1 //===-- IPO/OpenMPOpt.cpp - Collection of OpenMP specific optimizations ---===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // OpenMP specific optimizations: 10 // 11 // - Deduplication of runtime calls, e.g., omp_get_thread_num. 12 // - Replacing globalized device memory with stack memory. 13 // - Replacing globalized device memory with shared memory. 14 // - Parallel region merging. 15 // - Transforming generic-mode device kernels to SPMD mode. 16 // - Specializing the state machine for generic-mode device kernels. 17 // 18 //===----------------------------------------------------------------------===// 19 20 #include "llvm/Transforms/IPO/OpenMPOpt.h" 21 22 #include "llvm/ADT/EnumeratedArray.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/Analysis/CallGraph.h" 26 #include "llvm/Analysis/CallGraphSCCPass.h" 27 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 28 #include "llvm/Analysis/ValueTracking.h" 29 #include "llvm/Frontend/OpenMP/OMPConstants.h" 30 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 31 #include "llvm/IR/Assumptions.h" 32 #include "llvm/IR/DiagnosticInfo.h" 33 #include "llvm/IR/GlobalValue.h" 34 #include "llvm/IR/Instruction.h" 35 #include "llvm/IR/IntrinsicInst.h" 36 #include "llvm/IR/IntrinsicsAMDGPU.h" 37 #include "llvm/IR/IntrinsicsNVPTX.h" 38 #include "llvm/InitializePasses.h" 39 #include "llvm/Support/CommandLine.h" 40 #include "llvm/Transforms/IPO.h" 41 #include "llvm/Transforms/IPO/Attributor.h" 42 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 43 #include "llvm/Transforms/Utils/CallGraphUpdater.h" 44 #include "llvm/Transforms/Utils/CodeExtractor.h" 45 46 using namespace llvm; 47 using namespace omp; 48 49 #define DEBUG_TYPE "openmp-opt" 50 51 static cl::opt<bool> DisableOpenMPOptimizations( 52 "openmp-opt-disable", cl::ZeroOrMore, 53 cl::desc("Disable OpenMP specific optimizations."), cl::Hidden, 54 cl::init(false)); 55 56 static cl::opt<bool> EnableParallelRegionMerging( 57 "openmp-opt-enable-merging", cl::ZeroOrMore, 58 cl::desc("Enable the OpenMP region merging optimization."), cl::Hidden, 59 cl::init(false)); 60 61 static cl::opt<bool> 62 DisableInternalization("openmp-opt-disable-internalization", cl::ZeroOrMore, 63 cl::desc("Disable function internalization."), 64 cl::Hidden, cl::init(false)); 65 66 static cl::opt<bool> PrintICVValues("openmp-print-icv-values", cl::init(false), 67 cl::Hidden); 68 static cl::opt<bool> PrintOpenMPKernels("openmp-print-gpu-kernels", 69 cl::init(false), cl::Hidden); 70 71 static cl::opt<bool> HideMemoryTransferLatency( 72 "openmp-hide-memory-transfer-latency", 73 cl::desc("[WIP] Tries to hide the latency of host to device memory" 74 " transfers"), 75 cl::Hidden, cl::init(false)); 76 77 static cl::opt<bool> DisableOpenMPOptDeglobalization( 78 "openmp-opt-disable-deglobalization", cl::ZeroOrMore, 79 cl::desc("Disable OpenMP optimizations involving deglobalization."), 80 cl::Hidden, cl::init(false)); 81 82 static cl::opt<bool> DisableOpenMPOptSPMDization( 83 "openmp-opt-disable-spmdization", cl::ZeroOrMore, 84 cl::desc("Disable OpenMP optimizations involving SPMD-ization."), 85 cl::Hidden, cl::init(false)); 86 87 static cl::opt<bool> DisableOpenMPOptFolding( 88 "openmp-opt-disable-folding", cl::ZeroOrMore, 89 cl::desc("Disable OpenMP optimizations involving folding."), cl::Hidden, 90 cl::init(false)); 91 92 static cl::opt<bool> DisableOpenMPOptStateMachineRewrite( 93 "openmp-opt-disable-state-machine-rewrite", cl::ZeroOrMore, 94 cl::desc("Disable OpenMP optimizations that replace the state machine."), 95 cl::Hidden, cl::init(false)); 96 97 static cl::opt<bool> PrintModuleAfterOptimizations( 98 "openmp-opt-print-module", cl::ZeroOrMore, 99 cl::desc("Print the current module after OpenMP optimizations."), 100 cl::Hidden, cl::init(false)); 101 102 static cl::opt<bool> AlwaysInlineDeviceFunctions( 103 "openmp-opt-inline-device", cl::ZeroOrMore, 104 cl::desc("Inline all applicible functions on the device."), cl::Hidden, 105 cl::init(false)); 106 107 static cl::opt<bool> 108 EnableVerboseRemarks("openmp-opt-verbose-remarks", cl::ZeroOrMore, 109 cl::desc("Enables more verbose remarks."), cl::Hidden, 110 cl::init(false)); 111 112 STATISTIC(NumOpenMPRuntimeCallsDeduplicated, 113 "Number of OpenMP runtime calls deduplicated"); 114 STATISTIC(NumOpenMPParallelRegionsDeleted, 115 "Number of OpenMP parallel regions deleted"); 116 STATISTIC(NumOpenMPRuntimeFunctionsIdentified, 117 "Number of OpenMP runtime functions identified"); 118 STATISTIC(NumOpenMPRuntimeFunctionUsesIdentified, 119 "Number of OpenMP runtime function uses identified"); 120 STATISTIC(NumOpenMPTargetRegionKernels, 121 "Number of OpenMP target region entry points (=kernels) identified"); 122 STATISTIC(NumOpenMPTargetRegionKernelsSPMD, 123 "Number of OpenMP target region entry points (=kernels) executed in " 124 "SPMD-mode instead of generic-mode"); 125 STATISTIC(NumOpenMPTargetRegionKernelsWithoutStateMachine, 126 "Number of OpenMP target region entry points (=kernels) executed in " 127 "generic-mode without a state machines"); 128 STATISTIC(NumOpenMPTargetRegionKernelsCustomStateMachineWithFallback, 129 "Number of OpenMP target region entry points (=kernels) executed in " 130 "generic-mode with customized state machines with fallback"); 131 STATISTIC(NumOpenMPTargetRegionKernelsCustomStateMachineWithoutFallback, 132 "Number of OpenMP target region entry points (=kernels) executed in " 133 "generic-mode with customized state machines without fallback"); 134 STATISTIC( 135 NumOpenMPParallelRegionsReplacedInGPUStateMachine, 136 "Number of OpenMP parallel regions replaced with ID in GPU state machines"); 137 STATISTIC(NumOpenMPParallelRegionsMerged, 138 "Number of OpenMP parallel regions merged"); 139 STATISTIC(NumBytesMovedToSharedMemory, 140 "Amount of memory pushed to shared memory"); 141 142 #if !defined(NDEBUG) 143 static constexpr auto TAG = "[" DEBUG_TYPE "]"; 144 #endif 145 146 namespace { 147 148 enum class AddressSpace : unsigned { 149 Generic = 0, 150 Global = 1, 151 Shared = 3, 152 Constant = 4, 153 Local = 5, 154 }; 155 156 struct AAHeapToShared; 157 158 struct AAICVTracker; 159 160 /// OpenMP specific information. For now, stores RFIs and ICVs also needed for 161 /// Attributor runs. 162 struct OMPInformationCache : public InformationCache { 163 OMPInformationCache(Module &M, AnalysisGetter &AG, 164 BumpPtrAllocator &Allocator, SetVector<Function *> &CGSCC, 165 SmallPtrSetImpl<Kernel> &Kernels) 166 : InformationCache(M, AG, Allocator, &CGSCC), OMPBuilder(M), 167 Kernels(Kernels) { 168 169 OMPBuilder.initialize(); 170 initializeRuntimeFunctions(); 171 initializeInternalControlVars(); 172 } 173 174 /// Generic information that describes an internal control variable. 175 struct InternalControlVarInfo { 176 /// The kind, as described by InternalControlVar enum. 177 InternalControlVar Kind; 178 179 /// The name of the ICV. 180 StringRef Name; 181 182 /// Environment variable associated with this ICV. 183 StringRef EnvVarName; 184 185 /// Initial value kind. 186 ICVInitValue InitKind; 187 188 /// Initial value. 189 ConstantInt *InitValue; 190 191 /// Setter RTL function associated with this ICV. 192 RuntimeFunction Setter; 193 194 /// Getter RTL function associated with this ICV. 195 RuntimeFunction Getter; 196 197 /// RTL Function corresponding to the override clause of this ICV 198 RuntimeFunction Clause; 199 }; 200 201 /// Generic information that describes a runtime function 202 struct RuntimeFunctionInfo { 203 204 /// The kind, as described by the RuntimeFunction enum. 205 RuntimeFunction Kind; 206 207 /// The name of the function. 208 StringRef Name; 209 210 /// Flag to indicate a variadic function. 211 bool IsVarArg; 212 213 /// The return type of the function. 214 Type *ReturnType; 215 216 /// The argument types of the function. 217 SmallVector<Type *, 8> ArgumentTypes; 218 219 /// The declaration if available. 220 Function *Declaration = nullptr; 221 222 /// Uses of this runtime function per function containing the use. 223 using UseVector = SmallVector<Use *, 16>; 224 225 /// Clear UsesMap for runtime function. 226 void clearUsesMap() { UsesMap.clear(); } 227 228 /// Boolean conversion that is true if the runtime function was found. 229 operator bool() const { return Declaration; } 230 231 /// Return the vector of uses in function \p F. 232 UseVector &getOrCreateUseVector(Function *F) { 233 std::shared_ptr<UseVector> &UV = UsesMap[F]; 234 if (!UV) 235 UV = std::make_shared<UseVector>(); 236 return *UV; 237 } 238 239 /// Return the vector of uses in function \p F or `nullptr` if there are 240 /// none. 241 const UseVector *getUseVector(Function &F) const { 242 auto I = UsesMap.find(&F); 243 if (I != UsesMap.end()) 244 return I->second.get(); 245 return nullptr; 246 } 247 248 /// Return how many functions contain uses of this runtime function. 249 size_t getNumFunctionsWithUses() const { return UsesMap.size(); } 250 251 /// Return the number of arguments (or the minimal number for variadic 252 /// functions). 253 size_t getNumArgs() const { return ArgumentTypes.size(); } 254 255 /// Run the callback \p CB on each use and forget the use if the result is 256 /// true. The callback will be fed the function in which the use was 257 /// encountered as second argument. 258 void foreachUse(SmallVectorImpl<Function *> &SCC, 259 function_ref<bool(Use &, Function &)> CB) { 260 for (Function *F : SCC) 261 foreachUse(CB, F); 262 } 263 264 /// Run the callback \p CB on each use within the function \p F and forget 265 /// the use if the result is true. 266 void foreachUse(function_ref<bool(Use &, Function &)> CB, Function *F) { 267 SmallVector<unsigned, 8> ToBeDeleted; 268 ToBeDeleted.clear(); 269 270 unsigned Idx = 0; 271 UseVector &UV = getOrCreateUseVector(F); 272 273 for (Use *U : UV) { 274 if (CB(*U, *F)) 275 ToBeDeleted.push_back(Idx); 276 ++Idx; 277 } 278 279 // Remove the to-be-deleted indices in reverse order as prior 280 // modifications will not modify the smaller indices. 281 while (!ToBeDeleted.empty()) { 282 unsigned Idx = ToBeDeleted.pop_back_val(); 283 UV[Idx] = UV.back(); 284 UV.pop_back(); 285 } 286 } 287 288 private: 289 /// Map from functions to all uses of this runtime function contained in 290 /// them. 291 DenseMap<Function *, std::shared_ptr<UseVector>> UsesMap; 292 293 public: 294 /// Iterators for the uses of this runtime function. 295 decltype(UsesMap)::iterator begin() { return UsesMap.begin(); } 296 decltype(UsesMap)::iterator end() { return UsesMap.end(); } 297 }; 298 299 /// An OpenMP-IR-Builder instance 300 OpenMPIRBuilder OMPBuilder; 301 302 /// Map from runtime function kind to the runtime function description. 303 EnumeratedArray<RuntimeFunctionInfo, RuntimeFunction, 304 RuntimeFunction::OMPRTL___last> 305 RFIs; 306 307 /// Map from function declarations/definitions to their runtime enum type. 308 DenseMap<Function *, RuntimeFunction> RuntimeFunctionIDMap; 309 310 /// Map from ICV kind to the ICV description. 311 EnumeratedArray<InternalControlVarInfo, InternalControlVar, 312 InternalControlVar::ICV___last> 313 ICVs; 314 315 /// Helper to initialize all internal control variable information for those 316 /// defined in OMPKinds.def. 317 void initializeInternalControlVars() { 318 #define ICV_RT_SET(_Name, RTL) \ 319 { \ 320 auto &ICV = ICVs[_Name]; \ 321 ICV.Setter = RTL; \ 322 } 323 #define ICV_RT_GET(Name, RTL) \ 324 { \ 325 auto &ICV = ICVs[Name]; \ 326 ICV.Getter = RTL; \ 327 } 328 #define ICV_DATA_ENV(Enum, _Name, _EnvVarName, Init) \ 329 { \ 330 auto &ICV = ICVs[Enum]; \ 331 ICV.Name = _Name; \ 332 ICV.Kind = Enum; \ 333 ICV.InitKind = Init; \ 334 ICV.EnvVarName = _EnvVarName; \ 335 switch (ICV.InitKind) { \ 336 case ICV_IMPLEMENTATION_DEFINED: \ 337 ICV.InitValue = nullptr; \ 338 break; \ 339 case ICV_ZERO: \ 340 ICV.InitValue = ConstantInt::get( \ 341 Type::getInt32Ty(OMPBuilder.Int32->getContext()), 0); \ 342 break; \ 343 case ICV_FALSE: \ 344 ICV.InitValue = ConstantInt::getFalse(OMPBuilder.Int1->getContext()); \ 345 break; \ 346 case ICV_LAST: \ 347 break; \ 348 } \ 349 } 350 #include "llvm/Frontend/OpenMP/OMPKinds.def" 351 } 352 353 /// Returns true if the function declaration \p F matches the runtime 354 /// function types, that is, return type \p RTFRetType, and argument types 355 /// \p RTFArgTypes. 356 static bool declMatchesRTFTypes(Function *F, Type *RTFRetType, 357 SmallVector<Type *, 8> &RTFArgTypes) { 358 // TODO: We should output information to the user (under debug output 359 // and via remarks). 360 361 if (!F) 362 return false; 363 if (F->getReturnType() != RTFRetType) 364 return false; 365 if (F->arg_size() != RTFArgTypes.size()) 366 return false; 367 368 auto RTFTyIt = RTFArgTypes.begin(); 369 for (Argument &Arg : F->args()) { 370 if (Arg.getType() != *RTFTyIt) 371 return false; 372 373 ++RTFTyIt; 374 } 375 376 return true; 377 } 378 379 // Helper to collect all uses of the declaration in the UsesMap. 380 unsigned collectUses(RuntimeFunctionInfo &RFI, bool CollectStats = true) { 381 unsigned NumUses = 0; 382 if (!RFI.Declaration) 383 return NumUses; 384 OMPBuilder.addAttributes(RFI.Kind, *RFI.Declaration); 385 386 if (CollectStats) { 387 NumOpenMPRuntimeFunctionsIdentified += 1; 388 NumOpenMPRuntimeFunctionUsesIdentified += RFI.Declaration->getNumUses(); 389 } 390 391 // TODO: We directly convert uses into proper calls and unknown uses. 392 for (Use &U : RFI.Declaration->uses()) { 393 if (Instruction *UserI = dyn_cast<Instruction>(U.getUser())) { 394 if (ModuleSlice.count(UserI->getFunction())) { 395 RFI.getOrCreateUseVector(UserI->getFunction()).push_back(&U); 396 ++NumUses; 397 } 398 } else { 399 RFI.getOrCreateUseVector(nullptr).push_back(&U); 400 ++NumUses; 401 } 402 } 403 return NumUses; 404 } 405 406 // Helper function to recollect uses of a runtime function. 407 void recollectUsesForFunction(RuntimeFunction RTF) { 408 auto &RFI = RFIs[RTF]; 409 RFI.clearUsesMap(); 410 collectUses(RFI, /*CollectStats*/ false); 411 } 412 413 // Helper function to recollect uses of all runtime functions. 414 void recollectUses() { 415 for (int Idx = 0; Idx < RFIs.size(); ++Idx) 416 recollectUsesForFunction(static_cast<RuntimeFunction>(Idx)); 417 } 418 419 /// Helper to initialize all runtime function information for those defined 420 /// in OpenMPKinds.def. 421 void initializeRuntimeFunctions() { 422 Module &M = *((*ModuleSlice.begin())->getParent()); 423 424 // Helper macros for handling __VA_ARGS__ in OMP_RTL 425 #define OMP_TYPE(VarName, ...) \ 426 Type *VarName = OMPBuilder.VarName; \ 427 (void)VarName; 428 429 #define OMP_ARRAY_TYPE(VarName, ...) \ 430 ArrayType *VarName##Ty = OMPBuilder.VarName##Ty; \ 431 (void)VarName##Ty; \ 432 PointerType *VarName##PtrTy = OMPBuilder.VarName##PtrTy; \ 433 (void)VarName##PtrTy; 434 435 #define OMP_FUNCTION_TYPE(VarName, ...) \ 436 FunctionType *VarName = OMPBuilder.VarName; \ 437 (void)VarName; \ 438 PointerType *VarName##Ptr = OMPBuilder.VarName##Ptr; \ 439 (void)VarName##Ptr; 440 441 #define OMP_STRUCT_TYPE(VarName, ...) \ 442 StructType *VarName = OMPBuilder.VarName; \ 443 (void)VarName; \ 444 PointerType *VarName##Ptr = OMPBuilder.VarName##Ptr; \ 445 (void)VarName##Ptr; 446 447 #define OMP_RTL(_Enum, _Name, _IsVarArg, _ReturnType, ...) \ 448 { \ 449 SmallVector<Type *, 8> ArgsTypes({__VA_ARGS__}); \ 450 Function *F = M.getFunction(_Name); \ 451 RTLFunctions.insert(F); \ 452 if (declMatchesRTFTypes(F, OMPBuilder._ReturnType, ArgsTypes)) { \ 453 RuntimeFunctionIDMap[F] = _Enum; \ 454 F->removeFnAttr(Attribute::NoInline); \ 455 auto &RFI = RFIs[_Enum]; \ 456 RFI.Kind = _Enum; \ 457 RFI.Name = _Name; \ 458 RFI.IsVarArg = _IsVarArg; \ 459 RFI.ReturnType = OMPBuilder._ReturnType; \ 460 RFI.ArgumentTypes = std::move(ArgsTypes); \ 461 RFI.Declaration = F; \ 462 unsigned NumUses = collectUses(RFI); \ 463 (void)NumUses; \ 464 LLVM_DEBUG({ \ 465 dbgs() << TAG << RFI.Name << (RFI.Declaration ? "" : " not") \ 466 << " found\n"; \ 467 if (RFI.Declaration) \ 468 dbgs() << TAG << "-> got " << NumUses << " uses in " \ 469 << RFI.getNumFunctionsWithUses() \ 470 << " different functions.\n"; \ 471 }); \ 472 } \ 473 } 474 #include "llvm/Frontend/OpenMP/OMPKinds.def" 475 476 // TODO: We should attach the attributes defined in OMPKinds.def. 477 } 478 479 /// Collection of known kernels (\see Kernel) in the module. 480 SmallPtrSetImpl<Kernel> &Kernels; 481 482 /// Collection of known OpenMP runtime functions.. 483 DenseSet<const Function *> RTLFunctions; 484 }; 485 486 template <typename Ty, bool InsertInvalidates = true> 487 struct BooleanStateWithSetVector : public BooleanState { 488 bool contains(const Ty &Elem) const { return Set.contains(Elem); } 489 bool insert(const Ty &Elem) { 490 if (InsertInvalidates) 491 BooleanState::indicatePessimisticFixpoint(); 492 return Set.insert(Elem); 493 } 494 495 const Ty &operator[](int Idx) const { return Set[Idx]; } 496 bool operator==(const BooleanStateWithSetVector &RHS) const { 497 return BooleanState::operator==(RHS) && Set == RHS.Set; 498 } 499 bool operator!=(const BooleanStateWithSetVector &RHS) const { 500 return !(*this == RHS); 501 } 502 503 bool empty() const { return Set.empty(); } 504 size_t size() const { return Set.size(); } 505 506 /// "Clamp" this state with \p RHS. 507 BooleanStateWithSetVector &operator^=(const BooleanStateWithSetVector &RHS) { 508 BooleanState::operator^=(RHS); 509 Set.insert(RHS.Set.begin(), RHS.Set.end()); 510 return *this; 511 } 512 513 private: 514 /// A set to keep track of elements. 515 SetVector<Ty> Set; 516 517 public: 518 typename decltype(Set)::iterator begin() { return Set.begin(); } 519 typename decltype(Set)::iterator end() { return Set.end(); } 520 typename decltype(Set)::const_iterator begin() const { return Set.begin(); } 521 typename decltype(Set)::const_iterator end() const { return Set.end(); } 522 }; 523 524 template <typename Ty, bool InsertInvalidates = true> 525 using BooleanStateWithPtrSetVector = 526 BooleanStateWithSetVector<Ty *, InsertInvalidates>; 527 528 struct KernelInfoState : AbstractState { 529 /// Flag to track if we reached a fixpoint. 530 bool IsAtFixpoint = false; 531 532 /// The parallel regions (identified by the outlined parallel functions) that 533 /// can be reached from the associated function. 534 BooleanStateWithPtrSetVector<Function, /* InsertInvalidates */ false> 535 ReachedKnownParallelRegions; 536 537 /// State to track what parallel region we might reach. 538 BooleanStateWithPtrSetVector<CallBase> ReachedUnknownParallelRegions; 539 540 /// State to track if we are in SPMD-mode, assumed or know, and why we decided 541 /// we cannot be. If it is assumed, then RequiresFullRuntime should also be 542 /// false. 543 BooleanStateWithPtrSetVector<Instruction, false> SPMDCompatibilityTracker; 544 545 /// The __kmpc_target_init call in this kernel, if any. If we find more than 546 /// one we abort as the kernel is malformed. 547 CallBase *KernelInitCB = nullptr; 548 549 /// The __kmpc_target_deinit call in this kernel, if any. If we find more than 550 /// one we abort as the kernel is malformed. 551 CallBase *KernelDeinitCB = nullptr; 552 553 /// Flag to indicate if the associated function is a kernel entry. 554 bool IsKernelEntry = false; 555 556 /// State to track what kernel entries can reach the associated function. 557 BooleanStateWithPtrSetVector<Function, false> ReachingKernelEntries; 558 559 /// State to indicate if we can track parallel level of the associated 560 /// function. We will give up tracking if we encounter unknown caller or the 561 /// caller is __kmpc_parallel_51. 562 BooleanStateWithSetVector<uint8_t> ParallelLevels; 563 564 /// Abstract State interface 565 ///{ 566 567 KernelInfoState() {} 568 KernelInfoState(bool BestState) { 569 if (!BestState) 570 indicatePessimisticFixpoint(); 571 } 572 573 /// See AbstractState::isValidState(...) 574 bool isValidState() const override { return true; } 575 576 /// See AbstractState::isAtFixpoint(...) 577 bool isAtFixpoint() const override { return IsAtFixpoint; } 578 579 /// See AbstractState::indicatePessimisticFixpoint(...) 580 ChangeStatus indicatePessimisticFixpoint() override { 581 IsAtFixpoint = true; 582 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 583 ReachedUnknownParallelRegions.indicatePessimisticFixpoint(); 584 return ChangeStatus::CHANGED; 585 } 586 587 /// See AbstractState::indicateOptimisticFixpoint(...) 588 ChangeStatus indicateOptimisticFixpoint() override { 589 IsAtFixpoint = true; 590 return ChangeStatus::UNCHANGED; 591 } 592 593 /// Return the assumed state 594 KernelInfoState &getAssumed() { return *this; } 595 const KernelInfoState &getAssumed() const { return *this; } 596 597 bool operator==(const KernelInfoState &RHS) const { 598 if (SPMDCompatibilityTracker != RHS.SPMDCompatibilityTracker) 599 return false; 600 if (ReachedKnownParallelRegions != RHS.ReachedKnownParallelRegions) 601 return false; 602 if (ReachedUnknownParallelRegions != RHS.ReachedUnknownParallelRegions) 603 return false; 604 if (ReachingKernelEntries != RHS.ReachingKernelEntries) 605 return false; 606 return true; 607 } 608 609 /// Returns true if this kernel contains any OpenMP parallel regions. 610 bool mayContainParallelRegion() { 611 return !ReachedKnownParallelRegions.empty() || 612 !ReachedUnknownParallelRegions.empty(); 613 } 614 615 /// Return empty set as the best state of potential values. 616 static KernelInfoState getBestState() { return KernelInfoState(true); } 617 618 static KernelInfoState getBestState(KernelInfoState &KIS) { 619 return getBestState(); 620 } 621 622 /// Return full set as the worst state of potential values. 623 static KernelInfoState getWorstState() { return KernelInfoState(false); } 624 625 /// "Clamp" this state with \p KIS. 626 KernelInfoState operator^=(const KernelInfoState &KIS) { 627 // Do not merge two different _init and _deinit call sites. 628 if (KIS.KernelInitCB) { 629 if (KernelInitCB && KernelInitCB != KIS.KernelInitCB) 630 indicatePessimisticFixpoint(); 631 KernelInitCB = KIS.KernelInitCB; 632 } 633 if (KIS.KernelDeinitCB) { 634 if (KernelDeinitCB && KernelDeinitCB != KIS.KernelDeinitCB) 635 indicatePessimisticFixpoint(); 636 KernelDeinitCB = KIS.KernelDeinitCB; 637 } 638 SPMDCompatibilityTracker ^= KIS.SPMDCompatibilityTracker; 639 ReachedKnownParallelRegions ^= KIS.ReachedKnownParallelRegions; 640 ReachedUnknownParallelRegions ^= KIS.ReachedUnknownParallelRegions; 641 return *this; 642 } 643 644 KernelInfoState operator&=(const KernelInfoState &KIS) { 645 return (*this ^= KIS); 646 } 647 648 ///} 649 }; 650 651 /// Used to map the values physically (in the IR) stored in an offload 652 /// array, to a vector in memory. 653 struct OffloadArray { 654 /// Physical array (in the IR). 655 AllocaInst *Array = nullptr; 656 /// Mapped values. 657 SmallVector<Value *, 8> StoredValues; 658 /// Last stores made in the offload array. 659 SmallVector<StoreInst *, 8> LastAccesses; 660 661 OffloadArray() = default; 662 663 /// Initializes the OffloadArray with the values stored in \p Array before 664 /// instruction \p Before is reached. Returns false if the initialization 665 /// fails. 666 /// This MUST be used immediately after the construction of the object. 667 bool initialize(AllocaInst &Array, Instruction &Before) { 668 if (!Array.getAllocatedType()->isArrayTy()) 669 return false; 670 671 if (!getValues(Array, Before)) 672 return false; 673 674 this->Array = &Array; 675 return true; 676 } 677 678 static const unsigned DeviceIDArgNum = 1; 679 static const unsigned BasePtrsArgNum = 3; 680 static const unsigned PtrsArgNum = 4; 681 static const unsigned SizesArgNum = 5; 682 683 private: 684 /// Traverses the BasicBlock where \p Array is, collecting the stores made to 685 /// \p Array, leaving StoredValues with the values stored before the 686 /// instruction \p Before is reached. 687 bool getValues(AllocaInst &Array, Instruction &Before) { 688 // Initialize container. 689 const uint64_t NumValues = Array.getAllocatedType()->getArrayNumElements(); 690 StoredValues.assign(NumValues, nullptr); 691 LastAccesses.assign(NumValues, nullptr); 692 693 // TODO: This assumes the instruction \p Before is in the same 694 // BasicBlock as Array. Make it general, for any control flow graph. 695 BasicBlock *BB = Array.getParent(); 696 if (BB != Before.getParent()) 697 return false; 698 699 const DataLayout &DL = Array.getModule()->getDataLayout(); 700 const unsigned int PointerSize = DL.getPointerSize(); 701 702 for (Instruction &I : *BB) { 703 if (&I == &Before) 704 break; 705 706 if (!isa<StoreInst>(&I)) 707 continue; 708 709 auto *S = cast<StoreInst>(&I); 710 int64_t Offset = -1; 711 auto *Dst = 712 GetPointerBaseWithConstantOffset(S->getPointerOperand(), Offset, DL); 713 if (Dst == &Array) { 714 int64_t Idx = Offset / PointerSize; 715 StoredValues[Idx] = getUnderlyingObject(S->getValueOperand()); 716 LastAccesses[Idx] = S; 717 } 718 } 719 720 return isFilled(); 721 } 722 723 /// Returns true if all values in StoredValues and 724 /// LastAccesses are not nullptrs. 725 bool isFilled() { 726 const unsigned NumValues = StoredValues.size(); 727 for (unsigned I = 0; I < NumValues; ++I) { 728 if (!StoredValues[I] || !LastAccesses[I]) 729 return false; 730 } 731 732 return true; 733 } 734 }; 735 736 struct OpenMPOpt { 737 738 using OptimizationRemarkGetter = 739 function_ref<OptimizationRemarkEmitter &(Function *)>; 740 741 OpenMPOpt(SmallVectorImpl<Function *> &SCC, CallGraphUpdater &CGUpdater, 742 OptimizationRemarkGetter OREGetter, 743 OMPInformationCache &OMPInfoCache, Attributor &A) 744 : M(*(*SCC.begin())->getParent()), SCC(SCC), CGUpdater(CGUpdater), 745 OREGetter(OREGetter), OMPInfoCache(OMPInfoCache), A(A) {} 746 747 /// Check if any remarks are enabled for openmp-opt 748 bool remarksEnabled() { 749 auto &Ctx = M.getContext(); 750 return Ctx.getDiagHandlerPtr()->isAnyRemarkEnabled(DEBUG_TYPE); 751 } 752 753 /// Run all OpenMP optimizations on the underlying SCC/ModuleSlice. 754 bool run(bool IsModulePass) { 755 if (SCC.empty()) 756 return false; 757 758 bool Changed = false; 759 760 LLVM_DEBUG(dbgs() << TAG << "Run on SCC with " << SCC.size() 761 << " functions in a slice with " 762 << OMPInfoCache.ModuleSlice.size() << " functions\n"); 763 764 if (IsModulePass) { 765 Changed |= runAttributor(IsModulePass); 766 767 // Recollect uses, in case Attributor deleted any. 768 OMPInfoCache.recollectUses(); 769 770 // TODO: This should be folded into buildCustomStateMachine. 771 Changed |= rewriteDeviceCodeStateMachine(); 772 773 if (remarksEnabled()) 774 analysisGlobalization(); 775 } else { 776 if (PrintICVValues) 777 printICVs(); 778 if (PrintOpenMPKernels) 779 printKernels(); 780 781 Changed |= runAttributor(IsModulePass); 782 783 // Recollect uses, in case Attributor deleted any. 784 OMPInfoCache.recollectUses(); 785 786 Changed |= deleteParallelRegions(); 787 788 if (HideMemoryTransferLatency) 789 Changed |= hideMemTransfersLatency(); 790 Changed |= deduplicateRuntimeCalls(); 791 if (EnableParallelRegionMerging) { 792 if (mergeParallelRegions()) { 793 deduplicateRuntimeCalls(); 794 Changed = true; 795 } 796 } 797 } 798 799 return Changed; 800 } 801 802 /// Print initial ICV values for testing. 803 /// FIXME: This should be done from the Attributor once it is added. 804 void printICVs() const { 805 InternalControlVar ICVs[] = {ICV_nthreads, ICV_active_levels, ICV_cancel, 806 ICV_proc_bind}; 807 808 for (Function *F : OMPInfoCache.ModuleSlice) { 809 for (auto ICV : ICVs) { 810 auto ICVInfo = OMPInfoCache.ICVs[ICV]; 811 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 812 return ORA << "OpenMP ICV " << ore::NV("OpenMPICV", ICVInfo.Name) 813 << " Value: " 814 << (ICVInfo.InitValue 815 ? toString(ICVInfo.InitValue->getValue(), 10, true) 816 : "IMPLEMENTATION_DEFINED"); 817 }; 818 819 emitRemark<OptimizationRemarkAnalysis>(F, "OpenMPICVTracker", Remark); 820 } 821 } 822 } 823 824 /// Print OpenMP GPU kernels for testing. 825 void printKernels() const { 826 for (Function *F : SCC) { 827 if (!OMPInfoCache.Kernels.count(F)) 828 continue; 829 830 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 831 return ORA << "OpenMP GPU kernel " 832 << ore::NV("OpenMPGPUKernel", F->getName()) << "\n"; 833 }; 834 835 emitRemark<OptimizationRemarkAnalysis>(F, "OpenMPGPU", Remark); 836 } 837 } 838 839 /// Return the call if \p U is a callee use in a regular call. If \p RFI is 840 /// given it has to be the callee or a nullptr is returned. 841 static CallInst *getCallIfRegularCall( 842 Use &U, OMPInformationCache::RuntimeFunctionInfo *RFI = nullptr) { 843 CallInst *CI = dyn_cast<CallInst>(U.getUser()); 844 if (CI && CI->isCallee(&U) && !CI->hasOperandBundles() && 845 (!RFI || 846 (RFI->Declaration && CI->getCalledFunction() == RFI->Declaration))) 847 return CI; 848 return nullptr; 849 } 850 851 /// Return the call if \p V is a regular call. If \p RFI is given it has to be 852 /// the callee or a nullptr is returned. 853 static CallInst *getCallIfRegularCall( 854 Value &V, OMPInformationCache::RuntimeFunctionInfo *RFI = nullptr) { 855 CallInst *CI = dyn_cast<CallInst>(&V); 856 if (CI && !CI->hasOperandBundles() && 857 (!RFI || 858 (RFI->Declaration && CI->getCalledFunction() == RFI->Declaration))) 859 return CI; 860 return nullptr; 861 } 862 863 private: 864 /// Merge parallel regions when it is safe. 865 bool mergeParallelRegions() { 866 const unsigned CallbackCalleeOperand = 2; 867 const unsigned CallbackFirstArgOperand = 3; 868 using InsertPointTy = OpenMPIRBuilder::InsertPointTy; 869 870 // Check if there are any __kmpc_fork_call calls to merge. 871 OMPInformationCache::RuntimeFunctionInfo &RFI = 872 OMPInfoCache.RFIs[OMPRTL___kmpc_fork_call]; 873 874 if (!RFI.Declaration) 875 return false; 876 877 // Unmergable calls that prevent merging a parallel region. 878 OMPInformationCache::RuntimeFunctionInfo UnmergableCallsInfo[] = { 879 OMPInfoCache.RFIs[OMPRTL___kmpc_push_proc_bind], 880 OMPInfoCache.RFIs[OMPRTL___kmpc_push_num_threads], 881 }; 882 883 bool Changed = false; 884 LoopInfo *LI = nullptr; 885 DominatorTree *DT = nullptr; 886 887 SmallDenseMap<BasicBlock *, SmallPtrSet<Instruction *, 4>> BB2PRMap; 888 889 BasicBlock *StartBB = nullptr, *EndBB = nullptr; 890 auto BodyGenCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, 891 BasicBlock &ContinuationIP) { 892 BasicBlock *CGStartBB = CodeGenIP.getBlock(); 893 BasicBlock *CGEndBB = 894 SplitBlock(CGStartBB, &*CodeGenIP.getPoint(), DT, LI); 895 assert(StartBB != nullptr && "StartBB should not be null"); 896 CGStartBB->getTerminator()->setSuccessor(0, StartBB); 897 assert(EndBB != nullptr && "EndBB should not be null"); 898 EndBB->getTerminator()->setSuccessor(0, CGEndBB); 899 }; 900 901 auto PrivCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, Value &, 902 Value &Inner, Value *&ReplacementValue) -> InsertPointTy { 903 ReplacementValue = &Inner; 904 return CodeGenIP; 905 }; 906 907 auto FiniCB = [&](InsertPointTy CodeGenIP) {}; 908 909 /// Create a sequential execution region within a merged parallel region, 910 /// encapsulated in a master construct with a barrier for synchronization. 911 auto CreateSequentialRegion = [&](Function *OuterFn, 912 BasicBlock *OuterPredBB, 913 Instruction *SeqStartI, 914 Instruction *SeqEndI) { 915 // Isolate the instructions of the sequential region to a separate 916 // block. 917 BasicBlock *ParentBB = SeqStartI->getParent(); 918 BasicBlock *SeqEndBB = 919 SplitBlock(ParentBB, SeqEndI->getNextNode(), DT, LI); 920 BasicBlock *SeqAfterBB = 921 SplitBlock(SeqEndBB, &*SeqEndBB->getFirstInsertionPt(), DT, LI); 922 BasicBlock *SeqStartBB = 923 SplitBlock(ParentBB, SeqStartI, DT, LI, nullptr, "seq.par.merged"); 924 925 assert(ParentBB->getUniqueSuccessor() == SeqStartBB && 926 "Expected a different CFG"); 927 const DebugLoc DL = ParentBB->getTerminator()->getDebugLoc(); 928 ParentBB->getTerminator()->eraseFromParent(); 929 930 auto BodyGenCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, 931 BasicBlock &ContinuationIP) { 932 BasicBlock *CGStartBB = CodeGenIP.getBlock(); 933 BasicBlock *CGEndBB = 934 SplitBlock(CGStartBB, &*CodeGenIP.getPoint(), DT, LI); 935 assert(SeqStartBB != nullptr && "SeqStartBB should not be null"); 936 CGStartBB->getTerminator()->setSuccessor(0, SeqStartBB); 937 assert(SeqEndBB != nullptr && "SeqEndBB should not be null"); 938 SeqEndBB->getTerminator()->setSuccessor(0, CGEndBB); 939 }; 940 auto FiniCB = [&](InsertPointTy CodeGenIP) {}; 941 942 // Find outputs from the sequential region to outside users and 943 // broadcast their values to them. 944 for (Instruction &I : *SeqStartBB) { 945 SmallPtrSet<Instruction *, 4> OutsideUsers; 946 for (User *Usr : I.users()) { 947 Instruction &UsrI = *cast<Instruction>(Usr); 948 // Ignore outputs to LT intrinsics, code extraction for the merged 949 // parallel region will fix them. 950 if (UsrI.isLifetimeStartOrEnd()) 951 continue; 952 953 if (UsrI.getParent() != SeqStartBB) 954 OutsideUsers.insert(&UsrI); 955 } 956 957 if (OutsideUsers.empty()) 958 continue; 959 960 // Emit an alloca in the outer region to store the broadcasted 961 // value. 962 const DataLayout &DL = M.getDataLayout(); 963 AllocaInst *AllocaI = new AllocaInst( 964 I.getType(), DL.getAllocaAddrSpace(), nullptr, 965 I.getName() + ".seq.output.alloc", &OuterFn->front().front()); 966 967 // Emit a store instruction in the sequential BB to update the 968 // value. 969 new StoreInst(&I, AllocaI, SeqStartBB->getTerminator()); 970 971 // Emit a load instruction and replace the use of the output value 972 // with it. 973 for (Instruction *UsrI : OutsideUsers) { 974 LoadInst *LoadI = new LoadInst( 975 I.getType(), AllocaI, I.getName() + ".seq.output.load", UsrI); 976 UsrI->replaceUsesOfWith(&I, LoadI); 977 } 978 } 979 980 OpenMPIRBuilder::LocationDescription Loc( 981 InsertPointTy(ParentBB, ParentBB->end()), DL); 982 InsertPointTy SeqAfterIP = 983 OMPInfoCache.OMPBuilder.createMaster(Loc, BodyGenCB, FiniCB); 984 985 OMPInfoCache.OMPBuilder.createBarrier(SeqAfterIP, OMPD_parallel); 986 987 BranchInst::Create(SeqAfterBB, SeqAfterIP.getBlock()); 988 989 LLVM_DEBUG(dbgs() << TAG << "After sequential inlining " << *OuterFn 990 << "\n"); 991 }; 992 993 // Helper to merge the __kmpc_fork_call calls in MergableCIs. They are all 994 // contained in BB and only separated by instructions that can be 995 // redundantly executed in parallel. The block BB is split before the first 996 // call (in MergableCIs) and after the last so the entire region we merge 997 // into a single parallel region is contained in a single basic block 998 // without any other instructions. We use the OpenMPIRBuilder to outline 999 // that block and call the resulting function via __kmpc_fork_call. 1000 auto Merge = [&](SmallVectorImpl<CallInst *> &MergableCIs, BasicBlock *BB) { 1001 // TODO: Change the interface to allow single CIs expanded, e.g, to 1002 // include an outer loop. 1003 assert(MergableCIs.size() > 1 && "Assumed multiple mergable CIs"); 1004 1005 auto Remark = [&](OptimizationRemark OR) { 1006 OR << "Parallel region merged with parallel region" 1007 << (MergableCIs.size() > 2 ? "s" : "") << " at "; 1008 for (auto *CI : llvm::drop_begin(MergableCIs)) { 1009 OR << ore::NV("OpenMPParallelMerge", CI->getDebugLoc()); 1010 if (CI != MergableCIs.back()) 1011 OR << ", "; 1012 } 1013 return OR << "."; 1014 }; 1015 1016 emitRemark<OptimizationRemark>(MergableCIs.front(), "OMP150", Remark); 1017 1018 Function *OriginalFn = BB->getParent(); 1019 LLVM_DEBUG(dbgs() << TAG << "Merge " << MergableCIs.size() 1020 << " parallel regions in " << OriginalFn->getName() 1021 << "\n"); 1022 1023 // Isolate the calls to merge in a separate block. 1024 EndBB = SplitBlock(BB, MergableCIs.back()->getNextNode(), DT, LI); 1025 BasicBlock *AfterBB = 1026 SplitBlock(EndBB, &*EndBB->getFirstInsertionPt(), DT, LI); 1027 StartBB = SplitBlock(BB, MergableCIs.front(), DT, LI, nullptr, 1028 "omp.par.merged"); 1029 1030 assert(BB->getUniqueSuccessor() == StartBB && "Expected a different CFG"); 1031 const DebugLoc DL = BB->getTerminator()->getDebugLoc(); 1032 BB->getTerminator()->eraseFromParent(); 1033 1034 // Create sequential regions for sequential instructions that are 1035 // in-between mergable parallel regions. 1036 for (auto *It = MergableCIs.begin(), *End = MergableCIs.end() - 1; 1037 It != End; ++It) { 1038 Instruction *ForkCI = *It; 1039 Instruction *NextForkCI = *(It + 1); 1040 1041 // Continue if there are not in-between instructions. 1042 if (ForkCI->getNextNode() == NextForkCI) 1043 continue; 1044 1045 CreateSequentialRegion(OriginalFn, BB, ForkCI->getNextNode(), 1046 NextForkCI->getPrevNode()); 1047 } 1048 1049 OpenMPIRBuilder::LocationDescription Loc(InsertPointTy(BB, BB->end()), 1050 DL); 1051 IRBuilder<>::InsertPoint AllocaIP( 1052 &OriginalFn->getEntryBlock(), 1053 OriginalFn->getEntryBlock().getFirstInsertionPt()); 1054 // Create the merged parallel region with default proc binding, to 1055 // avoid overriding binding settings, and without explicit cancellation. 1056 InsertPointTy AfterIP = OMPInfoCache.OMPBuilder.createParallel( 1057 Loc, AllocaIP, BodyGenCB, PrivCB, FiniCB, nullptr, nullptr, 1058 OMP_PROC_BIND_default, /* IsCancellable */ false); 1059 BranchInst::Create(AfterBB, AfterIP.getBlock()); 1060 1061 // Perform the actual outlining. 1062 OMPInfoCache.OMPBuilder.finalize(OriginalFn, 1063 /* AllowExtractorSinking */ true); 1064 1065 Function *OutlinedFn = MergableCIs.front()->getCaller(); 1066 1067 // Replace the __kmpc_fork_call calls with direct calls to the outlined 1068 // callbacks. 1069 SmallVector<Value *, 8> Args; 1070 for (auto *CI : MergableCIs) { 1071 Value *Callee = 1072 CI->getArgOperand(CallbackCalleeOperand)->stripPointerCasts(); 1073 FunctionType *FT = 1074 cast<FunctionType>(Callee->getType()->getPointerElementType()); 1075 Args.clear(); 1076 Args.push_back(OutlinedFn->getArg(0)); 1077 Args.push_back(OutlinedFn->getArg(1)); 1078 for (unsigned U = CallbackFirstArgOperand, E = CI->getNumArgOperands(); 1079 U < E; ++U) 1080 Args.push_back(CI->getArgOperand(U)); 1081 1082 CallInst *NewCI = CallInst::Create(FT, Callee, Args, "", CI); 1083 if (CI->getDebugLoc()) 1084 NewCI->setDebugLoc(CI->getDebugLoc()); 1085 1086 // Forward parameter attributes from the callback to the callee. 1087 for (unsigned U = CallbackFirstArgOperand, E = CI->getNumArgOperands(); 1088 U < E; ++U) 1089 for (const Attribute &A : CI->getAttributes().getParamAttrs(U)) 1090 NewCI->addParamAttr( 1091 U - (CallbackFirstArgOperand - CallbackCalleeOperand), A); 1092 1093 // Emit an explicit barrier to replace the implicit fork-join barrier. 1094 if (CI != MergableCIs.back()) { 1095 // TODO: Remove barrier if the merged parallel region includes the 1096 // 'nowait' clause. 1097 OMPInfoCache.OMPBuilder.createBarrier( 1098 InsertPointTy(NewCI->getParent(), 1099 NewCI->getNextNode()->getIterator()), 1100 OMPD_parallel); 1101 } 1102 1103 CI->eraseFromParent(); 1104 } 1105 1106 assert(OutlinedFn != OriginalFn && "Outlining failed"); 1107 CGUpdater.registerOutlinedFunction(*OriginalFn, *OutlinedFn); 1108 CGUpdater.reanalyzeFunction(*OriginalFn); 1109 1110 NumOpenMPParallelRegionsMerged += MergableCIs.size(); 1111 1112 return true; 1113 }; 1114 1115 // Helper function that identifes sequences of 1116 // __kmpc_fork_call uses in a basic block. 1117 auto DetectPRsCB = [&](Use &U, Function &F) { 1118 CallInst *CI = getCallIfRegularCall(U, &RFI); 1119 BB2PRMap[CI->getParent()].insert(CI); 1120 1121 return false; 1122 }; 1123 1124 BB2PRMap.clear(); 1125 RFI.foreachUse(SCC, DetectPRsCB); 1126 SmallVector<SmallVector<CallInst *, 4>, 4> MergableCIsVector; 1127 // Find mergable parallel regions within a basic block that are 1128 // safe to merge, that is any in-between instructions can safely 1129 // execute in parallel after merging. 1130 // TODO: support merging across basic-blocks. 1131 for (auto &It : BB2PRMap) { 1132 auto &CIs = It.getSecond(); 1133 if (CIs.size() < 2) 1134 continue; 1135 1136 BasicBlock *BB = It.getFirst(); 1137 SmallVector<CallInst *, 4> MergableCIs; 1138 1139 /// Returns true if the instruction is mergable, false otherwise. 1140 /// A terminator instruction is unmergable by definition since merging 1141 /// works within a BB. Instructions before the mergable region are 1142 /// mergable if they are not calls to OpenMP runtime functions that may 1143 /// set different execution parameters for subsequent parallel regions. 1144 /// Instructions in-between parallel regions are mergable if they are not 1145 /// calls to any non-intrinsic function since that may call a non-mergable 1146 /// OpenMP runtime function. 1147 auto IsMergable = [&](Instruction &I, bool IsBeforeMergableRegion) { 1148 // We do not merge across BBs, hence return false (unmergable) if the 1149 // instruction is a terminator. 1150 if (I.isTerminator()) 1151 return false; 1152 1153 if (!isa<CallInst>(&I)) 1154 return true; 1155 1156 CallInst *CI = cast<CallInst>(&I); 1157 if (IsBeforeMergableRegion) { 1158 Function *CalledFunction = CI->getCalledFunction(); 1159 if (!CalledFunction) 1160 return false; 1161 // Return false (unmergable) if the call before the parallel 1162 // region calls an explicit affinity (proc_bind) or number of 1163 // threads (num_threads) compiler-generated function. Those settings 1164 // may be incompatible with following parallel regions. 1165 // TODO: ICV tracking to detect compatibility. 1166 for (const auto &RFI : UnmergableCallsInfo) { 1167 if (CalledFunction == RFI.Declaration) 1168 return false; 1169 } 1170 } else { 1171 // Return false (unmergable) if there is a call instruction 1172 // in-between parallel regions when it is not an intrinsic. It 1173 // may call an unmergable OpenMP runtime function in its callpath. 1174 // TODO: Keep track of possible OpenMP calls in the callpath. 1175 if (!isa<IntrinsicInst>(CI)) 1176 return false; 1177 } 1178 1179 return true; 1180 }; 1181 // Find maximal number of parallel region CIs that are safe to merge. 1182 for (auto It = BB->begin(), End = BB->end(); It != End;) { 1183 Instruction &I = *It; 1184 ++It; 1185 1186 if (CIs.count(&I)) { 1187 MergableCIs.push_back(cast<CallInst>(&I)); 1188 continue; 1189 } 1190 1191 // Continue expanding if the instruction is mergable. 1192 if (IsMergable(I, MergableCIs.empty())) 1193 continue; 1194 1195 // Forward the instruction iterator to skip the next parallel region 1196 // since there is an unmergable instruction which can affect it. 1197 for (; It != End; ++It) { 1198 Instruction &SkipI = *It; 1199 if (CIs.count(&SkipI)) { 1200 LLVM_DEBUG(dbgs() << TAG << "Skip parallel region " << SkipI 1201 << " due to " << I << "\n"); 1202 ++It; 1203 break; 1204 } 1205 } 1206 1207 // Store mergable regions found. 1208 if (MergableCIs.size() > 1) { 1209 MergableCIsVector.push_back(MergableCIs); 1210 LLVM_DEBUG(dbgs() << TAG << "Found " << MergableCIs.size() 1211 << " parallel regions in block " << BB->getName() 1212 << " of function " << BB->getParent()->getName() 1213 << "\n";); 1214 } 1215 1216 MergableCIs.clear(); 1217 } 1218 1219 if (!MergableCIsVector.empty()) { 1220 Changed = true; 1221 1222 for (auto &MergableCIs : MergableCIsVector) 1223 Merge(MergableCIs, BB); 1224 MergableCIsVector.clear(); 1225 } 1226 } 1227 1228 if (Changed) { 1229 /// Re-collect use for fork calls, emitted barrier calls, and 1230 /// any emitted master/end_master calls. 1231 OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_fork_call); 1232 OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_barrier); 1233 OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_master); 1234 OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_end_master); 1235 } 1236 1237 return Changed; 1238 } 1239 1240 /// Try to delete parallel regions if possible. 1241 bool deleteParallelRegions() { 1242 const unsigned CallbackCalleeOperand = 2; 1243 1244 OMPInformationCache::RuntimeFunctionInfo &RFI = 1245 OMPInfoCache.RFIs[OMPRTL___kmpc_fork_call]; 1246 1247 if (!RFI.Declaration) 1248 return false; 1249 1250 bool Changed = false; 1251 auto DeleteCallCB = [&](Use &U, Function &) { 1252 CallInst *CI = getCallIfRegularCall(U); 1253 if (!CI) 1254 return false; 1255 auto *Fn = dyn_cast<Function>( 1256 CI->getArgOperand(CallbackCalleeOperand)->stripPointerCasts()); 1257 if (!Fn) 1258 return false; 1259 if (!Fn->onlyReadsMemory()) 1260 return false; 1261 if (!Fn->hasFnAttribute(Attribute::WillReturn)) 1262 return false; 1263 1264 LLVM_DEBUG(dbgs() << TAG << "Delete read-only parallel region in " 1265 << CI->getCaller()->getName() << "\n"); 1266 1267 auto Remark = [&](OptimizationRemark OR) { 1268 return OR << "Removing parallel region with no side-effects."; 1269 }; 1270 emitRemark<OptimizationRemark>(CI, "OMP160", Remark); 1271 1272 CGUpdater.removeCallSite(*CI); 1273 CI->eraseFromParent(); 1274 Changed = true; 1275 ++NumOpenMPParallelRegionsDeleted; 1276 return true; 1277 }; 1278 1279 RFI.foreachUse(SCC, DeleteCallCB); 1280 1281 return Changed; 1282 } 1283 1284 /// Try to eliminate runtime calls by reusing existing ones. 1285 bool deduplicateRuntimeCalls() { 1286 bool Changed = false; 1287 1288 RuntimeFunction DeduplicableRuntimeCallIDs[] = { 1289 OMPRTL_omp_get_num_threads, 1290 OMPRTL_omp_in_parallel, 1291 OMPRTL_omp_get_cancellation, 1292 OMPRTL_omp_get_thread_limit, 1293 OMPRTL_omp_get_supported_active_levels, 1294 OMPRTL_omp_get_level, 1295 OMPRTL_omp_get_ancestor_thread_num, 1296 OMPRTL_omp_get_team_size, 1297 OMPRTL_omp_get_active_level, 1298 OMPRTL_omp_in_final, 1299 OMPRTL_omp_get_proc_bind, 1300 OMPRTL_omp_get_num_places, 1301 OMPRTL_omp_get_num_procs, 1302 OMPRTL_omp_get_place_num, 1303 OMPRTL_omp_get_partition_num_places, 1304 OMPRTL_omp_get_partition_place_nums}; 1305 1306 // Global-tid is handled separately. 1307 SmallSetVector<Value *, 16> GTIdArgs; 1308 collectGlobalThreadIdArguments(GTIdArgs); 1309 LLVM_DEBUG(dbgs() << TAG << "Found " << GTIdArgs.size() 1310 << " global thread ID arguments\n"); 1311 1312 for (Function *F : SCC) { 1313 for (auto DeduplicableRuntimeCallID : DeduplicableRuntimeCallIDs) 1314 Changed |= deduplicateRuntimeCalls( 1315 *F, OMPInfoCache.RFIs[DeduplicableRuntimeCallID]); 1316 1317 // __kmpc_global_thread_num is special as we can replace it with an 1318 // argument in enough cases to make it worth trying. 1319 Value *GTIdArg = nullptr; 1320 for (Argument &Arg : F->args()) 1321 if (GTIdArgs.count(&Arg)) { 1322 GTIdArg = &Arg; 1323 break; 1324 } 1325 Changed |= deduplicateRuntimeCalls( 1326 *F, OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num], GTIdArg); 1327 } 1328 1329 return Changed; 1330 } 1331 1332 /// Tries to hide the latency of runtime calls that involve host to 1333 /// device memory transfers by splitting them into their "issue" and "wait" 1334 /// versions. The "issue" is moved upwards as much as possible. The "wait" is 1335 /// moved downards as much as possible. The "issue" issues the memory transfer 1336 /// asynchronously, returning a handle. The "wait" waits in the returned 1337 /// handle for the memory transfer to finish. 1338 bool hideMemTransfersLatency() { 1339 auto &RFI = OMPInfoCache.RFIs[OMPRTL___tgt_target_data_begin_mapper]; 1340 bool Changed = false; 1341 auto SplitMemTransfers = [&](Use &U, Function &Decl) { 1342 auto *RTCall = getCallIfRegularCall(U, &RFI); 1343 if (!RTCall) 1344 return false; 1345 1346 OffloadArray OffloadArrays[3]; 1347 if (!getValuesInOffloadArrays(*RTCall, OffloadArrays)) 1348 return false; 1349 1350 LLVM_DEBUG(dumpValuesInOffloadArrays(OffloadArrays)); 1351 1352 // TODO: Check if can be moved upwards. 1353 bool WasSplit = false; 1354 Instruction *WaitMovementPoint = canBeMovedDownwards(*RTCall); 1355 if (WaitMovementPoint) 1356 WasSplit = splitTargetDataBeginRTC(*RTCall, *WaitMovementPoint); 1357 1358 Changed |= WasSplit; 1359 return WasSplit; 1360 }; 1361 RFI.foreachUse(SCC, SplitMemTransfers); 1362 1363 return Changed; 1364 } 1365 1366 void analysisGlobalization() { 1367 auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared]; 1368 1369 auto CheckGlobalization = [&](Use &U, Function &Decl) { 1370 if (CallInst *CI = getCallIfRegularCall(U, &RFI)) { 1371 auto Remark = [&](OptimizationRemarkMissed ORM) { 1372 return ORM 1373 << "Found thread data sharing on the GPU. " 1374 << "Expect degraded performance due to data globalization."; 1375 }; 1376 emitRemark<OptimizationRemarkMissed>(CI, "OMP112", Remark); 1377 } 1378 1379 return false; 1380 }; 1381 1382 RFI.foreachUse(SCC, CheckGlobalization); 1383 } 1384 1385 /// Maps the values stored in the offload arrays passed as arguments to 1386 /// \p RuntimeCall into the offload arrays in \p OAs. 1387 bool getValuesInOffloadArrays(CallInst &RuntimeCall, 1388 MutableArrayRef<OffloadArray> OAs) { 1389 assert(OAs.size() == 3 && "Need space for three offload arrays!"); 1390 1391 // A runtime call that involves memory offloading looks something like: 1392 // call void @__tgt_target_data_begin_mapper(arg0, arg1, 1393 // i8** %offload_baseptrs, i8** %offload_ptrs, i64* %offload_sizes, 1394 // ...) 1395 // So, the idea is to access the allocas that allocate space for these 1396 // offload arrays, offload_baseptrs, offload_ptrs, offload_sizes. 1397 // Therefore: 1398 // i8** %offload_baseptrs. 1399 Value *BasePtrsArg = 1400 RuntimeCall.getArgOperand(OffloadArray::BasePtrsArgNum); 1401 // i8** %offload_ptrs. 1402 Value *PtrsArg = RuntimeCall.getArgOperand(OffloadArray::PtrsArgNum); 1403 // i8** %offload_sizes. 1404 Value *SizesArg = RuntimeCall.getArgOperand(OffloadArray::SizesArgNum); 1405 1406 // Get values stored in **offload_baseptrs. 1407 auto *V = getUnderlyingObject(BasePtrsArg); 1408 if (!isa<AllocaInst>(V)) 1409 return false; 1410 auto *BasePtrsArray = cast<AllocaInst>(V); 1411 if (!OAs[0].initialize(*BasePtrsArray, RuntimeCall)) 1412 return false; 1413 1414 // Get values stored in **offload_baseptrs. 1415 V = getUnderlyingObject(PtrsArg); 1416 if (!isa<AllocaInst>(V)) 1417 return false; 1418 auto *PtrsArray = cast<AllocaInst>(V); 1419 if (!OAs[1].initialize(*PtrsArray, RuntimeCall)) 1420 return false; 1421 1422 // Get values stored in **offload_sizes. 1423 V = getUnderlyingObject(SizesArg); 1424 // If it's a [constant] global array don't analyze it. 1425 if (isa<GlobalValue>(V)) 1426 return isa<Constant>(V); 1427 if (!isa<AllocaInst>(V)) 1428 return false; 1429 1430 auto *SizesArray = cast<AllocaInst>(V); 1431 if (!OAs[2].initialize(*SizesArray, RuntimeCall)) 1432 return false; 1433 1434 return true; 1435 } 1436 1437 /// Prints the values in the OffloadArrays \p OAs using LLVM_DEBUG. 1438 /// For now this is a way to test that the function getValuesInOffloadArrays 1439 /// is working properly. 1440 /// TODO: Move this to a unittest when unittests are available for OpenMPOpt. 1441 void dumpValuesInOffloadArrays(ArrayRef<OffloadArray> OAs) { 1442 assert(OAs.size() == 3 && "There are three offload arrays to debug!"); 1443 1444 LLVM_DEBUG(dbgs() << TAG << " Successfully got offload values:\n"); 1445 std::string ValuesStr; 1446 raw_string_ostream Printer(ValuesStr); 1447 std::string Separator = " --- "; 1448 1449 for (auto *BP : OAs[0].StoredValues) { 1450 BP->print(Printer); 1451 Printer << Separator; 1452 } 1453 LLVM_DEBUG(dbgs() << "\t\toffload_baseptrs: " << Printer.str() << "\n"); 1454 ValuesStr.clear(); 1455 1456 for (auto *P : OAs[1].StoredValues) { 1457 P->print(Printer); 1458 Printer << Separator; 1459 } 1460 LLVM_DEBUG(dbgs() << "\t\toffload_ptrs: " << Printer.str() << "\n"); 1461 ValuesStr.clear(); 1462 1463 for (auto *S : OAs[2].StoredValues) { 1464 S->print(Printer); 1465 Printer << Separator; 1466 } 1467 LLVM_DEBUG(dbgs() << "\t\toffload_sizes: " << Printer.str() << "\n"); 1468 } 1469 1470 /// Returns the instruction where the "wait" counterpart \p RuntimeCall can be 1471 /// moved. Returns nullptr if the movement is not possible, or not worth it. 1472 Instruction *canBeMovedDownwards(CallInst &RuntimeCall) { 1473 // FIXME: This traverses only the BasicBlock where RuntimeCall is. 1474 // Make it traverse the CFG. 1475 1476 Instruction *CurrentI = &RuntimeCall; 1477 bool IsWorthIt = false; 1478 while ((CurrentI = CurrentI->getNextNode())) { 1479 1480 // TODO: Once we detect the regions to be offloaded we should use the 1481 // alias analysis manager to check if CurrentI may modify one of 1482 // the offloaded regions. 1483 if (CurrentI->mayHaveSideEffects() || CurrentI->mayReadFromMemory()) { 1484 if (IsWorthIt) 1485 return CurrentI; 1486 1487 return nullptr; 1488 } 1489 1490 // FIXME: For now if we move it over anything without side effect 1491 // is worth it. 1492 IsWorthIt = true; 1493 } 1494 1495 // Return end of BasicBlock. 1496 return RuntimeCall.getParent()->getTerminator(); 1497 } 1498 1499 /// Splits \p RuntimeCall into its "issue" and "wait" counterparts. 1500 bool splitTargetDataBeginRTC(CallInst &RuntimeCall, 1501 Instruction &WaitMovementPoint) { 1502 // Create stack allocated handle (__tgt_async_info) at the beginning of the 1503 // function. Used for storing information of the async transfer, allowing to 1504 // wait on it later. 1505 auto &IRBuilder = OMPInfoCache.OMPBuilder; 1506 auto *F = RuntimeCall.getCaller(); 1507 Instruction *FirstInst = &(F->getEntryBlock().front()); 1508 AllocaInst *Handle = new AllocaInst( 1509 IRBuilder.AsyncInfo, F->getAddressSpace(), "handle", FirstInst); 1510 1511 // Add "issue" runtime call declaration: 1512 // declare %struct.tgt_async_info @__tgt_target_data_begin_issue(i64, i32, 1513 // i8**, i8**, i64*, i64*) 1514 FunctionCallee IssueDecl = IRBuilder.getOrCreateRuntimeFunction( 1515 M, OMPRTL___tgt_target_data_begin_mapper_issue); 1516 1517 // Change RuntimeCall call site for its asynchronous version. 1518 SmallVector<Value *, 16> Args; 1519 for (auto &Arg : RuntimeCall.args()) 1520 Args.push_back(Arg.get()); 1521 Args.push_back(Handle); 1522 1523 CallInst *IssueCallsite = 1524 CallInst::Create(IssueDecl, Args, /*NameStr=*/"", &RuntimeCall); 1525 RuntimeCall.eraseFromParent(); 1526 1527 // Add "wait" runtime call declaration: 1528 // declare void @__tgt_target_data_begin_wait(i64, %struct.__tgt_async_info) 1529 FunctionCallee WaitDecl = IRBuilder.getOrCreateRuntimeFunction( 1530 M, OMPRTL___tgt_target_data_begin_mapper_wait); 1531 1532 Value *WaitParams[2] = { 1533 IssueCallsite->getArgOperand( 1534 OffloadArray::DeviceIDArgNum), // device_id. 1535 Handle // handle to wait on. 1536 }; 1537 CallInst::Create(WaitDecl, WaitParams, /*NameStr=*/"", &WaitMovementPoint); 1538 1539 return true; 1540 } 1541 1542 static Value *combinedIdentStruct(Value *CurrentIdent, Value *NextIdent, 1543 bool GlobalOnly, bool &SingleChoice) { 1544 if (CurrentIdent == NextIdent) 1545 return CurrentIdent; 1546 1547 // TODO: Figure out how to actually combine multiple debug locations. For 1548 // now we just keep an existing one if there is a single choice. 1549 if (!GlobalOnly || isa<GlobalValue>(NextIdent)) { 1550 SingleChoice = !CurrentIdent; 1551 return NextIdent; 1552 } 1553 return nullptr; 1554 } 1555 1556 /// Return an `struct ident_t*` value that represents the ones used in the 1557 /// calls of \p RFI inside of \p F. If \p GlobalOnly is true, we will not 1558 /// return a local `struct ident_t*`. For now, if we cannot find a suitable 1559 /// return value we create one from scratch. We also do not yet combine 1560 /// information, e.g., the source locations, see combinedIdentStruct. 1561 Value * 1562 getCombinedIdentFromCallUsesIn(OMPInformationCache::RuntimeFunctionInfo &RFI, 1563 Function &F, bool GlobalOnly) { 1564 bool SingleChoice = true; 1565 Value *Ident = nullptr; 1566 auto CombineIdentStruct = [&](Use &U, Function &Caller) { 1567 CallInst *CI = getCallIfRegularCall(U, &RFI); 1568 if (!CI || &F != &Caller) 1569 return false; 1570 Ident = combinedIdentStruct(Ident, CI->getArgOperand(0), 1571 /* GlobalOnly */ true, SingleChoice); 1572 return false; 1573 }; 1574 RFI.foreachUse(SCC, CombineIdentStruct); 1575 1576 if (!Ident || !SingleChoice) { 1577 // The IRBuilder uses the insertion block to get to the module, this is 1578 // unfortunate but we work around it for now. 1579 if (!OMPInfoCache.OMPBuilder.getInsertionPoint().getBlock()) 1580 OMPInfoCache.OMPBuilder.updateToLocation(OpenMPIRBuilder::InsertPointTy( 1581 &F.getEntryBlock(), F.getEntryBlock().begin())); 1582 // Create a fallback location if non was found. 1583 // TODO: Use the debug locations of the calls instead. 1584 Constant *Loc = OMPInfoCache.OMPBuilder.getOrCreateDefaultSrcLocStr(); 1585 Ident = OMPInfoCache.OMPBuilder.getOrCreateIdent(Loc); 1586 } 1587 return Ident; 1588 } 1589 1590 /// Try to eliminate calls of \p RFI in \p F by reusing an existing one or 1591 /// \p ReplVal if given. 1592 bool deduplicateRuntimeCalls(Function &F, 1593 OMPInformationCache::RuntimeFunctionInfo &RFI, 1594 Value *ReplVal = nullptr) { 1595 auto *UV = RFI.getUseVector(F); 1596 if (!UV || UV->size() + (ReplVal != nullptr) < 2) 1597 return false; 1598 1599 LLVM_DEBUG( 1600 dbgs() << TAG << "Deduplicate " << UV->size() << " uses of " << RFI.Name 1601 << (ReplVal ? " with an existing value\n" : "\n") << "\n"); 1602 1603 assert((!ReplVal || (isa<Argument>(ReplVal) && 1604 cast<Argument>(ReplVal)->getParent() == &F)) && 1605 "Unexpected replacement value!"); 1606 1607 // TODO: Use dominance to find a good position instead. 1608 auto CanBeMoved = [this](CallBase &CB) { 1609 unsigned NumArgs = CB.getNumArgOperands(); 1610 if (NumArgs == 0) 1611 return true; 1612 if (CB.getArgOperand(0)->getType() != OMPInfoCache.OMPBuilder.IdentPtr) 1613 return false; 1614 for (unsigned u = 1; u < NumArgs; ++u) 1615 if (isa<Instruction>(CB.getArgOperand(u))) 1616 return false; 1617 return true; 1618 }; 1619 1620 if (!ReplVal) { 1621 for (Use *U : *UV) 1622 if (CallInst *CI = getCallIfRegularCall(*U, &RFI)) { 1623 if (!CanBeMoved(*CI)) 1624 continue; 1625 1626 // If the function is a kernel, dedup will move 1627 // the runtime call right after the kernel init callsite. Otherwise, 1628 // it will move it to the beginning of the caller function. 1629 if (isKernel(F)) { 1630 auto &KernelInitRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_target_init]; 1631 auto *KernelInitUV = KernelInitRFI.getUseVector(F); 1632 1633 if (KernelInitUV->empty()) 1634 continue; 1635 1636 assert(KernelInitUV->size() == 1 && 1637 "Expected a single __kmpc_target_init in kernel\n"); 1638 1639 CallInst *KernelInitCI = 1640 getCallIfRegularCall(*KernelInitUV->front(), &KernelInitRFI); 1641 assert(KernelInitCI && 1642 "Expected a call to __kmpc_target_init in kernel\n"); 1643 1644 CI->moveAfter(KernelInitCI); 1645 } else 1646 CI->moveBefore(&*F.getEntryBlock().getFirstInsertionPt()); 1647 ReplVal = CI; 1648 break; 1649 } 1650 if (!ReplVal) 1651 return false; 1652 } 1653 1654 // If we use a call as a replacement value we need to make sure the ident is 1655 // valid at the new location. For now we just pick a global one, either 1656 // existing and used by one of the calls, or created from scratch. 1657 if (CallBase *CI = dyn_cast<CallBase>(ReplVal)) { 1658 if (!CI->arg_empty() && 1659 CI->getArgOperand(0)->getType() == OMPInfoCache.OMPBuilder.IdentPtr) { 1660 Value *Ident = getCombinedIdentFromCallUsesIn(RFI, F, 1661 /* GlobalOnly */ true); 1662 CI->setArgOperand(0, Ident); 1663 } 1664 } 1665 1666 bool Changed = false; 1667 auto ReplaceAndDeleteCB = [&](Use &U, Function &Caller) { 1668 CallInst *CI = getCallIfRegularCall(U, &RFI); 1669 if (!CI || CI == ReplVal || &F != &Caller) 1670 return false; 1671 assert(CI->getCaller() == &F && "Unexpected call!"); 1672 1673 auto Remark = [&](OptimizationRemark OR) { 1674 return OR << "OpenMP runtime call " 1675 << ore::NV("OpenMPOptRuntime", RFI.Name) << " deduplicated."; 1676 }; 1677 if (CI->getDebugLoc()) 1678 emitRemark<OptimizationRemark>(CI, "OMP170", Remark); 1679 else 1680 emitRemark<OptimizationRemark>(&F, "OMP170", Remark); 1681 1682 CGUpdater.removeCallSite(*CI); 1683 CI->replaceAllUsesWith(ReplVal); 1684 CI->eraseFromParent(); 1685 ++NumOpenMPRuntimeCallsDeduplicated; 1686 Changed = true; 1687 return true; 1688 }; 1689 RFI.foreachUse(SCC, ReplaceAndDeleteCB); 1690 1691 return Changed; 1692 } 1693 1694 /// Collect arguments that represent the global thread id in \p GTIdArgs. 1695 void collectGlobalThreadIdArguments(SmallSetVector<Value *, 16> >IdArgs) { 1696 // TODO: Below we basically perform a fixpoint iteration with a pessimistic 1697 // initialization. We could define an AbstractAttribute instead and 1698 // run the Attributor here once it can be run as an SCC pass. 1699 1700 // Helper to check the argument \p ArgNo at all call sites of \p F for 1701 // a GTId. 1702 auto CallArgOpIsGTId = [&](Function &F, unsigned ArgNo, CallInst &RefCI) { 1703 if (!F.hasLocalLinkage()) 1704 return false; 1705 for (Use &U : F.uses()) { 1706 if (CallInst *CI = getCallIfRegularCall(U)) { 1707 Value *ArgOp = CI->getArgOperand(ArgNo); 1708 if (CI == &RefCI || GTIdArgs.count(ArgOp) || 1709 getCallIfRegularCall( 1710 *ArgOp, &OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num])) 1711 continue; 1712 } 1713 return false; 1714 } 1715 return true; 1716 }; 1717 1718 // Helper to identify uses of a GTId as GTId arguments. 1719 auto AddUserArgs = [&](Value >Id) { 1720 for (Use &U : GTId.uses()) 1721 if (CallInst *CI = dyn_cast<CallInst>(U.getUser())) 1722 if (CI->isArgOperand(&U)) 1723 if (Function *Callee = CI->getCalledFunction()) 1724 if (CallArgOpIsGTId(*Callee, U.getOperandNo(), *CI)) 1725 GTIdArgs.insert(Callee->getArg(U.getOperandNo())); 1726 }; 1727 1728 // The argument users of __kmpc_global_thread_num calls are GTIds. 1729 OMPInformationCache::RuntimeFunctionInfo &GlobThreadNumRFI = 1730 OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num]; 1731 1732 GlobThreadNumRFI.foreachUse(SCC, [&](Use &U, Function &F) { 1733 if (CallInst *CI = getCallIfRegularCall(U, &GlobThreadNumRFI)) 1734 AddUserArgs(*CI); 1735 return false; 1736 }); 1737 1738 // Transitively search for more arguments by looking at the users of the 1739 // ones we know already. During the search the GTIdArgs vector is extended 1740 // so we cannot cache the size nor can we use a range based for. 1741 for (unsigned u = 0; u < GTIdArgs.size(); ++u) 1742 AddUserArgs(*GTIdArgs[u]); 1743 } 1744 1745 /// Kernel (=GPU) optimizations and utility functions 1746 /// 1747 ///{{ 1748 1749 /// Check if \p F is a kernel, hence entry point for target offloading. 1750 bool isKernel(Function &F) { return OMPInfoCache.Kernels.count(&F); } 1751 1752 /// Cache to remember the unique kernel for a function. 1753 DenseMap<Function *, Optional<Kernel>> UniqueKernelMap; 1754 1755 /// Find the unique kernel that will execute \p F, if any. 1756 Kernel getUniqueKernelFor(Function &F); 1757 1758 /// Find the unique kernel that will execute \p I, if any. 1759 Kernel getUniqueKernelFor(Instruction &I) { 1760 return getUniqueKernelFor(*I.getFunction()); 1761 } 1762 1763 /// Rewrite the device (=GPU) code state machine create in non-SPMD mode in 1764 /// the cases we can avoid taking the address of a function. 1765 bool rewriteDeviceCodeStateMachine(); 1766 1767 /// 1768 ///}} 1769 1770 /// Emit a remark generically 1771 /// 1772 /// This template function can be used to generically emit a remark. The 1773 /// RemarkKind should be one of the following: 1774 /// - OptimizationRemark to indicate a successful optimization attempt 1775 /// - OptimizationRemarkMissed to report a failed optimization attempt 1776 /// - OptimizationRemarkAnalysis to provide additional information about an 1777 /// optimization attempt 1778 /// 1779 /// The remark is built using a callback function provided by the caller that 1780 /// takes a RemarkKind as input and returns a RemarkKind. 1781 template <typename RemarkKind, typename RemarkCallBack> 1782 void emitRemark(Instruction *I, StringRef RemarkName, 1783 RemarkCallBack &&RemarkCB) const { 1784 Function *F = I->getParent()->getParent(); 1785 auto &ORE = OREGetter(F); 1786 1787 if (RemarkName.startswith("OMP")) 1788 ORE.emit([&]() { 1789 return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, I)) 1790 << " [" << RemarkName << "]"; 1791 }); 1792 else 1793 ORE.emit( 1794 [&]() { return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, I)); }); 1795 } 1796 1797 /// Emit a remark on a function. 1798 template <typename RemarkKind, typename RemarkCallBack> 1799 void emitRemark(Function *F, StringRef RemarkName, 1800 RemarkCallBack &&RemarkCB) const { 1801 auto &ORE = OREGetter(F); 1802 1803 if (RemarkName.startswith("OMP")) 1804 ORE.emit([&]() { 1805 return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, F)) 1806 << " [" << RemarkName << "]"; 1807 }); 1808 else 1809 ORE.emit( 1810 [&]() { return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, F)); }); 1811 } 1812 1813 /// RAII struct to temporarily change an RTL function's linkage to external. 1814 /// This prevents it from being mistakenly removed by other optimizations. 1815 struct ExternalizationRAII { 1816 ExternalizationRAII(OMPInformationCache &OMPInfoCache, 1817 RuntimeFunction RFKind) 1818 : Declaration(OMPInfoCache.RFIs[RFKind].Declaration) { 1819 if (!Declaration) 1820 return; 1821 1822 LinkageType = Declaration->getLinkage(); 1823 Declaration->setLinkage(GlobalValue::ExternalLinkage); 1824 } 1825 1826 ~ExternalizationRAII() { 1827 if (!Declaration) 1828 return; 1829 1830 Declaration->setLinkage(LinkageType); 1831 } 1832 1833 Function *Declaration; 1834 GlobalValue::LinkageTypes LinkageType; 1835 }; 1836 1837 /// The underlying module. 1838 Module &M; 1839 1840 /// The SCC we are operating on. 1841 SmallVectorImpl<Function *> &SCC; 1842 1843 /// Callback to update the call graph, the first argument is a removed call, 1844 /// the second an optional replacement call. 1845 CallGraphUpdater &CGUpdater; 1846 1847 /// Callback to get an OptimizationRemarkEmitter from a Function * 1848 OptimizationRemarkGetter OREGetter; 1849 1850 /// OpenMP-specific information cache. Also Used for Attributor runs. 1851 OMPInformationCache &OMPInfoCache; 1852 1853 /// Attributor instance. 1854 Attributor &A; 1855 1856 /// Helper function to run Attributor on SCC. 1857 bool runAttributor(bool IsModulePass) { 1858 if (SCC.empty()) 1859 return false; 1860 1861 // Temporarily make these function have external linkage so the Attributor 1862 // doesn't remove them when we try to look them up later. 1863 ExternalizationRAII Parallel(OMPInfoCache, OMPRTL___kmpc_kernel_parallel); 1864 ExternalizationRAII EndParallel(OMPInfoCache, 1865 OMPRTL___kmpc_kernel_end_parallel); 1866 ExternalizationRAII BarrierSPMD(OMPInfoCache, 1867 OMPRTL___kmpc_barrier_simple_spmd); 1868 ExternalizationRAII ThreadId(OMPInfoCache, 1869 OMPRTL___kmpc_get_hardware_thread_id_in_block); 1870 1871 registerAAs(IsModulePass); 1872 1873 ChangeStatus Changed = A.run(); 1874 1875 LLVM_DEBUG(dbgs() << "[Attributor] Done with " << SCC.size() 1876 << " functions, result: " << Changed << ".\n"); 1877 1878 return Changed == ChangeStatus::CHANGED; 1879 } 1880 1881 void registerFoldRuntimeCall(RuntimeFunction RF); 1882 1883 /// Populate the Attributor with abstract attribute opportunities in the 1884 /// function. 1885 void registerAAs(bool IsModulePass); 1886 }; 1887 1888 Kernel OpenMPOpt::getUniqueKernelFor(Function &F) { 1889 if (!OMPInfoCache.ModuleSlice.count(&F)) 1890 return nullptr; 1891 1892 // Use a scope to keep the lifetime of the CachedKernel short. 1893 { 1894 Optional<Kernel> &CachedKernel = UniqueKernelMap[&F]; 1895 if (CachedKernel) 1896 return *CachedKernel; 1897 1898 // TODO: We should use an AA to create an (optimistic and callback 1899 // call-aware) call graph. For now we stick to simple patterns that 1900 // are less powerful, basically the worst fixpoint. 1901 if (isKernel(F)) { 1902 CachedKernel = Kernel(&F); 1903 return *CachedKernel; 1904 } 1905 1906 CachedKernel = nullptr; 1907 if (!F.hasLocalLinkage()) { 1908 1909 // See https://openmp.llvm.org/remarks/OptimizationRemarks.html 1910 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 1911 return ORA << "Potentially unknown OpenMP target region caller."; 1912 }; 1913 emitRemark<OptimizationRemarkAnalysis>(&F, "OMP100", Remark); 1914 1915 return nullptr; 1916 } 1917 } 1918 1919 auto GetUniqueKernelForUse = [&](const Use &U) -> Kernel { 1920 if (auto *Cmp = dyn_cast<ICmpInst>(U.getUser())) { 1921 // Allow use in equality comparisons. 1922 if (Cmp->isEquality()) 1923 return getUniqueKernelFor(*Cmp); 1924 return nullptr; 1925 } 1926 if (auto *CB = dyn_cast<CallBase>(U.getUser())) { 1927 // Allow direct calls. 1928 if (CB->isCallee(&U)) 1929 return getUniqueKernelFor(*CB); 1930 1931 OMPInformationCache::RuntimeFunctionInfo &KernelParallelRFI = 1932 OMPInfoCache.RFIs[OMPRTL___kmpc_parallel_51]; 1933 // Allow the use in __kmpc_parallel_51 calls. 1934 if (OpenMPOpt::getCallIfRegularCall(*U.getUser(), &KernelParallelRFI)) 1935 return getUniqueKernelFor(*CB); 1936 return nullptr; 1937 } 1938 // Disallow every other use. 1939 return nullptr; 1940 }; 1941 1942 // TODO: In the future we want to track more than just a unique kernel. 1943 SmallPtrSet<Kernel, 2> PotentialKernels; 1944 OMPInformationCache::foreachUse(F, [&](const Use &U) { 1945 PotentialKernels.insert(GetUniqueKernelForUse(U)); 1946 }); 1947 1948 Kernel K = nullptr; 1949 if (PotentialKernels.size() == 1) 1950 K = *PotentialKernels.begin(); 1951 1952 // Cache the result. 1953 UniqueKernelMap[&F] = K; 1954 1955 return K; 1956 } 1957 1958 bool OpenMPOpt::rewriteDeviceCodeStateMachine() { 1959 OMPInformationCache::RuntimeFunctionInfo &KernelParallelRFI = 1960 OMPInfoCache.RFIs[OMPRTL___kmpc_parallel_51]; 1961 1962 bool Changed = false; 1963 if (!KernelParallelRFI) 1964 return Changed; 1965 1966 // If we have disabled state machine changes, exit 1967 if (DisableOpenMPOptStateMachineRewrite) 1968 return Changed; 1969 1970 for (Function *F : SCC) { 1971 1972 // Check if the function is a use in a __kmpc_parallel_51 call at 1973 // all. 1974 bool UnknownUse = false; 1975 bool KernelParallelUse = false; 1976 unsigned NumDirectCalls = 0; 1977 1978 SmallVector<Use *, 2> ToBeReplacedStateMachineUses; 1979 OMPInformationCache::foreachUse(*F, [&](Use &U) { 1980 if (auto *CB = dyn_cast<CallBase>(U.getUser())) 1981 if (CB->isCallee(&U)) { 1982 ++NumDirectCalls; 1983 return; 1984 } 1985 1986 if (isa<ICmpInst>(U.getUser())) { 1987 ToBeReplacedStateMachineUses.push_back(&U); 1988 return; 1989 } 1990 1991 // Find wrapper functions that represent parallel kernels. 1992 CallInst *CI = 1993 OpenMPOpt::getCallIfRegularCall(*U.getUser(), &KernelParallelRFI); 1994 const unsigned int WrapperFunctionArgNo = 6; 1995 if (!KernelParallelUse && CI && 1996 CI->getArgOperandNo(&U) == WrapperFunctionArgNo) { 1997 KernelParallelUse = true; 1998 ToBeReplacedStateMachineUses.push_back(&U); 1999 return; 2000 } 2001 UnknownUse = true; 2002 }); 2003 2004 // Do not emit a remark if we haven't seen a __kmpc_parallel_51 2005 // use. 2006 if (!KernelParallelUse) 2007 continue; 2008 2009 // If this ever hits, we should investigate. 2010 // TODO: Checking the number of uses is not a necessary restriction and 2011 // should be lifted. 2012 if (UnknownUse || NumDirectCalls != 1 || 2013 ToBeReplacedStateMachineUses.size() > 2) { 2014 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 2015 return ORA << "Parallel region is used in " 2016 << (UnknownUse ? "unknown" : "unexpected") 2017 << " ways. Will not attempt to rewrite the state machine."; 2018 }; 2019 emitRemark<OptimizationRemarkAnalysis>(F, "OMP101", Remark); 2020 continue; 2021 } 2022 2023 // Even if we have __kmpc_parallel_51 calls, we (for now) give 2024 // up if the function is not called from a unique kernel. 2025 Kernel K = getUniqueKernelFor(*F); 2026 if (!K) { 2027 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 2028 return ORA << "Parallel region is not called from a unique kernel. " 2029 "Will not attempt to rewrite the state machine."; 2030 }; 2031 emitRemark<OptimizationRemarkAnalysis>(F, "OMP102", Remark); 2032 continue; 2033 } 2034 2035 // We now know F is a parallel body function called only from the kernel K. 2036 // We also identified the state machine uses in which we replace the 2037 // function pointer by a new global symbol for identification purposes. This 2038 // ensures only direct calls to the function are left. 2039 2040 Module &M = *F->getParent(); 2041 Type *Int8Ty = Type::getInt8Ty(M.getContext()); 2042 2043 auto *ID = new GlobalVariable( 2044 M, Int8Ty, /* isConstant */ true, GlobalValue::PrivateLinkage, 2045 UndefValue::get(Int8Ty), F->getName() + ".ID"); 2046 2047 for (Use *U : ToBeReplacedStateMachineUses) 2048 U->set(ConstantExpr::getPointerBitCastOrAddrSpaceCast( 2049 ID, U->get()->getType())); 2050 2051 ++NumOpenMPParallelRegionsReplacedInGPUStateMachine; 2052 2053 Changed = true; 2054 } 2055 2056 return Changed; 2057 } 2058 2059 /// Abstract Attribute for tracking ICV values. 2060 struct AAICVTracker : public StateWrapper<BooleanState, AbstractAttribute> { 2061 using Base = StateWrapper<BooleanState, AbstractAttribute>; 2062 AAICVTracker(const IRPosition &IRP, Attributor &A) : Base(IRP) {} 2063 2064 void initialize(Attributor &A) override { 2065 Function *F = getAnchorScope(); 2066 if (!F || !A.isFunctionIPOAmendable(*F)) 2067 indicatePessimisticFixpoint(); 2068 } 2069 2070 /// Returns true if value is assumed to be tracked. 2071 bool isAssumedTracked() const { return getAssumed(); } 2072 2073 /// Returns true if value is known to be tracked. 2074 bool isKnownTracked() const { return getAssumed(); } 2075 2076 /// Create an abstract attribute biew for the position \p IRP. 2077 static AAICVTracker &createForPosition(const IRPosition &IRP, Attributor &A); 2078 2079 /// Return the value with which \p I can be replaced for specific \p ICV. 2080 virtual Optional<Value *> getReplacementValue(InternalControlVar ICV, 2081 const Instruction *I, 2082 Attributor &A) const { 2083 return None; 2084 } 2085 2086 /// Return an assumed unique ICV value if a single candidate is found. If 2087 /// there cannot be one, return a nullptr. If it is not clear yet, return the 2088 /// Optional::NoneType. 2089 virtual Optional<Value *> 2090 getUniqueReplacementValue(InternalControlVar ICV) const = 0; 2091 2092 // Currently only nthreads is being tracked. 2093 // this array will only grow with time. 2094 InternalControlVar TrackableICVs[1] = {ICV_nthreads}; 2095 2096 /// See AbstractAttribute::getName() 2097 const std::string getName() const override { return "AAICVTracker"; } 2098 2099 /// See AbstractAttribute::getIdAddr() 2100 const char *getIdAddr() const override { return &ID; } 2101 2102 /// This function should return true if the type of the \p AA is AAICVTracker 2103 static bool classof(const AbstractAttribute *AA) { 2104 return (AA->getIdAddr() == &ID); 2105 } 2106 2107 static const char ID; 2108 }; 2109 2110 struct AAICVTrackerFunction : public AAICVTracker { 2111 AAICVTrackerFunction(const IRPosition &IRP, Attributor &A) 2112 : AAICVTracker(IRP, A) {} 2113 2114 // FIXME: come up with better string. 2115 const std::string getAsStr() const override { return "ICVTrackerFunction"; } 2116 2117 // FIXME: come up with some stats. 2118 void trackStatistics() const override {} 2119 2120 /// We don't manifest anything for this AA. 2121 ChangeStatus manifest(Attributor &A) override { 2122 return ChangeStatus::UNCHANGED; 2123 } 2124 2125 // Map of ICV to their values at specific program point. 2126 EnumeratedArray<DenseMap<Instruction *, Value *>, InternalControlVar, 2127 InternalControlVar::ICV___last> 2128 ICVReplacementValuesMap; 2129 2130 ChangeStatus updateImpl(Attributor &A) override { 2131 ChangeStatus HasChanged = ChangeStatus::UNCHANGED; 2132 2133 Function *F = getAnchorScope(); 2134 2135 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2136 2137 for (InternalControlVar ICV : TrackableICVs) { 2138 auto &SetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Setter]; 2139 2140 auto &ValuesMap = ICVReplacementValuesMap[ICV]; 2141 auto TrackValues = [&](Use &U, Function &) { 2142 CallInst *CI = OpenMPOpt::getCallIfRegularCall(U); 2143 if (!CI) 2144 return false; 2145 2146 // FIXME: handle setters with more that 1 arguments. 2147 /// Track new value. 2148 if (ValuesMap.insert(std::make_pair(CI, CI->getArgOperand(0))).second) 2149 HasChanged = ChangeStatus::CHANGED; 2150 2151 return false; 2152 }; 2153 2154 auto CallCheck = [&](Instruction &I) { 2155 Optional<Value *> ReplVal = getValueForCall(A, &I, ICV); 2156 if (ReplVal.hasValue() && 2157 ValuesMap.insert(std::make_pair(&I, *ReplVal)).second) 2158 HasChanged = ChangeStatus::CHANGED; 2159 2160 return true; 2161 }; 2162 2163 // Track all changes of an ICV. 2164 SetterRFI.foreachUse(TrackValues, F); 2165 2166 bool UsedAssumedInformation = false; 2167 A.checkForAllInstructions(CallCheck, *this, {Instruction::Call}, 2168 UsedAssumedInformation, 2169 /* CheckBBLivenessOnly */ true); 2170 2171 /// TODO: Figure out a way to avoid adding entry in 2172 /// ICVReplacementValuesMap 2173 Instruction *Entry = &F->getEntryBlock().front(); 2174 if (HasChanged == ChangeStatus::CHANGED && !ValuesMap.count(Entry)) 2175 ValuesMap.insert(std::make_pair(Entry, nullptr)); 2176 } 2177 2178 return HasChanged; 2179 } 2180 2181 /// Hepler to check if \p I is a call and get the value for it if it is 2182 /// unique. 2183 Optional<Value *> getValueForCall(Attributor &A, const Instruction *I, 2184 InternalControlVar &ICV) const { 2185 2186 const auto *CB = dyn_cast<CallBase>(I); 2187 if (!CB || CB->hasFnAttr("no_openmp") || 2188 CB->hasFnAttr("no_openmp_routines")) 2189 return None; 2190 2191 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2192 auto &GetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Getter]; 2193 auto &SetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Setter]; 2194 Function *CalledFunction = CB->getCalledFunction(); 2195 2196 // Indirect call, assume ICV changes. 2197 if (CalledFunction == nullptr) 2198 return nullptr; 2199 if (CalledFunction == GetterRFI.Declaration) 2200 return None; 2201 if (CalledFunction == SetterRFI.Declaration) { 2202 if (ICVReplacementValuesMap[ICV].count(I)) 2203 return ICVReplacementValuesMap[ICV].lookup(I); 2204 2205 return nullptr; 2206 } 2207 2208 // Since we don't know, assume it changes the ICV. 2209 if (CalledFunction->isDeclaration()) 2210 return nullptr; 2211 2212 const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>( 2213 *this, IRPosition::callsite_returned(*CB), DepClassTy::REQUIRED); 2214 2215 if (ICVTrackingAA.isAssumedTracked()) 2216 return ICVTrackingAA.getUniqueReplacementValue(ICV); 2217 2218 // If we don't know, assume it changes. 2219 return nullptr; 2220 } 2221 2222 // We don't check unique value for a function, so return None. 2223 Optional<Value *> 2224 getUniqueReplacementValue(InternalControlVar ICV) const override { 2225 return None; 2226 } 2227 2228 /// Return the value with which \p I can be replaced for specific \p ICV. 2229 Optional<Value *> getReplacementValue(InternalControlVar ICV, 2230 const Instruction *I, 2231 Attributor &A) const override { 2232 const auto &ValuesMap = ICVReplacementValuesMap[ICV]; 2233 if (ValuesMap.count(I)) 2234 return ValuesMap.lookup(I); 2235 2236 SmallVector<const Instruction *, 16> Worklist; 2237 SmallPtrSet<const Instruction *, 16> Visited; 2238 Worklist.push_back(I); 2239 2240 Optional<Value *> ReplVal; 2241 2242 while (!Worklist.empty()) { 2243 const Instruction *CurrInst = Worklist.pop_back_val(); 2244 if (!Visited.insert(CurrInst).second) 2245 continue; 2246 2247 const BasicBlock *CurrBB = CurrInst->getParent(); 2248 2249 // Go up and look for all potential setters/calls that might change the 2250 // ICV. 2251 while ((CurrInst = CurrInst->getPrevNode())) { 2252 if (ValuesMap.count(CurrInst)) { 2253 Optional<Value *> NewReplVal = ValuesMap.lookup(CurrInst); 2254 // Unknown value, track new. 2255 if (!ReplVal.hasValue()) { 2256 ReplVal = NewReplVal; 2257 break; 2258 } 2259 2260 // If we found a new value, we can't know the icv value anymore. 2261 if (NewReplVal.hasValue()) 2262 if (ReplVal != NewReplVal) 2263 return nullptr; 2264 2265 break; 2266 } 2267 2268 Optional<Value *> NewReplVal = getValueForCall(A, CurrInst, ICV); 2269 if (!NewReplVal.hasValue()) 2270 continue; 2271 2272 // Unknown value, track new. 2273 if (!ReplVal.hasValue()) { 2274 ReplVal = NewReplVal; 2275 break; 2276 } 2277 2278 // if (NewReplVal.hasValue()) 2279 // We found a new value, we can't know the icv value anymore. 2280 if (ReplVal != NewReplVal) 2281 return nullptr; 2282 } 2283 2284 // If we are in the same BB and we have a value, we are done. 2285 if (CurrBB == I->getParent() && ReplVal.hasValue()) 2286 return ReplVal; 2287 2288 // Go through all predecessors and add terminators for analysis. 2289 for (const BasicBlock *Pred : predecessors(CurrBB)) 2290 if (const Instruction *Terminator = Pred->getTerminator()) 2291 Worklist.push_back(Terminator); 2292 } 2293 2294 return ReplVal; 2295 } 2296 }; 2297 2298 struct AAICVTrackerFunctionReturned : AAICVTracker { 2299 AAICVTrackerFunctionReturned(const IRPosition &IRP, Attributor &A) 2300 : AAICVTracker(IRP, A) {} 2301 2302 // FIXME: come up with better string. 2303 const std::string getAsStr() const override { 2304 return "ICVTrackerFunctionReturned"; 2305 } 2306 2307 // FIXME: come up with some stats. 2308 void trackStatistics() const override {} 2309 2310 /// We don't manifest anything for this AA. 2311 ChangeStatus manifest(Attributor &A) override { 2312 return ChangeStatus::UNCHANGED; 2313 } 2314 2315 // Map of ICV to their values at specific program point. 2316 EnumeratedArray<Optional<Value *>, InternalControlVar, 2317 InternalControlVar::ICV___last> 2318 ICVReplacementValuesMap; 2319 2320 /// Return the value with which \p I can be replaced for specific \p ICV. 2321 Optional<Value *> 2322 getUniqueReplacementValue(InternalControlVar ICV) const override { 2323 return ICVReplacementValuesMap[ICV]; 2324 } 2325 2326 ChangeStatus updateImpl(Attributor &A) override { 2327 ChangeStatus Changed = ChangeStatus::UNCHANGED; 2328 const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>( 2329 *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED); 2330 2331 if (!ICVTrackingAA.isAssumedTracked()) 2332 return indicatePessimisticFixpoint(); 2333 2334 for (InternalControlVar ICV : TrackableICVs) { 2335 Optional<Value *> &ReplVal = ICVReplacementValuesMap[ICV]; 2336 Optional<Value *> UniqueICVValue; 2337 2338 auto CheckReturnInst = [&](Instruction &I) { 2339 Optional<Value *> NewReplVal = 2340 ICVTrackingAA.getReplacementValue(ICV, &I, A); 2341 2342 // If we found a second ICV value there is no unique returned value. 2343 if (UniqueICVValue.hasValue() && UniqueICVValue != NewReplVal) 2344 return false; 2345 2346 UniqueICVValue = NewReplVal; 2347 2348 return true; 2349 }; 2350 2351 bool UsedAssumedInformation = false; 2352 if (!A.checkForAllInstructions(CheckReturnInst, *this, {Instruction::Ret}, 2353 UsedAssumedInformation, 2354 /* CheckBBLivenessOnly */ true)) 2355 UniqueICVValue = nullptr; 2356 2357 if (UniqueICVValue == ReplVal) 2358 continue; 2359 2360 ReplVal = UniqueICVValue; 2361 Changed = ChangeStatus::CHANGED; 2362 } 2363 2364 return Changed; 2365 } 2366 }; 2367 2368 struct AAICVTrackerCallSite : AAICVTracker { 2369 AAICVTrackerCallSite(const IRPosition &IRP, Attributor &A) 2370 : AAICVTracker(IRP, A) {} 2371 2372 void initialize(Attributor &A) override { 2373 Function *F = getAnchorScope(); 2374 if (!F || !A.isFunctionIPOAmendable(*F)) 2375 indicatePessimisticFixpoint(); 2376 2377 // We only initialize this AA for getters, so we need to know which ICV it 2378 // gets. 2379 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2380 for (InternalControlVar ICV : TrackableICVs) { 2381 auto ICVInfo = OMPInfoCache.ICVs[ICV]; 2382 auto &Getter = OMPInfoCache.RFIs[ICVInfo.Getter]; 2383 if (Getter.Declaration == getAssociatedFunction()) { 2384 AssociatedICV = ICVInfo.Kind; 2385 return; 2386 } 2387 } 2388 2389 /// Unknown ICV. 2390 indicatePessimisticFixpoint(); 2391 } 2392 2393 ChangeStatus manifest(Attributor &A) override { 2394 if (!ReplVal.hasValue() || !ReplVal.getValue()) 2395 return ChangeStatus::UNCHANGED; 2396 2397 A.changeValueAfterManifest(*getCtxI(), **ReplVal); 2398 A.deleteAfterManifest(*getCtxI()); 2399 2400 return ChangeStatus::CHANGED; 2401 } 2402 2403 // FIXME: come up with better string. 2404 const std::string getAsStr() const override { return "ICVTrackerCallSite"; } 2405 2406 // FIXME: come up with some stats. 2407 void trackStatistics() const override {} 2408 2409 InternalControlVar AssociatedICV; 2410 Optional<Value *> ReplVal; 2411 2412 ChangeStatus updateImpl(Attributor &A) override { 2413 const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>( 2414 *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED); 2415 2416 // We don't have any information, so we assume it changes the ICV. 2417 if (!ICVTrackingAA.isAssumedTracked()) 2418 return indicatePessimisticFixpoint(); 2419 2420 Optional<Value *> NewReplVal = 2421 ICVTrackingAA.getReplacementValue(AssociatedICV, getCtxI(), A); 2422 2423 if (ReplVal == NewReplVal) 2424 return ChangeStatus::UNCHANGED; 2425 2426 ReplVal = NewReplVal; 2427 return ChangeStatus::CHANGED; 2428 } 2429 2430 // Return the value with which associated value can be replaced for specific 2431 // \p ICV. 2432 Optional<Value *> 2433 getUniqueReplacementValue(InternalControlVar ICV) const override { 2434 return ReplVal; 2435 } 2436 }; 2437 2438 struct AAICVTrackerCallSiteReturned : AAICVTracker { 2439 AAICVTrackerCallSiteReturned(const IRPosition &IRP, Attributor &A) 2440 : AAICVTracker(IRP, A) {} 2441 2442 // FIXME: come up with better string. 2443 const std::string getAsStr() const override { 2444 return "ICVTrackerCallSiteReturned"; 2445 } 2446 2447 // FIXME: come up with some stats. 2448 void trackStatistics() const override {} 2449 2450 /// We don't manifest anything for this AA. 2451 ChangeStatus manifest(Attributor &A) override { 2452 return ChangeStatus::UNCHANGED; 2453 } 2454 2455 // Map of ICV to their values at specific program point. 2456 EnumeratedArray<Optional<Value *>, InternalControlVar, 2457 InternalControlVar::ICV___last> 2458 ICVReplacementValuesMap; 2459 2460 /// Return the value with which associated value can be replaced for specific 2461 /// \p ICV. 2462 Optional<Value *> 2463 getUniqueReplacementValue(InternalControlVar ICV) const override { 2464 return ICVReplacementValuesMap[ICV]; 2465 } 2466 2467 ChangeStatus updateImpl(Attributor &A) override { 2468 ChangeStatus Changed = ChangeStatus::UNCHANGED; 2469 const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>( 2470 *this, IRPosition::returned(*getAssociatedFunction()), 2471 DepClassTy::REQUIRED); 2472 2473 // We don't have any information, so we assume it changes the ICV. 2474 if (!ICVTrackingAA.isAssumedTracked()) 2475 return indicatePessimisticFixpoint(); 2476 2477 for (InternalControlVar ICV : TrackableICVs) { 2478 Optional<Value *> &ReplVal = ICVReplacementValuesMap[ICV]; 2479 Optional<Value *> NewReplVal = 2480 ICVTrackingAA.getUniqueReplacementValue(ICV); 2481 2482 if (ReplVal == NewReplVal) 2483 continue; 2484 2485 ReplVal = NewReplVal; 2486 Changed = ChangeStatus::CHANGED; 2487 } 2488 return Changed; 2489 } 2490 }; 2491 2492 struct AAExecutionDomainFunction : public AAExecutionDomain { 2493 AAExecutionDomainFunction(const IRPosition &IRP, Attributor &A) 2494 : AAExecutionDomain(IRP, A) {} 2495 2496 const std::string getAsStr() const override { 2497 return "[AAExecutionDomain] " + std::to_string(SingleThreadedBBs.size()) + 2498 "/" + std::to_string(NumBBs) + " BBs thread 0 only."; 2499 } 2500 2501 /// See AbstractAttribute::trackStatistics(). 2502 void trackStatistics() const override {} 2503 2504 void initialize(Attributor &A) override { 2505 Function *F = getAnchorScope(); 2506 for (const auto &BB : *F) 2507 SingleThreadedBBs.insert(&BB); 2508 NumBBs = SingleThreadedBBs.size(); 2509 } 2510 2511 ChangeStatus manifest(Attributor &A) override { 2512 LLVM_DEBUG({ 2513 for (const BasicBlock *BB : SingleThreadedBBs) 2514 dbgs() << TAG << " Basic block @" << getAnchorScope()->getName() << " " 2515 << BB->getName() << " is executed by a single thread.\n"; 2516 }); 2517 return ChangeStatus::UNCHANGED; 2518 } 2519 2520 ChangeStatus updateImpl(Attributor &A) override; 2521 2522 /// Check if an instruction is executed by a single thread. 2523 bool isExecutedByInitialThreadOnly(const Instruction &I) const override { 2524 return isExecutedByInitialThreadOnly(*I.getParent()); 2525 } 2526 2527 bool isExecutedByInitialThreadOnly(const BasicBlock &BB) const override { 2528 return isValidState() && SingleThreadedBBs.contains(&BB); 2529 } 2530 2531 /// Set of basic blocks that are executed by a single thread. 2532 DenseSet<const BasicBlock *> SingleThreadedBBs; 2533 2534 /// Total number of basic blocks in this function. 2535 long unsigned NumBBs; 2536 }; 2537 2538 ChangeStatus AAExecutionDomainFunction::updateImpl(Attributor &A) { 2539 Function *F = getAnchorScope(); 2540 ReversePostOrderTraversal<Function *> RPOT(F); 2541 auto NumSingleThreadedBBs = SingleThreadedBBs.size(); 2542 2543 bool AllCallSitesKnown; 2544 auto PredForCallSite = [&](AbstractCallSite ACS) { 2545 const auto &ExecutionDomainAA = A.getAAFor<AAExecutionDomain>( 2546 *this, IRPosition::function(*ACS.getInstruction()->getFunction()), 2547 DepClassTy::REQUIRED); 2548 return ACS.isDirectCall() && 2549 ExecutionDomainAA.isExecutedByInitialThreadOnly( 2550 *ACS.getInstruction()); 2551 }; 2552 2553 if (!A.checkForAllCallSites(PredForCallSite, *this, 2554 /* RequiresAllCallSites */ true, 2555 AllCallSitesKnown)) 2556 SingleThreadedBBs.erase(&F->getEntryBlock()); 2557 2558 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2559 auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_target_init]; 2560 2561 // Check if the edge into the successor block contains a condition that only 2562 // lets the main thread execute it. 2563 auto IsInitialThreadOnly = [&](BranchInst *Edge, BasicBlock *SuccessorBB) { 2564 if (!Edge || !Edge->isConditional()) 2565 return false; 2566 if (Edge->getSuccessor(0) != SuccessorBB) 2567 return false; 2568 2569 auto *Cmp = dyn_cast<CmpInst>(Edge->getCondition()); 2570 if (!Cmp || !Cmp->isTrueWhenEqual() || !Cmp->isEquality()) 2571 return false; 2572 2573 ConstantInt *C = dyn_cast<ConstantInt>(Cmp->getOperand(1)); 2574 if (!C) 2575 return false; 2576 2577 // Match: -1 == __kmpc_target_init (for non-SPMD kernels only!) 2578 if (C->isAllOnesValue()) { 2579 auto *CB = dyn_cast<CallBase>(Cmp->getOperand(0)); 2580 CB = CB ? OpenMPOpt::getCallIfRegularCall(*CB, &RFI) : nullptr; 2581 if (!CB) 2582 return false; 2583 const int InitIsSPMDArgNo = 1; 2584 auto *IsSPMDModeCI = 2585 dyn_cast<ConstantInt>(CB->getOperand(InitIsSPMDArgNo)); 2586 return IsSPMDModeCI && IsSPMDModeCI->isZero(); 2587 } 2588 2589 if (C->isZero()) { 2590 // Match: 0 == llvm.nvvm.read.ptx.sreg.tid.x() 2591 if (auto *II = dyn_cast<IntrinsicInst>(Cmp->getOperand(0))) 2592 if (II->getIntrinsicID() == Intrinsic::nvvm_read_ptx_sreg_tid_x) 2593 return true; 2594 2595 // Match: 0 == llvm.amdgcn.workitem.id.x() 2596 if (auto *II = dyn_cast<IntrinsicInst>(Cmp->getOperand(0))) 2597 if (II->getIntrinsicID() == Intrinsic::amdgcn_workitem_id_x) 2598 return true; 2599 } 2600 2601 return false; 2602 }; 2603 2604 // Merge all the predecessor states into the current basic block. A basic 2605 // block is executed by a single thread if all of its predecessors are. 2606 auto MergePredecessorStates = [&](BasicBlock *BB) { 2607 if (pred_begin(BB) == pred_end(BB)) 2608 return SingleThreadedBBs.contains(BB); 2609 2610 bool IsInitialThread = true; 2611 for (auto PredBB = pred_begin(BB), PredEndBB = pred_end(BB); 2612 PredBB != PredEndBB; ++PredBB) { 2613 if (!IsInitialThreadOnly(dyn_cast<BranchInst>((*PredBB)->getTerminator()), 2614 BB)) 2615 IsInitialThread &= SingleThreadedBBs.contains(*PredBB); 2616 } 2617 2618 return IsInitialThread; 2619 }; 2620 2621 for (auto *BB : RPOT) { 2622 if (!MergePredecessorStates(BB)) 2623 SingleThreadedBBs.erase(BB); 2624 } 2625 2626 return (NumSingleThreadedBBs == SingleThreadedBBs.size()) 2627 ? ChangeStatus::UNCHANGED 2628 : ChangeStatus::CHANGED; 2629 } 2630 2631 /// Try to replace memory allocation calls called by a single thread with a 2632 /// static buffer of shared memory. 2633 struct AAHeapToShared : public StateWrapper<BooleanState, AbstractAttribute> { 2634 using Base = StateWrapper<BooleanState, AbstractAttribute>; 2635 AAHeapToShared(const IRPosition &IRP, Attributor &A) : Base(IRP) {} 2636 2637 /// Create an abstract attribute view for the position \p IRP. 2638 static AAHeapToShared &createForPosition(const IRPosition &IRP, 2639 Attributor &A); 2640 2641 /// Returns true if HeapToShared conversion is assumed to be possible. 2642 virtual bool isAssumedHeapToShared(CallBase &CB) const = 0; 2643 2644 /// Returns true if HeapToShared conversion is assumed and the CB is a 2645 /// callsite to a free operation to be removed. 2646 virtual bool isAssumedHeapToSharedRemovedFree(CallBase &CB) const = 0; 2647 2648 /// See AbstractAttribute::getName(). 2649 const std::string getName() const override { return "AAHeapToShared"; } 2650 2651 /// See AbstractAttribute::getIdAddr(). 2652 const char *getIdAddr() const override { return &ID; } 2653 2654 /// This function should return true if the type of the \p AA is 2655 /// AAHeapToShared. 2656 static bool classof(const AbstractAttribute *AA) { 2657 return (AA->getIdAddr() == &ID); 2658 } 2659 2660 /// Unique ID (due to the unique address) 2661 static const char ID; 2662 }; 2663 2664 struct AAHeapToSharedFunction : public AAHeapToShared { 2665 AAHeapToSharedFunction(const IRPosition &IRP, Attributor &A) 2666 : AAHeapToShared(IRP, A) {} 2667 2668 const std::string getAsStr() const override { 2669 return "[AAHeapToShared] " + std::to_string(MallocCalls.size()) + 2670 " malloc calls eligible."; 2671 } 2672 2673 /// See AbstractAttribute::trackStatistics(). 2674 void trackStatistics() const override {} 2675 2676 /// This functions finds free calls that will be removed by the 2677 /// HeapToShared transformation. 2678 void findPotentialRemovedFreeCalls(Attributor &A) { 2679 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2680 auto &FreeRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_free_shared]; 2681 2682 PotentialRemovedFreeCalls.clear(); 2683 // Update free call users of found malloc calls. 2684 for (CallBase *CB : MallocCalls) { 2685 SmallVector<CallBase *, 4> FreeCalls; 2686 for (auto *U : CB->users()) { 2687 CallBase *C = dyn_cast<CallBase>(U); 2688 if (C && C->getCalledFunction() == FreeRFI.Declaration) 2689 FreeCalls.push_back(C); 2690 } 2691 2692 if (FreeCalls.size() != 1) 2693 continue; 2694 2695 PotentialRemovedFreeCalls.insert(FreeCalls.front()); 2696 } 2697 } 2698 2699 void initialize(Attributor &A) override { 2700 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2701 auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared]; 2702 2703 for (User *U : RFI.Declaration->users()) 2704 if (CallBase *CB = dyn_cast<CallBase>(U)) 2705 MallocCalls.insert(CB); 2706 2707 findPotentialRemovedFreeCalls(A); 2708 } 2709 2710 bool isAssumedHeapToShared(CallBase &CB) const override { 2711 return isValidState() && MallocCalls.count(&CB); 2712 } 2713 2714 bool isAssumedHeapToSharedRemovedFree(CallBase &CB) const override { 2715 return isValidState() && PotentialRemovedFreeCalls.count(&CB); 2716 } 2717 2718 ChangeStatus manifest(Attributor &A) override { 2719 if (MallocCalls.empty()) 2720 return ChangeStatus::UNCHANGED; 2721 2722 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2723 auto &FreeCall = OMPInfoCache.RFIs[OMPRTL___kmpc_free_shared]; 2724 2725 Function *F = getAnchorScope(); 2726 auto *HS = A.lookupAAFor<AAHeapToStack>(IRPosition::function(*F), this, 2727 DepClassTy::OPTIONAL); 2728 2729 ChangeStatus Changed = ChangeStatus::UNCHANGED; 2730 for (CallBase *CB : MallocCalls) { 2731 // Skip replacing this if HeapToStack has already claimed it. 2732 if (HS && HS->isAssumedHeapToStack(*CB)) 2733 continue; 2734 2735 // Find the unique free call to remove it. 2736 SmallVector<CallBase *, 4> FreeCalls; 2737 for (auto *U : CB->users()) { 2738 CallBase *C = dyn_cast<CallBase>(U); 2739 if (C && C->getCalledFunction() == FreeCall.Declaration) 2740 FreeCalls.push_back(C); 2741 } 2742 if (FreeCalls.size() != 1) 2743 continue; 2744 2745 ConstantInt *AllocSize = dyn_cast<ConstantInt>(CB->getArgOperand(0)); 2746 2747 LLVM_DEBUG(dbgs() << TAG << "Replace globalization call " << *CB 2748 << " with " << AllocSize->getZExtValue() 2749 << " bytes of shared memory\n"); 2750 2751 // Create a new shared memory buffer of the same size as the allocation 2752 // and replace all the uses of the original allocation with it. 2753 Module *M = CB->getModule(); 2754 Type *Int8Ty = Type::getInt8Ty(M->getContext()); 2755 Type *Int8ArrTy = ArrayType::get(Int8Ty, AllocSize->getZExtValue()); 2756 auto *SharedMem = new GlobalVariable( 2757 *M, Int8ArrTy, /* IsConstant */ false, GlobalValue::InternalLinkage, 2758 UndefValue::get(Int8ArrTy), CB->getName(), nullptr, 2759 GlobalValue::NotThreadLocal, 2760 static_cast<unsigned>(AddressSpace::Shared)); 2761 auto *NewBuffer = 2762 ConstantExpr::getPointerCast(SharedMem, Int8Ty->getPointerTo()); 2763 2764 auto Remark = [&](OptimizationRemark OR) { 2765 return OR << "Replaced globalized variable with " 2766 << ore::NV("SharedMemory", AllocSize->getZExtValue()) 2767 << ((AllocSize->getZExtValue() != 1) ? " bytes " : " byte ") 2768 << "of shared memory."; 2769 }; 2770 A.emitRemark<OptimizationRemark>(CB, "OMP111", Remark); 2771 2772 SharedMem->setAlignment(MaybeAlign(32)); 2773 2774 A.changeValueAfterManifest(*CB, *NewBuffer); 2775 A.deleteAfterManifest(*CB); 2776 A.deleteAfterManifest(*FreeCalls.front()); 2777 2778 NumBytesMovedToSharedMemory += AllocSize->getZExtValue(); 2779 Changed = ChangeStatus::CHANGED; 2780 } 2781 2782 return Changed; 2783 } 2784 2785 ChangeStatus updateImpl(Attributor &A) override { 2786 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2787 auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared]; 2788 Function *F = getAnchorScope(); 2789 2790 auto NumMallocCalls = MallocCalls.size(); 2791 2792 // Only consider malloc calls executed by a single thread with a constant. 2793 for (User *U : RFI.Declaration->users()) { 2794 const auto &ED = A.getAAFor<AAExecutionDomain>( 2795 *this, IRPosition::function(*F), DepClassTy::REQUIRED); 2796 if (CallBase *CB = dyn_cast<CallBase>(U)) 2797 if (!dyn_cast<ConstantInt>(CB->getArgOperand(0)) || 2798 !ED.isExecutedByInitialThreadOnly(*CB)) 2799 MallocCalls.erase(CB); 2800 } 2801 2802 findPotentialRemovedFreeCalls(A); 2803 2804 if (NumMallocCalls != MallocCalls.size()) 2805 return ChangeStatus::CHANGED; 2806 2807 return ChangeStatus::UNCHANGED; 2808 } 2809 2810 /// Collection of all malloc calls in a function. 2811 SmallPtrSet<CallBase *, 4> MallocCalls; 2812 /// Collection of potentially removed free calls in a function. 2813 SmallPtrSet<CallBase *, 4> PotentialRemovedFreeCalls; 2814 }; 2815 2816 struct AAKernelInfo : public StateWrapper<KernelInfoState, AbstractAttribute> { 2817 using Base = StateWrapper<KernelInfoState, AbstractAttribute>; 2818 AAKernelInfo(const IRPosition &IRP, Attributor &A) : Base(IRP) {} 2819 2820 /// Statistics are tracked as part of manifest for now. 2821 void trackStatistics() const override {} 2822 2823 /// See AbstractAttribute::getAsStr() 2824 const std::string getAsStr() const override { 2825 if (!isValidState()) 2826 return "<invalid>"; 2827 return std::string(SPMDCompatibilityTracker.isAssumed() ? "SPMD" 2828 : "generic") + 2829 std::string(SPMDCompatibilityTracker.isAtFixpoint() ? " [FIX]" 2830 : "") + 2831 std::string(" #PRs: ") + 2832 std::to_string(ReachedKnownParallelRegions.size()) + 2833 ", #Unknown PRs: " + 2834 std::to_string(ReachedUnknownParallelRegions.size()); 2835 } 2836 2837 /// Create an abstract attribute biew for the position \p IRP. 2838 static AAKernelInfo &createForPosition(const IRPosition &IRP, Attributor &A); 2839 2840 /// See AbstractAttribute::getName() 2841 const std::string getName() const override { return "AAKernelInfo"; } 2842 2843 /// See AbstractAttribute::getIdAddr() 2844 const char *getIdAddr() const override { return &ID; } 2845 2846 /// This function should return true if the type of the \p AA is AAKernelInfo 2847 static bool classof(const AbstractAttribute *AA) { 2848 return (AA->getIdAddr() == &ID); 2849 } 2850 2851 static const char ID; 2852 }; 2853 2854 /// The function kernel info abstract attribute, basically, what can we say 2855 /// about a function with regards to the KernelInfoState. 2856 struct AAKernelInfoFunction : AAKernelInfo { 2857 AAKernelInfoFunction(const IRPosition &IRP, Attributor &A) 2858 : AAKernelInfo(IRP, A) {} 2859 2860 SmallPtrSet<Instruction *, 4> GuardedInstructions; 2861 2862 SmallPtrSetImpl<Instruction *> &getGuardedInstructions() { 2863 return GuardedInstructions; 2864 } 2865 2866 /// See AbstractAttribute::initialize(...). 2867 void initialize(Attributor &A) override { 2868 // This is a high-level transform that might change the constant arguments 2869 // of the init and dinit calls. We need to tell the Attributor about this 2870 // to avoid other parts using the current constant value for simpliication. 2871 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2872 2873 Function *Fn = getAnchorScope(); 2874 if (!OMPInfoCache.Kernels.count(Fn)) 2875 return; 2876 2877 // Add itself to the reaching kernel and set IsKernelEntry. 2878 ReachingKernelEntries.insert(Fn); 2879 IsKernelEntry = true; 2880 2881 OMPInformationCache::RuntimeFunctionInfo &InitRFI = 2882 OMPInfoCache.RFIs[OMPRTL___kmpc_target_init]; 2883 OMPInformationCache::RuntimeFunctionInfo &DeinitRFI = 2884 OMPInfoCache.RFIs[OMPRTL___kmpc_target_deinit]; 2885 2886 // For kernels we perform more initialization work, first we find the init 2887 // and deinit calls. 2888 auto StoreCallBase = [](Use &U, 2889 OMPInformationCache::RuntimeFunctionInfo &RFI, 2890 CallBase *&Storage) { 2891 CallBase *CB = OpenMPOpt::getCallIfRegularCall(U, &RFI); 2892 assert(CB && 2893 "Unexpected use of __kmpc_target_init or __kmpc_target_deinit!"); 2894 assert(!Storage && 2895 "Multiple uses of __kmpc_target_init or __kmpc_target_deinit!"); 2896 Storage = CB; 2897 return false; 2898 }; 2899 InitRFI.foreachUse( 2900 [&](Use &U, Function &) { 2901 StoreCallBase(U, InitRFI, KernelInitCB); 2902 return false; 2903 }, 2904 Fn); 2905 DeinitRFI.foreachUse( 2906 [&](Use &U, Function &) { 2907 StoreCallBase(U, DeinitRFI, KernelDeinitCB); 2908 return false; 2909 }, 2910 Fn); 2911 2912 // Ignore kernels without initializers such as global constructors. 2913 if (!KernelInitCB || !KernelDeinitCB) { 2914 indicateOptimisticFixpoint(); 2915 return; 2916 } 2917 2918 // For kernels we might need to initialize/finalize the IsSPMD state and 2919 // we need to register a simplification callback so that the Attributor 2920 // knows the constant arguments to __kmpc_target_init and 2921 // __kmpc_target_deinit might actually change. 2922 2923 Attributor::SimplifictionCallbackTy StateMachineSimplifyCB = 2924 [&](const IRPosition &IRP, const AbstractAttribute *AA, 2925 bool &UsedAssumedInformation) -> Optional<Value *> { 2926 // IRP represents the "use generic state machine" argument of an 2927 // __kmpc_target_init call. We will answer this one with the internal 2928 // state. As long as we are not in an invalid state, we will create a 2929 // custom state machine so the value should be a `i1 false`. If we are 2930 // in an invalid state, we won't change the value that is in the IR. 2931 if (!isValidState()) 2932 return nullptr; 2933 // If we have disabled state machine rewrites, don't make a custom one. 2934 if (DisableOpenMPOptStateMachineRewrite) 2935 return nullptr; 2936 if (AA) 2937 A.recordDependence(*this, *AA, DepClassTy::OPTIONAL); 2938 UsedAssumedInformation = !isAtFixpoint(); 2939 auto *FalseVal = 2940 ConstantInt::getBool(IRP.getAnchorValue().getContext(), 0); 2941 return FalseVal; 2942 }; 2943 2944 Attributor::SimplifictionCallbackTy IsSPMDModeSimplifyCB = 2945 [&](const IRPosition &IRP, const AbstractAttribute *AA, 2946 bool &UsedAssumedInformation) -> Optional<Value *> { 2947 // IRP represents the "SPMDCompatibilityTracker" argument of an 2948 // __kmpc_target_init or 2949 // __kmpc_target_deinit call. We will answer this one with the internal 2950 // state. 2951 if (!SPMDCompatibilityTracker.isValidState()) 2952 return nullptr; 2953 if (!SPMDCompatibilityTracker.isAtFixpoint()) { 2954 if (AA) 2955 A.recordDependence(*this, *AA, DepClassTy::OPTIONAL); 2956 UsedAssumedInformation = true; 2957 } else { 2958 UsedAssumedInformation = false; 2959 } 2960 auto *Val = ConstantInt::getBool(IRP.getAnchorValue().getContext(), 2961 SPMDCompatibilityTracker.isAssumed()); 2962 return Val; 2963 }; 2964 2965 Attributor::SimplifictionCallbackTy IsGenericModeSimplifyCB = 2966 [&](const IRPosition &IRP, const AbstractAttribute *AA, 2967 bool &UsedAssumedInformation) -> Optional<Value *> { 2968 // IRP represents the "RequiresFullRuntime" argument of an 2969 // __kmpc_target_init or __kmpc_target_deinit call. We will answer this 2970 // one with the internal state of the SPMDCompatibilityTracker, so if 2971 // generic then true, if SPMD then false. 2972 if (!SPMDCompatibilityTracker.isValidState()) 2973 return nullptr; 2974 if (!SPMDCompatibilityTracker.isAtFixpoint()) { 2975 if (AA) 2976 A.recordDependence(*this, *AA, DepClassTy::OPTIONAL); 2977 UsedAssumedInformation = true; 2978 } else { 2979 UsedAssumedInformation = false; 2980 } 2981 auto *Val = ConstantInt::getBool(IRP.getAnchorValue().getContext(), 2982 !SPMDCompatibilityTracker.isAssumed()); 2983 return Val; 2984 }; 2985 2986 constexpr const int InitIsSPMDArgNo = 1; 2987 constexpr const int DeinitIsSPMDArgNo = 1; 2988 constexpr const int InitUseStateMachineArgNo = 2; 2989 constexpr const int InitRequiresFullRuntimeArgNo = 3; 2990 constexpr const int DeinitRequiresFullRuntimeArgNo = 2; 2991 A.registerSimplificationCallback( 2992 IRPosition::callsite_argument(*KernelInitCB, InitUseStateMachineArgNo), 2993 StateMachineSimplifyCB); 2994 A.registerSimplificationCallback( 2995 IRPosition::callsite_argument(*KernelInitCB, InitIsSPMDArgNo), 2996 IsSPMDModeSimplifyCB); 2997 A.registerSimplificationCallback( 2998 IRPosition::callsite_argument(*KernelDeinitCB, DeinitIsSPMDArgNo), 2999 IsSPMDModeSimplifyCB); 3000 A.registerSimplificationCallback( 3001 IRPosition::callsite_argument(*KernelInitCB, 3002 InitRequiresFullRuntimeArgNo), 3003 IsGenericModeSimplifyCB); 3004 A.registerSimplificationCallback( 3005 IRPosition::callsite_argument(*KernelDeinitCB, 3006 DeinitRequiresFullRuntimeArgNo), 3007 IsGenericModeSimplifyCB); 3008 3009 // Check if we know we are in SPMD-mode already. 3010 ConstantInt *IsSPMDArg = 3011 dyn_cast<ConstantInt>(KernelInitCB->getArgOperand(InitIsSPMDArgNo)); 3012 if (IsSPMDArg && !IsSPMDArg->isZero()) 3013 SPMDCompatibilityTracker.indicateOptimisticFixpoint(); 3014 // This is a generic region but SPMDization is disabled so stop tracking. 3015 else if (DisableOpenMPOptSPMDization) 3016 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 3017 } 3018 3019 /// Modify the IR based on the KernelInfoState as the fixpoint iteration is 3020 /// finished now. 3021 ChangeStatus manifest(Attributor &A) override { 3022 // If we are not looking at a kernel with __kmpc_target_init and 3023 // __kmpc_target_deinit call we cannot actually manifest the information. 3024 if (!KernelInitCB || !KernelDeinitCB) 3025 return ChangeStatus::UNCHANGED; 3026 3027 // Known SPMD-mode kernels need no manifest changes. 3028 if (SPMDCompatibilityTracker.isKnown()) 3029 return ChangeStatus::UNCHANGED; 3030 3031 // If we can we change the execution mode to SPMD-mode otherwise we build a 3032 // custom state machine. 3033 if (!mayContainParallelRegion() || !changeToSPMDMode(A)) 3034 buildCustomStateMachine(A); 3035 3036 return ChangeStatus::CHANGED; 3037 } 3038 3039 bool changeToSPMDMode(Attributor &A) { 3040 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 3041 3042 if (!SPMDCompatibilityTracker.isAssumed()) { 3043 for (Instruction *NonCompatibleI : SPMDCompatibilityTracker) { 3044 if (!NonCompatibleI) 3045 continue; 3046 3047 // Skip diagnostics on calls to known OpenMP runtime functions for now. 3048 if (auto *CB = dyn_cast<CallBase>(NonCompatibleI)) 3049 if (OMPInfoCache.RTLFunctions.contains(CB->getCalledFunction())) 3050 continue; 3051 3052 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 3053 ORA << "Value has potential side effects preventing SPMD-mode " 3054 "execution"; 3055 if (isa<CallBase>(NonCompatibleI)) { 3056 ORA << ". Add `__attribute__((assume(\"ompx_spmd_amenable\")))` to " 3057 "the called function to override"; 3058 } 3059 return ORA << "."; 3060 }; 3061 A.emitRemark<OptimizationRemarkAnalysis>(NonCompatibleI, "OMP121", 3062 Remark); 3063 3064 LLVM_DEBUG(dbgs() << TAG << "SPMD-incompatible side-effect: " 3065 << *NonCompatibleI << "\n"); 3066 } 3067 3068 return false; 3069 } 3070 3071 auto CreateGuardedRegion = [&](Instruction *RegionStartI, 3072 Instruction *RegionEndI) { 3073 LoopInfo *LI = nullptr; 3074 DominatorTree *DT = nullptr; 3075 MemorySSAUpdater *MSU = nullptr; 3076 using InsertPointTy = OpenMPIRBuilder::InsertPointTy; 3077 3078 BasicBlock *ParentBB = RegionStartI->getParent(); 3079 Function *Fn = ParentBB->getParent(); 3080 Module &M = *Fn->getParent(); 3081 3082 // Create all the blocks and logic. 3083 // ParentBB: 3084 // goto RegionCheckTidBB 3085 // RegionCheckTidBB: 3086 // Tid = __kmpc_hardware_thread_id() 3087 // if (Tid != 0) 3088 // goto RegionBarrierBB 3089 // RegionStartBB: 3090 // <execute instructions guarded> 3091 // goto RegionEndBB 3092 // RegionEndBB: 3093 // <store escaping values to shared mem> 3094 // goto RegionBarrierBB 3095 // RegionBarrierBB: 3096 // __kmpc_simple_barrier_spmd() 3097 // // second barrier is omitted if lacking escaping values. 3098 // <load escaping values from shared mem> 3099 // __kmpc_simple_barrier_spmd() 3100 // goto RegionExitBB 3101 // RegionExitBB: 3102 // <execute rest of instructions> 3103 3104 BasicBlock *RegionEndBB = SplitBlock(ParentBB, RegionEndI->getNextNode(), 3105 DT, LI, MSU, "region.guarded.end"); 3106 BasicBlock *RegionBarrierBB = 3107 SplitBlock(RegionEndBB, &*RegionEndBB->getFirstInsertionPt(), DT, LI, 3108 MSU, "region.barrier"); 3109 BasicBlock *RegionExitBB = 3110 SplitBlock(RegionBarrierBB, &*RegionBarrierBB->getFirstInsertionPt(), 3111 DT, LI, MSU, "region.exit"); 3112 BasicBlock *RegionStartBB = 3113 SplitBlock(ParentBB, RegionStartI, DT, LI, MSU, "region.guarded"); 3114 3115 assert(ParentBB->getUniqueSuccessor() == RegionStartBB && 3116 "Expected a different CFG"); 3117 3118 BasicBlock *RegionCheckTidBB = SplitBlock( 3119 ParentBB, ParentBB->getTerminator(), DT, LI, MSU, "region.check.tid"); 3120 3121 // Register basic blocks with the Attributor. 3122 A.registerManifestAddedBasicBlock(*RegionEndBB); 3123 A.registerManifestAddedBasicBlock(*RegionBarrierBB); 3124 A.registerManifestAddedBasicBlock(*RegionExitBB); 3125 A.registerManifestAddedBasicBlock(*RegionStartBB); 3126 A.registerManifestAddedBasicBlock(*RegionCheckTidBB); 3127 3128 bool HasBroadcastValues = false; 3129 // Find escaping outputs from the guarded region to outside users and 3130 // broadcast their values to them. 3131 for (Instruction &I : *RegionStartBB) { 3132 SmallPtrSet<Instruction *, 4> OutsideUsers; 3133 for (User *Usr : I.users()) { 3134 Instruction &UsrI = *cast<Instruction>(Usr); 3135 if (UsrI.getParent() != RegionStartBB) 3136 OutsideUsers.insert(&UsrI); 3137 } 3138 3139 if (OutsideUsers.empty()) 3140 continue; 3141 3142 HasBroadcastValues = true; 3143 3144 // Emit a global variable in shared memory to store the broadcasted 3145 // value. 3146 auto *SharedMem = new GlobalVariable( 3147 M, I.getType(), /* IsConstant */ false, 3148 GlobalValue::InternalLinkage, UndefValue::get(I.getType()), 3149 I.getName() + ".guarded.output.alloc", nullptr, 3150 GlobalValue::NotThreadLocal, 3151 static_cast<unsigned>(AddressSpace::Shared)); 3152 3153 // Emit a store instruction to update the value. 3154 new StoreInst(&I, SharedMem, RegionEndBB->getTerminator()); 3155 3156 LoadInst *LoadI = new LoadInst(I.getType(), SharedMem, 3157 I.getName() + ".guarded.output.load", 3158 RegionBarrierBB->getTerminator()); 3159 3160 // Emit a load instruction and replace uses of the output value. 3161 for (Instruction *UsrI : OutsideUsers) { 3162 assert(UsrI->getParent() == RegionExitBB && 3163 "Expected escaping users in exit region"); 3164 UsrI->replaceUsesOfWith(&I, LoadI); 3165 } 3166 } 3167 3168 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 3169 3170 // Go to tid check BB in ParentBB. 3171 const DebugLoc DL = ParentBB->getTerminator()->getDebugLoc(); 3172 ParentBB->getTerminator()->eraseFromParent(); 3173 OpenMPIRBuilder::LocationDescription Loc( 3174 InsertPointTy(ParentBB, ParentBB->end()), DL); 3175 OMPInfoCache.OMPBuilder.updateToLocation(Loc); 3176 auto *SrcLocStr = OMPInfoCache.OMPBuilder.getOrCreateSrcLocStr(Loc); 3177 Value *Ident = OMPInfoCache.OMPBuilder.getOrCreateIdent(SrcLocStr); 3178 BranchInst::Create(RegionCheckTidBB, ParentBB)->setDebugLoc(DL); 3179 3180 // Add check for Tid in RegionCheckTidBB 3181 RegionCheckTidBB->getTerminator()->eraseFromParent(); 3182 OpenMPIRBuilder::LocationDescription LocRegionCheckTid( 3183 InsertPointTy(RegionCheckTidBB, RegionCheckTidBB->end()), DL); 3184 OMPInfoCache.OMPBuilder.updateToLocation(LocRegionCheckTid); 3185 FunctionCallee HardwareTidFn = 3186 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( 3187 M, OMPRTL___kmpc_get_hardware_thread_id_in_block); 3188 Value *Tid = 3189 OMPInfoCache.OMPBuilder.Builder.CreateCall(HardwareTidFn, {}); 3190 Value *TidCheck = OMPInfoCache.OMPBuilder.Builder.CreateIsNull(Tid); 3191 OMPInfoCache.OMPBuilder.Builder 3192 .CreateCondBr(TidCheck, RegionStartBB, RegionBarrierBB) 3193 ->setDebugLoc(DL); 3194 3195 // First barrier for synchronization, ensures main thread has updated 3196 // values. 3197 FunctionCallee BarrierFn = 3198 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( 3199 M, OMPRTL___kmpc_barrier_simple_spmd); 3200 OMPInfoCache.OMPBuilder.updateToLocation(InsertPointTy( 3201 RegionBarrierBB, RegionBarrierBB->getFirstInsertionPt())); 3202 OMPInfoCache.OMPBuilder.Builder.CreateCall(BarrierFn, {Ident, Tid}) 3203 ->setDebugLoc(DL); 3204 3205 // Second barrier ensures workers have read broadcast values. 3206 if (HasBroadcastValues) 3207 CallInst::Create(BarrierFn, {Ident, Tid}, "", 3208 RegionBarrierBB->getTerminator()) 3209 ->setDebugLoc(DL); 3210 }; 3211 3212 auto &AllocSharedRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared]; 3213 SmallPtrSet<BasicBlock *, 8> Visited; 3214 for (Instruction *GuardedI : SPMDCompatibilityTracker) { 3215 BasicBlock *BB = GuardedI->getParent(); 3216 if (!Visited.insert(BB).second) 3217 continue; 3218 3219 SmallVector<std::pair<Instruction *, Instruction *>> Reorders; 3220 Instruction *LastEffect = nullptr; 3221 BasicBlock::reverse_iterator IP = BB->rbegin(), IPEnd = BB->rend(); 3222 while (++IP != IPEnd) { 3223 if (!IP->mayHaveSideEffects() && !IP->mayReadFromMemory()) 3224 continue; 3225 Instruction *I = &*IP; 3226 if (OpenMPOpt::getCallIfRegularCall(*I, &AllocSharedRFI)) 3227 continue; 3228 if (!I->user_empty() || !SPMDCompatibilityTracker.contains(I)) { 3229 LastEffect = nullptr; 3230 continue; 3231 } 3232 if (LastEffect) 3233 Reorders.push_back({I, LastEffect}); 3234 LastEffect = &*IP; 3235 } 3236 for (auto &Reorder : Reorders) 3237 Reorder.first->moveBefore(Reorder.second); 3238 } 3239 3240 SmallVector<std::pair<Instruction *, Instruction *>, 4> GuardedRegions; 3241 3242 for (Instruction *GuardedI : SPMDCompatibilityTracker) { 3243 BasicBlock *BB = GuardedI->getParent(); 3244 auto *CalleeAA = A.lookupAAFor<AAKernelInfo>( 3245 IRPosition::function(*GuardedI->getFunction()), nullptr, 3246 DepClassTy::NONE); 3247 assert(CalleeAA != nullptr && "Expected Callee AAKernelInfo"); 3248 auto &CalleeAAFunction = *cast<AAKernelInfoFunction>(CalleeAA); 3249 // Continue if instruction is already guarded. 3250 if (CalleeAAFunction.getGuardedInstructions().contains(GuardedI)) 3251 continue; 3252 3253 Instruction *GuardedRegionStart = nullptr, *GuardedRegionEnd = nullptr; 3254 for (Instruction &I : *BB) { 3255 // If instruction I needs to be guarded update the guarded region 3256 // bounds. 3257 if (SPMDCompatibilityTracker.contains(&I)) { 3258 CalleeAAFunction.getGuardedInstructions().insert(&I); 3259 if (GuardedRegionStart) 3260 GuardedRegionEnd = &I; 3261 else 3262 GuardedRegionStart = GuardedRegionEnd = &I; 3263 3264 continue; 3265 } 3266 3267 // Instruction I does not need guarding, store 3268 // any region found and reset bounds. 3269 if (GuardedRegionStart) { 3270 GuardedRegions.push_back( 3271 std::make_pair(GuardedRegionStart, GuardedRegionEnd)); 3272 GuardedRegionStart = nullptr; 3273 GuardedRegionEnd = nullptr; 3274 } 3275 } 3276 } 3277 3278 for (auto &GR : GuardedRegions) 3279 CreateGuardedRegion(GR.first, GR.second); 3280 3281 // Adjust the global exec mode flag that tells the runtime what mode this 3282 // kernel is executed in. 3283 Function *Kernel = getAnchorScope(); 3284 GlobalVariable *ExecMode = Kernel->getParent()->getGlobalVariable( 3285 (Kernel->getName() + "_exec_mode").str()); 3286 assert(ExecMode && "Kernel without exec mode?"); 3287 assert(ExecMode->getInitializer() && "ExecMode doesn't have initializer!"); 3288 3289 // Set the global exec mode flag to indicate SPMD-Generic mode. 3290 assert(isa<ConstantInt>(ExecMode->getInitializer()) && 3291 "ExecMode is not an integer!"); 3292 const int8_t ExecModeVal = 3293 cast<ConstantInt>(ExecMode->getInitializer())->getSExtValue(); 3294 assert(ExecModeVal == OMP_TGT_EXEC_MODE_GENERIC && 3295 "Initially non-SPMD kernel has SPMD exec mode!"); 3296 ExecMode->setInitializer( 3297 ConstantInt::get(ExecMode->getInitializer()->getType(), 3298 ExecModeVal | OMP_TGT_EXEC_MODE_GENERIC_SPMD)); 3299 3300 // Next rewrite the init and deinit calls to indicate we use SPMD-mode now. 3301 const int InitIsSPMDArgNo = 1; 3302 const int DeinitIsSPMDArgNo = 1; 3303 const int InitUseStateMachineArgNo = 2; 3304 const int InitRequiresFullRuntimeArgNo = 3; 3305 const int DeinitRequiresFullRuntimeArgNo = 2; 3306 3307 auto &Ctx = getAnchorValue().getContext(); 3308 A.changeUseAfterManifest(KernelInitCB->getArgOperandUse(InitIsSPMDArgNo), 3309 *ConstantInt::getBool(Ctx, 1)); 3310 A.changeUseAfterManifest( 3311 KernelInitCB->getArgOperandUse(InitUseStateMachineArgNo), 3312 *ConstantInt::getBool(Ctx, 0)); 3313 A.changeUseAfterManifest( 3314 KernelDeinitCB->getArgOperandUse(DeinitIsSPMDArgNo), 3315 *ConstantInt::getBool(Ctx, 1)); 3316 A.changeUseAfterManifest( 3317 KernelInitCB->getArgOperandUse(InitRequiresFullRuntimeArgNo), 3318 *ConstantInt::getBool(Ctx, 0)); 3319 A.changeUseAfterManifest( 3320 KernelDeinitCB->getArgOperandUse(DeinitRequiresFullRuntimeArgNo), 3321 *ConstantInt::getBool(Ctx, 0)); 3322 3323 ++NumOpenMPTargetRegionKernelsSPMD; 3324 3325 auto Remark = [&](OptimizationRemark OR) { 3326 return OR << "Transformed generic-mode kernel to SPMD-mode."; 3327 }; 3328 A.emitRemark<OptimizationRemark>(KernelInitCB, "OMP120", Remark); 3329 return true; 3330 }; 3331 3332 ChangeStatus buildCustomStateMachine(Attributor &A) { 3333 // If we have disabled state machine rewrites, don't make a custom one 3334 if (DisableOpenMPOptStateMachineRewrite) 3335 return indicatePessimisticFixpoint(); 3336 3337 assert(ReachedKnownParallelRegions.isValidState() && 3338 "Custom state machine with invalid parallel region states?"); 3339 3340 const int InitIsSPMDArgNo = 1; 3341 const int InitUseStateMachineArgNo = 2; 3342 3343 // Check if the current configuration is non-SPMD and generic state machine. 3344 // If we already have SPMD mode or a custom state machine we do not need to 3345 // go any further. If it is anything but a constant something is weird and 3346 // we give up. 3347 ConstantInt *UseStateMachine = dyn_cast<ConstantInt>( 3348 KernelInitCB->getArgOperand(InitUseStateMachineArgNo)); 3349 ConstantInt *IsSPMD = 3350 dyn_cast<ConstantInt>(KernelInitCB->getArgOperand(InitIsSPMDArgNo)); 3351 3352 // If we are stuck with generic mode, try to create a custom device (=GPU) 3353 // state machine which is specialized for the parallel regions that are 3354 // reachable by the kernel. 3355 if (!UseStateMachine || UseStateMachine->isZero() || !IsSPMD || 3356 !IsSPMD->isZero()) 3357 return ChangeStatus::UNCHANGED; 3358 3359 // If not SPMD mode, indicate we use a custom state machine now. 3360 auto &Ctx = getAnchorValue().getContext(); 3361 auto *FalseVal = ConstantInt::getBool(Ctx, 0); 3362 A.changeUseAfterManifest( 3363 KernelInitCB->getArgOperandUse(InitUseStateMachineArgNo), *FalseVal); 3364 3365 // If we don't actually need a state machine we are done here. This can 3366 // happen if there simply are no parallel regions. In the resulting kernel 3367 // all worker threads will simply exit right away, leaving the main thread 3368 // to do the work alone. 3369 if (!mayContainParallelRegion()) { 3370 ++NumOpenMPTargetRegionKernelsWithoutStateMachine; 3371 3372 auto Remark = [&](OptimizationRemark OR) { 3373 return OR << "Removing unused state machine from generic-mode kernel."; 3374 }; 3375 A.emitRemark<OptimizationRemark>(KernelInitCB, "OMP130", Remark); 3376 3377 return ChangeStatus::CHANGED; 3378 } 3379 3380 // Keep track in the statistics of our new shiny custom state machine. 3381 if (ReachedUnknownParallelRegions.empty()) { 3382 ++NumOpenMPTargetRegionKernelsCustomStateMachineWithoutFallback; 3383 3384 auto Remark = [&](OptimizationRemark OR) { 3385 return OR << "Rewriting generic-mode kernel with a customized state " 3386 "machine."; 3387 }; 3388 A.emitRemark<OptimizationRemark>(KernelInitCB, "OMP131", Remark); 3389 } else { 3390 ++NumOpenMPTargetRegionKernelsCustomStateMachineWithFallback; 3391 3392 auto Remark = [&](OptimizationRemarkAnalysis OR) { 3393 return OR << "Generic-mode kernel is executed with a customized state " 3394 "machine that requires a fallback."; 3395 }; 3396 A.emitRemark<OptimizationRemarkAnalysis>(KernelInitCB, "OMP132", Remark); 3397 3398 // Tell the user why we ended up with a fallback. 3399 for (CallBase *UnknownParallelRegionCB : ReachedUnknownParallelRegions) { 3400 if (!UnknownParallelRegionCB) 3401 continue; 3402 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 3403 return ORA << "Call may contain unknown parallel regions. Use " 3404 << "`__attribute__((assume(\"omp_no_parallelism\")))` to " 3405 "override."; 3406 }; 3407 A.emitRemark<OptimizationRemarkAnalysis>(UnknownParallelRegionCB, 3408 "OMP133", Remark); 3409 } 3410 } 3411 3412 // Create all the blocks: 3413 // 3414 // InitCB = __kmpc_target_init(...) 3415 // bool IsWorker = InitCB >= 0; 3416 // if (IsWorker) { 3417 // SMBeginBB: __kmpc_barrier_simple_spmd(...); 3418 // void *WorkFn; 3419 // bool Active = __kmpc_kernel_parallel(&WorkFn); 3420 // if (!WorkFn) return; 3421 // SMIsActiveCheckBB: if (Active) { 3422 // SMIfCascadeCurrentBB: if (WorkFn == <ParFn0>) 3423 // ParFn0(...); 3424 // SMIfCascadeCurrentBB: else if (WorkFn == <ParFn1>) 3425 // ParFn1(...); 3426 // ... 3427 // SMIfCascadeCurrentBB: else 3428 // ((WorkFnTy*)WorkFn)(...); 3429 // SMEndParallelBB: __kmpc_kernel_end_parallel(...); 3430 // } 3431 // SMDoneBB: __kmpc_barrier_simple_spmd(...); 3432 // goto SMBeginBB; 3433 // } 3434 // UserCodeEntryBB: // user code 3435 // __kmpc_target_deinit(...) 3436 // 3437 Function *Kernel = getAssociatedFunction(); 3438 assert(Kernel && "Expected an associated function!"); 3439 3440 BasicBlock *InitBB = KernelInitCB->getParent(); 3441 BasicBlock *UserCodeEntryBB = InitBB->splitBasicBlock( 3442 KernelInitCB->getNextNode(), "thread.user_code.check"); 3443 BasicBlock *StateMachineBeginBB = BasicBlock::Create( 3444 Ctx, "worker_state_machine.begin", Kernel, UserCodeEntryBB); 3445 BasicBlock *StateMachineFinishedBB = BasicBlock::Create( 3446 Ctx, "worker_state_machine.finished", Kernel, UserCodeEntryBB); 3447 BasicBlock *StateMachineIsActiveCheckBB = BasicBlock::Create( 3448 Ctx, "worker_state_machine.is_active.check", Kernel, UserCodeEntryBB); 3449 BasicBlock *StateMachineIfCascadeCurrentBB = 3450 BasicBlock::Create(Ctx, "worker_state_machine.parallel_region.check", 3451 Kernel, UserCodeEntryBB); 3452 BasicBlock *StateMachineEndParallelBB = 3453 BasicBlock::Create(Ctx, "worker_state_machine.parallel_region.end", 3454 Kernel, UserCodeEntryBB); 3455 BasicBlock *StateMachineDoneBarrierBB = BasicBlock::Create( 3456 Ctx, "worker_state_machine.done.barrier", Kernel, UserCodeEntryBB); 3457 A.registerManifestAddedBasicBlock(*InitBB); 3458 A.registerManifestAddedBasicBlock(*UserCodeEntryBB); 3459 A.registerManifestAddedBasicBlock(*StateMachineBeginBB); 3460 A.registerManifestAddedBasicBlock(*StateMachineFinishedBB); 3461 A.registerManifestAddedBasicBlock(*StateMachineIsActiveCheckBB); 3462 A.registerManifestAddedBasicBlock(*StateMachineIfCascadeCurrentBB); 3463 A.registerManifestAddedBasicBlock(*StateMachineEndParallelBB); 3464 A.registerManifestAddedBasicBlock(*StateMachineDoneBarrierBB); 3465 3466 const DebugLoc &DLoc = KernelInitCB->getDebugLoc(); 3467 ReturnInst::Create(Ctx, StateMachineFinishedBB)->setDebugLoc(DLoc); 3468 3469 InitBB->getTerminator()->eraseFromParent(); 3470 Instruction *IsWorker = 3471 ICmpInst::Create(ICmpInst::ICmp, llvm::CmpInst::ICMP_NE, KernelInitCB, 3472 ConstantInt::get(KernelInitCB->getType(), -1), 3473 "thread.is_worker", InitBB); 3474 IsWorker->setDebugLoc(DLoc); 3475 BranchInst::Create(StateMachineBeginBB, UserCodeEntryBB, IsWorker, InitBB); 3476 3477 Module &M = *Kernel->getParent(); 3478 3479 // Create local storage for the work function pointer. 3480 const DataLayout &DL = M.getDataLayout(); 3481 Type *VoidPtrTy = Type::getInt8PtrTy(Ctx); 3482 Instruction *WorkFnAI = 3483 new AllocaInst(VoidPtrTy, DL.getAllocaAddrSpace(), nullptr, 3484 "worker.work_fn.addr", &Kernel->getEntryBlock().front()); 3485 WorkFnAI->setDebugLoc(DLoc); 3486 3487 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 3488 OMPInfoCache.OMPBuilder.updateToLocation( 3489 OpenMPIRBuilder::LocationDescription( 3490 IRBuilder<>::InsertPoint(StateMachineBeginBB, 3491 StateMachineBeginBB->end()), 3492 DLoc)); 3493 3494 Value *Ident = KernelInitCB->getArgOperand(0); 3495 Value *GTid = KernelInitCB; 3496 3497 FunctionCallee BarrierFn = 3498 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( 3499 M, OMPRTL___kmpc_barrier_simple_spmd); 3500 CallInst::Create(BarrierFn, {Ident, GTid}, "", StateMachineBeginBB) 3501 ->setDebugLoc(DLoc); 3502 3503 if (WorkFnAI->getType()->getPointerAddressSpace() != 3504 (unsigned int)AddressSpace::Generic) { 3505 WorkFnAI = new AddrSpaceCastInst( 3506 WorkFnAI, 3507 PointerType::getWithSamePointeeType( 3508 cast<PointerType>(WorkFnAI->getType()), 3509 (unsigned int)AddressSpace::Generic), 3510 WorkFnAI->getName() + ".generic", StateMachineBeginBB); 3511 WorkFnAI->setDebugLoc(DLoc); 3512 } 3513 3514 FunctionCallee KernelParallelFn = 3515 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( 3516 M, OMPRTL___kmpc_kernel_parallel); 3517 Instruction *IsActiveWorker = CallInst::Create( 3518 KernelParallelFn, {WorkFnAI}, "worker.is_active", StateMachineBeginBB); 3519 IsActiveWorker->setDebugLoc(DLoc); 3520 Instruction *WorkFn = new LoadInst(VoidPtrTy, WorkFnAI, "worker.work_fn", 3521 StateMachineBeginBB); 3522 WorkFn->setDebugLoc(DLoc); 3523 3524 FunctionType *ParallelRegionFnTy = FunctionType::get( 3525 Type::getVoidTy(Ctx), {Type::getInt16Ty(Ctx), Type::getInt32Ty(Ctx)}, 3526 false); 3527 Value *WorkFnCast = BitCastInst::CreatePointerBitCastOrAddrSpaceCast( 3528 WorkFn, ParallelRegionFnTy->getPointerTo(), "worker.work_fn.addr_cast", 3529 StateMachineBeginBB); 3530 3531 Instruction *IsDone = 3532 ICmpInst::Create(ICmpInst::ICmp, llvm::CmpInst::ICMP_EQ, WorkFn, 3533 Constant::getNullValue(VoidPtrTy), "worker.is_done", 3534 StateMachineBeginBB); 3535 IsDone->setDebugLoc(DLoc); 3536 BranchInst::Create(StateMachineFinishedBB, StateMachineIsActiveCheckBB, 3537 IsDone, StateMachineBeginBB) 3538 ->setDebugLoc(DLoc); 3539 3540 BranchInst::Create(StateMachineIfCascadeCurrentBB, 3541 StateMachineDoneBarrierBB, IsActiveWorker, 3542 StateMachineIsActiveCheckBB) 3543 ->setDebugLoc(DLoc); 3544 3545 Value *ZeroArg = 3546 Constant::getNullValue(ParallelRegionFnTy->getParamType(0)); 3547 3548 // Now that we have most of the CFG skeleton it is time for the if-cascade 3549 // that checks the function pointer we got from the runtime against the 3550 // parallel regions we expect, if there are any. 3551 for (int i = 0, e = ReachedKnownParallelRegions.size(); i < e; ++i) { 3552 auto *ParallelRegion = ReachedKnownParallelRegions[i]; 3553 BasicBlock *PRExecuteBB = BasicBlock::Create( 3554 Ctx, "worker_state_machine.parallel_region.execute", Kernel, 3555 StateMachineEndParallelBB); 3556 CallInst::Create(ParallelRegion, {ZeroArg, GTid}, "", PRExecuteBB) 3557 ->setDebugLoc(DLoc); 3558 BranchInst::Create(StateMachineEndParallelBB, PRExecuteBB) 3559 ->setDebugLoc(DLoc); 3560 3561 BasicBlock *PRNextBB = 3562 BasicBlock::Create(Ctx, "worker_state_machine.parallel_region.check", 3563 Kernel, StateMachineEndParallelBB); 3564 3565 // Check if we need to compare the pointer at all or if we can just 3566 // call the parallel region function. 3567 Value *IsPR; 3568 if (i + 1 < e || !ReachedUnknownParallelRegions.empty()) { 3569 Instruction *CmpI = ICmpInst::Create( 3570 ICmpInst::ICmp, llvm::CmpInst::ICMP_EQ, WorkFnCast, ParallelRegion, 3571 "worker.check_parallel_region", StateMachineIfCascadeCurrentBB); 3572 CmpI->setDebugLoc(DLoc); 3573 IsPR = CmpI; 3574 } else { 3575 IsPR = ConstantInt::getTrue(Ctx); 3576 } 3577 3578 BranchInst::Create(PRExecuteBB, PRNextBB, IsPR, 3579 StateMachineIfCascadeCurrentBB) 3580 ->setDebugLoc(DLoc); 3581 StateMachineIfCascadeCurrentBB = PRNextBB; 3582 } 3583 3584 // At the end of the if-cascade we place the indirect function pointer call 3585 // in case we might need it, that is if there can be parallel regions we 3586 // have not handled in the if-cascade above. 3587 if (!ReachedUnknownParallelRegions.empty()) { 3588 StateMachineIfCascadeCurrentBB->setName( 3589 "worker_state_machine.parallel_region.fallback.execute"); 3590 CallInst::Create(ParallelRegionFnTy, WorkFnCast, {ZeroArg, GTid}, "", 3591 StateMachineIfCascadeCurrentBB) 3592 ->setDebugLoc(DLoc); 3593 } 3594 BranchInst::Create(StateMachineEndParallelBB, 3595 StateMachineIfCascadeCurrentBB) 3596 ->setDebugLoc(DLoc); 3597 3598 CallInst::Create(OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( 3599 M, OMPRTL___kmpc_kernel_end_parallel), 3600 {}, "", StateMachineEndParallelBB) 3601 ->setDebugLoc(DLoc); 3602 BranchInst::Create(StateMachineDoneBarrierBB, StateMachineEndParallelBB) 3603 ->setDebugLoc(DLoc); 3604 3605 CallInst::Create(BarrierFn, {Ident, GTid}, "", StateMachineDoneBarrierBB) 3606 ->setDebugLoc(DLoc); 3607 BranchInst::Create(StateMachineBeginBB, StateMachineDoneBarrierBB) 3608 ->setDebugLoc(DLoc); 3609 3610 return ChangeStatus::CHANGED; 3611 } 3612 3613 /// Fixpoint iteration update function. Will be called every time a dependence 3614 /// changed its state (and in the beginning). 3615 ChangeStatus updateImpl(Attributor &A) override { 3616 KernelInfoState StateBefore = getState(); 3617 3618 // Callback to check a read/write instruction. 3619 auto CheckRWInst = [&](Instruction &I) { 3620 // We handle calls later. 3621 if (isa<CallBase>(I)) 3622 return true; 3623 // We only care about write effects. 3624 if (!I.mayWriteToMemory()) 3625 return true; 3626 if (auto *SI = dyn_cast<StoreInst>(&I)) { 3627 SmallVector<const Value *> Objects; 3628 getUnderlyingObjects(SI->getPointerOperand(), Objects); 3629 if (llvm::all_of(Objects, 3630 [](const Value *Obj) { return isa<AllocaInst>(Obj); })) 3631 return true; 3632 // Check for AAHeapToStack moved objects which must not be guarded. 3633 auto &HS = A.getAAFor<AAHeapToStack>( 3634 *this, IRPosition::function(*I.getFunction()), 3635 DepClassTy::REQUIRED); 3636 if (llvm::all_of(Objects, [&HS](const Value *Obj) { 3637 auto *CB = dyn_cast<CallBase>(Obj); 3638 if (!CB) 3639 return false; 3640 return HS.isAssumedHeapToStack(*CB); 3641 })) { 3642 return true; 3643 } 3644 } 3645 3646 // Insert instruction that needs guarding. 3647 SPMDCompatibilityTracker.insert(&I); 3648 return true; 3649 }; 3650 3651 bool UsedAssumedInformationInCheckRWInst = false; 3652 if (!SPMDCompatibilityTracker.isAtFixpoint()) 3653 if (!A.checkForAllReadWriteInstructions( 3654 CheckRWInst, *this, UsedAssumedInformationInCheckRWInst)) 3655 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 3656 3657 if (!IsKernelEntry) { 3658 updateReachingKernelEntries(A); 3659 updateParallelLevels(A); 3660 3661 if (!ParallelLevels.isValidState()) 3662 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 3663 } 3664 3665 // Callback to check a call instruction. 3666 bool AllSPMDStatesWereFixed = true; 3667 auto CheckCallInst = [&](Instruction &I) { 3668 auto &CB = cast<CallBase>(I); 3669 auto &CBAA = A.getAAFor<AAKernelInfo>( 3670 *this, IRPosition::callsite_function(CB), DepClassTy::OPTIONAL); 3671 getState() ^= CBAA.getState(); 3672 AllSPMDStatesWereFixed &= CBAA.SPMDCompatibilityTracker.isAtFixpoint(); 3673 return true; 3674 }; 3675 3676 bool UsedAssumedInformationInCheckCallInst = false; 3677 if (!A.checkForAllCallLikeInstructions( 3678 CheckCallInst, *this, UsedAssumedInformationInCheckCallInst)) 3679 return indicatePessimisticFixpoint(); 3680 3681 // If we haven't used any assumed information for the SPMD state we can fix 3682 // it. 3683 if (!UsedAssumedInformationInCheckRWInst && 3684 !UsedAssumedInformationInCheckCallInst && AllSPMDStatesWereFixed) 3685 SPMDCompatibilityTracker.indicateOptimisticFixpoint(); 3686 3687 return StateBefore == getState() ? ChangeStatus::UNCHANGED 3688 : ChangeStatus::CHANGED; 3689 } 3690 3691 private: 3692 /// Update info regarding reaching kernels. 3693 void updateReachingKernelEntries(Attributor &A) { 3694 auto PredCallSite = [&](AbstractCallSite ACS) { 3695 Function *Caller = ACS.getInstruction()->getFunction(); 3696 3697 assert(Caller && "Caller is nullptr"); 3698 3699 auto &CAA = A.getOrCreateAAFor<AAKernelInfo>( 3700 IRPosition::function(*Caller), this, DepClassTy::REQUIRED); 3701 if (CAA.ReachingKernelEntries.isValidState()) { 3702 ReachingKernelEntries ^= CAA.ReachingKernelEntries; 3703 return true; 3704 } 3705 3706 // We lost track of the caller of the associated function, any kernel 3707 // could reach now. 3708 ReachingKernelEntries.indicatePessimisticFixpoint(); 3709 3710 return true; 3711 }; 3712 3713 bool AllCallSitesKnown; 3714 if (!A.checkForAllCallSites(PredCallSite, *this, 3715 true /* RequireAllCallSites */, 3716 AllCallSitesKnown)) 3717 ReachingKernelEntries.indicatePessimisticFixpoint(); 3718 } 3719 3720 /// Update info regarding parallel levels. 3721 void updateParallelLevels(Attributor &A) { 3722 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 3723 OMPInformationCache::RuntimeFunctionInfo &Parallel51RFI = 3724 OMPInfoCache.RFIs[OMPRTL___kmpc_parallel_51]; 3725 3726 auto PredCallSite = [&](AbstractCallSite ACS) { 3727 Function *Caller = ACS.getInstruction()->getFunction(); 3728 3729 assert(Caller && "Caller is nullptr"); 3730 3731 auto &CAA = 3732 A.getOrCreateAAFor<AAKernelInfo>(IRPosition::function(*Caller)); 3733 if (CAA.ParallelLevels.isValidState()) { 3734 // Any function that is called by `__kmpc_parallel_51` will not be 3735 // folded as the parallel level in the function is updated. In order to 3736 // get it right, all the analysis would depend on the implentation. That 3737 // said, if in the future any change to the implementation, the analysis 3738 // could be wrong. As a consequence, we are just conservative here. 3739 if (Caller == Parallel51RFI.Declaration) { 3740 ParallelLevels.indicatePessimisticFixpoint(); 3741 return true; 3742 } 3743 3744 ParallelLevels ^= CAA.ParallelLevels; 3745 3746 return true; 3747 } 3748 3749 // We lost track of the caller of the associated function, any kernel 3750 // could reach now. 3751 ParallelLevels.indicatePessimisticFixpoint(); 3752 3753 return true; 3754 }; 3755 3756 bool AllCallSitesKnown = true; 3757 if (!A.checkForAllCallSites(PredCallSite, *this, 3758 true /* RequireAllCallSites */, 3759 AllCallSitesKnown)) 3760 ParallelLevels.indicatePessimisticFixpoint(); 3761 } 3762 }; 3763 3764 /// The call site kernel info abstract attribute, basically, what can we say 3765 /// about a call site with regards to the KernelInfoState. For now this simply 3766 /// forwards the information from the callee. 3767 struct AAKernelInfoCallSite : AAKernelInfo { 3768 AAKernelInfoCallSite(const IRPosition &IRP, Attributor &A) 3769 : AAKernelInfo(IRP, A) {} 3770 3771 /// See AbstractAttribute::initialize(...). 3772 void initialize(Attributor &A) override { 3773 AAKernelInfo::initialize(A); 3774 3775 CallBase &CB = cast<CallBase>(getAssociatedValue()); 3776 Function *Callee = getAssociatedFunction(); 3777 3778 // Helper to lookup an assumption string. 3779 auto HasAssumption = [](CallBase &CB, StringRef AssumptionStr) { 3780 return hasAssumption(CB, AssumptionStr); 3781 }; 3782 3783 // Check for SPMD-mode assumptions. 3784 if (HasAssumption(CB, "ompx_spmd_amenable")) { 3785 SPMDCompatibilityTracker.indicateOptimisticFixpoint(); 3786 indicateOptimisticFixpoint(); 3787 } 3788 3789 // First weed out calls we do not care about, that is readonly/readnone 3790 // calls, intrinsics, and "no_openmp" calls. Neither of these can reach a 3791 // parallel region or anything else we are looking for. 3792 if (!CB.mayWriteToMemory() || isa<IntrinsicInst>(CB)) { 3793 indicateOptimisticFixpoint(); 3794 return; 3795 } 3796 3797 // Next we check if we know the callee. If it is a known OpenMP function 3798 // we will handle them explicitly in the switch below. If it is not, we 3799 // will use an AAKernelInfo object on the callee to gather information and 3800 // merge that into the current state. The latter happens in the updateImpl. 3801 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 3802 const auto &It = OMPInfoCache.RuntimeFunctionIDMap.find(Callee); 3803 if (It == OMPInfoCache.RuntimeFunctionIDMap.end()) { 3804 // Unknown caller or declarations are not analyzable, we give up. 3805 if (!Callee || !A.isFunctionIPOAmendable(*Callee)) { 3806 3807 // Unknown callees might contain parallel regions, except if they have 3808 // an appropriate assumption attached. 3809 if (!(HasAssumption(CB, "omp_no_openmp") || 3810 HasAssumption(CB, "omp_no_parallelism"))) 3811 ReachedUnknownParallelRegions.insert(&CB); 3812 3813 // If SPMDCompatibilityTracker is not fixed, we need to give up on the 3814 // idea we can run something unknown in SPMD-mode. 3815 if (!SPMDCompatibilityTracker.isAtFixpoint()) { 3816 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 3817 SPMDCompatibilityTracker.insert(&CB); 3818 } 3819 3820 // We have updated the state for this unknown call properly, there won't 3821 // be any change so we indicate a fixpoint. 3822 indicateOptimisticFixpoint(); 3823 } 3824 // If the callee is known and can be used in IPO, we will update the state 3825 // based on the callee state in updateImpl. 3826 return; 3827 } 3828 3829 const unsigned int WrapperFunctionArgNo = 6; 3830 RuntimeFunction RF = It->getSecond(); 3831 switch (RF) { 3832 // All the functions we know are compatible with SPMD mode. 3833 case OMPRTL___kmpc_is_spmd_exec_mode: 3834 case OMPRTL___kmpc_for_static_fini: 3835 case OMPRTL___kmpc_global_thread_num: 3836 case OMPRTL___kmpc_get_hardware_num_threads_in_block: 3837 case OMPRTL___kmpc_get_hardware_num_blocks: 3838 case OMPRTL___kmpc_single: 3839 case OMPRTL___kmpc_end_single: 3840 case OMPRTL___kmpc_master: 3841 case OMPRTL___kmpc_end_master: 3842 case OMPRTL___kmpc_barrier: 3843 break; 3844 case OMPRTL___kmpc_for_static_init_4: 3845 case OMPRTL___kmpc_for_static_init_4u: 3846 case OMPRTL___kmpc_for_static_init_8: 3847 case OMPRTL___kmpc_for_static_init_8u: { 3848 // Check the schedule and allow static schedule in SPMD mode. 3849 unsigned ScheduleArgOpNo = 2; 3850 auto *ScheduleTypeCI = 3851 dyn_cast<ConstantInt>(CB.getArgOperand(ScheduleArgOpNo)); 3852 unsigned ScheduleTypeVal = 3853 ScheduleTypeCI ? ScheduleTypeCI->getZExtValue() : 0; 3854 switch (OMPScheduleType(ScheduleTypeVal)) { 3855 case OMPScheduleType::Static: 3856 case OMPScheduleType::StaticChunked: 3857 case OMPScheduleType::Distribute: 3858 case OMPScheduleType::DistributeChunked: 3859 break; 3860 default: 3861 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 3862 SPMDCompatibilityTracker.insert(&CB); 3863 break; 3864 }; 3865 } break; 3866 case OMPRTL___kmpc_target_init: 3867 KernelInitCB = &CB; 3868 break; 3869 case OMPRTL___kmpc_target_deinit: 3870 KernelDeinitCB = &CB; 3871 break; 3872 case OMPRTL___kmpc_parallel_51: 3873 if (auto *ParallelRegion = dyn_cast<Function>( 3874 CB.getArgOperand(WrapperFunctionArgNo)->stripPointerCasts())) { 3875 ReachedKnownParallelRegions.insert(ParallelRegion); 3876 break; 3877 } 3878 // The condition above should usually get the parallel region function 3879 // pointer and record it. In the off chance it doesn't we assume the 3880 // worst. 3881 ReachedUnknownParallelRegions.insert(&CB); 3882 break; 3883 case OMPRTL___kmpc_omp_task: 3884 // We do not look into tasks right now, just give up. 3885 SPMDCompatibilityTracker.insert(&CB); 3886 ReachedUnknownParallelRegions.insert(&CB); 3887 indicatePessimisticFixpoint(); 3888 return; 3889 case OMPRTL___kmpc_alloc_shared: 3890 case OMPRTL___kmpc_free_shared: 3891 // Return without setting a fixpoint, to be resolved in updateImpl. 3892 return; 3893 default: 3894 // Unknown OpenMP runtime calls cannot be executed in SPMD-mode, 3895 // generally. 3896 SPMDCompatibilityTracker.insert(&CB); 3897 indicatePessimisticFixpoint(); 3898 return; 3899 } 3900 // All other OpenMP runtime calls will not reach parallel regions so they 3901 // can be safely ignored for now. Since it is a known OpenMP runtime call we 3902 // have now modeled all effects and there is no need for any update. 3903 indicateOptimisticFixpoint(); 3904 } 3905 3906 ChangeStatus updateImpl(Attributor &A) override { 3907 // TODO: Once we have call site specific value information we can provide 3908 // call site specific liveness information and then it makes 3909 // sense to specialize attributes for call sites arguments instead of 3910 // redirecting requests to the callee argument. 3911 Function *F = getAssociatedFunction(); 3912 3913 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 3914 const auto &It = OMPInfoCache.RuntimeFunctionIDMap.find(F); 3915 3916 // If F is not a runtime function, propagate the AAKernelInfo of the callee. 3917 if (It == OMPInfoCache.RuntimeFunctionIDMap.end()) { 3918 const IRPosition &FnPos = IRPosition::function(*F); 3919 auto &FnAA = A.getAAFor<AAKernelInfo>(*this, FnPos, DepClassTy::REQUIRED); 3920 if (getState() == FnAA.getState()) 3921 return ChangeStatus::UNCHANGED; 3922 getState() = FnAA.getState(); 3923 return ChangeStatus::CHANGED; 3924 } 3925 3926 // F is a runtime function that allocates or frees memory, check 3927 // AAHeapToStack and AAHeapToShared. 3928 KernelInfoState StateBefore = getState(); 3929 assert((It->getSecond() == OMPRTL___kmpc_alloc_shared || 3930 It->getSecond() == OMPRTL___kmpc_free_shared) && 3931 "Expected a __kmpc_alloc_shared or __kmpc_free_shared runtime call"); 3932 3933 CallBase &CB = cast<CallBase>(getAssociatedValue()); 3934 3935 auto &HeapToStackAA = A.getAAFor<AAHeapToStack>( 3936 *this, IRPosition::function(*CB.getCaller()), DepClassTy::OPTIONAL); 3937 auto &HeapToSharedAA = A.getAAFor<AAHeapToShared>( 3938 *this, IRPosition::function(*CB.getCaller()), DepClassTy::OPTIONAL); 3939 3940 RuntimeFunction RF = It->getSecond(); 3941 3942 switch (RF) { 3943 // If neither HeapToStack nor HeapToShared assume the call is removed, 3944 // assume SPMD incompatibility. 3945 case OMPRTL___kmpc_alloc_shared: 3946 if (!HeapToStackAA.isAssumedHeapToStack(CB) && 3947 !HeapToSharedAA.isAssumedHeapToShared(CB)) 3948 SPMDCompatibilityTracker.insert(&CB); 3949 break; 3950 case OMPRTL___kmpc_free_shared: 3951 if (!HeapToStackAA.isAssumedHeapToStackRemovedFree(CB) && 3952 !HeapToSharedAA.isAssumedHeapToSharedRemovedFree(CB)) 3953 SPMDCompatibilityTracker.insert(&CB); 3954 break; 3955 default: 3956 SPMDCompatibilityTracker.insert(&CB); 3957 } 3958 3959 return StateBefore == getState() ? ChangeStatus::UNCHANGED 3960 : ChangeStatus::CHANGED; 3961 } 3962 }; 3963 3964 struct AAFoldRuntimeCall 3965 : public StateWrapper<BooleanState, AbstractAttribute> { 3966 using Base = StateWrapper<BooleanState, AbstractAttribute>; 3967 3968 AAFoldRuntimeCall(const IRPosition &IRP, Attributor &A) : Base(IRP) {} 3969 3970 /// Statistics are tracked as part of manifest for now. 3971 void trackStatistics() const override {} 3972 3973 /// Create an abstract attribute biew for the position \p IRP. 3974 static AAFoldRuntimeCall &createForPosition(const IRPosition &IRP, 3975 Attributor &A); 3976 3977 /// See AbstractAttribute::getName() 3978 const std::string getName() const override { return "AAFoldRuntimeCall"; } 3979 3980 /// See AbstractAttribute::getIdAddr() 3981 const char *getIdAddr() const override { return &ID; } 3982 3983 /// This function should return true if the type of the \p AA is 3984 /// AAFoldRuntimeCall 3985 static bool classof(const AbstractAttribute *AA) { 3986 return (AA->getIdAddr() == &ID); 3987 } 3988 3989 static const char ID; 3990 }; 3991 3992 struct AAFoldRuntimeCallCallSiteReturned : AAFoldRuntimeCall { 3993 AAFoldRuntimeCallCallSiteReturned(const IRPosition &IRP, Attributor &A) 3994 : AAFoldRuntimeCall(IRP, A) {} 3995 3996 /// See AbstractAttribute::getAsStr() 3997 const std::string getAsStr() const override { 3998 if (!isValidState()) 3999 return "<invalid>"; 4000 4001 std::string Str("simplified value: "); 4002 4003 if (!SimplifiedValue.hasValue()) 4004 return Str + std::string("none"); 4005 4006 if (!SimplifiedValue.getValue()) 4007 return Str + std::string("nullptr"); 4008 4009 if (ConstantInt *CI = dyn_cast<ConstantInt>(SimplifiedValue.getValue())) 4010 return Str + std::to_string(CI->getSExtValue()); 4011 4012 return Str + std::string("unknown"); 4013 } 4014 4015 void initialize(Attributor &A) override { 4016 if (DisableOpenMPOptFolding) 4017 indicatePessimisticFixpoint(); 4018 4019 Function *Callee = getAssociatedFunction(); 4020 4021 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 4022 const auto &It = OMPInfoCache.RuntimeFunctionIDMap.find(Callee); 4023 assert(It != OMPInfoCache.RuntimeFunctionIDMap.end() && 4024 "Expected a known OpenMP runtime function"); 4025 4026 RFKind = It->getSecond(); 4027 4028 CallBase &CB = cast<CallBase>(getAssociatedValue()); 4029 A.registerSimplificationCallback( 4030 IRPosition::callsite_returned(CB), 4031 [&](const IRPosition &IRP, const AbstractAttribute *AA, 4032 bool &UsedAssumedInformation) -> Optional<Value *> { 4033 assert((isValidState() || (SimplifiedValue.hasValue() && 4034 SimplifiedValue.getValue() == nullptr)) && 4035 "Unexpected invalid state!"); 4036 4037 if (!isAtFixpoint()) { 4038 UsedAssumedInformation = true; 4039 if (AA) 4040 A.recordDependence(*this, *AA, DepClassTy::OPTIONAL); 4041 } 4042 return SimplifiedValue; 4043 }); 4044 } 4045 4046 ChangeStatus updateImpl(Attributor &A) override { 4047 ChangeStatus Changed = ChangeStatus::UNCHANGED; 4048 switch (RFKind) { 4049 case OMPRTL___kmpc_is_spmd_exec_mode: 4050 Changed |= foldIsSPMDExecMode(A); 4051 break; 4052 case OMPRTL___kmpc_is_generic_main_thread_id: 4053 Changed |= foldIsGenericMainThread(A); 4054 break; 4055 case OMPRTL___kmpc_parallel_level: 4056 Changed |= foldParallelLevel(A); 4057 break; 4058 case OMPRTL___kmpc_get_hardware_num_threads_in_block: 4059 Changed = Changed | foldKernelFnAttribute(A, "omp_target_thread_limit"); 4060 break; 4061 case OMPRTL___kmpc_get_hardware_num_blocks: 4062 Changed = Changed | foldKernelFnAttribute(A, "omp_target_num_teams"); 4063 break; 4064 default: 4065 llvm_unreachable("Unhandled OpenMP runtime function!"); 4066 } 4067 4068 return Changed; 4069 } 4070 4071 ChangeStatus manifest(Attributor &A) override { 4072 ChangeStatus Changed = ChangeStatus::UNCHANGED; 4073 4074 if (SimplifiedValue.hasValue() && SimplifiedValue.getValue()) { 4075 Instruction &I = *getCtxI(); 4076 A.changeValueAfterManifest(I, **SimplifiedValue); 4077 A.deleteAfterManifest(I); 4078 4079 CallBase *CB = dyn_cast<CallBase>(&I); 4080 auto Remark = [&](OptimizationRemark OR) { 4081 if (auto *C = dyn_cast<ConstantInt>(*SimplifiedValue)) 4082 return OR << "Replacing OpenMP runtime call " 4083 << CB->getCalledFunction()->getName() << " with " 4084 << ore::NV("FoldedValue", C->getZExtValue()) << "."; 4085 else 4086 return OR << "Replacing OpenMP runtime call " 4087 << CB->getCalledFunction()->getName() << "."; 4088 }; 4089 4090 if (CB && EnableVerboseRemarks) 4091 A.emitRemark<OptimizationRemark>(CB, "OMP180", Remark); 4092 4093 LLVM_DEBUG(dbgs() << TAG << "Replacing runtime call: " << I << " with " 4094 << **SimplifiedValue << "\n"); 4095 4096 Changed = ChangeStatus::CHANGED; 4097 } 4098 4099 return Changed; 4100 } 4101 4102 ChangeStatus indicatePessimisticFixpoint() override { 4103 SimplifiedValue = nullptr; 4104 return AAFoldRuntimeCall::indicatePessimisticFixpoint(); 4105 } 4106 4107 private: 4108 /// Fold __kmpc_is_spmd_exec_mode into a constant if possible. 4109 ChangeStatus foldIsSPMDExecMode(Attributor &A) { 4110 Optional<Value *> SimplifiedValueBefore = SimplifiedValue; 4111 4112 unsigned AssumedSPMDCount = 0, KnownSPMDCount = 0; 4113 unsigned AssumedNonSPMDCount = 0, KnownNonSPMDCount = 0; 4114 auto &CallerKernelInfoAA = A.getAAFor<AAKernelInfo>( 4115 *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED); 4116 4117 if (!CallerKernelInfoAA.ReachingKernelEntries.isValidState()) 4118 return indicatePessimisticFixpoint(); 4119 4120 for (Kernel K : CallerKernelInfoAA.ReachingKernelEntries) { 4121 auto &AA = A.getAAFor<AAKernelInfo>(*this, IRPosition::function(*K), 4122 DepClassTy::REQUIRED); 4123 4124 if (!AA.isValidState()) { 4125 SimplifiedValue = nullptr; 4126 return indicatePessimisticFixpoint(); 4127 } 4128 4129 if (AA.SPMDCompatibilityTracker.isAssumed()) { 4130 if (AA.SPMDCompatibilityTracker.isAtFixpoint()) 4131 ++KnownSPMDCount; 4132 else 4133 ++AssumedSPMDCount; 4134 } else { 4135 if (AA.SPMDCompatibilityTracker.isAtFixpoint()) 4136 ++KnownNonSPMDCount; 4137 else 4138 ++AssumedNonSPMDCount; 4139 } 4140 } 4141 4142 if ((AssumedSPMDCount + KnownSPMDCount) && 4143 (AssumedNonSPMDCount + KnownNonSPMDCount)) 4144 return indicatePessimisticFixpoint(); 4145 4146 auto &Ctx = getAnchorValue().getContext(); 4147 if (KnownSPMDCount || AssumedSPMDCount) { 4148 assert(KnownNonSPMDCount == 0 && AssumedNonSPMDCount == 0 && 4149 "Expected only SPMD kernels!"); 4150 // All reaching kernels are in SPMD mode. Update all function calls to 4151 // __kmpc_is_spmd_exec_mode to 1. 4152 SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), true); 4153 } else if (KnownNonSPMDCount || AssumedNonSPMDCount) { 4154 assert(KnownSPMDCount == 0 && AssumedSPMDCount == 0 && 4155 "Expected only non-SPMD kernels!"); 4156 // All reaching kernels are in non-SPMD mode. Update all function 4157 // calls to __kmpc_is_spmd_exec_mode to 0. 4158 SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), false); 4159 } else { 4160 // We have empty reaching kernels, therefore we cannot tell if the 4161 // associated call site can be folded. At this moment, SimplifiedValue 4162 // must be none. 4163 assert(!SimplifiedValue.hasValue() && "SimplifiedValue should be none"); 4164 } 4165 4166 return SimplifiedValue == SimplifiedValueBefore ? ChangeStatus::UNCHANGED 4167 : ChangeStatus::CHANGED; 4168 } 4169 4170 /// Fold __kmpc_is_generic_main_thread_id into a constant if possible. 4171 ChangeStatus foldIsGenericMainThread(Attributor &A) { 4172 Optional<Value *> SimplifiedValueBefore = SimplifiedValue; 4173 4174 CallBase &CB = cast<CallBase>(getAssociatedValue()); 4175 Function *F = CB.getFunction(); 4176 const auto &ExecutionDomainAA = A.getAAFor<AAExecutionDomain>( 4177 *this, IRPosition::function(*F), DepClassTy::REQUIRED); 4178 4179 if (!ExecutionDomainAA.isValidState()) 4180 return indicatePessimisticFixpoint(); 4181 4182 auto &Ctx = getAnchorValue().getContext(); 4183 if (ExecutionDomainAA.isExecutedByInitialThreadOnly(CB)) 4184 SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), true); 4185 else 4186 return indicatePessimisticFixpoint(); 4187 4188 return SimplifiedValue == SimplifiedValueBefore ? ChangeStatus::UNCHANGED 4189 : ChangeStatus::CHANGED; 4190 } 4191 4192 /// Fold __kmpc_parallel_level into a constant if possible. 4193 ChangeStatus foldParallelLevel(Attributor &A) { 4194 Optional<Value *> SimplifiedValueBefore = SimplifiedValue; 4195 4196 auto &CallerKernelInfoAA = A.getAAFor<AAKernelInfo>( 4197 *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED); 4198 4199 if (!CallerKernelInfoAA.ParallelLevels.isValidState()) 4200 return indicatePessimisticFixpoint(); 4201 4202 if (!CallerKernelInfoAA.ReachingKernelEntries.isValidState()) 4203 return indicatePessimisticFixpoint(); 4204 4205 if (CallerKernelInfoAA.ReachingKernelEntries.empty()) { 4206 assert(!SimplifiedValue.hasValue() && 4207 "SimplifiedValue should keep none at this point"); 4208 return ChangeStatus::UNCHANGED; 4209 } 4210 4211 unsigned AssumedSPMDCount = 0, KnownSPMDCount = 0; 4212 unsigned AssumedNonSPMDCount = 0, KnownNonSPMDCount = 0; 4213 for (Kernel K : CallerKernelInfoAA.ReachingKernelEntries) { 4214 auto &AA = A.getAAFor<AAKernelInfo>(*this, IRPosition::function(*K), 4215 DepClassTy::REQUIRED); 4216 if (!AA.SPMDCompatibilityTracker.isValidState()) 4217 return indicatePessimisticFixpoint(); 4218 4219 if (AA.SPMDCompatibilityTracker.isAssumed()) { 4220 if (AA.SPMDCompatibilityTracker.isAtFixpoint()) 4221 ++KnownSPMDCount; 4222 else 4223 ++AssumedSPMDCount; 4224 } else { 4225 if (AA.SPMDCompatibilityTracker.isAtFixpoint()) 4226 ++KnownNonSPMDCount; 4227 else 4228 ++AssumedNonSPMDCount; 4229 } 4230 } 4231 4232 if ((AssumedSPMDCount + KnownSPMDCount) && 4233 (AssumedNonSPMDCount + KnownNonSPMDCount)) 4234 return indicatePessimisticFixpoint(); 4235 4236 auto &Ctx = getAnchorValue().getContext(); 4237 // If the caller can only be reached by SPMD kernel entries, the parallel 4238 // level is 1. Similarly, if the caller can only be reached by non-SPMD 4239 // kernel entries, it is 0. 4240 if (AssumedSPMDCount || KnownSPMDCount) { 4241 assert(KnownNonSPMDCount == 0 && AssumedNonSPMDCount == 0 && 4242 "Expected only SPMD kernels!"); 4243 SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), 1); 4244 } else { 4245 assert(KnownSPMDCount == 0 && AssumedSPMDCount == 0 && 4246 "Expected only non-SPMD kernels!"); 4247 SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), 0); 4248 } 4249 return SimplifiedValue == SimplifiedValueBefore ? ChangeStatus::UNCHANGED 4250 : ChangeStatus::CHANGED; 4251 } 4252 4253 ChangeStatus foldKernelFnAttribute(Attributor &A, llvm::StringRef Attr) { 4254 // Specialize only if all the calls agree with the attribute constant value 4255 int32_t CurrentAttrValue = -1; 4256 Optional<Value *> SimplifiedValueBefore = SimplifiedValue; 4257 4258 auto &CallerKernelInfoAA = A.getAAFor<AAKernelInfo>( 4259 *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED); 4260 4261 if (!CallerKernelInfoAA.ReachingKernelEntries.isValidState()) 4262 return indicatePessimisticFixpoint(); 4263 4264 // Iterate over the kernels that reach this function 4265 for (Kernel K : CallerKernelInfoAA.ReachingKernelEntries) { 4266 int32_t NextAttrVal = -1; 4267 if (K->hasFnAttribute(Attr)) 4268 NextAttrVal = 4269 std::stoi(K->getFnAttribute(Attr).getValueAsString().str()); 4270 4271 if (NextAttrVal == -1 || 4272 (CurrentAttrValue != -1 && CurrentAttrValue != NextAttrVal)) 4273 return indicatePessimisticFixpoint(); 4274 CurrentAttrValue = NextAttrVal; 4275 } 4276 4277 if (CurrentAttrValue != -1) { 4278 auto &Ctx = getAnchorValue().getContext(); 4279 SimplifiedValue = 4280 ConstantInt::get(Type::getInt32Ty(Ctx), CurrentAttrValue); 4281 } 4282 return SimplifiedValue == SimplifiedValueBefore ? ChangeStatus::UNCHANGED 4283 : ChangeStatus::CHANGED; 4284 } 4285 4286 /// An optional value the associated value is assumed to fold to. That is, we 4287 /// assume the associated value (which is a call) can be replaced by this 4288 /// simplified value. 4289 Optional<Value *> SimplifiedValue; 4290 4291 /// The runtime function kind of the callee of the associated call site. 4292 RuntimeFunction RFKind; 4293 }; 4294 4295 } // namespace 4296 4297 /// Register folding callsite 4298 void OpenMPOpt::registerFoldRuntimeCall(RuntimeFunction RF) { 4299 auto &RFI = OMPInfoCache.RFIs[RF]; 4300 RFI.foreachUse(SCC, [&](Use &U, Function &F) { 4301 CallInst *CI = OpenMPOpt::getCallIfRegularCall(U, &RFI); 4302 if (!CI) 4303 return false; 4304 A.getOrCreateAAFor<AAFoldRuntimeCall>( 4305 IRPosition::callsite_returned(*CI), /* QueryingAA */ nullptr, 4306 DepClassTy::NONE, /* ForceUpdate */ false, 4307 /* UpdateAfterInit */ false); 4308 return false; 4309 }); 4310 } 4311 4312 void OpenMPOpt::registerAAs(bool IsModulePass) { 4313 if (SCC.empty()) 4314 4315 return; 4316 if (IsModulePass) { 4317 // Ensure we create the AAKernelInfo AAs first and without triggering an 4318 // update. This will make sure we register all value simplification 4319 // callbacks before any other AA has the chance to create an AAValueSimplify 4320 // or similar. 4321 for (Function *Kernel : OMPInfoCache.Kernels) 4322 A.getOrCreateAAFor<AAKernelInfo>( 4323 IRPosition::function(*Kernel), /* QueryingAA */ nullptr, 4324 DepClassTy::NONE, /* ForceUpdate */ false, 4325 /* UpdateAfterInit */ false); 4326 4327 registerFoldRuntimeCall(OMPRTL___kmpc_is_generic_main_thread_id); 4328 registerFoldRuntimeCall(OMPRTL___kmpc_is_spmd_exec_mode); 4329 registerFoldRuntimeCall(OMPRTL___kmpc_parallel_level); 4330 registerFoldRuntimeCall(OMPRTL___kmpc_get_hardware_num_threads_in_block); 4331 registerFoldRuntimeCall(OMPRTL___kmpc_get_hardware_num_blocks); 4332 } 4333 4334 // Create CallSite AA for all Getters. 4335 for (int Idx = 0; Idx < OMPInfoCache.ICVs.size() - 1; ++Idx) { 4336 auto ICVInfo = OMPInfoCache.ICVs[static_cast<InternalControlVar>(Idx)]; 4337 4338 auto &GetterRFI = OMPInfoCache.RFIs[ICVInfo.Getter]; 4339 4340 auto CreateAA = [&](Use &U, Function &Caller) { 4341 CallInst *CI = OpenMPOpt::getCallIfRegularCall(U, &GetterRFI); 4342 if (!CI) 4343 return false; 4344 4345 auto &CB = cast<CallBase>(*CI); 4346 4347 IRPosition CBPos = IRPosition::callsite_function(CB); 4348 A.getOrCreateAAFor<AAICVTracker>(CBPos); 4349 return false; 4350 }; 4351 4352 GetterRFI.foreachUse(SCC, CreateAA); 4353 } 4354 auto &GlobalizationRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared]; 4355 auto CreateAA = [&](Use &U, Function &F) { 4356 A.getOrCreateAAFor<AAHeapToShared>(IRPosition::function(F)); 4357 return false; 4358 }; 4359 if (!DisableOpenMPOptDeglobalization) 4360 GlobalizationRFI.foreachUse(SCC, CreateAA); 4361 4362 // Create an ExecutionDomain AA for every function and a HeapToStack AA for 4363 // every function if there is a device kernel. 4364 if (!isOpenMPDevice(M)) 4365 return; 4366 4367 for (auto *F : SCC) { 4368 if (F->isDeclaration()) 4369 continue; 4370 4371 A.getOrCreateAAFor<AAExecutionDomain>(IRPosition::function(*F)); 4372 if (!DisableOpenMPOptDeglobalization) 4373 A.getOrCreateAAFor<AAHeapToStack>(IRPosition::function(*F)); 4374 4375 for (auto &I : instructions(*F)) { 4376 if (auto *LI = dyn_cast<LoadInst>(&I)) { 4377 bool UsedAssumedInformation = false; 4378 A.getAssumedSimplified(IRPosition::value(*LI), /* AA */ nullptr, 4379 UsedAssumedInformation); 4380 } 4381 } 4382 } 4383 } 4384 4385 const char AAICVTracker::ID = 0; 4386 const char AAKernelInfo::ID = 0; 4387 const char AAExecutionDomain::ID = 0; 4388 const char AAHeapToShared::ID = 0; 4389 const char AAFoldRuntimeCall::ID = 0; 4390 4391 AAICVTracker &AAICVTracker::createForPosition(const IRPosition &IRP, 4392 Attributor &A) { 4393 AAICVTracker *AA = nullptr; 4394 switch (IRP.getPositionKind()) { 4395 case IRPosition::IRP_INVALID: 4396 case IRPosition::IRP_FLOAT: 4397 case IRPosition::IRP_ARGUMENT: 4398 case IRPosition::IRP_CALL_SITE_ARGUMENT: 4399 llvm_unreachable("ICVTracker can only be created for function position!"); 4400 case IRPosition::IRP_RETURNED: 4401 AA = new (A.Allocator) AAICVTrackerFunctionReturned(IRP, A); 4402 break; 4403 case IRPosition::IRP_CALL_SITE_RETURNED: 4404 AA = new (A.Allocator) AAICVTrackerCallSiteReturned(IRP, A); 4405 break; 4406 case IRPosition::IRP_CALL_SITE: 4407 AA = new (A.Allocator) AAICVTrackerCallSite(IRP, A); 4408 break; 4409 case IRPosition::IRP_FUNCTION: 4410 AA = new (A.Allocator) AAICVTrackerFunction(IRP, A); 4411 break; 4412 } 4413 4414 return *AA; 4415 } 4416 4417 AAExecutionDomain &AAExecutionDomain::createForPosition(const IRPosition &IRP, 4418 Attributor &A) { 4419 AAExecutionDomainFunction *AA = nullptr; 4420 switch (IRP.getPositionKind()) { 4421 case IRPosition::IRP_INVALID: 4422 case IRPosition::IRP_FLOAT: 4423 case IRPosition::IRP_ARGUMENT: 4424 case IRPosition::IRP_CALL_SITE_ARGUMENT: 4425 case IRPosition::IRP_RETURNED: 4426 case IRPosition::IRP_CALL_SITE_RETURNED: 4427 case IRPosition::IRP_CALL_SITE: 4428 llvm_unreachable( 4429 "AAExecutionDomain can only be created for function position!"); 4430 case IRPosition::IRP_FUNCTION: 4431 AA = new (A.Allocator) AAExecutionDomainFunction(IRP, A); 4432 break; 4433 } 4434 4435 return *AA; 4436 } 4437 4438 AAHeapToShared &AAHeapToShared::createForPosition(const IRPosition &IRP, 4439 Attributor &A) { 4440 AAHeapToSharedFunction *AA = nullptr; 4441 switch (IRP.getPositionKind()) { 4442 case IRPosition::IRP_INVALID: 4443 case IRPosition::IRP_FLOAT: 4444 case IRPosition::IRP_ARGUMENT: 4445 case IRPosition::IRP_CALL_SITE_ARGUMENT: 4446 case IRPosition::IRP_RETURNED: 4447 case IRPosition::IRP_CALL_SITE_RETURNED: 4448 case IRPosition::IRP_CALL_SITE: 4449 llvm_unreachable( 4450 "AAHeapToShared can only be created for function position!"); 4451 case IRPosition::IRP_FUNCTION: 4452 AA = new (A.Allocator) AAHeapToSharedFunction(IRP, A); 4453 break; 4454 } 4455 4456 return *AA; 4457 } 4458 4459 AAKernelInfo &AAKernelInfo::createForPosition(const IRPosition &IRP, 4460 Attributor &A) { 4461 AAKernelInfo *AA = nullptr; 4462 switch (IRP.getPositionKind()) { 4463 case IRPosition::IRP_INVALID: 4464 case IRPosition::IRP_FLOAT: 4465 case IRPosition::IRP_ARGUMENT: 4466 case IRPosition::IRP_RETURNED: 4467 case IRPosition::IRP_CALL_SITE_RETURNED: 4468 case IRPosition::IRP_CALL_SITE_ARGUMENT: 4469 llvm_unreachable("KernelInfo can only be created for function position!"); 4470 case IRPosition::IRP_CALL_SITE: 4471 AA = new (A.Allocator) AAKernelInfoCallSite(IRP, A); 4472 break; 4473 case IRPosition::IRP_FUNCTION: 4474 AA = new (A.Allocator) AAKernelInfoFunction(IRP, A); 4475 break; 4476 } 4477 4478 return *AA; 4479 } 4480 4481 AAFoldRuntimeCall &AAFoldRuntimeCall::createForPosition(const IRPosition &IRP, 4482 Attributor &A) { 4483 AAFoldRuntimeCall *AA = nullptr; 4484 switch (IRP.getPositionKind()) { 4485 case IRPosition::IRP_INVALID: 4486 case IRPosition::IRP_FLOAT: 4487 case IRPosition::IRP_ARGUMENT: 4488 case IRPosition::IRP_RETURNED: 4489 case IRPosition::IRP_FUNCTION: 4490 case IRPosition::IRP_CALL_SITE: 4491 case IRPosition::IRP_CALL_SITE_ARGUMENT: 4492 llvm_unreachable("KernelInfo can only be created for call site position!"); 4493 case IRPosition::IRP_CALL_SITE_RETURNED: 4494 AA = new (A.Allocator) AAFoldRuntimeCallCallSiteReturned(IRP, A); 4495 break; 4496 } 4497 4498 return *AA; 4499 } 4500 4501 PreservedAnalyses OpenMPOptPass::run(Module &M, ModuleAnalysisManager &AM) { 4502 if (!containsOpenMP(M)) 4503 return PreservedAnalyses::all(); 4504 if (DisableOpenMPOptimizations) 4505 return PreservedAnalyses::all(); 4506 4507 FunctionAnalysisManager &FAM = 4508 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 4509 KernelSet Kernels = getDeviceKernels(M); 4510 4511 auto IsCalled = [&](Function &F) { 4512 if (Kernels.contains(&F)) 4513 return true; 4514 for (const User *U : F.users()) 4515 if (!isa<BlockAddress>(U)) 4516 return true; 4517 return false; 4518 }; 4519 4520 auto EmitRemark = [&](Function &F) { 4521 auto &ORE = FAM.getResult<OptimizationRemarkEmitterAnalysis>(F); 4522 ORE.emit([&]() { 4523 OptimizationRemarkAnalysis ORA(DEBUG_TYPE, "OMP140", &F); 4524 return ORA << "Could not internalize function. " 4525 << "Some optimizations may not be possible. [OMP140]"; 4526 }); 4527 }; 4528 4529 // Create internal copies of each function if this is a kernel Module. This 4530 // allows iterprocedural passes to see every call edge. 4531 DenseMap<Function *, Function *> InternalizedMap; 4532 if (isOpenMPDevice(M)) { 4533 SmallPtrSet<Function *, 16> InternalizeFns; 4534 for (Function &F : M) 4535 if (!F.isDeclaration() && !Kernels.contains(&F) && IsCalled(F) && 4536 !DisableInternalization) { 4537 if (Attributor::isInternalizable(F)) { 4538 InternalizeFns.insert(&F); 4539 } else if (!F.hasLocalLinkage() && !F.hasFnAttribute(Attribute::Cold)) { 4540 EmitRemark(F); 4541 } 4542 } 4543 4544 Attributor::internalizeFunctions(InternalizeFns, InternalizedMap); 4545 } 4546 4547 // Look at every function in the Module unless it was internalized. 4548 SmallVector<Function *, 16> SCC; 4549 for (Function &F : M) 4550 if (!F.isDeclaration() && !InternalizedMap.lookup(&F)) 4551 SCC.push_back(&F); 4552 4553 if (SCC.empty()) 4554 return PreservedAnalyses::all(); 4555 4556 AnalysisGetter AG(FAM); 4557 4558 auto OREGetter = [&FAM](Function *F) -> OptimizationRemarkEmitter & { 4559 return FAM.getResult<OptimizationRemarkEmitterAnalysis>(*F); 4560 }; 4561 4562 BumpPtrAllocator Allocator; 4563 CallGraphUpdater CGUpdater; 4564 4565 SetVector<Function *> Functions(SCC.begin(), SCC.end()); 4566 OMPInformationCache InfoCache(M, AG, Allocator, /*CGSCC*/ Functions, Kernels); 4567 4568 unsigned MaxFixpointIterations = (isOpenMPDevice(M)) ? 128 : 32; 4569 Attributor A(Functions, InfoCache, CGUpdater, nullptr, true, false, 4570 MaxFixpointIterations, OREGetter, DEBUG_TYPE); 4571 4572 OpenMPOpt OMPOpt(SCC, CGUpdater, OREGetter, InfoCache, A); 4573 bool Changed = OMPOpt.run(true); 4574 4575 // Optionally inline device functions for potentially better performance. 4576 if (AlwaysInlineDeviceFunctions && isOpenMPDevice(M)) 4577 for (Function &F : M) 4578 if (!F.isDeclaration() && !Kernels.contains(&F) && 4579 !F.hasFnAttribute(Attribute::NoInline)) 4580 F.addFnAttr(Attribute::AlwaysInline); 4581 4582 if (PrintModuleAfterOptimizations) 4583 LLVM_DEBUG(dbgs() << TAG << "Module after OpenMPOpt Module Pass:\n" << M); 4584 4585 if (Changed) 4586 return PreservedAnalyses::none(); 4587 4588 return PreservedAnalyses::all(); 4589 } 4590 4591 PreservedAnalyses OpenMPOptCGSCCPass::run(LazyCallGraph::SCC &C, 4592 CGSCCAnalysisManager &AM, 4593 LazyCallGraph &CG, 4594 CGSCCUpdateResult &UR) { 4595 if (!containsOpenMP(*C.begin()->getFunction().getParent())) 4596 return PreservedAnalyses::all(); 4597 if (DisableOpenMPOptimizations) 4598 return PreservedAnalyses::all(); 4599 4600 SmallVector<Function *, 16> SCC; 4601 // If there are kernels in the module, we have to run on all SCC's. 4602 for (LazyCallGraph::Node &N : C) { 4603 Function *Fn = &N.getFunction(); 4604 SCC.push_back(Fn); 4605 } 4606 4607 if (SCC.empty()) 4608 return PreservedAnalyses::all(); 4609 4610 Module &M = *C.begin()->getFunction().getParent(); 4611 4612 KernelSet Kernels = getDeviceKernels(M); 4613 4614 FunctionAnalysisManager &FAM = 4615 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager(); 4616 4617 AnalysisGetter AG(FAM); 4618 4619 auto OREGetter = [&FAM](Function *F) -> OptimizationRemarkEmitter & { 4620 return FAM.getResult<OptimizationRemarkEmitterAnalysis>(*F); 4621 }; 4622 4623 BumpPtrAllocator Allocator; 4624 CallGraphUpdater CGUpdater; 4625 CGUpdater.initialize(CG, C, AM, UR); 4626 4627 SetVector<Function *> Functions(SCC.begin(), SCC.end()); 4628 OMPInformationCache InfoCache(*(Functions.back()->getParent()), AG, Allocator, 4629 /*CGSCC*/ Functions, Kernels); 4630 4631 unsigned MaxFixpointIterations = (isOpenMPDevice(M)) ? 128 : 32; 4632 Attributor A(Functions, InfoCache, CGUpdater, nullptr, false, true, 4633 MaxFixpointIterations, OREGetter, DEBUG_TYPE); 4634 4635 OpenMPOpt OMPOpt(SCC, CGUpdater, OREGetter, InfoCache, A); 4636 bool Changed = OMPOpt.run(false); 4637 4638 if (PrintModuleAfterOptimizations) 4639 LLVM_DEBUG(dbgs() << TAG << "Module after OpenMPOpt CGSCC Pass:\n" << M); 4640 4641 if (Changed) 4642 return PreservedAnalyses::none(); 4643 4644 return PreservedAnalyses::all(); 4645 } 4646 4647 namespace { 4648 4649 struct OpenMPOptCGSCCLegacyPass : public CallGraphSCCPass { 4650 CallGraphUpdater CGUpdater; 4651 static char ID; 4652 4653 OpenMPOptCGSCCLegacyPass() : CallGraphSCCPass(ID) { 4654 initializeOpenMPOptCGSCCLegacyPassPass(*PassRegistry::getPassRegistry()); 4655 } 4656 4657 void getAnalysisUsage(AnalysisUsage &AU) const override { 4658 CallGraphSCCPass::getAnalysisUsage(AU); 4659 } 4660 4661 bool runOnSCC(CallGraphSCC &CGSCC) override { 4662 if (!containsOpenMP(CGSCC.getCallGraph().getModule())) 4663 return false; 4664 if (DisableOpenMPOptimizations || skipSCC(CGSCC)) 4665 return false; 4666 4667 SmallVector<Function *, 16> SCC; 4668 // If there are kernels in the module, we have to run on all SCC's. 4669 for (CallGraphNode *CGN : CGSCC) { 4670 Function *Fn = CGN->getFunction(); 4671 if (!Fn || Fn->isDeclaration()) 4672 continue; 4673 SCC.push_back(Fn); 4674 } 4675 4676 if (SCC.empty()) 4677 return false; 4678 4679 Module &M = CGSCC.getCallGraph().getModule(); 4680 KernelSet Kernels = getDeviceKernels(M); 4681 4682 CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph(); 4683 CGUpdater.initialize(CG, CGSCC); 4684 4685 // Maintain a map of functions to avoid rebuilding the ORE 4686 DenseMap<Function *, std::unique_ptr<OptimizationRemarkEmitter>> OREMap; 4687 auto OREGetter = [&OREMap](Function *F) -> OptimizationRemarkEmitter & { 4688 std::unique_ptr<OptimizationRemarkEmitter> &ORE = OREMap[F]; 4689 if (!ORE) 4690 ORE = std::make_unique<OptimizationRemarkEmitter>(F); 4691 return *ORE; 4692 }; 4693 4694 AnalysisGetter AG; 4695 SetVector<Function *> Functions(SCC.begin(), SCC.end()); 4696 BumpPtrAllocator Allocator; 4697 OMPInformationCache InfoCache(*(Functions.back()->getParent()), AG, 4698 Allocator, 4699 /*CGSCC*/ Functions, Kernels); 4700 4701 unsigned MaxFixpointIterations = (isOpenMPDevice(M)) ? 128 : 32; 4702 Attributor A(Functions, InfoCache, CGUpdater, nullptr, false, true, 4703 MaxFixpointIterations, OREGetter, DEBUG_TYPE); 4704 4705 OpenMPOpt OMPOpt(SCC, CGUpdater, OREGetter, InfoCache, A); 4706 bool Result = OMPOpt.run(false); 4707 4708 if (PrintModuleAfterOptimizations) 4709 LLVM_DEBUG(dbgs() << TAG << "Module after OpenMPOpt CGSCC Pass:\n" << M); 4710 4711 return Result; 4712 } 4713 4714 bool doFinalization(CallGraph &CG) override { return CGUpdater.finalize(); } 4715 }; 4716 4717 } // end anonymous namespace 4718 4719 KernelSet llvm::omp::getDeviceKernels(Module &M) { 4720 // TODO: Create a more cross-platform way of determining device kernels. 4721 NamedMDNode *MD = M.getOrInsertNamedMetadata("nvvm.annotations"); 4722 KernelSet Kernels; 4723 4724 if (!MD) 4725 return Kernels; 4726 4727 for (auto *Op : MD->operands()) { 4728 if (Op->getNumOperands() < 2) 4729 continue; 4730 MDString *KindID = dyn_cast<MDString>(Op->getOperand(1)); 4731 if (!KindID || KindID->getString() != "kernel") 4732 continue; 4733 4734 Function *KernelFn = 4735 mdconst::dyn_extract_or_null<Function>(Op->getOperand(0)); 4736 if (!KernelFn) 4737 continue; 4738 4739 ++NumOpenMPTargetRegionKernels; 4740 4741 Kernels.insert(KernelFn); 4742 } 4743 4744 return Kernels; 4745 } 4746 4747 bool llvm::omp::containsOpenMP(Module &M) { 4748 Metadata *MD = M.getModuleFlag("openmp"); 4749 if (!MD) 4750 return false; 4751 4752 return true; 4753 } 4754 4755 bool llvm::omp::isOpenMPDevice(Module &M) { 4756 Metadata *MD = M.getModuleFlag("openmp-device"); 4757 if (!MD) 4758 return false; 4759 4760 return true; 4761 } 4762 4763 char OpenMPOptCGSCCLegacyPass::ID = 0; 4764 4765 INITIALIZE_PASS_BEGIN(OpenMPOptCGSCCLegacyPass, "openmp-opt-cgscc", 4766 "OpenMP specific optimizations", false, false) 4767 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass) 4768 INITIALIZE_PASS_END(OpenMPOptCGSCCLegacyPass, "openmp-opt-cgscc", 4769 "OpenMP specific optimizations", false, false) 4770 4771 Pass *llvm::createOpenMPOptCGSCCLegacyPass() { 4772 return new OpenMPOptCGSCCLegacyPass(); 4773 } 4774