1 //===-- IPO/OpenMPOpt.cpp - Collection of OpenMP specific optimizations ---===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // OpenMP specific optimizations: 10 // 11 // - Deduplication of runtime calls, e.g., omp_get_thread_num. 12 // - Replacing globalized device memory with stack memory. 13 // - Replacing globalized device memory with shared memory. 14 // - Parallel region merging. 15 // - Transforming generic-mode device kernels to SPMD mode. 16 // - Specializing the state machine for generic-mode device kernels. 17 // 18 //===----------------------------------------------------------------------===// 19 20 #include "llvm/Transforms/IPO/OpenMPOpt.h" 21 22 #include "llvm/ADT/EnumeratedArray.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/Analysis/CallGraph.h" 26 #include "llvm/Analysis/CallGraphSCCPass.h" 27 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 28 #include "llvm/Analysis/ValueTracking.h" 29 #include "llvm/Frontend/OpenMP/OMPConstants.h" 30 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 31 #include "llvm/IR/Assumptions.h" 32 #include "llvm/IR/DiagnosticInfo.h" 33 #include "llvm/IR/GlobalValue.h" 34 #include "llvm/IR/Instruction.h" 35 #include "llvm/IR/IntrinsicInst.h" 36 #include "llvm/IR/IntrinsicsAMDGPU.h" 37 #include "llvm/IR/IntrinsicsNVPTX.h" 38 #include "llvm/InitializePasses.h" 39 #include "llvm/Support/CommandLine.h" 40 #include "llvm/Transforms/IPO.h" 41 #include "llvm/Transforms/IPO/Attributor.h" 42 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 43 #include "llvm/Transforms/Utils/CallGraphUpdater.h" 44 #include "llvm/Transforms/Utils/CodeExtractor.h" 45 46 using namespace llvm; 47 using namespace omp; 48 49 #define DEBUG_TYPE "openmp-opt" 50 51 static cl::opt<bool> DisableOpenMPOptimizations( 52 "openmp-opt-disable", cl::ZeroOrMore, 53 cl::desc("Disable OpenMP specific optimizations."), cl::Hidden, 54 cl::init(false)); 55 56 static cl::opt<bool> EnableParallelRegionMerging( 57 "openmp-opt-enable-merging", cl::ZeroOrMore, 58 cl::desc("Enable the OpenMP region merging optimization."), cl::Hidden, 59 cl::init(false)); 60 61 static cl::opt<bool> 62 DisableInternalization("openmp-opt-disable-internalization", cl::ZeroOrMore, 63 cl::desc("Disable function internalization."), 64 cl::Hidden, cl::init(false)); 65 66 static cl::opt<bool> PrintICVValues("openmp-print-icv-values", cl::init(false), 67 cl::Hidden); 68 static cl::opt<bool> PrintOpenMPKernels("openmp-print-gpu-kernels", 69 cl::init(false), cl::Hidden); 70 71 static cl::opt<bool> HideMemoryTransferLatency( 72 "openmp-hide-memory-transfer-latency", 73 cl::desc("[WIP] Tries to hide the latency of host to device memory" 74 " transfers"), 75 cl::Hidden, cl::init(false)); 76 77 static cl::opt<bool> DisableOpenMPOptDeglobalization( 78 "openmp-opt-disable-deglobalization", cl::ZeroOrMore, 79 cl::desc("Disable OpenMP optimizations involving deglobalization."), 80 cl::Hidden, cl::init(false)); 81 82 static cl::opt<bool> DisableOpenMPOptSPMDization( 83 "openmp-opt-disable-spmdization", cl::ZeroOrMore, 84 cl::desc("Disable OpenMP optimizations involving SPMD-ization."), 85 cl::Hidden, cl::init(false)); 86 87 static cl::opt<bool> DisableOpenMPOptFolding( 88 "openmp-opt-disable-folding", cl::ZeroOrMore, 89 cl::desc("Disable OpenMP optimizations involving folding."), cl::Hidden, 90 cl::init(false)); 91 92 static cl::opt<bool> DisableOpenMPOptStateMachineRewrite( 93 "openmp-opt-disable-state-machine-rewrite", cl::ZeroOrMore, 94 cl::desc("Disable OpenMP optimizations that replace the state machine."), 95 cl::Hidden, cl::init(false)); 96 97 static cl::opt<bool> PrintModuleAfterOptimizations( 98 "openmp-opt-print-module", cl::ZeroOrMore, 99 cl::desc("Print the current module after OpenMP optimizations."), 100 cl::Hidden, cl::init(false)); 101 102 static cl::opt<bool> AlwaysInlineDeviceFunctions( 103 "openmp-opt-inline-device", cl::ZeroOrMore, 104 cl::desc("Inline all applicible functions on the device."), cl::Hidden, 105 cl::init(false)); 106 107 static cl::opt<bool> 108 EnableVerboseRemarks("openmp-opt-verbose-remarks", cl::ZeroOrMore, 109 cl::desc("Enables more verbose remarks."), cl::Hidden, 110 cl::init(false)); 111 112 STATISTIC(NumOpenMPRuntimeCallsDeduplicated, 113 "Number of OpenMP runtime calls deduplicated"); 114 STATISTIC(NumOpenMPParallelRegionsDeleted, 115 "Number of OpenMP parallel regions deleted"); 116 STATISTIC(NumOpenMPRuntimeFunctionsIdentified, 117 "Number of OpenMP runtime functions identified"); 118 STATISTIC(NumOpenMPRuntimeFunctionUsesIdentified, 119 "Number of OpenMP runtime function uses identified"); 120 STATISTIC(NumOpenMPTargetRegionKernels, 121 "Number of OpenMP target region entry points (=kernels) identified"); 122 STATISTIC(NumOpenMPTargetRegionKernelsSPMD, 123 "Number of OpenMP target region entry points (=kernels) executed in " 124 "SPMD-mode instead of generic-mode"); 125 STATISTIC(NumOpenMPTargetRegionKernelsWithoutStateMachine, 126 "Number of OpenMP target region entry points (=kernels) executed in " 127 "generic-mode without a state machines"); 128 STATISTIC(NumOpenMPTargetRegionKernelsCustomStateMachineWithFallback, 129 "Number of OpenMP target region entry points (=kernels) executed in " 130 "generic-mode with customized state machines with fallback"); 131 STATISTIC(NumOpenMPTargetRegionKernelsCustomStateMachineWithoutFallback, 132 "Number of OpenMP target region entry points (=kernels) executed in " 133 "generic-mode with customized state machines without fallback"); 134 STATISTIC( 135 NumOpenMPParallelRegionsReplacedInGPUStateMachine, 136 "Number of OpenMP parallel regions replaced with ID in GPU state machines"); 137 STATISTIC(NumOpenMPParallelRegionsMerged, 138 "Number of OpenMP parallel regions merged"); 139 STATISTIC(NumBytesMovedToSharedMemory, 140 "Amount of memory pushed to shared memory"); 141 142 #if !defined(NDEBUG) 143 static constexpr auto TAG = "[" DEBUG_TYPE "]"; 144 #endif 145 146 namespace { 147 148 enum class AddressSpace : unsigned { 149 Generic = 0, 150 Global = 1, 151 Shared = 3, 152 Constant = 4, 153 Local = 5, 154 }; 155 156 struct AAHeapToShared; 157 158 struct AAICVTracker; 159 160 /// OpenMP specific information. For now, stores RFIs and ICVs also needed for 161 /// Attributor runs. 162 struct OMPInformationCache : public InformationCache { 163 OMPInformationCache(Module &M, AnalysisGetter &AG, 164 BumpPtrAllocator &Allocator, SetVector<Function *> &CGSCC, 165 SmallPtrSetImpl<Kernel> &Kernels) 166 : InformationCache(M, AG, Allocator, &CGSCC), OMPBuilder(M), 167 Kernels(Kernels) { 168 169 OMPBuilder.initialize(); 170 initializeRuntimeFunctions(); 171 initializeInternalControlVars(); 172 } 173 174 /// Generic information that describes an internal control variable. 175 struct InternalControlVarInfo { 176 /// The kind, as described by InternalControlVar enum. 177 InternalControlVar Kind; 178 179 /// The name of the ICV. 180 StringRef Name; 181 182 /// Environment variable associated with this ICV. 183 StringRef EnvVarName; 184 185 /// Initial value kind. 186 ICVInitValue InitKind; 187 188 /// Initial value. 189 ConstantInt *InitValue; 190 191 /// Setter RTL function associated with this ICV. 192 RuntimeFunction Setter; 193 194 /// Getter RTL function associated with this ICV. 195 RuntimeFunction Getter; 196 197 /// RTL Function corresponding to the override clause of this ICV 198 RuntimeFunction Clause; 199 }; 200 201 /// Generic information that describes a runtime function 202 struct RuntimeFunctionInfo { 203 204 /// The kind, as described by the RuntimeFunction enum. 205 RuntimeFunction Kind; 206 207 /// The name of the function. 208 StringRef Name; 209 210 /// Flag to indicate a variadic function. 211 bool IsVarArg; 212 213 /// The return type of the function. 214 Type *ReturnType; 215 216 /// The argument types of the function. 217 SmallVector<Type *, 8> ArgumentTypes; 218 219 /// The declaration if available. 220 Function *Declaration = nullptr; 221 222 /// Uses of this runtime function per function containing the use. 223 using UseVector = SmallVector<Use *, 16>; 224 225 /// Clear UsesMap for runtime function. 226 void clearUsesMap() { UsesMap.clear(); } 227 228 /// Boolean conversion that is true if the runtime function was found. 229 operator bool() const { return Declaration; } 230 231 /// Return the vector of uses in function \p F. 232 UseVector &getOrCreateUseVector(Function *F) { 233 std::shared_ptr<UseVector> &UV = UsesMap[F]; 234 if (!UV) 235 UV = std::make_shared<UseVector>(); 236 return *UV; 237 } 238 239 /// Return the vector of uses in function \p F or `nullptr` if there are 240 /// none. 241 const UseVector *getUseVector(Function &F) const { 242 auto I = UsesMap.find(&F); 243 if (I != UsesMap.end()) 244 return I->second.get(); 245 return nullptr; 246 } 247 248 /// Return how many functions contain uses of this runtime function. 249 size_t getNumFunctionsWithUses() const { return UsesMap.size(); } 250 251 /// Return the number of arguments (or the minimal number for variadic 252 /// functions). 253 size_t getNumArgs() const { return ArgumentTypes.size(); } 254 255 /// Run the callback \p CB on each use and forget the use if the result is 256 /// true. The callback will be fed the function in which the use was 257 /// encountered as second argument. 258 void foreachUse(SmallVectorImpl<Function *> &SCC, 259 function_ref<bool(Use &, Function &)> CB) { 260 for (Function *F : SCC) 261 foreachUse(CB, F); 262 } 263 264 /// Run the callback \p CB on each use within the function \p F and forget 265 /// the use if the result is true. 266 void foreachUse(function_ref<bool(Use &, Function &)> CB, Function *F) { 267 SmallVector<unsigned, 8> ToBeDeleted; 268 ToBeDeleted.clear(); 269 270 unsigned Idx = 0; 271 UseVector &UV = getOrCreateUseVector(F); 272 273 for (Use *U : UV) { 274 if (CB(*U, *F)) 275 ToBeDeleted.push_back(Idx); 276 ++Idx; 277 } 278 279 // Remove the to-be-deleted indices in reverse order as prior 280 // modifications will not modify the smaller indices. 281 while (!ToBeDeleted.empty()) { 282 unsigned Idx = ToBeDeleted.pop_back_val(); 283 UV[Idx] = UV.back(); 284 UV.pop_back(); 285 } 286 } 287 288 private: 289 /// Map from functions to all uses of this runtime function contained in 290 /// them. 291 DenseMap<Function *, std::shared_ptr<UseVector>> UsesMap; 292 293 public: 294 /// Iterators for the uses of this runtime function. 295 decltype(UsesMap)::iterator begin() { return UsesMap.begin(); } 296 decltype(UsesMap)::iterator end() { return UsesMap.end(); } 297 }; 298 299 /// An OpenMP-IR-Builder instance 300 OpenMPIRBuilder OMPBuilder; 301 302 /// Map from runtime function kind to the runtime function description. 303 EnumeratedArray<RuntimeFunctionInfo, RuntimeFunction, 304 RuntimeFunction::OMPRTL___last> 305 RFIs; 306 307 /// Map from function declarations/definitions to their runtime enum type. 308 DenseMap<Function *, RuntimeFunction> RuntimeFunctionIDMap; 309 310 /// Map from ICV kind to the ICV description. 311 EnumeratedArray<InternalControlVarInfo, InternalControlVar, 312 InternalControlVar::ICV___last> 313 ICVs; 314 315 /// Helper to initialize all internal control variable information for those 316 /// defined in OMPKinds.def. 317 void initializeInternalControlVars() { 318 #define ICV_RT_SET(_Name, RTL) \ 319 { \ 320 auto &ICV = ICVs[_Name]; \ 321 ICV.Setter = RTL; \ 322 } 323 #define ICV_RT_GET(Name, RTL) \ 324 { \ 325 auto &ICV = ICVs[Name]; \ 326 ICV.Getter = RTL; \ 327 } 328 #define ICV_DATA_ENV(Enum, _Name, _EnvVarName, Init) \ 329 { \ 330 auto &ICV = ICVs[Enum]; \ 331 ICV.Name = _Name; \ 332 ICV.Kind = Enum; \ 333 ICV.InitKind = Init; \ 334 ICV.EnvVarName = _EnvVarName; \ 335 switch (ICV.InitKind) { \ 336 case ICV_IMPLEMENTATION_DEFINED: \ 337 ICV.InitValue = nullptr; \ 338 break; \ 339 case ICV_ZERO: \ 340 ICV.InitValue = ConstantInt::get( \ 341 Type::getInt32Ty(OMPBuilder.Int32->getContext()), 0); \ 342 break; \ 343 case ICV_FALSE: \ 344 ICV.InitValue = ConstantInt::getFalse(OMPBuilder.Int1->getContext()); \ 345 break; \ 346 case ICV_LAST: \ 347 break; \ 348 } \ 349 } 350 #include "llvm/Frontend/OpenMP/OMPKinds.def" 351 } 352 353 /// Returns true if the function declaration \p F matches the runtime 354 /// function types, that is, return type \p RTFRetType, and argument types 355 /// \p RTFArgTypes. 356 static bool declMatchesRTFTypes(Function *F, Type *RTFRetType, 357 SmallVector<Type *, 8> &RTFArgTypes) { 358 // TODO: We should output information to the user (under debug output 359 // and via remarks). 360 361 if (!F) 362 return false; 363 if (F->getReturnType() != RTFRetType) 364 return false; 365 if (F->arg_size() != RTFArgTypes.size()) 366 return false; 367 368 auto RTFTyIt = RTFArgTypes.begin(); 369 for (Argument &Arg : F->args()) { 370 if (Arg.getType() != *RTFTyIt) 371 return false; 372 373 ++RTFTyIt; 374 } 375 376 return true; 377 } 378 379 // Helper to collect all uses of the declaration in the UsesMap. 380 unsigned collectUses(RuntimeFunctionInfo &RFI, bool CollectStats = true) { 381 unsigned NumUses = 0; 382 if (!RFI.Declaration) 383 return NumUses; 384 OMPBuilder.addAttributes(RFI.Kind, *RFI.Declaration); 385 386 if (CollectStats) { 387 NumOpenMPRuntimeFunctionsIdentified += 1; 388 NumOpenMPRuntimeFunctionUsesIdentified += RFI.Declaration->getNumUses(); 389 } 390 391 // TODO: We directly convert uses into proper calls and unknown uses. 392 for (Use &U : RFI.Declaration->uses()) { 393 if (Instruction *UserI = dyn_cast<Instruction>(U.getUser())) { 394 if (ModuleSlice.count(UserI->getFunction())) { 395 RFI.getOrCreateUseVector(UserI->getFunction()).push_back(&U); 396 ++NumUses; 397 } 398 } else { 399 RFI.getOrCreateUseVector(nullptr).push_back(&U); 400 ++NumUses; 401 } 402 } 403 return NumUses; 404 } 405 406 // Helper function to recollect uses of a runtime function. 407 void recollectUsesForFunction(RuntimeFunction RTF) { 408 auto &RFI = RFIs[RTF]; 409 RFI.clearUsesMap(); 410 collectUses(RFI, /*CollectStats*/ false); 411 } 412 413 // Helper function to recollect uses of all runtime functions. 414 void recollectUses() { 415 for (int Idx = 0; Idx < RFIs.size(); ++Idx) 416 recollectUsesForFunction(static_cast<RuntimeFunction>(Idx)); 417 } 418 419 /// Helper to initialize all runtime function information for those defined 420 /// in OpenMPKinds.def. 421 void initializeRuntimeFunctions() { 422 Module &M = *((*ModuleSlice.begin())->getParent()); 423 424 // Helper macros for handling __VA_ARGS__ in OMP_RTL 425 #define OMP_TYPE(VarName, ...) \ 426 Type *VarName = OMPBuilder.VarName; \ 427 (void)VarName; 428 429 #define OMP_ARRAY_TYPE(VarName, ...) \ 430 ArrayType *VarName##Ty = OMPBuilder.VarName##Ty; \ 431 (void)VarName##Ty; \ 432 PointerType *VarName##PtrTy = OMPBuilder.VarName##PtrTy; \ 433 (void)VarName##PtrTy; 434 435 #define OMP_FUNCTION_TYPE(VarName, ...) \ 436 FunctionType *VarName = OMPBuilder.VarName; \ 437 (void)VarName; \ 438 PointerType *VarName##Ptr = OMPBuilder.VarName##Ptr; \ 439 (void)VarName##Ptr; 440 441 #define OMP_STRUCT_TYPE(VarName, ...) \ 442 StructType *VarName = OMPBuilder.VarName; \ 443 (void)VarName; \ 444 PointerType *VarName##Ptr = OMPBuilder.VarName##Ptr; \ 445 (void)VarName##Ptr; 446 447 #define OMP_RTL(_Enum, _Name, _IsVarArg, _ReturnType, ...) \ 448 { \ 449 SmallVector<Type *, 8> ArgsTypes({__VA_ARGS__}); \ 450 Function *F = M.getFunction(_Name); \ 451 RTLFunctions.insert(F); \ 452 if (declMatchesRTFTypes(F, OMPBuilder._ReturnType, ArgsTypes)) { \ 453 RuntimeFunctionIDMap[F] = _Enum; \ 454 F->removeFnAttr(Attribute::NoInline); \ 455 auto &RFI = RFIs[_Enum]; \ 456 RFI.Kind = _Enum; \ 457 RFI.Name = _Name; \ 458 RFI.IsVarArg = _IsVarArg; \ 459 RFI.ReturnType = OMPBuilder._ReturnType; \ 460 RFI.ArgumentTypes = std::move(ArgsTypes); \ 461 RFI.Declaration = F; \ 462 unsigned NumUses = collectUses(RFI); \ 463 (void)NumUses; \ 464 LLVM_DEBUG({ \ 465 dbgs() << TAG << RFI.Name << (RFI.Declaration ? "" : " not") \ 466 << " found\n"; \ 467 if (RFI.Declaration) \ 468 dbgs() << TAG << "-> got " << NumUses << " uses in " \ 469 << RFI.getNumFunctionsWithUses() \ 470 << " different functions.\n"; \ 471 }); \ 472 } \ 473 } 474 #include "llvm/Frontend/OpenMP/OMPKinds.def" 475 476 // TODO: We should attach the attributes defined in OMPKinds.def. 477 } 478 479 /// Collection of known kernels (\see Kernel) in the module. 480 SmallPtrSetImpl<Kernel> &Kernels; 481 482 /// Collection of known OpenMP runtime functions.. 483 DenseSet<const Function *> RTLFunctions; 484 }; 485 486 template <typename Ty, bool InsertInvalidates = true> 487 struct BooleanStateWithSetVector : public BooleanState { 488 bool contains(const Ty &Elem) const { return Set.contains(Elem); } 489 bool insert(const Ty &Elem) { 490 if (InsertInvalidates) 491 BooleanState::indicatePessimisticFixpoint(); 492 return Set.insert(Elem); 493 } 494 495 const Ty &operator[](int Idx) const { return Set[Idx]; } 496 bool operator==(const BooleanStateWithSetVector &RHS) const { 497 return BooleanState::operator==(RHS) && Set == RHS.Set; 498 } 499 bool operator!=(const BooleanStateWithSetVector &RHS) const { 500 return !(*this == RHS); 501 } 502 503 bool empty() const { return Set.empty(); } 504 size_t size() const { return Set.size(); } 505 506 /// "Clamp" this state with \p RHS. 507 BooleanStateWithSetVector &operator^=(const BooleanStateWithSetVector &RHS) { 508 BooleanState::operator^=(RHS); 509 Set.insert(RHS.Set.begin(), RHS.Set.end()); 510 return *this; 511 } 512 513 private: 514 /// A set to keep track of elements. 515 SetVector<Ty> Set; 516 517 public: 518 typename decltype(Set)::iterator begin() { return Set.begin(); } 519 typename decltype(Set)::iterator end() { return Set.end(); } 520 typename decltype(Set)::const_iterator begin() const { return Set.begin(); } 521 typename decltype(Set)::const_iterator end() const { return Set.end(); } 522 }; 523 524 template <typename Ty, bool InsertInvalidates = true> 525 using BooleanStateWithPtrSetVector = 526 BooleanStateWithSetVector<Ty *, InsertInvalidates>; 527 528 struct KernelInfoState : AbstractState { 529 /// Flag to track if we reached a fixpoint. 530 bool IsAtFixpoint = false; 531 532 /// The parallel regions (identified by the outlined parallel functions) that 533 /// can be reached from the associated function. 534 BooleanStateWithPtrSetVector<Function, /* InsertInvalidates */ false> 535 ReachedKnownParallelRegions; 536 537 /// State to track what parallel region we might reach. 538 BooleanStateWithPtrSetVector<CallBase> ReachedUnknownParallelRegions; 539 540 /// State to track if we are in SPMD-mode, assumed or know, and why we decided 541 /// we cannot be. If it is assumed, then RequiresFullRuntime should also be 542 /// false. 543 BooleanStateWithPtrSetVector<Instruction, false> SPMDCompatibilityTracker; 544 545 /// The __kmpc_target_init call in this kernel, if any. If we find more than 546 /// one we abort as the kernel is malformed. 547 CallBase *KernelInitCB = nullptr; 548 549 /// The __kmpc_target_deinit call in this kernel, if any. If we find more than 550 /// one we abort as the kernel is malformed. 551 CallBase *KernelDeinitCB = nullptr; 552 553 /// Flag to indicate if the associated function is a kernel entry. 554 bool IsKernelEntry = false; 555 556 /// State to track what kernel entries can reach the associated function. 557 BooleanStateWithPtrSetVector<Function, false> ReachingKernelEntries; 558 559 /// State to indicate if we can track parallel level of the associated 560 /// function. We will give up tracking if we encounter unknown caller or the 561 /// caller is __kmpc_parallel_51. 562 BooleanStateWithSetVector<uint8_t> ParallelLevels; 563 564 /// Abstract State interface 565 ///{ 566 567 KernelInfoState() {} 568 KernelInfoState(bool BestState) { 569 if (!BestState) 570 indicatePessimisticFixpoint(); 571 } 572 573 /// See AbstractState::isValidState(...) 574 bool isValidState() const override { return true; } 575 576 /// See AbstractState::isAtFixpoint(...) 577 bool isAtFixpoint() const override { return IsAtFixpoint; } 578 579 /// See AbstractState::indicatePessimisticFixpoint(...) 580 ChangeStatus indicatePessimisticFixpoint() override { 581 IsAtFixpoint = true; 582 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 583 ReachedUnknownParallelRegions.indicatePessimisticFixpoint(); 584 return ChangeStatus::CHANGED; 585 } 586 587 /// See AbstractState::indicateOptimisticFixpoint(...) 588 ChangeStatus indicateOptimisticFixpoint() override { 589 IsAtFixpoint = true; 590 return ChangeStatus::UNCHANGED; 591 } 592 593 /// Return the assumed state 594 KernelInfoState &getAssumed() { return *this; } 595 const KernelInfoState &getAssumed() const { return *this; } 596 597 bool operator==(const KernelInfoState &RHS) const { 598 if (SPMDCompatibilityTracker != RHS.SPMDCompatibilityTracker) 599 return false; 600 if (ReachedKnownParallelRegions != RHS.ReachedKnownParallelRegions) 601 return false; 602 if (ReachedUnknownParallelRegions != RHS.ReachedUnknownParallelRegions) 603 return false; 604 if (ReachingKernelEntries != RHS.ReachingKernelEntries) 605 return false; 606 return true; 607 } 608 609 /// Returns true if this kernel contains any OpenMP parallel regions. 610 bool mayContainParallelRegion() { 611 return !ReachedKnownParallelRegions.empty() || 612 !ReachedUnknownParallelRegions.empty(); 613 } 614 615 /// Return empty set as the best state of potential values. 616 static KernelInfoState getBestState() { return KernelInfoState(true); } 617 618 static KernelInfoState getBestState(KernelInfoState &KIS) { 619 return getBestState(); 620 } 621 622 /// Return full set as the worst state of potential values. 623 static KernelInfoState getWorstState() { return KernelInfoState(false); } 624 625 /// "Clamp" this state with \p KIS. 626 KernelInfoState operator^=(const KernelInfoState &KIS) { 627 // Do not merge two different _init and _deinit call sites. 628 if (KIS.KernelInitCB) { 629 if (KernelInitCB && KernelInitCB != KIS.KernelInitCB) 630 indicatePessimisticFixpoint(); 631 KernelInitCB = KIS.KernelInitCB; 632 } 633 if (KIS.KernelDeinitCB) { 634 if (KernelDeinitCB && KernelDeinitCB != KIS.KernelDeinitCB) 635 indicatePessimisticFixpoint(); 636 KernelDeinitCB = KIS.KernelDeinitCB; 637 } 638 SPMDCompatibilityTracker ^= KIS.SPMDCompatibilityTracker; 639 ReachedKnownParallelRegions ^= KIS.ReachedKnownParallelRegions; 640 ReachedUnknownParallelRegions ^= KIS.ReachedUnknownParallelRegions; 641 return *this; 642 } 643 644 KernelInfoState operator&=(const KernelInfoState &KIS) { 645 return (*this ^= KIS); 646 } 647 648 ///} 649 }; 650 651 /// Used to map the values physically (in the IR) stored in an offload 652 /// array, to a vector in memory. 653 struct OffloadArray { 654 /// Physical array (in the IR). 655 AllocaInst *Array = nullptr; 656 /// Mapped values. 657 SmallVector<Value *, 8> StoredValues; 658 /// Last stores made in the offload array. 659 SmallVector<StoreInst *, 8> LastAccesses; 660 661 OffloadArray() = default; 662 663 /// Initializes the OffloadArray with the values stored in \p Array before 664 /// instruction \p Before is reached. Returns false if the initialization 665 /// fails. 666 /// This MUST be used immediately after the construction of the object. 667 bool initialize(AllocaInst &Array, Instruction &Before) { 668 if (!Array.getAllocatedType()->isArrayTy()) 669 return false; 670 671 if (!getValues(Array, Before)) 672 return false; 673 674 this->Array = &Array; 675 return true; 676 } 677 678 static const unsigned DeviceIDArgNum = 1; 679 static const unsigned BasePtrsArgNum = 3; 680 static const unsigned PtrsArgNum = 4; 681 static const unsigned SizesArgNum = 5; 682 683 private: 684 /// Traverses the BasicBlock where \p Array is, collecting the stores made to 685 /// \p Array, leaving StoredValues with the values stored before the 686 /// instruction \p Before is reached. 687 bool getValues(AllocaInst &Array, Instruction &Before) { 688 // Initialize container. 689 const uint64_t NumValues = Array.getAllocatedType()->getArrayNumElements(); 690 StoredValues.assign(NumValues, nullptr); 691 LastAccesses.assign(NumValues, nullptr); 692 693 // TODO: This assumes the instruction \p Before is in the same 694 // BasicBlock as Array. Make it general, for any control flow graph. 695 BasicBlock *BB = Array.getParent(); 696 if (BB != Before.getParent()) 697 return false; 698 699 const DataLayout &DL = Array.getModule()->getDataLayout(); 700 const unsigned int PointerSize = DL.getPointerSize(); 701 702 for (Instruction &I : *BB) { 703 if (&I == &Before) 704 break; 705 706 if (!isa<StoreInst>(&I)) 707 continue; 708 709 auto *S = cast<StoreInst>(&I); 710 int64_t Offset = -1; 711 auto *Dst = 712 GetPointerBaseWithConstantOffset(S->getPointerOperand(), Offset, DL); 713 if (Dst == &Array) { 714 int64_t Idx = Offset / PointerSize; 715 StoredValues[Idx] = getUnderlyingObject(S->getValueOperand()); 716 LastAccesses[Idx] = S; 717 } 718 } 719 720 return isFilled(); 721 } 722 723 /// Returns true if all values in StoredValues and 724 /// LastAccesses are not nullptrs. 725 bool isFilled() { 726 const unsigned NumValues = StoredValues.size(); 727 for (unsigned I = 0; I < NumValues; ++I) { 728 if (!StoredValues[I] || !LastAccesses[I]) 729 return false; 730 } 731 732 return true; 733 } 734 }; 735 736 struct OpenMPOpt { 737 738 using OptimizationRemarkGetter = 739 function_ref<OptimizationRemarkEmitter &(Function *)>; 740 741 OpenMPOpt(SmallVectorImpl<Function *> &SCC, CallGraphUpdater &CGUpdater, 742 OptimizationRemarkGetter OREGetter, 743 OMPInformationCache &OMPInfoCache, Attributor &A) 744 : M(*(*SCC.begin())->getParent()), SCC(SCC), CGUpdater(CGUpdater), 745 OREGetter(OREGetter), OMPInfoCache(OMPInfoCache), A(A) {} 746 747 /// Check if any remarks are enabled for openmp-opt 748 bool remarksEnabled() { 749 auto &Ctx = M.getContext(); 750 return Ctx.getDiagHandlerPtr()->isAnyRemarkEnabled(DEBUG_TYPE); 751 } 752 753 /// Run all OpenMP optimizations on the underlying SCC/ModuleSlice. 754 bool run(bool IsModulePass) { 755 if (SCC.empty()) 756 return false; 757 758 bool Changed = false; 759 760 LLVM_DEBUG(dbgs() << TAG << "Run on SCC with " << SCC.size() 761 << " functions in a slice with " 762 << OMPInfoCache.ModuleSlice.size() << " functions\n"); 763 764 if (IsModulePass) { 765 Changed |= runAttributor(IsModulePass); 766 767 // Recollect uses, in case Attributor deleted any. 768 OMPInfoCache.recollectUses(); 769 770 // TODO: This should be folded into buildCustomStateMachine. 771 Changed |= rewriteDeviceCodeStateMachine(); 772 773 if (remarksEnabled()) 774 analysisGlobalization(); 775 } else { 776 if (PrintICVValues) 777 printICVs(); 778 if (PrintOpenMPKernels) 779 printKernels(); 780 781 Changed |= runAttributor(IsModulePass); 782 783 // Recollect uses, in case Attributor deleted any. 784 OMPInfoCache.recollectUses(); 785 786 Changed |= deleteParallelRegions(); 787 788 if (HideMemoryTransferLatency) 789 Changed |= hideMemTransfersLatency(); 790 Changed |= deduplicateRuntimeCalls(); 791 if (EnableParallelRegionMerging) { 792 if (mergeParallelRegions()) { 793 deduplicateRuntimeCalls(); 794 Changed = true; 795 } 796 } 797 } 798 799 return Changed; 800 } 801 802 /// Print initial ICV values for testing. 803 /// FIXME: This should be done from the Attributor once it is added. 804 void printICVs() const { 805 InternalControlVar ICVs[] = {ICV_nthreads, ICV_active_levels, ICV_cancel, 806 ICV_proc_bind}; 807 808 for (Function *F : OMPInfoCache.ModuleSlice) { 809 for (auto ICV : ICVs) { 810 auto ICVInfo = OMPInfoCache.ICVs[ICV]; 811 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 812 return ORA << "OpenMP ICV " << ore::NV("OpenMPICV", ICVInfo.Name) 813 << " Value: " 814 << (ICVInfo.InitValue 815 ? toString(ICVInfo.InitValue->getValue(), 10, true) 816 : "IMPLEMENTATION_DEFINED"); 817 }; 818 819 emitRemark<OptimizationRemarkAnalysis>(F, "OpenMPICVTracker", Remark); 820 } 821 } 822 } 823 824 /// Print OpenMP GPU kernels for testing. 825 void printKernels() const { 826 for (Function *F : SCC) { 827 if (!OMPInfoCache.Kernels.count(F)) 828 continue; 829 830 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 831 return ORA << "OpenMP GPU kernel " 832 << ore::NV("OpenMPGPUKernel", F->getName()) << "\n"; 833 }; 834 835 emitRemark<OptimizationRemarkAnalysis>(F, "OpenMPGPU", Remark); 836 } 837 } 838 839 /// Return the call if \p U is a callee use in a regular call. If \p RFI is 840 /// given it has to be the callee or a nullptr is returned. 841 static CallInst *getCallIfRegularCall( 842 Use &U, OMPInformationCache::RuntimeFunctionInfo *RFI = nullptr) { 843 CallInst *CI = dyn_cast<CallInst>(U.getUser()); 844 if (CI && CI->isCallee(&U) && !CI->hasOperandBundles() && 845 (!RFI || 846 (RFI->Declaration && CI->getCalledFunction() == RFI->Declaration))) 847 return CI; 848 return nullptr; 849 } 850 851 /// Return the call if \p V is a regular call. If \p RFI is given it has to be 852 /// the callee or a nullptr is returned. 853 static CallInst *getCallIfRegularCall( 854 Value &V, OMPInformationCache::RuntimeFunctionInfo *RFI = nullptr) { 855 CallInst *CI = dyn_cast<CallInst>(&V); 856 if (CI && !CI->hasOperandBundles() && 857 (!RFI || 858 (RFI->Declaration && CI->getCalledFunction() == RFI->Declaration))) 859 return CI; 860 return nullptr; 861 } 862 863 private: 864 /// Merge parallel regions when it is safe. 865 bool mergeParallelRegions() { 866 const unsigned CallbackCalleeOperand = 2; 867 const unsigned CallbackFirstArgOperand = 3; 868 using InsertPointTy = OpenMPIRBuilder::InsertPointTy; 869 870 // Check if there are any __kmpc_fork_call calls to merge. 871 OMPInformationCache::RuntimeFunctionInfo &RFI = 872 OMPInfoCache.RFIs[OMPRTL___kmpc_fork_call]; 873 874 if (!RFI.Declaration) 875 return false; 876 877 // Unmergable calls that prevent merging a parallel region. 878 OMPInformationCache::RuntimeFunctionInfo UnmergableCallsInfo[] = { 879 OMPInfoCache.RFIs[OMPRTL___kmpc_push_proc_bind], 880 OMPInfoCache.RFIs[OMPRTL___kmpc_push_num_threads], 881 }; 882 883 bool Changed = false; 884 LoopInfo *LI = nullptr; 885 DominatorTree *DT = nullptr; 886 887 SmallDenseMap<BasicBlock *, SmallPtrSet<Instruction *, 4>> BB2PRMap; 888 889 BasicBlock *StartBB = nullptr, *EndBB = nullptr; 890 auto BodyGenCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, 891 BasicBlock &ContinuationIP) { 892 BasicBlock *CGStartBB = CodeGenIP.getBlock(); 893 BasicBlock *CGEndBB = 894 SplitBlock(CGStartBB, &*CodeGenIP.getPoint(), DT, LI); 895 assert(StartBB != nullptr && "StartBB should not be null"); 896 CGStartBB->getTerminator()->setSuccessor(0, StartBB); 897 assert(EndBB != nullptr && "EndBB should not be null"); 898 EndBB->getTerminator()->setSuccessor(0, CGEndBB); 899 }; 900 901 auto PrivCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, Value &, 902 Value &Inner, Value *&ReplacementValue) -> InsertPointTy { 903 ReplacementValue = &Inner; 904 return CodeGenIP; 905 }; 906 907 auto FiniCB = [&](InsertPointTy CodeGenIP) {}; 908 909 /// Create a sequential execution region within a merged parallel region, 910 /// encapsulated in a master construct with a barrier for synchronization. 911 auto CreateSequentialRegion = [&](Function *OuterFn, 912 BasicBlock *OuterPredBB, 913 Instruction *SeqStartI, 914 Instruction *SeqEndI) { 915 // Isolate the instructions of the sequential region to a separate 916 // block. 917 BasicBlock *ParentBB = SeqStartI->getParent(); 918 BasicBlock *SeqEndBB = 919 SplitBlock(ParentBB, SeqEndI->getNextNode(), DT, LI); 920 BasicBlock *SeqAfterBB = 921 SplitBlock(SeqEndBB, &*SeqEndBB->getFirstInsertionPt(), DT, LI); 922 BasicBlock *SeqStartBB = 923 SplitBlock(ParentBB, SeqStartI, DT, LI, nullptr, "seq.par.merged"); 924 925 assert(ParentBB->getUniqueSuccessor() == SeqStartBB && 926 "Expected a different CFG"); 927 const DebugLoc DL = ParentBB->getTerminator()->getDebugLoc(); 928 ParentBB->getTerminator()->eraseFromParent(); 929 930 auto BodyGenCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, 931 BasicBlock &ContinuationIP) { 932 BasicBlock *CGStartBB = CodeGenIP.getBlock(); 933 BasicBlock *CGEndBB = 934 SplitBlock(CGStartBB, &*CodeGenIP.getPoint(), DT, LI); 935 assert(SeqStartBB != nullptr && "SeqStartBB should not be null"); 936 CGStartBB->getTerminator()->setSuccessor(0, SeqStartBB); 937 assert(SeqEndBB != nullptr && "SeqEndBB should not be null"); 938 SeqEndBB->getTerminator()->setSuccessor(0, CGEndBB); 939 }; 940 auto FiniCB = [&](InsertPointTy CodeGenIP) {}; 941 942 // Find outputs from the sequential region to outside users and 943 // broadcast their values to them. 944 for (Instruction &I : *SeqStartBB) { 945 SmallPtrSet<Instruction *, 4> OutsideUsers; 946 for (User *Usr : I.users()) { 947 Instruction &UsrI = *cast<Instruction>(Usr); 948 // Ignore outputs to LT intrinsics, code extraction for the merged 949 // parallel region will fix them. 950 if (UsrI.isLifetimeStartOrEnd()) 951 continue; 952 953 if (UsrI.getParent() != SeqStartBB) 954 OutsideUsers.insert(&UsrI); 955 } 956 957 if (OutsideUsers.empty()) 958 continue; 959 960 // Emit an alloca in the outer region to store the broadcasted 961 // value. 962 const DataLayout &DL = M.getDataLayout(); 963 AllocaInst *AllocaI = new AllocaInst( 964 I.getType(), DL.getAllocaAddrSpace(), nullptr, 965 I.getName() + ".seq.output.alloc", &OuterFn->front().front()); 966 967 // Emit a store instruction in the sequential BB to update the 968 // value. 969 new StoreInst(&I, AllocaI, SeqStartBB->getTerminator()); 970 971 // Emit a load instruction and replace the use of the output value 972 // with it. 973 for (Instruction *UsrI : OutsideUsers) { 974 LoadInst *LoadI = new LoadInst( 975 I.getType(), AllocaI, I.getName() + ".seq.output.load", UsrI); 976 UsrI->replaceUsesOfWith(&I, LoadI); 977 } 978 } 979 980 OpenMPIRBuilder::LocationDescription Loc( 981 InsertPointTy(ParentBB, ParentBB->end()), DL); 982 InsertPointTy SeqAfterIP = 983 OMPInfoCache.OMPBuilder.createMaster(Loc, BodyGenCB, FiniCB); 984 985 OMPInfoCache.OMPBuilder.createBarrier(SeqAfterIP, OMPD_parallel); 986 987 BranchInst::Create(SeqAfterBB, SeqAfterIP.getBlock()); 988 989 LLVM_DEBUG(dbgs() << TAG << "After sequential inlining " << *OuterFn 990 << "\n"); 991 }; 992 993 // Helper to merge the __kmpc_fork_call calls in MergableCIs. They are all 994 // contained in BB and only separated by instructions that can be 995 // redundantly executed in parallel. The block BB is split before the first 996 // call (in MergableCIs) and after the last so the entire region we merge 997 // into a single parallel region is contained in a single basic block 998 // without any other instructions. We use the OpenMPIRBuilder to outline 999 // that block and call the resulting function via __kmpc_fork_call. 1000 auto Merge = [&](SmallVectorImpl<CallInst *> &MergableCIs, BasicBlock *BB) { 1001 // TODO: Change the interface to allow single CIs expanded, e.g, to 1002 // include an outer loop. 1003 assert(MergableCIs.size() > 1 && "Assumed multiple mergable CIs"); 1004 1005 auto Remark = [&](OptimizationRemark OR) { 1006 OR << "Parallel region merged with parallel region" 1007 << (MergableCIs.size() > 2 ? "s" : "") << " at "; 1008 for (auto *CI : llvm::drop_begin(MergableCIs)) { 1009 OR << ore::NV("OpenMPParallelMerge", CI->getDebugLoc()); 1010 if (CI != MergableCIs.back()) 1011 OR << ", "; 1012 } 1013 return OR << "."; 1014 }; 1015 1016 emitRemark<OptimizationRemark>(MergableCIs.front(), "OMP150", Remark); 1017 1018 Function *OriginalFn = BB->getParent(); 1019 LLVM_DEBUG(dbgs() << TAG << "Merge " << MergableCIs.size() 1020 << " parallel regions in " << OriginalFn->getName() 1021 << "\n"); 1022 1023 // Isolate the calls to merge in a separate block. 1024 EndBB = SplitBlock(BB, MergableCIs.back()->getNextNode(), DT, LI); 1025 BasicBlock *AfterBB = 1026 SplitBlock(EndBB, &*EndBB->getFirstInsertionPt(), DT, LI); 1027 StartBB = SplitBlock(BB, MergableCIs.front(), DT, LI, nullptr, 1028 "omp.par.merged"); 1029 1030 assert(BB->getUniqueSuccessor() == StartBB && "Expected a different CFG"); 1031 const DebugLoc DL = BB->getTerminator()->getDebugLoc(); 1032 BB->getTerminator()->eraseFromParent(); 1033 1034 // Create sequential regions for sequential instructions that are 1035 // in-between mergable parallel regions. 1036 for (auto *It = MergableCIs.begin(), *End = MergableCIs.end() - 1; 1037 It != End; ++It) { 1038 Instruction *ForkCI = *It; 1039 Instruction *NextForkCI = *(It + 1); 1040 1041 // Continue if there are not in-between instructions. 1042 if (ForkCI->getNextNode() == NextForkCI) 1043 continue; 1044 1045 CreateSequentialRegion(OriginalFn, BB, ForkCI->getNextNode(), 1046 NextForkCI->getPrevNode()); 1047 } 1048 1049 OpenMPIRBuilder::LocationDescription Loc(InsertPointTy(BB, BB->end()), 1050 DL); 1051 IRBuilder<>::InsertPoint AllocaIP( 1052 &OriginalFn->getEntryBlock(), 1053 OriginalFn->getEntryBlock().getFirstInsertionPt()); 1054 // Create the merged parallel region with default proc binding, to 1055 // avoid overriding binding settings, and without explicit cancellation. 1056 InsertPointTy AfterIP = OMPInfoCache.OMPBuilder.createParallel( 1057 Loc, AllocaIP, BodyGenCB, PrivCB, FiniCB, nullptr, nullptr, 1058 OMP_PROC_BIND_default, /* IsCancellable */ false); 1059 BranchInst::Create(AfterBB, AfterIP.getBlock()); 1060 1061 // Perform the actual outlining. 1062 OMPInfoCache.OMPBuilder.finalize(OriginalFn, 1063 /* AllowExtractorSinking */ true); 1064 1065 Function *OutlinedFn = MergableCIs.front()->getCaller(); 1066 1067 // Replace the __kmpc_fork_call calls with direct calls to the outlined 1068 // callbacks. 1069 SmallVector<Value *, 8> Args; 1070 for (auto *CI : MergableCIs) { 1071 Value *Callee = 1072 CI->getArgOperand(CallbackCalleeOperand)->stripPointerCasts(); 1073 FunctionType *FT = 1074 cast<FunctionType>(Callee->getType()->getPointerElementType()); 1075 Args.clear(); 1076 Args.push_back(OutlinedFn->getArg(0)); 1077 Args.push_back(OutlinedFn->getArg(1)); 1078 for (unsigned U = CallbackFirstArgOperand, E = CI->getNumArgOperands(); 1079 U < E; ++U) 1080 Args.push_back(CI->getArgOperand(U)); 1081 1082 CallInst *NewCI = CallInst::Create(FT, Callee, Args, "", CI); 1083 if (CI->getDebugLoc()) 1084 NewCI->setDebugLoc(CI->getDebugLoc()); 1085 1086 // Forward parameter attributes from the callback to the callee. 1087 for (unsigned U = CallbackFirstArgOperand, E = CI->getNumArgOperands(); 1088 U < E; ++U) 1089 for (const Attribute &A : CI->getAttributes().getParamAttrs(U)) 1090 NewCI->addParamAttr( 1091 U - (CallbackFirstArgOperand - CallbackCalleeOperand), A); 1092 1093 // Emit an explicit barrier to replace the implicit fork-join barrier. 1094 if (CI != MergableCIs.back()) { 1095 // TODO: Remove barrier if the merged parallel region includes the 1096 // 'nowait' clause. 1097 OMPInfoCache.OMPBuilder.createBarrier( 1098 InsertPointTy(NewCI->getParent(), 1099 NewCI->getNextNode()->getIterator()), 1100 OMPD_parallel); 1101 } 1102 1103 CI->eraseFromParent(); 1104 } 1105 1106 assert(OutlinedFn != OriginalFn && "Outlining failed"); 1107 CGUpdater.registerOutlinedFunction(*OriginalFn, *OutlinedFn); 1108 CGUpdater.reanalyzeFunction(*OriginalFn); 1109 1110 NumOpenMPParallelRegionsMerged += MergableCIs.size(); 1111 1112 return true; 1113 }; 1114 1115 // Helper function that identifes sequences of 1116 // __kmpc_fork_call uses in a basic block. 1117 auto DetectPRsCB = [&](Use &U, Function &F) { 1118 CallInst *CI = getCallIfRegularCall(U, &RFI); 1119 BB2PRMap[CI->getParent()].insert(CI); 1120 1121 return false; 1122 }; 1123 1124 BB2PRMap.clear(); 1125 RFI.foreachUse(SCC, DetectPRsCB); 1126 SmallVector<SmallVector<CallInst *, 4>, 4> MergableCIsVector; 1127 // Find mergable parallel regions within a basic block that are 1128 // safe to merge, that is any in-between instructions can safely 1129 // execute in parallel after merging. 1130 // TODO: support merging across basic-blocks. 1131 for (auto &It : BB2PRMap) { 1132 auto &CIs = It.getSecond(); 1133 if (CIs.size() < 2) 1134 continue; 1135 1136 BasicBlock *BB = It.getFirst(); 1137 SmallVector<CallInst *, 4> MergableCIs; 1138 1139 /// Returns true if the instruction is mergable, false otherwise. 1140 /// A terminator instruction is unmergable by definition since merging 1141 /// works within a BB. Instructions before the mergable region are 1142 /// mergable if they are not calls to OpenMP runtime functions that may 1143 /// set different execution parameters for subsequent parallel regions. 1144 /// Instructions in-between parallel regions are mergable if they are not 1145 /// calls to any non-intrinsic function since that may call a non-mergable 1146 /// OpenMP runtime function. 1147 auto IsMergable = [&](Instruction &I, bool IsBeforeMergableRegion) { 1148 // We do not merge across BBs, hence return false (unmergable) if the 1149 // instruction is a terminator. 1150 if (I.isTerminator()) 1151 return false; 1152 1153 if (!isa<CallInst>(&I)) 1154 return true; 1155 1156 CallInst *CI = cast<CallInst>(&I); 1157 if (IsBeforeMergableRegion) { 1158 Function *CalledFunction = CI->getCalledFunction(); 1159 if (!CalledFunction) 1160 return false; 1161 // Return false (unmergable) if the call before the parallel 1162 // region calls an explicit affinity (proc_bind) or number of 1163 // threads (num_threads) compiler-generated function. Those settings 1164 // may be incompatible with following parallel regions. 1165 // TODO: ICV tracking to detect compatibility. 1166 for (const auto &RFI : UnmergableCallsInfo) { 1167 if (CalledFunction == RFI.Declaration) 1168 return false; 1169 } 1170 } else { 1171 // Return false (unmergable) if there is a call instruction 1172 // in-between parallel regions when it is not an intrinsic. It 1173 // may call an unmergable OpenMP runtime function in its callpath. 1174 // TODO: Keep track of possible OpenMP calls in the callpath. 1175 if (!isa<IntrinsicInst>(CI)) 1176 return false; 1177 } 1178 1179 return true; 1180 }; 1181 // Find maximal number of parallel region CIs that are safe to merge. 1182 for (auto It = BB->begin(), End = BB->end(); It != End;) { 1183 Instruction &I = *It; 1184 ++It; 1185 1186 if (CIs.count(&I)) { 1187 MergableCIs.push_back(cast<CallInst>(&I)); 1188 continue; 1189 } 1190 1191 // Continue expanding if the instruction is mergable. 1192 if (IsMergable(I, MergableCIs.empty())) 1193 continue; 1194 1195 // Forward the instruction iterator to skip the next parallel region 1196 // since there is an unmergable instruction which can affect it. 1197 for (; It != End; ++It) { 1198 Instruction &SkipI = *It; 1199 if (CIs.count(&SkipI)) { 1200 LLVM_DEBUG(dbgs() << TAG << "Skip parallel region " << SkipI 1201 << " due to " << I << "\n"); 1202 ++It; 1203 break; 1204 } 1205 } 1206 1207 // Store mergable regions found. 1208 if (MergableCIs.size() > 1) { 1209 MergableCIsVector.push_back(MergableCIs); 1210 LLVM_DEBUG(dbgs() << TAG << "Found " << MergableCIs.size() 1211 << " parallel regions in block " << BB->getName() 1212 << " of function " << BB->getParent()->getName() 1213 << "\n";); 1214 } 1215 1216 MergableCIs.clear(); 1217 } 1218 1219 if (!MergableCIsVector.empty()) { 1220 Changed = true; 1221 1222 for (auto &MergableCIs : MergableCIsVector) 1223 Merge(MergableCIs, BB); 1224 MergableCIsVector.clear(); 1225 } 1226 } 1227 1228 if (Changed) { 1229 /// Re-collect use for fork calls, emitted barrier calls, and 1230 /// any emitted master/end_master calls. 1231 OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_fork_call); 1232 OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_barrier); 1233 OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_master); 1234 OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_end_master); 1235 } 1236 1237 return Changed; 1238 } 1239 1240 /// Try to delete parallel regions if possible. 1241 bool deleteParallelRegions() { 1242 const unsigned CallbackCalleeOperand = 2; 1243 1244 OMPInformationCache::RuntimeFunctionInfo &RFI = 1245 OMPInfoCache.RFIs[OMPRTL___kmpc_fork_call]; 1246 1247 if (!RFI.Declaration) 1248 return false; 1249 1250 bool Changed = false; 1251 auto DeleteCallCB = [&](Use &U, Function &) { 1252 CallInst *CI = getCallIfRegularCall(U); 1253 if (!CI) 1254 return false; 1255 auto *Fn = dyn_cast<Function>( 1256 CI->getArgOperand(CallbackCalleeOperand)->stripPointerCasts()); 1257 if (!Fn) 1258 return false; 1259 if (!Fn->onlyReadsMemory()) 1260 return false; 1261 if (!Fn->hasFnAttribute(Attribute::WillReturn)) 1262 return false; 1263 1264 LLVM_DEBUG(dbgs() << TAG << "Delete read-only parallel region in " 1265 << CI->getCaller()->getName() << "\n"); 1266 1267 auto Remark = [&](OptimizationRemark OR) { 1268 return OR << "Removing parallel region with no side-effects."; 1269 }; 1270 emitRemark<OptimizationRemark>(CI, "OMP160", Remark); 1271 1272 CGUpdater.removeCallSite(*CI); 1273 CI->eraseFromParent(); 1274 Changed = true; 1275 ++NumOpenMPParallelRegionsDeleted; 1276 return true; 1277 }; 1278 1279 RFI.foreachUse(SCC, DeleteCallCB); 1280 1281 return Changed; 1282 } 1283 1284 /// Try to eliminate runtime calls by reusing existing ones. 1285 bool deduplicateRuntimeCalls() { 1286 bool Changed = false; 1287 1288 RuntimeFunction DeduplicableRuntimeCallIDs[] = { 1289 OMPRTL_omp_get_num_threads, 1290 OMPRTL_omp_in_parallel, 1291 OMPRTL_omp_get_cancellation, 1292 OMPRTL_omp_get_thread_limit, 1293 OMPRTL_omp_get_supported_active_levels, 1294 OMPRTL_omp_get_level, 1295 OMPRTL_omp_get_ancestor_thread_num, 1296 OMPRTL_omp_get_team_size, 1297 OMPRTL_omp_get_active_level, 1298 OMPRTL_omp_in_final, 1299 OMPRTL_omp_get_proc_bind, 1300 OMPRTL_omp_get_num_places, 1301 OMPRTL_omp_get_num_procs, 1302 OMPRTL_omp_get_place_num, 1303 OMPRTL_omp_get_partition_num_places, 1304 OMPRTL_omp_get_partition_place_nums}; 1305 1306 // Global-tid is handled separately. 1307 SmallSetVector<Value *, 16> GTIdArgs; 1308 collectGlobalThreadIdArguments(GTIdArgs); 1309 LLVM_DEBUG(dbgs() << TAG << "Found " << GTIdArgs.size() 1310 << " global thread ID arguments\n"); 1311 1312 for (Function *F : SCC) { 1313 for (auto DeduplicableRuntimeCallID : DeduplicableRuntimeCallIDs) 1314 Changed |= deduplicateRuntimeCalls( 1315 *F, OMPInfoCache.RFIs[DeduplicableRuntimeCallID]); 1316 1317 // __kmpc_global_thread_num is special as we can replace it with an 1318 // argument in enough cases to make it worth trying. 1319 Value *GTIdArg = nullptr; 1320 for (Argument &Arg : F->args()) 1321 if (GTIdArgs.count(&Arg)) { 1322 GTIdArg = &Arg; 1323 break; 1324 } 1325 Changed |= deduplicateRuntimeCalls( 1326 *F, OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num], GTIdArg); 1327 } 1328 1329 return Changed; 1330 } 1331 1332 /// Tries to hide the latency of runtime calls that involve host to 1333 /// device memory transfers by splitting them into their "issue" and "wait" 1334 /// versions. The "issue" is moved upwards as much as possible. The "wait" is 1335 /// moved downards as much as possible. The "issue" issues the memory transfer 1336 /// asynchronously, returning a handle. The "wait" waits in the returned 1337 /// handle for the memory transfer to finish. 1338 bool hideMemTransfersLatency() { 1339 auto &RFI = OMPInfoCache.RFIs[OMPRTL___tgt_target_data_begin_mapper]; 1340 bool Changed = false; 1341 auto SplitMemTransfers = [&](Use &U, Function &Decl) { 1342 auto *RTCall = getCallIfRegularCall(U, &RFI); 1343 if (!RTCall) 1344 return false; 1345 1346 OffloadArray OffloadArrays[3]; 1347 if (!getValuesInOffloadArrays(*RTCall, OffloadArrays)) 1348 return false; 1349 1350 LLVM_DEBUG(dumpValuesInOffloadArrays(OffloadArrays)); 1351 1352 // TODO: Check if can be moved upwards. 1353 bool WasSplit = false; 1354 Instruction *WaitMovementPoint = canBeMovedDownwards(*RTCall); 1355 if (WaitMovementPoint) 1356 WasSplit = splitTargetDataBeginRTC(*RTCall, *WaitMovementPoint); 1357 1358 Changed |= WasSplit; 1359 return WasSplit; 1360 }; 1361 RFI.foreachUse(SCC, SplitMemTransfers); 1362 1363 return Changed; 1364 } 1365 1366 void analysisGlobalization() { 1367 auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared]; 1368 1369 auto CheckGlobalization = [&](Use &U, Function &Decl) { 1370 if (CallInst *CI = getCallIfRegularCall(U, &RFI)) { 1371 auto Remark = [&](OptimizationRemarkMissed ORM) { 1372 return ORM 1373 << "Found thread data sharing on the GPU. " 1374 << "Expect degraded performance due to data globalization."; 1375 }; 1376 emitRemark<OptimizationRemarkMissed>(CI, "OMP112", Remark); 1377 } 1378 1379 return false; 1380 }; 1381 1382 RFI.foreachUse(SCC, CheckGlobalization); 1383 } 1384 1385 /// Maps the values stored in the offload arrays passed as arguments to 1386 /// \p RuntimeCall into the offload arrays in \p OAs. 1387 bool getValuesInOffloadArrays(CallInst &RuntimeCall, 1388 MutableArrayRef<OffloadArray> OAs) { 1389 assert(OAs.size() == 3 && "Need space for three offload arrays!"); 1390 1391 // A runtime call that involves memory offloading looks something like: 1392 // call void @__tgt_target_data_begin_mapper(arg0, arg1, 1393 // i8** %offload_baseptrs, i8** %offload_ptrs, i64* %offload_sizes, 1394 // ...) 1395 // So, the idea is to access the allocas that allocate space for these 1396 // offload arrays, offload_baseptrs, offload_ptrs, offload_sizes. 1397 // Therefore: 1398 // i8** %offload_baseptrs. 1399 Value *BasePtrsArg = 1400 RuntimeCall.getArgOperand(OffloadArray::BasePtrsArgNum); 1401 // i8** %offload_ptrs. 1402 Value *PtrsArg = RuntimeCall.getArgOperand(OffloadArray::PtrsArgNum); 1403 // i8** %offload_sizes. 1404 Value *SizesArg = RuntimeCall.getArgOperand(OffloadArray::SizesArgNum); 1405 1406 // Get values stored in **offload_baseptrs. 1407 auto *V = getUnderlyingObject(BasePtrsArg); 1408 if (!isa<AllocaInst>(V)) 1409 return false; 1410 auto *BasePtrsArray = cast<AllocaInst>(V); 1411 if (!OAs[0].initialize(*BasePtrsArray, RuntimeCall)) 1412 return false; 1413 1414 // Get values stored in **offload_baseptrs. 1415 V = getUnderlyingObject(PtrsArg); 1416 if (!isa<AllocaInst>(V)) 1417 return false; 1418 auto *PtrsArray = cast<AllocaInst>(V); 1419 if (!OAs[1].initialize(*PtrsArray, RuntimeCall)) 1420 return false; 1421 1422 // Get values stored in **offload_sizes. 1423 V = getUnderlyingObject(SizesArg); 1424 // If it's a [constant] global array don't analyze it. 1425 if (isa<GlobalValue>(V)) 1426 return isa<Constant>(V); 1427 if (!isa<AllocaInst>(V)) 1428 return false; 1429 1430 auto *SizesArray = cast<AllocaInst>(V); 1431 if (!OAs[2].initialize(*SizesArray, RuntimeCall)) 1432 return false; 1433 1434 return true; 1435 } 1436 1437 /// Prints the values in the OffloadArrays \p OAs using LLVM_DEBUG. 1438 /// For now this is a way to test that the function getValuesInOffloadArrays 1439 /// is working properly. 1440 /// TODO: Move this to a unittest when unittests are available for OpenMPOpt. 1441 void dumpValuesInOffloadArrays(ArrayRef<OffloadArray> OAs) { 1442 assert(OAs.size() == 3 && "There are three offload arrays to debug!"); 1443 1444 LLVM_DEBUG(dbgs() << TAG << " Successfully got offload values:\n"); 1445 std::string ValuesStr; 1446 raw_string_ostream Printer(ValuesStr); 1447 std::string Separator = " --- "; 1448 1449 for (auto *BP : OAs[0].StoredValues) { 1450 BP->print(Printer); 1451 Printer << Separator; 1452 } 1453 LLVM_DEBUG(dbgs() << "\t\toffload_baseptrs: " << Printer.str() << "\n"); 1454 ValuesStr.clear(); 1455 1456 for (auto *P : OAs[1].StoredValues) { 1457 P->print(Printer); 1458 Printer << Separator; 1459 } 1460 LLVM_DEBUG(dbgs() << "\t\toffload_ptrs: " << Printer.str() << "\n"); 1461 ValuesStr.clear(); 1462 1463 for (auto *S : OAs[2].StoredValues) { 1464 S->print(Printer); 1465 Printer << Separator; 1466 } 1467 LLVM_DEBUG(dbgs() << "\t\toffload_sizes: " << Printer.str() << "\n"); 1468 } 1469 1470 /// Returns the instruction where the "wait" counterpart \p RuntimeCall can be 1471 /// moved. Returns nullptr if the movement is not possible, or not worth it. 1472 Instruction *canBeMovedDownwards(CallInst &RuntimeCall) { 1473 // FIXME: This traverses only the BasicBlock where RuntimeCall is. 1474 // Make it traverse the CFG. 1475 1476 Instruction *CurrentI = &RuntimeCall; 1477 bool IsWorthIt = false; 1478 while ((CurrentI = CurrentI->getNextNode())) { 1479 1480 // TODO: Once we detect the regions to be offloaded we should use the 1481 // alias analysis manager to check if CurrentI may modify one of 1482 // the offloaded regions. 1483 if (CurrentI->mayHaveSideEffects() || CurrentI->mayReadFromMemory()) { 1484 if (IsWorthIt) 1485 return CurrentI; 1486 1487 return nullptr; 1488 } 1489 1490 // FIXME: For now if we move it over anything without side effect 1491 // is worth it. 1492 IsWorthIt = true; 1493 } 1494 1495 // Return end of BasicBlock. 1496 return RuntimeCall.getParent()->getTerminator(); 1497 } 1498 1499 /// Splits \p RuntimeCall into its "issue" and "wait" counterparts. 1500 bool splitTargetDataBeginRTC(CallInst &RuntimeCall, 1501 Instruction &WaitMovementPoint) { 1502 // Create stack allocated handle (__tgt_async_info) at the beginning of the 1503 // function. Used for storing information of the async transfer, allowing to 1504 // wait on it later. 1505 auto &IRBuilder = OMPInfoCache.OMPBuilder; 1506 auto *F = RuntimeCall.getCaller(); 1507 Instruction *FirstInst = &(F->getEntryBlock().front()); 1508 AllocaInst *Handle = new AllocaInst( 1509 IRBuilder.AsyncInfo, F->getAddressSpace(), "handle", FirstInst); 1510 1511 // Add "issue" runtime call declaration: 1512 // declare %struct.tgt_async_info @__tgt_target_data_begin_issue(i64, i32, 1513 // i8**, i8**, i64*, i64*) 1514 FunctionCallee IssueDecl = IRBuilder.getOrCreateRuntimeFunction( 1515 M, OMPRTL___tgt_target_data_begin_mapper_issue); 1516 1517 // Change RuntimeCall call site for its asynchronous version. 1518 SmallVector<Value *, 16> Args; 1519 for (auto &Arg : RuntimeCall.args()) 1520 Args.push_back(Arg.get()); 1521 Args.push_back(Handle); 1522 1523 CallInst *IssueCallsite = 1524 CallInst::Create(IssueDecl, Args, /*NameStr=*/"", &RuntimeCall); 1525 RuntimeCall.eraseFromParent(); 1526 1527 // Add "wait" runtime call declaration: 1528 // declare void @__tgt_target_data_begin_wait(i64, %struct.__tgt_async_info) 1529 FunctionCallee WaitDecl = IRBuilder.getOrCreateRuntimeFunction( 1530 M, OMPRTL___tgt_target_data_begin_mapper_wait); 1531 1532 Value *WaitParams[2] = { 1533 IssueCallsite->getArgOperand( 1534 OffloadArray::DeviceIDArgNum), // device_id. 1535 Handle // handle to wait on. 1536 }; 1537 CallInst::Create(WaitDecl, WaitParams, /*NameStr=*/"", &WaitMovementPoint); 1538 1539 return true; 1540 } 1541 1542 static Value *combinedIdentStruct(Value *CurrentIdent, Value *NextIdent, 1543 bool GlobalOnly, bool &SingleChoice) { 1544 if (CurrentIdent == NextIdent) 1545 return CurrentIdent; 1546 1547 // TODO: Figure out how to actually combine multiple debug locations. For 1548 // now we just keep an existing one if there is a single choice. 1549 if (!GlobalOnly || isa<GlobalValue>(NextIdent)) { 1550 SingleChoice = !CurrentIdent; 1551 return NextIdent; 1552 } 1553 return nullptr; 1554 } 1555 1556 /// Return an `struct ident_t*` value that represents the ones used in the 1557 /// calls of \p RFI inside of \p F. If \p GlobalOnly is true, we will not 1558 /// return a local `struct ident_t*`. For now, if we cannot find a suitable 1559 /// return value we create one from scratch. We also do not yet combine 1560 /// information, e.g., the source locations, see combinedIdentStruct. 1561 Value * 1562 getCombinedIdentFromCallUsesIn(OMPInformationCache::RuntimeFunctionInfo &RFI, 1563 Function &F, bool GlobalOnly) { 1564 bool SingleChoice = true; 1565 Value *Ident = nullptr; 1566 auto CombineIdentStruct = [&](Use &U, Function &Caller) { 1567 CallInst *CI = getCallIfRegularCall(U, &RFI); 1568 if (!CI || &F != &Caller) 1569 return false; 1570 Ident = combinedIdentStruct(Ident, CI->getArgOperand(0), 1571 /* GlobalOnly */ true, SingleChoice); 1572 return false; 1573 }; 1574 RFI.foreachUse(SCC, CombineIdentStruct); 1575 1576 if (!Ident || !SingleChoice) { 1577 // The IRBuilder uses the insertion block to get to the module, this is 1578 // unfortunate but we work around it for now. 1579 if (!OMPInfoCache.OMPBuilder.getInsertionPoint().getBlock()) 1580 OMPInfoCache.OMPBuilder.updateToLocation(OpenMPIRBuilder::InsertPointTy( 1581 &F.getEntryBlock(), F.getEntryBlock().begin())); 1582 // Create a fallback location if non was found. 1583 // TODO: Use the debug locations of the calls instead. 1584 Constant *Loc = OMPInfoCache.OMPBuilder.getOrCreateDefaultSrcLocStr(); 1585 Ident = OMPInfoCache.OMPBuilder.getOrCreateIdent(Loc); 1586 } 1587 return Ident; 1588 } 1589 1590 /// Try to eliminate calls of \p RFI in \p F by reusing an existing one or 1591 /// \p ReplVal if given. 1592 bool deduplicateRuntimeCalls(Function &F, 1593 OMPInformationCache::RuntimeFunctionInfo &RFI, 1594 Value *ReplVal = nullptr) { 1595 auto *UV = RFI.getUseVector(F); 1596 if (!UV || UV->size() + (ReplVal != nullptr) < 2) 1597 return false; 1598 1599 LLVM_DEBUG( 1600 dbgs() << TAG << "Deduplicate " << UV->size() << " uses of " << RFI.Name 1601 << (ReplVal ? " with an existing value\n" : "\n") << "\n"); 1602 1603 assert((!ReplVal || (isa<Argument>(ReplVal) && 1604 cast<Argument>(ReplVal)->getParent() == &F)) && 1605 "Unexpected replacement value!"); 1606 1607 // TODO: Use dominance to find a good position instead. 1608 auto CanBeMoved = [this](CallBase &CB) { 1609 unsigned NumArgs = CB.getNumArgOperands(); 1610 if (NumArgs == 0) 1611 return true; 1612 if (CB.getArgOperand(0)->getType() != OMPInfoCache.OMPBuilder.IdentPtr) 1613 return false; 1614 for (unsigned u = 1; u < NumArgs; ++u) 1615 if (isa<Instruction>(CB.getArgOperand(u))) 1616 return false; 1617 return true; 1618 }; 1619 1620 if (!ReplVal) { 1621 for (Use *U : *UV) 1622 if (CallInst *CI = getCallIfRegularCall(*U, &RFI)) { 1623 if (!CanBeMoved(*CI)) 1624 continue; 1625 1626 // If the function is a kernel, dedup will move 1627 // the runtime call right after the kernel init callsite. Otherwise, 1628 // it will move it to the beginning of the caller function. 1629 if (isKernel(F)) { 1630 auto &KernelInitRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_target_init]; 1631 auto *KernelInitUV = KernelInitRFI.getUseVector(F); 1632 1633 if (KernelInitUV->empty()) 1634 continue; 1635 1636 assert(KernelInitUV->size() == 1 && 1637 "Expected a single __kmpc_target_init in kernel\n"); 1638 1639 CallInst *KernelInitCI = 1640 getCallIfRegularCall(*KernelInitUV->front(), &KernelInitRFI); 1641 assert(KernelInitCI && 1642 "Expected a call to __kmpc_target_init in kernel\n"); 1643 1644 CI->moveAfter(KernelInitCI); 1645 } else 1646 CI->moveBefore(&*F.getEntryBlock().getFirstInsertionPt()); 1647 ReplVal = CI; 1648 break; 1649 } 1650 if (!ReplVal) 1651 return false; 1652 } 1653 1654 // If we use a call as a replacement value we need to make sure the ident is 1655 // valid at the new location. For now we just pick a global one, either 1656 // existing and used by one of the calls, or created from scratch. 1657 if (CallBase *CI = dyn_cast<CallBase>(ReplVal)) { 1658 if (!CI->arg_empty() && 1659 CI->getArgOperand(0)->getType() == OMPInfoCache.OMPBuilder.IdentPtr) { 1660 Value *Ident = getCombinedIdentFromCallUsesIn(RFI, F, 1661 /* GlobalOnly */ true); 1662 CI->setArgOperand(0, Ident); 1663 } 1664 } 1665 1666 bool Changed = false; 1667 auto ReplaceAndDeleteCB = [&](Use &U, Function &Caller) { 1668 CallInst *CI = getCallIfRegularCall(U, &RFI); 1669 if (!CI || CI == ReplVal || &F != &Caller) 1670 return false; 1671 assert(CI->getCaller() == &F && "Unexpected call!"); 1672 1673 auto Remark = [&](OptimizationRemark OR) { 1674 return OR << "OpenMP runtime call " 1675 << ore::NV("OpenMPOptRuntime", RFI.Name) << " deduplicated."; 1676 }; 1677 if (CI->getDebugLoc()) 1678 emitRemark<OptimizationRemark>(CI, "OMP170", Remark); 1679 else 1680 emitRemark<OptimizationRemark>(&F, "OMP170", Remark); 1681 1682 CGUpdater.removeCallSite(*CI); 1683 CI->replaceAllUsesWith(ReplVal); 1684 CI->eraseFromParent(); 1685 ++NumOpenMPRuntimeCallsDeduplicated; 1686 Changed = true; 1687 return true; 1688 }; 1689 RFI.foreachUse(SCC, ReplaceAndDeleteCB); 1690 1691 return Changed; 1692 } 1693 1694 /// Collect arguments that represent the global thread id in \p GTIdArgs. 1695 void collectGlobalThreadIdArguments(SmallSetVector<Value *, 16> >IdArgs) { 1696 // TODO: Below we basically perform a fixpoint iteration with a pessimistic 1697 // initialization. We could define an AbstractAttribute instead and 1698 // run the Attributor here once it can be run as an SCC pass. 1699 1700 // Helper to check the argument \p ArgNo at all call sites of \p F for 1701 // a GTId. 1702 auto CallArgOpIsGTId = [&](Function &F, unsigned ArgNo, CallInst &RefCI) { 1703 if (!F.hasLocalLinkage()) 1704 return false; 1705 for (Use &U : F.uses()) { 1706 if (CallInst *CI = getCallIfRegularCall(U)) { 1707 Value *ArgOp = CI->getArgOperand(ArgNo); 1708 if (CI == &RefCI || GTIdArgs.count(ArgOp) || 1709 getCallIfRegularCall( 1710 *ArgOp, &OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num])) 1711 continue; 1712 } 1713 return false; 1714 } 1715 return true; 1716 }; 1717 1718 // Helper to identify uses of a GTId as GTId arguments. 1719 auto AddUserArgs = [&](Value >Id) { 1720 for (Use &U : GTId.uses()) 1721 if (CallInst *CI = dyn_cast<CallInst>(U.getUser())) 1722 if (CI->isArgOperand(&U)) 1723 if (Function *Callee = CI->getCalledFunction()) 1724 if (CallArgOpIsGTId(*Callee, U.getOperandNo(), *CI)) 1725 GTIdArgs.insert(Callee->getArg(U.getOperandNo())); 1726 }; 1727 1728 // The argument users of __kmpc_global_thread_num calls are GTIds. 1729 OMPInformationCache::RuntimeFunctionInfo &GlobThreadNumRFI = 1730 OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num]; 1731 1732 GlobThreadNumRFI.foreachUse(SCC, [&](Use &U, Function &F) { 1733 if (CallInst *CI = getCallIfRegularCall(U, &GlobThreadNumRFI)) 1734 AddUserArgs(*CI); 1735 return false; 1736 }); 1737 1738 // Transitively search for more arguments by looking at the users of the 1739 // ones we know already. During the search the GTIdArgs vector is extended 1740 // so we cannot cache the size nor can we use a range based for. 1741 for (unsigned u = 0; u < GTIdArgs.size(); ++u) 1742 AddUserArgs(*GTIdArgs[u]); 1743 } 1744 1745 /// Kernel (=GPU) optimizations and utility functions 1746 /// 1747 ///{{ 1748 1749 /// Check if \p F is a kernel, hence entry point for target offloading. 1750 bool isKernel(Function &F) { return OMPInfoCache.Kernels.count(&F); } 1751 1752 /// Cache to remember the unique kernel for a function. 1753 DenseMap<Function *, Optional<Kernel>> UniqueKernelMap; 1754 1755 /// Find the unique kernel that will execute \p F, if any. 1756 Kernel getUniqueKernelFor(Function &F); 1757 1758 /// Find the unique kernel that will execute \p I, if any. 1759 Kernel getUniqueKernelFor(Instruction &I) { 1760 return getUniqueKernelFor(*I.getFunction()); 1761 } 1762 1763 /// Rewrite the device (=GPU) code state machine create in non-SPMD mode in 1764 /// the cases we can avoid taking the address of a function. 1765 bool rewriteDeviceCodeStateMachine(); 1766 1767 /// 1768 ///}} 1769 1770 /// Emit a remark generically 1771 /// 1772 /// This template function can be used to generically emit a remark. The 1773 /// RemarkKind should be one of the following: 1774 /// - OptimizationRemark to indicate a successful optimization attempt 1775 /// - OptimizationRemarkMissed to report a failed optimization attempt 1776 /// - OptimizationRemarkAnalysis to provide additional information about an 1777 /// optimization attempt 1778 /// 1779 /// The remark is built using a callback function provided by the caller that 1780 /// takes a RemarkKind as input and returns a RemarkKind. 1781 template <typename RemarkKind, typename RemarkCallBack> 1782 void emitRemark(Instruction *I, StringRef RemarkName, 1783 RemarkCallBack &&RemarkCB) const { 1784 Function *F = I->getParent()->getParent(); 1785 auto &ORE = OREGetter(F); 1786 1787 if (RemarkName.startswith("OMP")) 1788 ORE.emit([&]() { 1789 return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, I)) 1790 << " [" << RemarkName << "]"; 1791 }); 1792 else 1793 ORE.emit( 1794 [&]() { return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, I)); }); 1795 } 1796 1797 /// Emit a remark on a function. 1798 template <typename RemarkKind, typename RemarkCallBack> 1799 void emitRemark(Function *F, StringRef RemarkName, 1800 RemarkCallBack &&RemarkCB) const { 1801 auto &ORE = OREGetter(F); 1802 1803 if (RemarkName.startswith("OMP")) 1804 ORE.emit([&]() { 1805 return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, F)) 1806 << " [" << RemarkName << "]"; 1807 }); 1808 else 1809 ORE.emit( 1810 [&]() { return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, F)); }); 1811 } 1812 1813 /// RAII struct to temporarily change an RTL function's linkage to external. 1814 /// This prevents it from being mistakenly removed by other optimizations. 1815 struct ExternalizationRAII { 1816 ExternalizationRAII(OMPInformationCache &OMPInfoCache, 1817 RuntimeFunction RFKind) 1818 : Declaration(OMPInfoCache.RFIs[RFKind].Declaration) { 1819 if (!Declaration) 1820 return; 1821 1822 LinkageType = Declaration->getLinkage(); 1823 Declaration->setLinkage(GlobalValue::ExternalLinkage); 1824 } 1825 1826 ~ExternalizationRAII() { 1827 if (!Declaration) 1828 return; 1829 1830 Declaration->setLinkage(LinkageType); 1831 } 1832 1833 Function *Declaration; 1834 GlobalValue::LinkageTypes LinkageType; 1835 }; 1836 1837 /// The underlying module. 1838 Module &M; 1839 1840 /// The SCC we are operating on. 1841 SmallVectorImpl<Function *> &SCC; 1842 1843 /// Callback to update the call graph, the first argument is a removed call, 1844 /// the second an optional replacement call. 1845 CallGraphUpdater &CGUpdater; 1846 1847 /// Callback to get an OptimizationRemarkEmitter from a Function * 1848 OptimizationRemarkGetter OREGetter; 1849 1850 /// OpenMP-specific information cache. Also Used for Attributor runs. 1851 OMPInformationCache &OMPInfoCache; 1852 1853 /// Attributor instance. 1854 Attributor &A; 1855 1856 /// Helper function to run Attributor on SCC. 1857 bool runAttributor(bool IsModulePass) { 1858 if (SCC.empty()) 1859 return false; 1860 1861 // Temporarily make these function have external linkage so the Attributor 1862 // doesn't remove them when we try to look them up later. 1863 ExternalizationRAII Parallel(OMPInfoCache, OMPRTL___kmpc_kernel_parallel); 1864 ExternalizationRAII EndParallel(OMPInfoCache, 1865 OMPRTL___kmpc_kernel_end_parallel); 1866 ExternalizationRAII BarrierSPMD(OMPInfoCache, 1867 OMPRTL___kmpc_barrier_simple_spmd); 1868 1869 registerAAs(IsModulePass); 1870 1871 ChangeStatus Changed = A.run(); 1872 1873 LLVM_DEBUG(dbgs() << "[Attributor] Done with " << SCC.size() 1874 << " functions, result: " << Changed << ".\n"); 1875 1876 return Changed == ChangeStatus::CHANGED; 1877 } 1878 1879 void registerFoldRuntimeCall(RuntimeFunction RF); 1880 1881 /// Populate the Attributor with abstract attribute opportunities in the 1882 /// function. 1883 void registerAAs(bool IsModulePass); 1884 }; 1885 1886 Kernel OpenMPOpt::getUniqueKernelFor(Function &F) { 1887 if (!OMPInfoCache.ModuleSlice.count(&F)) 1888 return nullptr; 1889 1890 // Use a scope to keep the lifetime of the CachedKernel short. 1891 { 1892 Optional<Kernel> &CachedKernel = UniqueKernelMap[&F]; 1893 if (CachedKernel) 1894 return *CachedKernel; 1895 1896 // TODO: We should use an AA to create an (optimistic and callback 1897 // call-aware) call graph. For now we stick to simple patterns that 1898 // are less powerful, basically the worst fixpoint. 1899 if (isKernel(F)) { 1900 CachedKernel = Kernel(&F); 1901 return *CachedKernel; 1902 } 1903 1904 CachedKernel = nullptr; 1905 if (!F.hasLocalLinkage()) { 1906 1907 // See https://openmp.llvm.org/remarks/OptimizationRemarks.html 1908 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 1909 return ORA << "Potentially unknown OpenMP target region caller."; 1910 }; 1911 emitRemark<OptimizationRemarkAnalysis>(&F, "OMP100", Remark); 1912 1913 return nullptr; 1914 } 1915 } 1916 1917 auto GetUniqueKernelForUse = [&](const Use &U) -> Kernel { 1918 if (auto *Cmp = dyn_cast<ICmpInst>(U.getUser())) { 1919 // Allow use in equality comparisons. 1920 if (Cmp->isEquality()) 1921 return getUniqueKernelFor(*Cmp); 1922 return nullptr; 1923 } 1924 if (auto *CB = dyn_cast<CallBase>(U.getUser())) { 1925 // Allow direct calls. 1926 if (CB->isCallee(&U)) 1927 return getUniqueKernelFor(*CB); 1928 1929 OMPInformationCache::RuntimeFunctionInfo &KernelParallelRFI = 1930 OMPInfoCache.RFIs[OMPRTL___kmpc_parallel_51]; 1931 // Allow the use in __kmpc_parallel_51 calls. 1932 if (OpenMPOpt::getCallIfRegularCall(*U.getUser(), &KernelParallelRFI)) 1933 return getUniqueKernelFor(*CB); 1934 return nullptr; 1935 } 1936 // Disallow every other use. 1937 return nullptr; 1938 }; 1939 1940 // TODO: In the future we want to track more than just a unique kernel. 1941 SmallPtrSet<Kernel, 2> PotentialKernels; 1942 OMPInformationCache::foreachUse(F, [&](const Use &U) { 1943 PotentialKernels.insert(GetUniqueKernelForUse(U)); 1944 }); 1945 1946 Kernel K = nullptr; 1947 if (PotentialKernels.size() == 1) 1948 K = *PotentialKernels.begin(); 1949 1950 // Cache the result. 1951 UniqueKernelMap[&F] = K; 1952 1953 return K; 1954 } 1955 1956 bool OpenMPOpt::rewriteDeviceCodeStateMachine() { 1957 OMPInformationCache::RuntimeFunctionInfo &KernelParallelRFI = 1958 OMPInfoCache.RFIs[OMPRTL___kmpc_parallel_51]; 1959 1960 bool Changed = false; 1961 if (!KernelParallelRFI) 1962 return Changed; 1963 1964 // If we have disabled state machine changes, exit 1965 if (DisableOpenMPOptStateMachineRewrite) 1966 return Changed; 1967 1968 for (Function *F : SCC) { 1969 1970 // Check if the function is a use in a __kmpc_parallel_51 call at 1971 // all. 1972 bool UnknownUse = false; 1973 bool KernelParallelUse = false; 1974 unsigned NumDirectCalls = 0; 1975 1976 SmallVector<Use *, 2> ToBeReplacedStateMachineUses; 1977 OMPInformationCache::foreachUse(*F, [&](Use &U) { 1978 if (auto *CB = dyn_cast<CallBase>(U.getUser())) 1979 if (CB->isCallee(&U)) { 1980 ++NumDirectCalls; 1981 return; 1982 } 1983 1984 if (isa<ICmpInst>(U.getUser())) { 1985 ToBeReplacedStateMachineUses.push_back(&U); 1986 return; 1987 } 1988 1989 // Find wrapper functions that represent parallel kernels. 1990 CallInst *CI = 1991 OpenMPOpt::getCallIfRegularCall(*U.getUser(), &KernelParallelRFI); 1992 const unsigned int WrapperFunctionArgNo = 6; 1993 if (!KernelParallelUse && CI && 1994 CI->getArgOperandNo(&U) == WrapperFunctionArgNo) { 1995 KernelParallelUse = true; 1996 ToBeReplacedStateMachineUses.push_back(&U); 1997 return; 1998 } 1999 UnknownUse = true; 2000 }); 2001 2002 // Do not emit a remark if we haven't seen a __kmpc_parallel_51 2003 // use. 2004 if (!KernelParallelUse) 2005 continue; 2006 2007 // If this ever hits, we should investigate. 2008 // TODO: Checking the number of uses is not a necessary restriction and 2009 // should be lifted. 2010 if (UnknownUse || NumDirectCalls != 1 || 2011 ToBeReplacedStateMachineUses.size() > 2) { 2012 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 2013 return ORA << "Parallel region is used in " 2014 << (UnknownUse ? "unknown" : "unexpected") 2015 << " ways. Will not attempt to rewrite the state machine."; 2016 }; 2017 emitRemark<OptimizationRemarkAnalysis>(F, "OMP101", Remark); 2018 continue; 2019 } 2020 2021 // Even if we have __kmpc_parallel_51 calls, we (for now) give 2022 // up if the function is not called from a unique kernel. 2023 Kernel K = getUniqueKernelFor(*F); 2024 if (!K) { 2025 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 2026 return ORA << "Parallel region is not called from a unique kernel. " 2027 "Will not attempt to rewrite the state machine."; 2028 }; 2029 emitRemark<OptimizationRemarkAnalysis>(F, "OMP102", Remark); 2030 continue; 2031 } 2032 2033 // We now know F is a parallel body function called only from the kernel K. 2034 // We also identified the state machine uses in which we replace the 2035 // function pointer by a new global symbol for identification purposes. This 2036 // ensures only direct calls to the function are left. 2037 2038 Module &M = *F->getParent(); 2039 Type *Int8Ty = Type::getInt8Ty(M.getContext()); 2040 2041 auto *ID = new GlobalVariable( 2042 M, Int8Ty, /* isConstant */ true, GlobalValue::PrivateLinkage, 2043 UndefValue::get(Int8Ty), F->getName() + ".ID"); 2044 2045 for (Use *U : ToBeReplacedStateMachineUses) 2046 U->set(ConstantExpr::getPointerBitCastOrAddrSpaceCast( 2047 ID, U->get()->getType())); 2048 2049 ++NumOpenMPParallelRegionsReplacedInGPUStateMachine; 2050 2051 Changed = true; 2052 } 2053 2054 return Changed; 2055 } 2056 2057 /// Abstract Attribute for tracking ICV values. 2058 struct AAICVTracker : public StateWrapper<BooleanState, AbstractAttribute> { 2059 using Base = StateWrapper<BooleanState, AbstractAttribute>; 2060 AAICVTracker(const IRPosition &IRP, Attributor &A) : Base(IRP) {} 2061 2062 void initialize(Attributor &A) override { 2063 Function *F = getAnchorScope(); 2064 if (!F || !A.isFunctionIPOAmendable(*F)) 2065 indicatePessimisticFixpoint(); 2066 } 2067 2068 /// Returns true if value is assumed to be tracked. 2069 bool isAssumedTracked() const { return getAssumed(); } 2070 2071 /// Returns true if value is known to be tracked. 2072 bool isKnownTracked() const { return getAssumed(); } 2073 2074 /// Create an abstract attribute biew for the position \p IRP. 2075 static AAICVTracker &createForPosition(const IRPosition &IRP, Attributor &A); 2076 2077 /// Return the value with which \p I can be replaced for specific \p ICV. 2078 virtual Optional<Value *> getReplacementValue(InternalControlVar ICV, 2079 const Instruction *I, 2080 Attributor &A) const { 2081 return None; 2082 } 2083 2084 /// Return an assumed unique ICV value if a single candidate is found. If 2085 /// there cannot be one, return a nullptr. If it is not clear yet, return the 2086 /// Optional::NoneType. 2087 virtual Optional<Value *> 2088 getUniqueReplacementValue(InternalControlVar ICV) const = 0; 2089 2090 // Currently only nthreads is being tracked. 2091 // this array will only grow with time. 2092 InternalControlVar TrackableICVs[1] = {ICV_nthreads}; 2093 2094 /// See AbstractAttribute::getName() 2095 const std::string getName() const override { return "AAICVTracker"; } 2096 2097 /// See AbstractAttribute::getIdAddr() 2098 const char *getIdAddr() const override { return &ID; } 2099 2100 /// This function should return true if the type of the \p AA is AAICVTracker 2101 static bool classof(const AbstractAttribute *AA) { 2102 return (AA->getIdAddr() == &ID); 2103 } 2104 2105 static const char ID; 2106 }; 2107 2108 struct AAICVTrackerFunction : public AAICVTracker { 2109 AAICVTrackerFunction(const IRPosition &IRP, Attributor &A) 2110 : AAICVTracker(IRP, A) {} 2111 2112 // FIXME: come up with better string. 2113 const std::string getAsStr() const override { return "ICVTrackerFunction"; } 2114 2115 // FIXME: come up with some stats. 2116 void trackStatistics() const override {} 2117 2118 /// We don't manifest anything for this AA. 2119 ChangeStatus manifest(Attributor &A) override { 2120 return ChangeStatus::UNCHANGED; 2121 } 2122 2123 // Map of ICV to their values at specific program point. 2124 EnumeratedArray<DenseMap<Instruction *, Value *>, InternalControlVar, 2125 InternalControlVar::ICV___last> 2126 ICVReplacementValuesMap; 2127 2128 ChangeStatus updateImpl(Attributor &A) override { 2129 ChangeStatus HasChanged = ChangeStatus::UNCHANGED; 2130 2131 Function *F = getAnchorScope(); 2132 2133 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2134 2135 for (InternalControlVar ICV : TrackableICVs) { 2136 auto &SetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Setter]; 2137 2138 auto &ValuesMap = ICVReplacementValuesMap[ICV]; 2139 auto TrackValues = [&](Use &U, Function &) { 2140 CallInst *CI = OpenMPOpt::getCallIfRegularCall(U); 2141 if (!CI) 2142 return false; 2143 2144 // FIXME: handle setters with more that 1 arguments. 2145 /// Track new value. 2146 if (ValuesMap.insert(std::make_pair(CI, CI->getArgOperand(0))).second) 2147 HasChanged = ChangeStatus::CHANGED; 2148 2149 return false; 2150 }; 2151 2152 auto CallCheck = [&](Instruction &I) { 2153 Optional<Value *> ReplVal = getValueForCall(A, &I, ICV); 2154 if (ReplVal.hasValue() && 2155 ValuesMap.insert(std::make_pair(&I, *ReplVal)).second) 2156 HasChanged = ChangeStatus::CHANGED; 2157 2158 return true; 2159 }; 2160 2161 // Track all changes of an ICV. 2162 SetterRFI.foreachUse(TrackValues, F); 2163 2164 bool UsedAssumedInformation = false; 2165 A.checkForAllInstructions(CallCheck, *this, {Instruction::Call}, 2166 UsedAssumedInformation, 2167 /* CheckBBLivenessOnly */ true); 2168 2169 /// TODO: Figure out a way to avoid adding entry in 2170 /// ICVReplacementValuesMap 2171 Instruction *Entry = &F->getEntryBlock().front(); 2172 if (HasChanged == ChangeStatus::CHANGED && !ValuesMap.count(Entry)) 2173 ValuesMap.insert(std::make_pair(Entry, nullptr)); 2174 } 2175 2176 return HasChanged; 2177 } 2178 2179 /// Hepler to check if \p I is a call and get the value for it if it is 2180 /// unique. 2181 Optional<Value *> getValueForCall(Attributor &A, const Instruction *I, 2182 InternalControlVar &ICV) const { 2183 2184 const auto *CB = dyn_cast<CallBase>(I); 2185 if (!CB || CB->hasFnAttr("no_openmp") || 2186 CB->hasFnAttr("no_openmp_routines")) 2187 return None; 2188 2189 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2190 auto &GetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Getter]; 2191 auto &SetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Setter]; 2192 Function *CalledFunction = CB->getCalledFunction(); 2193 2194 // Indirect call, assume ICV changes. 2195 if (CalledFunction == nullptr) 2196 return nullptr; 2197 if (CalledFunction == GetterRFI.Declaration) 2198 return None; 2199 if (CalledFunction == SetterRFI.Declaration) { 2200 if (ICVReplacementValuesMap[ICV].count(I)) 2201 return ICVReplacementValuesMap[ICV].lookup(I); 2202 2203 return nullptr; 2204 } 2205 2206 // Since we don't know, assume it changes the ICV. 2207 if (CalledFunction->isDeclaration()) 2208 return nullptr; 2209 2210 const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>( 2211 *this, IRPosition::callsite_returned(*CB), DepClassTy::REQUIRED); 2212 2213 if (ICVTrackingAA.isAssumedTracked()) 2214 return ICVTrackingAA.getUniqueReplacementValue(ICV); 2215 2216 // If we don't know, assume it changes. 2217 return nullptr; 2218 } 2219 2220 // We don't check unique value for a function, so return None. 2221 Optional<Value *> 2222 getUniqueReplacementValue(InternalControlVar ICV) const override { 2223 return None; 2224 } 2225 2226 /// Return the value with which \p I can be replaced for specific \p ICV. 2227 Optional<Value *> getReplacementValue(InternalControlVar ICV, 2228 const Instruction *I, 2229 Attributor &A) const override { 2230 const auto &ValuesMap = ICVReplacementValuesMap[ICV]; 2231 if (ValuesMap.count(I)) 2232 return ValuesMap.lookup(I); 2233 2234 SmallVector<const Instruction *, 16> Worklist; 2235 SmallPtrSet<const Instruction *, 16> Visited; 2236 Worklist.push_back(I); 2237 2238 Optional<Value *> ReplVal; 2239 2240 while (!Worklist.empty()) { 2241 const Instruction *CurrInst = Worklist.pop_back_val(); 2242 if (!Visited.insert(CurrInst).second) 2243 continue; 2244 2245 const BasicBlock *CurrBB = CurrInst->getParent(); 2246 2247 // Go up and look for all potential setters/calls that might change the 2248 // ICV. 2249 while ((CurrInst = CurrInst->getPrevNode())) { 2250 if (ValuesMap.count(CurrInst)) { 2251 Optional<Value *> NewReplVal = ValuesMap.lookup(CurrInst); 2252 // Unknown value, track new. 2253 if (!ReplVal.hasValue()) { 2254 ReplVal = NewReplVal; 2255 break; 2256 } 2257 2258 // If we found a new value, we can't know the icv value anymore. 2259 if (NewReplVal.hasValue()) 2260 if (ReplVal != NewReplVal) 2261 return nullptr; 2262 2263 break; 2264 } 2265 2266 Optional<Value *> NewReplVal = getValueForCall(A, CurrInst, ICV); 2267 if (!NewReplVal.hasValue()) 2268 continue; 2269 2270 // Unknown value, track new. 2271 if (!ReplVal.hasValue()) { 2272 ReplVal = NewReplVal; 2273 break; 2274 } 2275 2276 // if (NewReplVal.hasValue()) 2277 // We found a new value, we can't know the icv value anymore. 2278 if (ReplVal != NewReplVal) 2279 return nullptr; 2280 } 2281 2282 // If we are in the same BB and we have a value, we are done. 2283 if (CurrBB == I->getParent() && ReplVal.hasValue()) 2284 return ReplVal; 2285 2286 // Go through all predecessors and add terminators for analysis. 2287 for (const BasicBlock *Pred : predecessors(CurrBB)) 2288 if (const Instruction *Terminator = Pred->getTerminator()) 2289 Worklist.push_back(Terminator); 2290 } 2291 2292 return ReplVal; 2293 } 2294 }; 2295 2296 struct AAICVTrackerFunctionReturned : AAICVTracker { 2297 AAICVTrackerFunctionReturned(const IRPosition &IRP, Attributor &A) 2298 : AAICVTracker(IRP, A) {} 2299 2300 // FIXME: come up with better string. 2301 const std::string getAsStr() const override { 2302 return "ICVTrackerFunctionReturned"; 2303 } 2304 2305 // FIXME: come up with some stats. 2306 void trackStatistics() const override {} 2307 2308 /// We don't manifest anything for this AA. 2309 ChangeStatus manifest(Attributor &A) override { 2310 return ChangeStatus::UNCHANGED; 2311 } 2312 2313 // Map of ICV to their values at specific program point. 2314 EnumeratedArray<Optional<Value *>, InternalControlVar, 2315 InternalControlVar::ICV___last> 2316 ICVReplacementValuesMap; 2317 2318 /// Return the value with which \p I can be replaced for specific \p ICV. 2319 Optional<Value *> 2320 getUniqueReplacementValue(InternalControlVar ICV) const override { 2321 return ICVReplacementValuesMap[ICV]; 2322 } 2323 2324 ChangeStatus updateImpl(Attributor &A) override { 2325 ChangeStatus Changed = ChangeStatus::UNCHANGED; 2326 const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>( 2327 *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED); 2328 2329 if (!ICVTrackingAA.isAssumedTracked()) 2330 return indicatePessimisticFixpoint(); 2331 2332 for (InternalControlVar ICV : TrackableICVs) { 2333 Optional<Value *> &ReplVal = ICVReplacementValuesMap[ICV]; 2334 Optional<Value *> UniqueICVValue; 2335 2336 auto CheckReturnInst = [&](Instruction &I) { 2337 Optional<Value *> NewReplVal = 2338 ICVTrackingAA.getReplacementValue(ICV, &I, A); 2339 2340 // If we found a second ICV value there is no unique returned value. 2341 if (UniqueICVValue.hasValue() && UniqueICVValue != NewReplVal) 2342 return false; 2343 2344 UniqueICVValue = NewReplVal; 2345 2346 return true; 2347 }; 2348 2349 bool UsedAssumedInformation = false; 2350 if (!A.checkForAllInstructions(CheckReturnInst, *this, {Instruction::Ret}, 2351 UsedAssumedInformation, 2352 /* CheckBBLivenessOnly */ true)) 2353 UniqueICVValue = nullptr; 2354 2355 if (UniqueICVValue == ReplVal) 2356 continue; 2357 2358 ReplVal = UniqueICVValue; 2359 Changed = ChangeStatus::CHANGED; 2360 } 2361 2362 return Changed; 2363 } 2364 }; 2365 2366 struct AAICVTrackerCallSite : AAICVTracker { 2367 AAICVTrackerCallSite(const IRPosition &IRP, Attributor &A) 2368 : AAICVTracker(IRP, A) {} 2369 2370 void initialize(Attributor &A) override { 2371 Function *F = getAnchorScope(); 2372 if (!F || !A.isFunctionIPOAmendable(*F)) 2373 indicatePessimisticFixpoint(); 2374 2375 // We only initialize this AA for getters, so we need to know which ICV it 2376 // gets. 2377 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2378 for (InternalControlVar ICV : TrackableICVs) { 2379 auto ICVInfo = OMPInfoCache.ICVs[ICV]; 2380 auto &Getter = OMPInfoCache.RFIs[ICVInfo.Getter]; 2381 if (Getter.Declaration == getAssociatedFunction()) { 2382 AssociatedICV = ICVInfo.Kind; 2383 return; 2384 } 2385 } 2386 2387 /// Unknown ICV. 2388 indicatePessimisticFixpoint(); 2389 } 2390 2391 ChangeStatus manifest(Attributor &A) override { 2392 if (!ReplVal.hasValue() || !ReplVal.getValue()) 2393 return ChangeStatus::UNCHANGED; 2394 2395 A.changeValueAfterManifest(*getCtxI(), **ReplVal); 2396 A.deleteAfterManifest(*getCtxI()); 2397 2398 return ChangeStatus::CHANGED; 2399 } 2400 2401 // FIXME: come up with better string. 2402 const std::string getAsStr() const override { return "ICVTrackerCallSite"; } 2403 2404 // FIXME: come up with some stats. 2405 void trackStatistics() const override {} 2406 2407 InternalControlVar AssociatedICV; 2408 Optional<Value *> ReplVal; 2409 2410 ChangeStatus updateImpl(Attributor &A) override { 2411 const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>( 2412 *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED); 2413 2414 // We don't have any information, so we assume it changes the ICV. 2415 if (!ICVTrackingAA.isAssumedTracked()) 2416 return indicatePessimisticFixpoint(); 2417 2418 Optional<Value *> NewReplVal = 2419 ICVTrackingAA.getReplacementValue(AssociatedICV, getCtxI(), A); 2420 2421 if (ReplVal == NewReplVal) 2422 return ChangeStatus::UNCHANGED; 2423 2424 ReplVal = NewReplVal; 2425 return ChangeStatus::CHANGED; 2426 } 2427 2428 // Return the value with which associated value can be replaced for specific 2429 // \p ICV. 2430 Optional<Value *> 2431 getUniqueReplacementValue(InternalControlVar ICV) const override { 2432 return ReplVal; 2433 } 2434 }; 2435 2436 struct AAICVTrackerCallSiteReturned : AAICVTracker { 2437 AAICVTrackerCallSiteReturned(const IRPosition &IRP, Attributor &A) 2438 : AAICVTracker(IRP, A) {} 2439 2440 // FIXME: come up with better string. 2441 const std::string getAsStr() const override { 2442 return "ICVTrackerCallSiteReturned"; 2443 } 2444 2445 // FIXME: come up with some stats. 2446 void trackStatistics() const override {} 2447 2448 /// We don't manifest anything for this AA. 2449 ChangeStatus manifest(Attributor &A) override { 2450 return ChangeStatus::UNCHANGED; 2451 } 2452 2453 // Map of ICV to their values at specific program point. 2454 EnumeratedArray<Optional<Value *>, InternalControlVar, 2455 InternalControlVar::ICV___last> 2456 ICVReplacementValuesMap; 2457 2458 /// Return the value with which associated value can be replaced for specific 2459 /// \p ICV. 2460 Optional<Value *> 2461 getUniqueReplacementValue(InternalControlVar ICV) const override { 2462 return ICVReplacementValuesMap[ICV]; 2463 } 2464 2465 ChangeStatus updateImpl(Attributor &A) override { 2466 ChangeStatus Changed = ChangeStatus::UNCHANGED; 2467 const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>( 2468 *this, IRPosition::returned(*getAssociatedFunction()), 2469 DepClassTy::REQUIRED); 2470 2471 // We don't have any information, so we assume it changes the ICV. 2472 if (!ICVTrackingAA.isAssumedTracked()) 2473 return indicatePessimisticFixpoint(); 2474 2475 for (InternalControlVar ICV : TrackableICVs) { 2476 Optional<Value *> &ReplVal = ICVReplacementValuesMap[ICV]; 2477 Optional<Value *> NewReplVal = 2478 ICVTrackingAA.getUniqueReplacementValue(ICV); 2479 2480 if (ReplVal == NewReplVal) 2481 continue; 2482 2483 ReplVal = NewReplVal; 2484 Changed = ChangeStatus::CHANGED; 2485 } 2486 return Changed; 2487 } 2488 }; 2489 2490 struct AAExecutionDomainFunction : public AAExecutionDomain { 2491 AAExecutionDomainFunction(const IRPosition &IRP, Attributor &A) 2492 : AAExecutionDomain(IRP, A) {} 2493 2494 const std::string getAsStr() const override { 2495 return "[AAExecutionDomain] " + std::to_string(SingleThreadedBBs.size()) + 2496 "/" + std::to_string(NumBBs) + " BBs thread 0 only."; 2497 } 2498 2499 /// See AbstractAttribute::trackStatistics(). 2500 void trackStatistics() const override {} 2501 2502 void initialize(Attributor &A) override { 2503 Function *F = getAnchorScope(); 2504 for (const auto &BB : *F) 2505 SingleThreadedBBs.insert(&BB); 2506 NumBBs = SingleThreadedBBs.size(); 2507 } 2508 2509 ChangeStatus manifest(Attributor &A) override { 2510 LLVM_DEBUG({ 2511 for (const BasicBlock *BB : SingleThreadedBBs) 2512 dbgs() << TAG << " Basic block @" << getAnchorScope()->getName() << " " 2513 << BB->getName() << " is executed by a single thread.\n"; 2514 }); 2515 return ChangeStatus::UNCHANGED; 2516 } 2517 2518 ChangeStatus updateImpl(Attributor &A) override; 2519 2520 /// Check if an instruction is executed by a single thread. 2521 bool isExecutedByInitialThreadOnly(const Instruction &I) const override { 2522 return isExecutedByInitialThreadOnly(*I.getParent()); 2523 } 2524 2525 bool isExecutedByInitialThreadOnly(const BasicBlock &BB) const override { 2526 return isValidState() && SingleThreadedBBs.contains(&BB); 2527 } 2528 2529 /// Set of basic blocks that are executed by a single thread. 2530 DenseSet<const BasicBlock *> SingleThreadedBBs; 2531 2532 /// Total number of basic blocks in this function. 2533 long unsigned NumBBs; 2534 }; 2535 2536 ChangeStatus AAExecutionDomainFunction::updateImpl(Attributor &A) { 2537 Function *F = getAnchorScope(); 2538 ReversePostOrderTraversal<Function *> RPOT(F); 2539 auto NumSingleThreadedBBs = SingleThreadedBBs.size(); 2540 2541 bool AllCallSitesKnown; 2542 auto PredForCallSite = [&](AbstractCallSite ACS) { 2543 const auto &ExecutionDomainAA = A.getAAFor<AAExecutionDomain>( 2544 *this, IRPosition::function(*ACS.getInstruction()->getFunction()), 2545 DepClassTy::REQUIRED); 2546 return ACS.isDirectCall() && 2547 ExecutionDomainAA.isExecutedByInitialThreadOnly( 2548 *ACS.getInstruction()); 2549 }; 2550 2551 if (!A.checkForAllCallSites(PredForCallSite, *this, 2552 /* RequiresAllCallSites */ true, 2553 AllCallSitesKnown)) 2554 SingleThreadedBBs.erase(&F->getEntryBlock()); 2555 2556 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2557 auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_target_init]; 2558 2559 // Check if the edge into the successor block contains a condition that only 2560 // lets the main thread execute it. 2561 auto IsInitialThreadOnly = [&](BranchInst *Edge, BasicBlock *SuccessorBB) { 2562 if (!Edge || !Edge->isConditional()) 2563 return false; 2564 if (Edge->getSuccessor(0) != SuccessorBB) 2565 return false; 2566 2567 auto *Cmp = dyn_cast<CmpInst>(Edge->getCondition()); 2568 if (!Cmp || !Cmp->isTrueWhenEqual() || !Cmp->isEquality()) 2569 return false; 2570 2571 ConstantInt *C = dyn_cast<ConstantInt>(Cmp->getOperand(1)); 2572 if (!C) 2573 return false; 2574 2575 // Match: -1 == __kmpc_target_init (for non-SPMD kernels only!) 2576 if (C->isAllOnesValue()) { 2577 auto *CB = dyn_cast<CallBase>(Cmp->getOperand(0)); 2578 CB = CB ? OpenMPOpt::getCallIfRegularCall(*CB, &RFI) : nullptr; 2579 if (!CB) 2580 return false; 2581 const int InitIsSPMDArgNo = 1; 2582 auto *IsSPMDModeCI = 2583 dyn_cast<ConstantInt>(CB->getOperand(InitIsSPMDArgNo)); 2584 return IsSPMDModeCI && IsSPMDModeCI->isZero(); 2585 } 2586 2587 if (C->isZero()) { 2588 // Match: 0 == llvm.nvvm.read.ptx.sreg.tid.x() 2589 if (auto *II = dyn_cast<IntrinsicInst>(Cmp->getOperand(0))) 2590 if (II->getIntrinsicID() == Intrinsic::nvvm_read_ptx_sreg_tid_x) 2591 return true; 2592 2593 // Match: 0 == llvm.amdgcn.workitem.id.x() 2594 if (auto *II = dyn_cast<IntrinsicInst>(Cmp->getOperand(0))) 2595 if (II->getIntrinsicID() == Intrinsic::amdgcn_workitem_id_x) 2596 return true; 2597 } 2598 2599 return false; 2600 }; 2601 2602 // Merge all the predecessor states into the current basic block. A basic 2603 // block is executed by a single thread if all of its predecessors are. 2604 auto MergePredecessorStates = [&](BasicBlock *BB) { 2605 if (pred_begin(BB) == pred_end(BB)) 2606 return SingleThreadedBBs.contains(BB); 2607 2608 bool IsInitialThread = true; 2609 for (auto PredBB = pred_begin(BB), PredEndBB = pred_end(BB); 2610 PredBB != PredEndBB; ++PredBB) { 2611 if (!IsInitialThreadOnly(dyn_cast<BranchInst>((*PredBB)->getTerminator()), 2612 BB)) 2613 IsInitialThread &= SingleThreadedBBs.contains(*PredBB); 2614 } 2615 2616 return IsInitialThread; 2617 }; 2618 2619 for (auto *BB : RPOT) { 2620 if (!MergePredecessorStates(BB)) 2621 SingleThreadedBBs.erase(BB); 2622 } 2623 2624 return (NumSingleThreadedBBs == SingleThreadedBBs.size()) 2625 ? ChangeStatus::UNCHANGED 2626 : ChangeStatus::CHANGED; 2627 } 2628 2629 /// Try to replace memory allocation calls called by a single thread with a 2630 /// static buffer of shared memory. 2631 struct AAHeapToShared : public StateWrapper<BooleanState, AbstractAttribute> { 2632 using Base = StateWrapper<BooleanState, AbstractAttribute>; 2633 AAHeapToShared(const IRPosition &IRP, Attributor &A) : Base(IRP) {} 2634 2635 /// Create an abstract attribute view for the position \p IRP. 2636 static AAHeapToShared &createForPosition(const IRPosition &IRP, 2637 Attributor &A); 2638 2639 /// Returns true if HeapToShared conversion is assumed to be possible. 2640 virtual bool isAssumedHeapToShared(CallBase &CB) const = 0; 2641 2642 /// Returns true if HeapToShared conversion is assumed and the CB is a 2643 /// callsite to a free operation to be removed. 2644 virtual bool isAssumedHeapToSharedRemovedFree(CallBase &CB) const = 0; 2645 2646 /// See AbstractAttribute::getName(). 2647 const std::string getName() const override { return "AAHeapToShared"; } 2648 2649 /// See AbstractAttribute::getIdAddr(). 2650 const char *getIdAddr() const override { return &ID; } 2651 2652 /// This function should return true if the type of the \p AA is 2653 /// AAHeapToShared. 2654 static bool classof(const AbstractAttribute *AA) { 2655 return (AA->getIdAddr() == &ID); 2656 } 2657 2658 /// Unique ID (due to the unique address) 2659 static const char ID; 2660 }; 2661 2662 struct AAHeapToSharedFunction : public AAHeapToShared { 2663 AAHeapToSharedFunction(const IRPosition &IRP, Attributor &A) 2664 : AAHeapToShared(IRP, A) {} 2665 2666 const std::string getAsStr() const override { 2667 return "[AAHeapToShared] " + std::to_string(MallocCalls.size()) + 2668 " malloc calls eligible."; 2669 } 2670 2671 /// See AbstractAttribute::trackStatistics(). 2672 void trackStatistics() const override {} 2673 2674 /// This functions finds free calls that will be removed by the 2675 /// HeapToShared transformation. 2676 void findPotentialRemovedFreeCalls(Attributor &A) { 2677 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2678 auto &FreeRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_free_shared]; 2679 2680 PotentialRemovedFreeCalls.clear(); 2681 // Update free call users of found malloc calls. 2682 for (CallBase *CB : MallocCalls) { 2683 SmallVector<CallBase *, 4> FreeCalls; 2684 for (auto *U : CB->users()) { 2685 CallBase *C = dyn_cast<CallBase>(U); 2686 if (C && C->getCalledFunction() == FreeRFI.Declaration) 2687 FreeCalls.push_back(C); 2688 } 2689 2690 if (FreeCalls.size() != 1) 2691 continue; 2692 2693 PotentialRemovedFreeCalls.insert(FreeCalls.front()); 2694 } 2695 } 2696 2697 void initialize(Attributor &A) override { 2698 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2699 auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared]; 2700 2701 for (User *U : RFI.Declaration->users()) 2702 if (CallBase *CB = dyn_cast<CallBase>(U)) 2703 MallocCalls.insert(CB); 2704 2705 findPotentialRemovedFreeCalls(A); 2706 } 2707 2708 bool isAssumedHeapToShared(CallBase &CB) const override { 2709 return isValidState() && MallocCalls.count(&CB); 2710 } 2711 2712 bool isAssumedHeapToSharedRemovedFree(CallBase &CB) const override { 2713 return isValidState() && PotentialRemovedFreeCalls.count(&CB); 2714 } 2715 2716 ChangeStatus manifest(Attributor &A) override { 2717 if (MallocCalls.empty()) 2718 return ChangeStatus::UNCHANGED; 2719 2720 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2721 auto &FreeCall = OMPInfoCache.RFIs[OMPRTL___kmpc_free_shared]; 2722 2723 Function *F = getAnchorScope(); 2724 auto *HS = A.lookupAAFor<AAHeapToStack>(IRPosition::function(*F), this, 2725 DepClassTy::OPTIONAL); 2726 2727 ChangeStatus Changed = ChangeStatus::UNCHANGED; 2728 for (CallBase *CB : MallocCalls) { 2729 // Skip replacing this if HeapToStack has already claimed it. 2730 if (HS && HS->isAssumedHeapToStack(*CB)) 2731 continue; 2732 2733 // Find the unique free call to remove it. 2734 SmallVector<CallBase *, 4> FreeCalls; 2735 for (auto *U : CB->users()) { 2736 CallBase *C = dyn_cast<CallBase>(U); 2737 if (C && C->getCalledFunction() == FreeCall.Declaration) 2738 FreeCalls.push_back(C); 2739 } 2740 if (FreeCalls.size() != 1) 2741 continue; 2742 2743 ConstantInt *AllocSize = dyn_cast<ConstantInt>(CB->getArgOperand(0)); 2744 2745 LLVM_DEBUG(dbgs() << TAG << "Replace globalization call " << *CB 2746 << " with " << AllocSize->getZExtValue() 2747 << " bytes of shared memory\n"); 2748 2749 // Create a new shared memory buffer of the same size as the allocation 2750 // and replace all the uses of the original allocation with it. 2751 Module *M = CB->getModule(); 2752 Type *Int8Ty = Type::getInt8Ty(M->getContext()); 2753 Type *Int8ArrTy = ArrayType::get(Int8Ty, AllocSize->getZExtValue()); 2754 auto *SharedMem = new GlobalVariable( 2755 *M, Int8ArrTy, /* IsConstant */ false, GlobalValue::InternalLinkage, 2756 UndefValue::get(Int8ArrTy), CB->getName(), nullptr, 2757 GlobalValue::NotThreadLocal, 2758 static_cast<unsigned>(AddressSpace::Shared)); 2759 auto *NewBuffer = 2760 ConstantExpr::getPointerCast(SharedMem, Int8Ty->getPointerTo()); 2761 2762 auto Remark = [&](OptimizationRemark OR) { 2763 return OR << "Replaced globalized variable with " 2764 << ore::NV("SharedMemory", AllocSize->getZExtValue()) 2765 << ((AllocSize->getZExtValue() != 1) ? " bytes " : " byte ") 2766 << "of shared memory."; 2767 }; 2768 A.emitRemark<OptimizationRemark>(CB, "OMP111", Remark); 2769 2770 SharedMem->setAlignment(MaybeAlign(32)); 2771 2772 A.changeValueAfterManifest(*CB, *NewBuffer); 2773 A.deleteAfterManifest(*CB); 2774 A.deleteAfterManifest(*FreeCalls.front()); 2775 2776 NumBytesMovedToSharedMemory += AllocSize->getZExtValue(); 2777 Changed = ChangeStatus::CHANGED; 2778 } 2779 2780 return Changed; 2781 } 2782 2783 ChangeStatus updateImpl(Attributor &A) override { 2784 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2785 auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared]; 2786 Function *F = getAnchorScope(); 2787 2788 auto NumMallocCalls = MallocCalls.size(); 2789 2790 // Only consider malloc calls executed by a single thread with a constant. 2791 for (User *U : RFI.Declaration->users()) { 2792 const auto &ED = A.getAAFor<AAExecutionDomain>( 2793 *this, IRPosition::function(*F), DepClassTy::REQUIRED); 2794 if (CallBase *CB = dyn_cast<CallBase>(U)) 2795 if (!dyn_cast<ConstantInt>(CB->getArgOperand(0)) || 2796 !ED.isExecutedByInitialThreadOnly(*CB)) 2797 MallocCalls.erase(CB); 2798 } 2799 2800 findPotentialRemovedFreeCalls(A); 2801 2802 if (NumMallocCalls != MallocCalls.size()) 2803 return ChangeStatus::CHANGED; 2804 2805 return ChangeStatus::UNCHANGED; 2806 } 2807 2808 /// Collection of all malloc calls in a function. 2809 SmallPtrSet<CallBase *, 4> MallocCalls; 2810 /// Collection of potentially removed free calls in a function. 2811 SmallPtrSet<CallBase *, 4> PotentialRemovedFreeCalls; 2812 }; 2813 2814 struct AAKernelInfo : public StateWrapper<KernelInfoState, AbstractAttribute> { 2815 using Base = StateWrapper<KernelInfoState, AbstractAttribute>; 2816 AAKernelInfo(const IRPosition &IRP, Attributor &A) : Base(IRP) {} 2817 2818 /// Statistics are tracked as part of manifest for now. 2819 void trackStatistics() const override {} 2820 2821 /// See AbstractAttribute::getAsStr() 2822 const std::string getAsStr() const override { 2823 if (!isValidState()) 2824 return "<invalid>"; 2825 return std::string(SPMDCompatibilityTracker.isAssumed() ? "SPMD" 2826 : "generic") + 2827 std::string(SPMDCompatibilityTracker.isAtFixpoint() ? " [FIX]" 2828 : "") + 2829 std::string(" #PRs: ") + 2830 std::to_string(ReachedKnownParallelRegions.size()) + 2831 ", #Unknown PRs: " + 2832 std::to_string(ReachedUnknownParallelRegions.size()); 2833 } 2834 2835 /// Create an abstract attribute biew for the position \p IRP. 2836 static AAKernelInfo &createForPosition(const IRPosition &IRP, Attributor &A); 2837 2838 /// See AbstractAttribute::getName() 2839 const std::string getName() const override { return "AAKernelInfo"; } 2840 2841 /// See AbstractAttribute::getIdAddr() 2842 const char *getIdAddr() const override { return &ID; } 2843 2844 /// This function should return true if the type of the \p AA is AAKernelInfo 2845 static bool classof(const AbstractAttribute *AA) { 2846 return (AA->getIdAddr() == &ID); 2847 } 2848 2849 static const char ID; 2850 }; 2851 2852 /// The function kernel info abstract attribute, basically, what can we say 2853 /// about a function with regards to the KernelInfoState. 2854 struct AAKernelInfoFunction : AAKernelInfo { 2855 AAKernelInfoFunction(const IRPosition &IRP, Attributor &A) 2856 : AAKernelInfo(IRP, A) {} 2857 2858 SmallPtrSet<Instruction *, 4> GuardedInstructions; 2859 2860 SmallPtrSetImpl<Instruction *> &getGuardedInstructions() { 2861 return GuardedInstructions; 2862 } 2863 2864 /// See AbstractAttribute::initialize(...). 2865 void initialize(Attributor &A) override { 2866 // This is a high-level transform that might change the constant arguments 2867 // of the init and dinit calls. We need to tell the Attributor about this 2868 // to avoid other parts using the current constant value for simpliication. 2869 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2870 2871 Function *Fn = getAnchorScope(); 2872 if (!OMPInfoCache.Kernels.count(Fn)) 2873 return; 2874 2875 // Add itself to the reaching kernel and set IsKernelEntry. 2876 ReachingKernelEntries.insert(Fn); 2877 IsKernelEntry = true; 2878 2879 OMPInformationCache::RuntimeFunctionInfo &InitRFI = 2880 OMPInfoCache.RFIs[OMPRTL___kmpc_target_init]; 2881 OMPInformationCache::RuntimeFunctionInfo &DeinitRFI = 2882 OMPInfoCache.RFIs[OMPRTL___kmpc_target_deinit]; 2883 2884 // For kernels we perform more initialization work, first we find the init 2885 // and deinit calls. 2886 auto StoreCallBase = [](Use &U, 2887 OMPInformationCache::RuntimeFunctionInfo &RFI, 2888 CallBase *&Storage) { 2889 CallBase *CB = OpenMPOpt::getCallIfRegularCall(U, &RFI); 2890 assert(CB && 2891 "Unexpected use of __kmpc_target_init or __kmpc_target_deinit!"); 2892 assert(!Storage && 2893 "Multiple uses of __kmpc_target_init or __kmpc_target_deinit!"); 2894 Storage = CB; 2895 return false; 2896 }; 2897 InitRFI.foreachUse( 2898 [&](Use &U, Function &) { 2899 StoreCallBase(U, InitRFI, KernelInitCB); 2900 return false; 2901 }, 2902 Fn); 2903 DeinitRFI.foreachUse( 2904 [&](Use &U, Function &) { 2905 StoreCallBase(U, DeinitRFI, KernelDeinitCB); 2906 return false; 2907 }, 2908 Fn); 2909 2910 // Ignore kernels without initializers such as global constructors. 2911 if (!KernelInitCB || !KernelDeinitCB) { 2912 indicateOptimisticFixpoint(); 2913 return; 2914 } 2915 2916 // For kernels we might need to initialize/finalize the IsSPMD state and 2917 // we need to register a simplification callback so that the Attributor 2918 // knows the constant arguments to __kmpc_target_init and 2919 // __kmpc_target_deinit might actually change. 2920 2921 Attributor::SimplifictionCallbackTy StateMachineSimplifyCB = 2922 [&](const IRPosition &IRP, const AbstractAttribute *AA, 2923 bool &UsedAssumedInformation) -> Optional<Value *> { 2924 // IRP represents the "use generic state machine" argument of an 2925 // __kmpc_target_init call. We will answer this one with the internal 2926 // state. As long as we are not in an invalid state, we will create a 2927 // custom state machine so the value should be a `i1 false`. If we are 2928 // in an invalid state, we won't change the value that is in the IR. 2929 if (!isValidState()) 2930 return nullptr; 2931 // If we have disabled state machine rewrites, don't make a custom one. 2932 if (DisableOpenMPOptStateMachineRewrite) 2933 return nullptr; 2934 if (AA) 2935 A.recordDependence(*this, *AA, DepClassTy::OPTIONAL); 2936 UsedAssumedInformation = !isAtFixpoint(); 2937 auto *FalseVal = 2938 ConstantInt::getBool(IRP.getAnchorValue().getContext(), 0); 2939 return FalseVal; 2940 }; 2941 2942 Attributor::SimplifictionCallbackTy IsSPMDModeSimplifyCB = 2943 [&](const IRPosition &IRP, const AbstractAttribute *AA, 2944 bool &UsedAssumedInformation) -> Optional<Value *> { 2945 // IRP represents the "SPMDCompatibilityTracker" argument of an 2946 // __kmpc_target_init or 2947 // __kmpc_target_deinit call. We will answer this one with the internal 2948 // state. 2949 if (!SPMDCompatibilityTracker.isValidState()) 2950 return nullptr; 2951 if (!SPMDCompatibilityTracker.isAtFixpoint()) { 2952 if (AA) 2953 A.recordDependence(*this, *AA, DepClassTy::OPTIONAL); 2954 UsedAssumedInformation = true; 2955 } else { 2956 UsedAssumedInformation = false; 2957 } 2958 auto *Val = ConstantInt::getBool(IRP.getAnchorValue().getContext(), 2959 SPMDCompatibilityTracker.isAssumed()); 2960 return Val; 2961 }; 2962 2963 Attributor::SimplifictionCallbackTy IsGenericModeSimplifyCB = 2964 [&](const IRPosition &IRP, const AbstractAttribute *AA, 2965 bool &UsedAssumedInformation) -> Optional<Value *> { 2966 // IRP represents the "RequiresFullRuntime" argument of an 2967 // __kmpc_target_init or __kmpc_target_deinit call. We will answer this 2968 // one with the internal state of the SPMDCompatibilityTracker, so if 2969 // generic then true, if SPMD then false. 2970 if (!SPMDCompatibilityTracker.isValidState()) 2971 return nullptr; 2972 if (!SPMDCompatibilityTracker.isAtFixpoint()) { 2973 if (AA) 2974 A.recordDependence(*this, *AA, DepClassTy::OPTIONAL); 2975 UsedAssumedInformation = true; 2976 } else { 2977 UsedAssumedInformation = false; 2978 } 2979 auto *Val = ConstantInt::getBool(IRP.getAnchorValue().getContext(), 2980 !SPMDCompatibilityTracker.isAssumed()); 2981 return Val; 2982 }; 2983 2984 constexpr const int InitIsSPMDArgNo = 1; 2985 constexpr const int DeinitIsSPMDArgNo = 1; 2986 constexpr const int InitUseStateMachineArgNo = 2; 2987 constexpr const int InitRequiresFullRuntimeArgNo = 3; 2988 constexpr const int DeinitRequiresFullRuntimeArgNo = 2; 2989 A.registerSimplificationCallback( 2990 IRPosition::callsite_argument(*KernelInitCB, InitUseStateMachineArgNo), 2991 StateMachineSimplifyCB); 2992 A.registerSimplificationCallback( 2993 IRPosition::callsite_argument(*KernelInitCB, InitIsSPMDArgNo), 2994 IsSPMDModeSimplifyCB); 2995 A.registerSimplificationCallback( 2996 IRPosition::callsite_argument(*KernelDeinitCB, DeinitIsSPMDArgNo), 2997 IsSPMDModeSimplifyCB); 2998 A.registerSimplificationCallback( 2999 IRPosition::callsite_argument(*KernelInitCB, 3000 InitRequiresFullRuntimeArgNo), 3001 IsGenericModeSimplifyCB); 3002 A.registerSimplificationCallback( 3003 IRPosition::callsite_argument(*KernelDeinitCB, 3004 DeinitRequiresFullRuntimeArgNo), 3005 IsGenericModeSimplifyCB); 3006 3007 // Check if we know we are in SPMD-mode already. 3008 ConstantInt *IsSPMDArg = 3009 dyn_cast<ConstantInt>(KernelInitCB->getArgOperand(InitIsSPMDArgNo)); 3010 if (IsSPMDArg && !IsSPMDArg->isZero()) 3011 SPMDCompatibilityTracker.indicateOptimisticFixpoint(); 3012 // This is a generic region but SPMDization is disabled so stop tracking. 3013 else if (DisableOpenMPOptSPMDization) 3014 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 3015 } 3016 3017 /// Modify the IR based on the KernelInfoState as the fixpoint iteration is 3018 /// finished now. 3019 ChangeStatus manifest(Attributor &A) override { 3020 // If we are not looking at a kernel with __kmpc_target_init and 3021 // __kmpc_target_deinit call we cannot actually manifest the information. 3022 if (!KernelInitCB || !KernelDeinitCB) 3023 return ChangeStatus::UNCHANGED; 3024 3025 // Known SPMD-mode kernels need no manifest changes. 3026 if (SPMDCompatibilityTracker.isKnown()) 3027 return ChangeStatus::UNCHANGED; 3028 3029 // If we can we change the execution mode to SPMD-mode otherwise we build a 3030 // custom state machine. 3031 if (!mayContainParallelRegion() || !changeToSPMDMode(A)) 3032 buildCustomStateMachine(A); 3033 3034 return ChangeStatus::CHANGED; 3035 } 3036 3037 bool changeToSPMDMode(Attributor &A) { 3038 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 3039 3040 if (!SPMDCompatibilityTracker.isAssumed()) { 3041 for (Instruction *NonCompatibleI : SPMDCompatibilityTracker) { 3042 if (!NonCompatibleI) 3043 continue; 3044 3045 // Skip diagnostics on calls to known OpenMP runtime functions for now. 3046 if (auto *CB = dyn_cast<CallBase>(NonCompatibleI)) 3047 if (OMPInfoCache.RTLFunctions.contains(CB->getCalledFunction())) 3048 continue; 3049 3050 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 3051 ORA << "Value has potential side effects preventing SPMD-mode " 3052 "execution"; 3053 if (isa<CallBase>(NonCompatibleI)) { 3054 ORA << ". Add `__attribute__((assume(\"ompx_spmd_amenable\")))` to " 3055 "the called function to override"; 3056 } 3057 return ORA << "."; 3058 }; 3059 A.emitRemark<OptimizationRemarkAnalysis>(NonCompatibleI, "OMP121", 3060 Remark); 3061 3062 LLVM_DEBUG(dbgs() << TAG << "SPMD-incompatible side-effect: " 3063 << *NonCompatibleI << "\n"); 3064 } 3065 3066 return false; 3067 } 3068 3069 auto CreateGuardedRegion = [&](Instruction *RegionStartI, 3070 Instruction *RegionEndI) { 3071 LoopInfo *LI = nullptr; 3072 DominatorTree *DT = nullptr; 3073 MemorySSAUpdater *MSU = nullptr; 3074 using InsertPointTy = OpenMPIRBuilder::InsertPointTy; 3075 3076 BasicBlock *ParentBB = RegionStartI->getParent(); 3077 Function *Fn = ParentBB->getParent(); 3078 Module &M = *Fn->getParent(); 3079 3080 // Create all the blocks and logic. 3081 // ParentBB: 3082 // goto RegionCheckTidBB 3083 // RegionCheckTidBB: 3084 // Tid = __kmpc_hardware_thread_id() 3085 // if (Tid != 0) 3086 // goto RegionBarrierBB 3087 // RegionStartBB: 3088 // <execute instructions guarded> 3089 // goto RegionEndBB 3090 // RegionEndBB: 3091 // <store escaping values to shared mem> 3092 // goto RegionBarrierBB 3093 // RegionBarrierBB: 3094 // __kmpc_simple_barrier_spmd() 3095 // // second barrier is omitted if lacking escaping values. 3096 // <load escaping values from shared mem> 3097 // __kmpc_simple_barrier_spmd() 3098 // goto RegionExitBB 3099 // RegionExitBB: 3100 // <execute rest of instructions> 3101 3102 BasicBlock *RegionEndBB = SplitBlock(ParentBB, RegionEndI->getNextNode(), 3103 DT, LI, MSU, "region.guarded.end"); 3104 BasicBlock *RegionBarrierBB = 3105 SplitBlock(RegionEndBB, &*RegionEndBB->getFirstInsertionPt(), DT, LI, 3106 MSU, "region.barrier"); 3107 BasicBlock *RegionExitBB = 3108 SplitBlock(RegionBarrierBB, &*RegionBarrierBB->getFirstInsertionPt(), 3109 DT, LI, MSU, "region.exit"); 3110 BasicBlock *RegionStartBB = 3111 SplitBlock(ParentBB, RegionStartI, DT, LI, MSU, "region.guarded"); 3112 3113 assert(ParentBB->getUniqueSuccessor() == RegionStartBB && 3114 "Expected a different CFG"); 3115 3116 BasicBlock *RegionCheckTidBB = SplitBlock( 3117 ParentBB, ParentBB->getTerminator(), DT, LI, MSU, "region.check.tid"); 3118 3119 // Register basic blocks with the Attributor. 3120 A.registerManifestAddedBasicBlock(*RegionEndBB); 3121 A.registerManifestAddedBasicBlock(*RegionBarrierBB); 3122 A.registerManifestAddedBasicBlock(*RegionExitBB); 3123 A.registerManifestAddedBasicBlock(*RegionStartBB); 3124 A.registerManifestAddedBasicBlock(*RegionCheckTidBB); 3125 3126 bool HasBroadcastValues = false; 3127 // Find escaping outputs from the guarded region to outside users and 3128 // broadcast their values to them. 3129 for (Instruction &I : *RegionStartBB) { 3130 SmallPtrSet<Instruction *, 4> OutsideUsers; 3131 for (User *Usr : I.users()) { 3132 Instruction &UsrI = *cast<Instruction>(Usr); 3133 if (UsrI.getParent() != RegionStartBB) 3134 OutsideUsers.insert(&UsrI); 3135 } 3136 3137 if (OutsideUsers.empty()) 3138 continue; 3139 3140 HasBroadcastValues = true; 3141 3142 // Emit a global variable in shared memory to store the broadcasted 3143 // value. 3144 auto *SharedMem = new GlobalVariable( 3145 M, I.getType(), /* IsConstant */ false, 3146 GlobalValue::InternalLinkage, UndefValue::get(I.getType()), 3147 I.getName() + ".guarded.output.alloc", nullptr, 3148 GlobalValue::NotThreadLocal, 3149 static_cast<unsigned>(AddressSpace::Shared)); 3150 3151 // Emit a store instruction to update the value. 3152 new StoreInst(&I, SharedMem, RegionEndBB->getTerminator()); 3153 3154 LoadInst *LoadI = new LoadInst(I.getType(), SharedMem, 3155 I.getName() + ".guarded.output.load", 3156 RegionBarrierBB->getTerminator()); 3157 3158 // Emit a load instruction and replace uses of the output value. 3159 for (Instruction *UsrI : OutsideUsers) { 3160 assert(UsrI->getParent() == RegionExitBB && 3161 "Expected escaping users in exit region"); 3162 UsrI->replaceUsesOfWith(&I, LoadI); 3163 } 3164 } 3165 3166 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 3167 3168 // Go to tid check BB in ParentBB. 3169 const DebugLoc DL = ParentBB->getTerminator()->getDebugLoc(); 3170 ParentBB->getTerminator()->eraseFromParent(); 3171 OpenMPIRBuilder::LocationDescription Loc( 3172 InsertPointTy(ParentBB, ParentBB->end()), DL); 3173 OMPInfoCache.OMPBuilder.updateToLocation(Loc); 3174 auto *SrcLocStr = OMPInfoCache.OMPBuilder.getOrCreateSrcLocStr(Loc); 3175 Value *Ident = OMPInfoCache.OMPBuilder.getOrCreateIdent(SrcLocStr); 3176 BranchInst::Create(RegionCheckTidBB, ParentBB)->setDebugLoc(DL); 3177 3178 // Add check for Tid in RegionCheckTidBB 3179 RegionCheckTidBB->getTerminator()->eraseFromParent(); 3180 OpenMPIRBuilder::LocationDescription LocRegionCheckTid( 3181 InsertPointTy(RegionCheckTidBB, RegionCheckTidBB->end()), DL); 3182 OMPInfoCache.OMPBuilder.updateToLocation(LocRegionCheckTid); 3183 FunctionCallee HardwareTidFn = 3184 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( 3185 M, OMPRTL___kmpc_get_hardware_thread_id_in_block); 3186 Value *Tid = 3187 OMPInfoCache.OMPBuilder.Builder.CreateCall(HardwareTidFn, {}); 3188 Value *TidCheck = OMPInfoCache.OMPBuilder.Builder.CreateIsNull(Tid); 3189 OMPInfoCache.OMPBuilder.Builder 3190 .CreateCondBr(TidCheck, RegionStartBB, RegionBarrierBB) 3191 ->setDebugLoc(DL); 3192 3193 // First barrier for synchronization, ensures main thread has updated 3194 // values. 3195 FunctionCallee BarrierFn = 3196 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( 3197 M, OMPRTL___kmpc_barrier_simple_spmd); 3198 OMPInfoCache.OMPBuilder.updateToLocation(InsertPointTy( 3199 RegionBarrierBB, RegionBarrierBB->getFirstInsertionPt())); 3200 OMPInfoCache.OMPBuilder.Builder.CreateCall(BarrierFn, {Ident, Tid}) 3201 ->setDebugLoc(DL); 3202 3203 // Second barrier ensures workers have read broadcast values. 3204 if (HasBroadcastValues) 3205 CallInst::Create(BarrierFn, {Ident, Tid}, "", 3206 RegionBarrierBB->getTerminator()) 3207 ->setDebugLoc(DL); 3208 }; 3209 3210 auto &AllocSharedRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared]; 3211 SmallPtrSet<BasicBlock *, 8> Visited; 3212 for (Instruction *GuardedI : SPMDCompatibilityTracker) { 3213 BasicBlock *BB = GuardedI->getParent(); 3214 if (!Visited.insert(BB).second) 3215 continue; 3216 3217 SmallVector<std::pair<Instruction *, Instruction *>> Reorders; 3218 Instruction *LastEffect = nullptr; 3219 BasicBlock::reverse_iterator IP = BB->rbegin(), IPEnd = BB->rend(); 3220 while (++IP != IPEnd) { 3221 if (!IP->mayHaveSideEffects() && !IP->mayReadFromMemory()) 3222 continue; 3223 Instruction *I = &*IP; 3224 if (OpenMPOpt::getCallIfRegularCall(*I, &AllocSharedRFI)) 3225 continue; 3226 if (!I->user_empty() || !SPMDCompatibilityTracker.contains(I)) { 3227 LastEffect = nullptr; 3228 continue; 3229 } 3230 if (LastEffect) 3231 Reorders.push_back({I, LastEffect}); 3232 LastEffect = &*IP; 3233 } 3234 for (auto &Reorder : Reorders) 3235 Reorder.first->moveBefore(Reorder.second); 3236 } 3237 3238 SmallVector<std::pair<Instruction *, Instruction *>, 4> GuardedRegions; 3239 3240 for (Instruction *GuardedI : SPMDCompatibilityTracker) { 3241 BasicBlock *BB = GuardedI->getParent(); 3242 auto *CalleeAA = A.lookupAAFor<AAKernelInfo>( 3243 IRPosition::function(*GuardedI->getFunction()), nullptr, 3244 DepClassTy::NONE); 3245 assert(CalleeAA != nullptr && "Expected Callee AAKernelInfo"); 3246 auto &CalleeAAFunction = *cast<AAKernelInfoFunction>(CalleeAA); 3247 // Continue if instruction is already guarded. 3248 if (CalleeAAFunction.getGuardedInstructions().contains(GuardedI)) 3249 continue; 3250 3251 Instruction *GuardedRegionStart = nullptr, *GuardedRegionEnd = nullptr; 3252 for (Instruction &I : *BB) { 3253 // If instruction I needs to be guarded update the guarded region 3254 // bounds. 3255 if (SPMDCompatibilityTracker.contains(&I)) { 3256 CalleeAAFunction.getGuardedInstructions().insert(&I); 3257 if (GuardedRegionStart) 3258 GuardedRegionEnd = &I; 3259 else 3260 GuardedRegionStart = GuardedRegionEnd = &I; 3261 3262 continue; 3263 } 3264 3265 // Instruction I does not need guarding, store 3266 // any region found and reset bounds. 3267 if (GuardedRegionStart) { 3268 GuardedRegions.push_back( 3269 std::make_pair(GuardedRegionStart, GuardedRegionEnd)); 3270 GuardedRegionStart = nullptr; 3271 GuardedRegionEnd = nullptr; 3272 } 3273 } 3274 } 3275 3276 for (auto &GR : GuardedRegions) 3277 CreateGuardedRegion(GR.first, GR.second); 3278 3279 // Adjust the global exec mode flag that tells the runtime what mode this 3280 // kernel is executed in. 3281 Function *Kernel = getAnchorScope(); 3282 GlobalVariable *ExecMode = Kernel->getParent()->getGlobalVariable( 3283 (Kernel->getName() + "_exec_mode").str()); 3284 assert(ExecMode && "Kernel without exec mode?"); 3285 assert(ExecMode->getInitializer() && 3286 ExecMode->getInitializer()->isOneValue() && 3287 "Initially non-SPMD kernel has SPMD exec mode!"); 3288 3289 // Set the global exec mode flag to indicate SPMD-Generic mode. 3290 constexpr int SPMDGeneric = 2; 3291 if (!ExecMode->getInitializer()->isZeroValue()) 3292 ExecMode->setInitializer( 3293 ConstantInt::get(ExecMode->getInitializer()->getType(), SPMDGeneric)); 3294 3295 // Next rewrite the init and deinit calls to indicate we use SPMD-mode now. 3296 const int InitIsSPMDArgNo = 1; 3297 const int DeinitIsSPMDArgNo = 1; 3298 const int InitUseStateMachineArgNo = 2; 3299 const int InitRequiresFullRuntimeArgNo = 3; 3300 const int DeinitRequiresFullRuntimeArgNo = 2; 3301 3302 auto &Ctx = getAnchorValue().getContext(); 3303 A.changeUseAfterManifest(KernelInitCB->getArgOperandUse(InitIsSPMDArgNo), 3304 *ConstantInt::getBool(Ctx, 1)); 3305 A.changeUseAfterManifest( 3306 KernelInitCB->getArgOperandUse(InitUseStateMachineArgNo), 3307 *ConstantInt::getBool(Ctx, 0)); 3308 A.changeUseAfterManifest( 3309 KernelDeinitCB->getArgOperandUse(DeinitIsSPMDArgNo), 3310 *ConstantInt::getBool(Ctx, 1)); 3311 A.changeUseAfterManifest( 3312 KernelInitCB->getArgOperandUse(InitRequiresFullRuntimeArgNo), 3313 *ConstantInt::getBool(Ctx, 0)); 3314 A.changeUseAfterManifest( 3315 KernelDeinitCB->getArgOperandUse(DeinitRequiresFullRuntimeArgNo), 3316 *ConstantInt::getBool(Ctx, 0)); 3317 3318 ++NumOpenMPTargetRegionKernelsSPMD; 3319 3320 auto Remark = [&](OptimizationRemark OR) { 3321 return OR << "Transformed generic-mode kernel to SPMD-mode."; 3322 }; 3323 A.emitRemark<OptimizationRemark>(KernelInitCB, "OMP120", Remark); 3324 return true; 3325 }; 3326 3327 ChangeStatus buildCustomStateMachine(Attributor &A) { 3328 // If we have disabled state machine rewrites, don't make a custom one 3329 if (DisableOpenMPOptStateMachineRewrite) 3330 return indicatePessimisticFixpoint(); 3331 3332 assert(ReachedKnownParallelRegions.isValidState() && 3333 "Custom state machine with invalid parallel region states?"); 3334 3335 const int InitIsSPMDArgNo = 1; 3336 const int InitUseStateMachineArgNo = 2; 3337 3338 // Check if the current configuration is non-SPMD and generic state machine. 3339 // If we already have SPMD mode or a custom state machine we do not need to 3340 // go any further. If it is anything but a constant something is weird and 3341 // we give up. 3342 ConstantInt *UseStateMachine = dyn_cast<ConstantInt>( 3343 KernelInitCB->getArgOperand(InitUseStateMachineArgNo)); 3344 ConstantInt *IsSPMD = 3345 dyn_cast<ConstantInt>(KernelInitCB->getArgOperand(InitIsSPMDArgNo)); 3346 3347 // If we are stuck with generic mode, try to create a custom device (=GPU) 3348 // state machine which is specialized for the parallel regions that are 3349 // reachable by the kernel. 3350 if (!UseStateMachine || UseStateMachine->isZero() || !IsSPMD || 3351 !IsSPMD->isZero()) 3352 return ChangeStatus::UNCHANGED; 3353 3354 // If not SPMD mode, indicate we use a custom state machine now. 3355 auto &Ctx = getAnchorValue().getContext(); 3356 auto *FalseVal = ConstantInt::getBool(Ctx, 0); 3357 A.changeUseAfterManifest( 3358 KernelInitCB->getArgOperandUse(InitUseStateMachineArgNo), *FalseVal); 3359 3360 // If we don't actually need a state machine we are done here. This can 3361 // happen if there simply are no parallel regions. In the resulting kernel 3362 // all worker threads will simply exit right away, leaving the main thread 3363 // to do the work alone. 3364 if (!mayContainParallelRegion()) { 3365 ++NumOpenMPTargetRegionKernelsWithoutStateMachine; 3366 3367 auto Remark = [&](OptimizationRemark OR) { 3368 return OR << "Removing unused state machine from generic-mode kernel."; 3369 }; 3370 A.emitRemark<OptimizationRemark>(KernelInitCB, "OMP130", Remark); 3371 3372 return ChangeStatus::CHANGED; 3373 } 3374 3375 // Keep track in the statistics of our new shiny custom state machine. 3376 if (ReachedUnknownParallelRegions.empty()) { 3377 ++NumOpenMPTargetRegionKernelsCustomStateMachineWithoutFallback; 3378 3379 auto Remark = [&](OptimizationRemark OR) { 3380 return OR << "Rewriting generic-mode kernel with a customized state " 3381 "machine."; 3382 }; 3383 A.emitRemark<OptimizationRemark>(KernelInitCB, "OMP131", Remark); 3384 } else { 3385 ++NumOpenMPTargetRegionKernelsCustomStateMachineWithFallback; 3386 3387 auto Remark = [&](OptimizationRemarkAnalysis OR) { 3388 return OR << "Generic-mode kernel is executed with a customized state " 3389 "machine that requires a fallback."; 3390 }; 3391 A.emitRemark<OptimizationRemarkAnalysis>(KernelInitCB, "OMP132", Remark); 3392 3393 // Tell the user why we ended up with a fallback. 3394 for (CallBase *UnknownParallelRegionCB : ReachedUnknownParallelRegions) { 3395 if (!UnknownParallelRegionCB) 3396 continue; 3397 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 3398 return ORA << "Call may contain unknown parallel regions. Use " 3399 << "`__attribute__((assume(\"omp_no_parallelism\")))` to " 3400 "override."; 3401 }; 3402 A.emitRemark<OptimizationRemarkAnalysis>(UnknownParallelRegionCB, 3403 "OMP133", Remark); 3404 } 3405 } 3406 3407 // Create all the blocks: 3408 // 3409 // InitCB = __kmpc_target_init(...) 3410 // bool IsWorker = InitCB >= 0; 3411 // if (IsWorker) { 3412 // SMBeginBB: __kmpc_barrier_simple_spmd(...); 3413 // void *WorkFn; 3414 // bool Active = __kmpc_kernel_parallel(&WorkFn); 3415 // if (!WorkFn) return; 3416 // SMIsActiveCheckBB: if (Active) { 3417 // SMIfCascadeCurrentBB: if (WorkFn == <ParFn0>) 3418 // ParFn0(...); 3419 // SMIfCascadeCurrentBB: else if (WorkFn == <ParFn1>) 3420 // ParFn1(...); 3421 // ... 3422 // SMIfCascadeCurrentBB: else 3423 // ((WorkFnTy*)WorkFn)(...); 3424 // SMEndParallelBB: __kmpc_kernel_end_parallel(...); 3425 // } 3426 // SMDoneBB: __kmpc_barrier_simple_spmd(...); 3427 // goto SMBeginBB; 3428 // } 3429 // UserCodeEntryBB: // user code 3430 // __kmpc_target_deinit(...) 3431 // 3432 Function *Kernel = getAssociatedFunction(); 3433 assert(Kernel && "Expected an associated function!"); 3434 3435 BasicBlock *InitBB = KernelInitCB->getParent(); 3436 BasicBlock *UserCodeEntryBB = InitBB->splitBasicBlock( 3437 KernelInitCB->getNextNode(), "thread.user_code.check"); 3438 BasicBlock *StateMachineBeginBB = BasicBlock::Create( 3439 Ctx, "worker_state_machine.begin", Kernel, UserCodeEntryBB); 3440 BasicBlock *StateMachineFinishedBB = BasicBlock::Create( 3441 Ctx, "worker_state_machine.finished", Kernel, UserCodeEntryBB); 3442 BasicBlock *StateMachineIsActiveCheckBB = BasicBlock::Create( 3443 Ctx, "worker_state_machine.is_active.check", Kernel, UserCodeEntryBB); 3444 BasicBlock *StateMachineIfCascadeCurrentBB = 3445 BasicBlock::Create(Ctx, "worker_state_machine.parallel_region.check", 3446 Kernel, UserCodeEntryBB); 3447 BasicBlock *StateMachineEndParallelBB = 3448 BasicBlock::Create(Ctx, "worker_state_machine.parallel_region.end", 3449 Kernel, UserCodeEntryBB); 3450 BasicBlock *StateMachineDoneBarrierBB = BasicBlock::Create( 3451 Ctx, "worker_state_machine.done.barrier", Kernel, UserCodeEntryBB); 3452 A.registerManifestAddedBasicBlock(*InitBB); 3453 A.registerManifestAddedBasicBlock(*UserCodeEntryBB); 3454 A.registerManifestAddedBasicBlock(*StateMachineBeginBB); 3455 A.registerManifestAddedBasicBlock(*StateMachineFinishedBB); 3456 A.registerManifestAddedBasicBlock(*StateMachineIsActiveCheckBB); 3457 A.registerManifestAddedBasicBlock(*StateMachineIfCascadeCurrentBB); 3458 A.registerManifestAddedBasicBlock(*StateMachineEndParallelBB); 3459 A.registerManifestAddedBasicBlock(*StateMachineDoneBarrierBB); 3460 3461 const DebugLoc &DLoc = KernelInitCB->getDebugLoc(); 3462 ReturnInst::Create(Ctx, StateMachineFinishedBB)->setDebugLoc(DLoc); 3463 3464 InitBB->getTerminator()->eraseFromParent(); 3465 Instruction *IsWorker = 3466 ICmpInst::Create(ICmpInst::ICmp, llvm::CmpInst::ICMP_NE, KernelInitCB, 3467 ConstantInt::get(KernelInitCB->getType(), -1), 3468 "thread.is_worker", InitBB); 3469 IsWorker->setDebugLoc(DLoc); 3470 BranchInst::Create(StateMachineBeginBB, UserCodeEntryBB, IsWorker, InitBB); 3471 3472 Module &M = *Kernel->getParent(); 3473 3474 // Create local storage for the work function pointer. 3475 const DataLayout &DL = M.getDataLayout(); 3476 Type *VoidPtrTy = Type::getInt8PtrTy(Ctx); 3477 Instruction *WorkFnAI = 3478 new AllocaInst(VoidPtrTy, DL.getAllocaAddrSpace(), nullptr, 3479 "worker.work_fn.addr", &Kernel->getEntryBlock().front()); 3480 WorkFnAI->setDebugLoc(DLoc); 3481 3482 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 3483 OMPInfoCache.OMPBuilder.updateToLocation( 3484 OpenMPIRBuilder::LocationDescription( 3485 IRBuilder<>::InsertPoint(StateMachineBeginBB, 3486 StateMachineBeginBB->end()), 3487 DLoc)); 3488 3489 Value *Ident = KernelInitCB->getArgOperand(0); 3490 Value *GTid = KernelInitCB; 3491 3492 FunctionCallee BarrierFn = 3493 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( 3494 M, OMPRTL___kmpc_barrier_simple_spmd); 3495 CallInst::Create(BarrierFn, {Ident, GTid}, "", StateMachineBeginBB) 3496 ->setDebugLoc(DLoc); 3497 3498 if (WorkFnAI->getType()->getPointerAddressSpace() != 3499 (unsigned int)AddressSpace::Generic) { 3500 WorkFnAI = new AddrSpaceCastInst( 3501 WorkFnAI, 3502 PointerType::getWithSamePointeeType( 3503 cast<PointerType>(WorkFnAI->getType()), 3504 (unsigned int)AddressSpace::Generic), 3505 WorkFnAI->getName() + ".generic", StateMachineBeginBB); 3506 WorkFnAI->setDebugLoc(DLoc); 3507 } 3508 3509 FunctionCallee KernelParallelFn = 3510 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( 3511 M, OMPRTL___kmpc_kernel_parallel); 3512 Instruction *IsActiveWorker = CallInst::Create( 3513 KernelParallelFn, {WorkFnAI}, "worker.is_active", StateMachineBeginBB); 3514 IsActiveWorker->setDebugLoc(DLoc); 3515 Instruction *WorkFn = new LoadInst(VoidPtrTy, WorkFnAI, "worker.work_fn", 3516 StateMachineBeginBB); 3517 WorkFn->setDebugLoc(DLoc); 3518 3519 FunctionType *ParallelRegionFnTy = FunctionType::get( 3520 Type::getVoidTy(Ctx), {Type::getInt16Ty(Ctx), Type::getInt32Ty(Ctx)}, 3521 false); 3522 Value *WorkFnCast = BitCastInst::CreatePointerBitCastOrAddrSpaceCast( 3523 WorkFn, ParallelRegionFnTy->getPointerTo(), "worker.work_fn.addr_cast", 3524 StateMachineBeginBB); 3525 3526 Instruction *IsDone = 3527 ICmpInst::Create(ICmpInst::ICmp, llvm::CmpInst::ICMP_EQ, WorkFn, 3528 Constant::getNullValue(VoidPtrTy), "worker.is_done", 3529 StateMachineBeginBB); 3530 IsDone->setDebugLoc(DLoc); 3531 BranchInst::Create(StateMachineFinishedBB, StateMachineIsActiveCheckBB, 3532 IsDone, StateMachineBeginBB) 3533 ->setDebugLoc(DLoc); 3534 3535 BranchInst::Create(StateMachineIfCascadeCurrentBB, 3536 StateMachineDoneBarrierBB, IsActiveWorker, 3537 StateMachineIsActiveCheckBB) 3538 ->setDebugLoc(DLoc); 3539 3540 Value *ZeroArg = 3541 Constant::getNullValue(ParallelRegionFnTy->getParamType(0)); 3542 3543 // Now that we have most of the CFG skeleton it is time for the if-cascade 3544 // that checks the function pointer we got from the runtime against the 3545 // parallel regions we expect, if there are any. 3546 for (int i = 0, e = ReachedKnownParallelRegions.size(); i < e; ++i) { 3547 auto *ParallelRegion = ReachedKnownParallelRegions[i]; 3548 BasicBlock *PRExecuteBB = BasicBlock::Create( 3549 Ctx, "worker_state_machine.parallel_region.execute", Kernel, 3550 StateMachineEndParallelBB); 3551 CallInst::Create(ParallelRegion, {ZeroArg, GTid}, "", PRExecuteBB) 3552 ->setDebugLoc(DLoc); 3553 BranchInst::Create(StateMachineEndParallelBB, PRExecuteBB) 3554 ->setDebugLoc(DLoc); 3555 3556 BasicBlock *PRNextBB = 3557 BasicBlock::Create(Ctx, "worker_state_machine.parallel_region.check", 3558 Kernel, StateMachineEndParallelBB); 3559 3560 // Check if we need to compare the pointer at all or if we can just 3561 // call the parallel region function. 3562 Value *IsPR; 3563 if (i + 1 < e || !ReachedUnknownParallelRegions.empty()) { 3564 Instruction *CmpI = ICmpInst::Create( 3565 ICmpInst::ICmp, llvm::CmpInst::ICMP_EQ, WorkFnCast, ParallelRegion, 3566 "worker.check_parallel_region", StateMachineIfCascadeCurrentBB); 3567 CmpI->setDebugLoc(DLoc); 3568 IsPR = CmpI; 3569 } else { 3570 IsPR = ConstantInt::getTrue(Ctx); 3571 } 3572 3573 BranchInst::Create(PRExecuteBB, PRNextBB, IsPR, 3574 StateMachineIfCascadeCurrentBB) 3575 ->setDebugLoc(DLoc); 3576 StateMachineIfCascadeCurrentBB = PRNextBB; 3577 } 3578 3579 // At the end of the if-cascade we place the indirect function pointer call 3580 // in case we might need it, that is if there can be parallel regions we 3581 // have not handled in the if-cascade above. 3582 if (!ReachedUnknownParallelRegions.empty()) { 3583 StateMachineIfCascadeCurrentBB->setName( 3584 "worker_state_machine.parallel_region.fallback.execute"); 3585 CallInst::Create(ParallelRegionFnTy, WorkFnCast, {ZeroArg, GTid}, "", 3586 StateMachineIfCascadeCurrentBB) 3587 ->setDebugLoc(DLoc); 3588 } 3589 BranchInst::Create(StateMachineEndParallelBB, 3590 StateMachineIfCascadeCurrentBB) 3591 ->setDebugLoc(DLoc); 3592 3593 CallInst::Create(OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( 3594 M, OMPRTL___kmpc_kernel_end_parallel), 3595 {}, "", StateMachineEndParallelBB) 3596 ->setDebugLoc(DLoc); 3597 BranchInst::Create(StateMachineDoneBarrierBB, StateMachineEndParallelBB) 3598 ->setDebugLoc(DLoc); 3599 3600 CallInst::Create(BarrierFn, {Ident, GTid}, "", StateMachineDoneBarrierBB) 3601 ->setDebugLoc(DLoc); 3602 BranchInst::Create(StateMachineBeginBB, StateMachineDoneBarrierBB) 3603 ->setDebugLoc(DLoc); 3604 3605 return ChangeStatus::CHANGED; 3606 } 3607 3608 /// Fixpoint iteration update function. Will be called every time a dependence 3609 /// changed its state (and in the beginning). 3610 ChangeStatus updateImpl(Attributor &A) override { 3611 KernelInfoState StateBefore = getState(); 3612 3613 // Callback to check a read/write instruction. 3614 auto CheckRWInst = [&](Instruction &I) { 3615 // We handle calls later. 3616 if (isa<CallBase>(I)) 3617 return true; 3618 // We only care about write effects. 3619 if (!I.mayWriteToMemory()) 3620 return true; 3621 if (auto *SI = dyn_cast<StoreInst>(&I)) { 3622 SmallVector<const Value *> Objects; 3623 getUnderlyingObjects(SI->getPointerOperand(), Objects); 3624 if (llvm::all_of(Objects, 3625 [](const Value *Obj) { return isa<AllocaInst>(Obj); })) 3626 return true; 3627 // Check for AAHeapToStack moved objects which must not be guarded. 3628 auto &HS = A.getAAFor<AAHeapToStack>( 3629 *this, IRPosition::function(*I.getFunction()), 3630 DepClassTy::REQUIRED); 3631 if (llvm::all_of(Objects, [&HS](const Value *Obj) { 3632 auto *CB = dyn_cast<CallBase>(Obj); 3633 if (!CB) 3634 return false; 3635 return HS.isAssumedHeapToStack(*CB); 3636 })) { 3637 return true; 3638 } 3639 } 3640 3641 // Insert instruction that needs guarding. 3642 SPMDCompatibilityTracker.insert(&I); 3643 return true; 3644 }; 3645 3646 bool UsedAssumedInformationInCheckRWInst = false; 3647 if (!SPMDCompatibilityTracker.isAtFixpoint()) 3648 if (!A.checkForAllReadWriteInstructions( 3649 CheckRWInst, *this, UsedAssumedInformationInCheckRWInst)) 3650 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 3651 3652 if (!IsKernelEntry) { 3653 updateReachingKernelEntries(A); 3654 updateParallelLevels(A); 3655 3656 if (!ParallelLevels.isValidState()) 3657 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 3658 } 3659 3660 // Callback to check a call instruction. 3661 bool AllSPMDStatesWereFixed = true; 3662 auto CheckCallInst = [&](Instruction &I) { 3663 auto &CB = cast<CallBase>(I); 3664 auto &CBAA = A.getAAFor<AAKernelInfo>( 3665 *this, IRPosition::callsite_function(CB), DepClassTy::OPTIONAL); 3666 getState() ^= CBAA.getState(); 3667 AllSPMDStatesWereFixed &= CBAA.SPMDCompatibilityTracker.isAtFixpoint(); 3668 return true; 3669 }; 3670 3671 bool UsedAssumedInformationInCheckCallInst = false; 3672 if (!A.checkForAllCallLikeInstructions( 3673 CheckCallInst, *this, UsedAssumedInformationInCheckCallInst)) 3674 return indicatePessimisticFixpoint(); 3675 3676 // If we haven't used any assumed information for the SPMD state we can fix 3677 // it. 3678 if (!UsedAssumedInformationInCheckRWInst && 3679 !UsedAssumedInformationInCheckCallInst && AllSPMDStatesWereFixed) 3680 SPMDCompatibilityTracker.indicateOptimisticFixpoint(); 3681 3682 return StateBefore == getState() ? ChangeStatus::UNCHANGED 3683 : ChangeStatus::CHANGED; 3684 } 3685 3686 private: 3687 /// Update info regarding reaching kernels. 3688 void updateReachingKernelEntries(Attributor &A) { 3689 auto PredCallSite = [&](AbstractCallSite ACS) { 3690 Function *Caller = ACS.getInstruction()->getFunction(); 3691 3692 assert(Caller && "Caller is nullptr"); 3693 3694 auto &CAA = A.getOrCreateAAFor<AAKernelInfo>( 3695 IRPosition::function(*Caller), this, DepClassTy::REQUIRED); 3696 if (CAA.ReachingKernelEntries.isValidState()) { 3697 ReachingKernelEntries ^= CAA.ReachingKernelEntries; 3698 return true; 3699 } 3700 3701 // We lost track of the caller of the associated function, any kernel 3702 // could reach now. 3703 ReachingKernelEntries.indicatePessimisticFixpoint(); 3704 3705 return true; 3706 }; 3707 3708 bool AllCallSitesKnown; 3709 if (!A.checkForAllCallSites(PredCallSite, *this, 3710 true /* RequireAllCallSites */, 3711 AllCallSitesKnown)) 3712 ReachingKernelEntries.indicatePessimisticFixpoint(); 3713 } 3714 3715 /// Update info regarding parallel levels. 3716 void updateParallelLevels(Attributor &A) { 3717 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 3718 OMPInformationCache::RuntimeFunctionInfo &Parallel51RFI = 3719 OMPInfoCache.RFIs[OMPRTL___kmpc_parallel_51]; 3720 3721 auto PredCallSite = [&](AbstractCallSite ACS) { 3722 Function *Caller = ACS.getInstruction()->getFunction(); 3723 3724 assert(Caller && "Caller is nullptr"); 3725 3726 auto &CAA = 3727 A.getOrCreateAAFor<AAKernelInfo>(IRPosition::function(*Caller)); 3728 if (CAA.ParallelLevels.isValidState()) { 3729 // Any function that is called by `__kmpc_parallel_51` will not be 3730 // folded as the parallel level in the function is updated. In order to 3731 // get it right, all the analysis would depend on the implentation. That 3732 // said, if in the future any change to the implementation, the analysis 3733 // could be wrong. As a consequence, we are just conservative here. 3734 if (Caller == Parallel51RFI.Declaration) { 3735 ParallelLevels.indicatePessimisticFixpoint(); 3736 return true; 3737 } 3738 3739 ParallelLevels ^= CAA.ParallelLevels; 3740 3741 return true; 3742 } 3743 3744 // We lost track of the caller of the associated function, any kernel 3745 // could reach now. 3746 ParallelLevels.indicatePessimisticFixpoint(); 3747 3748 return true; 3749 }; 3750 3751 bool AllCallSitesKnown = true; 3752 if (!A.checkForAllCallSites(PredCallSite, *this, 3753 true /* RequireAllCallSites */, 3754 AllCallSitesKnown)) 3755 ParallelLevels.indicatePessimisticFixpoint(); 3756 } 3757 }; 3758 3759 /// The call site kernel info abstract attribute, basically, what can we say 3760 /// about a call site with regards to the KernelInfoState. For now this simply 3761 /// forwards the information from the callee. 3762 struct AAKernelInfoCallSite : AAKernelInfo { 3763 AAKernelInfoCallSite(const IRPosition &IRP, Attributor &A) 3764 : AAKernelInfo(IRP, A) {} 3765 3766 /// See AbstractAttribute::initialize(...). 3767 void initialize(Attributor &A) override { 3768 AAKernelInfo::initialize(A); 3769 3770 CallBase &CB = cast<CallBase>(getAssociatedValue()); 3771 Function *Callee = getAssociatedFunction(); 3772 3773 // Helper to lookup an assumption string. 3774 auto HasAssumption = [](CallBase &CB, StringRef AssumptionStr) { 3775 return hasAssumption(CB, AssumptionStr); 3776 }; 3777 3778 // Check for SPMD-mode assumptions. 3779 if (HasAssumption(CB, "ompx_spmd_amenable")) { 3780 SPMDCompatibilityTracker.indicateOptimisticFixpoint(); 3781 indicateOptimisticFixpoint(); 3782 } 3783 3784 // First weed out calls we do not care about, that is readonly/readnone 3785 // calls, intrinsics, and "no_openmp" calls. Neither of these can reach a 3786 // parallel region or anything else we are looking for. 3787 if (!CB.mayWriteToMemory() || isa<IntrinsicInst>(CB)) { 3788 indicateOptimisticFixpoint(); 3789 return; 3790 } 3791 3792 // Next we check if we know the callee. If it is a known OpenMP function 3793 // we will handle them explicitly in the switch below. If it is not, we 3794 // will use an AAKernelInfo object on the callee to gather information and 3795 // merge that into the current state. The latter happens in the updateImpl. 3796 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 3797 const auto &It = OMPInfoCache.RuntimeFunctionIDMap.find(Callee); 3798 if (It == OMPInfoCache.RuntimeFunctionIDMap.end()) { 3799 // Unknown caller or declarations are not analyzable, we give up. 3800 if (!Callee || !A.isFunctionIPOAmendable(*Callee)) { 3801 3802 // Unknown callees might contain parallel regions, except if they have 3803 // an appropriate assumption attached. 3804 if (!(HasAssumption(CB, "omp_no_openmp") || 3805 HasAssumption(CB, "omp_no_parallelism"))) 3806 ReachedUnknownParallelRegions.insert(&CB); 3807 3808 // If SPMDCompatibilityTracker is not fixed, we need to give up on the 3809 // idea we can run something unknown in SPMD-mode. 3810 if (!SPMDCompatibilityTracker.isAtFixpoint()) { 3811 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 3812 SPMDCompatibilityTracker.insert(&CB); 3813 } 3814 3815 // We have updated the state for this unknown call properly, there won't 3816 // be any change so we indicate a fixpoint. 3817 indicateOptimisticFixpoint(); 3818 } 3819 // If the callee is known and can be used in IPO, we will update the state 3820 // based on the callee state in updateImpl. 3821 return; 3822 } 3823 3824 const unsigned int WrapperFunctionArgNo = 6; 3825 RuntimeFunction RF = It->getSecond(); 3826 switch (RF) { 3827 // All the functions we know are compatible with SPMD mode. 3828 case OMPRTL___kmpc_is_spmd_exec_mode: 3829 case OMPRTL___kmpc_for_static_fini: 3830 case OMPRTL___kmpc_global_thread_num: 3831 case OMPRTL___kmpc_get_hardware_num_threads_in_block: 3832 case OMPRTL___kmpc_get_hardware_num_blocks: 3833 case OMPRTL___kmpc_single: 3834 case OMPRTL___kmpc_end_single: 3835 case OMPRTL___kmpc_master: 3836 case OMPRTL___kmpc_end_master: 3837 case OMPRTL___kmpc_barrier: 3838 break; 3839 case OMPRTL___kmpc_for_static_init_4: 3840 case OMPRTL___kmpc_for_static_init_4u: 3841 case OMPRTL___kmpc_for_static_init_8: 3842 case OMPRTL___kmpc_for_static_init_8u: { 3843 // Check the schedule and allow static schedule in SPMD mode. 3844 unsigned ScheduleArgOpNo = 2; 3845 auto *ScheduleTypeCI = 3846 dyn_cast<ConstantInt>(CB.getArgOperand(ScheduleArgOpNo)); 3847 unsigned ScheduleTypeVal = 3848 ScheduleTypeCI ? ScheduleTypeCI->getZExtValue() : 0; 3849 switch (OMPScheduleType(ScheduleTypeVal)) { 3850 case OMPScheduleType::Static: 3851 case OMPScheduleType::StaticChunked: 3852 case OMPScheduleType::Distribute: 3853 case OMPScheduleType::DistributeChunked: 3854 break; 3855 default: 3856 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 3857 SPMDCompatibilityTracker.insert(&CB); 3858 break; 3859 }; 3860 } break; 3861 case OMPRTL___kmpc_target_init: 3862 KernelInitCB = &CB; 3863 break; 3864 case OMPRTL___kmpc_target_deinit: 3865 KernelDeinitCB = &CB; 3866 break; 3867 case OMPRTL___kmpc_parallel_51: 3868 if (auto *ParallelRegion = dyn_cast<Function>( 3869 CB.getArgOperand(WrapperFunctionArgNo)->stripPointerCasts())) { 3870 ReachedKnownParallelRegions.insert(ParallelRegion); 3871 break; 3872 } 3873 // The condition above should usually get the parallel region function 3874 // pointer and record it. In the off chance it doesn't we assume the 3875 // worst. 3876 ReachedUnknownParallelRegions.insert(&CB); 3877 break; 3878 case OMPRTL___kmpc_omp_task: 3879 // We do not look into tasks right now, just give up. 3880 SPMDCompatibilityTracker.insert(&CB); 3881 ReachedUnknownParallelRegions.insert(&CB); 3882 indicatePessimisticFixpoint(); 3883 return; 3884 case OMPRTL___kmpc_alloc_shared: 3885 case OMPRTL___kmpc_free_shared: 3886 // Return without setting a fixpoint, to be resolved in updateImpl. 3887 return; 3888 default: 3889 // Unknown OpenMP runtime calls cannot be executed in SPMD-mode, 3890 // generally. 3891 SPMDCompatibilityTracker.insert(&CB); 3892 indicatePessimisticFixpoint(); 3893 return; 3894 } 3895 // All other OpenMP runtime calls will not reach parallel regions so they 3896 // can be safely ignored for now. Since it is a known OpenMP runtime call we 3897 // have now modeled all effects and there is no need for any update. 3898 indicateOptimisticFixpoint(); 3899 } 3900 3901 ChangeStatus updateImpl(Attributor &A) override { 3902 // TODO: Once we have call site specific value information we can provide 3903 // call site specific liveness information and then it makes 3904 // sense to specialize attributes for call sites arguments instead of 3905 // redirecting requests to the callee argument. 3906 Function *F = getAssociatedFunction(); 3907 3908 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 3909 const auto &It = OMPInfoCache.RuntimeFunctionIDMap.find(F); 3910 3911 // If F is not a runtime function, propagate the AAKernelInfo of the callee. 3912 if (It == OMPInfoCache.RuntimeFunctionIDMap.end()) { 3913 const IRPosition &FnPos = IRPosition::function(*F); 3914 auto &FnAA = A.getAAFor<AAKernelInfo>(*this, FnPos, DepClassTy::REQUIRED); 3915 if (getState() == FnAA.getState()) 3916 return ChangeStatus::UNCHANGED; 3917 getState() = FnAA.getState(); 3918 return ChangeStatus::CHANGED; 3919 } 3920 3921 // F is a runtime function that allocates or frees memory, check 3922 // AAHeapToStack and AAHeapToShared. 3923 KernelInfoState StateBefore = getState(); 3924 assert((It->getSecond() == OMPRTL___kmpc_alloc_shared || 3925 It->getSecond() == OMPRTL___kmpc_free_shared) && 3926 "Expected a __kmpc_alloc_shared or __kmpc_free_shared runtime call"); 3927 3928 CallBase &CB = cast<CallBase>(getAssociatedValue()); 3929 3930 auto &HeapToStackAA = A.getAAFor<AAHeapToStack>( 3931 *this, IRPosition::function(*CB.getCaller()), DepClassTy::OPTIONAL); 3932 auto &HeapToSharedAA = A.getAAFor<AAHeapToShared>( 3933 *this, IRPosition::function(*CB.getCaller()), DepClassTy::OPTIONAL); 3934 3935 RuntimeFunction RF = It->getSecond(); 3936 3937 switch (RF) { 3938 // If neither HeapToStack nor HeapToShared assume the call is removed, 3939 // assume SPMD incompatibility. 3940 case OMPRTL___kmpc_alloc_shared: 3941 if (!HeapToStackAA.isAssumedHeapToStack(CB) && 3942 !HeapToSharedAA.isAssumedHeapToShared(CB)) 3943 SPMDCompatibilityTracker.insert(&CB); 3944 break; 3945 case OMPRTL___kmpc_free_shared: 3946 if (!HeapToStackAA.isAssumedHeapToStackRemovedFree(CB) && 3947 !HeapToSharedAA.isAssumedHeapToSharedRemovedFree(CB)) 3948 SPMDCompatibilityTracker.insert(&CB); 3949 break; 3950 default: 3951 SPMDCompatibilityTracker.insert(&CB); 3952 } 3953 3954 return StateBefore == getState() ? ChangeStatus::UNCHANGED 3955 : ChangeStatus::CHANGED; 3956 } 3957 }; 3958 3959 struct AAFoldRuntimeCall 3960 : public StateWrapper<BooleanState, AbstractAttribute> { 3961 using Base = StateWrapper<BooleanState, AbstractAttribute>; 3962 3963 AAFoldRuntimeCall(const IRPosition &IRP, Attributor &A) : Base(IRP) {} 3964 3965 /// Statistics are tracked as part of manifest for now. 3966 void trackStatistics() const override {} 3967 3968 /// Create an abstract attribute biew for the position \p IRP. 3969 static AAFoldRuntimeCall &createForPosition(const IRPosition &IRP, 3970 Attributor &A); 3971 3972 /// See AbstractAttribute::getName() 3973 const std::string getName() const override { return "AAFoldRuntimeCall"; } 3974 3975 /// See AbstractAttribute::getIdAddr() 3976 const char *getIdAddr() const override { return &ID; } 3977 3978 /// This function should return true if the type of the \p AA is 3979 /// AAFoldRuntimeCall 3980 static bool classof(const AbstractAttribute *AA) { 3981 return (AA->getIdAddr() == &ID); 3982 } 3983 3984 static const char ID; 3985 }; 3986 3987 struct AAFoldRuntimeCallCallSiteReturned : AAFoldRuntimeCall { 3988 AAFoldRuntimeCallCallSiteReturned(const IRPosition &IRP, Attributor &A) 3989 : AAFoldRuntimeCall(IRP, A) {} 3990 3991 /// See AbstractAttribute::getAsStr() 3992 const std::string getAsStr() const override { 3993 if (!isValidState()) 3994 return "<invalid>"; 3995 3996 std::string Str("simplified value: "); 3997 3998 if (!SimplifiedValue.hasValue()) 3999 return Str + std::string("none"); 4000 4001 if (!SimplifiedValue.getValue()) 4002 return Str + std::string("nullptr"); 4003 4004 if (ConstantInt *CI = dyn_cast<ConstantInt>(SimplifiedValue.getValue())) 4005 return Str + std::to_string(CI->getSExtValue()); 4006 4007 return Str + std::string("unknown"); 4008 } 4009 4010 void initialize(Attributor &A) override { 4011 if (DisableOpenMPOptFolding) 4012 indicatePessimisticFixpoint(); 4013 4014 Function *Callee = getAssociatedFunction(); 4015 4016 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 4017 const auto &It = OMPInfoCache.RuntimeFunctionIDMap.find(Callee); 4018 assert(It != OMPInfoCache.RuntimeFunctionIDMap.end() && 4019 "Expected a known OpenMP runtime function"); 4020 4021 RFKind = It->getSecond(); 4022 4023 CallBase &CB = cast<CallBase>(getAssociatedValue()); 4024 A.registerSimplificationCallback( 4025 IRPosition::callsite_returned(CB), 4026 [&](const IRPosition &IRP, const AbstractAttribute *AA, 4027 bool &UsedAssumedInformation) -> Optional<Value *> { 4028 assert((isValidState() || (SimplifiedValue.hasValue() && 4029 SimplifiedValue.getValue() == nullptr)) && 4030 "Unexpected invalid state!"); 4031 4032 if (!isAtFixpoint()) { 4033 UsedAssumedInformation = true; 4034 if (AA) 4035 A.recordDependence(*this, *AA, DepClassTy::OPTIONAL); 4036 } 4037 return SimplifiedValue; 4038 }); 4039 } 4040 4041 ChangeStatus updateImpl(Attributor &A) override { 4042 ChangeStatus Changed = ChangeStatus::UNCHANGED; 4043 switch (RFKind) { 4044 case OMPRTL___kmpc_is_spmd_exec_mode: 4045 Changed |= foldIsSPMDExecMode(A); 4046 break; 4047 case OMPRTL___kmpc_is_generic_main_thread_id: 4048 Changed |= foldIsGenericMainThread(A); 4049 break; 4050 case OMPRTL___kmpc_parallel_level: 4051 Changed |= foldParallelLevel(A); 4052 break; 4053 case OMPRTL___kmpc_get_hardware_num_threads_in_block: 4054 Changed = Changed | foldKernelFnAttribute(A, "omp_target_thread_limit"); 4055 break; 4056 case OMPRTL___kmpc_get_hardware_num_blocks: 4057 Changed = Changed | foldKernelFnAttribute(A, "omp_target_num_teams"); 4058 break; 4059 default: 4060 llvm_unreachable("Unhandled OpenMP runtime function!"); 4061 } 4062 4063 return Changed; 4064 } 4065 4066 ChangeStatus manifest(Attributor &A) override { 4067 ChangeStatus Changed = ChangeStatus::UNCHANGED; 4068 4069 if (SimplifiedValue.hasValue() && SimplifiedValue.getValue()) { 4070 Instruction &I = *getCtxI(); 4071 A.changeValueAfterManifest(I, **SimplifiedValue); 4072 A.deleteAfterManifest(I); 4073 4074 CallBase *CB = dyn_cast<CallBase>(&I); 4075 auto Remark = [&](OptimizationRemark OR) { 4076 if (auto *C = dyn_cast<ConstantInt>(*SimplifiedValue)) 4077 return OR << "Replacing OpenMP runtime call " 4078 << CB->getCalledFunction()->getName() << " with " 4079 << ore::NV("FoldedValue", C->getZExtValue()) << "."; 4080 else 4081 return OR << "Replacing OpenMP runtime call " 4082 << CB->getCalledFunction()->getName() << "."; 4083 }; 4084 4085 if (CB && EnableVerboseRemarks) 4086 A.emitRemark<OptimizationRemark>(CB, "OMP180", Remark); 4087 4088 LLVM_DEBUG(dbgs() << TAG << "Replacing runtime call: " << I << " with " 4089 << **SimplifiedValue << "\n"); 4090 4091 Changed = ChangeStatus::CHANGED; 4092 } 4093 4094 return Changed; 4095 } 4096 4097 ChangeStatus indicatePessimisticFixpoint() override { 4098 SimplifiedValue = nullptr; 4099 return AAFoldRuntimeCall::indicatePessimisticFixpoint(); 4100 } 4101 4102 private: 4103 /// Fold __kmpc_is_spmd_exec_mode into a constant if possible. 4104 ChangeStatus foldIsSPMDExecMode(Attributor &A) { 4105 Optional<Value *> SimplifiedValueBefore = SimplifiedValue; 4106 4107 unsigned AssumedSPMDCount = 0, KnownSPMDCount = 0; 4108 unsigned AssumedNonSPMDCount = 0, KnownNonSPMDCount = 0; 4109 auto &CallerKernelInfoAA = A.getAAFor<AAKernelInfo>( 4110 *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED); 4111 4112 if (!CallerKernelInfoAA.ReachingKernelEntries.isValidState()) 4113 return indicatePessimisticFixpoint(); 4114 4115 for (Kernel K : CallerKernelInfoAA.ReachingKernelEntries) { 4116 auto &AA = A.getAAFor<AAKernelInfo>(*this, IRPosition::function(*K), 4117 DepClassTy::REQUIRED); 4118 4119 if (!AA.isValidState()) { 4120 SimplifiedValue = nullptr; 4121 return indicatePessimisticFixpoint(); 4122 } 4123 4124 if (AA.SPMDCompatibilityTracker.isAssumed()) { 4125 if (AA.SPMDCompatibilityTracker.isAtFixpoint()) 4126 ++KnownSPMDCount; 4127 else 4128 ++AssumedSPMDCount; 4129 } else { 4130 if (AA.SPMDCompatibilityTracker.isAtFixpoint()) 4131 ++KnownNonSPMDCount; 4132 else 4133 ++AssumedNonSPMDCount; 4134 } 4135 } 4136 4137 if ((AssumedSPMDCount + KnownSPMDCount) && 4138 (AssumedNonSPMDCount + KnownNonSPMDCount)) 4139 return indicatePessimisticFixpoint(); 4140 4141 auto &Ctx = getAnchorValue().getContext(); 4142 if (KnownSPMDCount || AssumedSPMDCount) { 4143 assert(KnownNonSPMDCount == 0 && AssumedNonSPMDCount == 0 && 4144 "Expected only SPMD kernels!"); 4145 // All reaching kernels are in SPMD mode. Update all function calls to 4146 // __kmpc_is_spmd_exec_mode to 1. 4147 SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), true); 4148 } else if (KnownNonSPMDCount || AssumedNonSPMDCount) { 4149 assert(KnownSPMDCount == 0 && AssumedSPMDCount == 0 && 4150 "Expected only non-SPMD kernels!"); 4151 // All reaching kernels are in non-SPMD mode. Update all function 4152 // calls to __kmpc_is_spmd_exec_mode to 0. 4153 SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), false); 4154 } else { 4155 // We have empty reaching kernels, therefore we cannot tell if the 4156 // associated call site can be folded. At this moment, SimplifiedValue 4157 // must be none. 4158 assert(!SimplifiedValue.hasValue() && "SimplifiedValue should be none"); 4159 } 4160 4161 return SimplifiedValue == SimplifiedValueBefore ? ChangeStatus::UNCHANGED 4162 : ChangeStatus::CHANGED; 4163 } 4164 4165 /// Fold __kmpc_is_generic_main_thread_id into a constant if possible. 4166 ChangeStatus foldIsGenericMainThread(Attributor &A) { 4167 Optional<Value *> SimplifiedValueBefore = SimplifiedValue; 4168 4169 CallBase &CB = cast<CallBase>(getAssociatedValue()); 4170 Function *F = CB.getFunction(); 4171 const auto &ExecutionDomainAA = A.getAAFor<AAExecutionDomain>( 4172 *this, IRPosition::function(*F), DepClassTy::REQUIRED); 4173 4174 if (!ExecutionDomainAA.isValidState()) 4175 return indicatePessimisticFixpoint(); 4176 4177 auto &Ctx = getAnchorValue().getContext(); 4178 if (ExecutionDomainAA.isExecutedByInitialThreadOnly(CB)) 4179 SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), true); 4180 else 4181 return indicatePessimisticFixpoint(); 4182 4183 return SimplifiedValue == SimplifiedValueBefore ? ChangeStatus::UNCHANGED 4184 : ChangeStatus::CHANGED; 4185 } 4186 4187 /// Fold __kmpc_parallel_level into a constant if possible. 4188 ChangeStatus foldParallelLevel(Attributor &A) { 4189 Optional<Value *> SimplifiedValueBefore = SimplifiedValue; 4190 4191 auto &CallerKernelInfoAA = A.getAAFor<AAKernelInfo>( 4192 *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED); 4193 4194 if (!CallerKernelInfoAA.ParallelLevels.isValidState()) 4195 return indicatePessimisticFixpoint(); 4196 4197 if (!CallerKernelInfoAA.ReachingKernelEntries.isValidState()) 4198 return indicatePessimisticFixpoint(); 4199 4200 if (CallerKernelInfoAA.ReachingKernelEntries.empty()) { 4201 assert(!SimplifiedValue.hasValue() && 4202 "SimplifiedValue should keep none at this point"); 4203 return ChangeStatus::UNCHANGED; 4204 } 4205 4206 unsigned AssumedSPMDCount = 0, KnownSPMDCount = 0; 4207 unsigned AssumedNonSPMDCount = 0, KnownNonSPMDCount = 0; 4208 for (Kernel K : CallerKernelInfoAA.ReachingKernelEntries) { 4209 auto &AA = A.getAAFor<AAKernelInfo>(*this, IRPosition::function(*K), 4210 DepClassTy::REQUIRED); 4211 if (!AA.SPMDCompatibilityTracker.isValidState()) 4212 return indicatePessimisticFixpoint(); 4213 4214 if (AA.SPMDCompatibilityTracker.isAssumed()) { 4215 if (AA.SPMDCompatibilityTracker.isAtFixpoint()) 4216 ++KnownSPMDCount; 4217 else 4218 ++AssumedSPMDCount; 4219 } else { 4220 if (AA.SPMDCompatibilityTracker.isAtFixpoint()) 4221 ++KnownNonSPMDCount; 4222 else 4223 ++AssumedNonSPMDCount; 4224 } 4225 } 4226 4227 if ((AssumedSPMDCount + KnownSPMDCount) && 4228 (AssumedNonSPMDCount + KnownNonSPMDCount)) 4229 return indicatePessimisticFixpoint(); 4230 4231 auto &Ctx = getAnchorValue().getContext(); 4232 // If the caller can only be reached by SPMD kernel entries, the parallel 4233 // level is 1. Similarly, if the caller can only be reached by non-SPMD 4234 // kernel entries, it is 0. 4235 if (AssumedSPMDCount || KnownSPMDCount) { 4236 assert(KnownNonSPMDCount == 0 && AssumedNonSPMDCount == 0 && 4237 "Expected only SPMD kernels!"); 4238 SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), 1); 4239 } else { 4240 assert(KnownSPMDCount == 0 && AssumedSPMDCount == 0 && 4241 "Expected only non-SPMD kernels!"); 4242 SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), 0); 4243 } 4244 return SimplifiedValue == SimplifiedValueBefore ? ChangeStatus::UNCHANGED 4245 : ChangeStatus::CHANGED; 4246 } 4247 4248 ChangeStatus foldKernelFnAttribute(Attributor &A, llvm::StringRef Attr) { 4249 // Specialize only if all the calls agree with the attribute constant value 4250 int32_t CurrentAttrValue = -1; 4251 Optional<Value *> SimplifiedValueBefore = SimplifiedValue; 4252 4253 auto &CallerKernelInfoAA = A.getAAFor<AAKernelInfo>( 4254 *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED); 4255 4256 if (!CallerKernelInfoAA.ReachingKernelEntries.isValidState()) 4257 return indicatePessimisticFixpoint(); 4258 4259 // Iterate over the kernels that reach this function 4260 for (Kernel K : CallerKernelInfoAA.ReachingKernelEntries) { 4261 int32_t NextAttrVal = -1; 4262 if (K->hasFnAttribute(Attr)) 4263 NextAttrVal = 4264 std::stoi(K->getFnAttribute(Attr).getValueAsString().str()); 4265 4266 if (NextAttrVal == -1 || 4267 (CurrentAttrValue != -1 && CurrentAttrValue != NextAttrVal)) 4268 return indicatePessimisticFixpoint(); 4269 CurrentAttrValue = NextAttrVal; 4270 } 4271 4272 if (CurrentAttrValue != -1) { 4273 auto &Ctx = getAnchorValue().getContext(); 4274 SimplifiedValue = 4275 ConstantInt::get(Type::getInt32Ty(Ctx), CurrentAttrValue); 4276 } 4277 return SimplifiedValue == SimplifiedValueBefore ? ChangeStatus::UNCHANGED 4278 : ChangeStatus::CHANGED; 4279 } 4280 4281 /// An optional value the associated value is assumed to fold to. That is, we 4282 /// assume the associated value (which is a call) can be replaced by this 4283 /// simplified value. 4284 Optional<Value *> SimplifiedValue; 4285 4286 /// The runtime function kind of the callee of the associated call site. 4287 RuntimeFunction RFKind; 4288 }; 4289 4290 } // namespace 4291 4292 /// Register folding callsite 4293 void OpenMPOpt::registerFoldRuntimeCall(RuntimeFunction RF) { 4294 auto &RFI = OMPInfoCache.RFIs[RF]; 4295 RFI.foreachUse(SCC, [&](Use &U, Function &F) { 4296 CallInst *CI = OpenMPOpt::getCallIfRegularCall(U, &RFI); 4297 if (!CI) 4298 return false; 4299 A.getOrCreateAAFor<AAFoldRuntimeCall>( 4300 IRPosition::callsite_returned(*CI), /* QueryingAA */ nullptr, 4301 DepClassTy::NONE, /* ForceUpdate */ false, 4302 /* UpdateAfterInit */ false); 4303 return false; 4304 }); 4305 } 4306 4307 void OpenMPOpt::registerAAs(bool IsModulePass) { 4308 if (SCC.empty()) 4309 4310 return; 4311 if (IsModulePass) { 4312 // Ensure we create the AAKernelInfo AAs first and without triggering an 4313 // update. This will make sure we register all value simplification 4314 // callbacks before any other AA has the chance to create an AAValueSimplify 4315 // or similar. 4316 for (Function *Kernel : OMPInfoCache.Kernels) 4317 A.getOrCreateAAFor<AAKernelInfo>( 4318 IRPosition::function(*Kernel), /* QueryingAA */ nullptr, 4319 DepClassTy::NONE, /* ForceUpdate */ false, 4320 /* UpdateAfterInit */ false); 4321 4322 registerFoldRuntimeCall(OMPRTL___kmpc_is_generic_main_thread_id); 4323 registerFoldRuntimeCall(OMPRTL___kmpc_is_spmd_exec_mode); 4324 registerFoldRuntimeCall(OMPRTL___kmpc_parallel_level); 4325 registerFoldRuntimeCall(OMPRTL___kmpc_get_hardware_num_threads_in_block); 4326 registerFoldRuntimeCall(OMPRTL___kmpc_get_hardware_num_blocks); 4327 } 4328 4329 // Create CallSite AA for all Getters. 4330 for (int Idx = 0; Idx < OMPInfoCache.ICVs.size() - 1; ++Idx) { 4331 auto ICVInfo = OMPInfoCache.ICVs[static_cast<InternalControlVar>(Idx)]; 4332 4333 auto &GetterRFI = OMPInfoCache.RFIs[ICVInfo.Getter]; 4334 4335 auto CreateAA = [&](Use &U, Function &Caller) { 4336 CallInst *CI = OpenMPOpt::getCallIfRegularCall(U, &GetterRFI); 4337 if (!CI) 4338 return false; 4339 4340 auto &CB = cast<CallBase>(*CI); 4341 4342 IRPosition CBPos = IRPosition::callsite_function(CB); 4343 A.getOrCreateAAFor<AAICVTracker>(CBPos); 4344 return false; 4345 }; 4346 4347 GetterRFI.foreachUse(SCC, CreateAA); 4348 } 4349 auto &GlobalizationRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared]; 4350 auto CreateAA = [&](Use &U, Function &F) { 4351 A.getOrCreateAAFor<AAHeapToShared>(IRPosition::function(F)); 4352 return false; 4353 }; 4354 if (!DisableOpenMPOptDeglobalization) 4355 GlobalizationRFI.foreachUse(SCC, CreateAA); 4356 4357 // Create an ExecutionDomain AA for every function and a HeapToStack AA for 4358 // every function if there is a device kernel. 4359 if (!isOpenMPDevice(M)) 4360 return; 4361 4362 for (auto *F : SCC) { 4363 if (F->isDeclaration()) 4364 continue; 4365 4366 A.getOrCreateAAFor<AAExecutionDomain>(IRPosition::function(*F)); 4367 if (!DisableOpenMPOptDeglobalization) 4368 A.getOrCreateAAFor<AAHeapToStack>(IRPosition::function(*F)); 4369 4370 for (auto &I : instructions(*F)) { 4371 if (auto *LI = dyn_cast<LoadInst>(&I)) { 4372 bool UsedAssumedInformation = false; 4373 A.getAssumedSimplified(IRPosition::value(*LI), /* AA */ nullptr, 4374 UsedAssumedInformation); 4375 } 4376 } 4377 } 4378 } 4379 4380 const char AAICVTracker::ID = 0; 4381 const char AAKernelInfo::ID = 0; 4382 const char AAExecutionDomain::ID = 0; 4383 const char AAHeapToShared::ID = 0; 4384 const char AAFoldRuntimeCall::ID = 0; 4385 4386 AAICVTracker &AAICVTracker::createForPosition(const IRPosition &IRP, 4387 Attributor &A) { 4388 AAICVTracker *AA = nullptr; 4389 switch (IRP.getPositionKind()) { 4390 case IRPosition::IRP_INVALID: 4391 case IRPosition::IRP_FLOAT: 4392 case IRPosition::IRP_ARGUMENT: 4393 case IRPosition::IRP_CALL_SITE_ARGUMENT: 4394 llvm_unreachable("ICVTracker can only be created for function position!"); 4395 case IRPosition::IRP_RETURNED: 4396 AA = new (A.Allocator) AAICVTrackerFunctionReturned(IRP, A); 4397 break; 4398 case IRPosition::IRP_CALL_SITE_RETURNED: 4399 AA = new (A.Allocator) AAICVTrackerCallSiteReturned(IRP, A); 4400 break; 4401 case IRPosition::IRP_CALL_SITE: 4402 AA = new (A.Allocator) AAICVTrackerCallSite(IRP, A); 4403 break; 4404 case IRPosition::IRP_FUNCTION: 4405 AA = new (A.Allocator) AAICVTrackerFunction(IRP, A); 4406 break; 4407 } 4408 4409 return *AA; 4410 } 4411 4412 AAExecutionDomain &AAExecutionDomain::createForPosition(const IRPosition &IRP, 4413 Attributor &A) { 4414 AAExecutionDomainFunction *AA = nullptr; 4415 switch (IRP.getPositionKind()) { 4416 case IRPosition::IRP_INVALID: 4417 case IRPosition::IRP_FLOAT: 4418 case IRPosition::IRP_ARGUMENT: 4419 case IRPosition::IRP_CALL_SITE_ARGUMENT: 4420 case IRPosition::IRP_RETURNED: 4421 case IRPosition::IRP_CALL_SITE_RETURNED: 4422 case IRPosition::IRP_CALL_SITE: 4423 llvm_unreachable( 4424 "AAExecutionDomain can only be created for function position!"); 4425 case IRPosition::IRP_FUNCTION: 4426 AA = new (A.Allocator) AAExecutionDomainFunction(IRP, A); 4427 break; 4428 } 4429 4430 return *AA; 4431 } 4432 4433 AAHeapToShared &AAHeapToShared::createForPosition(const IRPosition &IRP, 4434 Attributor &A) { 4435 AAHeapToSharedFunction *AA = nullptr; 4436 switch (IRP.getPositionKind()) { 4437 case IRPosition::IRP_INVALID: 4438 case IRPosition::IRP_FLOAT: 4439 case IRPosition::IRP_ARGUMENT: 4440 case IRPosition::IRP_CALL_SITE_ARGUMENT: 4441 case IRPosition::IRP_RETURNED: 4442 case IRPosition::IRP_CALL_SITE_RETURNED: 4443 case IRPosition::IRP_CALL_SITE: 4444 llvm_unreachable( 4445 "AAHeapToShared can only be created for function position!"); 4446 case IRPosition::IRP_FUNCTION: 4447 AA = new (A.Allocator) AAHeapToSharedFunction(IRP, A); 4448 break; 4449 } 4450 4451 return *AA; 4452 } 4453 4454 AAKernelInfo &AAKernelInfo::createForPosition(const IRPosition &IRP, 4455 Attributor &A) { 4456 AAKernelInfo *AA = nullptr; 4457 switch (IRP.getPositionKind()) { 4458 case IRPosition::IRP_INVALID: 4459 case IRPosition::IRP_FLOAT: 4460 case IRPosition::IRP_ARGUMENT: 4461 case IRPosition::IRP_RETURNED: 4462 case IRPosition::IRP_CALL_SITE_RETURNED: 4463 case IRPosition::IRP_CALL_SITE_ARGUMENT: 4464 llvm_unreachable("KernelInfo can only be created for function position!"); 4465 case IRPosition::IRP_CALL_SITE: 4466 AA = new (A.Allocator) AAKernelInfoCallSite(IRP, A); 4467 break; 4468 case IRPosition::IRP_FUNCTION: 4469 AA = new (A.Allocator) AAKernelInfoFunction(IRP, A); 4470 break; 4471 } 4472 4473 return *AA; 4474 } 4475 4476 AAFoldRuntimeCall &AAFoldRuntimeCall::createForPosition(const IRPosition &IRP, 4477 Attributor &A) { 4478 AAFoldRuntimeCall *AA = nullptr; 4479 switch (IRP.getPositionKind()) { 4480 case IRPosition::IRP_INVALID: 4481 case IRPosition::IRP_FLOAT: 4482 case IRPosition::IRP_ARGUMENT: 4483 case IRPosition::IRP_RETURNED: 4484 case IRPosition::IRP_FUNCTION: 4485 case IRPosition::IRP_CALL_SITE: 4486 case IRPosition::IRP_CALL_SITE_ARGUMENT: 4487 llvm_unreachable("KernelInfo can only be created for call site position!"); 4488 case IRPosition::IRP_CALL_SITE_RETURNED: 4489 AA = new (A.Allocator) AAFoldRuntimeCallCallSiteReturned(IRP, A); 4490 break; 4491 } 4492 4493 return *AA; 4494 } 4495 4496 PreservedAnalyses OpenMPOptPass::run(Module &M, ModuleAnalysisManager &AM) { 4497 if (!containsOpenMP(M)) 4498 return PreservedAnalyses::all(); 4499 if (DisableOpenMPOptimizations) 4500 return PreservedAnalyses::all(); 4501 4502 FunctionAnalysisManager &FAM = 4503 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 4504 KernelSet Kernels = getDeviceKernels(M); 4505 4506 auto IsCalled = [&](Function &F) { 4507 if (Kernels.contains(&F)) 4508 return true; 4509 for (const User *U : F.users()) 4510 if (!isa<BlockAddress>(U)) 4511 return true; 4512 return false; 4513 }; 4514 4515 auto EmitRemark = [&](Function &F) { 4516 auto &ORE = FAM.getResult<OptimizationRemarkEmitterAnalysis>(F); 4517 ORE.emit([&]() { 4518 OptimizationRemarkAnalysis ORA(DEBUG_TYPE, "OMP140", &F); 4519 return ORA << "Could not internalize function. " 4520 << "Some optimizations may not be possible. [OMP140]"; 4521 }); 4522 }; 4523 4524 // Create internal copies of each function if this is a kernel Module. This 4525 // allows iterprocedural passes to see every call edge. 4526 DenseMap<Function *, Function *> InternalizedMap; 4527 if (isOpenMPDevice(M)) { 4528 SmallPtrSet<Function *, 16> InternalizeFns; 4529 for (Function &F : M) 4530 if (!F.isDeclaration() && !Kernels.contains(&F) && IsCalled(F) && 4531 !DisableInternalization) { 4532 if (Attributor::isInternalizable(F)) { 4533 InternalizeFns.insert(&F); 4534 } else if (!F.hasLocalLinkage() && !F.hasFnAttribute(Attribute::Cold)) { 4535 EmitRemark(F); 4536 } 4537 } 4538 4539 Attributor::internalizeFunctions(InternalizeFns, InternalizedMap); 4540 } 4541 4542 // Look at every function in the Module unless it was internalized. 4543 SmallVector<Function *, 16> SCC; 4544 for (Function &F : M) 4545 if (!F.isDeclaration() && !InternalizedMap.lookup(&F)) 4546 SCC.push_back(&F); 4547 4548 if (SCC.empty()) 4549 return PreservedAnalyses::all(); 4550 4551 AnalysisGetter AG(FAM); 4552 4553 auto OREGetter = [&FAM](Function *F) -> OptimizationRemarkEmitter & { 4554 return FAM.getResult<OptimizationRemarkEmitterAnalysis>(*F); 4555 }; 4556 4557 BumpPtrAllocator Allocator; 4558 CallGraphUpdater CGUpdater; 4559 4560 SetVector<Function *> Functions(SCC.begin(), SCC.end()); 4561 OMPInformationCache InfoCache(M, AG, Allocator, /*CGSCC*/ Functions, Kernels); 4562 4563 unsigned MaxFixpointIterations = (isOpenMPDevice(M)) ? 128 : 32; 4564 Attributor A(Functions, InfoCache, CGUpdater, nullptr, true, false, 4565 MaxFixpointIterations, OREGetter, DEBUG_TYPE); 4566 4567 OpenMPOpt OMPOpt(SCC, CGUpdater, OREGetter, InfoCache, A); 4568 bool Changed = OMPOpt.run(true); 4569 4570 // Optionally inline device functions for potentially better performance. 4571 if (AlwaysInlineDeviceFunctions && isOpenMPDevice(M)) 4572 for (Function &F : M) 4573 if (!F.isDeclaration() && !Kernels.contains(&F) && 4574 !F.hasFnAttribute(Attribute::NoInline)) 4575 F.addFnAttr(Attribute::AlwaysInline); 4576 4577 if (PrintModuleAfterOptimizations) 4578 LLVM_DEBUG(dbgs() << TAG << "Module after OpenMPOpt Module Pass:\n" << M); 4579 4580 if (Changed) 4581 return PreservedAnalyses::none(); 4582 4583 return PreservedAnalyses::all(); 4584 } 4585 4586 PreservedAnalyses OpenMPOptCGSCCPass::run(LazyCallGraph::SCC &C, 4587 CGSCCAnalysisManager &AM, 4588 LazyCallGraph &CG, 4589 CGSCCUpdateResult &UR) { 4590 if (!containsOpenMP(*C.begin()->getFunction().getParent())) 4591 return PreservedAnalyses::all(); 4592 if (DisableOpenMPOptimizations) 4593 return PreservedAnalyses::all(); 4594 4595 SmallVector<Function *, 16> SCC; 4596 // If there are kernels in the module, we have to run on all SCC's. 4597 for (LazyCallGraph::Node &N : C) { 4598 Function *Fn = &N.getFunction(); 4599 SCC.push_back(Fn); 4600 } 4601 4602 if (SCC.empty()) 4603 return PreservedAnalyses::all(); 4604 4605 Module &M = *C.begin()->getFunction().getParent(); 4606 4607 KernelSet Kernels = getDeviceKernels(M); 4608 4609 FunctionAnalysisManager &FAM = 4610 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager(); 4611 4612 AnalysisGetter AG(FAM); 4613 4614 auto OREGetter = [&FAM](Function *F) -> OptimizationRemarkEmitter & { 4615 return FAM.getResult<OptimizationRemarkEmitterAnalysis>(*F); 4616 }; 4617 4618 BumpPtrAllocator Allocator; 4619 CallGraphUpdater CGUpdater; 4620 CGUpdater.initialize(CG, C, AM, UR); 4621 4622 SetVector<Function *> Functions(SCC.begin(), SCC.end()); 4623 OMPInformationCache InfoCache(*(Functions.back()->getParent()), AG, Allocator, 4624 /*CGSCC*/ Functions, Kernels); 4625 4626 unsigned MaxFixpointIterations = (isOpenMPDevice(M)) ? 128 : 32; 4627 Attributor A(Functions, InfoCache, CGUpdater, nullptr, false, true, 4628 MaxFixpointIterations, OREGetter, DEBUG_TYPE); 4629 4630 OpenMPOpt OMPOpt(SCC, CGUpdater, OREGetter, InfoCache, A); 4631 bool Changed = OMPOpt.run(false); 4632 4633 if (PrintModuleAfterOptimizations) 4634 LLVM_DEBUG(dbgs() << TAG << "Module after OpenMPOpt CGSCC Pass:\n" << M); 4635 4636 if (Changed) 4637 return PreservedAnalyses::none(); 4638 4639 return PreservedAnalyses::all(); 4640 } 4641 4642 namespace { 4643 4644 struct OpenMPOptCGSCCLegacyPass : public CallGraphSCCPass { 4645 CallGraphUpdater CGUpdater; 4646 static char ID; 4647 4648 OpenMPOptCGSCCLegacyPass() : CallGraphSCCPass(ID) { 4649 initializeOpenMPOptCGSCCLegacyPassPass(*PassRegistry::getPassRegistry()); 4650 } 4651 4652 void getAnalysisUsage(AnalysisUsage &AU) const override { 4653 CallGraphSCCPass::getAnalysisUsage(AU); 4654 } 4655 4656 bool runOnSCC(CallGraphSCC &CGSCC) override { 4657 if (!containsOpenMP(CGSCC.getCallGraph().getModule())) 4658 return false; 4659 if (DisableOpenMPOptimizations || skipSCC(CGSCC)) 4660 return false; 4661 4662 SmallVector<Function *, 16> SCC; 4663 // If there are kernels in the module, we have to run on all SCC's. 4664 for (CallGraphNode *CGN : CGSCC) { 4665 Function *Fn = CGN->getFunction(); 4666 if (!Fn || Fn->isDeclaration()) 4667 continue; 4668 SCC.push_back(Fn); 4669 } 4670 4671 if (SCC.empty()) 4672 return false; 4673 4674 Module &M = CGSCC.getCallGraph().getModule(); 4675 KernelSet Kernels = getDeviceKernels(M); 4676 4677 CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph(); 4678 CGUpdater.initialize(CG, CGSCC); 4679 4680 // Maintain a map of functions to avoid rebuilding the ORE 4681 DenseMap<Function *, std::unique_ptr<OptimizationRemarkEmitter>> OREMap; 4682 auto OREGetter = [&OREMap](Function *F) -> OptimizationRemarkEmitter & { 4683 std::unique_ptr<OptimizationRemarkEmitter> &ORE = OREMap[F]; 4684 if (!ORE) 4685 ORE = std::make_unique<OptimizationRemarkEmitter>(F); 4686 return *ORE; 4687 }; 4688 4689 AnalysisGetter AG; 4690 SetVector<Function *> Functions(SCC.begin(), SCC.end()); 4691 BumpPtrAllocator Allocator; 4692 OMPInformationCache InfoCache(*(Functions.back()->getParent()), AG, 4693 Allocator, 4694 /*CGSCC*/ Functions, Kernels); 4695 4696 unsigned MaxFixpointIterations = (isOpenMPDevice(M)) ? 128 : 32; 4697 Attributor A(Functions, InfoCache, CGUpdater, nullptr, false, true, 4698 MaxFixpointIterations, OREGetter, DEBUG_TYPE); 4699 4700 OpenMPOpt OMPOpt(SCC, CGUpdater, OREGetter, InfoCache, A); 4701 bool Result = OMPOpt.run(false); 4702 4703 if (PrintModuleAfterOptimizations) 4704 LLVM_DEBUG(dbgs() << TAG << "Module after OpenMPOpt CGSCC Pass:\n" << M); 4705 4706 return Result; 4707 } 4708 4709 bool doFinalization(CallGraph &CG) override { return CGUpdater.finalize(); } 4710 }; 4711 4712 } // end anonymous namespace 4713 4714 KernelSet llvm::omp::getDeviceKernels(Module &M) { 4715 // TODO: Create a more cross-platform way of determining device kernels. 4716 NamedMDNode *MD = M.getOrInsertNamedMetadata("nvvm.annotations"); 4717 KernelSet Kernels; 4718 4719 if (!MD) 4720 return Kernels; 4721 4722 for (auto *Op : MD->operands()) { 4723 if (Op->getNumOperands() < 2) 4724 continue; 4725 MDString *KindID = dyn_cast<MDString>(Op->getOperand(1)); 4726 if (!KindID || KindID->getString() != "kernel") 4727 continue; 4728 4729 Function *KernelFn = 4730 mdconst::dyn_extract_or_null<Function>(Op->getOperand(0)); 4731 if (!KernelFn) 4732 continue; 4733 4734 ++NumOpenMPTargetRegionKernels; 4735 4736 Kernels.insert(KernelFn); 4737 } 4738 4739 return Kernels; 4740 } 4741 4742 bool llvm::omp::containsOpenMP(Module &M) { 4743 Metadata *MD = M.getModuleFlag("openmp"); 4744 if (!MD) 4745 return false; 4746 4747 return true; 4748 } 4749 4750 bool llvm::omp::isOpenMPDevice(Module &M) { 4751 Metadata *MD = M.getModuleFlag("openmp-device"); 4752 if (!MD) 4753 return false; 4754 4755 return true; 4756 } 4757 4758 char OpenMPOptCGSCCLegacyPass::ID = 0; 4759 4760 INITIALIZE_PASS_BEGIN(OpenMPOptCGSCCLegacyPass, "openmp-opt-cgscc", 4761 "OpenMP specific optimizations", false, false) 4762 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass) 4763 INITIALIZE_PASS_END(OpenMPOptCGSCCLegacyPass, "openmp-opt-cgscc", 4764 "OpenMP specific optimizations", false, false) 4765 4766 Pass *llvm::createOpenMPOptCGSCCLegacyPass() { 4767 return new OpenMPOptCGSCCLegacyPass(); 4768 } 4769