst::Create(StateMachineFinishedBB, StateMachineIsActiveCheckBB, 3898 IsDone, StateMachineBeginBB) 3899 ->setDebugLoc(DLoc); 3900 3901 BranchInst::Create(StateMachineIfCascadeCurrentBB, 3902 StateMachineDoneBarrierBB, IsActiveWorker, 3903 StateMachineIsActiveCheckBB) 3904 ->setDebugLoc(DLoc); 3905 3906 Value *ZeroArg = 3907 Constant::getNullValue(ParallelRegionFnTy->getParamType(0)); 3908 3909 // Now that we have most of the CFG skeleton it is time for the if-cascade 3910 // that checks the function pointer we got from the runtime against the 3911 // parallel regions we expect, if there are any. 3912 for (int I = 0, E = ReachedKnownParallelRegions.size(); I < E; ++I) { 3913 auto *ParallelRegion = ReachedKnownParallelRegions[I]; 3914 BasicBlock *PRExecuteBB = BasicBlock::Create( 3915 Ctx, "worker_state_machine.parallel_region.execute", Kernel, 3916 StateMachineEndParallelBB); 3917 CallInst::Create(ParallelRegion, {ZeroArg, GTid}, "", PRExecuteBB) 3918 ->setDebugLoc(DLoc); 3919 BranchInst::Create(StateMachineEndParallelBB, PRExecuteBB) 3920 ->setDebugLoc(DLoc); 3921 3922 BasicBlock *PRNextBB = 3923 BasicBlock::Create(Ctx, "worker_state_machine.parallel_region.check", 3924 Kernel, StateMachineEndParallelBB); 3925 3926 // Check if we need to compare the pointer at all or if we can just 3927 // call the parallel region function. 3928 Value *IsPR; 3929 if (I + 1 < E || !ReachedUnknownParallelRegions.empty()) { 3930 Instruction *CmpI = ICmpInst::Create( 3931 ICmpInst::ICmp, llvm::CmpInst::ICMP_EQ, WorkFnCast, ParallelRegion, 3932 "worker.check_parallel_region", StateMachineIfCascadeCurrentBB); 3933 CmpI->setDebugLoc(DLoc); 3934 IsPR = CmpI; 3935 } else { 3936 IsPR = ConstantInt::getTrue(Ctx); 3937 } 3938 3939 BranchInst::Create(PRExecuteBB, PRNextBB, IsPR, 3940 StateMachineIfCascadeCurrentBB) 3941 ->setDebugLoc(DLoc); 3942 StateMachineIfCascadeCurrentBB = PRNextBB; 3943 } 3944 3945 // At the end of the if-cascade we place the indirect function pointer call 3946 // in case we might need it, that is if there can be parallel regions we 3947 // have not handled in the if-cascade above. 3948 if (!ReachedUnknownParallelRegions.empty()) { 3949 StateMachineIfCascadeCurrentBB->setName( 3950 "worker_state_machine.parallel_region.fallback.execute"); 3951 CallInst::Create(ParallelRegionFnTy, WorkFnCast, {ZeroArg, GTid}, "", 3952 StateMachineIfCascadeCurrentBB) 3953 ->setDebugLoc(DLoc); 3954 } 3955 BranchInst::Create(StateMachineEndParallelBB, 3956 StateMachineIfCascadeCurrentBB) 3957 ->setDebugLoc(DLoc); 3958 3959 FunctionCallee EndParallelFn = 3960 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( 3961 M, OMPRTL___kmpc_kernel_end_parallel); 3962 CallInst *EndParallel = 3963 CallInst::Create(EndParallelFn, {}, "", StateMachineEndParallelBB); 3964 OMPInfoCache.setCallingConvention(EndParallelFn, EndParallel); 3965 EndParallel->setDebugLoc(DLoc); 3966 BranchInst::Create(StateMachineDoneBarrierBB, StateMachineEndParallelBB) 3967 ->setDebugLoc(DLoc); 3968 3969 CallInst::Create(BarrierFn, {Ident, GTid}, "", StateMachineDoneBarrierBB) 3970 ->setDebugLoc(DLoc); 3971 BranchInst::Create(StateMachineBeginBB, StateMachineDoneBarrierBB) 3972 ->setDebugLoc(DLoc); 3973 3974 return ChangeStatus::CHANGED; 3975 } 3976 3977 /// Fixpoint iteration update function. Will be called every time a dependence 3978 /// changed its state (and in the beginning). 3979 ChangeStatus updateImpl(Attributor &A) override { 3980 KernelInfoState StateBefore = getState(); 3981 3982 // Callback to check a read/write instruction. 3983 auto CheckRWInst = [&](Instruction &I) { 3984 // We handle calls later. 3985 if (isa<CallBase>(I)) 3986 return true; 3987 // We only care about write effects. 3988 if (!I.mayWriteToMemory()) 3989 return true; 3990 if (auto *SI = dyn_cast<StoreInst>(&I)) { 3991 SmallVector<const Value *> Objects; 3992 getUnderlyingObjects(SI->getPointerOperand(), Objects); 3993 if (llvm::all_of(Objects, 3994 [](const Value *Obj) { return isa<AllocaInst>(Obj); })) 3995 return true; 3996 // Check for AAHeapToStack moved objects which must not be guarded. 3997 auto &HS = A.getAAFor<AAHeapToStack>( 3998 *this, IRPosition::function(*I.getFunction()), 3999 DepClassTy::OPTIONAL); 4000 if (llvm::all_of(Objects, [&HS](const Value *Obj) { 4001 auto *CB = dyn_cast<CallBase>(Obj); 4002 if (!CB) 4003 return false; 4004 return HS.isAssumedHeapToStack(*CB); 4005 })) { 4006 return true; 4007 } 4008 } 4009 4010 // Insert instruction that needs guarding. 4011 SPMDCompatibilityTracker.insert(&I); 4012 return true; 4013 }; 4014 4015 bool UsedAssumedInformationInCheckRWInst = false; 4016 if (!SPMDCompatibilityTracker.isAtFixpoint()) 4017 if (!A.checkForAllReadWriteInstructions( 4018 CheckRWInst, *this, UsedAssumedInformationInCheckRWInst)) 4019 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 4020 4021 bool UsedAssumedInformationFromReachingKernels = false; 4022 if (!IsKernelEntry) { 4023 updateParallelLevels(A); 4024 4025 bool AllReachingKernelsKnown = true; 4026 updateReachingKernelEntries(A, AllReachingKernelsKnown); 4027 UsedAssumedInformationFromReachingKernels = !AllReachingKernelsKnown; 4028 4029 if (!ParallelLevels.isValidState()) 4030 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 4031 else if (!ReachingKernelEntries.isValidState()) 4032 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 4033 else if (!SPMDCompatibilityTracker.empty()) { 4034 // Check if all reaching kernels agree on the mode as we can otherwise 4035 // not guard instructions. We might not be sure about the mode so we 4036 // we cannot fix the internal spmd-zation state either. 4037 int SPMD = 0, Generic = 0; 4038 for (auto *Kernel : ReachingKernelEntries) { 4039 auto &CBAA = A.getAAFor<AAKernelInfo>( 4040 *this, IRPosition::function(*Kernel), DepClassTy::OPTIONAL); 4041 if (CBAA.SPMDCompatibilityTracker.isValidState() && 4042 CBAA.SPMDCompatibilityTracker.isAssumed()) 4043 ++SPMD; 4044 else 4045 ++Generic; 4046 if (!CBAA.SPMDCompatibilityTracker.isAtFixpoint()) 4047 UsedAssumedInformationFromReachingKernels = true; 4048 } 4049 if (SPMD != 0 && Generic != 0) 4050 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 4051 } 4052 } 4053 4054 // Callback to check a call instruction. 4055 bool AllParallelRegionStatesWereFixed = true; 4056 bool AllSPMDStatesWereFixed = true; 4057 auto CheckCallInst = [&](Instruction &I) { 4058 auto &CB = cast<CallBase>(I); 4059 auto &CBAA = A.getAAFor<AAKernelInfo>( 4060 *this, IRPosition::callsite_function(CB), DepClassTy::OPTIONAL); 4061 getState() ^= CBAA.getState(); 4062 AllSPMDStatesWereFixed &= CBAA.SPMDCompatibilityTracker.isAtFixpoint(); 4063 AllParallelRegionStatesWereFixed &= 4064 CBAA.ReachedKnownParallelRegions.isAtFixpoint(); 4065 AllParallelRegionStatesWereFixed &= 4066 CBAA.ReachedUnknownParallelRegions.isAtFixpoint(); 4067 return true; 4068 }; 4069 4070 bool UsedAssumedInformationInCheckCallInst = false; 4071 if (!A.checkForAllCallLikeInstructions( 4072 CheckCallInst, *this, UsedAssumedInformationInCheckCallInst)) { 4073 LLVM_DEBUG(dbgs() << TAG 4074 << "Failed to visit all call-like instructions!\n";); 4075 return indicatePessimisticFixpoint(); 4076 } 4077 4078 // If we haven't used any assumed information for the reached parallel 4079 // region states we can fix it. 4080 if (!UsedAssumedInformationInCheckCallInst && 4081 AllParallelRegionStatesWereFixed) { 4082 ReachedKnownParallelRegions.indicateOptimisticFixpoint(); 4083 ReachedUnknownParallelRegions.indicateOptimisticFixpoint(); 4084 } 4085 4086 // If we are sure there are no parallel regions in the kernel we do not 4087 // want SPMD mode. 4088 if (IsKernelEntry && ReachedUnknownParallelRegions.isAtFixpoint() && 4089 ReachedKnownParallelRegions.isAtFixpoint() && 4090 ReachedUnknownParallelRegions.isValidState() && 4091 ReachedKnownParallelRegions.isValidState() && 4092 !mayContainParallelRegion()) 4093 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 4094 4095 // If we haven't used any assumed information for the SPMD state we can fix 4096 // it. 4097 if (!UsedAssumedInformationInCheckRWInst && 4098 !UsedAssumedInformationInCheckCallInst && 4099 !UsedAssumedInformationFromReachingKernels && AllSPMDStatesWereFixed) 4100 SPMDCompatibilityTracker.indicateOptimisticFixpoint(); 4101 4102 return StateBefore == getState() ? ChangeStatus::UNCHANGED 4103 : ChangeStatus::CHANGED; 4104 } 4105 4106 private: 4107 /// Update info regarding reaching kernels. 4108 void updateReachingKernelEntries(Attributor &A, 4109 bool &AllReachingKernelsKnown) { 4110 auto PredCallSite = [&](AbstractCallSite ACS) { 4111 Function *Caller = ACS.getInstruction()->getFunction(); 4112 4113 assert(Caller && "Caller is nullptr"); 4114 4115 auto &CAA = A.getOrCreateAAFor<AAKernelInfo>( 4116 IRPosition::function(*Caller), this, DepClassTy::REQUIRED); 4117 if (CAA.ReachingKernelEntries.isValidState()) { 4118 ReachingKernelEntries ^= CAA.ReachingKernelEntries; 4119 return true; 4120 } 4121 4122 // We lost track of the caller of the associated function, any kernel 4123 // could reach now. 4124 ReachingKernelEntries.indicatePessimisticFixpoint(); 4125 4126 return true; 4127 }; 4128 4129 if (!A.checkForAllCallSites(PredCallSite, *this, 4130 true /* RequireAllCallSites */, 4131 AllReachingKernelsKnown)) 4132 ReachingKernelEntries.indicatePessimisticFixpoint(); 4133 } 4134 4135 /// Update info regarding parallel levels. 4136 void updateParallelLevels(Attributor &A) { 4137 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 4138 OMPInformationCache::RuntimeFunctionInfo &Parallel51RFI = 4139 OMPInfoCache.RFIs[OMPRTL___kmpc_parallel_51]; 4140 4141 auto PredCallSite = [&](AbstractCallSite ACS) { 4142 Function *Caller = ACS.getInstruction()->getFunction(); 4143 4144 assert(Caller && "Caller is nullptr"); 4145 4146 auto &CAA = 4147 A.getOrCreateAAFor<AAKernelInfo>(IRPosition::function(*Caller)); 4148 if (CAA.ParallelLevels.isValidState()) { 4149 // Any function that is called by `__kmpc_parallel_51` will not be 4150 // folded as the parallel level in the function is updated. In order to 4151 // get it right, all the analysis would depend on the implentation. That 4152 // said, if in the future any change to the implementation, the analysis 4153 // could be wrong. As a consequence, we are just conservative here. 4154 if (Caller == Parallel51RFI.Declaration) { 4155 ParallelLevels.indicatePessimisticFixpoint(); 4156 return true; 4157 } 4158 4159 ParallelLevels ^= CAA.ParallelLevels; 4160 4161 return true; 4162 } 4163 4164 // We lost track of the caller of the associated function, any kernel 4165 // could reach now. 4166 ParallelLevels.indicatePessimisticFixpoint(); 4167 4168 return true; 4169 }; 4170 4171 bool AllCallSitesKnown = true; 4172 if (!A.checkForAllCallSites(PredCallSite, *this, 4173 true /* RequireAllCallSites */, 4174 AllCallSitesKnown)) 4175 ParallelLevels.indicatePessimisticFixpoint(); 4176 } 4177 }; 4178 4179 /// The call site kernel info abstract attribute, basically, what can we say 4180 /// about a call site with regards to the KernelInfoState. For now this simply 4181 /// forwards the information from the callee. 4182 struct AAKernelInfoCallSite : AAKernelInfo { 4183 AAKernelInfoCallSite(const IRPosition &IRP, Attributor &A) 4184 : AAKernelInfo(IRP, A) {} 4185 4186 /// See AbstractAttribute::initialize(...). 4187 void initialize(Attributor &A) override { 4188 AAKernelInfo::initialize(A); 4189 4190 CallBase &CB = cast<CallBase>(getAssociatedValue()); 4191 Function *Callee = getAssociatedFunction(); 4192 4193 auto &AssumptionAA = A.getAAFor<AAAssumptionInfo>( 4194 *this, IRPosition::callsite_function(CB), DepClassTy::OPTIONAL); 4195 4196 // Check for SPMD-mode assumptions. 4197 if (AssumptionAA.hasAssumption("ompx_spmd_amenable")) { 4198 SPMDCompatibilityTracker.indicateOptimisticFixpoint(); 4199 indicateOptimisticFixpoint(); 4200 } 4201 4202 // First weed out calls we do not care about, that is readonly/readnone 4203 // calls, intrinsics, and "no_openmp" calls. Neither of these can reach a 4204 // parallel region or anything else we are looking for. 4205 if (!CB.mayWriteToMemory() || isa<IntrinsicInst>(CB)) { 4206 indicateOptimisticFixpoint(); 4207 return; 4208 } 4209 4210 // Next we check if we know the callee. If it is a known OpenMP function 4211 // we will handle them explicitly in the switch below. If it is not, we 4212 // will use an AAKernelInfo object on the callee to gather information and 4213 // merge that into the current state. The latter happens in the updateImpl. 4214 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 4215 const auto &It = OMPInfoCache.RuntimeFunctionIDMap.find(Callee); 4216 if (It == OMPInfoCache.RuntimeFunctionIDMap.end()) { 4217 // Unknown caller or declarations are not analyzable, we give up. 4218 if (!Callee || !A.isFunctionIPOAmendable(*Callee)) { 4219 4220 // Unknown callees might contain parallel regions, except if they have 4221 // an appropriate assumption attached. 4222 if (!(AssumptionAA.hasAssumption("omp_no_openmp") || 4223 AssumptionAA.hasAssumption("omp_no_parallelism"))) 4224 ReachedUnknownParallelRegions.insert(&CB); 4225 4226 // If SPMDCompatibilityTracker is not fixed, we need to give up on the 4227 // idea we can run something unknown in SPMD-mode. 4228 if (!SPMDCompatibilityTracker.isAtFixpoint()) { 4229 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 4230 SPMDCompatibilityTracker.insert(&CB); 4231 } 4232 4233 // We have updated the state for this unknown call properly, there won't 4234 // be any change so we indicate a fixpoint. 4235 indicateOptimisticFixpoint(); 4236 } 4237 // If the callee is known and can be used in IPO, we will update the state 4238 // based on the callee state in updateImpl. 4239 return; 4240 } 4241 4242 const unsigned int WrapperFunctionArgNo = 6; 4243 RuntimeFunction RF = It->getSecond(); 4244 switch (RF) { 4245 // All the functions we know are compatible with SPMD mode. 4246 case OMPRTL___kmpc_is_spmd_exec_mode: 4247 case OMPRTL___kmpc_distribute_static_fini: 4248 case OMPRTL___kmpc_for_static_fini: 4249 case OMPRTL___kmpc_global_thread_num: 4250 case OMPRTL___kmpc_get_hardware_num_threads_in_block: 4251 case OMPRTL___kmpc_get_hardware_num_blocks: 4252 case OMPRTL___kmpc_single: 4253 case OMPRTL___kmpc_end_single: 4254 case OMPRTL___kmpc_master: 4255 case OMPRTL___kmpc_end_master: 4256 case OMPRTL___kmpc_barrier: 4257 case OMPRTL___kmpc_nvptx_parallel_reduce_nowait_v2: 4258 case OMPRTL___kmpc_nvptx_teams_reduce_nowait_v2: 4259 case OMPRTL___kmpc_nvptx_end_reduce_nowait: 4260 break; 4261 case OMPRTL___kmpc_distribute_static_init_4: 4262 case OMPRTL___kmpc_distribute_static_init_4u: 4263 case OMPRTL___kmpc_distribute_static_init_8: 4264 case OMPRTL___kmpc_distribute_static_init_8u: 4265 case OMPRTL___kmpc_for_static_init_4: 4266 case OMPRTL___kmpc_for_static_init_4u: 4267 case OMPRTL___kmpc_for_static_init_8: 4268 case OMPRTL___kmpc_for_static_init_8u: { 4269 // Check the schedule and allow static schedule in SPMD mode. 4270 unsigned ScheduleArgOpNo = 2; 4271 auto *ScheduleTypeCI = 4272 dyn_cast<ConstantInt>(CB.getArgOperand(ScheduleArgOpNo)); 4273 unsigned ScheduleTypeVal = 4274 ScheduleTypeCI ? ScheduleTypeCI->getZExtValue() : 0; 4275 switch (OMPScheduleType(ScheduleTypeVal)) { 4276 case OMPScheduleType::UnorderedStatic: 4277 case OMPScheduleType::UnorderedStaticChunked: 4278 case OMPScheduleType::OrderedDistribute: 4279 case OMPScheduleType::OrderedDistributeChunked: 4280 break; 4281 default: 4282 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 4283 SPMDCompatibilityTracker.insert(&CB); 4284 break; 4285 }; 4286 } break; 4287 case OMPRTL___kmpc_target_init: 4288 KernelInitCB = &CB; 4289 break; 4290 case OMPRTL___kmpc_target_deinit: 4291 KernelDeinitCB = &CB; 4292 break; 4293 case OMPRTL___kmpc_parallel_51: 4294 if (auto *ParallelRegion = dyn_cast<Function>( 4295 CB.getArgOperand(WrapperFunctionArgNo)->stripPointerCasts())) { 4296 ReachedKnownParallelRegions.insert(ParallelRegion); 4297 break; 4298 } 4299 // The condition above should usually get the parallel region function 4300 // pointer and record it. In the off chance it doesn't we assume the 4301 // worst. 4302 ReachedUnknownParallelRegions.insert(&CB); 4303 break; 4304 case OMPRTL___kmpc_omp_task: 4305 // We do not look into tasks right now, just give up. 4306 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 4307 SPMDCompatibilityTracker.insert(&CB); 4308 ReachedUnknownParallelRegions.insert(&CB); 4309 break; 4310 case OMPRTL___kmpc_alloc_shared: 4311 case OMPRTL___kmpc_free_shared: 4312 // Return without setting a fixpoint, to be resolved in updateImpl. 4313 return; 4314 default: 4315 // Unknown OpenMP runtime calls cannot be executed in SPMD-mode, 4316 // generally. However, they do not hide parallel regions. 4317 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 4318 SPMDCompatibilityTracker.insert(&CB); 4319 break; 4320 } 4321 // All other OpenMP runtime calls will not reach parallel regions so they 4322 // can be safely ignored for now. Since it is a known OpenMP runtime call we 4323 // have now modeled all effects and there is no need for any update. 4324 indicateOptimisticFixpoint(); 4325 } 4326 4327 ChangeStatus updateImpl(Attributor &A) override { 4328 // TODO: Once we have call site specific value information we can provide 4329 // call site specific liveness information and then it makes 4330 // sense to specialize attributes for call sites arguments instead of 4331 // redirecting requests to the callee argument. 4332 Function *F = getAssociatedFunction(); 4333 4334 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 4335 const auto &It = OMPInfoCache.RuntimeFunctionIDMap.find(F); 4336 4337 // If F is not a runtime function, propagate the AAKernelInfo of the callee. 4338 if (It == OMPInfoCache.RuntimeFunctionIDMap.end()) { 4339 const IRPosition &FnPos = IRPosition::function(*F); 4340 auto &FnAA = A.getAAFor<AAKernelInfo>(*this, FnPos, DepClassTy::REQUIRED); 4341 if (getState() == FnAA.getState()) 4342 return ChangeStatus::UNCHANGED; 4343 getState() = FnAA.getState(); 4344 return ChangeStatus::CHANGED; 4345 } 4346 4347 // F is a runtime function that allocates or frees memory, check 4348 // AAHeapToStack and AAHeapToShared. 4349 KernelInfoState StateBefore = getState(); 4350 assert((It->getSecond() == OMPRTL___kmpc_alloc_shared || 4351 It->getSecond() == OMPRTL___kmpc_free_shared) && 4352 "Expected a __kmpc_alloc_shared or __kmpc_free_shared runtime call"); 4353 4354 CallBase &CB = cast<CallBase>(getAssociatedValue()); 4355 4356 auto &HeapToStackAA = A.getAAFor<AAHeapToStack>( 4357 *this, IRPosition::function(*CB.getCaller()), DepClassTy::OPTIONAL); 4358 auto &HeapToSharedAA = A.getAAFor<AAHeapToShared>( 4359 *this, IRPosition::function(*CB.getCaller()), DepClassTy::OPTIONAL); 4360 4361 RuntimeFunction RF = It->getSecond(); 4362 4363 switch (RF) { 4364 // If neither HeapToStack nor HeapToShared assume the call is removed, 4365 // assume SPMD incompatibility. 4366 case OMPRTL___kmpc_alloc_shared: 4367 if (!HeapToStackAA.isAssumedHeapToStack(CB) && 4368 !HeapToSharedAA.isAssumedHeapToShared(CB)) 4369 SPMDCompatibilityTracker.insert(&CB); 4370 break; 4371 case OMPRTL___kmpc_free_shared: 4372 if (!HeapToStackAA.isAssumedHeapToStackRemovedFree(CB) && 4373 !HeapToSharedAA.isAssumedHeapToSharedRemovedFree(CB)) 4374 SPMDCompatibilityTracker.insert(&CB); 4375 break; 4376 default: 4377 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 4378 SPMDCompatibilityTracker.insert(&CB); 4379 } 4380 4381 return StateBefore == getState() ? ChangeStatus::UNCHANGED 4382 : ChangeStatus::CHANGED; 4383 } 4384 }; 4385 4386 struct AAFoldRuntimeCall 4387 : public StateWrapper<BooleanState, AbstractAttribute> { 4388 using Base = StateWrapper<BooleanState, AbstractAttribute>; 4389 4390 AAFoldRuntimeCall(const IRPosition &IRP, Attributor &A) : Base(IRP) {} 4391 4392 /// Statistics are tracked as part of manifest for now. 4393 void trackStatistics() const override {} 4394 4395 /// Create an abstract attribute biew for the position \p IRP. 4396 static AAFoldRuntimeCall &createForPosition(const IRPosition &IRP, 4397 Attributor &A); 4398 4399 /// See AbstractAttribute::getName() 4400 const std::string getName() const override { return "AAFoldRuntimeCall"; } 4401 4402 /// See AbstractAttribute::getIdAddr() 4403 const char *getIdAddr() const override { return &ID; } 4404 4405 /// This function should return true if the type of the \p AA is 4406 /// AAFoldRuntimeCall 4407 static bool classof(const AbstractAttribute *AA) { 4408 return (AA->getIdAddr() == &ID); 4409 } 4410 4411 static const char ID; 4412 }; 4413 4414 struct AAFoldRuntimeCallCallSiteReturned : AAFoldRuntimeCall { 4415 AAFoldRuntimeCallCallSiteReturned(const IRPosition &IRP, Attributor &A) 4416 : AAFoldRuntimeCall(IRP, A) {} 4417 4418 /// See AbstractAttribute::getAsStr() 4419 const std::string getAsStr() const override { 4420 if (!isValidState()) 4421 return "<invalid>"; 4422 4423 std::string Str("simplified value: "); 4424 4425 if (!SimplifiedValue) 4426 return Str + std::string("none"); 4427 4428 if (!SimplifiedValue.value()) 4429 return Str + std::string("nullptr"); 4430 4431 if (ConstantInt *CI = dyn_cast<ConstantInt>(SimplifiedValue.value())) 4432 return Str + std::to_string(CI->getSExtValue()); 4433 4434 return Str + std::string("unknown"); 4435 } 4436 4437 void initialize(Attributor &A) override { 4438 if (DisableOpenMPOptFolding) 4439 indicatePessimisticFixpoint(); 4440 4441 Function *Callee = getAssociatedFunction(); 4442 4443 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 4444 const auto &It = OMPInfoCache.RuntimeFunctionIDMap.find(Callee); 4445 assert(It != OMPInfoCache.RuntimeFunctionIDMap.end() && 4446 "Expected a known OpenMP runtime function"); 4447 4448 RFKind = It->getSecond(); 4449 4450 CallBase &CB = cast<CallBase>(getAssociatedValue()); 4451 A.registerSimplificationCallback( 4452 IRPosition::callsite_returned(CB), 4453 [&](const IRPosition &IRP, const AbstractAttribute *AA, 4454 bool &UsedAssumedInformation) -> Optional<Value *> { 4455 assert((isValidState() || 4456 (SimplifiedValue && *SimplifiedValue == nullptr)) && 4457 "Unexpected invalid state!"); 4458 4459 if (!isAtFixpoint()) { 4460 UsedAssumedInformation = true; 4461 if (AA) 4462 A.recordDependence(*this, *AA, DepClassTy::OPTIONAL); 4463 } 4464 return SimplifiedValue; 4465 }); 4466 } 4467 4468 ChangeStatus updateImpl(Attributor &A) override { 4469 ChangeStatus Changed = ChangeStatus::UNCHANGED; 4470 switch (RFKind) { 4471 case OMPRTL___kmpc_is_spmd_exec_mode: 4472 Changed |= foldIsSPMDExecMode(A); 4473 break; 4474 case OMPRTL___kmpc_is_generic_main_thread_id: 4475 Changed |= foldIsGenericMainThread(A); 4476 break; 4477 case OMPRTL___kmpc_parallel_level: 4478 Changed |= foldParallelLevel(A); 4479 break; 4480 case OMPRTL___kmpc_get_hardware_num_threads_in_block: 4481 Changed = Changed | foldKernelFnAttribute(A, "omp_target_thread_limit"); 4482 break; 4483 case OMPRTL___kmpc_get_hardware_num_blocks: 4484 Changed = Changed | foldKernelFnAttribute(A, "omp_target_num_teams"); 4485 break; 4486 default: 4487 llvm_unreachable("Unhandled OpenMP runtime function!"); 4488 } 4489 4490 return Changed; 4491 } 4492 4493 ChangeStatus manifest(Attributor &A) override { 4494 ChangeStatus Changed = ChangeStatus::UNCHANGED; 4495 4496 if (SimplifiedValue && *SimplifiedValue) { 4497 Instruction &I = *getCtxI(); 4498 A.changeAfterManifest(IRPosition::inst(I), **SimplifiedValue); 4499 A.deleteAfterManifest(I); 4500 4501 CallBase *CB = dyn_cast<CallBase>(&I); 4502 auto Remark = [&](OptimizationRemark OR) { 4503 if (auto *C = dyn_cast<ConstantInt>(*SimplifiedValue)) 4504 return OR << "Replacing OpenMP runtime call " 4505 << CB->getCalledFunction()->getName() << " with " 4506 << ore::NV("FoldedValue", C->getZExtValue()) << "."; 4507 return OR << "Replacing OpenMP runtime call " 4508 << CB->getCalledFunction()->getName() << "."; 4509 }; 4510 4511 if (CB && EnableVerboseRemarks) 4512 A.emitRemark<OptimizationRemark>(CB, "OMP180", Remark); 4513 4514 LLVM_DEBUG(dbgs() << TAG << "Replacing runtime call: " << I << " with " 4515 << **SimplifiedValue << "\n"); 4516 4517 Changed = ChangeStatus::CHANGED; 4518 } 4519 4520 return Changed; 4521 } 4522 4523 ChangeStatus indicatePessimisticFixpoint() override { 4524 SimplifiedValue = nullptr; 4525 return AAFoldRuntimeCall::indicatePessimisticFixpoint(); 4526 } 4527 4528 private: 4529 /// Fold __kmpc_is_spmd_exec_mode into a constant if possible. 4530 ChangeStatus foldIsSPMDExecMode(Attributor &A) { 4531 Optional<Value *> SimplifiedValueBefore = SimplifiedValue; 4532 4533 unsigned AssumedSPMDCount = 0, KnownSPMDCount = 0; 4534 unsigned AssumedNonSPMDCount = 0, KnownNonSPMDCount = 0; 4535 auto &CallerKernelInfoAA = A.getAAFor<AAKernelInfo>( 4536 *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED); 4537 4538 if (!CallerKernelInfoAA.ReachingKernelEntries.isValidState()) 4539 return indicatePessimisticFixpoint(); 4540 4541 for (Kernel K : CallerKernelInfoAA.ReachingKernelEntries) { 4542 auto &AA = A.getAAFor<AAKernelInfo>(*this, IRPosition::function(*K), 4543 DepClassTy::REQUIRED); 4544 4545 if (!AA.isValidState()) { 4546 SimplifiedValue = nullptr; 4547 return indicatePessimisticFixpoint(); 4548 } 4549 4550 if (AA.SPMDCompatibilityTracker.isAssumed()) { 4551 if (AA.SPMDCompatibilityTracker.isAtFixpoint()) 4552 ++KnownSPMDCount; 4553 else 4554 ++AssumedSPMDCount; 4555 } else { 4556 if (AA.SPMDCompatibilityTracker.isAtFixpoint()) 4557 ++KnownNonSPMDCount; 4558 else 4559 ++AssumedNonSPMDCount; 4560 } 4561 } 4562 4563 if ((AssumedSPMDCount + KnownSPMDCount) && 4564 (AssumedNonSPMDCount + KnownNonSPMDCount)) 4565 return indicatePessimisticFixpoint(); 4566 4567 auto &Ctx = getAnchorValue().getContext(); 4568 if (KnownSPMDCount || AssumedSPMDCount) { 4569 assert(KnownNonSPMDCount == 0 && AssumedNonSPMDCount == 0 && 4570 "Expected only SPMD kernels!"); 4571 // All reaching kernels are in SPMD mode. Update all function calls to 4572 // __kmpc_is_spmd_exec_mode to 1. 4573 SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), true); 4574 } else if (KnownNonSPMDCount || AssumedNonSPMDCount) { 4575 assert(KnownSPMDCount == 0 && AssumedSPMDCount == 0 && 4576 "Expected only non-SPMD kernels!"); 4577 // All reaching kernels are in non-SPMD mode. Update all function 4578 // calls to __kmpc_is_spmd_exec_mode to 0. 4579 SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), false); 4580 } else { 4581 // We have empty reaching kernels, therefore we cannot tell if the 4582 // associated call site can be folded. At this moment, SimplifiedValue 4583 // must be none. 4584 assert(!SimplifiedValue && "SimplifiedValue should be none"); 4585 } 4586 4587 return SimplifiedValue == SimplifiedValueBefore ? ChangeStatus::UNCHANGED 4588 : ChangeStatus::CHANGED; 4589 } 4590 4591 /// Fold __kmpc_is_generic_main_thread_id into a constant if possible. 4592 ChangeStatus foldIsGenericMainThread(Attributor &A) { 4593 Optional<Value *> SimplifiedValueBefore = SimplifiedValue; 4594 4595 CallBase &CB = cast<CallBase>(getAssociatedValue()); 4596 Function *F = CB.getFunction(); 4597 const auto &ExecutionDomainAA = A.getAAFor<AAExecutionDomain>( 4598 *this, IRPosition::function(*F), DepClassTy::REQUIRED); 4599 4600 if (!ExecutionDomainAA.isValidState()) 4601 return indicatePessimisticFixpoint(); 4602 4603 auto &Ctx = getAnchorValue().getContext(); 4604 if (ExecutionDomainAA.isExecutedByInitialThreadOnly(CB)) 4605 SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), true); 4606 else 4607 return indicatePessimisticFixpoint(); 4608 4609 return SimplifiedValue == SimplifiedValueBefore ? ChangeStatus::UNCHANGED 4610 : ChangeStatus::CHANGED; 4611 } 4612 4613 /// Fold __kmpc_parallel_level into a constant if possible. 4614 ChangeStatus foldParallelLevel(Attributor &A) { 4615 Optional<Value *> SimplifiedValueBefore = SimplifiedValue; 4616 4617 auto &CallerKernelInfoAA = A.getAAFor<AAKernelInfo>( 4618 *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED); 4619 4620 if (!CallerKernelInfoAA.ParallelLevels.isValidState()) 4621 return indicatePessimisticFixpoint(); 4622 4623 if (!CallerKernelInfoAA.ReachingKernelEntries.isValidState()) 4624 return indicatePessimisticFixpoint(); 4625 4626 if (CallerKernelInfoAA.ReachingKernelEntries.empty()) { 4627 assert(!SimplifiedValue && 4628 "SimplifiedValue should keep none at this point"); 4629 return ChangeStatus::UNCHANGED; 4630 } 4631 4632 unsigned AssumedSPMDCount = 0, KnownSPMDCount = 0; 4633 unsigned AssumedNonSPMDCount = 0, KnownNonSPMDCount = 0; 4634 for (Kernel K : CallerKernelInfoAA.ReachingKernelEntries) { 4635 auto &AA = A.getAAFor<AAKernelInfo>(*this, IRPosition::function(*K), 4636 DepClassTy::REQUIRED); 4637 if (!AA.SPMDCompatibilityTracker.isValidState()) 4638 return indicatePessimisticFixpoint(); 4639 4640 if (AA.SPMDCompatibilityTracker.isAssumed()) { 4641 if (AA.SPMDCompatibilityTracker.isAtFixpoint()) 4642 ++KnownSPMDCount; 4643 else 4644 ++AssumedSPMDCount; 4645 } else { 4646 if (AA.SPMDCompatibilityTracker.isAtFixpoint()) 4647 ++KnownNonSPMDCount; 4648 else 4649 ++AssumedNonSPMDCount; 4650 } 4651 } 4652 4653 if ((AssumedSPMDCount + KnownSPMDCount) && 4654 (AssumedNonSPMDCount + KnownNonSPMDCount)) 4655 return indicatePessimisticFixpoint(); 4656 4657 auto &Ctx = getAnchorValue().getContext(); 4658 // If the caller can only be reached by SPMD kernel entries, the parallel 4659 // level is 1. Similarly, if the caller can only be reached by non-SPMD 4660 // kernel entries, it is 0. 4661 if (AssumedSPMDCount || KnownSPMDCount) { 4662 assert(KnownNonSPMDCount == 0 && AssumedNonSPMDCount == 0 && 4663 "Expected only SPMD kernels!"); 4664 SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), 1); 4665 } else { 4666 assert(KnownSPMDCount == 0 && AssumedSPMDCount == 0 && 4667 "Expected only non-SPMD kernels!"); 4668 SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), 0); 4669 } 4670 return SimplifiedValue == SimplifiedValueBefore ? ChangeStatus::UNCHANGED 4671 : ChangeStatus::CHANGED; 4672 } 4673 4674 ChangeStatus foldKernelFnAttribute(Attributor &A, llvm::StringRef Attr) { 4675 // Specialize only if all the calls agree with the attribute constant value 4676 int32_t CurrentAttrValue = -1; 4677 Optional<Value *> SimplifiedValueBefore = SimplifiedValue; 4678 4679 auto &CallerKernelInfoAA = A.getAAFor<AAKernelInfo>( 4680 *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED); 4681 4682 if (!CallerKernelInfoAA.ReachingKernelEntries.isValidState()) 4683 return indicatePessimisticFixpoint(); 4684 4685 // Iterate over the kernels that reach this function 4686 for (Kernel K : CallerKernelInfoAA.ReachingKernelEntries) { 4687 int32_t NextAttrVal = -1; 4688 if (K->hasFnAttribute(Attr)) 4689 NextAttrVal = 4690 std::stoi(K->getFnAttribute(Attr).getValueAsString().str()); 4691 4692 if (NextAttrVal == -1 || 4693 (CurrentAttrValue != -1 && CurrentAttrValue != NextAttrVal)) 4694 return indicatePessimisticFixpoint(); 4695 CurrentAttrValue = NextAttrVal; 4696 } 4697 4698 if (CurrentAttrValue != -1) { 4699 auto &Ctx = getAnchorValue().getContext(); 4700 SimplifiedValue = 4701 ConstantInt::get(Type::getInt32Ty(Ctx), CurrentAttrValue); 4702 } 4703 return SimplifiedValue == SimplifiedValueBefore ? ChangeStatus::UNCHANGED 4704 : ChangeStatus::CHANGED; 4705 } 4706 4707 /// An optional value the associated value is assumed to fold to. That is, we 4708 /// assume the associated value (which is a call) can be replaced by this 4709 /// simplified value. 4710 Optional<Value *> SimplifiedValue; 4711 4712 /// The runtime function kind of the callee of the associated call site. 4713 RuntimeFunction RFKind; 4714 }; 4715 4716 } // namespace 4717 4718 /// Register folding callsite 4719 void OpenMPOpt::registerFoldRuntimeCall(RuntimeFunction RF) { 4720 auto &RFI = OMPInfoCache.RFIs[RF]; 4721 RFI.foreachUse(SCC, [&](Use &U, Function &F) { 4722 CallInst *CI = OpenMPOpt::getCallIfRegularCall(U, &RFI); 4723 if (!CI) 4724 return false; 4725 A.getOrCreateAAFor<AAFoldRuntimeCall>( 4726 IRPosition::callsite_returned(*CI), /* QueryingAA */ nullptr, 4727 DepClassTy::NONE, /* ForceUpdate */ false, 4728 /* UpdateAfterInit */ false); 4729 return false; 4730 }); 4731 } 4732 4733 void OpenMPOpt::registerAAs(bool IsModulePass) { 4734 if (SCC.empty()) 4735 return; 4736 4737 if (IsModulePass) { 4738 // Ensure we create the AAKernelInfo AAs first and without triggering an 4739 // update. This will make sure we register all value simplification 4740 // callbacks before any other AA has the chance to create an AAValueSimplify 4741 // or similar. 4742 auto CreateKernelInfoCB = [&](Use &, Function &Kernel) { 4743 A.getOrCreateAAFor<AAKernelInfo>( 4744 IRPosition::function(Kernel), /* QueryingAA */ nullptr, 4745 DepClassTy::NONE, /* ForceUpdate */ false, 4746 /* UpdateAfterInit */ false); 4747 return false; 4748 }; 4749 OMPInformationCache::RuntimeFunctionInfo &InitRFI = 4750 OMPInfoCache.RFIs[OMPRTL___kmpc_target_init]; 4751 InitRFI.foreachUse(SCC, CreateKernelInfoCB); 4752 4753 registerFoldRuntimeCall(OMPRTL___kmpc_is_generic_main_thread_id); 4754 registerFoldRuntimeCall(OMPRTL___kmpc_is_spmd_exec_mode); 4755 registerFoldRuntimeCall(OMPRTL___kmpc_parallel_level); 4756 registerFoldRuntimeCall(OMPRTL___kmpc_get_hardware_num_threads_in_block); 4757 registerFoldRuntimeCall(OMPRTL___kmpc_get_hardware_num_blocks); 4758 } 4759 4760 // Create CallSite AA for all Getters. 4761 for (int Idx = 0; Idx < OMPInfoCache.ICVs.size() - 1; ++Idx) { 4762 auto ICVInfo = OMPInfoCache.ICVs[static_cast<InternalControlVar>(Idx)]; 4763 4764 auto &GetterRFI = OMPInfoCache.RFIs[ICVInfo.Getter]; 4765 4766 auto CreateAA = [&](Use &U, Function &Caller) { 4767 CallInst *CI = OpenMPOpt::getCallIfRegularCall(U, &GetterRFI); 4768 if (!CI) 4769 return false; 4770 4771 auto &CB = cast<CallBase>(*CI); 4772 4773 IRPosition CBPos = IRPosition::callsite_function(CB); 4774 A.getOrCreateAAFor<AAICVTracker>(CBPos); 4775 return false; 4776 }; 4777 4778 GetterRFI.foreachUse(SCC, CreateAA); 4779 } 4780 auto &GlobalizationRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared]; 4781 auto CreateAA = [&](Use &U, Function &F) { 4782 A.getOrCreateAAFor<AAHeapToShared>(IRPosition::function(F)); 4783 return false; 4784 }; 4785 if (!DisableOpenMPOptDeglobalization) 4786 GlobalizationRFI.foreachUse(SCC, CreateAA); 4787 4788 // Create an ExecutionDomain AA for every function and a HeapToStack AA for 4789 // every function if there is a device kernel. 4790 if (!isOpenMPDevice(M)) 4791 return; 4792 4793 for (auto *F : SCC) { 4794 if (F->isDeclaration()) 4795 continue; 4796 4797 A.getOrCreateAAFor<AAExecutionDomain>(IRPosition::function(*F)); 4798 if (!DisableOpenMPOptDeglobalization) 4799 A.getOrCreateAAFor<AAHeapToStack>(IRPosition::function(*F)); 4800 4801 for (auto &I : instructions(*F)) { 4802 if (auto *LI = dyn_cast<LoadInst>(&I)) { 4803 bool UsedAssumedInformation = false; 4804 A.getAssumedSimplified(IRPosition::value(*LI), /* AA */ nullptr, 4805 UsedAssumedInformation); 4806 } else if (auto *SI = dyn_cast<StoreInst>(&I)) { 4807 A.getOrCreateAAFor<AAIsDead>(IRPosition::value(*SI)); 4808 } 4809 } 4810 } 4811 } 4812 4813 const char AAICVTracker::ID = 0; 4814 const char AAKernelInfo::ID = 0; 4815 const char AAExecutionDomain::ID = 0; 4816 const char AAHeapToShared::ID = 0; 4817 const char AAFoldRuntimeCall::ID = 0; 4818 4819 AAICVTracker &AAICVTracker::createForPosition(const IRPosition &IRP, 4820 Attributor &A) { 4821 AAICVTracker *AA = nullptr; 4822 switch (IRP.getPositionKind()) { 4823 case IRPosition::IRP_INVALID: 4824 case IRPosition::IRP_FLOAT: 4825 case IRPosition::IRP_ARGUMENT: 4826 case IRPosition::IRP_CALL_SITE_ARGUMENT: 4827 llvm_unreachable("ICVTracker can only be created for function position!"); 4828 case IRPosition::IRP_RETURNED: 4829 AA = new (A.Allocator) AAICVTrackerFunctionReturned(IRP, A); 4830 break; 4831 case IRPosition::IRP_CALL_SITE_RETURNED: 4832 AA = new (A.Allocator) AAICVTrackerCallSiteReturned(IRP, A); 4833 break; 4834 case IRPosition::IRP_CALL_SITE: 4835 AA = new (A.Allocator) AAICVTrackerCallSite(IRP, A); 4836 break; 4837 case IRPosition::IRP_FUNCTION: 4838 AA = new (A.Allocator) AAICVTrackerFunction(IRP, A); 4839 break; 4840 } 4841 4842 return *AA; 4843 } 4844 4845 AAExecutionDomain &AAExecutionDomain::createForPosition(const IRPosition &IRP, 4846 Attributor &A) { 4847 AAExecutionDomainFunction *AA = nullptr; 4848 switch (IRP.getPositionKind()) { 4849 case IRPosition::IRP_INVALID: 4850 case IRPosition::IRP_FLOAT: 4851 case IRPosition::IRP_ARGUMENT: 4852 case IRPosition::IRP_CALL_SITE_ARGUMENT: 4853 case IRPosition::IRP_RETURNED: 4854 case IRPosition::IRP_CALL_SITE_RETURNED: 4855 case IRPosition::IRP_CALL_SITE: 4856 llvm_unreachable( 4857 "AAExecutionDomain can only be created for function position!"); 4858 case IRPosition::IRP_FUNCTION: 4859 AA = new (A.Allocator) AAExecutionDomainFunction(IRP, A); 4860 break; 4861 } 4862 4863 return *AA; 4864 } 4865 4866 AAHeapToShared &AAHeapToShared::createForPosition(const IRPosition &IRP, 4867 Attributor &A) { 4868 AAHeapToSharedFunction *AA = nullptr; 4869 switch (IRP.getPositionKind()) { 4870 case IRPosition::IRP_INVALID: 4871 case IRPosition::IRP_FLOAT: 4872 case IRPosition::IRP_ARGUMENT: 4873 case IRPosition::IRP_CALL_SITE_ARGUMENT: 4874 case IRPosition::IRP_RETURNED: 4875 case IRPosition::IRP_CALL_SITE_RETURNED: 4876 case IRPosition::IRP_CALL_SITE: 4877 llvm_unreachable( 4878 "AAHeapToShared can only be created for function position!"); 4879 case IRPosition::IRP_FUNCTION: 4880 AA = new (A.Allocator) AAHeapToSharedFunction(IRP, A); 4881 break; 4882 } 4883 4884 return *AA; 4885 } 4886 4887 AAKernelInfo &AAKernelInfo::createForPosition(const IRPosition &IRP, 4888 Attributor &A) { 4889 AAKernelInfo *AA = nullptr; 4890 switch (IRP.getPositionKind()) { 4891 case IRPosition::IRP_INVALID: 4892 case IRPosition::IRP_FLOAT: 4893 case IRPosition::IRP_ARGUMENT: 4894 case IRPosition::IRP_RETURNED: 4895 case IRPosition::IRP_CALL_SITE_RETURNED: 4896 case IRPosition::IRP_CALL_SITE_ARGUMENT: 4897 llvm_unreachable("KernelInfo can only be created for function position!"); 4898 case IRPosition::IRP_CALL_SITE: 4899 AA = new (A.Allocator) AAKernelInfoCallSite(IRP, A); 4900 break; 4901 case IRPosition::IRP_FUNCTION: 4902 AA = new (A.Allocator) AAKernelInfoFunction(IRP, A); 4903 break; 4904 } 4905 4906 return *AA; 4907 } 4908 4909 AAFoldRuntimeCall &AAFoldRuntimeCall::createForPosition(const IRPosition &IRP, 4910 Attributor &A) { 4911 AAFoldRuntimeCall *AA = nullptr; 4912 switch (IRP.getPositionKind()) { 4913 case IRPosition::IRP_INVALID: 4914 case IRPosition::IRP_FLOAT: 4915 case IRPosition::IRP_ARGUMENT: 4916 case IRPosition::IRP_RETURNED: 4917 case IRPosition::IRP_FUNCTION: 4918 case IRPosition::IRP_CALL_SITE: 4919 case IRPosition::IRP_CALL_SITE_ARGUMENT: 4920 llvm_unreachable("KernelInfo can only be created for call site position!"); 4921 case IRPosition::IRP_CALL_SITE_RETURNED: 4922 AA = new (A.Allocator) AAFoldRuntimeCallCallSiteReturned(IRP, A); 4923 break; 4924 } 4925 4926 return *AA; 4927 } 4928 4929 PreservedAnalyses OpenMPOptPass::run(Module &M, ModuleAnalysisManager &AM) { 4930 if (!containsOpenMP(M)) 4931 return PreservedAnalyses::all(); 4932 if (DisableOpenMPOptimizations) 4933 return PreservedAnalyses::all(); 4934 4935 FunctionAnalysisManager &FAM = 4936 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 4937 KernelSet Kernels = getDeviceKernels(M); 4938 4939 if (PrintModuleBeforeOptimizations) 4940 LLVM_DEBUG(dbgs() << TAG << "Module before OpenMPOpt Module Pass:\n" << M); 4941 4942 auto IsCalled = [&](Function &F) { 4943 if (Kernels.contains(&F)) 4944 return true; 4945 for (const User *U : F.users()) 4946 if (!isa<BlockAddress>(U)) 4947 return true; 4948 return false; 4949 }; 4950 4951 auto EmitRemark = [&](Function &F) { 4952 auto &ORE = FAM.getResult<OptimizationRemarkEmitterAnalysis>(F); 4953 ORE.emit([&]() { 4954 OptimizationRemarkAnalysis ORA(DEBUG_TYPE, "OMP140", &F); 4955 return ORA << "Could not internalize function. " 4956 << "Some optimizations may not be possible. [OMP140]"; 4957 }); 4958 }; 4959 4960 // Create internal copies of each function if this is a kernel Module. This 4961 // allows iterprocedural passes to see every call edge. 4962 DenseMap<Function *, Function *> InternalizedMap; 4963 if (isOpenMPDevice(M)) { 4964 SmallPtrSet<Function *, 16> InternalizeFns; 4965 for (Function &F : M) 4966 if (!F.isDeclaration() && !Kernels.contains(&F) && IsCalled(F) && 4967 !DisableInternalization) { 4968 if (Attributor::isInternalizable(F)) { 4969 InternalizeFns.insert(&F); 4970 } else if (!F.hasLocalLinkage() && !F.hasFnAttribute(Attribute::Cold)) { 4971 EmitRemark(F); 4972 } 4973 } 4974 4975 Attributor::internalizeFunctions(InternalizeFns, InternalizedMap); 4976 } 4977 4978 // Look at every function in the Module unless it was internalized. 4979 SmallVector<Function *, 16> SCC; 4980 for (Function &F : M) 4981 if (!F.isDeclaration() && !InternalizedMap.lookup(&F)) 4982 SCC.push_back(&F); 4983 4984 if (SCC.empty()) 4985 return PreservedAnalyses::all(); 4986 4987 AnalysisGetter AG(FAM); 4988 4989 auto OREGetter = [&FAM](Function *F) -> OptimizationRemarkEmitter & { 4990 return FAM.getResult<OptimizationRemarkEmitterAnalysis>(*F); 4991 }; 4992 4993 BumpPtrAllocator Allocator; 4994 CallGraphUpdater CGUpdater; 4995 4996 SetVector<Function *> Functions(SCC.begin(), SCC.end()); 4997 OMPInformationCache InfoCache(M, AG, Allocator, /*CGSCC*/ Functions, Kernels); 4998 4999 unsigned MaxFixpointIterations = 5000 (isOpenMPDevice(M)) ? SetFixpointIterations : 32; 5001 5002 AttributorConfig AC(CGUpdater); 5003 AC.DefaultInitializeLiveInternals = false; 5004 AC.RewriteSignatures = false; 5005 AC.MaxFixpointIterations = MaxFixpointIterations; 5006 AC.OREGetter = OREGetter; 5007 AC.PassName = DEBUG_TYPE; 5008 5009 Attributor A(Functions, InfoCache, AC); 5010 5011 OpenMPOpt OMPOpt(SCC, CGUpdater, OREGetter, InfoCache, A); 5012 bool Changed = OMPOpt.run(true); 5013 5014 // Optionally inline device functions for potentially better performance. 5015 if (AlwaysInlineDeviceFunctions && isOpenMPDevice(M)) 5016 for (Function &F : M) 5017 if (!F.isDeclaration() && !Kernels.contains(&F) && 5018 !F.hasFnAttribute(Attribute::NoInline)) 5019 F.addFnAttr(Attribute::AlwaysInline); 5020 5021 if (PrintModuleAfterOptimizations) 5022 LLVM_DEBUG(dbgs() << TAG << "Module after OpenMPOpt Module Pass:\n" << M); 5023 5024 if (Changed) 5025 return PreservedAnalyses::none(); 5026 5027 return PreservedAnalyses::all(); 5028 } 5029 5030 PreservedAnalyses OpenMPOptCGSCCPass::run(LazyCallGraph::SCC &C, 5031 CGSCCAnalysisManager &AM, 5032 LazyCallGraph &CG, 5033 CGSCCUpdateResult &UR) { 5034 if (!containsOpenMP(*C.begin()->getFunction().getParent())) 5035 return PreservedAnalyses::all(); 5036 if (DisableOpenMPOptimizations) 5037 return PreservedAnalyses::all(); 5038 5039 SmallVector<Function *, 16> SCC; 5040 // If there are kernels in the module, we have to run on all SCC's. 5041 for (LazyCallGraph::Node &N : C) { 5042 Function *Fn = &N.getFunction(); 5043 SCC.push_back(Fn); 5044 } 5045 5046 if (SCC.empty()) 5047 return PreservedAnalyses::all(); 5048 5049 Module &M = *C.begin()->getFunction().getParent(); 5050 5051 if (PrintModuleBeforeOptimizations) 5052 LLVM_DEBUG(dbgs() << TAG << "Module before OpenMPOpt CGSCC Pass:\n" << M); 5053 5054 KernelSet Kernels = getDeviceKernels(M); 5055 5056 FunctionAnalysisManager &FAM = 5057 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager(); 5058 5059 AnalysisGetter AG(FAM); 5060 5061 auto OREGetter = [&FAM](Function *F) -> OptimizationRemarkEmitter & { 5062 return FAM.getResult<OptimizationRemarkEmitterAnalysis>(*F); 5063 }; 5064 5065 BumpPtrAllocator Allocator; 5066 CallGraphUpdater CGUpdater; 5067 CGUpdater.initialize(CG, C, AM, UR); 5068 5069 SetVector<Function *> Functions(SCC.begin(), SCC.end()); 5070 OMPInformationCache InfoCache(*(Functions.back()->getParent()), AG, Allocator, 5071 /*CGSCC*/ Functions, Kernels); 5072 5073 unsigned MaxFixpointIterations = 5074 (isOpenMPDevice(M)) ? SetFixpointIterations : 32; 5075 5076 AttributorConfig AC(CGUpdater); 5077 AC.DefaultInitializeLiveInternals = false; 5078 AC.IsModulePass = false; 5079 AC.RewriteSignatures = false; 5080 AC.MaxFixpointIterations = MaxFixpointIterations; 5081 AC.OREGetter = OREGetter; 5082 AC.PassName = DEBUG_TYPE; 5083 5084 Attributor A(Functions, InfoCache, AC); 5085 5086 OpenMPOpt OMPOpt(SCC, CGUpdater, OREGetter, InfoCache, A); 5087 bool Changed = OMPOpt.run(false); 5088 5089 if (PrintModuleAfterOptimizations) 5090 LLVM_DEBUG(dbgs() << TAG << "Module after OpenMPOpt CGSCC Pass:\n" << M); 5091 5092 if (Changed) 5093 return PreservedAnalyses::none(); 5094 5095 return PreservedAnalyses::all(); 5096 } 5097 5098 namespace { 5099 5100 struct OpenMPOptCGSCCLegacyPass : public CallGraphSCCPass { 5101 CallGraphUpdater CGUpdater; 5102 static char ID; 5103 5104 OpenMPOptCGSCCLegacyPass() : CallGraphSCCPass(ID) { 5105 initializeOpenMPOptCGSCCLegacyPassPass(*PassRegistry::getPassRegistry()); 5106 } 5107 5108 void getAnalysisUsage(AnalysisUsage &AU) const override { 5109 CallGraphSCCPass::getAnalysisUsage(AU); 5110 } 5111 5112 bool runOnSCC(CallGraphSCC &CGSCC) override { 5113 if (!containsOpenMP(CGSCC.getCallGraph().getModule())) 5114 return false; 5115 if (DisableOpenMPOptimizations || skipSCC(CGSCC)) 5116 return false; 5117 5118 SmallVector<Function *, 16> SCC; 5119 // If there are kernels in the module, we have to run on all SCC's. 5120 for (CallGraphNode *CGN : CGSCC) { 5121 Function *Fn = CGN->getFunction(); 5122 if (!Fn || Fn->isDeclaration()) 5123 continue; 5124 SCC.push_back(Fn); 5125 } 5126 5127 if (SCC.empty()) 5128 return false; 5129 5130 Module &M = CGSCC.getCallGraph().getModule(); 5131 KernelSet Kernels = getDeviceKernels(M); 5132 5133 CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph(); 5134 CGUpdater.initialize(CG, CGSCC); 5135 5136 // Maintain a map of functions to avoid rebuilding the ORE 5137 DenseMap<Function *, std::unique_ptr<OptimizationRemarkEmitter>> OREMap; 5138 auto OREGetter = [&OREMap](Function *F) -> OptimizationRemarkEmitter & { 5139 std::unique_ptr<OptimizationRemarkEmitter> &ORE = OREMap[F]; 5140 if (!ORE) 5141 ORE = std::make_unique<OptimizationRemarkEmitter>(F); 5142 return *ORE; 5143 }; 5144 5145 AnalysisGetter AG; 5146 SetVector<Function *> Functions(SCC.begin(), SCC.end()); 5147 BumpPtrAllocator Allocator; 5148 OMPInformationCache InfoCache(*(Functions.back()->getParent()), AG, 5149 Allocator, 5150 /*CGSCC*/ Functions, Kernels); 5151 5152 unsigned MaxFixpointIterations = 5153 (isOpenMPDevice(M)) ? SetFixpointIterations : 32; 5154 5155 AttributorConfig AC(CGUpdater); 5156 AC.DefaultInitializeLiveInternals = false; 5157 AC.IsModulePass = false; 5158 AC.RewriteSignatures = false; 5159 AC.MaxFixpointIterations = MaxFixpointIterations; 5160 AC.OREGetter = OREGetter; 5161 AC.PassName = DEBUG_TYPE; 5162 5163 Attributor A(Functions, InfoCache, AC); 5164 5165 OpenMPOpt OMPOpt(SCC, CGUpdater, OREGetter, InfoCache, A); 5166 bool Result = OMPOpt.run(false); 5167 5168 if (PrintModuleAfterOptimizations) 5169 LLVM_DEBUG(dbgs() << TAG << "Module after OpenMPOpt CGSCC Pass:\n" << M); 5170 5171 return Result; 5172 } 5173 5174 bool doFinalization(CallGraph &CG) override { return CGUpdater.finalize(); } 5175 }; 5176 5177 } // end anonymous namespace 5178 5179 KernelSet llvm::omp::getDeviceKernels(Module &M) { 5180 // TODO: Create a more cross-platform way of determining device kernels. 5181 NamedMDNode *MD = M.getOrInsertNamedMetadata("nvvm.annotations"); 5182 KernelSet Kernels; 5183 5184 if (!MD) 5185 return Kernels; 5186 5187 for (auto *Op : MD->operands()) { 5188 if (Op->getNumOperands() < 2) 5189 continue; 5190 MDString *KindID = dyn_cast<MDString>(Op->getOperand(1)); 5191 if (!KindID || KindID->getString() != "kernel") 5192 continue; 5193 5194 Function *KernelFn = 5195 mdconst::dyn_extract_or_null<Function>(Op->getOperand(0)); 5196 if (!KernelFn) 5197 continue; 5198 5199 ++NumOpenMPTargetRegionKernels; 5200 5201 Kernels.insert(KernelFn); 5202 } 5203 5204 return Kernels; 5205 } 5206 5207 bool llvm::omp::containsOpenMP(Module &M) { 5208 Metadata *MD = M.getModuleFlag("openmp"); 5209 if (!MD) 5210 return false; 5211 5212 return true; 5213 } 5214 5215 bool llvm::omp::isOpenMPDevice(Module &M) { 5216 Metadata *MD = M.getModuleFlag("openmp-device"); 5217 if (!MD) 5218 return false; 5219 5220 return true; 5221 } 5222 5223 char OpenMPOptCGSCCLegacyPass::ID = 0; 5224 5225 INITIALIZE_PASS_BEGIN(OpenMPOptCGSCCLegacyPass, "openmp-opt-cgscc", 5226 "OpenMP specific optimizations", false, false) 5227 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass) 5228 INITIALIZE_PASS_END(OpenMPOptCGSCCLegacyPass, "openmp-opt-cgscc", 5229 "OpenMP specific optimizations", false, false) 5230 5231 Pass *llvm::createOpenMPOptCGSCCLegacyPass() { 5232 return new OpenMPOptCGSCCLegacyPass(); 5233 } 5234