1 //===-- IPO/OpenMPOpt.cpp - Collection of OpenMP specific optimizations ---===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // OpenMP specific optimizations: 10 // 11 // - Deduplication of runtime calls, e.g., omp_get_thread_num. 12 // - Replacing globalized device memory with stack memory. 13 // - Replacing globalized device memory with shared memory. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/Transforms/IPO/OpenMPOpt.h" 18 19 #include "llvm/ADT/EnumeratedArray.h" 20 #include "llvm/ADT/PostOrderIterator.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/CallGraph.h" 23 #include "llvm/Analysis/CallGraphSCCPass.h" 24 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 25 #include "llvm/Analysis/ValueTracking.h" 26 #include "llvm/Frontend/OpenMP/OMPConstants.h" 27 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 28 #include "llvm/IR/Assumptions.h" 29 #include "llvm/IR/DiagnosticInfo.h" 30 #include "llvm/IR/GlobalValue.h" 31 #include "llvm/IR/Instruction.h" 32 #include "llvm/IR/IntrinsicInst.h" 33 #include "llvm/InitializePasses.h" 34 #include "llvm/Support/CommandLine.h" 35 #include "llvm/Transforms/IPO.h" 36 #include "llvm/Transforms/IPO/Attributor.h" 37 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 38 #include "llvm/Transforms/Utils/CallGraphUpdater.h" 39 #include "llvm/Transforms/Utils/CodeExtractor.h" 40 41 using namespace llvm; 42 using namespace omp; 43 44 #define DEBUG_TYPE "openmp-opt" 45 46 static cl::opt<bool> DisableOpenMPOptimizations( 47 "openmp-opt-disable", cl::ZeroOrMore, 48 cl::desc("Disable OpenMP specific optimizations."), cl::Hidden, 49 cl::init(false)); 50 51 static cl::opt<bool> EnableParallelRegionMerging( 52 "openmp-opt-enable-merging", cl::ZeroOrMore, 53 cl::desc("Enable the OpenMP region merging optimization."), cl::Hidden, 54 cl::init(false)); 55 56 static cl::opt<bool> PrintICVValues("openmp-print-icv-values", cl::init(false), 57 cl::Hidden); 58 static cl::opt<bool> PrintOpenMPKernels("openmp-print-gpu-kernels", 59 cl::init(false), cl::Hidden); 60 61 static cl::opt<bool> HideMemoryTransferLatency( 62 "openmp-hide-memory-transfer-latency", 63 cl::desc("[WIP] Tries to hide the latency of host to device memory" 64 " transfers"), 65 cl::Hidden, cl::init(false)); 66 67 STATISTIC(NumOpenMPRuntimeCallsDeduplicated, 68 "Number of OpenMP runtime calls deduplicated"); 69 STATISTIC(NumOpenMPParallelRegionsDeleted, 70 "Number of OpenMP parallel regions deleted"); 71 STATISTIC(NumOpenMPRuntimeFunctionsIdentified, 72 "Number of OpenMP runtime functions identified"); 73 STATISTIC(NumOpenMPRuntimeFunctionUsesIdentified, 74 "Number of OpenMP runtime function uses identified"); 75 STATISTIC(NumOpenMPTargetRegionKernels, 76 "Number of OpenMP target region entry points (=kernels) identified"); 77 STATISTIC(NumOpenMPTargetRegionKernelsSPMD, 78 "Number of OpenMP target region entry points (=kernels) executed in " 79 "SPMD-mode instead of generic-mode"); 80 STATISTIC(NumOpenMPTargetRegionKernelsWithoutStateMachine, 81 "Number of OpenMP target region entry points (=kernels) executed in " 82 "generic-mode without a state machines"); 83 STATISTIC(NumOpenMPTargetRegionKernelsCustomStateMachineWithFallback, 84 "Number of OpenMP target region entry points (=kernels) executed in " 85 "generic-mode with customized state machines with fallback"); 86 STATISTIC(NumOpenMPTargetRegionKernelsCustomStateMachineWithoutFallback, 87 "Number of OpenMP target region entry points (=kernels) executed in " 88 "generic-mode with customized state machines without fallback"); 89 STATISTIC( 90 NumOpenMPParallelRegionsReplacedInGPUStateMachine, 91 "Number of OpenMP parallel regions replaced with ID in GPU state machines"); 92 STATISTIC(NumOpenMPParallelRegionsMerged, 93 "Number of OpenMP parallel regions merged"); 94 STATISTIC(NumBytesMovedToSharedMemory, 95 "Amount of memory pushed to shared memory"); 96 97 #if !defined(NDEBUG) 98 static constexpr auto TAG = "[" DEBUG_TYPE "]"; 99 #endif 100 101 namespace { 102 103 enum class AddressSpace : unsigned { 104 Generic = 0, 105 Global = 1, 106 Shared = 3, 107 Constant = 4, 108 Local = 5, 109 }; 110 111 struct AAHeapToShared; 112 113 struct AAICVTracker; 114 115 /// OpenMP specific information. For now, stores RFIs and ICVs also needed for 116 /// Attributor runs. 117 struct OMPInformationCache : public InformationCache { 118 OMPInformationCache(Module &M, AnalysisGetter &AG, 119 BumpPtrAllocator &Allocator, SetVector<Function *> &CGSCC, 120 SmallPtrSetImpl<Kernel> &Kernels) 121 : InformationCache(M, AG, Allocator, &CGSCC), OMPBuilder(M), 122 Kernels(Kernels) { 123 124 OMPBuilder.initialize(); 125 initializeRuntimeFunctions(); 126 initializeInternalControlVars(); 127 } 128 129 /// Generic information that describes an internal control variable. 130 struct InternalControlVarInfo { 131 /// The kind, as described by InternalControlVar enum. 132 InternalControlVar Kind; 133 134 /// The name of the ICV. 135 StringRef Name; 136 137 /// Environment variable associated with this ICV. 138 StringRef EnvVarName; 139 140 /// Initial value kind. 141 ICVInitValue InitKind; 142 143 /// Initial value. 144 ConstantInt *InitValue; 145 146 /// Setter RTL function associated with this ICV. 147 RuntimeFunction Setter; 148 149 /// Getter RTL function associated with this ICV. 150 RuntimeFunction Getter; 151 152 /// RTL Function corresponding to the override clause of this ICV 153 RuntimeFunction Clause; 154 }; 155 156 /// Generic information that describes a runtime function 157 struct RuntimeFunctionInfo { 158 159 /// The kind, as described by the RuntimeFunction enum. 160 RuntimeFunction Kind; 161 162 /// The name of the function. 163 StringRef Name; 164 165 /// Flag to indicate a variadic function. 166 bool IsVarArg; 167 168 /// The return type of the function. 169 Type *ReturnType; 170 171 /// The argument types of the function. 172 SmallVector<Type *, 8> ArgumentTypes; 173 174 /// The declaration if available. 175 Function *Declaration = nullptr; 176 177 /// Uses of this runtime function per function containing the use. 178 using UseVector = SmallVector<Use *, 16>; 179 180 /// Clear UsesMap for runtime function. 181 void clearUsesMap() { UsesMap.clear(); } 182 183 /// Boolean conversion that is true if the runtime function was found. 184 operator bool() const { return Declaration; } 185 186 /// Return the vector of uses in function \p F. 187 UseVector &getOrCreateUseVector(Function *F) { 188 std::shared_ptr<UseVector> &UV = UsesMap[F]; 189 if (!UV) 190 UV = std::make_shared<UseVector>(); 191 return *UV; 192 } 193 194 /// Return the vector of uses in function \p F or `nullptr` if there are 195 /// none. 196 const UseVector *getUseVector(Function &F) const { 197 auto I = UsesMap.find(&F); 198 if (I != UsesMap.end()) 199 return I->second.get(); 200 return nullptr; 201 } 202 203 /// Return how many functions contain uses of this runtime function. 204 size_t getNumFunctionsWithUses() const { return UsesMap.size(); } 205 206 /// Return the number of arguments (or the minimal number for variadic 207 /// functions). 208 size_t getNumArgs() const { return ArgumentTypes.size(); } 209 210 /// Run the callback \p CB on each use and forget the use if the result is 211 /// true. The callback will be fed the function in which the use was 212 /// encountered as second argument. 213 void foreachUse(SmallVectorImpl<Function *> &SCC, 214 function_ref<bool(Use &, Function &)> CB) { 215 for (Function *F : SCC) 216 foreachUse(CB, F); 217 } 218 219 /// Run the callback \p CB on each use within the function \p F and forget 220 /// the use if the result is true. 221 void foreachUse(function_ref<bool(Use &, Function &)> CB, Function *F) { 222 SmallVector<unsigned, 8> ToBeDeleted; 223 ToBeDeleted.clear(); 224 225 unsigned Idx = 0; 226 UseVector &UV = getOrCreateUseVector(F); 227 228 for (Use *U : UV) { 229 if (CB(*U, *F)) 230 ToBeDeleted.push_back(Idx); 231 ++Idx; 232 } 233 234 // Remove the to-be-deleted indices in reverse order as prior 235 // modifications will not modify the smaller indices. 236 while (!ToBeDeleted.empty()) { 237 unsigned Idx = ToBeDeleted.pop_back_val(); 238 UV[Idx] = UV.back(); 239 UV.pop_back(); 240 } 241 } 242 243 private: 244 /// Map from functions to all uses of this runtime function contained in 245 /// them. 246 DenseMap<Function *, std::shared_ptr<UseVector>> UsesMap; 247 248 public: 249 /// Iterators for the uses of this runtime function. 250 decltype(UsesMap)::iterator begin() { return UsesMap.begin(); } 251 decltype(UsesMap)::iterator end() { return UsesMap.end(); } 252 }; 253 254 /// An OpenMP-IR-Builder instance 255 OpenMPIRBuilder OMPBuilder; 256 257 /// Map from runtime function kind to the runtime function description. 258 EnumeratedArray<RuntimeFunctionInfo, RuntimeFunction, 259 RuntimeFunction::OMPRTL___last> 260 RFIs; 261 262 /// Map from function declarations/definitions to their runtime enum type. 263 DenseMap<Function *, RuntimeFunction> RuntimeFunctionIDMap; 264 265 /// Map from ICV kind to the ICV description. 266 EnumeratedArray<InternalControlVarInfo, InternalControlVar, 267 InternalControlVar::ICV___last> 268 ICVs; 269 270 /// Helper to initialize all internal control variable information for those 271 /// defined in OMPKinds.def. 272 void initializeInternalControlVars() { 273 #define ICV_RT_SET(_Name, RTL) \ 274 { \ 275 auto &ICV = ICVs[_Name]; \ 276 ICV.Setter = RTL; \ 277 } 278 #define ICV_RT_GET(Name, RTL) \ 279 { \ 280 auto &ICV = ICVs[Name]; \ 281 ICV.Getter = RTL; \ 282 } 283 #define ICV_DATA_ENV(Enum, _Name, _EnvVarName, Init) \ 284 { \ 285 auto &ICV = ICVs[Enum]; \ 286 ICV.Name = _Name; \ 287 ICV.Kind = Enum; \ 288 ICV.InitKind = Init; \ 289 ICV.EnvVarName = _EnvVarName; \ 290 switch (ICV.InitKind) { \ 291 case ICV_IMPLEMENTATION_DEFINED: \ 292 ICV.InitValue = nullptr; \ 293 break; \ 294 case ICV_ZERO: \ 295 ICV.InitValue = ConstantInt::get( \ 296 Type::getInt32Ty(OMPBuilder.Int32->getContext()), 0); \ 297 break; \ 298 case ICV_FALSE: \ 299 ICV.InitValue = ConstantInt::getFalse(OMPBuilder.Int1->getContext()); \ 300 break; \ 301 case ICV_LAST: \ 302 break; \ 303 } \ 304 } 305 #include "llvm/Frontend/OpenMP/OMPKinds.def" 306 } 307 308 /// Returns true if the function declaration \p F matches the runtime 309 /// function types, that is, return type \p RTFRetType, and argument types 310 /// \p RTFArgTypes. 311 static bool declMatchesRTFTypes(Function *F, Type *RTFRetType, 312 SmallVector<Type *, 8> &RTFArgTypes) { 313 // TODO: We should output information to the user (under debug output 314 // and via remarks). 315 316 if (!F) 317 return false; 318 if (F->getReturnType() != RTFRetType) 319 return false; 320 if (F->arg_size() != RTFArgTypes.size()) 321 return false; 322 323 auto RTFTyIt = RTFArgTypes.begin(); 324 for (Argument &Arg : F->args()) { 325 if (Arg.getType() != *RTFTyIt) 326 return false; 327 328 ++RTFTyIt; 329 } 330 331 return true; 332 } 333 334 // Helper to collect all uses of the declaration in the UsesMap. 335 unsigned collectUses(RuntimeFunctionInfo &RFI, bool CollectStats = true) { 336 unsigned NumUses = 0; 337 if (!RFI.Declaration) 338 return NumUses; 339 OMPBuilder.addAttributes(RFI.Kind, *RFI.Declaration); 340 341 if (CollectStats) { 342 NumOpenMPRuntimeFunctionsIdentified += 1; 343 NumOpenMPRuntimeFunctionUsesIdentified += RFI.Declaration->getNumUses(); 344 } 345 346 // TODO: We directly convert uses into proper calls and unknown uses. 347 for (Use &U : RFI.Declaration->uses()) { 348 if (Instruction *UserI = dyn_cast<Instruction>(U.getUser())) { 349 if (ModuleSlice.count(UserI->getFunction())) { 350 RFI.getOrCreateUseVector(UserI->getFunction()).push_back(&U); 351 ++NumUses; 352 } 353 } else { 354 RFI.getOrCreateUseVector(nullptr).push_back(&U); 355 ++NumUses; 356 } 357 } 358 return NumUses; 359 } 360 361 // Helper function to recollect uses of a runtime function. 362 void recollectUsesForFunction(RuntimeFunction RTF) { 363 auto &RFI = RFIs[RTF]; 364 RFI.clearUsesMap(); 365 collectUses(RFI, /*CollectStats*/ false); 366 } 367 368 // Helper function to recollect uses of all runtime functions. 369 void recollectUses() { 370 for (int Idx = 0; Idx < RFIs.size(); ++Idx) 371 recollectUsesForFunction(static_cast<RuntimeFunction>(Idx)); 372 } 373 374 /// Helper to initialize all runtime function information for those defined 375 /// in OpenMPKinds.def. 376 void initializeRuntimeFunctions() { 377 Module &M = *((*ModuleSlice.begin())->getParent()); 378 379 // Helper macros for handling __VA_ARGS__ in OMP_RTL 380 #define OMP_TYPE(VarName, ...) \ 381 Type *VarName = OMPBuilder.VarName; \ 382 (void)VarName; 383 384 #define OMP_ARRAY_TYPE(VarName, ...) \ 385 ArrayType *VarName##Ty = OMPBuilder.VarName##Ty; \ 386 (void)VarName##Ty; \ 387 PointerType *VarName##PtrTy = OMPBuilder.VarName##PtrTy; \ 388 (void)VarName##PtrTy; 389 390 #define OMP_FUNCTION_TYPE(VarName, ...) \ 391 FunctionType *VarName = OMPBuilder.VarName; \ 392 (void)VarName; \ 393 PointerType *VarName##Ptr = OMPBuilder.VarName##Ptr; \ 394 (void)VarName##Ptr; 395 396 #define OMP_STRUCT_TYPE(VarName, ...) \ 397 StructType *VarName = OMPBuilder.VarName; \ 398 (void)VarName; \ 399 PointerType *VarName##Ptr = OMPBuilder.VarName##Ptr; \ 400 (void)VarName##Ptr; 401 402 #define OMP_RTL(_Enum, _Name, _IsVarArg, _ReturnType, ...) \ 403 { \ 404 SmallVector<Type *, 8> ArgsTypes({__VA_ARGS__}); \ 405 Function *F = M.getFunction(_Name); \ 406 if (declMatchesRTFTypes(F, OMPBuilder._ReturnType, ArgsTypes)) { \ 407 RuntimeFunctionIDMap[F] = _Enum; \ 408 auto &RFI = RFIs[_Enum]; \ 409 RFI.Kind = _Enum; \ 410 RFI.Name = _Name; \ 411 RFI.IsVarArg = _IsVarArg; \ 412 RFI.ReturnType = OMPBuilder._ReturnType; \ 413 RFI.ArgumentTypes = std::move(ArgsTypes); \ 414 RFI.Declaration = F; \ 415 unsigned NumUses = collectUses(RFI); \ 416 (void)NumUses; \ 417 LLVM_DEBUG({ \ 418 dbgs() << TAG << RFI.Name << (RFI.Declaration ? "" : " not") \ 419 << " found\n"; \ 420 if (RFI.Declaration) \ 421 dbgs() << TAG << "-> got " << NumUses << " uses in " \ 422 << RFI.getNumFunctionsWithUses() \ 423 << " different functions.\n"; \ 424 }); \ 425 } \ 426 } 427 #include "llvm/Frontend/OpenMP/OMPKinds.def" 428 429 // TODO: We should attach the attributes defined in OMPKinds.def. 430 } 431 432 /// Collection of known kernels (\see Kernel) in the module. 433 SmallPtrSetImpl<Kernel> &Kernels; 434 }; 435 436 template <typename Ty, bool InsertInvalidates = true> 437 struct BooleanStateWithPtrSetVector : public BooleanState { 438 439 bool contains(Ty *Elem) const { return Set.contains(Elem); } 440 bool insert(Ty *Elem) { 441 if (InsertInvalidates) 442 BooleanState::indicatePessimisticFixpoint(); 443 return Set.insert(Elem); 444 } 445 446 Ty *operator[](int Idx) const { return Set[Idx]; } 447 bool operator==(const BooleanStateWithPtrSetVector &RHS) const { 448 return BooleanState::operator==(RHS) && Set == RHS.Set; 449 } 450 bool operator!=(const BooleanStateWithPtrSetVector &RHS) const { 451 return !(*this == RHS); 452 } 453 454 bool empty() const { return Set.empty(); } 455 size_t size() const { return Set.size(); } 456 457 /// "Clamp" this state with \p RHS. 458 BooleanStateWithPtrSetVector & 459 operator^=(const BooleanStateWithPtrSetVector &RHS) { 460 BooleanState::operator^=(RHS); 461 Set.insert(RHS.Set.begin(), RHS.Set.end()); 462 return *this; 463 } 464 465 private: 466 /// A set to keep track of elements. 467 SetVector<Ty *> Set; 468 469 public: 470 typename decltype(Set)::iterator begin() { return Set.begin(); } 471 typename decltype(Set)::iterator end() { return Set.end(); } 472 typename decltype(Set)::const_iterator begin() const { return Set.begin(); } 473 typename decltype(Set)::const_iterator end() const { return Set.end(); } 474 }; 475 476 struct KernelInfoState : AbstractState { 477 /// Flag to track if we reached a fixpoint. 478 bool IsAtFixpoint = false; 479 480 /// The parallel regions (identified by the outlined parallel functions) that 481 /// can be reached from the associated function. 482 BooleanStateWithPtrSetVector<Function, /* InsertInvalidates */ false> 483 ReachedKnownParallelRegions; 484 485 /// State to track what parallel region we might reach. 486 BooleanStateWithPtrSetVector<CallBase> ReachedUnknownParallelRegions; 487 488 /// State to track if we are in SPMD-mode, assumed or know, and why we decided 489 /// we cannot be. 490 BooleanStateWithPtrSetVector<Instruction> SPMDCompatibilityTracker; 491 492 /// The __kmpc_target_init call in this kernel, if any. If we find more than 493 /// one we abort as the kernel is malformed. 494 CallBase *KernelInitCB = nullptr; 495 496 /// The __kmpc_target_deinit call in this kernel, if any. If we find more than 497 /// one we abort as the kernel is malformed. 498 CallBase *KernelDeinitCB = nullptr; 499 500 /// Flag to indicate if the associated function is a kernel entry. 501 bool IsKernelEntry = false; 502 503 /// State to track what kernel entries can reach the associated function. 504 BooleanStateWithPtrSetVector<Function, false> ReachingKernelEntries; 505 506 /// Abstract State interface 507 ///{ 508 509 KernelInfoState() {} 510 KernelInfoState(bool BestState) { 511 if (!BestState) 512 indicatePessimisticFixpoint(); 513 } 514 515 /// See AbstractState::isValidState(...) 516 bool isValidState() const override { return true; } 517 518 /// See AbstractState::isAtFixpoint(...) 519 bool isAtFixpoint() const override { return IsAtFixpoint; } 520 521 /// See AbstractState::indicatePessimisticFixpoint(...) 522 ChangeStatus indicatePessimisticFixpoint() override { 523 IsAtFixpoint = true; 524 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 525 ReachedUnknownParallelRegions.indicatePessimisticFixpoint(); 526 return ChangeStatus::CHANGED; 527 } 528 529 /// See AbstractState::indicateOptimisticFixpoint(...) 530 ChangeStatus indicateOptimisticFixpoint() override { 531 IsAtFixpoint = true; 532 return ChangeStatus::UNCHANGED; 533 } 534 535 /// Return the assumed state 536 KernelInfoState &getAssumed() { return *this; } 537 const KernelInfoState &getAssumed() const { return *this; } 538 539 bool operator==(const KernelInfoState &RHS) const { 540 if (SPMDCompatibilityTracker != RHS.SPMDCompatibilityTracker) 541 return false; 542 if (ReachedKnownParallelRegions != RHS.ReachedKnownParallelRegions) 543 return false; 544 if (ReachedUnknownParallelRegions != RHS.ReachedUnknownParallelRegions) 545 return false; 546 if (ReachingKernelEntries != RHS.ReachingKernelEntries) 547 return false; 548 return true; 549 } 550 551 /// Return empty set as the best state of potential values. 552 static KernelInfoState getBestState() { return KernelInfoState(true); } 553 554 static KernelInfoState getBestState(KernelInfoState &KIS) { 555 return getBestState(); 556 } 557 558 /// Return full set as the worst state of potential values. 559 static KernelInfoState getWorstState() { return KernelInfoState(false); } 560 561 /// "Clamp" this state with \p KIS. 562 KernelInfoState operator^=(const KernelInfoState &KIS) { 563 // Do not merge two different _init and _deinit call sites. 564 if (KIS.KernelInitCB) { 565 if (KernelInitCB && KernelInitCB != KIS.KernelInitCB) 566 indicatePessimisticFixpoint(); 567 KernelInitCB = KIS.KernelInitCB; 568 } 569 if (KIS.KernelDeinitCB) { 570 if (KernelDeinitCB && KernelDeinitCB != KIS.KernelDeinitCB) 571 indicatePessimisticFixpoint(); 572 KernelDeinitCB = KIS.KernelDeinitCB; 573 } 574 SPMDCompatibilityTracker ^= KIS.SPMDCompatibilityTracker; 575 ReachedKnownParallelRegions ^= KIS.ReachedKnownParallelRegions; 576 ReachedUnknownParallelRegions ^= KIS.ReachedUnknownParallelRegions; 577 return *this; 578 } 579 580 KernelInfoState operator&=(const KernelInfoState &KIS) { 581 return (*this ^= KIS); 582 } 583 584 ///} 585 }; 586 587 /// Used to map the values physically (in the IR) stored in an offload 588 /// array, to a vector in memory. 589 struct OffloadArray { 590 /// Physical array (in the IR). 591 AllocaInst *Array = nullptr; 592 /// Mapped values. 593 SmallVector<Value *, 8> StoredValues; 594 /// Last stores made in the offload array. 595 SmallVector<StoreInst *, 8> LastAccesses; 596 597 OffloadArray() = default; 598 599 /// Initializes the OffloadArray with the values stored in \p Array before 600 /// instruction \p Before is reached. Returns false if the initialization 601 /// fails. 602 /// This MUST be used immediately after the construction of the object. 603 bool initialize(AllocaInst &Array, Instruction &Before) { 604 if (!Array.getAllocatedType()->isArrayTy()) 605 return false; 606 607 if (!getValues(Array, Before)) 608 return false; 609 610 this->Array = &Array; 611 return true; 612 } 613 614 static const unsigned DeviceIDArgNum = 1; 615 static const unsigned BasePtrsArgNum = 3; 616 static const unsigned PtrsArgNum = 4; 617 static const unsigned SizesArgNum = 5; 618 619 private: 620 /// Traverses the BasicBlock where \p Array is, collecting the stores made to 621 /// \p Array, leaving StoredValues with the values stored before the 622 /// instruction \p Before is reached. 623 bool getValues(AllocaInst &Array, Instruction &Before) { 624 // Initialize container. 625 const uint64_t NumValues = Array.getAllocatedType()->getArrayNumElements(); 626 StoredValues.assign(NumValues, nullptr); 627 LastAccesses.assign(NumValues, nullptr); 628 629 // TODO: This assumes the instruction \p Before is in the same 630 // BasicBlock as Array. Make it general, for any control flow graph. 631 BasicBlock *BB = Array.getParent(); 632 if (BB != Before.getParent()) 633 return false; 634 635 const DataLayout &DL = Array.getModule()->getDataLayout(); 636 const unsigned int PointerSize = DL.getPointerSize(); 637 638 for (Instruction &I : *BB) { 639 if (&I == &Before) 640 break; 641 642 if (!isa<StoreInst>(&I)) 643 continue; 644 645 auto *S = cast<StoreInst>(&I); 646 int64_t Offset = -1; 647 auto *Dst = 648 GetPointerBaseWithConstantOffset(S->getPointerOperand(), Offset, DL); 649 if (Dst == &Array) { 650 int64_t Idx = Offset / PointerSize; 651 StoredValues[Idx] = getUnderlyingObject(S->getValueOperand()); 652 LastAccesses[Idx] = S; 653 } 654 } 655 656 return isFilled(); 657 } 658 659 /// Returns true if all values in StoredValues and 660 /// LastAccesses are not nullptrs. 661 bool isFilled() { 662 const unsigned NumValues = StoredValues.size(); 663 for (unsigned I = 0; I < NumValues; ++I) { 664 if (!StoredValues[I] || !LastAccesses[I]) 665 return false; 666 } 667 668 return true; 669 } 670 }; 671 672 struct OpenMPOpt { 673 674 using OptimizationRemarkGetter = 675 function_ref<OptimizationRemarkEmitter &(Function *)>; 676 677 OpenMPOpt(SmallVectorImpl<Function *> &SCC, CallGraphUpdater &CGUpdater, 678 OptimizationRemarkGetter OREGetter, 679 OMPInformationCache &OMPInfoCache, Attributor &A) 680 : M(*(*SCC.begin())->getParent()), SCC(SCC), CGUpdater(CGUpdater), 681 OREGetter(OREGetter), OMPInfoCache(OMPInfoCache), A(A) {} 682 683 /// Check if any remarks are enabled for openmp-opt 684 bool remarksEnabled() { 685 auto &Ctx = M.getContext(); 686 return Ctx.getDiagHandlerPtr()->isAnyRemarkEnabled(DEBUG_TYPE); 687 } 688 689 /// Run all OpenMP optimizations on the underlying SCC/ModuleSlice. 690 bool run(bool IsModulePass) { 691 if (SCC.empty()) 692 return false; 693 694 bool Changed = false; 695 696 LLVM_DEBUG(dbgs() << TAG << "Run on SCC with " << SCC.size() 697 << " functions in a slice with " 698 << OMPInfoCache.ModuleSlice.size() << " functions\n"); 699 700 if (IsModulePass) { 701 Changed |= runAttributor(IsModulePass); 702 703 // Recollect uses, in case Attributor deleted any. 704 OMPInfoCache.recollectUses(); 705 706 if (remarksEnabled()) 707 analysisGlobalization(); 708 } else { 709 if (PrintICVValues) 710 printICVs(); 711 if (PrintOpenMPKernels) 712 printKernels(); 713 714 Changed |= runAttributor(IsModulePass); 715 716 // Recollect uses, in case Attributor deleted any. 717 OMPInfoCache.recollectUses(); 718 719 Changed |= deleteParallelRegions(); 720 Changed |= rewriteDeviceCodeStateMachine(); 721 722 if (HideMemoryTransferLatency) 723 Changed |= hideMemTransfersLatency(); 724 Changed |= deduplicateRuntimeCalls(); 725 if (EnableParallelRegionMerging) { 726 if (mergeParallelRegions()) { 727 deduplicateRuntimeCalls(); 728 Changed = true; 729 } 730 } 731 } 732 733 return Changed; 734 } 735 736 /// Print initial ICV values for testing. 737 /// FIXME: This should be done from the Attributor once it is added. 738 void printICVs() const { 739 InternalControlVar ICVs[] = {ICV_nthreads, ICV_active_levels, ICV_cancel, 740 ICV_proc_bind}; 741 742 for (Function *F : OMPInfoCache.ModuleSlice) { 743 for (auto ICV : ICVs) { 744 auto ICVInfo = OMPInfoCache.ICVs[ICV]; 745 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 746 return ORA << "OpenMP ICV " << ore::NV("OpenMPICV", ICVInfo.Name) 747 << " Value: " 748 << (ICVInfo.InitValue 749 ? toString(ICVInfo.InitValue->getValue(), 10, true) 750 : "IMPLEMENTATION_DEFINED"); 751 }; 752 753 emitRemark<OptimizationRemarkAnalysis>(F, "OpenMPICVTracker", Remark); 754 } 755 } 756 } 757 758 /// Print OpenMP GPU kernels for testing. 759 void printKernels() const { 760 for (Function *F : SCC) { 761 if (!OMPInfoCache.Kernels.count(F)) 762 continue; 763 764 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 765 return ORA << "OpenMP GPU kernel " 766 << ore::NV("OpenMPGPUKernel", F->getName()) << "\n"; 767 }; 768 769 emitRemark<OptimizationRemarkAnalysis>(F, "OpenMPGPU", Remark); 770 } 771 } 772 773 /// Return the call if \p U is a callee use in a regular call. If \p RFI is 774 /// given it has to be the callee or a nullptr is returned. 775 static CallInst *getCallIfRegularCall( 776 Use &U, OMPInformationCache::RuntimeFunctionInfo *RFI = nullptr) { 777 CallInst *CI = dyn_cast<CallInst>(U.getUser()); 778 if (CI && CI->isCallee(&U) && !CI->hasOperandBundles() && 779 (!RFI || CI->getCalledFunction() == RFI->Declaration)) 780 return CI; 781 return nullptr; 782 } 783 784 /// Return the call if \p V is a regular call. If \p RFI is given it has to be 785 /// the callee or a nullptr is returned. 786 static CallInst *getCallIfRegularCall( 787 Value &V, OMPInformationCache::RuntimeFunctionInfo *RFI = nullptr) { 788 CallInst *CI = dyn_cast<CallInst>(&V); 789 if (CI && !CI->hasOperandBundles() && 790 (!RFI || CI->getCalledFunction() == RFI->Declaration)) 791 return CI; 792 return nullptr; 793 } 794 795 private: 796 /// Merge parallel regions when it is safe. 797 bool mergeParallelRegions() { 798 const unsigned CallbackCalleeOperand = 2; 799 const unsigned CallbackFirstArgOperand = 3; 800 using InsertPointTy = OpenMPIRBuilder::InsertPointTy; 801 802 // Check if there are any __kmpc_fork_call calls to merge. 803 OMPInformationCache::RuntimeFunctionInfo &RFI = 804 OMPInfoCache.RFIs[OMPRTL___kmpc_fork_call]; 805 806 if (!RFI.Declaration) 807 return false; 808 809 // Unmergable calls that prevent merging a parallel region. 810 OMPInformationCache::RuntimeFunctionInfo UnmergableCallsInfo[] = { 811 OMPInfoCache.RFIs[OMPRTL___kmpc_push_proc_bind], 812 OMPInfoCache.RFIs[OMPRTL___kmpc_push_num_threads], 813 }; 814 815 bool Changed = false; 816 LoopInfo *LI = nullptr; 817 DominatorTree *DT = nullptr; 818 819 SmallDenseMap<BasicBlock *, SmallPtrSet<Instruction *, 4>> BB2PRMap; 820 821 BasicBlock *StartBB = nullptr, *EndBB = nullptr; 822 auto BodyGenCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, 823 BasicBlock &ContinuationIP) { 824 BasicBlock *CGStartBB = CodeGenIP.getBlock(); 825 BasicBlock *CGEndBB = 826 SplitBlock(CGStartBB, &*CodeGenIP.getPoint(), DT, LI); 827 assert(StartBB != nullptr && "StartBB should not be null"); 828 CGStartBB->getTerminator()->setSuccessor(0, StartBB); 829 assert(EndBB != nullptr && "EndBB should not be null"); 830 EndBB->getTerminator()->setSuccessor(0, CGEndBB); 831 }; 832 833 auto PrivCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, Value &, 834 Value &Inner, Value *&ReplacementValue) -> InsertPointTy { 835 ReplacementValue = &Inner; 836 return CodeGenIP; 837 }; 838 839 auto FiniCB = [&](InsertPointTy CodeGenIP) {}; 840 841 /// Create a sequential execution region within a merged parallel region, 842 /// encapsulated in a master construct with a barrier for synchronization. 843 auto CreateSequentialRegion = [&](Function *OuterFn, 844 BasicBlock *OuterPredBB, 845 Instruction *SeqStartI, 846 Instruction *SeqEndI) { 847 // Isolate the instructions of the sequential region to a separate 848 // block. 849 BasicBlock *ParentBB = SeqStartI->getParent(); 850 BasicBlock *SeqEndBB = 851 SplitBlock(ParentBB, SeqEndI->getNextNode(), DT, LI); 852 BasicBlock *SeqAfterBB = 853 SplitBlock(SeqEndBB, &*SeqEndBB->getFirstInsertionPt(), DT, LI); 854 BasicBlock *SeqStartBB = 855 SplitBlock(ParentBB, SeqStartI, DT, LI, nullptr, "seq.par.merged"); 856 857 assert(ParentBB->getUniqueSuccessor() == SeqStartBB && 858 "Expected a different CFG"); 859 const DebugLoc DL = ParentBB->getTerminator()->getDebugLoc(); 860 ParentBB->getTerminator()->eraseFromParent(); 861 862 auto BodyGenCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, 863 BasicBlock &ContinuationIP) { 864 BasicBlock *CGStartBB = CodeGenIP.getBlock(); 865 BasicBlock *CGEndBB = 866 SplitBlock(CGStartBB, &*CodeGenIP.getPoint(), DT, LI); 867 assert(SeqStartBB != nullptr && "SeqStartBB should not be null"); 868 CGStartBB->getTerminator()->setSuccessor(0, SeqStartBB); 869 assert(SeqEndBB != nullptr && "SeqEndBB should not be null"); 870 SeqEndBB->getTerminator()->setSuccessor(0, CGEndBB); 871 }; 872 auto FiniCB = [&](InsertPointTy CodeGenIP) {}; 873 874 // Find outputs from the sequential region to outside users and 875 // broadcast their values to them. 876 for (Instruction &I : *SeqStartBB) { 877 SmallPtrSet<Instruction *, 4> OutsideUsers; 878 for (User *Usr : I.users()) { 879 Instruction &UsrI = *cast<Instruction>(Usr); 880 // Ignore outputs to LT intrinsics, code extraction for the merged 881 // parallel region will fix them. 882 if (UsrI.isLifetimeStartOrEnd()) 883 continue; 884 885 if (UsrI.getParent() != SeqStartBB) 886 OutsideUsers.insert(&UsrI); 887 } 888 889 if (OutsideUsers.empty()) 890 continue; 891 892 // Emit an alloca in the outer region to store the broadcasted 893 // value. 894 const DataLayout &DL = M.getDataLayout(); 895 AllocaInst *AllocaI = new AllocaInst( 896 I.getType(), DL.getAllocaAddrSpace(), nullptr, 897 I.getName() + ".seq.output.alloc", &OuterFn->front().front()); 898 899 // Emit a store instruction in the sequential BB to update the 900 // value. 901 new StoreInst(&I, AllocaI, SeqStartBB->getTerminator()); 902 903 // Emit a load instruction and replace the use of the output value 904 // with it. 905 for (Instruction *UsrI : OutsideUsers) { 906 LoadInst *LoadI = new LoadInst( 907 I.getType(), AllocaI, I.getName() + ".seq.output.load", UsrI); 908 UsrI->replaceUsesOfWith(&I, LoadI); 909 } 910 } 911 912 OpenMPIRBuilder::LocationDescription Loc( 913 InsertPointTy(ParentBB, ParentBB->end()), DL); 914 InsertPointTy SeqAfterIP = 915 OMPInfoCache.OMPBuilder.createMaster(Loc, BodyGenCB, FiniCB); 916 917 OMPInfoCache.OMPBuilder.createBarrier(SeqAfterIP, OMPD_parallel); 918 919 BranchInst::Create(SeqAfterBB, SeqAfterIP.getBlock()); 920 921 LLVM_DEBUG(dbgs() << TAG << "After sequential inlining " << *OuterFn 922 << "\n"); 923 }; 924 925 // Helper to merge the __kmpc_fork_call calls in MergableCIs. They are all 926 // contained in BB and only separated by instructions that can be 927 // redundantly executed in parallel. The block BB is split before the first 928 // call (in MergableCIs) and after the last so the entire region we merge 929 // into a single parallel region is contained in a single basic block 930 // without any other instructions. We use the OpenMPIRBuilder to outline 931 // that block and call the resulting function via __kmpc_fork_call. 932 auto Merge = [&](SmallVectorImpl<CallInst *> &MergableCIs, BasicBlock *BB) { 933 // TODO: Change the interface to allow single CIs expanded, e.g, to 934 // include an outer loop. 935 assert(MergableCIs.size() > 1 && "Assumed multiple mergable CIs"); 936 937 auto Remark = [&](OptimizationRemark OR) { 938 OR << "Parallel region at " 939 << ore::NV("OpenMPParallelMergeFront", 940 MergableCIs.front()->getDebugLoc()) 941 << " merged with parallel regions at "; 942 for (auto *CI : llvm::drop_begin(MergableCIs)) { 943 OR << ore::NV("OpenMPParallelMerge", CI->getDebugLoc()); 944 if (CI != MergableCIs.back()) 945 OR << ", "; 946 } 947 return OR; 948 }; 949 950 emitRemark<OptimizationRemark>(MergableCIs.front(), 951 "OpenMPParallelRegionMerging", Remark); 952 953 Function *OriginalFn = BB->getParent(); 954 LLVM_DEBUG(dbgs() << TAG << "Merge " << MergableCIs.size() 955 << " parallel regions in " << OriginalFn->getName() 956 << "\n"); 957 958 // Isolate the calls to merge in a separate block. 959 EndBB = SplitBlock(BB, MergableCIs.back()->getNextNode(), DT, LI); 960 BasicBlock *AfterBB = 961 SplitBlock(EndBB, &*EndBB->getFirstInsertionPt(), DT, LI); 962 StartBB = SplitBlock(BB, MergableCIs.front(), DT, LI, nullptr, 963 "omp.par.merged"); 964 965 assert(BB->getUniqueSuccessor() == StartBB && "Expected a different CFG"); 966 const DebugLoc DL = BB->getTerminator()->getDebugLoc(); 967 BB->getTerminator()->eraseFromParent(); 968 969 // Create sequential regions for sequential instructions that are 970 // in-between mergable parallel regions. 971 for (auto *It = MergableCIs.begin(), *End = MergableCIs.end() - 1; 972 It != End; ++It) { 973 Instruction *ForkCI = *It; 974 Instruction *NextForkCI = *(It + 1); 975 976 // Continue if there are not in-between instructions. 977 if (ForkCI->getNextNode() == NextForkCI) 978 continue; 979 980 CreateSequentialRegion(OriginalFn, BB, ForkCI->getNextNode(), 981 NextForkCI->getPrevNode()); 982 } 983 984 OpenMPIRBuilder::LocationDescription Loc(InsertPointTy(BB, BB->end()), 985 DL); 986 IRBuilder<>::InsertPoint AllocaIP( 987 &OriginalFn->getEntryBlock(), 988 OriginalFn->getEntryBlock().getFirstInsertionPt()); 989 // Create the merged parallel region with default proc binding, to 990 // avoid overriding binding settings, and without explicit cancellation. 991 InsertPointTy AfterIP = OMPInfoCache.OMPBuilder.createParallel( 992 Loc, AllocaIP, BodyGenCB, PrivCB, FiniCB, nullptr, nullptr, 993 OMP_PROC_BIND_default, /* IsCancellable */ false); 994 BranchInst::Create(AfterBB, AfterIP.getBlock()); 995 996 // Perform the actual outlining. 997 OMPInfoCache.OMPBuilder.finalize(OriginalFn, 998 /* AllowExtractorSinking */ true); 999 1000 Function *OutlinedFn = MergableCIs.front()->getCaller(); 1001 1002 // Replace the __kmpc_fork_call calls with direct calls to the outlined 1003 // callbacks. 1004 SmallVector<Value *, 8> Args; 1005 for (auto *CI : MergableCIs) { 1006 Value *Callee = 1007 CI->getArgOperand(CallbackCalleeOperand)->stripPointerCasts(); 1008 FunctionType *FT = 1009 cast<FunctionType>(Callee->getType()->getPointerElementType()); 1010 Args.clear(); 1011 Args.push_back(OutlinedFn->getArg(0)); 1012 Args.push_back(OutlinedFn->getArg(1)); 1013 for (unsigned U = CallbackFirstArgOperand, E = CI->getNumArgOperands(); 1014 U < E; ++U) 1015 Args.push_back(CI->getArgOperand(U)); 1016 1017 CallInst *NewCI = CallInst::Create(FT, Callee, Args, "", CI); 1018 if (CI->getDebugLoc()) 1019 NewCI->setDebugLoc(CI->getDebugLoc()); 1020 1021 // Forward parameter attributes from the callback to the callee. 1022 for (unsigned U = CallbackFirstArgOperand, E = CI->getNumArgOperands(); 1023 U < E; ++U) 1024 for (const Attribute &A : CI->getAttributes().getParamAttributes(U)) 1025 NewCI->addParamAttr( 1026 U - (CallbackFirstArgOperand - CallbackCalleeOperand), A); 1027 1028 // Emit an explicit barrier to replace the implicit fork-join barrier. 1029 if (CI != MergableCIs.back()) { 1030 // TODO: Remove barrier if the merged parallel region includes the 1031 // 'nowait' clause. 1032 OMPInfoCache.OMPBuilder.createBarrier( 1033 InsertPointTy(NewCI->getParent(), 1034 NewCI->getNextNode()->getIterator()), 1035 OMPD_parallel); 1036 } 1037 1038 auto Remark = [&](OptimizationRemark OR) { 1039 return OR << "Parallel region at " 1040 << ore::NV("OpenMPParallelMerge", CI->getDebugLoc()) 1041 << " merged with " 1042 << ore::NV("OpenMPParallelMergeFront", 1043 MergableCIs.front()->getDebugLoc()); 1044 }; 1045 if (CI != MergableCIs.front()) 1046 emitRemark<OptimizationRemark>(CI, "OpenMPParallelRegionMerging", 1047 Remark); 1048 1049 CI->eraseFromParent(); 1050 } 1051 1052 assert(OutlinedFn != OriginalFn && "Outlining failed"); 1053 CGUpdater.registerOutlinedFunction(*OriginalFn, *OutlinedFn); 1054 CGUpdater.reanalyzeFunction(*OriginalFn); 1055 1056 NumOpenMPParallelRegionsMerged += MergableCIs.size(); 1057 1058 return true; 1059 }; 1060 1061 // Helper function that identifes sequences of 1062 // __kmpc_fork_call uses in a basic block. 1063 auto DetectPRsCB = [&](Use &U, Function &F) { 1064 CallInst *CI = getCallIfRegularCall(U, &RFI); 1065 BB2PRMap[CI->getParent()].insert(CI); 1066 1067 return false; 1068 }; 1069 1070 BB2PRMap.clear(); 1071 RFI.foreachUse(SCC, DetectPRsCB); 1072 SmallVector<SmallVector<CallInst *, 4>, 4> MergableCIsVector; 1073 // Find mergable parallel regions within a basic block that are 1074 // safe to merge, that is any in-between instructions can safely 1075 // execute in parallel after merging. 1076 // TODO: support merging across basic-blocks. 1077 for (auto &It : BB2PRMap) { 1078 auto &CIs = It.getSecond(); 1079 if (CIs.size() < 2) 1080 continue; 1081 1082 BasicBlock *BB = It.getFirst(); 1083 SmallVector<CallInst *, 4> MergableCIs; 1084 1085 /// Returns true if the instruction is mergable, false otherwise. 1086 /// A terminator instruction is unmergable by definition since merging 1087 /// works within a BB. Instructions before the mergable region are 1088 /// mergable if they are not calls to OpenMP runtime functions that may 1089 /// set different execution parameters for subsequent parallel regions. 1090 /// Instructions in-between parallel regions are mergable if they are not 1091 /// calls to any non-intrinsic function since that may call a non-mergable 1092 /// OpenMP runtime function. 1093 auto IsMergable = [&](Instruction &I, bool IsBeforeMergableRegion) { 1094 // We do not merge across BBs, hence return false (unmergable) if the 1095 // instruction is a terminator. 1096 if (I.isTerminator()) 1097 return false; 1098 1099 if (!isa<CallInst>(&I)) 1100 return true; 1101 1102 CallInst *CI = cast<CallInst>(&I); 1103 if (IsBeforeMergableRegion) { 1104 Function *CalledFunction = CI->getCalledFunction(); 1105 if (!CalledFunction) 1106 return false; 1107 // Return false (unmergable) if the call before the parallel 1108 // region calls an explicit affinity (proc_bind) or number of 1109 // threads (num_threads) compiler-generated function. Those settings 1110 // may be incompatible with following parallel regions. 1111 // TODO: ICV tracking to detect compatibility. 1112 for (const auto &RFI : UnmergableCallsInfo) { 1113 if (CalledFunction == RFI.Declaration) 1114 return false; 1115 } 1116 } else { 1117 // Return false (unmergable) if there is a call instruction 1118 // in-between parallel regions when it is not an intrinsic. It 1119 // may call an unmergable OpenMP runtime function in its callpath. 1120 // TODO: Keep track of possible OpenMP calls in the callpath. 1121 if (!isa<IntrinsicInst>(CI)) 1122 return false; 1123 } 1124 1125 return true; 1126 }; 1127 // Find maximal number of parallel region CIs that are safe to merge. 1128 for (auto It = BB->begin(), End = BB->end(); It != End;) { 1129 Instruction &I = *It; 1130 ++It; 1131 1132 if (CIs.count(&I)) { 1133 MergableCIs.push_back(cast<CallInst>(&I)); 1134 continue; 1135 } 1136 1137 // Continue expanding if the instruction is mergable. 1138 if (IsMergable(I, MergableCIs.empty())) 1139 continue; 1140 1141 // Forward the instruction iterator to skip the next parallel region 1142 // since there is an unmergable instruction which can affect it. 1143 for (; It != End; ++It) { 1144 Instruction &SkipI = *It; 1145 if (CIs.count(&SkipI)) { 1146 LLVM_DEBUG(dbgs() << TAG << "Skip parallel region " << SkipI 1147 << " due to " << I << "\n"); 1148 ++It; 1149 break; 1150 } 1151 } 1152 1153 // Store mergable regions found. 1154 if (MergableCIs.size() > 1) { 1155 MergableCIsVector.push_back(MergableCIs); 1156 LLVM_DEBUG(dbgs() << TAG << "Found " << MergableCIs.size() 1157 << " parallel regions in block " << BB->getName() 1158 << " of function " << BB->getParent()->getName() 1159 << "\n";); 1160 } 1161 1162 MergableCIs.clear(); 1163 } 1164 1165 if (!MergableCIsVector.empty()) { 1166 Changed = true; 1167 1168 for (auto &MergableCIs : MergableCIsVector) 1169 Merge(MergableCIs, BB); 1170 MergableCIsVector.clear(); 1171 } 1172 } 1173 1174 if (Changed) { 1175 /// Re-collect use for fork calls, emitted barrier calls, and 1176 /// any emitted master/end_master calls. 1177 OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_fork_call); 1178 OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_barrier); 1179 OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_master); 1180 OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_end_master); 1181 } 1182 1183 return Changed; 1184 } 1185 1186 /// Try to delete parallel regions if possible. 1187 bool deleteParallelRegions() { 1188 const unsigned CallbackCalleeOperand = 2; 1189 1190 OMPInformationCache::RuntimeFunctionInfo &RFI = 1191 OMPInfoCache.RFIs[OMPRTL___kmpc_fork_call]; 1192 1193 if (!RFI.Declaration) 1194 return false; 1195 1196 bool Changed = false; 1197 auto DeleteCallCB = [&](Use &U, Function &) { 1198 CallInst *CI = getCallIfRegularCall(U); 1199 if (!CI) 1200 return false; 1201 auto *Fn = dyn_cast<Function>( 1202 CI->getArgOperand(CallbackCalleeOperand)->stripPointerCasts()); 1203 if (!Fn) 1204 return false; 1205 if (!Fn->onlyReadsMemory()) 1206 return false; 1207 if (!Fn->hasFnAttribute(Attribute::WillReturn)) 1208 return false; 1209 1210 LLVM_DEBUG(dbgs() << TAG << "Delete read-only parallel region in " 1211 << CI->getCaller()->getName() << "\n"); 1212 1213 auto Remark = [&](OptimizationRemark OR) { 1214 return OR << "Parallel region in " 1215 << ore::NV("OpenMPParallelDelete", CI->getCaller()->getName()) 1216 << " deleted"; 1217 }; 1218 emitRemark<OptimizationRemark>(CI, "OpenMPParallelRegionDeletion", 1219 Remark); 1220 1221 CGUpdater.removeCallSite(*CI); 1222 CI->eraseFromParent(); 1223 Changed = true; 1224 ++NumOpenMPParallelRegionsDeleted; 1225 return true; 1226 }; 1227 1228 RFI.foreachUse(SCC, DeleteCallCB); 1229 1230 return Changed; 1231 } 1232 1233 /// Try to eliminate runtime calls by reusing existing ones. 1234 bool deduplicateRuntimeCalls() { 1235 bool Changed = false; 1236 1237 RuntimeFunction DeduplicableRuntimeCallIDs[] = { 1238 OMPRTL_omp_get_num_threads, 1239 OMPRTL_omp_in_parallel, 1240 OMPRTL_omp_get_cancellation, 1241 OMPRTL_omp_get_thread_limit, 1242 OMPRTL_omp_get_supported_active_levels, 1243 OMPRTL_omp_get_level, 1244 OMPRTL_omp_get_ancestor_thread_num, 1245 OMPRTL_omp_get_team_size, 1246 OMPRTL_omp_get_active_level, 1247 OMPRTL_omp_in_final, 1248 OMPRTL_omp_get_proc_bind, 1249 OMPRTL_omp_get_num_places, 1250 OMPRTL_omp_get_num_procs, 1251 OMPRTL_omp_get_place_num, 1252 OMPRTL_omp_get_partition_num_places, 1253 OMPRTL_omp_get_partition_place_nums}; 1254 1255 // Global-tid is handled separately. 1256 SmallSetVector<Value *, 16> GTIdArgs; 1257 collectGlobalThreadIdArguments(GTIdArgs); 1258 LLVM_DEBUG(dbgs() << TAG << "Found " << GTIdArgs.size() 1259 << " global thread ID arguments\n"); 1260 1261 for (Function *F : SCC) { 1262 for (auto DeduplicableRuntimeCallID : DeduplicableRuntimeCallIDs) 1263 Changed |= deduplicateRuntimeCalls( 1264 *F, OMPInfoCache.RFIs[DeduplicableRuntimeCallID]); 1265 1266 // __kmpc_global_thread_num is special as we can replace it with an 1267 // argument in enough cases to make it worth trying. 1268 Value *GTIdArg = nullptr; 1269 for (Argument &Arg : F->args()) 1270 if (GTIdArgs.count(&Arg)) { 1271 GTIdArg = &Arg; 1272 break; 1273 } 1274 Changed |= deduplicateRuntimeCalls( 1275 *F, OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num], GTIdArg); 1276 } 1277 1278 return Changed; 1279 } 1280 1281 /// Tries to hide the latency of runtime calls that involve host to 1282 /// device memory transfers by splitting them into their "issue" and "wait" 1283 /// versions. The "issue" is moved upwards as much as possible. The "wait" is 1284 /// moved downards as much as possible. The "issue" issues the memory transfer 1285 /// asynchronously, returning a handle. The "wait" waits in the returned 1286 /// handle for the memory transfer to finish. 1287 bool hideMemTransfersLatency() { 1288 auto &RFI = OMPInfoCache.RFIs[OMPRTL___tgt_target_data_begin_mapper]; 1289 bool Changed = false; 1290 auto SplitMemTransfers = [&](Use &U, Function &Decl) { 1291 auto *RTCall = getCallIfRegularCall(U, &RFI); 1292 if (!RTCall) 1293 return false; 1294 1295 OffloadArray OffloadArrays[3]; 1296 if (!getValuesInOffloadArrays(*RTCall, OffloadArrays)) 1297 return false; 1298 1299 LLVM_DEBUG(dumpValuesInOffloadArrays(OffloadArrays)); 1300 1301 // TODO: Check if can be moved upwards. 1302 bool WasSplit = false; 1303 Instruction *WaitMovementPoint = canBeMovedDownwards(*RTCall); 1304 if (WaitMovementPoint) 1305 WasSplit = splitTargetDataBeginRTC(*RTCall, *WaitMovementPoint); 1306 1307 Changed |= WasSplit; 1308 return WasSplit; 1309 }; 1310 RFI.foreachUse(SCC, SplitMemTransfers); 1311 1312 return Changed; 1313 } 1314 1315 void analysisGlobalization() { 1316 auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared]; 1317 1318 auto CheckGlobalization = [&](Use &U, Function &Decl) { 1319 if (CallInst *CI = getCallIfRegularCall(U, &RFI)) { 1320 auto Remark = [&](OptimizationRemarkMissed ORM) { 1321 return ORM 1322 << "Found thread data sharing on the GPU. " 1323 << "Expect degraded performance due to data globalization."; 1324 }; 1325 emitRemark<OptimizationRemarkMissed>(CI, "OpenMPGlobalization", Remark); 1326 } 1327 1328 return false; 1329 }; 1330 1331 RFI.foreachUse(SCC, CheckGlobalization); 1332 } 1333 1334 /// Maps the values stored in the offload arrays passed as arguments to 1335 /// \p RuntimeCall into the offload arrays in \p OAs. 1336 bool getValuesInOffloadArrays(CallInst &RuntimeCall, 1337 MutableArrayRef<OffloadArray> OAs) { 1338 assert(OAs.size() == 3 && "Need space for three offload arrays!"); 1339 1340 // A runtime call that involves memory offloading looks something like: 1341 // call void @__tgt_target_data_begin_mapper(arg0, arg1, 1342 // i8** %offload_baseptrs, i8** %offload_ptrs, i64* %offload_sizes, 1343 // ...) 1344 // So, the idea is to access the allocas that allocate space for these 1345 // offload arrays, offload_baseptrs, offload_ptrs, offload_sizes. 1346 // Therefore: 1347 // i8** %offload_baseptrs. 1348 Value *BasePtrsArg = 1349 RuntimeCall.getArgOperand(OffloadArray::BasePtrsArgNum); 1350 // i8** %offload_ptrs. 1351 Value *PtrsArg = RuntimeCall.getArgOperand(OffloadArray::PtrsArgNum); 1352 // i8** %offload_sizes. 1353 Value *SizesArg = RuntimeCall.getArgOperand(OffloadArray::SizesArgNum); 1354 1355 // Get values stored in **offload_baseptrs. 1356 auto *V = getUnderlyingObject(BasePtrsArg); 1357 if (!isa<AllocaInst>(V)) 1358 return false; 1359 auto *BasePtrsArray = cast<AllocaInst>(V); 1360 if (!OAs[0].initialize(*BasePtrsArray, RuntimeCall)) 1361 return false; 1362 1363 // Get values stored in **offload_baseptrs. 1364 V = getUnderlyingObject(PtrsArg); 1365 if (!isa<AllocaInst>(V)) 1366 return false; 1367 auto *PtrsArray = cast<AllocaInst>(V); 1368 if (!OAs[1].initialize(*PtrsArray, RuntimeCall)) 1369 return false; 1370 1371 // Get values stored in **offload_sizes. 1372 V = getUnderlyingObject(SizesArg); 1373 // If it's a [constant] global array don't analyze it. 1374 if (isa<GlobalValue>(V)) 1375 return isa<Constant>(V); 1376 if (!isa<AllocaInst>(V)) 1377 return false; 1378 1379 auto *SizesArray = cast<AllocaInst>(V); 1380 if (!OAs[2].initialize(*SizesArray, RuntimeCall)) 1381 return false; 1382 1383 return true; 1384 } 1385 1386 /// Prints the values in the OffloadArrays \p OAs using LLVM_DEBUG. 1387 /// For now this is a way to test that the function getValuesInOffloadArrays 1388 /// is working properly. 1389 /// TODO: Move this to a unittest when unittests are available for OpenMPOpt. 1390 void dumpValuesInOffloadArrays(ArrayRef<OffloadArray> OAs) { 1391 assert(OAs.size() == 3 && "There are three offload arrays to debug!"); 1392 1393 LLVM_DEBUG(dbgs() << TAG << " Successfully got offload values:\n"); 1394 std::string ValuesStr; 1395 raw_string_ostream Printer(ValuesStr); 1396 std::string Separator = " --- "; 1397 1398 for (auto *BP : OAs[0].StoredValues) { 1399 BP->print(Printer); 1400 Printer << Separator; 1401 } 1402 LLVM_DEBUG(dbgs() << "\t\toffload_baseptrs: " << Printer.str() << "\n"); 1403 ValuesStr.clear(); 1404 1405 for (auto *P : OAs[1].StoredValues) { 1406 P->print(Printer); 1407 Printer << Separator; 1408 } 1409 LLVM_DEBUG(dbgs() << "\t\toffload_ptrs: " << Printer.str() << "\n"); 1410 ValuesStr.clear(); 1411 1412 for (auto *S : OAs[2].StoredValues) { 1413 S->print(Printer); 1414 Printer << Separator; 1415 } 1416 LLVM_DEBUG(dbgs() << "\t\toffload_sizes: " << Printer.str() << "\n"); 1417 } 1418 1419 /// Returns the instruction where the "wait" counterpart \p RuntimeCall can be 1420 /// moved. Returns nullptr if the movement is not possible, or not worth it. 1421 Instruction *canBeMovedDownwards(CallInst &RuntimeCall) { 1422 // FIXME: This traverses only the BasicBlock where RuntimeCall is. 1423 // Make it traverse the CFG. 1424 1425 Instruction *CurrentI = &RuntimeCall; 1426 bool IsWorthIt = false; 1427 while ((CurrentI = CurrentI->getNextNode())) { 1428 1429 // TODO: Once we detect the regions to be offloaded we should use the 1430 // alias analysis manager to check if CurrentI may modify one of 1431 // the offloaded regions. 1432 if (CurrentI->mayHaveSideEffects() || CurrentI->mayReadFromMemory()) { 1433 if (IsWorthIt) 1434 return CurrentI; 1435 1436 return nullptr; 1437 } 1438 1439 // FIXME: For now if we move it over anything without side effect 1440 // is worth it. 1441 IsWorthIt = true; 1442 } 1443 1444 // Return end of BasicBlock. 1445 return RuntimeCall.getParent()->getTerminator(); 1446 } 1447 1448 /// Splits \p RuntimeCall into its "issue" and "wait" counterparts. 1449 bool splitTargetDataBeginRTC(CallInst &RuntimeCall, 1450 Instruction &WaitMovementPoint) { 1451 // Create stack allocated handle (__tgt_async_info) at the beginning of the 1452 // function. Used for storing information of the async transfer, allowing to 1453 // wait on it later. 1454 auto &IRBuilder = OMPInfoCache.OMPBuilder; 1455 auto *F = RuntimeCall.getCaller(); 1456 Instruction *FirstInst = &(F->getEntryBlock().front()); 1457 AllocaInst *Handle = new AllocaInst( 1458 IRBuilder.AsyncInfo, F->getAddressSpace(), "handle", FirstInst); 1459 1460 // Add "issue" runtime call declaration: 1461 // declare %struct.tgt_async_info @__tgt_target_data_begin_issue(i64, i32, 1462 // i8**, i8**, i64*, i64*) 1463 FunctionCallee IssueDecl = IRBuilder.getOrCreateRuntimeFunction( 1464 M, OMPRTL___tgt_target_data_begin_mapper_issue); 1465 1466 // Change RuntimeCall call site for its asynchronous version. 1467 SmallVector<Value *, 16> Args; 1468 for (auto &Arg : RuntimeCall.args()) 1469 Args.push_back(Arg.get()); 1470 Args.push_back(Handle); 1471 1472 CallInst *IssueCallsite = 1473 CallInst::Create(IssueDecl, Args, /*NameStr=*/"", &RuntimeCall); 1474 RuntimeCall.eraseFromParent(); 1475 1476 // Add "wait" runtime call declaration: 1477 // declare void @__tgt_target_data_begin_wait(i64, %struct.__tgt_async_info) 1478 FunctionCallee WaitDecl = IRBuilder.getOrCreateRuntimeFunction( 1479 M, OMPRTL___tgt_target_data_begin_mapper_wait); 1480 1481 Value *WaitParams[2] = { 1482 IssueCallsite->getArgOperand( 1483 OffloadArray::DeviceIDArgNum), // device_id. 1484 Handle // handle to wait on. 1485 }; 1486 CallInst::Create(WaitDecl, WaitParams, /*NameStr=*/"", &WaitMovementPoint); 1487 1488 return true; 1489 } 1490 1491 static Value *combinedIdentStruct(Value *CurrentIdent, Value *NextIdent, 1492 bool GlobalOnly, bool &SingleChoice) { 1493 if (CurrentIdent == NextIdent) 1494 return CurrentIdent; 1495 1496 // TODO: Figure out how to actually combine multiple debug locations. For 1497 // now we just keep an existing one if there is a single choice. 1498 if (!GlobalOnly || isa<GlobalValue>(NextIdent)) { 1499 SingleChoice = !CurrentIdent; 1500 return NextIdent; 1501 } 1502 return nullptr; 1503 } 1504 1505 /// Return an `struct ident_t*` value that represents the ones used in the 1506 /// calls of \p RFI inside of \p F. If \p GlobalOnly is true, we will not 1507 /// return a local `struct ident_t*`. For now, if we cannot find a suitable 1508 /// return value we create one from scratch. We also do not yet combine 1509 /// information, e.g., the source locations, see combinedIdentStruct. 1510 Value * 1511 getCombinedIdentFromCallUsesIn(OMPInformationCache::RuntimeFunctionInfo &RFI, 1512 Function &F, bool GlobalOnly) { 1513 bool SingleChoice = true; 1514 Value *Ident = nullptr; 1515 auto CombineIdentStruct = [&](Use &U, Function &Caller) { 1516 CallInst *CI = getCallIfRegularCall(U, &RFI); 1517 if (!CI || &F != &Caller) 1518 return false; 1519 Ident = combinedIdentStruct(Ident, CI->getArgOperand(0), 1520 /* GlobalOnly */ true, SingleChoice); 1521 return false; 1522 }; 1523 RFI.foreachUse(SCC, CombineIdentStruct); 1524 1525 if (!Ident || !SingleChoice) { 1526 // The IRBuilder uses the insertion block to get to the module, this is 1527 // unfortunate but we work around it for now. 1528 if (!OMPInfoCache.OMPBuilder.getInsertionPoint().getBlock()) 1529 OMPInfoCache.OMPBuilder.updateToLocation(OpenMPIRBuilder::InsertPointTy( 1530 &F.getEntryBlock(), F.getEntryBlock().begin())); 1531 // Create a fallback location if non was found. 1532 // TODO: Use the debug locations of the calls instead. 1533 Constant *Loc = OMPInfoCache.OMPBuilder.getOrCreateDefaultSrcLocStr(); 1534 Ident = OMPInfoCache.OMPBuilder.getOrCreateIdent(Loc); 1535 } 1536 return Ident; 1537 } 1538 1539 /// Try to eliminate calls of \p RFI in \p F by reusing an existing one or 1540 /// \p ReplVal if given. 1541 bool deduplicateRuntimeCalls(Function &F, 1542 OMPInformationCache::RuntimeFunctionInfo &RFI, 1543 Value *ReplVal = nullptr) { 1544 auto *UV = RFI.getUseVector(F); 1545 if (!UV || UV->size() + (ReplVal != nullptr) < 2) 1546 return false; 1547 1548 LLVM_DEBUG( 1549 dbgs() << TAG << "Deduplicate " << UV->size() << " uses of " << RFI.Name 1550 << (ReplVal ? " with an existing value\n" : "\n") << "\n"); 1551 1552 assert((!ReplVal || (isa<Argument>(ReplVal) && 1553 cast<Argument>(ReplVal)->getParent() == &F)) && 1554 "Unexpected replacement value!"); 1555 1556 // TODO: Use dominance to find a good position instead. 1557 auto CanBeMoved = [this](CallBase &CB) { 1558 unsigned NumArgs = CB.getNumArgOperands(); 1559 if (NumArgs == 0) 1560 return true; 1561 if (CB.getArgOperand(0)->getType() != OMPInfoCache.OMPBuilder.IdentPtr) 1562 return false; 1563 for (unsigned u = 1; u < NumArgs; ++u) 1564 if (isa<Instruction>(CB.getArgOperand(u))) 1565 return false; 1566 return true; 1567 }; 1568 1569 if (!ReplVal) { 1570 for (Use *U : *UV) 1571 if (CallInst *CI = getCallIfRegularCall(*U, &RFI)) { 1572 if (!CanBeMoved(*CI)) 1573 continue; 1574 1575 auto Remark = [&](OptimizationRemark OR) { 1576 return OR << "OpenMP runtime call " 1577 << ore::NV("OpenMPOptRuntime", RFI.Name) 1578 << " moved to beginning of OpenMP region"; 1579 }; 1580 emitRemark<OptimizationRemark>(&F, "OpenMPRuntimeCodeMotion", Remark); 1581 1582 CI->moveBefore(&*F.getEntryBlock().getFirstInsertionPt()); 1583 ReplVal = CI; 1584 break; 1585 } 1586 if (!ReplVal) 1587 return false; 1588 } 1589 1590 // If we use a call as a replacement value we need to make sure the ident is 1591 // valid at the new location. For now we just pick a global one, either 1592 // existing and used by one of the calls, or created from scratch. 1593 if (CallBase *CI = dyn_cast<CallBase>(ReplVal)) { 1594 if (CI->getNumArgOperands() > 0 && 1595 CI->getArgOperand(0)->getType() == OMPInfoCache.OMPBuilder.IdentPtr) { 1596 Value *Ident = getCombinedIdentFromCallUsesIn(RFI, F, 1597 /* GlobalOnly */ true); 1598 CI->setArgOperand(0, Ident); 1599 } 1600 } 1601 1602 bool Changed = false; 1603 auto ReplaceAndDeleteCB = [&](Use &U, Function &Caller) { 1604 CallInst *CI = getCallIfRegularCall(U, &RFI); 1605 if (!CI || CI == ReplVal || &F != &Caller) 1606 return false; 1607 assert(CI->getCaller() == &F && "Unexpected call!"); 1608 1609 auto Remark = [&](OptimizationRemark OR) { 1610 return OR << "OpenMP runtime call " 1611 << ore::NV("OpenMPOptRuntime", RFI.Name) << " deduplicated"; 1612 }; 1613 emitRemark<OptimizationRemark>(&F, "OpenMPRuntimeDeduplicated", Remark); 1614 1615 CGUpdater.removeCallSite(*CI); 1616 CI->replaceAllUsesWith(ReplVal); 1617 CI->eraseFromParent(); 1618 ++NumOpenMPRuntimeCallsDeduplicated; 1619 Changed = true; 1620 return true; 1621 }; 1622 RFI.foreachUse(SCC, ReplaceAndDeleteCB); 1623 1624 return Changed; 1625 } 1626 1627 /// Collect arguments that represent the global thread id in \p GTIdArgs. 1628 void collectGlobalThreadIdArguments(SmallSetVector<Value *, 16> >IdArgs) { 1629 // TODO: Below we basically perform a fixpoint iteration with a pessimistic 1630 // initialization. We could define an AbstractAttribute instead and 1631 // run the Attributor here once it can be run as an SCC pass. 1632 1633 // Helper to check the argument \p ArgNo at all call sites of \p F for 1634 // a GTId. 1635 auto CallArgOpIsGTId = [&](Function &F, unsigned ArgNo, CallInst &RefCI) { 1636 if (!F.hasLocalLinkage()) 1637 return false; 1638 for (Use &U : F.uses()) { 1639 if (CallInst *CI = getCallIfRegularCall(U)) { 1640 Value *ArgOp = CI->getArgOperand(ArgNo); 1641 if (CI == &RefCI || GTIdArgs.count(ArgOp) || 1642 getCallIfRegularCall( 1643 *ArgOp, &OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num])) 1644 continue; 1645 } 1646 return false; 1647 } 1648 return true; 1649 }; 1650 1651 // Helper to identify uses of a GTId as GTId arguments. 1652 auto AddUserArgs = [&](Value >Id) { 1653 for (Use &U : GTId.uses()) 1654 if (CallInst *CI = dyn_cast<CallInst>(U.getUser())) 1655 if (CI->isArgOperand(&U)) 1656 if (Function *Callee = CI->getCalledFunction()) 1657 if (CallArgOpIsGTId(*Callee, U.getOperandNo(), *CI)) 1658 GTIdArgs.insert(Callee->getArg(U.getOperandNo())); 1659 }; 1660 1661 // The argument users of __kmpc_global_thread_num calls are GTIds. 1662 OMPInformationCache::RuntimeFunctionInfo &GlobThreadNumRFI = 1663 OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num]; 1664 1665 GlobThreadNumRFI.foreachUse(SCC, [&](Use &U, Function &F) { 1666 if (CallInst *CI = getCallIfRegularCall(U, &GlobThreadNumRFI)) 1667 AddUserArgs(*CI); 1668 return false; 1669 }); 1670 1671 // Transitively search for more arguments by looking at the users of the 1672 // ones we know already. During the search the GTIdArgs vector is extended 1673 // so we cannot cache the size nor can we use a range based for. 1674 for (unsigned u = 0; u < GTIdArgs.size(); ++u) 1675 AddUserArgs(*GTIdArgs[u]); 1676 } 1677 1678 /// Kernel (=GPU) optimizations and utility functions 1679 /// 1680 ///{{ 1681 1682 /// Check if \p F is a kernel, hence entry point for target offloading. 1683 bool isKernel(Function &F) { return OMPInfoCache.Kernels.count(&F); } 1684 1685 /// Cache to remember the unique kernel for a function. 1686 DenseMap<Function *, Optional<Kernel>> UniqueKernelMap; 1687 1688 /// Find the unique kernel that will execute \p F, if any. 1689 Kernel getUniqueKernelFor(Function &F); 1690 1691 /// Find the unique kernel that will execute \p I, if any. 1692 Kernel getUniqueKernelFor(Instruction &I) { 1693 return getUniqueKernelFor(*I.getFunction()); 1694 } 1695 1696 /// Rewrite the device (=GPU) code state machine create in non-SPMD mode in 1697 /// the cases we can avoid taking the address of a function. 1698 bool rewriteDeviceCodeStateMachine(); 1699 1700 /// 1701 ///}} 1702 1703 /// Emit a remark generically 1704 /// 1705 /// This template function can be used to generically emit a remark. The 1706 /// RemarkKind should be one of the following: 1707 /// - OptimizationRemark to indicate a successful optimization attempt 1708 /// - OptimizationRemarkMissed to report a failed optimization attempt 1709 /// - OptimizationRemarkAnalysis to provide additional information about an 1710 /// optimization attempt 1711 /// 1712 /// The remark is built using a callback function provided by the caller that 1713 /// takes a RemarkKind as input and returns a RemarkKind. 1714 template <typename RemarkKind, typename RemarkCallBack> 1715 void emitRemark(Instruction *I, StringRef RemarkName, 1716 RemarkCallBack &&RemarkCB) const { 1717 Function *F = I->getParent()->getParent(); 1718 auto &ORE = OREGetter(F); 1719 1720 ORE.emit([&]() { return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, I)); }); 1721 } 1722 1723 /// Emit a remark on a function. 1724 template <typename RemarkKind, typename RemarkCallBack> 1725 void emitRemark(Function *F, StringRef RemarkName, 1726 RemarkCallBack &&RemarkCB) const { 1727 auto &ORE = OREGetter(F); 1728 1729 ORE.emit([&]() { return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, F)); }); 1730 } 1731 1732 /// The underlying module. 1733 Module &M; 1734 1735 /// The SCC we are operating on. 1736 SmallVectorImpl<Function *> &SCC; 1737 1738 /// Callback to update the call graph, the first argument is a removed call, 1739 /// the second an optional replacement call. 1740 CallGraphUpdater &CGUpdater; 1741 1742 /// Callback to get an OptimizationRemarkEmitter from a Function * 1743 OptimizationRemarkGetter OREGetter; 1744 1745 /// OpenMP-specific information cache. Also Used for Attributor runs. 1746 OMPInformationCache &OMPInfoCache; 1747 1748 /// Attributor instance. 1749 Attributor &A; 1750 1751 /// Helper function to run Attributor on SCC. 1752 bool runAttributor(bool IsModulePass) { 1753 if (SCC.empty()) 1754 return false; 1755 1756 registerAAs(IsModulePass); 1757 1758 ChangeStatus Changed = A.run(); 1759 1760 LLVM_DEBUG(dbgs() << "[Attributor] Done with " << SCC.size() 1761 << " functions, result: " << Changed << ".\n"); 1762 1763 return Changed == ChangeStatus::CHANGED; 1764 } 1765 1766 /// Populate the Attributor with abstract attribute opportunities in the 1767 /// function. 1768 void registerAAs(bool IsModulePass); 1769 }; 1770 1771 Kernel OpenMPOpt::getUniqueKernelFor(Function &F) { 1772 if (!OMPInfoCache.ModuleSlice.count(&F)) 1773 return nullptr; 1774 1775 // Use a scope to keep the lifetime of the CachedKernel short. 1776 { 1777 Optional<Kernel> &CachedKernel = UniqueKernelMap[&F]; 1778 if (CachedKernel) 1779 return *CachedKernel; 1780 1781 // TODO: We should use an AA to create an (optimistic and callback 1782 // call-aware) call graph. For now we stick to simple patterns that 1783 // are less powerful, basically the worst fixpoint. 1784 if (isKernel(F)) { 1785 CachedKernel = Kernel(&F); 1786 return *CachedKernel; 1787 } 1788 1789 CachedKernel = nullptr; 1790 if (!F.hasLocalLinkage()) { 1791 1792 // See https://openmp.llvm.org/remarks/OptimizationRemarks.html 1793 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 1794 return ORA 1795 << "[OMP100] Potentially unknown OpenMP target region caller"; 1796 }; 1797 emitRemark<OptimizationRemarkAnalysis>(&F, "OMP100", Remark); 1798 1799 return nullptr; 1800 } 1801 } 1802 1803 auto GetUniqueKernelForUse = [&](const Use &U) -> Kernel { 1804 if (auto *Cmp = dyn_cast<ICmpInst>(U.getUser())) { 1805 // Allow use in equality comparisons. 1806 if (Cmp->isEquality()) 1807 return getUniqueKernelFor(*Cmp); 1808 return nullptr; 1809 } 1810 if (auto *CB = dyn_cast<CallBase>(U.getUser())) { 1811 // Allow direct calls. 1812 if (CB->isCallee(&U)) 1813 return getUniqueKernelFor(*CB); 1814 1815 OMPInformationCache::RuntimeFunctionInfo &KernelParallelRFI = 1816 OMPInfoCache.RFIs[OMPRTL___kmpc_parallel_51]; 1817 // Allow the use in __kmpc_parallel_51 calls. 1818 if (OpenMPOpt::getCallIfRegularCall(*U.getUser(), &KernelParallelRFI)) 1819 return getUniqueKernelFor(*CB); 1820 return nullptr; 1821 } 1822 // Disallow every other use. 1823 return nullptr; 1824 }; 1825 1826 // TODO: In the future we want to track more than just a unique kernel. 1827 SmallPtrSet<Kernel, 2> PotentialKernels; 1828 OMPInformationCache::foreachUse(F, [&](const Use &U) { 1829 PotentialKernels.insert(GetUniqueKernelForUse(U)); 1830 }); 1831 1832 Kernel K = nullptr; 1833 if (PotentialKernels.size() == 1) 1834 K = *PotentialKernels.begin(); 1835 1836 // Cache the result. 1837 UniqueKernelMap[&F] = K; 1838 1839 return K; 1840 } 1841 1842 bool OpenMPOpt::rewriteDeviceCodeStateMachine() { 1843 OMPInformationCache::RuntimeFunctionInfo &KernelParallelRFI = 1844 OMPInfoCache.RFIs[OMPRTL___kmpc_parallel_51]; 1845 1846 bool Changed = false; 1847 if (!KernelParallelRFI) 1848 return Changed; 1849 1850 for (Function *F : SCC) { 1851 1852 // Check if the function is a use in a __kmpc_parallel_51 call at 1853 // all. 1854 bool UnknownUse = false; 1855 bool KernelParallelUse = false; 1856 unsigned NumDirectCalls = 0; 1857 1858 SmallVector<Use *, 2> ToBeReplacedStateMachineUses; 1859 OMPInformationCache::foreachUse(*F, [&](Use &U) { 1860 if (auto *CB = dyn_cast<CallBase>(U.getUser())) 1861 if (CB->isCallee(&U)) { 1862 ++NumDirectCalls; 1863 return; 1864 } 1865 1866 if (isa<ICmpInst>(U.getUser())) { 1867 ToBeReplacedStateMachineUses.push_back(&U); 1868 return; 1869 } 1870 1871 // Find wrapper functions that represent parallel kernels. 1872 CallInst *CI = 1873 OpenMPOpt::getCallIfRegularCall(*U.getUser(), &KernelParallelRFI); 1874 const unsigned int WrapperFunctionArgNo = 6; 1875 if (!KernelParallelUse && CI && 1876 CI->getArgOperandNo(&U) == WrapperFunctionArgNo) { 1877 KernelParallelUse = true; 1878 ToBeReplacedStateMachineUses.push_back(&U); 1879 return; 1880 } 1881 UnknownUse = true; 1882 }); 1883 1884 // Do not emit a remark if we haven't seen a __kmpc_parallel_51 1885 // use. 1886 if (!KernelParallelUse) 1887 continue; 1888 1889 { 1890 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 1891 return ORA << "Found a parallel region that is called in a target " 1892 "region but not part of a combined target construct nor " 1893 "nested inside a target construct without intermediate " 1894 "code. This can lead to excessive register usage for " 1895 "unrelated target regions in the same translation unit " 1896 "due to spurious call edges assumed by ptxas."; 1897 }; 1898 emitRemark<OptimizationRemarkAnalysis>(F, "OpenMPParallelRegionInNonSPMD", 1899 Remark); 1900 } 1901 1902 // If this ever hits, we should investigate. 1903 // TODO: Checking the number of uses is not a necessary restriction and 1904 // should be lifted. 1905 if (UnknownUse || NumDirectCalls != 1 || 1906 ToBeReplacedStateMachineUses.size() > 2) { 1907 { 1908 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 1909 return ORA << "Parallel region is used in " 1910 << (UnknownUse ? "unknown" : "unexpected") 1911 << " ways; will not attempt to rewrite the state machine."; 1912 }; 1913 emitRemark<OptimizationRemarkAnalysis>( 1914 F, "OpenMPParallelRegionInNonSPMD", Remark); 1915 } 1916 continue; 1917 } 1918 1919 // Even if we have __kmpc_parallel_51 calls, we (for now) give 1920 // up if the function is not called from a unique kernel. 1921 Kernel K = getUniqueKernelFor(*F); 1922 if (!K) { 1923 { 1924 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 1925 return ORA << "Parallel region is not known to be called from a " 1926 "unique single target region, maybe the surrounding " 1927 "function has external linkage?; will not attempt to " 1928 "rewrite the state machine use."; 1929 }; 1930 emitRemark<OptimizationRemarkAnalysis>( 1931 F, "OpenMPParallelRegionInMultipleKernesl", Remark); 1932 } 1933 continue; 1934 } 1935 1936 // We now know F is a parallel body function called only from the kernel K. 1937 // We also identified the state machine uses in which we replace the 1938 // function pointer by a new global symbol for identification purposes. This 1939 // ensures only direct calls to the function are left. 1940 1941 { 1942 auto RemarkParalleRegion = [&](OptimizationRemarkAnalysis ORA) { 1943 return ORA << "Specialize parallel region that is only reached from a " 1944 "single target region to avoid spurious call edges and " 1945 "excessive register usage in other target regions. " 1946 "(parallel region ID: " 1947 << ore::NV("OpenMPParallelRegion", F->getName()) 1948 << ", kernel ID: " 1949 << ore::NV("OpenMPTargetRegion", K->getName()) << ")"; 1950 }; 1951 emitRemark<OptimizationRemarkAnalysis>(F, "OpenMPParallelRegionInNonSPMD", 1952 RemarkParalleRegion); 1953 auto RemarkKernel = [&](OptimizationRemarkAnalysis ORA) { 1954 return ORA << "Target region containing the parallel region that is " 1955 "specialized. (parallel region ID: " 1956 << ore::NV("OpenMPParallelRegion", F->getName()) 1957 << ", kernel ID: " 1958 << ore::NV("OpenMPTargetRegion", K->getName()) << ")"; 1959 }; 1960 emitRemark<OptimizationRemarkAnalysis>(K, "OpenMPParallelRegionInNonSPMD", 1961 RemarkKernel); 1962 } 1963 1964 Module &M = *F->getParent(); 1965 Type *Int8Ty = Type::getInt8Ty(M.getContext()); 1966 1967 auto *ID = new GlobalVariable( 1968 M, Int8Ty, /* isConstant */ true, GlobalValue::PrivateLinkage, 1969 UndefValue::get(Int8Ty), F->getName() + ".ID"); 1970 1971 for (Use *U : ToBeReplacedStateMachineUses) 1972 U->set(ConstantExpr::getBitCast(ID, U->get()->getType())); 1973 1974 ++NumOpenMPParallelRegionsReplacedInGPUStateMachine; 1975 1976 Changed = true; 1977 } 1978 1979 return Changed; 1980 } 1981 1982 /// Abstract Attribute for tracking ICV values. 1983 struct AAICVTracker : public StateWrapper<BooleanState, AbstractAttribute> { 1984 using Base = StateWrapper<BooleanState, AbstractAttribute>; 1985 AAICVTracker(const IRPosition &IRP, Attributor &A) : Base(IRP) {} 1986 1987 void initialize(Attributor &A) override { 1988 Function *F = getAnchorScope(); 1989 if (!F || !A.isFunctionIPOAmendable(*F)) 1990 indicatePessimisticFixpoint(); 1991 } 1992 1993 /// Returns true if value is assumed to be tracked. 1994 bool isAssumedTracked() const { return getAssumed(); } 1995 1996 /// Returns true if value is known to be tracked. 1997 bool isKnownTracked() const { return getAssumed(); } 1998 1999 /// Create an abstract attribute biew for the position \p IRP. 2000 static AAICVTracker &createForPosition(const IRPosition &IRP, Attributor &A); 2001 2002 /// Return the value with which \p I can be replaced for specific \p ICV. 2003 virtual Optional<Value *> getReplacementValue(InternalControlVar ICV, 2004 const Instruction *I, 2005 Attributor &A) const { 2006 return None; 2007 } 2008 2009 /// Return an assumed unique ICV value if a single candidate is found. If 2010 /// there cannot be one, return a nullptr. If it is not clear yet, return the 2011 /// Optional::NoneType. 2012 virtual Optional<Value *> 2013 getUniqueReplacementValue(InternalControlVar ICV) const = 0; 2014 2015 // Currently only nthreads is being tracked. 2016 // this array will only grow with time. 2017 InternalControlVar TrackableICVs[1] = {ICV_nthreads}; 2018 2019 /// See AbstractAttribute::getName() 2020 const std::string getName() const override { return "AAICVTracker"; } 2021 2022 /// See AbstractAttribute::getIdAddr() 2023 const char *getIdAddr() const override { return &ID; } 2024 2025 /// This function should return true if the type of the \p AA is AAICVTracker 2026 static bool classof(const AbstractAttribute *AA) { 2027 return (AA->getIdAddr() == &ID); 2028 } 2029 2030 static const char ID; 2031 }; 2032 2033 struct AAICVTrackerFunction : public AAICVTracker { 2034 AAICVTrackerFunction(const IRPosition &IRP, Attributor &A) 2035 : AAICVTracker(IRP, A) {} 2036 2037 // FIXME: come up with better string. 2038 const std::string getAsStr() const override { return "ICVTrackerFunction"; } 2039 2040 // FIXME: come up with some stats. 2041 void trackStatistics() const override {} 2042 2043 /// We don't manifest anything for this AA. 2044 ChangeStatus manifest(Attributor &A) override { 2045 return ChangeStatus::UNCHANGED; 2046 } 2047 2048 // Map of ICV to their values at specific program point. 2049 EnumeratedArray<DenseMap<Instruction *, Value *>, InternalControlVar, 2050 InternalControlVar::ICV___last> 2051 ICVReplacementValuesMap; 2052 2053 ChangeStatus updateImpl(Attributor &A) override { 2054 ChangeStatus HasChanged = ChangeStatus::UNCHANGED; 2055 2056 Function *F = getAnchorScope(); 2057 2058 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2059 2060 for (InternalControlVar ICV : TrackableICVs) { 2061 auto &SetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Setter]; 2062 2063 auto &ValuesMap = ICVReplacementValuesMap[ICV]; 2064 auto TrackValues = [&](Use &U, Function &) { 2065 CallInst *CI = OpenMPOpt::getCallIfRegularCall(U); 2066 if (!CI) 2067 return false; 2068 2069 // FIXME: handle setters with more that 1 arguments. 2070 /// Track new value. 2071 if (ValuesMap.insert(std::make_pair(CI, CI->getArgOperand(0))).second) 2072 HasChanged = ChangeStatus::CHANGED; 2073 2074 return false; 2075 }; 2076 2077 auto CallCheck = [&](Instruction &I) { 2078 Optional<Value *> ReplVal = getValueForCall(A, &I, ICV); 2079 if (ReplVal.hasValue() && 2080 ValuesMap.insert(std::make_pair(&I, *ReplVal)).second) 2081 HasChanged = ChangeStatus::CHANGED; 2082 2083 return true; 2084 }; 2085 2086 // Track all changes of an ICV. 2087 SetterRFI.foreachUse(TrackValues, F); 2088 2089 bool UsedAssumedInformation = false; 2090 A.checkForAllInstructions(CallCheck, *this, {Instruction::Call}, 2091 UsedAssumedInformation, 2092 /* CheckBBLivenessOnly */ true); 2093 2094 /// TODO: Figure out a way to avoid adding entry in 2095 /// ICVReplacementValuesMap 2096 Instruction *Entry = &F->getEntryBlock().front(); 2097 if (HasChanged == ChangeStatus::CHANGED && !ValuesMap.count(Entry)) 2098 ValuesMap.insert(std::make_pair(Entry, nullptr)); 2099 } 2100 2101 return HasChanged; 2102 } 2103 2104 /// Hepler to check if \p I is a call and get the value for it if it is 2105 /// unique. 2106 Optional<Value *> getValueForCall(Attributor &A, const Instruction *I, 2107 InternalControlVar &ICV) const { 2108 2109 const auto *CB = dyn_cast<CallBase>(I); 2110 if (!CB || CB->hasFnAttr("no_openmp") || 2111 CB->hasFnAttr("no_openmp_routines")) 2112 return None; 2113 2114 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2115 auto &GetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Getter]; 2116 auto &SetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Setter]; 2117 Function *CalledFunction = CB->getCalledFunction(); 2118 2119 // Indirect call, assume ICV changes. 2120 if (CalledFunction == nullptr) 2121 return nullptr; 2122 if (CalledFunction == GetterRFI.Declaration) 2123 return None; 2124 if (CalledFunction == SetterRFI.Declaration) { 2125 if (ICVReplacementValuesMap[ICV].count(I)) 2126 return ICVReplacementValuesMap[ICV].lookup(I); 2127 2128 return nullptr; 2129 } 2130 2131 // Since we don't know, assume it changes the ICV. 2132 if (CalledFunction->isDeclaration()) 2133 return nullptr; 2134 2135 const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>( 2136 *this, IRPosition::callsite_returned(*CB), DepClassTy::REQUIRED); 2137 2138 if (ICVTrackingAA.isAssumedTracked()) 2139 return ICVTrackingAA.getUniqueReplacementValue(ICV); 2140 2141 // If we don't know, assume it changes. 2142 return nullptr; 2143 } 2144 2145 // We don't check unique value for a function, so return None. 2146 Optional<Value *> 2147 getUniqueReplacementValue(InternalControlVar ICV) const override { 2148 return None; 2149 } 2150 2151 /// Return the value with which \p I can be replaced for specific \p ICV. 2152 Optional<Value *> getReplacementValue(InternalControlVar ICV, 2153 const Instruction *I, 2154 Attributor &A) const override { 2155 const auto &ValuesMap = ICVReplacementValuesMap[ICV]; 2156 if (ValuesMap.count(I)) 2157 return ValuesMap.lookup(I); 2158 2159 SmallVector<const Instruction *, 16> Worklist; 2160 SmallPtrSet<const Instruction *, 16> Visited; 2161 Worklist.push_back(I); 2162 2163 Optional<Value *> ReplVal; 2164 2165 while (!Worklist.empty()) { 2166 const Instruction *CurrInst = Worklist.pop_back_val(); 2167 if (!Visited.insert(CurrInst).second) 2168 continue; 2169 2170 const BasicBlock *CurrBB = CurrInst->getParent(); 2171 2172 // Go up and look for all potential setters/calls that might change the 2173 // ICV. 2174 while ((CurrInst = CurrInst->getPrevNode())) { 2175 if (ValuesMap.count(CurrInst)) { 2176 Optional<Value *> NewReplVal = ValuesMap.lookup(CurrInst); 2177 // Unknown value, track new. 2178 if (!ReplVal.hasValue()) { 2179 ReplVal = NewReplVal; 2180 break; 2181 } 2182 2183 // If we found a new value, we can't know the icv value anymore. 2184 if (NewReplVal.hasValue()) 2185 if (ReplVal != NewReplVal) 2186 return nullptr; 2187 2188 break; 2189 } 2190 2191 Optional<Value *> NewReplVal = getValueForCall(A, CurrInst, ICV); 2192 if (!NewReplVal.hasValue()) 2193 continue; 2194 2195 // Unknown value, track new. 2196 if (!ReplVal.hasValue()) { 2197 ReplVal = NewReplVal; 2198 break; 2199 } 2200 2201 // if (NewReplVal.hasValue()) 2202 // We found a new value, we can't know the icv value anymore. 2203 if (ReplVal != NewReplVal) 2204 return nullptr; 2205 } 2206 2207 // If we are in the same BB and we have a value, we are done. 2208 if (CurrBB == I->getParent() && ReplVal.hasValue()) 2209 return ReplVal; 2210 2211 // Go through all predecessors and add terminators for analysis. 2212 for (const BasicBlock *Pred : predecessors(CurrBB)) 2213 if (const Instruction *Terminator = Pred->getTerminator()) 2214 Worklist.push_back(Terminator); 2215 } 2216 2217 return ReplVal; 2218 } 2219 }; 2220 2221 struct AAICVTrackerFunctionReturned : AAICVTracker { 2222 AAICVTrackerFunctionReturned(const IRPosition &IRP, Attributor &A) 2223 : AAICVTracker(IRP, A) {} 2224 2225 // FIXME: come up with better string. 2226 const std::string getAsStr() const override { 2227 return "ICVTrackerFunctionReturned"; 2228 } 2229 2230 // FIXME: come up with some stats. 2231 void trackStatistics() const override {} 2232 2233 /// We don't manifest anything for this AA. 2234 ChangeStatus manifest(Attributor &A) override { 2235 return ChangeStatus::UNCHANGED; 2236 } 2237 2238 // Map of ICV to their values at specific program point. 2239 EnumeratedArray<Optional<Value *>, InternalControlVar, 2240 InternalControlVar::ICV___last> 2241 ICVReplacementValuesMap; 2242 2243 /// Return the value with which \p I can be replaced for specific \p ICV. 2244 Optional<Value *> 2245 getUniqueReplacementValue(InternalControlVar ICV) const override { 2246 return ICVReplacementValuesMap[ICV]; 2247 } 2248 2249 ChangeStatus updateImpl(Attributor &A) override { 2250 ChangeStatus Changed = ChangeStatus::UNCHANGED; 2251 const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>( 2252 *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED); 2253 2254 if (!ICVTrackingAA.isAssumedTracked()) 2255 return indicatePessimisticFixpoint(); 2256 2257 for (InternalControlVar ICV : TrackableICVs) { 2258 Optional<Value *> &ReplVal = ICVReplacementValuesMap[ICV]; 2259 Optional<Value *> UniqueICVValue; 2260 2261 auto CheckReturnInst = [&](Instruction &I) { 2262 Optional<Value *> NewReplVal = 2263 ICVTrackingAA.getReplacementValue(ICV, &I, A); 2264 2265 // If we found a second ICV value there is no unique returned value. 2266 if (UniqueICVValue.hasValue() && UniqueICVValue != NewReplVal) 2267 return false; 2268 2269 UniqueICVValue = NewReplVal; 2270 2271 return true; 2272 }; 2273 2274 bool UsedAssumedInformation = false; 2275 if (!A.checkForAllInstructions(CheckReturnInst, *this, {Instruction::Ret}, 2276 UsedAssumedInformation, 2277 /* CheckBBLivenessOnly */ true)) 2278 UniqueICVValue = nullptr; 2279 2280 if (UniqueICVValue == ReplVal) 2281 continue; 2282 2283 ReplVal = UniqueICVValue; 2284 Changed = ChangeStatus::CHANGED; 2285 } 2286 2287 return Changed; 2288 } 2289 }; 2290 2291 struct AAICVTrackerCallSite : AAICVTracker { 2292 AAICVTrackerCallSite(const IRPosition &IRP, Attributor &A) 2293 : AAICVTracker(IRP, A) {} 2294 2295 void initialize(Attributor &A) override { 2296 Function *F = getAnchorScope(); 2297 if (!F || !A.isFunctionIPOAmendable(*F)) 2298 indicatePessimisticFixpoint(); 2299 2300 // We only initialize this AA for getters, so we need to know which ICV it 2301 // gets. 2302 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2303 for (InternalControlVar ICV : TrackableICVs) { 2304 auto ICVInfo = OMPInfoCache.ICVs[ICV]; 2305 auto &Getter = OMPInfoCache.RFIs[ICVInfo.Getter]; 2306 if (Getter.Declaration == getAssociatedFunction()) { 2307 AssociatedICV = ICVInfo.Kind; 2308 return; 2309 } 2310 } 2311 2312 /// Unknown ICV. 2313 indicatePessimisticFixpoint(); 2314 } 2315 2316 ChangeStatus manifest(Attributor &A) override { 2317 if (!ReplVal.hasValue() || !ReplVal.getValue()) 2318 return ChangeStatus::UNCHANGED; 2319 2320 A.changeValueAfterManifest(*getCtxI(), **ReplVal); 2321 A.deleteAfterManifest(*getCtxI()); 2322 2323 return ChangeStatus::CHANGED; 2324 } 2325 2326 // FIXME: come up with better string. 2327 const std::string getAsStr() const override { return "ICVTrackerCallSite"; } 2328 2329 // FIXME: come up with some stats. 2330 void trackStatistics() const override {} 2331 2332 InternalControlVar AssociatedICV; 2333 Optional<Value *> ReplVal; 2334 2335 ChangeStatus updateImpl(Attributor &A) override { 2336 const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>( 2337 *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED); 2338 2339 // We don't have any information, so we assume it changes the ICV. 2340 if (!ICVTrackingAA.isAssumedTracked()) 2341 return indicatePessimisticFixpoint(); 2342 2343 Optional<Value *> NewReplVal = 2344 ICVTrackingAA.getReplacementValue(AssociatedICV, getCtxI(), A); 2345 2346 if (ReplVal == NewReplVal) 2347 return ChangeStatus::UNCHANGED; 2348 2349 ReplVal = NewReplVal; 2350 return ChangeStatus::CHANGED; 2351 } 2352 2353 // Return the value with which associated value can be replaced for specific 2354 // \p ICV. 2355 Optional<Value *> 2356 getUniqueReplacementValue(InternalControlVar ICV) const override { 2357 return ReplVal; 2358 } 2359 }; 2360 2361 struct AAICVTrackerCallSiteReturned : AAICVTracker { 2362 AAICVTrackerCallSiteReturned(const IRPosition &IRP, Attributor &A) 2363 : AAICVTracker(IRP, A) {} 2364 2365 // FIXME: come up with better string. 2366 const std::string getAsStr() const override { 2367 return "ICVTrackerCallSiteReturned"; 2368 } 2369 2370 // FIXME: come up with some stats. 2371 void trackStatistics() const override {} 2372 2373 /// We don't manifest anything for this AA. 2374 ChangeStatus manifest(Attributor &A) override { 2375 return ChangeStatus::UNCHANGED; 2376 } 2377 2378 // Map of ICV to their values at specific program point. 2379 EnumeratedArray<Optional<Value *>, InternalControlVar, 2380 InternalControlVar::ICV___last> 2381 ICVReplacementValuesMap; 2382 2383 /// Return the value with which associated value can be replaced for specific 2384 /// \p ICV. 2385 Optional<Value *> 2386 getUniqueReplacementValue(InternalControlVar ICV) const override { 2387 return ICVReplacementValuesMap[ICV]; 2388 } 2389 2390 ChangeStatus updateImpl(Attributor &A) override { 2391 ChangeStatus Changed = ChangeStatus::UNCHANGED; 2392 const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>( 2393 *this, IRPosition::returned(*getAssociatedFunction()), 2394 DepClassTy::REQUIRED); 2395 2396 // We don't have any information, so we assume it changes the ICV. 2397 if (!ICVTrackingAA.isAssumedTracked()) 2398 return indicatePessimisticFixpoint(); 2399 2400 for (InternalControlVar ICV : TrackableICVs) { 2401 Optional<Value *> &ReplVal = ICVReplacementValuesMap[ICV]; 2402 Optional<Value *> NewReplVal = 2403 ICVTrackingAA.getUniqueReplacementValue(ICV); 2404 2405 if (ReplVal == NewReplVal) 2406 continue; 2407 2408 ReplVal = NewReplVal; 2409 Changed = ChangeStatus::CHANGED; 2410 } 2411 return Changed; 2412 } 2413 }; 2414 2415 struct AAExecutionDomainFunction : public AAExecutionDomain { 2416 AAExecutionDomainFunction(const IRPosition &IRP, Attributor &A) 2417 : AAExecutionDomain(IRP, A) {} 2418 2419 const std::string getAsStr() const override { 2420 return "[AAExecutionDomain] " + std::to_string(SingleThreadedBBs.size()) + 2421 "/" + std::to_string(NumBBs) + " BBs thread 0 only."; 2422 } 2423 2424 /// See AbstractAttribute::trackStatistics(). 2425 void trackStatistics() const override {} 2426 2427 void initialize(Attributor &A) override { 2428 Function *F = getAnchorScope(); 2429 for (const auto &BB : *F) 2430 SingleThreadedBBs.insert(&BB); 2431 NumBBs = SingleThreadedBBs.size(); 2432 } 2433 2434 ChangeStatus manifest(Attributor &A) override { 2435 LLVM_DEBUG({ 2436 for (const BasicBlock *BB : SingleThreadedBBs) 2437 dbgs() << TAG << " Basic block @" << getAnchorScope()->getName() << " " 2438 << BB->getName() << " is executed by a single thread.\n"; 2439 }); 2440 return ChangeStatus::UNCHANGED; 2441 } 2442 2443 ChangeStatus updateImpl(Attributor &A) override; 2444 2445 /// Check if an instruction is executed by a single thread. 2446 bool isExecutedByInitialThreadOnly(const Instruction &I) const override { 2447 return isExecutedByInitialThreadOnly(*I.getParent()); 2448 } 2449 2450 bool isExecutedByInitialThreadOnly(const BasicBlock &BB) const override { 2451 return isValidState() && SingleThreadedBBs.contains(&BB); 2452 } 2453 2454 /// Set of basic blocks that are executed by a single thread. 2455 DenseSet<const BasicBlock *> SingleThreadedBBs; 2456 2457 /// Total number of basic blocks in this function. 2458 long unsigned NumBBs; 2459 }; 2460 2461 ChangeStatus AAExecutionDomainFunction::updateImpl(Attributor &A) { 2462 Function *F = getAnchorScope(); 2463 ReversePostOrderTraversal<Function *> RPOT(F); 2464 auto NumSingleThreadedBBs = SingleThreadedBBs.size(); 2465 2466 bool AllCallSitesKnown; 2467 auto PredForCallSite = [&](AbstractCallSite ACS) { 2468 const auto &ExecutionDomainAA = A.getAAFor<AAExecutionDomain>( 2469 *this, IRPosition::function(*ACS.getInstruction()->getFunction()), 2470 DepClassTy::REQUIRED); 2471 return ACS.isDirectCall() && 2472 ExecutionDomainAA.isExecutedByInitialThreadOnly( 2473 *ACS.getInstruction()); 2474 }; 2475 2476 if (!A.checkForAllCallSites(PredForCallSite, *this, 2477 /* RequiresAllCallSites */ true, 2478 AllCallSitesKnown)) 2479 SingleThreadedBBs.erase(&F->getEntryBlock()); 2480 2481 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2482 auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_target_init]; 2483 2484 // Check if the edge into the successor block compares the __kmpc_target_init 2485 // result with -1. If we are in non-SPMD-mode that signals only the main 2486 // thread will execute the edge. 2487 auto IsInitialThreadOnly = [&](BranchInst *Edge, BasicBlock *SuccessorBB) { 2488 if (!Edge || !Edge->isConditional()) 2489 return false; 2490 if (Edge->getSuccessor(0) != SuccessorBB) 2491 return false; 2492 2493 auto *Cmp = dyn_cast<CmpInst>(Edge->getCondition()); 2494 if (!Cmp || !Cmp->isTrueWhenEqual() || !Cmp->isEquality()) 2495 return false; 2496 2497 ConstantInt *C = dyn_cast<ConstantInt>(Cmp->getOperand(1)); 2498 if (!C) 2499 return false; 2500 2501 // Match: -1 == __kmpc_target_init (for non-SPMD kernels only!) 2502 if (C->isAllOnesValue()) { 2503 auto *CB = dyn_cast<CallBase>(Cmp->getOperand(0)); 2504 if (!CB || CB->getCalledFunction() != RFI.Declaration) 2505 return false; 2506 const int InitIsSPMDArgNo = 1; 2507 auto *IsSPMDModeCI = 2508 dyn_cast<ConstantInt>(CB->getOperand(InitIsSPMDArgNo)); 2509 return IsSPMDModeCI && IsSPMDModeCI->isZero(); 2510 } 2511 2512 return false; 2513 }; 2514 2515 // Merge all the predecessor states into the current basic block. A basic 2516 // block is executed by a single thread if all of its predecessors are. 2517 auto MergePredecessorStates = [&](BasicBlock *BB) { 2518 if (pred_begin(BB) == pred_end(BB)) 2519 return SingleThreadedBBs.contains(BB); 2520 2521 bool IsInitialThread = true; 2522 for (auto PredBB = pred_begin(BB), PredEndBB = pred_end(BB); 2523 PredBB != PredEndBB; ++PredBB) { 2524 if (!IsInitialThreadOnly(dyn_cast<BranchInst>((*PredBB)->getTerminator()), 2525 BB)) 2526 IsInitialThread &= SingleThreadedBBs.contains(*PredBB); 2527 } 2528 2529 return IsInitialThread; 2530 }; 2531 2532 for (auto *BB : RPOT) { 2533 if (!MergePredecessorStates(BB)) 2534 SingleThreadedBBs.erase(BB); 2535 } 2536 2537 return (NumSingleThreadedBBs == SingleThreadedBBs.size()) 2538 ? ChangeStatus::UNCHANGED 2539 : ChangeStatus::CHANGED; 2540 } 2541 2542 /// Try to replace memory allocation calls called by a single thread with a 2543 /// static buffer of shared memory. 2544 struct AAHeapToShared : public StateWrapper<BooleanState, AbstractAttribute> { 2545 using Base = StateWrapper<BooleanState, AbstractAttribute>; 2546 AAHeapToShared(const IRPosition &IRP, Attributor &A) : Base(IRP) {} 2547 2548 /// Create an abstract attribute view for the position \p IRP. 2549 static AAHeapToShared &createForPosition(const IRPosition &IRP, 2550 Attributor &A); 2551 2552 /// See AbstractAttribute::getName(). 2553 const std::string getName() const override { return "AAHeapToShared"; } 2554 2555 /// See AbstractAttribute::getIdAddr(). 2556 const char *getIdAddr() const override { return &ID; } 2557 2558 /// This function should return true if the type of the \p AA is 2559 /// AAHeapToShared. 2560 static bool classof(const AbstractAttribute *AA) { 2561 return (AA->getIdAddr() == &ID); 2562 } 2563 2564 /// Unique ID (due to the unique address) 2565 static const char ID; 2566 }; 2567 2568 struct AAHeapToSharedFunction : public AAHeapToShared { 2569 AAHeapToSharedFunction(const IRPosition &IRP, Attributor &A) 2570 : AAHeapToShared(IRP, A) {} 2571 2572 const std::string getAsStr() const override { 2573 return "[AAHeapToShared] " + std::to_string(MallocCalls.size()) + 2574 " malloc calls eligible."; 2575 } 2576 2577 /// See AbstractAttribute::trackStatistics(). 2578 void trackStatistics() const override {} 2579 2580 void initialize(Attributor &A) override { 2581 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2582 auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared]; 2583 2584 for (User *U : RFI.Declaration->users()) 2585 if (CallBase *CB = dyn_cast<CallBase>(U)) 2586 MallocCalls.insert(CB); 2587 } 2588 2589 ChangeStatus manifest(Attributor &A) override { 2590 if (MallocCalls.empty()) 2591 return ChangeStatus::UNCHANGED; 2592 2593 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2594 auto &FreeCall = OMPInfoCache.RFIs[OMPRTL___kmpc_free_shared]; 2595 2596 Function *F = getAnchorScope(); 2597 auto *HS = A.lookupAAFor<AAHeapToStack>(IRPosition::function(*F), this, 2598 DepClassTy::OPTIONAL); 2599 2600 ChangeStatus Changed = ChangeStatus::UNCHANGED; 2601 for (CallBase *CB : MallocCalls) { 2602 // Skip replacing this if HeapToStack has already claimed it. 2603 if (HS && HS->isAssumedHeapToStack(*CB)) 2604 continue; 2605 2606 // Find the unique free call to remove it. 2607 SmallVector<CallBase *, 4> FreeCalls; 2608 for (auto *U : CB->users()) { 2609 CallBase *C = dyn_cast<CallBase>(U); 2610 if (C && C->getCalledFunction() == FreeCall.Declaration) 2611 FreeCalls.push_back(C); 2612 } 2613 if (FreeCalls.size() != 1) 2614 continue; 2615 2616 ConstantInt *AllocSize = dyn_cast<ConstantInt>(CB->getArgOperand(0)); 2617 2618 LLVM_DEBUG(dbgs() << TAG << "Replace globalization call in " 2619 << CB->getCaller()->getName() << " with " 2620 << AllocSize->getZExtValue() 2621 << " bytes of shared memory\n"); 2622 2623 // Create a new shared memory buffer of the same size as the allocation 2624 // and replace all the uses of the original allocation with it. 2625 Module *M = CB->getModule(); 2626 Type *Int8Ty = Type::getInt8Ty(M->getContext()); 2627 Type *Int8ArrTy = ArrayType::get(Int8Ty, AllocSize->getZExtValue()); 2628 auto *SharedMem = new GlobalVariable( 2629 *M, Int8ArrTy, /* IsConstant */ false, GlobalValue::InternalLinkage, 2630 UndefValue::get(Int8ArrTy), CB->getName(), nullptr, 2631 GlobalValue::NotThreadLocal, 2632 static_cast<unsigned>(AddressSpace::Shared)); 2633 auto *NewBuffer = 2634 ConstantExpr::getPointerCast(SharedMem, Int8Ty->getPointerTo()); 2635 2636 auto Remark = [&](OptimizationRemark OR) { 2637 return OR << "Replaced globalized variable with " 2638 << ore::NV("SharedMemory", AllocSize->getZExtValue()) 2639 << ((AllocSize->getZExtValue() != 1) ? " bytes " : " byte ") 2640 << "of shared memory"; 2641 }; 2642 A.emitRemark<OptimizationRemark>(CB, "OpenMPReplaceGlobalization", 2643 Remark); 2644 2645 SharedMem->setAlignment(MaybeAlign(32)); 2646 2647 A.changeValueAfterManifest(*CB, *NewBuffer); 2648 A.deleteAfterManifest(*CB); 2649 A.deleteAfterManifest(*FreeCalls.front()); 2650 2651 NumBytesMovedToSharedMemory += AllocSize->getZExtValue(); 2652 Changed = ChangeStatus::CHANGED; 2653 } 2654 2655 return Changed; 2656 } 2657 2658 ChangeStatus updateImpl(Attributor &A) override { 2659 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2660 auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared]; 2661 Function *F = getAnchorScope(); 2662 2663 auto NumMallocCalls = MallocCalls.size(); 2664 2665 // Only consider malloc calls executed by a single thread with a constant. 2666 for (User *U : RFI.Declaration->users()) { 2667 const auto &ED = A.getAAFor<AAExecutionDomain>( 2668 *this, IRPosition::function(*F), DepClassTy::REQUIRED); 2669 if (CallBase *CB = dyn_cast<CallBase>(U)) 2670 if (!dyn_cast<ConstantInt>(CB->getArgOperand(0)) || 2671 !ED.isExecutedByInitialThreadOnly(*CB)) 2672 MallocCalls.erase(CB); 2673 } 2674 2675 if (NumMallocCalls != MallocCalls.size()) 2676 return ChangeStatus::CHANGED; 2677 2678 return ChangeStatus::UNCHANGED; 2679 } 2680 2681 /// Collection of all malloc calls in a function. 2682 SmallPtrSet<CallBase *, 4> MallocCalls; 2683 }; 2684 2685 struct AAKernelInfo : public StateWrapper<KernelInfoState, AbstractAttribute> { 2686 using Base = StateWrapper<KernelInfoState, AbstractAttribute>; 2687 AAKernelInfo(const IRPosition &IRP, Attributor &A) : Base(IRP) {} 2688 2689 /// Statistics are tracked as part of manifest for now. 2690 void trackStatistics() const override {} 2691 2692 /// See AbstractAttribute::getAsStr() 2693 const std::string getAsStr() const override { 2694 if (!isValidState()) 2695 return "<invalid>"; 2696 return std::string(SPMDCompatibilityTracker.isAssumed() ? "SPMD" 2697 : "generic") + 2698 std::string(SPMDCompatibilityTracker.isAtFixpoint() ? " [FIX]" 2699 : "") + 2700 std::string(" #PRs: ") + 2701 std::to_string(ReachedKnownParallelRegions.size()) + 2702 ", #Unknown PRs: " + 2703 std::to_string(ReachedUnknownParallelRegions.size()); 2704 } 2705 2706 /// Create an abstract attribute biew for the position \p IRP. 2707 static AAKernelInfo &createForPosition(const IRPosition &IRP, Attributor &A); 2708 2709 /// See AbstractAttribute::getName() 2710 const std::string getName() const override { return "AAKernelInfo"; } 2711 2712 /// See AbstractAttribute::getIdAddr() 2713 const char *getIdAddr() const override { return &ID; } 2714 2715 /// This function should return true if the type of the \p AA is AAKernelInfo 2716 static bool classof(const AbstractAttribute *AA) { 2717 return (AA->getIdAddr() == &ID); 2718 } 2719 2720 static const char ID; 2721 }; 2722 2723 /// The function kernel info abstract attribute, basically, what can we say 2724 /// about a function with regards to the KernelInfoState. 2725 struct AAKernelInfoFunction : AAKernelInfo { 2726 AAKernelInfoFunction(const IRPosition &IRP, Attributor &A) 2727 : AAKernelInfo(IRP, A) {} 2728 2729 /// See AbstractAttribute::initialize(...). 2730 void initialize(Attributor &A) override { 2731 // This is a high-level transform that might change the constant arguments 2732 // of the init and dinit calls. We need to tell the Attributor about this 2733 // to avoid other parts using the current constant value for simpliication. 2734 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2735 2736 Function *Fn = getAnchorScope(); 2737 if (!OMPInfoCache.Kernels.count(Fn)) 2738 return; 2739 2740 // Add itself to the reaching kernel and set IsKernelEntry. 2741 ReachingKernelEntries.insert(Fn); 2742 IsKernelEntry = true; 2743 2744 OMPInformationCache::RuntimeFunctionInfo &InitRFI = 2745 OMPInfoCache.RFIs[OMPRTL___kmpc_target_init]; 2746 OMPInformationCache::RuntimeFunctionInfo &DeinitRFI = 2747 OMPInfoCache.RFIs[OMPRTL___kmpc_target_deinit]; 2748 2749 // For kernels we perform more initialization work, first we find the init 2750 // and deinit calls. 2751 auto StoreCallBase = [](Use &U, 2752 OMPInformationCache::RuntimeFunctionInfo &RFI, 2753 CallBase *&Storage) { 2754 CallBase *CB = OpenMPOpt::getCallIfRegularCall(U, &RFI); 2755 assert(CB && 2756 "Unexpected use of __kmpc_target_init or __kmpc_target_deinit!"); 2757 assert(!Storage && 2758 "Multiple uses of __kmpc_target_init or __kmpc_target_deinit!"); 2759 Storage = CB; 2760 return false; 2761 }; 2762 InitRFI.foreachUse( 2763 [&](Use &U, Function &) { 2764 StoreCallBase(U, InitRFI, KernelInitCB); 2765 return false; 2766 }, 2767 Fn); 2768 DeinitRFI.foreachUse( 2769 [&](Use &U, Function &) { 2770 StoreCallBase(U, DeinitRFI, KernelDeinitCB); 2771 return false; 2772 }, 2773 Fn); 2774 2775 assert((KernelInitCB && KernelDeinitCB) && 2776 "Kernel without __kmpc_target_init or __kmpc_target_deinit!"); 2777 2778 // For kernels we might need to initialize/finalize the IsSPMD state and 2779 // we need to register a simplification callback so that the Attributor 2780 // knows the constant arguments to __kmpc_target_init and 2781 // __kmpc_target_deinit might actually change. 2782 2783 Attributor::SimplifictionCallbackTy StateMachineSimplifyCB = 2784 [&](const IRPosition &IRP, const AbstractAttribute *AA, 2785 bool &UsedAssumedInformation) -> Optional<Value *> { 2786 // IRP represents the "use generic state machine" argument of an 2787 // __kmpc_target_init call. We will answer this one with the internal 2788 // state. As long as we are not in an invalid state, we will create a 2789 // custom state machine so the value should be a `i1 false`. If we are 2790 // in an invalid state, we won't change the value that is in the IR. 2791 if (!isValidState()) 2792 return nullptr; 2793 if (AA) 2794 A.recordDependence(*this, *AA, DepClassTy::OPTIONAL); 2795 UsedAssumedInformation = !isAtFixpoint(); 2796 auto *FalseVal = 2797 ConstantInt::getBool(IRP.getAnchorValue().getContext(), 0); 2798 return FalseVal; 2799 }; 2800 2801 Attributor::SimplifictionCallbackTy IsSPMDModeSimplifyCB = 2802 [&](const IRPosition &IRP, const AbstractAttribute *AA, 2803 bool &UsedAssumedInformation) -> Optional<Value *> { 2804 // IRP represents the "SPMDCompatibilityTracker" argument of an 2805 // __kmpc_target_init or 2806 // __kmpc_target_deinit call. We will answer this one with the internal 2807 // state. 2808 if (!isValidState()) 2809 return nullptr; 2810 if (!SPMDCompatibilityTracker.isAtFixpoint()) { 2811 if (AA) 2812 A.recordDependence(*this, *AA, DepClassTy::OPTIONAL); 2813 UsedAssumedInformation = true; 2814 } else { 2815 UsedAssumedInformation = false; 2816 } 2817 auto *Val = ConstantInt::getBool(IRP.getAnchorValue().getContext(), 2818 SPMDCompatibilityTracker.isAssumed()); 2819 return Val; 2820 }; 2821 2822 constexpr const int InitIsSPMDArgNo = 1; 2823 constexpr const int DeinitIsSPMDArgNo = 1; 2824 constexpr const int InitUseStateMachineArgNo = 2; 2825 A.registerSimplificationCallback( 2826 IRPosition::callsite_argument(*KernelInitCB, InitUseStateMachineArgNo), 2827 StateMachineSimplifyCB); 2828 A.registerSimplificationCallback( 2829 IRPosition::callsite_argument(*KernelInitCB, InitIsSPMDArgNo), 2830 IsSPMDModeSimplifyCB); 2831 A.registerSimplificationCallback( 2832 IRPosition::callsite_argument(*KernelDeinitCB, DeinitIsSPMDArgNo), 2833 IsSPMDModeSimplifyCB); 2834 2835 // Check if we know we are in SPMD-mode already. 2836 ConstantInt *IsSPMDArg = 2837 dyn_cast<ConstantInt>(KernelInitCB->getArgOperand(InitIsSPMDArgNo)); 2838 if (IsSPMDArg && !IsSPMDArg->isZero()) 2839 SPMDCompatibilityTracker.indicateOptimisticFixpoint(); 2840 } 2841 2842 /// Modify the IR based on the KernelInfoState as the fixpoint iteration is 2843 /// finished now. 2844 ChangeStatus manifest(Attributor &A) override { 2845 // If we are not looking at a kernel with __kmpc_target_init and 2846 // __kmpc_target_deinit call we cannot actually manifest the information. 2847 if (!KernelInitCB || !KernelDeinitCB) 2848 return ChangeStatus::UNCHANGED; 2849 2850 // Known SPMD-mode kernels need no manifest changes. 2851 if (SPMDCompatibilityTracker.isKnown()) 2852 return ChangeStatus::UNCHANGED; 2853 2854 // If we can we change the execution mode to SPMD-mode otherwise we build a 2855 // custom state machine. 2856 if (!changeToSPMDMode(A)) 2857 buildCustomStateMachine(A); 2858 2859 return ChangeStatus::CHANGED; 2860 } 2861 2862 bool changeToSPMDMode(Attributor &A) { 2863 if (!SPMDCompatibilityTracker.isAssumed()) { 2864 for (Instruction *NonCompatibleI : SPMDCompatibilityTracker) { 2865 if (!NonCompatibleI) 2866 continue; 2867 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 2868 ORA << "Kernel will be executed in generic-mode due to this " 2869 "potential side-effect"; 2870 if (auto *CI = dyn_cast<CallBase>(NonCompatibleI)) { 2871 if (Function *F = CI->getCalledFunction()) 2872 ORA << ", consider to add " 2873 "`__attribute__((assume(\"ompx_spmd_amenable\")))`" 2874 " to the called function '" 2875 << F->getName() << "'"; 2876 } 2877 return ORA << "."; 2878 }; 2879 A.emitRemark<OptimizationRemarkAnalysis>( 2880 NonCompatibleI, "OpenMPKernelNonSPMDMode", Remark); 2881 2882 LLVM_DEBUG(dbgs() << TAG << "SPMD-incompatible side-effect: " 2883 << *NonCompatibleI << "\n"); 2884 } 2885 2886 return false; 2887 } 2888 2889 // Adjust the global exec mode flag that tells the runtime what mode this 2890 // kernel is executed in. 2891 Function *Kernel = getAnchorScope(); 2892 GlobalVariable *ExecMode = Kernel->getParent()->getGlobalVariable( 2893 (Kernel->getName() + "_exec_mode").str()); 2894 assert(ExecMode && "Kernel without exec mode?"); 2895 assert(ExecMode->getInitializer() && 2896 ExecMode->getInitializer()->isOneValue() && 2897 "Initially non-SPMD kernel has SPMD exec mode!"); 2898 ExecMode->setInitializer( 2899 ConstantInt::get(ExecMode->getInitializer()->getType(), 0)); 2900 2901 // Next rewrite the init and deinit calls to indicate we use SPMD-mode now. 2902 const int InitIsSPMDArgNo = 1; 2903 const int DeinitIsSPMDArgNo = 1; 2904 const int InitUseStateMachineArgNo = 2; 2905 2906 auto &Ctx = getAnchorValue().getContext(); 2907 A.changeUseAfterManifest(KernelInitCB->getArgOperandUse(InitIsSPMDArgNo), 2908 *ConstantInt::getBool(Ctx, 1)); 2909 A.changeUseAfterManifest( 2910 KernelInitCB->getArgOperandUse(InitUseStateMachineArgNo), 2911 *ConstantInt::getBool(Ctx, 0)); 2912 A.changeUseAfterManifest( 2913 KernelDeinitCB->getArgOperandUse(DeinitIsSPMDArgNo), 2914 *ConstantInt::getBool(Ctx, 1)); 2915 ++NumOpenMPTargetRegionKernelsSPMD; 2916 2917 auto Remark = [&](OptimizationRemark OR) { 2918 return OR << "Generic-mode kernel is changed to SPMD-mode."; 2919 }; 2920 A.emitRemark<OptimizationRemark>(KernelInitCB, "OpenMPKernelSPMDMode", 2921 Remark); 2922 return true; 2923 }; 2924 2925 ChangeStatus buildCustomStateMachine(Attributor &A) { 2926 assert(ReachedKnownParallelRegions.isValidState() && 2927 "Custom state machine with invalid parallel region states?"); 2928 2929 const int InitIsSPMDArgNo = 1; 2930 const int InitUseStateMachineArgNo = 2; 2931 2932 // Check if the current configuration is non-SPMD and generic state machine. 2933 // If we already have SPMD mode or a custom state machine we do not need to 2934 // go any further. If it is anything but a constant something is weird and 2935 // we give up. 2936 ConstantInt *UseStateMachine = dyn_cast<ConstantInt>( 2937 KernelInitCB->getArgOperand(InitUseStateMachineArgNo)); 2938 ConstantInt *IsSPMD = 2939 dyn_cast<ConstantInt>(KernelInitCB->getArgOperand(InitIsSPMDArgNo)); 2940 2941 // If we are stuck with generic mode, try to create a custom device (=GPU) 2942 // state machine which is specialized for the parallel regions that are 2943 // reachable by the kernel. 2944 if (!UseStateMachine || UseStateMachine->isZero() || !IsSPMD || 2945 !IsSPMD->isZero()) 2946 return ChangeStatus::UNCHANGED; 2947 2948 // If not SPMD mode, indicate we use a custom state machine now. 2949 auto &Ctx = getAnchorValue().getContext(); 2950 auto *FalseVal = ConstantInt::getBool(Ctx, 0); 2951 A.changeUseAfterManifest( 2952 KernelInitCB->getArgOperandUse(InitUseStateMachineArgNo), *FalseVal); 2953 2954 // If we don't actually need a state machine we are done here. This can 2955 // happen if there simply are no parallel regions. In the resulting kernel 2956 // all worker threads will simply exit right away, leaving the main thread 2957 // to do the work alone. 2958 if (ReachedKnownParallelRegions.empty() && 2959 ReachedUnknownParallelRegions.empty()) { 2960 ++NumOpenMPTargetRegionKernelsWithoutStateMachine; 2961 2962 auto Remark = [&](OptimizationRemark OR) { 2963 return OR << "Generic-mode kernel is executed without state machine " 2964 "(good)"; 2965 }; 2966 A.emitRemark<OptimizationRemark>( 2967 KernelInitCB, "OpenMPKernelWithoutStateMachine", Remark); 2968 2969 return ChangeStatus::CHANGED; 2970 } 2971 2972 // Keep track in the statistics of our new shiny custom state machine. 2973 if (ReachedUnknownParallelRegions.empty()) { 2974 ++NumOpenMPTargetRegionKernelsCustomStateMachineWithoutFallback; 2975 2976 auto Remark = [&](OptimizationRemark OR) { 2977 return OR << "Generic-mode kernel is executed with a customized state " 2978 "machine [" 2979 << ore::NV("ParallelRegions", 2980 ReachedKnownParallelRegions.size()) 2981 << " known parallel regions] (good)."; 2982 }; 2983 A.emitRemark<OptimizationRemark>( 2984 KernelInitCB, "OpenMPKernelWithCustomizedStateMachine", Remark); 2985 } else { 2986 ++NumOpenMPTargetRegionKernelsCustomStateMachineWithFallback; 2987 2988 auto Remark = [&](OptimizationRemark OR) { 2989 return OR << "Generic-mode kernel is executed with a customized state " 2990 "machine that requires a fallback [" 2991 << ore::NV("ParallelRegions", 2992 ReachedKnownParallelRegions.size()) 2993 << " known parallel regions, " 2994 << ore::NV("UnknownParallelRegions", 2995 ReachedUnknownParallelRegions.size()) 2996 << " unkown parallel regions] (bad)."; 2997 }; 2998 A.emitRemark<OptimizationRemark>( 2999 KernelInitCB, "OpenMPKernelWithCustomizedStateMachineAndFallback", 3000 Remark); 3001 3002 // Tell the user why we ended up with a fallback. 3003 for (CallBase *UnknownParallelRegionCB : ReachedUnknownParallelRegions) { 3004 if (!UnknownParallelRegionCB) 3005 continue; 3006 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 3007 return ORA 3008 << "State machine fallback caused by this call. If it is a " 3009 "false positive, use " 3010 "`__attribute__((assume(\"omp_no_openmp\")))` " 3011 "(or \"omp_no_parallelism\")."; 3012 }; 3013 A.emitRemark<OptimizationRemarkAnalysis>( 3014 UnknownParallelRegionCB, 3015 "OpenMPKernelWithCustomizedStateMachineAndFallback", Remark); 3016 } 3017 } 3018 3019 // Create all the blocks: 3020 // 3021 // InitCB = __kmpc_target_init(...) 3022 // bool IsWorker = InitCB >= 0; 3023 // if (IsWorker) { 3024 // SMBeginBB: __kmpc_barrier_simple_spmd(...); 3025 // void *WorkFn; 3026 // bool Active = __kmpc_kernel_parallel(&WorkFn); 3027 // if (!WorkFn) return; 3028 // SMIsActiveCheckBB: if (Active) { 3029 // SMIfCascadeCurrentBB: if (WorkFn == <ParFn0>) 3030 // ParFn0(...); 3031 // SMIfCascadeCurrentBB: else if (WorkFn == <ParFn1>) 3032 // ParFn1(...); 3033 // ... 3034 // SMIfCascadeCurrentBB: else 3035 // ((WorkFnTy*)WorkFn)(...); 3036 // SMEndParallelBB: __kmpc_kernel_end_parallel(...); 3037 // } 3038 // SMDoneBB: __kmpc_barrier_simple_spmd(...); 3039 // goto SMBeginBB; 3040 // } 3041 // UserCodeEntryBB: // user code 3042 // __kmpc_target_deinit(...) 3043 // 3044 Function *Kernel = getAssociatedFunction(); 3045 assert(Kernel && "Expected an associated function!"); 3046 3047 BasicBlock *InitBB = KernelInitCB->getParent(); 3048 BasicBlock *UserCodeEntryBB = InitBB->splitBasicBlock( 3049 KernelInitCB->getNextNode(), "thread.user_code.check"); 3050 BasicBlock *StateMachineBeginBB = BasicBlock::Create( 3051 Ctx, "worker_state_machine.begin", Kernel, UserCodeEntryBB); 3052 BasicBlock *StateMachineFinishedBB = BasicBlock::Create( 3053 Ctx, "worker_state_machine.finished", Kernel, UserCodeEntryBB); 3054 BasicBlock *StateMachineIsActiveCheckBB = BasicBlock::Create( 3055 Ctx, "worker_state_machine.is_active.check", Kernel, UserCodeEntryBB); 3056 BasicBlock *StateMachineIfCascadeCurrentBB = 3057 BasicBlock::Create(Ctx, "worker_state_machine.parallel_region.check", 3058 Kernel, UserCodeEntryBB); 3059 BasicBlock *StateMachineEndParallelBB = 3060 BasicBlock::Create(Ctx, "worker_state_machine.parallel_region.end", 3061 Kernel, UserCodeEntryBB); 3062 BasicBlock *StateMachineDoneBarrierBB = BasicBlock::Create( 3063 Ctx, "worker_state_machine.done.barrier", Kernel, UserCodeEntryBB); 3064 3065 const DebugLoc &DLoc = KernelInitCB->getDebugLoc(); 3066 ReturnInst::Create(Ctx, StateMachineFinishedBB)->setDebugLoc(DLoc); 3067 3068 InitBB->getTerminator()->eraseFromParent(); 3069 Instruction *IsWorker = 3070 ICmpInst::Create(ICmpInst::ICmp, llvm::CmpInst::ICMP_NE, KernelInitCB, 3071 ConstantInt::get(KernelInitCB->getType(), -1), 3072 "thread.is_worker", InitBB); 3073 IsWorker->setDebugLoc(DLoc); 3074 BranchInst::Create(StateMachineBeginBB, UserCodeEntryBB, IsWorker, InitBB); 3075 3076 // Create local storage for the work function pointer. 3077 Type *VoidPtrTy = Type::getInt8PtrTy(Ctx); 3078 AllocaInst *WorkFnAI = new AllocaInst(VoidPtrTy, 0, "worker.work_fn.addr", 3079 &Kernel->getEntryBlock().front()); 3080 WorkFnAI->setDebugLoc(DLoc); 3081 3082 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 3083 OMPInfoCache.OMPBuilder.updateToLocation( 3084 OpenMPIRBuilder::LocationDescription( 3085 IRBuilder<>::InsertPoint(StateMachineBeginBB, 3086 StateMachineBeginBB->end()), 3087 DLoc)); 3088 3089 Value *Ident = KernelInitCB->getArgOperand(0); 3090 Value *GTid = KernelInitCB; 3091 3092 Module &M = *Kernel->getParent(); 3093 FunctionCallee BarrierFn = 3094 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( 3095 M, OMPRTL___kmpc_barrier_simple_spmd); 3096 CallInst::Create(BarrierFn, {Ident, GTid}, "", StateMachineBeginBB) 3097 ->setDebugLoc(DLoc); 3098 3099 FunctionCallee KernelParallelFn = 3100 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( 3101 M, OMPRTL___kmpc_kernel_parallel); 3102 Instruction *IsActiveWorker = CallInst::Create( 3103 KernelParallelFn, {WorkFnAI}, "worker.is_active", StateMachineBeginBB); 3104 IsActiveWorker->setDebugLoc(DLoc); 3105 Instruction *WorkFn = new LoadInst(VoidPtrTy, WorkFnAI, "worker.work_fn", 3106 StateMachineBeginBB); 3107 WorkFn->setDebugLoc(DLoc); 3108 3109 FunctionType *ParallelRegionFnTy = FunctionType::get( 3110 Type::getVoidTy(Ctx), {Type::getInt16Ty(Ctx), Type::getInt32Ty(Ctx)}, 3111 false); 3112 Value *WorkFnCast = BitCastInst::CreatePointerBitCastOrAddrSpaceCast( 3113 WorkFn, ParallelRegionFnTy->getPointerTo(), "worker.work_fn.addr_cast", 3114 StateMachineBeginBB); 3115 3116 Instruction *IsDone = 3117 ICmpInst::Create(ICmpInst::ICmp, llvm::CmpInst::ICMP_EQ, WorkFn, 3118 Constant::getNullValue(VoidPtrTy), "worker.is_done", 3119 StateMachineBeginBB); 3120 IsDone->setDebugLoc(DLoc); 3121 BranchInst::Create(StateMachineFinishedBB, StateMachineIsActiveCheckBB, 3122 IsDone, StateMachineBeginBB) 3123 ->setDebugLoc(DLoc); 3124 3125 BranchInst::Create(StateMachineIfCascadeCurrentBB, 3126 StateMachineDoneBarrierBB, IsActiveWorker, 3127 StateMachineIsActiveCheckBB) 3128 ->setDebugLoc(DLoc); 3129 3130 Value *ZeroArg = 3131 Constant::getNullValue(ParallelRegionFnTy->getParamType(0)); 3132 3133 // Now that we have most of the CFG skeleton it is time for the if-cascade 3134 // that checks the function pointer we got from the runtime against the 3135 // parallel regions we expect, if there are any. 3136 for (int i = 0, e = ReachedKnownParallelRegions.size(); i < e; ++i) { 3137 auto *ParallelRegion = ReachedKnownParallelRegions[i]; 3138 BasicBlock *PRExecuteBB = BasicBlock::Create( 3139 Ctx, "worker_state_machine.parallel_region.execute", Kernel, 3140 StateMachineEndParallelBB); 3141 CallInst::Create(ParallelRegion, {ZeroArg, GTid}, "", PRExecuteBB) 3142 ->setDebugLoc(DLoc); 3143 BranchInst::Create(StateMachineEndParallelBB, PRExecuteBB) 3144 ->setDebugLoc(DLoc); 3145 3146 BasicBlock *PRNextBB = 3147 BasicBlock::Create(Ctx, "worker_state_machine.parallel_region.check", 3148 Kernel, StateMachineEndParallelBB); 3149 3150 // Check if we need to compare the pointer at all or if we can just 3151 // call the parallel region function. 3152 Value *IsPR; 3153 if (i + 1 < e || !ReachedUnknownParallelRegions.empty()) { 3154 Instruction *CmpI = ICmpInst::Create( 3155 ICmpInst::ICmp, llvm::CmpInst::ICMP_EQ, WorkFnCast, ParallelRegion, 3156 "worker.check_parallel_region", StateMachineIfCascadeCurrentBB); 3157 CmpI->setDebugLoc(DLoc); 3158 IsPR = CmpI; 3159 } else { 3160 IsPR = ConstantInt::getTrue(Ctx); 3161 } 3162 3163 BranchInst::Create(PRExecuteBB, PRNextBB, IsPR, 3164 StateMachineIfCascadeCurrentBB) 3165 ->setDebugLoc(DLoc); 3166 StateMachineIfCascadeCurrentBB = PRNextBB; 3167 } 3168 3169 // At the end of the if-cascade we place the indirect function pointer call 3170 // in case we might need it, that is if there can be parallel regions we 3171 // have not handled in the if-cascade above. 3172 if (!ReachedUnknownParallelRegions.empty()) { 3173 StateMachineIfCascadeCurrentBB->setName( 3174 "worker_state_machine.parallel_region.fallback.execute"); 3175 CallInst::Create(ParallelRegionFnTy, WorkFnCast, {ZeroArg, GTid}, "", 3176 StateMachineIfCascadeCurrentBB) 3177 ->setDebugLoc(DLoc); 3178 } 3179 BranchInst::Create(StateMachineEndParallelBB, 3180 StateMachineIfCascadeCurrentBB) 3181 ->setDebugLoc(DLoc); 3182 3183 CallInst::Create(OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( 3184 M, OMPRTL___kmpc_kernel_end_parallel), 3185 {}, "", StateMachineEndParallelBB) 3186 ->setDebugLoc(DLoc); 3187 BranchInst::Create(StateMachineDoneBarrierBB, StateMachineEndParallelBB) 3188 ->setDebugLoc(DLoc); 3189 3190 CallInst::Create(BarrierFn, {Ident, GTid}, "", StateMachineDoneBarrierBB) 3191 ->setDebugLoc(DLoc); 3192 BranchInst::Create(StateMachineBeginBB, StateMachineDoneBarrierBB) 3193 ->setDebugLoc(DLoc); 3194 3195 return ChangeStatus::CHANGED; 3196 } 3197 3198 /// Fixpoint iteration update function. Will be called every time a dependence 3199 /// changed its state (and in the beginning). 3200 ChangeStatus updateImpl(Attributor &A) override { 3201 KernelInfoState StateBefore = getState(); 3202 3203 // Callback to check a read/write instruction. 3204 auto CheckRWInst = [&](Instruction &I) { 3205 // We handle calls later. 3206 if (isa<CallBase>(I)) 3207 return true; 3208 // We only care about write effects. 3209 if (!I.mayWriteToMemory()) 3210 return true; 3211 if (auto *SI = dyn_cast<StoreInst>(&I)) { 3212 SmallVector<const Value *> Objects; 3213 getUnderlyingObjects(SI->getPointerOperand(), Objects); 3214 if (llvm::all_of(Objects, 3215 [](const Value *Obj) { return isa<AllocaInst>(Obj); })) 3216 return true; 3217 } 3218 // For now we give up on everything but stores. 3219 SPMDCompatibilityTracker.insert(&I); 3220 return true; 3221 }; 3222 3223 bool UsedAssumedInformationInCheckRWInst = false; 3224 if (!A.checkForAllReadWriteInstructions( 3225 CheckRWInst, *this, UsedAssumedInformationInCheckRWInst)) 3226 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 3227 3228 if (!IsKernelEntry) 3229 updateReachingKernelEntries(A); 3230 3231 // Callback to check a call instruction. 3232 auto CheckCallInst = [&](Instruction &I) { 3233 auto &CB = cast<CallBase>(I); 3234 auto &CBAA = A.getAAFor<AAKernelInfo>( 3235 *this, IRPosition::callsite_function(CB), DepClassTy::OPTIONAL); 3236 if (CBAA.getState().isValidState()) 3237 getState() ^= CBAA.getState(); 3238 return true; 3239 }; 3240 3241 bool UsedAssumedInformationInCheckCallInst = false; 3242 if (!A.checkForAllCallLikeInstructions( 3243 CheckCallInst, *this, UsedAssumedInformationInCheckCallInst)) 3244 return indicatePessimisticFixpoint(); 3245 3246 return StateBefore == getState() ? ChangeStatus::UNCHANGED 3247 : ChangeStatus::CHANGED; 3248 } 3249 3250 private: 3251 /// Update info regarding reaching kernels. 3252 void updateReachingKernelEntries(Attributor &A) { 3253 auto PredCallSite = [&](AbstractCallSite ACS) { 3254 Function *Caller = ACS.getInstruction()->getFunction(); 3255 3256 assert(Caller && "Caller is nullptr"); 3257 3258 auto &CAA = 3259 A.getOrCreateAAFor<AAKernelInfo>(IRPosition::function(*Caller)); 3260 if (CAA.ReachingKernelEntries.isValidState()) { 3261 ReachingKernelEntries ^= CAA.ReachingKernelEntries; 3262 return true; 3263 } 3264 3265 // We lost track of the caller of the associated function, any kernel 3266 // could reach now. 3267 ReachingKernelEntries.indicatePessimisticFixpoint(); 3268 3269 return true; 3270 }; 3271 3272 bool AllCallSitesKnown; 3273 if (!A.checkForAllCallSites(PredCallSite, *this, 3274 true /* RequireAllCallSites */, 3275 AllCallSitesKnown)) 3276 ReachingKernelEntries.indicatePessimisticFixpoint(); 3277 } 3278 }; 3279 3280 /// The call site kernel info abstract attribute, basically, what can we say 3281 /// about a call site with regards to the KernelInfoState. For now this simply 3282 /// forwards the information from the callee. 3283 struct AAKernelInfoCallSite : AAKernelInfo { 3284 AAKernelInfoCallSite(const IRPosition &IRP, Attributor &A) 3285 : AAKernelInfo(IRP, A) {} 3286 3287 /// See AbstractAttribute::initialize(...). 3288 void initialize(Attributor &A) override { 3289 AAKernelInfo::initialize(A); 3290 3291 CallBase &CB = cast<CallBase>(getAssociatedValue()); 3292 Function *Callee = getAssociatedFunction(); 3293 3294 // Helper to lookup an assumption string. 3295 auto HasAssumption = [](Function *Fn, StringRef AssumptionStr) { 3296 return Fn && hasAssumption(*Fn, AssumptionStr); 3297 }; 3298 3299 // Check for SPMD-mode assumptions. 3300 if (HasAssumption(Callee, "ompx_spmd_amenable")) 3301 SPMDCompatibilityTracker.indicateOptimisticFixpoint(); 3302 3303 // First weed out calls we do not care about, that is readonly/readnone 3304 // calls, intrinsics, and "no_openmp" calls. Neither of these can reach a 3305 // parallel region or anything else we are looking for. 3306 if (!CB.mayWriteToMemory() || isa<IntrinsicInst>(CB)) { 3307 indicateOptimisticFixpoint(); 3308 return; 3309 } 3310 3311 // Next we check if we know the callee. If it is a known OpenMP function 3312 // we will handle them explicitly in the switch below. If it is not, we 3313 // will use an AAKernelInfo object on the callee to gather information and 3314 // merge that into the current state. The latter happens in the updateImpl. 3315 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 3316 const auto &It = OMPInfoCache.RuntimeFunctionIDMap.find(Callee); 3317 if (It == OMPInfoCache.RuntimeFunctionIDMap.end()) { 3318 // Unknown caller or declarations are not analyzable, we give up. 3319 if (!Callee || !A.isFunctionIPOAmendable(*Callee)) { 3320 3321 // Unknown callees might contain parallel regions, except if they have 3322 // an appropriate assumption attached. 3323 if (!(HasAssumption(Callee, "omp_no_openmp") || 3324 HasAssumption(Callee, "omp_no_parallelism"))) 3325 ReachedUnknownParallelRegions.insert(&CB); 3326 3327 // If SPMDCompatibilityTracker is not fixed, we need to give up on the 3328 // idea we can run something unknown in SPMD-mode. 3329 if (!SPMDCompatibilityTracker.isAtFixpoint()) 3330 SPMDCompatibilityTracker.insert(&CB); 3331 3332 // We have updated the state for this unknown call properly, there won't 3333 // be any change so we indicate a fixpoint. 3334 indicateOptimisticFixpoint(); 3335 } 3336 // If the callee is known and can be used in IPO, we will update the state 3337 // based on the callee state in updateImpl. 3338 return; 3339 } 3340 3341 const unsigned int WrapperFunctionArgNo = 6; 3342 RuntimeFunction RF = It->getSecond(); 3343 switch (RF) { 3344 // All the functions we know are compatible with SPMD mode. 3345 case OMPRTL___kmpc_is_spmd_exec_mode: 3346 case OMPRTL___kmpc_for_static_fini: 3347 case OMPRTL___kmpc_global_thread_num: 3348 case OMPRTL___kmpc_single: 3349 case OMPRTL___kmpc_end_single: 3350 case OMPRTL___kmpc_master: 3351 case OMPRTL___kmpc_end_master: 3352 case OMPRTL___kmpc_barrier: 3353 break; 3354 case OMPRTL___kmpc_for_static_init_4: 3355 case OMPRTL___kmpc_for_static_init_4u: 3356 case OMPRTL___kmpc_for_static_init_8: 3357 case OMPRTL___kmpc_for_static_init_8u: { 3358 // Check the schedule and allow static schedule in SPMD mode. 3359 unsigned ScheduleArgOpNo = 2; 3360 auto *ScheduleTypeCI = 3361 dyn_cast<ConstantInt>(CB.getArgOperand(ScheduleArgOpNo)); 3362 unsigned ScheduleTypeVal = 3363 ScheduleTypeCI ? ScheduleTypeCI->getZExtValue() : 0; 3364 switch (OMPScheduleType(ScheduleTypeVal)) { 3365 case OMPScheduleType::Static: 3366 case OMPScheduleType::StaticChunked: 3367 case OMPScheduleType::Distribute: 3368 case OMPScheduleType::DistributeChunked: 3369 break; 3370 default: 3371 SPMDCompatibilityTracker.insert(&CB); 3372 break; 3373 }; 3374 } break; 3375 case OMPRTL___kmpc_target_init: 3376 KernelInitCB = &CB; 3377 break; 3378 case OMPRTL___kmpc_target_deinit: 3379 KernelDeinitCB = &CB; 3380 break; 3381 case OMPRTL___kmpc_parallel_51: 3382 if (auto *ParallelRegion = dyn_cast<Function>( 3383 CB.getArgOperand(WrapperFunctionArgNo)->stripPointerCasts())) { 3384 ReachedKnownParallelRegions.insert(ParallelRegion); 3385 break; 3386 } 3387 // The condition above should usually get the parallel region function 3388 // pointer and record it. In the off chance it doesn't we assume the 3389 // worst. 3390 ReachedUnknownParallelRegions.insert(&CB); 3391 break; 3392 case OMPRTL___kmpc_omp_task: 3393 // We do not look into tasks right now, just give up. 3394 SPMDCompatibilityTracker.insert(&CB); 3395 ReachedUnknownParallelRegions.insert(&CB); 3396 break; 3397 default: 3398 // Unknown OpenMP runtime calls cannot be executed in SPMD-mode, 3399 // generally. 3400 SPMDCompatibilityTracker.insert(&CB); 3401 break; 3402 } 3403 // All other OpenMP runtime calls will not reach parallel regions so they 3404 // can be safely ignored for now. Since it is a known OpenMP runtime call we 3405 // have now modeled all effects and there is no need for any update. 3406 indicateOptimisticFixpoint(); 3407 } 3408 3409 ChangeStatus updateImpl(Attributor &A) override { 3410 // TODO: Once we have call site specific value information we can provide 3411 // call site specific liveness information and then it makes 3412 // sense to specialize attributes for call sites arguments instead of 3413 // redirecting requests to the callee argument. 3414 Function *F = getAssociatedFunction(); 3415 const IRPosition &FnPos = IRPosition::function(*F); 3416 auto &FnAA = A.getAAFor<AAKernelInfo>(*this, FnPos, DepClassTy::REQUIRED); 3417 if (getState() == FnAA.getState()) 3418 return ChangeStatus::UNCHANGED; 3419 getState() = FnAA.getState(); 3420 return ChangeStatus::CHANGED; 3421 } 3422 }; 3423 3424 struct AAFoldRuntimeCall 3425 : public StateWrapper<BooleanState, AbstractAttribute> { 3426 using Base = StateWrapper<BooleanState, AbstractAttribute>; 3427 3428 AAFoldRuntimeCall(const IRPosition &IRP, Attributor &A) : Base(IRP) {} 3429 3430 /// Statistics are tracked as part of manifest for now. 3431 void trackStatistics() const override {} 3432 3433 /// Create an abstract attribute biew for the position \p IRP. 3434 static AAFoldRuntimeCall &createForPosition(const IRPosition &IRP, 3435 Attributor &A); 3436 3437 /// See AbstractAttribute::getName() 3438 const std::string getName() const override { return "AAFoldRuntimeCall"; } 3439 3440 /// See AbstractAttribute::getIdAddr() 3441 const char *getIdAddr() const override { return &ID; } 3442 3443 /// This function should return true if the type of the \p AA is 3444 /// AAFoldRuntimeCall 3445 static bool classof(const AbstractAttribute *AA) { 3446 return (AA->getIdAddr() == &ID); 3447 } 3448 3449 static const char ID; 3450 }; 3451 3452 struct AAFoldRuntimeCallCallSiteReturned : AAFoldRuntimeCall { 3453 AAFoldRuntimeCallCallSiteReturned(const IRPosition &IRP, Attributor &A) 3454 : AAFoldRuntimeCall(IRP, A) {} 3455 3456 /// See AbstractAttribute::getAsStr() 3457 const std::string getAsStr() const override { 3458 if (!isValidState()) 3459 return "<invalid>"; 3460 3461 std::string Str("simplified value: "); 3462 3463 if (!SimplifiedValue.hasValue()) 3464 return Str + std::string("none"); 3465 3466 if (!SimplifiedValue.getValue()) 3467 return Str + std::string("nullptr"); 3468 3469 if (ConstantInt *CI = dyn_cast<ConstantInt>(SimplifiedValue.getValue())) 3470 return Str + std::to_string(CI->getSExtValue()); 3471 3472 return Str + std::string("unknown"); 3473 } 3474 3475 void initialize(Attributor &A) override { 3476 Function *Callee = getAssociatedFunction(); 3477 3478 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 3479 const auto &It = OMPInfoCache.RuntimeFunctionIDMap.find(Callee); 3480 assert(It != OMPInfoCache.RuntimeFunctionIDMap.end() && 3481 "Expected a known OpenMP runtime function"); 3482 3483 RFKind = It->getSecond(); 3484 3485 CallBase &CB = cast<CallBase>(getAssociatedValue()); 3486 A.registerSimplificationCallback( 3487 IRPosition::callsite_returned(CB), 3488 [&](const IRPosition &IRP, const AbstractAttribute *AA, 3489 bool &UsedAssumedInformation) -> Optional<Value *> { 3490 assert((isValidState() || (SimplifiedValue.hasValue() && 3491 SimplifiedValue.getValue() == nullptr)) && 3492 "Unexpected invalid state!"); 3493 3494 if (!isAtFixpoint()) { 3495 UsedAssumedInformation = true; 3496 if (AA) 3497 A.recordDependence(*this, *AA, DepClassTy::OPTIONAL); 3498 } 3499 return SimplifiedValue; 3500 }); 3501 } 3502 3503 ChangeStatus updateImpl(Attributor &A) override { 3504 ChangeStatus Changed = ChangeStatus::UNCHANGED; 3505 3506 switch (RFKind) { 3507 case OMPRTL___kmpc_is_spmd_exec_mode: 3508 Changed |= foldIsSPMDExecMode(A); 3509 break; 3510 default: 3511 llvm_unreachable("Unhandled OpenMP runtime function!"); 3512 } 3513 3514 return Changed; 3515 } 3516 3517 ChangeStatus manifest(Attributor &A) override { 3518 ChangeStatus Changed = ChangeStatus::UNCHANGED; 3519 3520 if (SimplifiedValue.hasValue() && SimplifiedValue.getValue()) { 3521 Instruction &CB = *getCtxI(); 3522 A.changeValueAfterManifest(CB, **SimplifiedValue); 3523 A.deleteAfterManifest(CB); 3524 Changed = ChangeStatus::CHANGED; 3525 } 3526 3527 return Changed; 3528 } 3529 3530 ChangeStatus indicatePessimisticFixpoint() override { 3531 SimplifiedValue = nullptr; 3532 return AAFoldRuntimeCall::indicatePessimisticFixpoint(); 3533 } 3534 3535 private: 3536 /// Fold __kmpc_is_spmd_exec_mode into a constant if possible. 3537 ChangeStatus foldIsSPMDExecMode(Attributor &A) { 3538 Optional<Value *> SimplifiedValueBefore = SimplifiedValue; 3539 3540 unsigned AssumedSPMDCount = 0, KnownSPMDCount = 0; 3541 unsigned AssumedNonSPMDCount = 0, KnownNonSPMDCount = 0; 3542 auto &CallerKernelInfoAA = A.getAAFor<AAKernelInfo>( 3543 *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED); 3544 3545 if (!CallerKernelInfoAA.ReachingKernelEntries.isValidState()) 3546 return indicatePessimisticFixpoint(); 3547 3548 for (Kernel K : CallerKernelInfoAA.ReachingKernelEntries) { 3549 auto &AA = A.getAAFor<AAKernelInfo>(*this, IRPosition::function(*K), 3550 DepClassTy::REQUIRED); 3551 3552 if (!AA.isValidState()) { 3553 SimplifiedValue = nullptr; 3554 return indicatePessimisticFixpoint(); 3555 } 3556 3557 if (AA.SPMDCompatibilityTracker.isAssumed()) { 3558 if (AA.SPMDCompatibilityTracker.isAtFixpoint()) 3559 ++KnownSPMDCount; 3560 else 3561 ++AssumedSPMDCount; 3562 } else { 3563 if (AA.SPMDCompatibilityTracker.isAtFixpoint()) 3564 ++KnownNonSPMDCount; 3565 else 3566 ++AssumedNonSPMDCount; 3567 } 3568 } 3569 3570 if (KnownSPMDCount && KnownNonSPMDCount) 3571 return indicatePessimisticFixpoint(); 3572 3573 if (AssumedSPMDCount && AssumedNonSPMDCount) 3574 return indicatePessimisticFixpoint(); 3575 3576 auto &Ctx = getAnchorValue().getContext(); 3577 if (KnownSPMDCount || AssumedSPMDCount) { 3578 assert(KnownNonSPMDCount == 0 && AssumedNonSPMDCount == 0 && 3579 "Expected only SPMD kernels!"); 3580 // All reaching kernels are in SPMD mode. Update all function calls to 3581 // __kmpc_is_spmd_exec_mode to 1. 3582 SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), true); 3583 } else { 3584 assert(KnownSPMDCount == 0 && AssumedSPMDCount == 0 && 3585 "Expected only non-SPMD kernels!"); 3586 // All reaching kernels are in non-SPMD mode. Update all function 3587 // calls to __kmpc_is_spmd_exec_mode to 0. 3588 SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), false); 3589 } 3590 3591 return SimplifiedValue == SimplifiedValueBefore ? ChangeStatus::UNCHANGED 3592 : ChangeStatus::CHANGED; 3593 } 3594 3595 /// An optional value the associated value is assumed to fold to. That is, we 3596 /// assume the associated value (which is a call) can be replaced by this 3597 /// simplified value. 3598 Optional<Value *> SimplifiedValue; 3599 3600 /// The runtime function kind of the callee of the associated call site. 3601 RuntimeFunction RFKind; 3602 }; 3603 3604 } // namespace 3605 3606 void OpenMPOpt::registerAAs(bool IsModulePass) { 3607 if (SCC.empty()) 3608 3609 return; 3610 if (IsModulePass) { 3611 // Ensure we create the AAKernelInfo AAs first and without triggering an 3612 // update. This will make sure we register all value simplification 3613 // callbacks before any other AA has the chance to create an AAValueSimplify 3614 // or similar. 3615 for (Function *Kernel : OMPInfoCache.Kernels) 3616 A.getOrCreateAAFor<AAKernelInfo>( 3617 IRPosition::function(*Kernel), /* QueryingAA */ nullptr, 3618 DepClassTy::NONE, /* ForceUpdate */ false, 3619 /* UpdateAfterInit */ false); 3620 3621 auto &IsSPMDRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_is_spmd_exec_mode]; 3622 IsSPMDRFI.foreachUse(SCC, [&](Use &U, Function &) { 3623 CallInst *CI = OpenMPOpt::getCallIfRegularCall(U, &IsSPMDRFI); 3624 if (!CI) 3625 return false; 3626 A.getOrCreateAAFor<AAFoldRuntimeCall>( 3627 IRPosition::callsite_returned(*CI), /* QueryingAA */ nullptr, 3628 DepClassTy::NONE, /* ForceUpdate */ false, 3629 /* UpdateAfterInit */ false); 3630 return false; 3631 }); 3632 } 3633 3634 // Create CallSite AA for all Getters. 3635 for (int Idx = 0; Idx < OMPInfoCache.ICVs.size() - 1; ++Idx) { 3636 auto ICVInfo = OMPInfoCache.ICVs[static_cast<InternalControlVar>(Idx)]; 3637 3638 auto &GetterRFI = OMPInfoCache.RFIs[ICVInfo.Getter]; 3639 3640 auto CreateAA = [&](Use &U, Function &Caller) { 3641 CallInst *CI = OpenMPOpt::getCallIfRegularCall(U, &GetterRFI); 3642 if (!CI) 3643 return false; 3644 3645 auto &CB = cast<CallBase>(*CI); 3646 3647 IRPosition CBPos = IRPosition::callsite_function(CB); 3648 A.getOrCreateAAFor<AAICVTracker>(CBPos); 3649 return false; 3650 }; 3651 3652 GetterRFI.foreachUse(SCC, CreateAA); 3653 } 3654 auto &GlobalizationRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared]; 3655 auto CreateAA = [&](Use &U, Function &F) { 3656 A.getOrCreateAAFor<AAHeapToShared>(IRPosition::function(F)); 3657 return false; 3658 }; 3659 GlobalizationRFI.foreachUse(SCC, CreateAA); 3660 3661 // Create an ExecutionDomain AA for every function and a HeapToStack AA for 3662 // every function if there is a device kernel. 3663 for (auto *F : SCC) { 3664 if (!F->isDeclaration()) 3665 A.getOrCreateAAFor<AAExecutionDomain>(IRPosition::function(*F)); 3666 if (isOpenMPDevice(M)) 3667 A.getOrCreateAAFor<AAHeapToStack>(IRPosition::function(*F)); 3668 } 3669 } 3670 3671 const char AAICVTracker::ID = 0; 3672 const char AAKernelInfo::ID = 0; 3673 const char AAExecutionDomain::ID = 0; 3674 const char AAHeapToShared::ID = 0; 3675 const char AAFoldRuntimeCall::ID = 0; 3676 3677 AAICVTracker &AAICVTracker::createForPosition(const IRPosition &IRP, 3678 Attributor &A) { 3679 AAICVTracker *AA = nullptr; 3680 switch (IRP.getPositionKind()) { 3681 case IRPosition::IRP_INVALID: 3682 case IRPosition::IRP_FLOAT: 3683 case IRPosition::IRP_ARGUMENT: 3684 case IRPosition::IRP_CALL_SITE_ARGUMENT: 3685 llvm_unreachable("ICVTracker can only be created for function position!"); 3686 case IRPosition::IRP_RETURNED: 3687 AA = new (A.Allocator) AAICVTrackerFunctionReturned(IRP, A); 3688 break; 3689 case IRPosition::IRP_CALL_SITE_RETURNED: 3690 AA = new (A.Allocator) AAICVTrackerCallSiteReturned(IRP, A); 3691 break; 3692 case IRPosition::IRP_CALL_SITE: 3693 AA = new (A.Allocator) AAICVTrackerCallSite(IRP, A); 3694 break; 3695 case IRPosition::IRP_FUNCTION: 3696 AA = new (A.Allocator) AAICVTrackerFunction(IRP, A); 3697 break; 3698 } 3699 3700 return *AA; 3701 } 3702 3703 AAExecutionDomain &AAExecutionDomain::createForPosition(const IRPosition &IRP, 3704 Attributor &A) { 3705 AAExecutionDomainFunction *AA = nullptr; 3706 switch (IRP.getPositionKind()) { 3707 case IRPosition::IRP_INVALID: 3708 case IRPosition::IRP_FLOAT: 3709 case IRPosition::IRP_ARGUMENT: 3710 case IRPosition::IRP_CALL_SITE_ARGUMENT: 3711 case IRPosition::IRP_RETURNED: 3712 case IRPosition::IRP_CALL_SITE_RETURNED: 3713 case IRPosition::IRP_CALL_SITE: 3714 llvm_unreachable( 3715 "AAExecutionDomain can only be created for function position!"); 3716 case IRPosition::IRP_FUNCTION: 3717 AA = new (A.Allocator) AAExecutionDomainFunction(IRP, A); 3718 break; 3719 } 3720 3721 return *AA; 3722 } 3723 3724 AAHeapToShared &AAHeapToShared::createForPosition(const IRPosition &IRP, 3725 Attributor &A) { 3726 AAHeapToSharedFunction *AA = nullptr; 3727 switch (IRP.getPositionKind()) { 3728 case IRPosition::IRP_INVALID: 3729 case IRPosition::IRP_FLOAT: 3730 case IRPosition::IRP_ARGUMENT: 3731 case IRPosition::IRP_CALL_SITE_ARGUMENT: 3732 case IRPosition::IRP_RETURNED: 3733 case IRPosition::IRP_CALL_SITE_RETURNED: 3734 case IRPosition::IRP_CALL_SITE: 3735 llvm_unreachable( 3736 "AAHeapToShared can only be created for function position!"); 3737 case IRPosition::IRP_FUNCTION: 3738 AA = new (A.Allocator) AAHeapToSharedFunction(IRP, A); 3739 break; 3740 } 3741 3742 return *AA; 3743 } 3744 3745 AAKernelInfo &AAKernelInfo::createForPosition(const IRPosition &IRP, 3746 Attributor &A) { 3747 AAKernelInfo *AA = nullptr; 3748 switch (IRP.getPositionKind()) { 3749 case IRPosition::IRP_INVALID: 3750 case IRPosition::IRP_FLOAT: 3751 case IRPosition::IRP_ARGUMENT: 3752 case IRPosition::IRP_RETURNED: 3753 case IRPosition::IRP_CALL_SITE_RETURNED: 3754 case IRPosition::IRP_CALL_SITE_ARGUMENT: 3755 llvm_unreachable("KernelInfo can only be created for function position!"); 3756 case IRPosition::IRP_CALL_SITE: 3757 AA = new (A.Allocator) AAKernelInfoCallSite(IRP, A); 3758 break; 3759 case IRPosition::IRP_FUNCTION: 3760 AA = new (A.Allocator) AAKernelInfoFunction(IRP, A); 3761 break; 3762 } 3763 3764 return *AA; 3765 } 3766 3767 AAFoldRuntimeCall &AAFoldRuntimeCall::createForPosition(const IRPosition &IRP, 3768 Attributor &A) { 3769 AAFoldRuntimeCall *AA = nullptr; 3770 switch (IRP.getPositionKind()) { 3771 case IRPosition::IRP_INVALID: 3772 case IRPosition::IRP_FLOAT: 3773 case IRPosition::IRP_ARGUMENT: 3774 case IRPosition::IRP_RETURNED: 3775 case IRPosition::IRP_FUNCTION: 3776 case IRPosition::IRP_CALL_SITE: 3777 case IRPosition::IRP_CALL_SITE_ARGUMENT: 3778 llvm_unreachable("KernelInfo can only be created for call site position!"); 3779 case IRPosition::IRP_CALL_SITE_RETURNED: 3780 AA = new (A.Allocator) AAFoldRuntimeCallCallSiteReturned(IRP, A); 3781 break; 3782 } 3783 3784 return *AA; 3785 } 3786 3787 PreservedAnalyses OpenMPOptPass::run(Module &M, ModuleAnalysisManager &AM) { 3788 if (!containsOpenMP(M)) 3789 return PreservedAnalyses::all(); 3790 if (DisableOpenMPOptimizations) 3791 return PreservedAnalyses::all(); 3792 3793 FunctionAnalysisManager &FAM = 3794 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 3795 KernelSet Kernels = getDeviceKernels(M); 3796 3797 auto IsCalled = [&](Function &F) { 3798 if (Kernels.contains(&F)) 3799 return true; 3800 for (const User *U : F.users()) 3801 if (!isa<BlockAddress>(U)) 3802 return true; 3803 return false; 3804 }; 3805 3806 auto EmitRemark = [&](Function &F) { 3807 auto &ORE = FAM.getResult<OptimizationRemarkEmitterAnalysis>(F); 3808 ORE.emit([&]() { 3809 OptimizationRemarkAnalysis ORA(DEBUG_TYPE, "InternalizationFailure", &F); 3810 return ORA << "Could not internalize function. " 3811 << "Some optimizations may not be possible."; 3812 }); 3813 }; 3814 3815 // Create internal copies of each function if this is a kernel Module. This 3816 // allows iterprocedural passes to see every call edge. 3817 DenseSet<const Function *> InternalizedFuncs; 3818 if (isOpenMPDevice(M)) 3819 for (Function &F : M) 3820 if (!F.isDeclaration() && !Kernels.contains(&F) && IsCalled(F)) { 3821 if (Attributor::internalizeFunction(F, /* Force */ true)) { 3822 InternalizedFuncs.insert(&F); 3823 } else if (!F.hasLocalLinkage() && !F.hasFnAttribute(Attribute::Cold)) { 3824 EmitRemark(F); 3825 } 3826 } 3827 3828 // Look at every function in the Module unless it was internalized. 3829 SmallVector<Function *, 16> SCC; 3830 for (Function &F : M) 3831 if (!F.isDeclaration() && !InternalizedFuncs.contains(&F)) 3832 SCC.push_back(&F); 3833 3834 if (SCC.empty()) 3835 return PreservedAnalyses::all(); 3836 3837 AnalysisGetter AG(FAM); 3838 3839 auto OREGetter = [&FAM](Function *F) -> OptimizationRemarkEmitter & { 3840 return FAM.getResult<OptimizationRemarkEmitterAnalysis>(*F); 3841 }; 3842 3843 BumpPtrAllocator Allocator; 3844 CallGraphUpdater CGUpdater; 3845 3846 SetVector<Function *> Functions(SCC.begin(), SCC.end()); 3847 OMPInformationCache InfoCache(M, AG, Allocator, /*CGSCC*/ Functions, Kernels); 3848 3849 unsigned MaxFixpointIterations = (isOpenMPDevice(M)) ? 128 : 32; 3850 Attributor A(Functions, InfoCache, CGUpdater, nullptr, true, false, 3851 MaxFixpointIterations, OREGetter, DEBUG_TYPE); 3852 3853 OpenMPOpt OMPOpt(SCC, CGUpdater, OREGetter, InfoCache, A); 3854 bool Changed = OMPOpt.run(true); 3855 if (Changed) 3856 return PreservedAnalyses::none(); 3857 3858 return PreservedAnalyses::all(); 3859 } 3860 3861 PreservedAnalyses OpenMPOptCGSCCPass::run(LazyCallGraph::SCC &C, 3862 CGSCCAnalysisManager &AM, 3863 LazyCallGraph &CG, 3864 CGSCCUpdateResult &UR) { 3865 if (!containsOpenMP(*C.begin()->getFunction().getParent())) 3866 return PreservedAnalyses::all(); 3867 if (DisableOpenMPOptimizations) 3868 return PreservedAnalyses::all(); 3869 3870 SmallVector<Function *, 16> SCC; 3871 // If there are kernels in the module, we have to run on all SCC's. 3872 for (LazyCallGraph::Node &N : C) { 3873 Function *Fn = &N.getFunction(); 3874 SCC.push_back(Fn); 3875 } 3876 3877 if (SCC.empty()) 3878 return PreservedAnalyses::all(); 3879 3880 Module &M = *C.begin()->getFunction().getParent(); 3881 3882 KernelSet Kernels = getDeviceKernels(M); 3883 3884 FunctionAnalysisManager &FAM = 3885 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager(); 3886 3887 AnalysisGetter AG(FAM); 3888 3889 auto OREGetter = [&FAM](Function *F) -> OptimizationRemarkEmitter & { 3890 return FAM.getResult<OptimizationRemarkEmitterAnalysis>(*F); 3891 }; 3892 3893 BumpPtrAllocator Allocator; 3894 CallGraphUpdater CGUpdater; 3895 CGUpdater.initialize(CG, C, AM, UR); 3896 3897 SetVector<Function *> Functions(SCC.begin(), SCC.end()); 3898 OMPInformationCache InfoCache(*(Functions.back()->getParent()), AG, Allocator, 3899 /*CGSCC*/ Functions, Kernels); 3900 3901 unsigned MaxFixpointIterations = (isOpenMPDevice(M)) ? 128 : 32; 3902 Attributor A(Functions, InfoCache, CGUpdater, nullptr, false, true, 3903 MaxFixpointIterations, OREGetter, DEBUG_TYPE); 3904 3905 OpenMPOpt OMPOpt(SCC, CGUpdater, OREGetter, InfoCache, A); 3906 bool Changed = OMPOpt.run(false); 3907 if (Changed) 3908 return PreservedAnalyses::none(); 3909 3910 return PreservedAnalyses::all(); 3911 } 3912 3913 namespace { 3914 3915 struct OpenMPOptCGSCCLegacyPass : public CallGraphSCCPass { 3916 CallGraphUpdater CGUpdater; 3917 static char ID; 3918 3919 OpenMPOptCGSCCLegacyPass() : CallGraphSCCPass(ID) { 3920 initializeOpenMPOptCGSCCLegacyPassPass(*PassRegistry::getPassRegistry()); 3921 } 3922 3923 void getAnalysisUsage(AnalysisUsage &AU) const override { 3924 CallGraphSCCPass::getAnalysisUsage(AU); 3925 } 3926 3927 bool runOnSCC(CallGraphSCC &CGSCC) override { 3928 if (!containsOpenMP(CGSCC.getCallGraph().getModule())) 3929 return false; 3930 if (DisableOpenMPOptimizations || skipSCC(CGSCC)) 3931 return false; 3932 3933 SmallVector<Function *, 16> SCC; 3934 // If there are kernels in the module, we have to run on all SCC's. 3935 for (CallGraphNode *CGN : CGSCC) { 3936 Function *Fn = CGN->getFunction(); 3937 if (!Fn || Fn->isDeclaration()) 3938 continue; 3939 SCC.push_back(Fn); 3940 } 3941 3942 if (SCC.empty()) 3943 return false; 3944 3945 Module &M = CGSCC.getCallGraph().getModule(); 3946 KernelSet Kernels = getDeviceKernels(M); 3947 3948 CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph(); 3949 CGUpdater.initialize(CG, CGSCC); 3950 3951 // Maintain a map of functions to avoid rebuilding the ORE 3952 DenseMap<Function *, std::unique_ptr<OptimizationRemarkEmitter>> OREMap; 3953 auto OREGetter = [&OREMap](Function *F) -> OptimizationRemarkEmitter & { 3954 std::unique_ptr<OptimizationRemarkEmitter> &ORE = OREMap[F]; 3955 if (!ORE) 3956 ORE = std::make_unique<OptimizationRemarkEmitter>(F); 3957 return *ORE; 3958 }; 3959 3960 AnalysisGetter AG; 3961 SetVector<Function *> Functions(SCC.begin(), SCC.end()); 3962 BumpPtrAllocator Allocator; 3963 OMPInformationCache InfoCache(*(Functions.back()->getParent()), AG, 3964 Allocator, 3965 /*CGSCC*/ Functions, Kernels); 3966 3967 unsigned MaxFixpointIterations = (isOpenMPDevice(M)) ? 128 : 32; 3968 Attributor A(Functions, InfoCache, CGUpdater, nullptr, false, true, 3969 MaxFixpointIterations, OREGetter, DEBUG_TYPE); 3970 3971 OpenMPOpt OMPOpt(SCC, CGUpdater, OREGetter, InfoCache, A); 3972 return OMPOpt.run(false); 3973 } 3974 3975 bool doFinalization(CallGraph &CG) override { return CGUpdater.finalize(); } 3976 }; 3977 3978 } // end anonymous namespace 3979 3980 KernelSet llvm::omp::getDeviceKernels(Module &M) { 3981 // TODO: Create a more cross-platform way of determining device kernels. 3982 NamedMDNode *MD = M.getOrInsertNamedMetadata("nvvm.annotations"); 3983 KernelSet Kernels; 3984 3985 if (!MD) 3986 return Kernels; 3987 3988 for (auto *Op : MD->operands()) { 3989 if (Op->getNumOperands() < 2) 3990 continue; 3991 MDString *KindID = dyn_cast<MDString>(Op->getOperand(1)); 3992 if (!KindID || KindID->getString() != "kernel") 3993 continue; 3994 3995 Function *KernelFn = 3996 mdconst::dyn_extract_or_null<Function>(Op->getOperand(0)); 3997 if (!KernelFn) 3998 continue; 3999 4000 ++NumOpenMPTargetRegionKernels; 4001 4002 Kernels.insert(KernelFn); 4003 } 4004 4005 return Kernels; 4006 } 4007 4008 bool llvm::omp::containsOpenMP(Module &M) { 4009 Metadata *MD = M.getModuleFlag("openmp"); 4010 if (!MD) 4011 return false; 4012 4013 return true; 4014 } 4015 4016 bool llvm::omp::isOpenMPDevice(Module &M) { 4017 Metadata *MD = M.getModuleFlag("openmp-device"); 4018 if (!MD) 4019 return false; 4020 4021 return true; 4022 } 4023 4024 char OpenMPOptCGSCCLegacyPass::ID = 0; 4025 4026 INITIALIZE_PASS_BEGIN(OpenMPOptCGSCCLegacyPass, "openmp-opt-cgscc", 4027 "OpenMP specific optimizations", false, false) 4028 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass) 4029 INITIALIZE_PASS_END(OpenMPOptCGSCCLegacyPass, "openmp-opt-cgscc", 4030 "OpenMP specific optimizations", false, false) 4031 4032 Pass *llvm::createOpenMPOptCGSCCLegacyPass() { 4033 return new OpenMPOptCGSCCLegacyPass(); 4034 } 4035