1 //===-- IPO/OpenMPOpt.cpp - Collection of OpenMP specific optimizations ---===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // OpenMP specific optimizations: 10 // 11 // - Deduplication of runtime calls, e.g., omp_get_thread_num. 12 // - Replacing globalized device memory with stack memory. 13 // - Replacing globalized device memory with shared memory. 14 // - Parallel region merging. 15 // - Transforming generic-mode device kernels to SPMD mode. 16 // - Specializing the state machine for generic-mode device kernels. 17 // 18 //===----------------------------------------------------------------------===// 19 20 #include "llvm/Transforms/IPO/OpenMPOpt.h" 21 22 #include "llvm/ADT/EnumeratedArray.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/Analysis/CallGraph.h" 26 #include "llvm/Analysis/CallGraphSCCPass.h" 27 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 28 #include "llvm/Analysis/ValueTracking.h" 29 #include "llvm/Frontend/OpenMP/OMPConstants.h" 30 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 31 #include "llvm/IR/Assumptions.h" 32 #include "llvm/IR/DiagnosticInfo.h" 33 #include "llvm/IR/GlobalValue.h" 34 #include "llvm/IR/Instruction.h" 35 #include "llvm/IR/IntrinsicInst.h" 36 #include "llvm/IR/IntrinsicsAMDGPU.h" 37 #include "llvm/IR/IntrinsicsNVPTX.h" 38 #include "llvm/InitializePasses.h" 39 #include "llvm/Support/CommandLine.h" 40 #include "llvm/Transforms/IPO.h" 41 #include "llvm/Transforms/IPO/Attributor.h" 42 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 43 #include "llvm/Transforms/Utils/CallGraphUpdater.h" 44 #include "llvm/Transforms/Utils/CodeExtractor.h" 45 46 using namespace llvm; 47 using namespace omp; 48 49 #define DEBUG_TYPE "openmp-opt" 50 51 static cl::opt<bool> DisableOpenMPOptimizations( 52 "openmp-opt-disable", cl::ZeroOrMore, 53 cl::desc("Disable OpenMP specific optimizations."), cl::Hidden, 54 cl::init(false)); 55 56 static cl::opt<bool> EnableParallelRegionMerging( 57 "openmp-opt-enable-merging", cl::ZeroOrMore, 58 cl::desc("Enable the OpenMP region merging optimization."), cl::Hidden, 59 cl::init(false)); 60 61 static cl::opt<bool> 62 DisableInternalization("openmp-opt-disable-internalization", cl::ZeroOrMore, 63 cl::desc("Disable function internalization."), 64 cl::Hidden, cl::init(false)); 65 66 static cl::opt<bool> PrintICVValues("openmp-print-icv-values", cl::init(false), 67 cl::Hidden); 68 static cl::opt<bool> PrintOpenMPKernels("openmp-print-gpu-kernels", 69 cl::init(false), cl::Hidden); 70 71 static cl::opt<bool> HideMemoryTransferLatency( 72 "openmp-hide-memory-transfer-latency", 73 cl::desc("[WIP] Tries to hide the latency of host to device memory" 74 " transfers"), 75 cl::Hidden, cl::init(false)); 76 77 static cl::opt<bool> DisableOpenMPOptDeglobalization( 78 "openmp-opt-disable-deglobalization", cl::ZeroOrMore, 79 cl::desc("Disable OpenMP optimizations involving deglobalization."), 80 cl::Hidden, cl::init(false)); 81 82 static cl::opt<bool> DisableOpenMPOptSPMDization( 83 "openmp-opt-disable-spmdization", cl::ZeroOrMore, 84 cl::desc("Disable OpenMP optimizations involving SPMD-ization."), 85 cl::Hidden, cl::init(false)); 86 87 static cl::opt<bool> DisableOpenMPOptFolding( 88 "openmp-opt-disable-folding", cl::ZeroOrMore, 89 cl::desc("Disable OpenMP optimizations involving folding."), cl::Hidden, 90 cl::init(false)); 91 92 static cl::opt<bool> DisableOpenMPOptStateMachineRewrite( 93 "openmp-opt-disable-state-machine-rewrite", cl::ZeroOrMore, 94 cl::desc("Disable OpenMP optimizations that replace the state machine."), 95 cl::Hidden, cl::init(false)); 96 97 static cl::opt<bool> PrintModuleAfterOptimizations( 98 "openmp-opt-print-module", cl::ZeroOrMore, 99 cl::desc("Print the current module after OpenMP optimizations."), 100 cl::Hidden, cl::init(false)); 101 102 static cl::opt<bool> AlwaysInlineDeviceFunctions( 103 "openmp-opt-inline-device", cl::ZeroOrMore, 104 cl::desc("Inline all applicible functions on the device."), cl::Hidden, 105 cl::init(false)); 106 107 static cl::opt<bool> 108 EnableVerboseRemarks("openmp-opt-verbose-remarks", cl::ZeroOrMore, 109 cl::desc("Enables more verbose remarks."), cl::Hidden, 110 cl::init(false)); 111 112 static cl::opt<unsigned> 113 SetFixpointIterations("openmp-opt-max-iterations", cl::Hidden, 114 cl::desc("Maximal number of attributor iterations."), 115 cl::init(256)); 116 117 STATISTIC(NumOpenMPRuntimeCallsDeduplicated, 118 "Number of OpenMP runtime calls deduplicated"); 119 STATISTIC(NumOpenMPParallelRegionsDeleted, 120 "Number of OpenMP parallel regions deleted"); 121 STATISTIC(NumOpenMPRuntimeFunctionsIdentified, 122 "Number of OpenMP runtime functions identified"); 123 STATISTIC(NumOpenMPRuntimeFunctionUsesIdentified, 124 "Number of OpenMP runtime function uses identified"); 125 STATISTIC(NumOpenMPTargetRegionKernels, 126 "Number of OpenMP target region entry points (=kernels) identified"); 127 STATISTIC(NumOpenMPTargetRegionKernelsSPMD, 128 "Number of OpenMP target region entry points (=kernels) executed in " 129 "SPMD-mode instead of generic-mode"); 130 STATISTIC(NumOpenMPTargetRegionKernelsWithoutStateMachine, 131 "Number of OpenMP target region entry points (=kernels) executed in " 132 "generic-mode without a state machines"); 133 STATISTIC(NumOpenMPTargetRegionKernelsCustomStateMachineWithFallback, 134 "Number of OpenMP target region entry points (=kernels) executed in " 135 "generic-mode with customized state machines with fallback"); 136 STATISTIC(NumOpenMPTargetRegionKernelsCustomStateMachineWithoutFallback, 137 "Number of OpenMP target region entry points (=kernels) executed in " 138 "generic-mode with customized state machines without fallback"); 139 STATISTIC( 140 NumOpenMPParallelRegionsReplacedInGPUStateMachine, 141 "Number of OpenMP parallel regions replaced with ID in GPU state machines"); 142 STATISTIC(NumOpenMPParallelRegionsMerged, 143 "Number of OpenMP parallel regions merged"); 144 STATISTIC(NumBytesMovedToSharedMemory, 145 "Amount of memory pushed to shared memory"); 146 147 #if !defined(NDEBUG) 148 static constexpr auto TAG = "[" DEBUG_TYPE "]"; 149 #endif 150 151 namespace { 152 153 enum class AddressSpace : unsigned { 154 Generic = 0, 155 Global = 1, 156 Shared = 3, 157 Constant = 4, 158 Local = 5, 159 }; 160 161 struct AAHeapToShared; 162 163 struct AAICVTracker; 164 165 /// OpenMP specific information. For now, stores RFIs and ICVs also needed for 166 /// Attributor runs. 167 struct OMPInformationCache : public InformationCache { 168 OMPInformationCache(Module &M, AnalysisGetter &AG, 169 BumpPtrAllocator &Allocator, SetVector<Function *> &CGSCC, 170 SmallPtrSetImpl<Kernel> &Kernels) 171 : InformationCache(M, AG, Allocator, &CGSCC), OMPBuilder(M), 172 Kernels(Kernels) { 173 174 OMPBuilder.initialize(); 175 initializeRuntimeFunctions(); 176 initializeInternalControlVars(); 177 } 178 179 /// Generic information that describes an internal control variable. 180 struct InternalControlVarInfo { 181 /// The kind, as described by InternalControlVar enum. 182 InternalControlVar Kind; 183 184 /// The name of the ICV. 185 StringRef Name; 186 187 /// Environment variable associated with this ICV. 188 StringRef EnvVarName; 189 190 /// Initial value kind. 191 ICVInitValue InitKind; 192 193 /// Initial value. 194 ConstantInt *InitValue; 195 196 /// Setter RTL function associated with this ICV. 197 RuntimeFunction Setter; 198 199 /// Getter RTL function associated with this ICV. 200 RuntimeFunction Getter; 201 202 /// RTL Function corresponding to the override clause of this ICV 203 RuntimeFunction Clause; 204 }; 205 206 /// Generic information that describes a runtime function 207 struct RuntimeFunctionInfo { 208 209 /// The kind, as described by the RuntimeFunction enum. 210 RuntimeFunction Kind; 211 212 /// The name of the function. 213 StringRef Name; 214 215 /// Flag to indicate a variadic function. 216 bool IsVarArg; 217 218 /// The return type of the function. 219 Type *ReturnType; 220 221 /// The argument types of the function. 222 SmallVector<Type *, 8> ArgumentTypes; 223 224 /// The declaration if available. 225 Function *Declaration = nullptr; 226 227 /// Uses of this runtime function per function containing the use. 228 using UseVector = SmallVector<Use *, 16>; 229 230 /// Clear UsesMap for runtime function. 231 void clearUsesMap() { UsesMap.clear(); } 232 233 /// Boolean conversion that is true if the runtime function was found. 234 operator bool() const { return Declaration; } 235 236 /// Return the vector of uses in function \p F. 237 UseVector &getOrCreateUseVector(Function *F) { 238 std::shared_ptr<UseVector> &UV = UsesMap[F]; 239 if (!UV) 240 UV = std::make_shared<UseVector>(); 241 return *UV; 242 } 243 244 /// Return the vector of uses in function \p F or `nullptr` if there are 245 /// none. 246 const UseVector *getUseVector(Function &F) const { 247 auto I = UsesMap.find(&F); 248 if (I != UsesMap.end()) 249 return I->second.get(); 250 return nullptr; 251 } 252 253 /// Return how many functions contain uses of this runtime function. 254 size_t getNumFunctionsWithUses() const { return UsesMap.size(); } 255 256 /// Return the number of arguments (or the minimal number for variadic 257 /// functions). 258 size_t getNumArgs() const { return ArgumentTypes.size(); } 259 260 /// Run the callback \p CB on each use and forget the use if the result is 261 /// true. The callback will be fed the function in which the use was 262 /// encountered as second argument. 263 void foreachUse(SmallVectorImpl<Function *> &SCC, 264 function_ref<bool(Use &, Function &)> CB) { 265 for (Function *F : SCC) 266 foreachUse(CB, F); 267 } 268 269 /// Run the callback \p CB on each use within the function \p F and forget 270 /// the use if the result is true. 271 void foreachUse(function_ref<bool(Use &, Function &)> CB, Function *F) { 272 SmallVector<unsigned, 8> ToBeDeleted; 273 ToBeDeleted.clear(); 274 275 unsigned Idx = 0; 276 UseVector &UV = getOrCreateUseVector(F); 277 278 for (Use *U : UV) { 279 if (CB(*U, *F)) 280 ToBeDeleted.push_back(Idx); 281 ++Idx; 282 } 283 284 // Remove the to-be-deleted indices in reverse order as prior 285 // modifications will not modify the smaller indices. 286 while (!ToBeDeleted.empty()) { 287 unsigned Idx = ToBeDeleted.pop_back_val(); 288 UV[Idx] = UV.back(); 289 UV.pop_back(); 290 } 291 } 292 293 private: 294 /// Map from functions to all uses of this runtime function contained in 295 /// them. 296 DenseMap<Function *, std::shared_ptr<UseVector>> UsesMap; 297 298 public: 299 /// Iterators for the uses of this runtime function. 300 decltype(UsesMap)::iterator begin() { return UsesMap.begin(); } 301 decltype(UsesMap)::iterator end() { return UsesMap.end(); } 302 }; 303 304 /// An OpenMP-IR-Builder instance 305 OpenMPIRBuilder OMPBuilder; 306 307 /// Map from runtime function kind to the runtime function description. 308 EnumeratedArray<RuntimeFunctionInfo, RuntimeFunction, 309 RuntimeFunction::OMPRTL___last> 310 RFIs; 311 312 /// Map from function declarations/definitions to their runtime enum type. 313 DenseMap<Function *, RuntimeFunction> RuntimeFunctionIDMap; 314 315 /// Map from ICV kind to the ICV description. 316 EnumeratedArray<InternalControlVarInfo, InternalControlVar, 317 InternalControlVar::ICV___last> 318 ICVs; 319 320 /// Helper to initialize all internal control variable information for those 321 /// defined in OMPKinds.def. 322 void initializeInternalControlVars() { 323 #define ICV_RT_SET(_Name, RTL) \ 324 { \ 325 auto &ICV = ICVs[_Name]; \ 326 ICV.Setter = RTL; \ 327 } 328 #define ICV_RT_GET(Name, RTL) \ 329 { \ 330 auto &ICV = ICVs[Name]; \ 331 ICV.Getter = RTL; \ 332 } 333 #define ICV_DATA_ENV(Enum, _Name, _EnvVarName, Init) \ 334 { \ 335 auto &ICV = ICVs[Enum]; \ 336 ICV.Name = _Name; \ 337 ICV.Kind = Enum; \ 338 ICV.InitKind = Init; \ 339 ICV.EnvVarName = _EnvVarName; \ 340 switch (ICV.InitKind) { \ 341 case ICV_IMPLEMENTATION_DEFINED: \ 342 ICV.InitValue = nullptr; \ 343 break; \ 344 case ICV_ZERO: \ 345 ICV.InitValue = ConstantInt::get( \ 346 Type::getInt32Ty(OMPBuilder.Int32->getContext()), 0); \ 347 break; \ 348 case ICV_FALSE: \ 349 ICV.InitValue = ConstantInt::getFalse(OMPBuilder.Int1->getContext()); \ 350 break; \ 351 case ICV_LAST: \ 352 break; \ 353 } \ 354 } 355 #include "llvm/Frontend/OpenMP/OMPKinds.def" 356 } 357 358 /// Returns true if the function declaration \p F matches the runtime 359 /// function types, that is, return type \p RTFRetType, and argument types 360 /// \p RTFArgTypes. 361 static bool declMatchesRTFTypes(Function *F, Type *RTFRetType, 362 SmallVector<Type *, 8> &RTFArgTypes) { 363 // TODO: We should output information to the user (under debug output 364 // and via remarks). 365 366 if (!F) 367 return false; 368 if (F->getReturnType() != RTFRetType) 369 return false; 370 if (F->arg_size() != RTFArgTypes.size()) 371 return false; 372 373 auto *RTFTyIt = RTFArgTypes.begin(); 374 for (Argument &Arg : F->args()) { 375 if (Arg.getType() != *RTFTyIt) 376 return false; 377 378 ++RTFTyIt; 379 } 380 381 return true; 382 } 383 384 // Helper to collect all uses of the declaration in the UsesMap. 385 unsigned collectUses(RuntimeFunctionInfo &RFI, bool CollectStats = true) { 386 unsigned NumUses = 0; 387 if (!RFI.Declaration) 388 return NumUses; 389 OMPBuilder.addAttributes(RFI.Kind, *RFI.Declaration); 390 391 if (CollectStats) { 392 NumOpenMPRuntimeFunctionsIdentified += 1; 393 NumOpenMPRuntimeFunctionUsesIdentified += RFI.Declaration->getNumUses(); 394 } 395 396 // TODO: We directly convert uses into proper calls and unknown uses. 397 for (Use &U : RFI.Declaration->uses()) { 398 if (Instruction *UserI = dyn_cast<Instruction>(U.getUser())) { 399 if (ModuleSlice.count(UserI->getFunction())) { 400 RFI.getOrCreateUseVector(UserI->getFunction()).push_back(&U); 401 ++NumUses; 402 } 403 } else { 404 RFI.getOrCreateUseVector(nullptr).push_back(&U); 405 ++NumUses; 406 } 407 } 408 return NumUses; 409 } 410 411 // Helper function to recollect uses of a runtime function. 412 void recollectUsesForFunction(RuntimeFunction RTF) { 413 auto &RFI = RFIs[RTF]; 414 RFI.clearUsesMap(); 415 collectUses(RFI, /*CollectStats*/ false); 416 } 417 418 // Helper function to recollect uses of all runtime functions. 419 void recollectUses() { 420 for (int Idx = 0; Idx < RFIs.size(); ++Idx) 421 recollectUsesForFunction(static_cast<RuntimeFunction>(Idx)); 422 } 423 424 /// Helper to initialize all runtime function information for those defined 425 /// in OpenMPKinds.def. 426 void initializeRuntimeFunctions() { 427 Module &M = *((*ModuleSlice.begin())->getParent()); 428 429 // Helper macros for handling __VA_ARGS__ in OMP_RTL 430 #define OMP_TYPE(VarName, ...) \ 431 Type *VarName = OMPBuilder.VarName; \ 432 (void)VarName; 433 434 #define OMP_ARRAY_TYPE(VarName, ...) \ 435 ArrayType *VarName##Ty = OMPBuilder.VarName##Ty; \ 436 (void)VarName##Ty; \ 437 PointerType *VarName##PtrTy = OMPBuilder.VarName##PtrTy; \ 438 (void)VarName##PtrTy; 439 440 #define OMP_FUNCTION_TYPE(VarName, ...) \ 441 FunctionType *VarName = OMPBuilder.VarName; \ 442 (void)VarName; \ 443 PointerType *VarName##Ptr = OMPBuilder.VarName##Ptr; \ 444 (void)VarName##Ptr; 445 446 #define OMP_STRUCT_TYPE(VarName, ...) \ 447 StructType *VarName = OMPBuilder.VarName; \ 448 (void)VarName; \ 449 PointerType *VarName##Ptr = OMPBuilder.VarName##Ptr; \ 450 (void)VarName##Ptr; 451 452 #define OMP_RTL(_Enum, _Name, _IsVarArg, _ReturnType, ...) \ 453 { \ 454 SmallVector<Type *, 8> ArgsTypes({__VA_ARGS__}); \ 455 Function *F = M.getFunction(_Name); \ 456 RTLFunctions.insert(F); \ 457 if (declMatchesRTFTypes(F, OMPBuilder._ReturnType, ArgsTypes)) { \ 458 RuntimeFunctionIDMap[F] = _Enum; \ 459 F->removeFnAttr(Attribute::NoInline); \ 460 auto &RFI = RFIs[_Enum]; \ 461 RFI.Kind = _Enum; \ 462 RFI.Name = _Name; \ 463 RFI.IsVarArg = _IsVarArg; \ 464 RFI.ReturnType = OMPBuilder._ReturnType; \ 465 RFI.ArgumentTypes = std::move(ArgsTypes); \ 466 RFI.Declaration = F; \ 467 unsigned NumUses = collectUses(RFI); \ 468 (void)NumUses; \ 469 LLVM_DEBUG({ \ 470 dbgs() << TAG << RFI.Name << (RFI.Declaration ? "" : " not") \ 471 << " found\n"; \ 472 if (RFI.Declaration) \ 473 dbgs() << TAG << "-> got " << NumUses << " uses in " \ 474 << RFI.getNumFunctionsWithUses() \ 475 << " different functions.\n"; \ 476 }); \ 477 } \ 478 } 479 #include "llvm/Frontend/OpenMP/OMPKinds.def" 480 481 // TODO: We should attach the attributes defined in OMPKinds.def. 482 } 483 484 /// Collection of known kernels (\see Kernel) in the module. 485 SmallPtrSetImpl<Kernel> &Kernels; 486 487 /// Collection of known OpenMP runtime functions.. 488 DenseSet<const Function *> RTLFunctions; 489 }; 490 491 template <typename Ty, bool InsertInvalidates = true> 492 struct BooleanStateWithSetVector : public BooleanState { 493 bool contains(const Ty &Elem) const { return Set.contains(Elem); } 494 bool insert(const Ty &Elem) { 495 if (InsertInvalidates) 496 BooleanState::indicatePessimisticFixpoint(); 497 return Set.insert(Elem); 498 } 499 500 const Ty &operator[](int Idx) const { return Set[Idx]; } 501 bool operator==(const BooleanStateWithSetVector &RHS) const { 502 return BooleanState::operator==(RHS) && Set == RHS.Set; 503 } 504 bool operator!=(const BooleanStateWithSetVector &RHS) const { 505 return !(*this == RHS); 506 } 507 508 bool empty() const { return Set.empty(); } 509 size_t size() const { return Set.size(); } 510 511 /// "Clamp" this state with \p RHS. 512 BooleanStateWithSetVector &operator^=(const BooleanStateWithSetVector &RHS) { 513 BooleanState::operator^=(RHS); 514 Set.insert(RHS.Set.begin(), RHS.Set.end()); 515 return *this; 516 } 517 518 private: 519 /// A set to keep track of elements. 520 SetVector<Ty> Set; 521 522 public: 523 typename decltype(Set)::iterator begin() { return Set.begin(); } 524 typename decltype(Set)::iterator end() { return Set.end(); } 525 typename decltype(Set)::const_iterator begin() const { return Set.begin(); } 526 typename decltype(Set)::const_iterator end() const { return Set.end(); } 527 }; 528 529 template <typename Ty, bool InsertInvalidates = true> 530 using BooleanStateWithPtrSetVector = 531 BooleanStateWithSetVector<Ty *, InsertInvalidates>; 532 533 struct KernelInfoState : AbstractState { 534 /// Flag to track if we reached a fixpoint. 535 bool IsAtFixpoint = false; 536 537 /// The parallel regions (identified by the outlined parallel functions) that 538 /// can be reached from the associated function. 539 BooleanStateWithPtrSetVector<Function, /* InsertInvalidates */ false> 540 ReachedKnownParallelRegions; 541 542 /// State to track what parallel region we might reach. 543 BooleanStateWithPtrSetVector<CallBase> ReachedUnknownParallelRegions; 544 545 /// State to track if we are in SPMD-mode, assumed or know, and why we decided 546 /// we cannot be. If it is assumed, then RequiresFullRuntime should also be 547 /// false. 548 BooleanStateWithPtrSetVector<Instruction, false> SPMDCompatibilityTracker; 549 550 /// The __kmpc_target_init call in this kernel, if any. If we find more than 551 /// one we abort as the kernel is malformed. 552 CallBase *KernelInitCB = nullptr; 553 554 /// The __kmpc_target_deinit call in this kernel, if any. If we find more than 555 /// one we abort as the kernel is malformed. 556 CallBase *KernelDeinitCB = nullptr; 557 558 /// Flag to indicate if the associated function is a kernel entry. 559 bool IsKernelEntry = false; 560 561 /// State to track what kernel entries can reach the associated function. 562 BooleanStateWithPtrSetVector<Function, false> ReachingKernelEntries; 563 564 /// State to indicate if we can track parallel level of the associated 565 /// function. We will give up tracking if we encounter unknown caller or the 566 /// caller is __kmpc_parallel_51. 567 BooleanStateWithSetVector<uint8_t> ParallelLevels; 568 569 /// Abstract State interface 570 ///{ 571 572 KernelInfoState() {} 573 KernelInfoState(bool BestState) { 574 if (!BestState) 575 indicatePessimisticFixpoint(); 576 } 577 578 /// See AbstractState::isValidState(...) 579 bool isValidState() const override { return true; } 580 581 /// See AbstractState::isAtFixpoint(...) 582 bool isAtFixpoint() const override { return IsAtFixpoint; } 583 584 /// See AbstractState::indicatePessimisticFixpoint(...) 585 ChangeStatus indicatePessimisticFixpoint() override { 586 IsAtFixpoint = true; 587 ReachingKernelEntries.indicatePessimisticFixpoint(); 588 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 589 ReachedKnownParallelRegions.indicatePessimisticFixpoint(); 590 ReachedUnknownParallelRegions.indicatePessimisticFixpoint(); 591 return ChangeStatus::CHANGED; 592 } 593 594 /// See AbstractState::indicateOptimisticFixpoint(...) 595 ChangeStatus indicateOptimisticFixpoint() override { 596 IsAtFixpoint = true; 597 return ChangeStatus::UNCHANGED; 598 } 599 600 /// Return the assumed state 601 KernelInfoState &getAssumed() { return *this; } 602 const KernelInfoState &getAssumed() const { return *this; } 603 604 bool operator==(const KernelInfoState &RHS) const { 605 if (SPMDCompatibilityTracker != RHS.SPMDCompatibilityTracker) 606 return false; 607 if (ReachedKnownParallelRegions != RHS.ReachedKnownParallelRegions) 608 return false; 609 if (ReachedUnknownParallelRegions != RHS.ReachedUnknownParallelRegions) 610 return false; 611 if (ReachingKernelEntries != RHS.ReachingKernelEntries) 612 return false; 613 return true; 614 } 615 616 /// Returns true if this kernel contains any OpenMP parallel regions. 617 bool mayContainParallelRegion() { 618 return !ReachedKnownParallelRegions.empty() || 619 !ReachedUnknownParallelRegions.empty(); 620 } 621 622 /// Return empty set as the best state of potential values. 623 static KernelInfoState getBestState() { return KernelInfoState(true); } 624 625 static KernelInfoState getBestState(KernelInfoState &KIS) { 626 return getBestState(); 627 } 628 629 /// Return full set as the worst state of potential values. 630 static KernelInfoState getWorstState() { return KernelInfoState(false); } 631 632 /// "Clamp" this state with \p KIS. 633 KernelInfoState operator^=(const KernelInfoState &KIS) { 634 // Do not merge two different _init and _deinit call sites. 635 if (KIS.KernelInitCB) { 636 if(KernelInitCB && KernelInitCB != KIS.KernelInitCB) 637 llvm_unreachable("Kernel that calls another kernel violates OpenMP-Opt assumptions."); 638 KernelInitCB = KIS.KernelInitCB; 639 } 640 if (KIS.KernelDeinitCB) { 641 if(KernelDeinitCB && KernelDeinitCB != KIS.KernelDeinitCB) 642 llvm_unreachable("Kernel that calls another kernel violates OpenMP-Opt assumptions."); 643 KernelDeinitCB = KIS.KernelDeinitCB; 644 } 645 SPMDCompatibilityTracker ^= KIS.SPMDCompatibilityTracker; 646 ReachedKnownParallelRegions ^= KIS.ReachedKnownParallelRegions; 647 ReachedUnknownParallelRegions ^= KIS.ReachedUnknownParallelRegions; 648 return *this; 649 } 650 651 KernelInfoState operator&=(const KernelInfoState &KIS) { 652 return (*this ^= KIS); 653 } 654 655 ///} 656 }; 657 658 /// Used to map the values physically (in the IR) stored in an offload 659 /// array, to a vector in memory. 660 struct OffloadArray { 661 /// Physical array (in the IR). 662 AllocaInst *Array = nullptr; 663 /// Mapped values. 664 SmallVector<Value *, 8> StoredValues; 665 /// Last stores made in the offload array. 666 SmallVector<StoreInst *, 8> LastAccesses; 667 668 OffloadArray() = default; 669 670 /// Initializes the OffloadArray with the values stored in \p Array before 671 /// instruction \p Before is reached. Returns false if the initialization 672 /// fails. 673 /// This MUST be used immediately after the construction of the object. 674 bool initialize(AllocaInst &Array, Instruction &Before) { 675 if (!Array.getAllocatedType()->isArrayTy()) 676 return false; 677 678 if (!getValues(Array, Before)) 679 return false; 680 681 this->Array = &Array; 682 return true; 683 } 684 685 static const unsigned DeviceIDArgNum = 1; 686 static const unsigned BasePtrsArgNum = 3; 687 static const unsigned PtrsArgNum = 4; 688 static const unsigned SizesArgNum = 5; 689 690 private: 691 /// Traverses the BasicBlock where \p Array is, collecting the stores made to 692 /// \p Array, leaving StoredValues with the values stored before the 693 /// instruction \p Before is reached. 694 bool getValues(AllocaInst &Array, Instruction &Before) { 695 // Initialize container. 696 const uint64_t NumValues = Array.getAllocatedType()->getArrayNumElements(); 697 StoredValues.assign(NumValues, nullptr); 698 LastAccesses.assign(NumValues, nullptr); 699 700 // TODO: This assumes the instruction \p Before is in the same 701 // BasicBlock as Array. Make it general, for any control flow graph. 702 BasicBlock *BB = Array.getParent(); 703 if (BB != Before.getParent()) 704 return false; 705 706 const DataLayout &DL = Array.getModule()->getDataLayout(); 707 const unsigned int PointerSize = DL.getPointerSize(); 708 709 for (Instruction &I : *BB) { 710 if (&I == &Before) 711 break; 712 713 if (!isa<StoreInst>(&I)) 714 continue; 715 716 auto *S = cast<StoreInst>(&I); 717 int64_t Offset = -1; 718 auto *Dst = 719 GetPointerBaseWithConstantOffset(S->getPointerOperand(), Offset, DL); 720 if (Dst == &Array) { 721 int64_t Idx = Offset / PointerSize; 722 StoredValues[Idx] = getUnderlyingObject(S->getValueOperand()); 723 LastAccesses[Idx] = S; 724 } 725 } 726 727 return isFilled(); 728 } 729 730 /// Returns true if all values in StoredValues and 731 /// LastAccesses are not nullptrs. 732 bool isFilled() { 733 const unsigned NumValues = StoredValues.size(); 734 for (unsigned I = 0; I < NumValues; ++I) { 735 if (!StoredValues[I] || !LastAccesses[I]) 736 return false; 737 } 738 739 return true; 740 } 741 }; 742 743 struct OpenMPOpt { 744 745 using OptimizationRemarkGetter = 746 function_ref<OptimizationRemarkEmitter &(Function *)>; 747 748 OpenMPOpt(SmallVectorImpl<Function *> &SCC, CallGraphUpdater &CGUpdater, 749 OptimizationRemarkGetter OREGetter, 750 OMPInformationCache &OMPInfoCache, Attributor &A) 751 : M(*(*SCC.begin())->getParent()), SCC(SCC), CGUpdater(CGUpdater), 752 OREGetter(OREGetter), OMPInfoCache(OMPInfoCache), A(A) {} 753 754 /// Check if any remarks are enabled for openmp-opt 755 bool remarksEnabled() { 756 auto &Ctx = M.getContext(); 757 return Ctx.getDiagHandlerPtr()->isAnyRemarkEnabled(DEBUG_TYPE); 758 } 759 760 /// Run all OpenMP optimizations on the underlying SCC/ModuleSlice. 761 bool run(bool IsModulePass) { 762 if (SCC.empty()) 763 return false; 764 765 bool Changed = false; 766 767 LLVM_DEBUG(dbgs() << TAG << "Run on SCC with " << SCC.size() 768 << " functions in a slice with " 769 << OMPInfoCache.ModuleSlice.size() << " functions\n"); 770 771 if (IsModulePass) { 772 Changed |= runAttributor(IsModulePass); 773 774 // Recollect uses, in case Attributor deleted any. 775 OMPInfoCache.recollectUses(); 776 777 // TODO: This should be folded into buildCustomStateMachine. 778 Changed |= rewriteDeviceCodeStateMachine(); 779 780 if (remarksEnabled()) 781 analysisGlobalization(); 782 } else { 783 if (PrintICVValues) 784 printICVs(); 785 if (PrintOpenMPKernels) 786 printKernels(); 787 788 Changed |= runAttributor(IsModulePass); 789 790 // Recollect uses, in case Attributor deleted any. 791 OMPInfoCache.recollectUses(); 792 793 Changed |= deleteParallelRegions(); 794 795 if (HideMemoryTransferLatency) 796 Changed |= hideMemTransfersLatency(); 797 Changed |= deduplicateRuntimeCalls(); 798 if (EnableParallelRegionMerging) { 799 if (mergeParallelRegions()) { 800 deduplicateRuntimeCalls(); 801 Changed = true; 802 } 803 } 804 } 805 806 return Changed; 807 } 808 809 /// Print initial ICV values for testing. 810 /// FIXME: This should be done from the Attributor once it is added. 811 void printICVs() const { 812 InternalControlVar ICVs[] = {ICV_nthreads, ICV_active_levels, ICV_cancel, 813 ICV_proc_bind}; 814 815 for (Function *F : OMPInfoCache.ModuleSlice) { 816 for (auto ICV : ICVs) { 817 auto ICVInfo = OMPInfoCache.ICVs[ICV]; 818 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 819 return ORA << "OpenMP ICV " << ore::NV("OpenMPICV", ICVInfo.Name) 820 << " Value: " 821 << (ICVInfo.InitValue 822 ? toString(ICVInfo.InitValue->getValue(), 10, true) 823 : "IMPLEMENTATION_DEFINED"); 824 }; 825 826 emitRemark<OptimizationRemarkAnalysis>(F, "OpenMPICVTracker", Remark); 827 } 828 } 829 } 830 831 /// Print OpenMP GPU kernels for testing. 832 void printKernels() const { 833 for (Function *F : SCC) { 834 if (!OMPInfoCache.Kernels.count(F)) 835 continue; 836 837 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 838 return ORA << "OpenMP GPU kernel " 839 << ore::NV("OpenMPGPUKernel", F->getName()) << "\n"; 840 }; 841 842 emitRemark<OptimizationRemarkAnalysis>(F, "OpenMPGPU", Remark); 843 } 844 } 845 846 /// Return the call if \p U is a callee use in a regular call. If \p RFI is 847 /// given it has to be the callee or a nullptr is returned. 848 static CallInst *getCallIfRegularCall( 849 Use &U, OMPInformationCache::RuntimeFunctionInfo *RFI = nullptr) { 850 CallInst *CI = dyn_cast<CallInst>(U.getUser()); 851 if (CI && CI->isCallee(&U) && !CI->hasOperandBundles() && 852 (!RFI || 853 (RFI->Declaration && CI->getCalledFunction() == RFI->Declaration))) 854 return CI; 855 return nullptr; 856 } 857 858 /// Return the call if \p V is a regular call. If \p RFI is given it has to be 859 /// the callee or a nullptr is returned. 860 static CallInst *getCallIfRegularCall( 861 Value &V, OMPInformationCache::RuntimeFunctionInfo *RFI = nullptr) { 862 CallInst *CI = dyn_cast<CallInst>(&V); 863 if (CI && !CI->hasOperandBundles() && 864 (!RFI || 865 (RFI->Declaration && CI->getCalledFunction() == RFI->Declaration))) 866 return CI; 867 return nullptr; 868 } 869 870 private: 871 /// Merge parallel regions when it is safe. 872 bool mergeParallelRegions() { 873 const unsigned CallbackCalleeOperand = 2; 874 const unsigned CallbackFirstArgOperand = 3; 875 using InsertPointTy = OpenMPIRBuilder::InsertPointTy; 876 877 // Check if there are any __kmpc_fork_call calls to merge. 878 OMPInformationCache::RuntimeFunctionInfo &RFI = 879 OMPInfoCache.RFIs[OMPRTL___kmpc_fork_call]; 880 881 if (!RFI.Declaration) 882 return false; 883 884 // Unmergable calls that prevent merging a parallel region. 885 OMPInformationCache::RuntimeFunctionInfo UnmergableCallsInfo[] = { 886 OMPInfoCache.RFIs[OMPRTL___kmpc_push_proc_bind], 887 OMPInfoCache.RFIs[OMPRTL___kmpc_push_num_threads], 888 }; 889 890 bool Changed = false; 891 LoopInfo *LI = nullptr; 892 DominatorTree *DT = nullptr; 893 894 SmallDenseMap<BasicBlock *, SmallPtrSet<Instruction *, 4>> BB2PRMap; 895 896 BasicBlock *StartBB = nullptr, *EndBB = nullptr; 897 auto BodyGenCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, 898 BasicBlock &ContinuationIP) { 899 BasicBlock *CGStartBB = CodeGenIP.getBlock(); 900 BasicBlock *CGEndBB = 901 SplitBlock(CGStartBB, &*CodeGenIP.getPoint(), DT, LI); 902 assert(StartBB != nullptr && "StartBB should not be null"); 903 CGStartBB->getTerminator()->setSuccessor(0, StartBB); 904 assert(EndBB != nullptr && "EndBB should not be null"); 905 EndBB->getTerminator()->setSuccessor(0, CGEndBB); 906 }; 907 908 auto PrivCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, Value &, 909 Value &Inner, Value *&ReplacementValue) -> InsertPointTy { 910 ReplacementValue = &Inner; 911 return CodeGenIP; 912 }; 913 914 auto FiniCB = [&](InsertPointTy CodeGenIP) {}; 915 916 /// Create a sequential execution region within a merged parallel region, 917 /// encapsulated in a master construct with a barrier for synchronization. 918 auto CreateSequentialRegion = [&](Function *OuterFn, 919 BasicBlock *OuterPredBB, 920 Instruction *SeqStartI, 921 Instruction *SeqEndI) { 922 // Isolate the instructions of the sequential region to a separate 923 // block. 924 BasicBlock *ParentBB = SeqStartI->getParent(); 925 BasicBlock *SeqEndBB = 926 SplitBlock(ParentBB, SeqEndI->getNextNode(), DT, LI); 927 BasicBlock *SeqAfterBB = 928 SplitBlock(SeqEndBB, &*SeqEndBB->getFirstInsertionPt(), DT, LI); 929 BasicBlock *SeqStartBB = 930 SplitBlock(ParentBB, SeqStartI, DT, LI, nullptr, "seq.par.merged"); 931 932 assert(ParentBB->getUniqueSuccessor() == SeqStartBB && 933 "Expected a different CFG"); 934 const DebugLoc DL = ParentBB->getTerminator()->getDebugLoc(); 935 ParentBB->getTerminator()->eraseFromParent(); 936 937 auto BodyGenCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, 938 BasicBlock &ContinuationIP) { 939 BasicBlock *CGStartBB = CodeGenIP.getBlock(); 940 BasicBlock *CGEndBB = 941 SplitBlock(CGStartBB, &*CodeGenIP.getPoint(), DT, LI); 942 assert(SeqStartBB != nullptr && "SeqStartBB should not be null"); 943 CGStartBB->getTerminator()->setSuccessor(0, SeqStartBB); 944 assert(SeqEndBB != nullptr && "SeqEndBB should not be null"); 945 SeqEndBB->getTerminator()->setSuccessor(0, CGEndBB); 946 }; 947 auto FiniCB = [&](InsertPointTy CodeGenIP) {}; 948 949 // Find outputs from the sequential region to outside users and 950 // broadcast their values to them. 951 for (Instruction &I : *SeqStartBB) { 952 SmallPtrSet<Instruction *, 4> OutsideUsers; 953 for (User *Usr : I.users()) { 954 Instruction &UsrI = *cast<Instruction>(Usr); 955 // Ignore outputs to LT intrinsics, code extraction for the merged 956 // parallel region will fix them. 957 if (UsrI.isLifetimeStartOrEnd()) 958 continue; 959 960 if (UsrI.getParent() != SeqStartBB) 961 OutsideUsers.insert(&UsrI); 962 } 963 964 if (OutsideUsers.empty()) 965 continue; 966 967 // Emit an alloca in the outer region to store the broadcasted 968 // value. 969 const DataLayout &DL = M.getDataLayout(); 970 AllocaInst *AllocaI = new AllocaInst( 971 I.getType(), DL.getAllocaAddrSpace(), nullptr, 972 I.getName() + ".seq.output.alloc", &OuterFn->front().front()); 973 974 // Emit a store instruction in the sequential BB to update the 975 // value. 976 new StoreInst(&I, AllocaI, SeqStartBB->getTerminator()); 977 978 // Emit a load instruction and replace the use of the output value 979 // with it. 980 for (Instruction *UsrI : OutsideUsers) { 981 LoadInst *LoadI = new LoadInst( 982 I.getType(), AllocaI, I.getName() + ".seq.output.load", UsrI); 983 UsrI->replaceUsesOfWith(&I, LoadI); 984 } 985 } 986 987 OpenMPIRBuilder::LocationDescription Loc( 988 InsertPointTy(ParentBB, ParentBB->end()), DL); 989 InsertPointTy SeqAfterIP = 990 OMPInfoCache.OMPBuilder.createMaster(Loc, BodyGenCB, FiniCB); 991 992 OMPInfoCache.OMPBuilder.createBarrier(SeqAfterIP, OMPD_parallel); 993 994 BranchInst::Create(SeqAfterBB, SeqAfterIP.getBlock()); 995 996 LLVM_DEBUG(dbgs() << TAG << "After sequential inlining " << *OuterFn 997 << "\n"); 998 }; 999 1000 // Helper to merge the __kmpc_fork_call calls in MergableCIs. They are all 1001 // contained in BB and only separated by instructions that can be 1002 // redundantly executed in parallel. The block BB is split before the first 1003 // call (in MergableCIs) and after the last so the entire region we merge 1004 // into a single parallel region is contained in a single basic block 1005 // without any other instructions. We use the OpenMPIRBuilder to outline 1006 // that block and call the resulting function via __kmpc_fork_call. 1007 auto Merge = [&](SmallVectorImpl<CallInst *> &MergableCIs, BasicBlock *BB) { 1008 // TODO: Change the interface to allow single CIs expanded, e.g, to 1009 // include an outer loop. 1010 assert(MergableCIs.size() > 1 && "Assumed multiple mergable CIs"); 1011 1012 auto Remark = [&](OptimizationRemark OR) { 1013 OR << "Parallel region merged with parallel region" 1014 << (MergableCIs.size() > 2 ? "s" : "") << " at "; 1015 for (auto *CI : llvm::drop_begin(MergableCIs)) { 1016 OR << ore::NV("OpenMPParallelMerge", CI->getDebugLoc()); 1017 if (CI != MergableCIs.back()) 1018 OR << ", "; 1019 } 1020 return OR << "."; 1021 }; 1022 1023 emitRemark<OptimizationRemark>(MergableCIs.front(), "OMP150", Remark); 1024 1025 Function *OriginalFn = BB->getParent(); 1026 LLVM_DEBUG(dbgs() << TAG << "Merge " << MergableCIs.size() 1027 << " parallel regions in " << OriginalFn->getName() 1028 << "\n"); 1029 1030 // Isolate the calls to merge in a separate block. 1031 EndBB = SplitBlock(BB, MergableCIs.back()->getNextNode(), DT, LI); 1032 BasicBlock *AfterBB = 1033 SplitBlock(EndBB, &*EndBB->getFirstInsertionPt(), DT, LI); 1034 StartBB = SplitBlock(BB, MergableCIs.front(), DT, LI, nullptr, 1035 "omp.par.merged"); 1036 1037 assert(BB->getUniqueSuccessor() == StartBB && "Expected a different CFG"); 1038 const DebugLoc DL = BB->getTerminator()->getDebugLoc(); 1039 BB->getTerminator()->eraseFromParent(); 1040 1041 // Create sequential regions for sequential instructions that are 1042 // in-between mergable parallel regions. 1043 for (auto *It = MergableCIs.begin(), *End = MergableCIs.end() - 1; 1044 It != End; ++It) { 1045 Instruction *ForkCI = *It; 1046 Instruction *NextForkCI = *(It + 1); 1047 1048 // Continue if there are not in-between instructions. 1049 if (ForkCI->getNextNode() == NextForkCI) 1050 continue; 1051 1052 CreateSequentialRegion(OriginalFn, BB, ForkCI->getNextNode(), 1053 NextForkCI->getPrevNode()); 1054 } 1055 1056 OpenMPIRBuilder::LocationDescription Loc(InsertPointTy(BB, BB->end()), 1057 DL); 1058 IRBuilder<>::InsertPoint AllocaIP( 1059 &OriginalFn->getEntryBlock(), 1060 OriginalFn->getEntryBlock().getFirstInsertionPt()); 1061 // Create the merged parallel region with default proc binding, to 1062 // avoid overriding binding settings, and without explicit cancellation. 1063 InsertPointTy AfterIP = OMPInfoCache.OMPBuilder.createParallel( 1064 Loc, AllocaIP, BodyGenCB, PrivCB, FiniCB, nullptr, nullptr, 1065 OMP_PROC_BIND_default, /* IsCancellable */ false); 1066 BranchInst::Create(AfterBB, AfterIP.getBlock()); 1067 1068 // Perform the actual outlining. 1069 OMPInfoCache.OMPBuilder.finalize(OriginalFn, 1070 /* AllowExtractorSinking */ true); 1071 1072 Function *OutlinedFn = MergableCIs.front()->getCaller(); 1073 1074 // Replace the __kmpc_fork_call calls with direct calls to the outlined 1075 // callbacks. 1076 SmallVector<Value *, 8> Args; 1077 for (auto *CI : MergableCIs) { 1078 Value *Callee = 1079 CI->getArgOperand(CallbackCalleeOperand)->stripPointerCasts(); 1080 FunctionType *FT = 1081 cast<FunctionType>(Callee->getType()->getPointerElementType()); 1082 Args.clear(); 1083 Args.push_back(OutlinedFn->getArg(0)); 1084 Args.push_back(OutlinedFn->getArg(1)); 1085 for (unsigned U = CallbackFirstArgOperand, E = CI->arg_size(); U < E; 1086 ++U) 1087 Args.push_back(CI->getArgOperand(U)); 1088 1089 CallInst *NewCI = CallInst::Create(FT, Callee, Args, "", CI); 1090 if (CI->getDebugLoc()) 1091 NewCI->setDebugLoc(CI->getDebugLoc()); 1092 1093 // Forward parameter attributes from the callback to the callee. 1094 for (unsigned U = CallbackFirstArgOperand, E = CI->arg_size(); U < E; 1095 ++U) 1096 for (const Attribute &A : CI->getAttributes().getParamAttrs(U)) 1097 NewCI->addParamAttr( 1098 U - (CallbackFirstArgOperand - CallbackCalleeOperand), A); 1099 1100 // Emit an explicit barrier to replace the implicit fork-join barrier. 1101 if (CI != MergableCIs.back()) { 1102 // TODO: Remove barrier if the merged parallel region includes the 1103 // 'nowait' clause. 1104 OMPInfoCache.OMPBuilder.createBarrier( 1105 InsertPointTy(NewCI->getParent(), 1106 NewCI->getNextNode()->getIterator()), 1107 OMPD_parallel); 1108 } 1109 1110 CI->eraseFromParent(); 1111 } 1112 1113 assert(OutlinedFn != OriginalFn && "Outlining failed"); 1114 CGUpdater.registerOutlinedFunction(*OriginalFn, *OutlinedFn); 1115 CGUpdater.reanalyzeFunction(*OriginalFn); 1116 1117 NumOpenMPParallelRegionsMerged += MergableCIs.size(); 1118 1119 return true; 1120 }; 1121 1122 // Helper function that identifes sequences of 1123 // __kmpc_fork_call uses in a basic block. 1124 auto DetectPRsCB = [&](Use &U, Function &F) { 1125 CallInst *CI = getCallIfRegularCall(U, &RFI); 1126 BB2PRMap[CI->getParent()].insert(CI); 1127 1128 return false; 1129 }; 1130 1131 BB2PRMap.clear(); 1132 RFI.foreachUse(SCC, DetectPRsCB); 1133 SmallVector<SmallVector<CallInst *, 4>, 4> MergableCIsVector; 1134 // Find mergable parallel regions within a basic block that are 1135 // safe to merge, that is any in-between instructions can safely 1136 // execute in parallel after merging. 1137 // TODO: support merging across basic-blocks. 1138 for (auto &It : BB2PRMap) { 1139 auto &CIs = It.getSecond(); 1140 if (CIs.size() < 2) 1141 continue; 1142 1143 BasicBlock *BB = It.getFirst(); 1144 SmallVector<CallInst *, 4> MergableCIs; 1145 1146 /// Returns true if the instruction is mergable, false otherwise. 1147 /// A terminator instruction is unmergable by definition since merging 1148 /// works within a BB. Instructions before the mergable region are 1149 /// mergable if they are not calls to OpenMP runtime functions that may 1150 /// set different execution parameters for subsequent parallel regions. 1151 /// Instructions in-between parallel regions are mergable if they are not 1152 /// calls to any non-intrinsic function since that may call a non-mergable 1153 /// OpenMP runtime function. 1154 auto IsMergable = [&](Instruction &I, bool IsBeforeMergableRegion) { 1155 // We do not merge across BBs, hence return false (unmergable) if the 1156 // instruction is a terminator. 1157 if (I.isTerminator()) 1158 return false; 1159 1160 if (!isa<CallInst>(&I)) 1161 return true; 1162 1163 CallInst *CI = cast<CallInst>(&I); 1164 if (IsBeforeMergableRegion) { 1165 Function *CalledFunction = CI->getCalledFunction(); 1166 if (!CalledFunction) 1167 return false; 1168 // Return false (unmergable) if the call before the parallel 1169 // region calls an explicit affinity (proc_bind) or number of 1170 // threads (num_threads) compiler-generated function. Those settings 1171 // may be incompatible with following parallel regions. 1172 // TODO: ICV tracking to detect compatibility. 1173 for (const auto &RFI : UnmergableCallsInfo) { 1174 if (CalledFunction == RFI.Declaration) 1175 return false; 1176 } 1177 } else { 1178 // Return false (unmergable) if there is a call instruction 1179 // in-between parallel regions when it is not an intrinsic. It 1180 // may call an unmergable OpenMP runtime function in its callpath. 1181 // TODO: Keep track of possible OpenMP calls in the callpath. 1182 if (!isa<IntrinsicInst>(CI)) 1183 return false; 1184 } 1185 1186 return true; 1187 }; 1188 // Find maximal number of parallel region CIs that are safe to merge. 1189 for (auto It = BB->begin(), End = BB->end(); It != End;) { 1190 Instruction &I = *It; 1191 ++It; 1192 1193 if (CIs.count(&I)) { 1194 MergableCIs.push_back(cast<CallInst>(&I)); 1195 continue; 1196 } 1197 1198 // Continue expanding if the instruction is mergable. 1199 if (IsMergable(I, MergableCIs.empty())) 1200 continue; 1201 1202 // Forward the instruction iterator to skip the next parallel region 1203 // since there is an unmergable instruction which can affect it. 1204 for (; It != End; ++It) { 1205 Instruction &SkipI = *It; 1206 if (CIs.count(&SkipI)) { 1207 LLVM_DEBUG(dbgs() << TAG << "Skip parallel region " << SkipI 1208 << " due to " << I << "\n"); 1209 ++It; 1210 break; 1211 } 1212 } 1213 1214 // Store mergable regions found. 1215 if (MergableCIs.size() > 1) { 1216 MergableCIsVector.push_back(MergableCIs); 1217 LLVM_DEBUG(dbgs() << TAG << "Found " << MergableCIs.size() 1218 << " parallel regions in block " << BB->getName() 1219 << " of function " << BB->getParent()->getName() 1220 << "\n";); 1221 } 1222 1223 MergableCIs.clear(); 1224 } 1225 1226 if (!MergableCIsVector.empty()) { 1227 Changed = true; 1228 1229 for (auto &MergableCIs : MergableCIsVector) 1230 Merge(MergableCIs, BB); 1231 MergableCIsVector.clear(); 1232 } 1233 } 1234 1235 if (Changed) { 1236 /// Re-collect use for fork calls, emitted barrier calls, and 1237 /// any emitted master/end_master calls. 1238 OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_fork_call); 1239 OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_barrier); 1240 OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_master); 1241 OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_end_master); 1242 } 1243 1244 return Changed; 1245 } 1246 1247 /// Try to delete parallel regions if possible. 1248 bool deleteParallelRegions() { 1249 const unsigned CallbackCalleeOperand = 2; 1250 1251 OMPInformationCache::RuntimeFunctionInfo &RFI = 1252 OMPInfoCache.RFIs[OMPRTL___kmpc_fork_call]; 1253 1254 if (!RFI.Declaration) 1255 return false; 1256 1257 bool Changed = false; 1258 auto DeleteCallCB = [&](Use &U, Function &) { 1259 CallInst *CI = getCallIfRegularCall(U); 1260 if (!CI) 1261 return false; 1262 auto *Fn = dyn_cast<Function>( 1263 CI->getArgOperand(CallbackCalleeOperand)->stripPointerCasts()); 1264 if (!Fn) 1265 return false; 1266 if (!Fn->onlyReadsMemory()) 1267 return false; 1268 if (!Fn->hasFnAttribute(Attribute::WillReturn)) 1269 return false; 1270 1271 LLVM_DEBUG(dbgs() << TAG << "Delete read-only parallel region in " 1272 << CI->getCaller()->getName() << "\n"); 1273 1274 auto Remark = [&](OptimizationRemark OR) { 1275 return OR << "Removing parallel region with no side-effects."; 1276 }; 1277 emitRemark<OptimizationRemark>(CI, "OMP160", Remark); 1278 1279 CGUpdater.removeCallSite(*CI); 1280 CI->eraseFromParent(); 1281 Changed = true; 1282 ++NumOpenMPParallelRegionsDeleted; 1283 return true; 1284 }; 1285 1286 RFI.foreachUse(SCC, DeleteCallCB); 1287 1288 return Changed; 1289 } 1290 1291 /// Try to eliminate runtime calls by reusing existing ones. 1292 bool deduplicateRuntimeCalls() { 1293 bool Changed = false; 1294 1295 RuntimeFunction DeduplicableRuntimeCallIDs[] = { 1296 OMPRTL_omp_get_num_threads, 1297 OMPRTL_omp_in_parallel, 1298 OMPRTL_omp_get_cancellation, 1299 OMPRTL_omp_get_thread_limit, 1300 OMPRTL_omp_get_supported_active_levels, 1301 OMPRTL_omp_get_level, 1302 OMPRTL_omp_get_ancestor_thread_num, 1303 OMPRTL_omp_get_team_size, 1304 OMPRTL_omp_get_active_level, 1305 OMPRTL_omp_in_final, 1306 OMPRTL_omp_get_proc_bind, 1307 OMPRTL_omp_get_num_places, 1308 OMPRTL_omp_get_num_procs, 1309 OMPRTL_omp_get_place_num, 1310 OMPRTL_omp_get_partition_num_places, 1311 OMPRTL_omp_get_partition_place_nums}; 1312 1313 // Global-tid is handled separately. 1314 SmallSetVector<Value *, 16> GTIdArgs; 1315 collectGlobalThreadIdArguments(GTIdArgs); 1316 LLVM_DEBUG(dbgs() << TAG << "Found " << GTIdArgs.size() 1317 << " global thread ID arguments\n"); 1318 1319 for (Function *F : SCC) { 1320 for (auto DeduplicableRuntimeCallID : DeduplicableRuntimeCallIDs) 1321 Changed |= deduplicateRuntimeCalls( 1322 *F, OMPInfoCache.RFIs[DeduplicableRuntimeCallID]); 1323 1324 // __kmpc_global_thread_num is special as we can replace it with an 1325 // argument in enough cases to make it worth trying. 1326 Value *GTIdArg = nullptr; 1327 for (Argument &Arg : F->args()) 1328 if (GTIdArgs.count(&Arg)) { 1329 GTIdArg = &Arg; 1330 break; 1331 } 1332 Changed |= deduplicateRuntimeCalls( 1333 *F, OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num], GTIdArg); 1334 } 1335 1336 return Changed; 1337 } 1338 1339 /// Tries to hide the latency of runtime calls that involve host to 1340 /// device memory transfers by splitting them into their "issue" and "wait" 1341 /// versions. The "issue" is moved upwards as much as possible. The "wait" is 1342 /// moved downards as much as possible. The "issue" issues the memory transfer 1343 /// asynchronously, returning a handle. The "wait" waits in the returned 1344 /// handle for the memory transfer to finish. 1345 bool hideMemTransfersLatency() { 1346 auto &RFI = OMPInfoCache.RFIs[OMPRTL___tgt_target_data_begin_mapper]; 1347 bool Changed = false; 1348 auto SplitMemTransfers = [&](Use &U, Function &Decl) { 1349 auto *RTCall = getCallIfRegularCall(U, &RFI); 1350 if (!RTCall) 1351 return false; 1352 1353 OffloadArray OffloadArrays[3]; 1354 if (!getValuesInOffloadArrays(*RTCall, OffloadArrays)) 1355 return false; 1356 1357 LLVM_DEBUG(dumpValuesInOffloadArrays(OffloadArrays)); 1358 1359 // TODO: Check if can be moved upwards. 1360 bool WasSplit = false; 1361 Instruction *WaitMovementPoint = canBeMovedDownwards(*RTCall); 1362 if (WaitMovementPoint) 1363 WasSplit = splitTargetDataBeginRTC(*RTCall, *WaitMovementPoint); 1364 1365 Changed |= WasSplit; 1366 return WasSplit; 1367 }; 1368 RFI.foreachUse(SCC, SplitMemTransfers); 1369 1370 return Changed; 1371 } 1372 1373 void analysisGlobalization() { 1374 auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared]; 1375 1376 auto CheckGlobalization = [&](Use &U, Function &Decl) { 1377 if (CallInst *CI = getCallIfRegularCall(U, &RFI)) { 1378 auto Remark = [&](OptimizationRemarkMissed ORM) { 1379 return ORM 1380 << "Found thread data sharing on the GPU. " 1381 << "Expect degraded performance due to data globalization."; 1382 }; 1383 emitRemark<OptimizationRemarkMissed>(CI, "OMP112", Remark); 1384 } 1385 1386 return false; 1387 }; 1388 1389 RFI.foreachUse(SCC, CheckGlobalization); 1390 } 1391 1392 /// Maps the values stored in the offload arrays passed as arguments to 1393 /// \p RuntimeCall into the offload arrays in \p OAs. 1394 bool getValuesInOffloadArrays(CallInst &RuntimeCall, 1395 MutableArrayRef<OffloadArray> OAs) { 1396 assert(OAs.size() == 3 && "Need space for three offload arrays!"); 1397 1398 // A runtime call that involves memory offloading looks something like: 1399 // call void @__tgt_target_data_begin_mapper(arg0, arg1, 1400 // i8** %offload_baseptrs, i8** %offload_ptrs, i64* %offload_sizes, 1401 // ...) 1402 // So, the idea is to access the allocas that allocate space for these 1403 // offload arrays, offload_baseptrs, offload_ptrs, offload_sizes. 1404 // Therefore: 1405 // i8** %offload_baseptrs. 1406 Value *BasePtrsArg = 1407 RuntimeCall.getArgOperand(OffloadArray::BasePtrsArgNum); 1408 // i8** %offload_ptrs. 1409 Value *PtrsArg = RuntimeCall.getArgOperand(OffloadArray::PtrsArgNum); 1410 // i8** %offload_sizes. 1411 Value *SizesArg = RuntimeCall.getArgOperand(OffloadArray::SizesArgNum); 1412 1413 // Get values stored in **offload_baseptrs. 1414 auto *V = getUnderlyingObject(BasePtrsArg); 1415 if (!isa<AllocaInst>(V)) 1416 return false; 1417 auto *BasePtrsArray = cast<AllocaInst>(V); 1418 if (!OAs[0].initialize(*BasePtrsArray, RuntimeCall)) 1419 return false; 1420 1421 // Get values stored in **offload_baseptrs. 1422 V = getUnderlyingObject(PtrsArg); 1423 if (!isa<AllocaInst>(V)) 1424 return false; 1425 auto *PtrsArray = cast<AllocaInst>(V); 1426 if (!OAs[1].initialize(*PtrsArray, RuntimeCall)) 1427 return false; 1428 1429 // Get values stored in **offload_sizes. 1430 V = getUnderlyingObject(SizesArg); 1431 // If it's a [constant] global array don't analyze it. 1432 if (isa<GlobalValue>(V)) 1433 return isa<Constant>(V); 1434 if (!isa<AllocaInst>(V)) 1435 return false; 1436 1437 auto *SizesArray = cast<AllocaInst>(V); 1438 if (!OAs[2].initialize(*SizesArray, RuntimeCall)) 1439 return false; 1440 1441 return true; 1442 } 1443 1444 /// Prints the values in the OffloadArrays \p OAs using LLVM_DEBUG. 1445 /// For now this is a way to test that the function getValuesInOffloadArrays 1446 /// is working properly. 1447 /// TODO: Move this to a unittest when unittests are available for OpenMPOpt. 1448 void dumpValuesInOffloadArrays(ArrayRef<OffloadArray> OAs) { 1449 assert(OAs.size() == 3 && "There are three offload arrays to debug!"); 1450 1451 LLVM_DEBUG(dbgs() << TAG << " Successfully got offload values:\n"); 1452 std::string ValuesStr; 1453 raw_string_ostream Printer(ValuesStr); 1454 std::string Separator = " --- "; 1455 1456 for (auto *BP : OAs[0].StoredValues) { 1457 BP->print(Printer); 1458 Printer << Separator; 1459 } 1460 LLVM_DEBUG(dbgs() << "\t\toffload_baseptrs: " << Printer.str() << "\n"); 1461 ValuesStr.clear(); 1462 1463 for (auto *P : OAs[1].StoredValues) { 1464 P->print(Printer); 1465 Printer << Separator; 1466 } 1467 LLVM_DEBUG(dbgs() << "\t\toffload_ptrs: " << Printer.str() << "\n"); 1468 ValuesStr.clear(); 1469 1470 for (auto *S : OAs[2].StoredValues) { 1471 S->print(Printer); 1472 Printer << Separator; 1473 } 1474 LLVM_DEBUG(dbgs() << "\t\toffload_sizes: " << Printer.str() << "\n"); 1475 } 1476 1477 /// Returns the instruction where the "wait" counterpart \p RuntimeCall can be 1478 /// moved. Returns nullptr if the movement is not possible, or not worth it. 1479 Instruction *canBeMovedDownwards(CallInst &RuntimeCall) { 1480 // FIXME: This traverses only the BasicBlock where RuntimeCall is. 1481 // Make it traverse the CFG. 1482 1483 Instruction *CurrentI = &RuntimeCall; 1484 bool IsWorthIt = false; 1485 while ((CurrentI = CurrentI->getNextNode())) { 1486 1487 // TODO: Once we detect the regions to be offloaded we should use the 1488 // alias analysis manager to check if CurrentI may modify one of 1489 // the offloaded regions. 1490 if (CurrentI->mayHaveSideEffects() || CurrentI->mayReadFromMemory()) { 1491 if (IsWorthIt) 1492 return CurrentI; 1493 1494 return nullptr; 1495 } 1496 1497 // FIXME: For now if we move it over anything without side effect 1498 // is worth it. 1499 IsWorthIt = true; 1500 } 1501 1502 // Return end of BasicBlock. 1503 return RuntimeCall.getParent()->getTerminator(); 1504 } 1505 1506 /// Splits \p RuntimeCall into its "issue" and "wait" counterparts. 1507 bool splitTargetDataBeginRTC(CallInst &RuntimeCall, 1508 Instruction &WaitMovementPoint) { 1509 // Create stack allocated handle (__tgt_async_info) at the beginning of the 1510 // function. Used for storing information of the async transfer, allowing to 1511 // wait on it later. 1512 auto &IRBuilder = OMPInfoCache.OMPBuilder; 1513 auto *F = RuntimeCall.getCaller(); 1514 Instruction *FirstInst = &(F->getEntryBlock().front()); 1515 AllocaInst *Handle = new AllocaInst( 1516 IRBuilder.AsyncInfo, F->getAddressSpace(), "handle", FirstInst); 1517 1518 // Add "issue" runtime call declaration: 1519 // declare %struct.tgt_async_info @__tgt_target_data_begin_issue(i64, i32, 1520 // i8**, i8**, i64*, i64*) 1521 FunctionCallee IssueDecl = IRBuilder.getOrCreateRuntimeFunction( 1522 M, OMPRTL___tgt_target_data_begin_mapper_issue); 1523 1524 // Change RuntimeCall call site for its asynchronous version. 1525 SmallVector<Value *, 16> Args; 1526 for (auto &Arg : RuntimeCall.args()) 1527 Args.push_back(Arg.get()); 1528 Args.push_back(Handle); 1529 1530 CallInst *IssueCallsite = 1531 CallInst::Create(IssueDecl, Args, /*NameStr=*/"", &RuntimeCall); 1532 RuntimeCall.eraseFromParent(); 1533 1534 // Add "wait" runtime call declaration: 1535 // declare void @__tgt_target_data_begin_wait(i64, %struct.__tgt_async_info) 1536 FunctionCallee WaitDecl = IRBuilder.getOrCreateRuntimeFunction( 1537 M, OMPRTL___tgt_target_data_begin_mapper_wait); 1538 1539 Value *WaitParams[2] = { 1540 IssueCallsite->getArgOperand( 1541 OffloadArray::DeviceIDArgNum), // device_id. 1542 Handle // handle to wait on. 1543 }; 1544 CallInst::Create(WaitDecl, WaitParams, /*NameStr=*/"", &WaitMovementPoint); 1545 1546 return true; 1547 } 1548 1549 static Value *combinedIdentStruct(Value *CurrentIdent, Value *NextIdent, 1550 bool GlobalOnly, bool &SingleChoice) { 1551 if (CurrentIdent == NextIdent) 1552 return CurrentIdent; 1553 1554 // TODO: Figure out how to actually combine multiple debug locations. For 1555 // now we just keep an existing one if there is a single choice. 1556 if (!GlobalOnly || isa<GlobalValue>(NextIdent)) { 1557 SingleChoice = !CurrentIdent; 1558 return NextIdent; 1559 } 1560 return nullptr; 1561 } 1562 1563 /// Return an `struct ident_t*` value that represents the ones used in the 1564 /// calls of \p RFI inside of \p F. If \p GlobalOnly is true, we will not 1565 /// return a local `struct ident_t*`. For now, if we cannot find a suitable 1566 /// return value we create one from scratch. We also do not yet combine 1567 /// information, e.g., the source locations, see combinedIdentStruct. 1568 Value * 1569 getCombinedIdentFromCallUsesIn(OMPInformationCache::RuntimeFunctionInfo &RFI, 1570 Function &F, bool GlobalOnly) { 1571 bool SingleChoice = true; 1572 Value *Ident = nullptr; 1573 auto CombineIdentStruct = [&](Use &U, Function &Caller) { 1574 CallInst *CI = getCallIfRegularCall(U, &RFI); 1575 if (!CI || &F != &Caller) 1576 return false; 1577 Ident = combinedIdentStruct(Ident, CI->getArgOperand(0), 1578 /* GlobalOnly */ true, SingleChoice); 1579 return false; 1580 }; 1581 RFI.foreachUse(SCC, CombineIdentStruct); 1582 1583 if (!Ident || !SingleChoice) { 1584 // The IRBuilder uses the insertion block to get to the module, this is 1585 // unfortunate but we work around it for now. 1586 if (!OMPInfoCache.OMPBuilder.getInsertionPoint().getBlock()) 1587 OMPInfoCache.OMPBuilder.updateToLocation(OpenMPIRBuilder::InsertPointTy( 1588 &F.getEntryBlock(), F.getEntryBlock().begin())); 1589 // Create a fallback location if non was found. 1590 // TODO: Use the debug locations of the calls instead. 1591 Constant *Loc = OMPInfoCache.OMPBuilder.getOrCreateDefaultSrcLocStr(); 1592 Ident = OMPInfoCache.OMPBuilder.getOrCreateIdent(Loc); 1593 } 1594 return Ident; 1595 } 1596 1597 /// Try to eliminate calls of \p RFI in \p F by reusing an existing one or 1598 /// \p ReplVal if given. 1599 bool deduplicateRuntimeCalls(Function &F, 1600 OMPInformationCache::RuntimeFunctionInfo &RFI, 1601 Value *ReplVal = nullptr) { 1602 auto *UV = RFI.getUseVector(F); 1603 if (!UV || UV->size() + (ReplVal != nullptr) < 2) 1604 return false; 1605 1606 LLVM_DEBUG( 1607 dbgs() << TAG << "Deduplicate " << UV->size() << " uses of " << RFI.Name 1608 << (ReplVal ? " with an existing value\n" : "\n") << "\n"); 1609 1610 assert((!ReplVal || (isa<Argument>(ReplVal) && 1611 cast<Argument>(ReplVal)->getParent() == &F)) && 1612 "Unexpected replacement value!"); 1613 1614 // TODO: Use dominance to find a good position instead. 1615 auto CanBeMoved = [this](CallBase &CB) { 1616 unsigned NumArgs = CB.arg_size(); 1617 if (NumArgs == 0) 1618 return true; 1619 if (CB.getArgOperand(0)->getType() != OMPInfoCache.OMPBuilder.IdentPtr) 1620 return false; 1621 for (unsigned U = 1; U < NumArgs; ++U) 1622 if (isa<Instruction>(CB.getArgOperand(U))) 1623 return false; 1624 return true; 1625 }; 1626 1627 if (!ReplVal) { 1628 for (Use *U : *UV) 1629 if (CallInst *CI = getCallIfRegularCall(*U, &RFI)) { 1630 if (!CanBeMoved(*CI)) 1631 continue; 1632 1633 // If the function is a kernel, dedup will move 1634 // the runtime call right after the kernel init callsite. Otherwise, 1635 // it will move it to the beginning of the caller function. 1636 if (isKernel(F)) { 1637 auto &KernelInitRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_target_init]; 1638 auto *KernelInitUV = KernelInitRFI.getUseVector(F); 1639 1640 if (KernelInitUV->empty()) 1641 continue; 1642 1643 assert(KernelInitUV->size() == 1 && 1644 "Expected a single __kmpc_target_init in kernel\n"); 1645 1646 CallInst *KernelInitCI = 1647 getCallIfRegularCall(*KernelInitUV->front(), &KernelInitRFI); 1648 assert(KernelInitCI && 1649 "Expected a call to __kmpc_target_init in kernel\n"); 1650 1651 CI->moveAfter(KernelInitCI); 1652 } else 1653 CI->moveBefore(&*F.getEntryBlock().getFirstInsertionPt()); 1654 ReplVal = CI; 1655 break; 1656 } 1657 if (!ReplVal) 1658 return false; 1659 } 1660 1661 // If we use a call as a replacement value we need to make sure the ident is 1662 // valid at the new location. For now we just pick a global one, either 1663 // existing and used by one of the calls, or created from scratch. 1664 if (CallBase *CI = dyn_cast<CallBase>(ReplVal)) { 1665 if (!CI->arg_empty() && 1666 CI->getArgOperand(0)->getType() == OMPInfoCache.OMPBuilder.IdentPtr) { 1667 Value *Ident = getCombinedIdentFromCallUsesIn(RFI, F, 1668 /* GlobalOnly */ true); 1669 CI->setArgOperand(0, Ident); 1670 } 1671 } 1672 1673 bool Changed = false; 1674 auto ReplaceAndDeleteCB = [&](Use &U, Function &Caller) { 1675 CallInst *CI = getCallIfRegularCall(U, &RFI); 1676 if (!CI || CI == ReplVal || &F != &Caller) 1677 return false; 1678 assert(CI->getCaller() == &F && "Unexpected call!"); 1679 1680 auto Remark = [&](OptimizationRemark OR) { 1681 return OR << "OpenMP runtime call " 1682 << ore::NV("OpenMPOptRuntime", RFI.Name) << " deduplicated."; 1683 }; 1684 if (CI->getDebugLoc()) 1685 emitRemark<OptimizationRemark>(CI, "OMP170", Remark); 1686 else 1687 emitRemark<OptimizationRemark>(&F, "OMP170", Remark); 1688 1689 CGUpdater.removeCallSite(*CI); 1690 CI->replaceAllUsesWith(ReplVal); 1691 CI->eraseFromParent(); 1692 ++NumOpenMPRuntimeCallsDeduplicated; 1693 Changed = true; 1694 return true; 1695 }; 1696 RFI.foreachUse(SCC, ReplaceAndDeleteCB); 1697 1698 return Changed; 1699 } 1700 1701 /// Collect arguments that represent the global thread id in \p GTIdArgs. 1702 void collectGlobalThreadIdArguments(SmallSetVector<Value *, 16> >IdArgs) { 1703 // TODO: Below we basically perform a fixpoint iteration with a pessimistic 1704 // initialization. We could define an AbstractAttribute instead and 1705 // run the Attributor here once it can be run as an SCC pass. 1706 1707 // Helper to check the argument \p ArgNo at all call sites of \p F for 1708 // a GTId. 1709 auto CallArgOpIsGTId = [&](Function &F, unsigned ArgNo, CallInst &RefCI) { 1710 if (!F.hasLocalLinkage()) 1711 return false; 1712 for (Use &U : F.uses()) { 1713 if (CallInst *CI = getCallIfRegularCall(U)) { 1714 Value *ArgOp = CI->getArgOperand(ArgNo); 1715 if (CI == &RefCI || GTIdArgs.count(ArgOp) || 1716 getCallIfRegularCall( 1717 *ArgOp, &OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num])) 1718 continue; 1719 } 1720 return false; 1721 } 1722 return true; 1723 }; 1724 1725 // Helper to identify uses of a GTId as GTId arguments. 1726 auto AddUserArgs = [&](Value >Id) { 1727 for (Use &U : GTId.uses()) 1728 if (CallInst *CI = dyn_cast<CallInst>(U.getUser())) 1729 if (CI->isArgOperand(&U)) 1730 if (Function *Callee = CI->getCalledFunction()) 1731 if (CallArgOpIsGTId(*Callee, U.getOperandNo(), *CI)) 1732 GTIdArgs.insert(Callee->getArg(U.getOperandNo())); 1733 }; 1734 1735 // The argument users of __kmpc_global_thread_num calls are GTIds. 1736 OMPInformationCache::RuntimeFunctionInfo &GlobThreadNumRFI = 1737 OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num]; 1738 1739 GlobThreadNumRFI.foreachUse(SCC, [&](Use &U, Function &F) { 1740 if (CallInst *CI = getCallIfRegularCall(U, &GlobThreadNumRFI)) 1741 AddUserArgs(*CI); 1742 return false; 1743 }); 1744 1745 // Transitively search for more arguments by looking at the users of the 1746 // ones we know already. During the search the GTIdArgs vector is extended 1747 // so we cannot cache the size nor can we use a range based for. 1748 for (unsigned U = 0; U < GTIdArgs.size(); ++U) 1749 AddUserArgs(*GTIdArgs[U]); 1750 } 1751 1752 /// Kernel (=GPU) optimizations and utility functions 1753 /// 1754 ///{{ 1755 1756 /// Check if \p F is a kernel, hence entry point for target offloading. 1757 bool isKernel(Function &F) { return OMPInfoCache.Kernels.count(&F); } 1758 1759 /// Cache to remember the unique kernel for a function. 1760 DenseMap<Function *, Optional<Kernel>> UniqueKernelMap; 1761 1762 /// Find the unique kernel that will execute \p F, if any. 1763 Kernel getUniqueKernelFor(Function &F); 1764 1765 /// Find the unique kernel that will execute \p I, if any. 1766 Kernel getUniqueKernelFor(Instruction &I) { 1767 return getUniqueKernelFor(*I.getFunction()); 1768 } 1769 1770 /// Rewrite the device (=GPU) code state machine create in non-SPMD mode in 1771 /// the cases we can avoid taking the address of a function. 1772 bool rewriteDeviceCodeStateMachine(); 1773 1774 /// 1775 ///}} 1776 1777 /// Emit a remark generically 1778 /// 1779 /// This template function can be used to generically emit a remark. The 1780 /// RemarkKind should be one of the following: 1781 /// - OptimizationRemark to indicate a successful optimization attempt 1782 /// - OptimizationRemarkMissed to report a failed optimization attempt 1783 /// - OptimizationRemarkAnalysis to provide additional information about an 1784 /// optimization attempt 1785 /// 1786 /// The remark is built using a callback function provided by the caller that 1787 /// takes a RemarkKind as input and returns a RemarkKind. 1788 template <typename RemarkKind, typename RemarkCallBack> 1789 void emitRemark(Instruction *I, StringRef RemarkName, 1790 RemarkCallBack &&RemarkCB) const { 1791 Function *F = I->getParent()->getParent(); 1792 auto &ORE = OREGetter(F); 1793 1794 if (RemarkName.startswith("OMP")) 1795 ORE.emit([&]() { 1796 return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, I)) 1797 << " [" << RemarkName << "]"; 1798 }); 1799 else 1800 ORE.emit( 1801 [&]() { return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, I)); }); 1802 } 1803 1804 /// Emit a remark on a function. 1805 template <typename RemarkKind, typename RemarkCallBack> 1806 void emitRemark(Function *F, StringRef RemarkName, 1807 RemarkCallBack &&RemarkCB) const { 1808 auto &ORE = OREGetter(F); 1809 1810 if (RemarkName.startswith("OMP")) 1811 ORE.emit([&]() { 1812 return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, F)) 1813 << " [" << RemarkName << "]"; 1814 }); 1815 else 1816 ORE.emit( 1817 [&]() { return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, F)); }); 1818 } 1819 1820 /// RAII struct to temporarily change an RTL function's linkage to external. 1821 /// This prevents it from being mistakenly removed by other optimizations. 1822 struct ExternalizationRAII { 1823 ExternalizationRAII(OMPInformationCache &OMPInfoCache, 1824 RuntimeFunction RFKind) 1825 : Declaration(OMPInfoCache.RFIs[RFKind].Declaration) { 1826 if (!Declaration) 1827 return; 1828 1829 LinkageType = Declaration->getLinkage(); 1830 Declaration->setLinkage(GlobalValue::ExternalLinkage); 1831 } 1832 1833 ~ExternalizationRAII() { 1834 if (!Declaration) 1835 return; 1836 1837 Declaration->setLinkage(LinkageType); 1838 } 1839 1840 Function *Declaration; 1841 GlobalValue::LinkageTypes LinkageType; 1842 }; 1843 1844 /// The underlying module. 1845 Module &M; 1846 1847 /// The SCC we are operating on. 1848 SmallVectorImpl<Function *> &SCC; 1849 1850 /// Callback to update the call graph, the first argument is a removed call, 1851 /// the second an optional replacement call. 1852 CallGraphUpdater &CGUpdater; 1853 1854 /// Callback to get an OptimizationRemarkEmitter from a Function * 1855 OptimizationRemarkGetter OREGetter; 1856 1857 /// OpenMP-specific information cache. Also Used for Attributor runs. 1858 OMPInformationCache &OMPInfoCache; 1859 1860 /// Attributor instance. 1861 Attributor &A; 1862 1863 /// Helper function to run Attributor on SCC. 1864 bool runAttributor(bool IsModulePass) { 1865 if (SCC.empty()) 1866 return false; 1867 1868 // Temporarily make these function have external linkage so the Attributor 1869 // doesn't remove them when we try to look them up later. 1870 ExternalizationRAII Parallel(OMPInfoCache, OMPRTL___kmpc_kernel_parallel); 1871 ExternalizationRAII EndParallel(OMPInfoCache, 1872 OMPRTL___kmpc_kernel_end_parallel); 1873 ExternalizationRAII BarrierSPMD(OMPInfoCache, 1874 OMPRTL___kmpc_barrier_simple_spmd); 1875 ExternalizationRAII ThreadId(OMPInfoCache, 1876 OMPRTL___kmpc_get_hardware_thread_id_in_block); 1877 1878 registerAAs(IsModulePass); 1879 1880 ChangeStatus Changed = A.run(); 1881 1882 LLVM_DEBUG(dbgs() << "[Attributor] Done with " << SCC.size() 1883 << " functions, result: " << Changed << ".\n"); 1884 1885 return Changed == ChangeStatus::CHANGED; 1886 } 1887 1888 void registerFoldRuntimeCall(RuntimeFunction RF); 1889 1890 /// Populate the Attributor with abstract attribute opportunities in the 1891 /// function. 1892 void registerAAs(bool IsModulePass); 1893 }; 1894 1895 Kernel OpenMPOpt::getUniqueKernelFor(Function &F) { 1896 if (!OMPInfoCache.ModuleSlice.count(&F)) 1897 return nullptr; 1898 1899 // Use a scope to keep the lifetime of the CachedKernel short. 1900 { 1901 Optional<Kernel> &CachedKernel = UniqueKernelMap[&F]; 1902 if (CachedKernel) 1903 return *CachedKernel; 1904 1905 // TODO: We should use an AA to create an (optimistic and callback 1906 // call-aware) call graph. For now we stick to simple patterns that 1907 // are less powerful, basically the worst fixpoint. 1908 if (isKernel(F)) { 1909 CachedKernel = Kernel(&F); 1910 return *CachedKernel; 1911 } 1912 1913 CachedKernel = nullptr; 1914 if (!F.hasLocalLinkage()) { 1915 1916 // See https://openmp.llvm.org/remarks/OptimizationRemarks.html 1917 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 1918 return ORA << "Potentially unknown OpenMP target region caller."; 1919 }; 1920 emitRemark<OptimizationRemarkAnalysis>(&F, "OMP100", Remark); 1921 1922 return nullptr; 1923 } 1924 } 1925 1926 auto GetUniqueKernelForUse = [&](const Use &U) -> Kernel { 1927 if (auto *Cmp = dyn_cast<ICmpInst>(U.getUser())) { 1928 // Allow use in equality comparisons. 1929 if (Cmp->isEquality()) 1930 return getUniqueKernelFor(*Cmp); 1931 return nullptr; 1932 } 1933 if (auto *CB = dyn_cast<CallBase>(U.getUser())) { 1934 // Allow direct calls. 1935 if (CB->isCallee(&U)) 1936 return getUniqueKernelFor(*CB); 1937 1938 OMPInformationCache::RuntimeFunctionInfo &KernelParallelRFI = 1939 OMPInfoCache.RFIs[OMPRTL___kmpc_parallel_51]; 1940 // Allow the use in __kmpc_parallel_51 calls. 1941 if (OpenMPOpt::getCallIfRegularCall(*U.getUser(), &KernelParallelRFI)) 1942 return getUniqueKernelFor(*CB); 1943 return nullptr; 1944 } 1945 // Disallow every other use. 1946 return nullptr; 1947 }; 1948 1949 // TODO: In the future we want to track more than just a unique kernel. 1950 SmallPtrSet<Kernel, 2> PotentialKernels; 1951 OMPInformationCache::foreachUse(F, [&](const Use &U) { 1952 PotentialKernels.insert(GetUniqueKernelForUse(U)); 1953 }); 1954 1955 Kernel K = nullptr; 1956 if (PotentialKernels.size() == 1) 1957 K = *PotentialKernels.begin(); 1958 1959 // Cache the result. 1960 UniqueKernelMap[&F] = K; 1961 1962 return K; 1963 } 1964 1965 bool OpenMPOpt::rewriteDeviceCodeStateMachine() { 1966 OMPInformationCache::RuntimeFunctionInfo &KernelParallelRFI = 1967 OMPInfoCache.RFIs[OMPRTL___kmpc_parallel_51]; 1968 1969 bool Changed = false; 1970 if (!KernelParallelRFI) 1971 return Changed; 1972 1973 // If we have disabled state machine changes, exit 1974 if (DisableOpenMPOptStateMachineRewrite) 1975 return Changed; 1976 1977 for (Function *F : SCC) { 1978 1979 // Check if the function is a use in a __kmpc_parallel_51 call at 1980 // all. 1981 bool UnknownUse = false; 1982 bool KernelParallelUse = false; 1983 unsigned NumDirectCalls = 0; 1984 1985 SmallVector<Use *, 2> ToBeReplacedStateMachineUses; 1986 OMPInformationCache::foreachUse(*F, [&](Use &U) { 1987 if (auto *CB = dyn_cast<CallBase>(U.getUser())) 1988 if (CB->isCallee(&U)) { 1989 ++NumDirectCalls; 1990 return; 1991 } 1992 1993 if (isa<ICmpInst>(U.getUser())) { 1994 ToBeReplacedStateMachineUses.push_back(&U); 1995 return; 1996 } 1997 1998 // Find wrapper functions that represent parallel kernels. 1999 CallInst *CI = 2000 OpenMPOpt::getCallIfRegularCall(*U.getUser(), &KernelParallelRFI); 2001 const unsigned int WrapperFunctionArgNo = 6; 2002 if (!KernelParallelUse && CI && 2003 CI->getArgOperandNo(&U) == WrapperFunctionArgNo) { 2004 KernelParallelUse = true; 2005 ToBeReplacedStateMachineUses.push_back(&U); 2006 return; 2007 } 2008 UnknownUse = true; 2009 }); 2010 2011 // Do not emit a remark if we haven't seen a __kmpc_parallel_51 2012 // use. 2013 if (!KernelParallelUse) 2014 continue; 2015 2016 // If this ever hits, we should investigate. 2017 // TODO: Checking the number of uses is not a necessary restriction and 2018 // should be lifted. 2019 if (UnknownUse || NumDirectCalls != 1 || 2020 ToBeReplacedStateMachineUses.size() > 2) { 2021 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 2022 return ORA << "Parallel region is used in " 2023 << (UnknownUse ? "unknown" : "unexpected") 2024 << " ways. Will not attempt to rewrite the state machine."; 2025 }; 2026 emitRemark<OptimizationRemarkAnalysis>(F, "OMP101", Remark); 2027 continue; 2028 } 2029 2030 // Even if we have __kmpc_parallel_51 calls, we (for now) give 2031 // up if the function is not called from a unique kernel. 2032 Kernel K = getUniqueKernelFor(*F); 2033 if (!K) { 2034 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 2035 return ORA << "Parallel region is not called from a unique kernel. " 2036 "Will not attempt to rewrite the state machine."; 2037 }; 2038 emitRemark<OptimizationRemarkAnalysis>(F, "OMP102", Remark); 2039 continue; 2040 } 2041 2042 // We now know F is a parallel body function called only from the kernel K. 2043 // We also identified the state machine uses in which we replace the 2044 // function pointer by a new global symbol for identification purposes. This 2045 // ensures only direct calls to the function are left. 2046 2047 Module &M = *F->getParent(); 2048 Type *Int8Ty = Type::getInt8Ty(M.getContext()); 2049 2050 auto *ID = new GlobalVariable( 2051 M, Int8Ty, /* isConstant */ true, GlobalValue::PrivateLinkage, 2052 UndefValue::get(Int8Ty), F->getName() + ".ID"); 2053 2054 for (Use *U : ToBeReplacedStateMachineUses) 2055 U->set(ConstantExpr::getPointerBitCastOrAddrSpaceCast( 2056 ID, U->get()->getType())); 2057 2058 ++NumOpenMPParallelRegionsReplacedInGPUStateMachine; 2059 2060 Changed = true; 2061 } 2062 2063 return Changed; 2064 } 2065 2066 /// Abstract Attribute for tracking ICV values. 2067 struct AAICVTracker : public StateWrapper<BooleanState, AbstractAttribute> { 2068 using Base = StateWrapper<BooleanState, AbstractAttribute>; 2069 AAICVTracker(const IRPosition &IRP, Attributor &A) : Base(IRP) {} 2070 2071 void initialize(Attributor &A) override { 2072 Function *F = getAnchorScope(); 2073 if (!F || !A.isFunctionIPOAmendable(*F)) 2074 indicatePessimisticFixpoint(); 2075 } 2076 2077 /// Returns true if value is assumed to be tracked. 2078 bool isAssumedTracked() const { return getAssumed(); } 2079 2080 /// Returns true if value is known to be tracked. 2081 bool isKnownTracked() const { return getAssumed(); } 2082 2083 /// Create an abstract attribute biew for the position \p IRP. 2084 static AAICVTracker &createForPosition(const IRPosition &IRP, Attributor &A); 2085 2086 /// Return the value with which \p I can be replaced for specific \p ICV. 2087 virtual Optional<Value *> getReplacementValue(InternalControlVar ICV, 2088 const Instruction *I, 2089 Attributor &A) const { 2090 return None; 2091 } 2092 2093 /// Return an assumed unique ICV value if a single candidate is found. If 2094 /// there cannot be one, return a nullptr. If it is not clear yet, return the 2095 /// Optional::NoneType. 2096 virtual Optional<Value *> 2097 getUniqueReplacementValue(InternalControlVar ICV) const = 0; 2098 2099 // Currently only nthreads is being tracked. 2100 // this array will only grow with time. 2101 InternalControlVar TrackableICVs[1] = {ICV_nthreads}; 2102 2103 /// See AbstractAttribute::getName() 2104 const std::string getName() const override { return "AAICVTracker"; } 2105 2106 /// See AbstractAttribute::getIdAddr() 2107 const char *getIdAddr() const override { return &ID; } 2108 2109 /// This function should return true if the type of the \p AA is AAICVTracker 2110 static bool classof(const AbstractAttribute *AA) { 2111 return (AA->getIdAddr() == &ID); 2112 } 2113 2114 static const char ID; 2115 }; 2116 2117 struct AAICVTrackerFunction : public AAICVTracker { 2118 AAICVTrackerFunction(const IRPosition &IRP, Attributor &A) 2119 : AAICVTracker(IRP, A) {} 2120 2121 // FIXME: come up with better string. 2122 const std::string getAsStr() const override { return "ICVTrackerFunction"; } 2123 2124 // FIXME: come up with some stats. 2125 void trackStatistics() const override {} 2126 2127 /// We don't manifest anything for this AA. 2128 ChangeStatus manifest(Attributor &A) override { 2129 return ChangeStatus::UNCHANGED; 2130 } 2131 2132 // Map of ICV to their values at specific program point. 2133 EnumeratedArray<DenseMap<Instruction *, Value *>, InternalControlVar, 2134 InternalControlVar::ICV___last> 2135 ICVReplacementValuesMap; 2136 2137 ChangeStatus updateImpl(Attributor &A) override { 2138 ChangeStatus HasChanged = ChangeStatus::UNCHANGED; 2139 2140 Function *F = getAnchorScope(); 2141 2142 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2143 2144 for (InternalControlVar ICV : TrackableICVs) { 2145 auto &SetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Setter]; 2146 2147 auto &ValuesMap = ICVReplacementValuesMap[ICV]; 2148 auto TrackValues = [&](Use &U, Function &) { 2149 CallInst *CI = OpenMPOpt::getCallIfRegularCall(U); 2150 if (!CI) 2151 return false; 2152 2153 // FIXME: handle setters with more that 1 arguments. 2154 /// Track new value. 2155 if (ValuesMap.insert(std::make_pair(CI, CI->getArgOperand(0))).second) 2156 HasChanged = ChangeStatus::CHANGED; 2157 2158 return false; 2159 }; 2160 2161 auto CallCheck = [&](Instruction &I) { 2162 Optional<Value *> ReplVal = getValueForCall(A, &I, ICV); 2163 if (ReplVal.hasValue() && 2164 ValuesMap.insert(std::make_pair(&I, *ReplVal)).second) 2165 HasChanged = ChangeStatus::CHANGED; 2166 2167 return true; 2168 }; 2169 2170 // Track all changes of an ICV. 2171 SetterRFI.foreachUse(TrackValues, F); 2172 2173 bool UsedAssumedInformation = false; 2174 A.checkForAllInstructions(CallCheck, *this, {Instruction::Call}, 2175 UsedAssumedInformation, 2176 /* CheckBBLivenessOnly */ true); 2177 2178 /// TODO: Figure out a way to avoid adding entry in 2179 /// ICVReplacementValuesMap 2180 Instruction *Entry = &F->getEntryBlock().front(); 2181 if (HasChanged == ChangeStatus::CHANGED && !ValuesMap.count(Entry)) 2182 ValuesMap.insert(std::make_pair(Entry, nullptr)); 2183 } 2184 2185 return HasChanged; 2186 } 2187 2188 /// Hepler to check if \p I is a call and get the value for it if it is 2189 /// unique. 2190 Optional<Value *> getValueForCall(Attributor &A, const Instruction *I, 2191 InternalControlVar &ICV) const { 2192 2193 const auto *CB = dyn_cast<CallBase>(I); 2194 if (!CB || CB->hasFnAttr("no_openmp") || 2195 CB->hasFnAttr("no_openmp_routines")) 2196 return None; 2197 2198 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2199 auto &GetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Getter]; 2200 auto &SetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Setter]; 2201 Function *CalledFunction = CB->getCalledFunction(); 2202 2203 // Indirect call, assume ICV changes. 2204 if (CalledFunction == nullptr) 2205 return nullptr; 2206 if (CalledFunction == GetterRFI.Declaration) 2207 return None; 2208 if (CalledFunction == SetterRFI.Declaration) { 2209 if (ICVReplacementValuesMap[ICV].count(I)) 2210 return ICVReplacementValuesMap[ICV].lookup(I); 2211 2212 return nullptr; 2213 } 2214 2215 // Since we don't know, assume it changes the ICV. 2216 if (CalledFunction->isDeclaration()) 2217 return nullptr; 2218 2219 const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>( 2220 *this, IRPosition::callsite_returned(*CB), DepClassTy::REQUIRED); 2221 2222 if (ICVTrackingAA.isAssumedTracked()) 2223 return ICVTrackingAA.getUniqueReplacementValue(ICV); 2224 2225 // If we don't know, assume it changes. 2226 return nullptr; 2227 } 2228 2229 // We don't check unique value for a function, so return None. 2230 Optional<Value *> 2231 getUniqueReplacementValue(InternalControlVar ICV) const override { 2232 return None; 2233 } 2234 2235 /// Return the value with which \p I can be replaced for specific \p ICV. 2236 Optional<Value *> getReplacementValue(InternalControlVar ICV, 2237 const Instruction *I, 2238 Attributor &A) const override { 2239 const auto &ValuesMap = ICVReplacementValuesMap[ICV]; 2240 if (ValuesMap.count(I)) 2241 return ValuesMap.lookup(I); 2242 2243 SmallVector<const Instruction *, 16> Worklist; 2244 SmallPtrSet<const Instruction *, 16> Visited; 2245 Worklist.push_back(I); 2246 2247 Optional<Value *> ReplVal; 2248 2249 while (!Worklist.empty()) { 2250 const Instruction *CurrInst = Worklist.pop_back_val(); 2251 if (!Visited.insert(CurrInst).second) 2252 continue; 2253 2254 const BasicBlock *CurrBB = CurrInst->getParent(); 2255 2256 // Go up and look for all potential setters/calls that might change the 2257 // ICV. 2258 while ((CurrInst = CurrInst->getPrevNode())) { 2259 if (ValuesMap.count(CurrInst)) { 2260 Optional<Value *> NewReplVal = ValuesMap.lookup(CurrInst); 2261 // Unknown value, track new. 2262 if (!ReplVal.hasValue()) { 2263 ReplVal = NewReplVal; 2264 break; 2265 } 2266 2267 // If we found a new value, we can't know the icv value anymore. 2268 if (NewReplVal.hasValue()) 2269 if (ReplVal != NewReplVal) 2270 return nullptr; 2271 2272 break; 2273 } 2274 2275 Optional<Value *> NewReplVal = getValueForCall(A, CurrInst, ICV); 2276 if (!NewReplVal.hasValue()) 2277 continue; 2278 2279 // Unknown value, track new. 2280 if (!ReplVal.hasValue()) { 2281 ReplVal = NewReplVal; 2282 break; 2283 } 2284 2285 // if (NewReplVal.hasValue()) 2286 // We found a new value, we can't know the icv value anymore. 2287 if (ReplVal != NewReplVal) 2288 return nullptr; 2289 } 2290 2291 // If we are in the same BB and we have a value, we are done. 2292 if (CurrBB == I->getParent() && ReplVal.hasValue()) 2293 return ReplVal; 2294 2295 // Go through all predecessors and add terminators for analysis. 2296 for (const BasicBlock *Pred : predecessors(CurrBB)) 2297 if (const Instruction *Terminator = Pred->getTerminator()) 2298 Worklist.push_back(Terminator); 2299 } 2300 2301 return ReplVal; 2302 } 2303 }; 2304 2305 struct AAICVTrackerFunctionReturned : AAICVTracker { 2306 AAICVTrackerFunctionReturned(const IRPosition &IRP, Attributor &A) 2307 : AAICVTracker(IRP, A) {} 2308 2309 // FIXME: come up with better string. 2310 const std::string getAsStr() const override { 2311 return "ICVTrackerFunctionReturned"; 2312 } 2313 2314 // FIXME: come up with some stats. 2315 void trackStatistics() const override {} 2316 2317 /// We don't manifest anything for this AA. 2318 ChangeStatus manifest(Attributor &A) override { 2319 return ChangeStatus::UNCHANGED; 2320 } 2321 2322 // Map of ICV to their values at specific program point. 2323 EnumeratedArray<Optional<Value *>, InternalControlVar, 2324 InternalControlVar::ICV___last> 2325 ICVReplacementValuesMap; 2326 2327 /// Return the value with which \p I can be replaced for specific \p ICV. 2328 Optional<Value *> 2329 getUniqueReplacementValue(InternalControlVar ICV) const override { 2330 return ICVReplacementValuesMap[ICV]; 2331 } 2332 2333 ChangeStatus updateImpl(Attributor &A) override { 2334 ChangeStatus Changed = ChangeStatus::UNCHANGED; 2335 const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>( 2336 *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED); 2337 2338 if (!ICVTrackingAA.isAssumedTracked()) 2339 return indicatePessimisticFixpoint(); 2340 2341 for (InternalControlVar ICV : TrackableICVs) { 2342 Optional<Value *> &ReplVal = ICVReplacementValuesMap[ICV]; 2343 Optional<Value *> UniqueICVValue; 2344 2345 auto CheckReturnInst = [&](Instruction &I) { 2346 Optional<Value *> NewReplVal = 2347 ICVTrackingAA.getReplacementValue(ICV, &I, A); 2348 2349 // If we found a second ICV value there is no unique returned value. 2350 if (UniqueICVValue.hasValue() && UniqueICVValue != NewReplVal) 2351 return false; 2352 2353 UniqueICVValue = NewReplVal; 2354 2355 return true; 2356 }; 2357 2358 bool UsedAssumedInformation = false; 2359 if (!A.checkForAllInstructions(CheckReturnInst, *this, {Instruction::Ret}, 2360 UsedAssumedInformation, 2361 /* CheckBBLivenessOnly */ true)) 2362 UniqueICVValue = nullptr; 2363 2364 if (UniqueICVValue == ReplVal) 2365 continue; 2366 2367 ReplVal = UniqueICVValue; 2368 Changed = ChangeStatus::CHANGED; 2369 } 2370 2371 return Changed; 2372 } 2373 }; 2374 2375 struct AAICVTrackerCallSite : AAICVTracker { 2376 AAICVTrackerCallSite(const IRPosition &IRP, Attributor &A) 2377 : AAICVTracker(IRP, A) {} 2378 2379 void initialize(Attributor &A) override { 2380 Function *F = getAnchorScope(); 2381 if (!F || !A.isFunctionIPOAmendable(*F)) 2382 indicatePessimisticFixpoint(); 2383 2384 // We only initialize this AA for getters, so we need to know which ICV it 2385 // gets. 2386 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2387 for (InternalControlVar ICV : TrackableICVs) { 2388 auto ICVInfo = OMPInfoCache.ICVs[ICV]; 2389 auto &Getter = OMPInfoCache.RFIs[ICVInfo.Getter]; 2390 if (Getter.Declaration == getAssociatedFunction()) { 2391 AssociatedICV = ICVInfo.Kind; 2392 return; 2393 } 2394 } 2395 2396 /// Unknown ICV. 2397 indicatePessimisticFixpoint(); 2398 } 2399 2400 ChangeStatus manifest(Attributor &A) override { 2401 if (!ReplVal.hasValue() || !ReplVal.getValue()) 2402 return ChangeStatus::UNCHANGED; 2403 2404 A.changeValueAfterManifest(*getCtxI(), **ReplVal); 2405 A.deleteAfterManifest(*getCtxI()); 2406 2407 return ChangeStatus::CHANGED; 2408 } 2409 2410 // FIXME: come up with better string. 2411 const std::string getAsStr() const override { return "ICVTrackerCallSite"; } 2412 2413 // FIXME: come up with some stats. 2414 void trackStatistics() const override {} 2415 2416 InternalControlVar AssociatedICV; 2417 Optional<Value *> ReplVal; 2418 2419 ChangeStatus updateImpl(Attributor &A) override { 2420 const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>( 2421 *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED); 2422 2423 // We don't have any information, so we assume it changes the ICV. 2424 if (!ICVTrackingAA.isAssumedTracked()) 2425 return indicatePessimisticFixpoint(); 2426 2427 Optional<Value *> NewReplVal = 2428 ICVTrackingAA.getReplacementValue(AssociatedICV, getCtxI(), A); 2429 2430 if (ReplVal == NewReplVal) 2431 return ChangeStatus::UNCHANGED; 2432 2433 ReplVal = NewReplVal; 2434 return ChangeStatus::CHANGED; 2435 } 2436 2437 // Return the value with which associated value can be replaced for specific 2438 // \p ICV. 2439 Optional<Value *> 2440 getUniqueReplacementValue(InternalControlVar ICV) const override { 2441 return ReplVal; 2442 } 2443 }; 2444 2445 struct AAICVTrackerCallSiteReturned : AAICVTracker { 2446 AAICVTrackerCallSiteReturned(const IRPosition &IRP, Attributor &A) 2447 : AAICVTracker(IRP, A) {} 2448 2449 // FIXME: come up with better string. 2450 const std::string getAsStr() const override { 2451 return "ICVTrackerCallSiteReturned"; 2452 } 2453 2454 // FIXME: come up with some stats. 2455 void trackStatistics() const override {} 2456 2457 /// We don't manifest anything for this AA. 2458 ChangeStatus manifest(Attributor &A) override { 2459 return ChangeStatus::UNCHANGED; 2460 } 2461 2462 // Map of ICV to their values at specific program point. 2463 EnumeratedArray<Optional<Value *>, InternalControlVar, 2464 InternalControlVar::ICV___last> 2465 ICVReplacementValuesMap; 2466 2467 /// Return the value with which associated value can be replaced for specific 2468 /// \p ICV. 2469 Optional<Value *> 2470 getUniqueReplacementValue(InternalControlVar ICV) const override { 2471 return ICVReplacementValuesMap[ICV]; 2472 } 2473 2474 ChangeStatus updateImpl(Attributor &A) override { 2475 ChangeStatus Changed = ChangeStatus::UNCHANGED; 2476 const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>( 2477 *this, IRPosition::returned(*getAssociatedFunction()), 2478 DepClassTy::REQUIRED); 2479 2480 // We don't have any information, so we assume it changes the ICV. 2481 if (!ICVTrackingAA.isAssumedTracked()) 2482 return indicatePessimisticFixpoint(); 2483 2484 for (InternalControlVar ICV : TrackableICVs) { 2485 Optional<Value *> &ReplVal = ICVReplacementValuesMap[ICV]; 2486 Optional<Value *> NewReplVal = 2487 ICVTrackingAA.getUniqueReplacementValue(ICV); 2488 2489 if (ReplVal == NewReplVal) 2490 continue; 2491 2492 ReplVal = NewReplVal; 2493 Changed = ChangeStatus::CHANGED; 2494 } 2495 return Changed; 2496 } 2497 }; 2498 2499 struct AAExecutionDomainFunction : public AAExecutionDomain { 2500 AAExecutionDomainFunction(const IRPosition &IRP, Attributor &A) 2501 : AAExecutionDomain(IRP, A) {} 2502 2503 const std::string getAsStr() const override { 2504 return "[AAExecutionDomain] " + std::to_string(SingleThreadedBBs.size()) + 2505 "/" + std::to_string(NumBBs) + " BBs thread 0 only."; 2506 } 2507 2508 /// See AbstractAttribute::trackStatistics(). 2509 void trackStatistics() const override {} 2510 2511 void initialize(Attributor &A) override { 2512 Function *F = getAnchorScope(); 2513 for (const auto &BB : *F) 2514 SingleThreadedBBs.insert(&BB); 2515 NumBBs = SingleThreadedBBs.size(); 2516 } 2517 2518 ChangeStatus manifest(Attributor &A) override { 2519 LLVM_DEBUG({ 2520 for (const BasicBlock *BB : SingleThreadedBBs) 2521 dbgs() << TAG << " Basic block @" << getAnchorScope()->getName() << " " 2522 << BB->getName() << " is executed by a single thread.\n"; 2523 }); 2524 return ChangeStatus::UNCHANGED; 2525 } 2526 2527 ChangeStatus updateImpl(Attributor &A) override; 2528 2529 /// Check if an instruction is executed by a single thread. 2530 bool isExecutedByInitialThreadOnly(const Instruction &I) const override { 2531 return isExecutedByInitialThreadOnly(*I.getParent()); 2532 } 2533 2534 bool isExecutedByInitialThreadOnly(const BasicBlock &BB) const override { 2535 return isValidState() && SingleThreadedBBs.contains(&BB); 2536 } 2537 2538 /// Set of basic blocks that are executed by a single thread. 2539 DenseSet<const BasicBlock *> SingleThreadedBBs; 2540 2541 /// Total number of basic blocks in this function. 2542 long unsigned NumBBs; 2543 }; 2544 2545 ChangeStatus AAExecutionDomainFunction::updateImpl(Attributor &A) { 2546 Function *F = getAnchorScope(); 2547 ReversePostOrderTraversal<Function *> RPOT(F); 2548 auto NumSingleThreadedBBs = SingleThreadedBBs.size(); 2549 2550 bool AllCallSitesKnown; 2551 auto PredForCallSite = [&](AbstractCallSite ACS) { 2552 const auto &ExecutionDomainAA = A.getAAFor<AAExecutionDomain>( 2553 *this, IRPosition::function(*ACS.getInstruction()->getFunction()), 2554 DepClassTy::REQUIRED); 2555 return ACS.isDirectCall() && 2556 ExecutionDomainAA.isExecutedByInitialThreadOnly( 2557 *ACS.getInstruction()); 2558 }; 2559 2560 if (!A.checkForAllCallSites(PredForCallSite, *this, 2561 /* RequiresAllCallSites */ true, 2562 AllCallSitesKnown)) 2563 SingleThreadedBBs.erase(&F->getEntryBlock()); 2564 2565 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2566 auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_target_init]; 2567 2568 // Check if the edge into the successor block contains a condition that only 2569 // lets the main thread execute it. 2570 auto IsInitialThreadOnly = [&](BranchInst *Edge, BasicBlock *SuccessorBB) { 2571 if (!Edge || !Edge->isConditional()) 2572 return false; 2573 if (Edge->getSuccessor(0) != SuccessorBB) 2574 return false; 2575 2576 auto *Cmp = dyn_cast<CmpInst>(Edge->getCondition()); 2577 if (!Cmp || !Cmp->isTrueWhenEqual() || !Cmp->isEquality()) 2578 return false; 2579 2580 ConstantInt *C = dyn_cast<ConstantInt>(Cmp->getOperand(1)); 2581 if (!C) 2582 return false; 2583 2584 // Match: -1 == __kmpc_target_init (for non-SPMD kernels only!) 2585 if (C->isAllOnesValue()) { 2586 auto *CB = dyn_cast<CallBase>(Cmp->getOperand(0)); 2587 CB = CB ? OpenMPOpt::getCallIfRegularCall(*CB, &RFI) : nullptr; 2588 if (!CB) 2589 return false; 2590 const int InitModeArgNo = 1; 2591 auto *ModeCI = dyn_cast<ConstantInt>(CB->getOperand(InitModeArgNo)); 2592 return ModeCI && (ModeCI->getSExtValue() & OMP_TGT_EXEC_MODE_GENERIC); 2593 } 2594 2595 if (C->isZero()) { 2596 // Match: 0 == llvm.nvvm.read.ptx.sreg.tid.x() 2597 if (auto *II = dyn_cast<IntrinsicInst>(Cmp->getOperand(0))) 2598 if (II->getIntrinsicID() == Intrinsic::nvvm_read_ptx_sreg_tid_x) 2599 return true; 2600 2601 // Match: 0 == llvm.amdgcn.workitem.id.x() 2602 if (auto *II = dyn_cast<IntrinsicInst>(Cmp->getOperand(0))) 2603 if (II->getIntrinsicID() == Intrinsic::amdgcn_workitem_id_x) 2604 return true; 2605 } 2606 2607 return false; 2608 }; 2609 2610 // Merge all the predecessor states into the current basic block. A basic 2611 // block is executed by a single thread if all of its predecessors are. 2612 auto MergePredecessorStates = [&](BasicBlock *BB) { 2613 if (pred_begin(BB) == pred_end(BB)) 2614 return SingleThreadedBBs.contains(BB); 2615 2616 bool IsInitialThread = true; 2617 for (auto PredBB = pred_begin(BB), PredEndBB = pred_end(BB); 2618 PredBB != PredEndBB; ++PredBB) { 2619 if (!IsInitialThreadOnly(dyn_cast<BranchInst>((*PredBB)->getTerminator()), 2620 BB)) 2621 IsInitialThread &= SingleThreadedBBs.contains(*PredBB); 2622 } 2623 2624 return IsInitialThread; 2625 }; 2626 2627 for (auto *BB : RPOT) { 2628 if (!MergePredecessorStates(BB)) 2629 SingleThreadedBBs.erase(BB); 2630 } 2631 2632 return (NumSingleThreadedBBs == SingleThreadedBBs.size()) 2633 ? ChangeStatus::UNCHANGED 2634 : ChangeStatus::CHANGED; 2635 } 2636 2637 /// Try to replace memory allocation calls called by a single thread with a 2638 /// static buffer of shared memory. 2639 struct AAHeapToShared : public StateWrapper<BooleanState, AbstractAttribute> { 2640 using Base = StateWrapper<BooleanState, AbstractAttribute>; 2641 AAHeapToShared(const IRPosition &IRP, Attributor &A) : Base(IRP) {} 2642 2643 /// Create an abstract attribute view for the position \p IRP. 2644 static AAHeapToShared &createForPosition(const IRPosition &IRP, 2645 Attributor &A); 2646 2647 /// Returns true if HeapToShared conversion is assumed to be possible. 2648 virtual bool isAssumedHeapToShared(CallBase &CB) const = 0; 2649 2650 /// Returns true if HeapToShared conversion is assumed and the CB is a 2651 /// callsite to a free operation to be removed. 2652 virtual bool isAssumedHeapToSharedRemovedFree(CallBase &CB) const = 0; 2653 2654 /// See AbstractAttribute::getName(). 2655 const std::string getName() const override { return "AAHeapToShared"; } 2656 2657 /// See AbstractAttribute::getIdAddr(). 2658 const char *getIdAddr() const override { return &ID; } 2659 2660 /// This function should return true if the type of the \p AA is 2661 /// AAHeapToShared. 2662 static bool classof(const AbstractAttribute *AA) { 2663 return (AA->getIdAddr() == &ID); 2664 } 2665 2666 /// Unique ID (due to the unique address) 2667 static const char ID; 2668 }; 2669 2670 struct AAHeapToSharedFunction : public AAHeapToShared { 2671 AAHeapToSharedFunction(const IRPosition &IRP, Attributor &A) 2672 : AAHeapToShared(IRP, A) {} 2673 2674 const std::string getAsStr() const override { 2675 return "[AAHeapToShared] " + std::to_string(MallocCalls.size()) + 2676 " malloc calls eligible."; 2677 } 2678 2679 /// See AbstractAttribute::trackStatistics(). 2680 void trackStatistics() const override {} 2681 2682 /// This functions finds free calls that will be removed by the 2683 /// HeapToShared transformation. 2684 void findPotentialRemovedFreeCalls(Attributor &A) { 2685 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2686 auto &FreeRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_free_shared]; 2687 2688 PotentialRemovedFreeCalls.clear(); 2689 // Update free call users of found malloc calls. 2690 for (CallBase *CB : MallocCalls) { 2691 SmallVector<CallBase *, 4> FreeCalls; 2692 for (auto *U : CB->users()) { 2693 CallBase *C = dyn_cast<CallBase>(U); 2694 if (C && C->getCalledFunction() == FreeRFI.Declaration) 2695 FreeCalls.push_back(C); 2696 } 2697 2698 if (FreeCalls.size() != 1) 2699 continue; 2700 2701 PotentialRemovedFreeCalls.insert(FreeCalls.front()); 2702 } 2703 } 2704 2705 void initialize(Attributor &A) override { 2706 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2707 auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared]; 2708 2709 for (User *U : RFI.Declaration->users()) 2710 if (CallBase *CB = dyn_cast<CallBase>(U)) 2711 MallocCalls.insert(CB); 2712 2713 findPotentialRemovedFreeCalls(A); 2714 } 2715 2716 bool isAssumedHeapToShared(CallBase &CB) const override { 2717 return isValidState() && MallocCalls.count(&CB); 2718 } 2719 2720 bool isAssumedHeapToSharedRemovedFree(CallBase &CB) const override { 2721 return isValidState() && PotentialRemovedFreeCalls.count(&CB); 2722 } 2723 2724 ChangeStatus manifest(Attributor &A) override { 2725 if (MallocCalls.empty()) 2726 return ChangeStatus::UNCHANGED; 2727 2728 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2729 auto &FreeCall = OMPInfoCache.RFIs[OMPRTL___kmpc_free_shared]; 2730 2731 Function *F = getAnchorScope(); 2732 auto *HS = A.lookupAAFor<AAHeapToStack>(IRPosition::function(*F), this, 2733 DepClassTy::OPTIONAL); 2734 2735 ChangeStatus Changed = ChangeStatus::UNCHANGED; 2736 for (CallBase *CB : MallocCalls) { 2737 // Skip replacing this if HeapToStack has already claimed it. 2738 if (HS && HS->isAssumedHeapToStack(*CB)) 2739 continue; 2740 2741 // Find the unique free call to remove it. 2742 SmallVector<CallBase *, 4> FreeCalls; 2743 for (auto *U : CB->users()) { 2744 CallBase *C = dyn_cast<CallBase>(U); 2745 if (C && C->getCalledFunction() == FreeCall.Declaration) 2746 FreeCalls.push_back(C); 2747 } 2748 if (FreeCalls.size() != 1) 2749 continue; 2750 2751 ConstantInt *AllocSize = dyn_cast<ConstantInt>(CB->getArgOperand(0)); 2752 2753 LLVM_DEBUG(dbgs() << TAG << "Replace globalization call " << *CB 2754 << " with " << AllocSize->getZExtValue() 2755 << " bytes of shared memory\n"); 2756 2757 // Create a new shared memory buffer of the same size as the allocation 2758 // and replace all the uses of the original allocation with it. 2759 Module *M = CB->getModule(); 2760 Type *Int8Ty = Type::getInt8Ty(M->getContext()); 2761 Type *Int8ArrTy = ArrayType::get(Int8Ty, AllocSize->getZExtValue()); 2762 auto *SharedMem = new GlobalVariable( 2763 *M, Int8ArrTy, /* IsConstant */ false, GlobalValue::InternalLinkage, 2764 UndefValue::get(Int8ArrTy), CB->getName(), nullptr, 2765 GlobalValue::NotThreadLocal, 2766 static_cast<unsigned>(AddressSpace::Shared)); 2767 auto *NewBuffer = 2768 ConstantExpr::getPointerCast(SharedMem, Int8Ty->getPointerTo()); 2769 2770 auto Remark = [&](OptimizationRemark OR) { 2771 return OR << "Replaced globalized variable with " 2772 << ore::NV("SharedMemory", AllocSize->getZExtValue()) 2773 << ((AllocSize->getZExtValue() != 1) ? " bytes " : " byte ") 2774 << "of shared memory."; 2775 }; 2776 A.emitRemark<OptimizationRemark>(CB, "OMP111", Remark); 2777 2778 SharedMem->setAlignment(MaybeAlign(32)); 2779 2780 A.changeValueAfterManifest(*CB, *NewBuffer); 2781 A.deleteAfterManifest(*CB); 2782 A.deleteAfterManifest(*FreeCalls.front()); 2783 2784 NumBytesMovedToSharedMemory += AllocSize->getZExtValue(); 2785 Changed = ChangeStatus::CHANGED; 2786 } 2787 2788 return Changed; 2789 } 2790 2791 ChangeStatus updateImpl(Attributor &A) override { 2792 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2793 auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared]; 2794 Function *F = getAnchorScope(); 2795 2796 auto NumMallocCalls = MallocCalls.size(); 2797 2798 // Only consider malloc calls executed by a single thread with a constant. 2799 for (User *U : RFI.Declaration->users()) { 2800 const auto &ED = A.getAAFor<AAExecutionDomain>( 2801 *this, IRPosition::function(*F), DepClassTy::REQUIRED); 2802 if (CallBase *CB = dyn_cast<CallBase>(U)) 2803 if (!dyn_cast<ConstantInt>(CB->getArgOperand(0)) || 2804 !ED.isExecutedByInitialThreadOnly(*CB)) 2805 MallocCalls.erase(CB); 2806 } 2807 2808 findPotentialRemovedFreeCalls(A); 2809 2810 if (NumMallocCalls != MallocCalls.size()) 2811 return ChangeStatus::CHANGED; 2812 2813 return ChangeStatus::UNCHANGED; 2814 } 2815 2816 /// Collection of all malloc calls in a function. 2817 SmallPtrSet<CallBase *, 4> MallocCalls; 2818 /// Collection of potentially removed free calls in a function. 2819 SmallPtrSet<CallBase *, 4> PotentialRemovedFreeCalls; 2820 }; 2821 2822 struct AAKernelInfo : public StateWrapper<KernelInfoState, AbstractAttribute> { 2823 using Base = StateWrapper<KernelInfoState, AbstractAttribute>; 2824 AAKernelInfo(const IRPosition &IRP, Attributor &A) : Base(IRP) {} 2825 2826 /// Statistics are tracked as part of manifest for now. 2827 void trackStatistics() const override {} 2828 2829 /// See AbstractAttribute::getAsStr() 2830 const std::string getAsStr() const override { 2831 if (!isValidState()) 2832 return "<invalid>"; 2833 return std::string(SPMDCompatibilityTracker.isAssumed() ? "SPMD" 2834 : "generic") + 2835 std::string(SPMDCompatibilityTracker.isAtFixpoint() ? " [FIX]" 2836 : "") + 2837 std::string(" #PRs: ") + 2838 (ReachedKnownParallelRegions.isValidState() 2839 ? std::to_string(ReachedKnownParallelRegions.size()) 2840 : "<invalid>") + 2841 ", #Unknown PRs: " + 2842 (ReachedUnknownParallelRegions.isValidState() 2843 ? std::to_string(ReachedUnknownParallelRegions.size()) 2844 : "<invalid>") + 2845 ", #Reaching Kernels: " + 2846 (ReachingKernelEntries.isValidState() 2847 ? std::to_string(ReachingKernelEntries.size()) 2848 : "<invalid>"); 2849 } 2850 2851 /// Create an abstract attribute biew for the position \p IRP. 2852 static AAKernelInfo &createForPosition(const IRPosition &IRP, Attributor &A); 2853 2854 /// See AbstractAttribute::getName() 2855 const std::string getName() const override { return "AAKernelInfo"; } 2856 2857 /// See AbstractAttribute::getIdAddr() 2858 const char *getIdAddr() const override { return &ID; } 2859 2860 /// This function should return true if the type of the \p AA is AAKernelInfo 2861 static bool classof(const AbstractAttribute *AA) { 2862 return (AA->getIdAddr() == &ID); 2863 } 2864 2865 static const char ID; 2866 }; 2867 2868 /// The function kernel info abstract attribute, basically, what can we say 2869 /// about a function with regards to the KernelInfoState. 2870 struct AAKernelInfoFunction : AAKernelInfo { 2871 AAKernelInfoFunction(const IRPosition &IRP, Attributor &A) 2872 : AAKernelInfo(IRP, A) {} 2873 2874 SmallPtrSet<Instruction *, 4> GuardedInstructions; 2875 2876 SmallPtrSetImpl<Instruction *> &getGuardedInstructions() { 2877 return GuardedInstructions; 2878 } 2879 2880 /// See AbstractAttribute::initialize(...). 2881 void initialize(Attributor &A) override { 2882 // This is a high-level transform that might change the constant arguments 2883 // of the init and dinit calls. We need to tell the Attributor about this 2884 // to avoid other parts using the current constant value for simpliication. 2885 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2886 2887 Function *Fn = getAnchorScope(); 2888 if (!OMPInfoCache.Kernels.count(Fn)) 2889 return; 2890 2891 // Add itself to the reaching kernel and set IsKernelEntry. 2892 ReachingKernelEntries.insert(Fn); 2893 IsKernelEntry = true; 2894 2895 OMPInformationCache::RuntimeFunctionInfo &InitRFI = 2896 OMPInfoCache.RFIs[OMPRTL___kmpc_target_init]; 2897 OMPInformationCache::RuntimeFunctionInfo &DeinitRFI = 2898 OMPInfoCache.RFIs[OMPRTL___kmpc_target_deinit]; 2899 2900 // For kernels we perform more initialization work, first we find the init 2901 // and deinit calls. 2902 auto StoreCallBase = [](Use &U, 2903 OMPInformationCache::RuntimeFunctionInfo &RFI, 2904 CallBase *&Storage) { 2905 CallBase *CB = OpenMPOpt::getCallIfRegularCall(U, &RFI); 2906 assert(CB && 2907 "Unexpected use of __kmpc_target_init or __kmpc_target_deinit!"); 2908 assert(!Storage && 2909 "Multiple uses of __kmpc_target_init or __kmpc_target_deinit!"); 2910 Storage = CB; 2911 return false; 2912 }; 2913 InitRFI.foreachUse( 2914 [&](Use &U, Function &) { 2915 StoreCallBase(U, InitRFI, KernelInitCB); 2916 return false; 2917 }, 2918 Fn); 2919 DeinitRFI.foreachUse( 2920 [&](Use &U, Function &) { 2921 StoreCallBase(U, DeinitRFI, KernelDeinitCB); 2922 return false; 2923 }, 2924 Fn); 2925 2926 // Ignore kernels without initializers such as global constructors. 2927 if (!KernelInitCB || !KernelDeinitCB) { 2928 indicateOptimisticFixpoint(); 2929 return; 2930 } 2931 2932 // For kernels we might need to initialize/finalize the IsSPMD state and 2933 // we need to register a simplification callback so that the Attributor 2934 // knows the constant arguments to __kmpc_target_init and 2935 // __kmpc_target_deinit might actually change. 2936 2937 Attributor::SimplifictionCallbackTy StateMachineSimplifyCB = 2938 [&](const IRPosition &IRP, const AbstractAttribute *AA, 2939 bool &UsedAssumedInformation) -> Optional<Value *> { 2940 // IRP represents the "use generic state machine" argument of an 2941 // __kmpc_target_init call. We will answer this one with the internal 2942 // state. As long as we are not in an invalid state, we will create a 2943 // custom state machine so the value should be a `i1 false`. If we are 2944 // in an invalid state, we won't change the value that is in the IR. 2945 if (!isValidState()) 2946 return nullptr; 2947 // If we have disabled state machine rewrites, don't make a custom one. 2948 if (DisableOpenMPOptStateMachineRewrite) 2949 return nullptr; 2950 if (AA) 2951 A.recordDependence(*this, *AA, DepClassTy::OPTIONAL); 2952 UsedAssumedInformation = !isAtFixpoint(); 2953 auto *FalseVal = 2954 ConstantInt::getBool(IRP.getAnchorValue().getContext(), 0); 2955 return FalseVal; 2956 }; 2957 2958 Attributor::SimplifictionCallbackTy ModeSimplifyCB = 2959 [&](const IRPosition &IRP, const AbstractAttribute *AA, 2960 bool &UsedAssumedInformation) -> Optional<Value *> { 2961 // IRP represents the "SPMDCompatibilityTracker" argument of an 2962 // __kmpc_target_init or 2963 // __kmpc_target_deinit call. We will answer this one with the internal 2964 // state. 2965 if (!SPMDCompatibilityTracker.isValidState()) 2966 return nullptr; 2967 if (!SPMDCompatibilityTracker.isAtFixpoint()) { 2968 if (AA) 2969 A.recordDependence(*this, *AA, DepClassTy::OPTIONAL); 2970 UsedAssumedInformation = true; 2971 } else { 2972 UsedAssumedInformation = false; 2973 } 2974 auto *Val = ConstantInt::getSigned( 2975 IntegerType::getInt8Ty(IRP.getAnchorValue().getContext()), 2976 SPMDCompatibilityTracker.isAssumed() ? OMP_TGT_EXEC_MODE_SPMD 2977 : OMP_TGT_EXEC_MODE_GENERIC); 2978 return Val; 2979 }; 2980 2981 Attributor::SimplifictionCallbackTy IsGenericModeSimplifyCB = 2982 [&](const IRPosition &IRP, const AbstractAttribute *AA, 2983 bool &UsedAssumedInformation) -> Optional<Value *> { 2984 // IRP represents the "RequiresFullRuntime" argument of an 2985 // __kmpc_target_init or __kmpc_target_deinit call. We will answer this 2986 // one with the internal state of the SPMDCompatibilityTracker, so if 2987 // generic then true, if SPMD then false. 2988 if (!SPMDCompatibilityTracker.isValidState()) 2989 return nullptr; 2990 if (!SPMDCompatibilityTracker.isAtFixpoint()) { 2991 if (AA) 2992 A.recordDependence(*this, *AA, DepClassTy::OPTIONAL); 2993 UsedAssumedInformation = true; 2994 } else { 2995 UsedAssumedInformation = false; 2996 } 2997 auto *Val = ConstantInt::getBool(IRP.getAnchorValue().getContext(), 2998 !SPMDCompatibilityTracker.isAssumed()); 2999 return Val; 3000 }; 3001 3002 constexpr const int InitModeArgNo = 1; 3003 constexpr const int DeinitModeArgNo = 1; 3004 constexpr const int InitUseStateMachineArgNo = 2; 3005 constexpr const int InitRequiresFullRuntimeArgNo = 3; 3006 constexpr const int DeinitRequiresFullRuntimeArgNo = 2; 3007 A.registerSimplificationCallback( 3008 IRPosition::callsite_argument(*KernelInitCB, InitUseStateMachineArgNo), 3009 StateMachineSimplifyCB); 3010 A.registerSimplificationCallback( 3011 IRPosition::callsite_argument(*KernelInitCB, InitModeArgNo), 3012 ModeSimplifyCB); 3013 A.registerSimplificationCallback( 3014 IRPosition::callsite_argument(*KernelDeinitCB, DeinitModeArgNo), 3015 ModeSimplifyCB); 3016 A.registerSimplificationCallback( 3017 IRPosition::callsite_argument(*KernelInitCB, 3018 InitRequiresFullRuntimeArgNo), 3019 IsGenericModeSimplifyCB); 3020 A.registerSimplificationCallback( 3021 IRPosition::callsite_argument(*KernelDeinitCB, 3022 DeinitRequiresFullRuntimeArgNo), 3023 IsGenericModeSimplifyCB); 3024 3025 // Check if we know we are in SPMD-mode already. 3026 ConstantInt *ModeArg = 3027 dyn_cast<ConstantInt>(KernelInitCB->getArgOperand(InitModeArgNo)); 3028 if (ModeArg && (ModeArg->getSExtValue() & OMP_TGT_EXEC_MODE_SPMD)) 3029 SPMDCompatibilityTracker.indicateOptimisticFixpoint(); 3030 // This is a generic region but SPMDization is disabled so stop tracking. 3031 else if (DisableOpenMPOptSPMDization) 3032 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 3033 } 3034 3035 /// Modify the IR based on the KernelInfoState as the fixpoint iteration is 3036 /// finished now. 3037 ChangeStatus manifest(Attributor &A) override { 3038 // If we are not looking at a kernel with __kmpc_target_init and 3039 // __kmpc_target_deinit call we cannot actually manifest the information. 3040 if (!KernelInitCB || !KernelDeinitCB) 3041 return ChangeStatus::UNCHANGED; 3042 3043 // Known SPMD-mode kernels need no manifest changes. 3044 if (SPMDCompatibilityTracker.isKnown()) 3045 return ChangeStatus::UNCHANGED; 3046 3047 // If we can we change the execution mode to SPMD-mode otherwise we build a 3048 // custom state machine. 3049 if (!mayContainParallelRegion() || !changeToSPMDMode(A)) 3050 return buildCustomStateMachine(A); 3051 3052 return ChangeStatus::CHANGED; 3053 } 3054 3055 bool changeToSPMDMode(Attributor &A) { 3056 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 3057 3058 if (!SPMDCompatibilityTracker.isAssumed()) { 3059 for (Instruction *NonCompatibleI : SPMDCompatibilityTracker) { 3060 if (!NonCompatibleI) 3061 continue; 3062 3063 // Skip diagnostics on calls to known OpenMP runtime functions for now. 3064 if (auto *CB = dyn_cast<CallBase>(NonCompatibleI)) 3065 if (OMPInfoCache.RTLFunctions.contains(CB->getCalledFunction())) 3066 continue; 3067 3068 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 3069 ORA << "Value has potential side effects preventing SPMD-mode " 3070 "execution"; 3071 if (isa<CallBase>(NonCompatibleI)) { 3072 ORA << ". Add `__attribute__((assume(\"ompx_spmd_amenable\")))` to " 3073 "the called function to override"; 3074 } 3075 return ORA << "."; 3076 }; 3077 A.emitRemark<OptimizationRemarkAnalysis>(NonCompatibleI, "OMP121", 3078 Remark); 3079 3080 LLVM_DEBUG(dbgs() << TAG << "SPMD-incompatible side-effect: " 3081 << *NonCompatibleI << "\n"); 3082 } 3083 3084 return false; 3085 } 3086 3087 auto CreateGuardedRegion = [&](Instruction *RegionStartI, 3088 Instruction *RegionEndI) { 3089 LoopInfo *LI = nullptr; 3090 DominatorTree *DT = nullptr; 3091 MemorySSAUpdater *MSU = nullptr; 3092 using InsertPointTy = OpenMPIRBuilder::InsertPointTy; 3093 3094 BasicBlock *ParentBB = RegionStartI->getParent(); 3095 Function *Fn = ParentBB->getParent(); 3096 Module &M = *Fn->getParent(); 3097 3098 // Create all the blocks and logic. 3099 // ParentBB: 3100 // goto RegionCheckTidBB 3101 // RegionCheckTidBB: 3102 // Tid = __kmpc_hardware_thread_id() 3103 // if (Tid != 0) 3104 // goto RegionBarrierBB 3105 // RegionStartBB: 3106 // <execute instructions guarded> 3107 // goto RegionEndBB 3108 // RegionEndBB: 3109 // <store escaping values to shared mem> 3110 // goto RegionBarrierBB 3111 // RegionBarrierBB: 3112 // __kmpc_simple_barrier_spmd() 3113 // // second barrier is omitted if lacking escaping values. 3114 // <load escaping values from shared mem> 3115 // __kmpc_simple_barrier_spmd() 3116 // goto RegionExitBB 3117 // RegionExitBB: 3118 // <execute rest of instructions> 3119 3120 BasicBlock *RegionEndBB = SplitBlock(ParentBB, RegionEndI->getNextNode(), 3121 DT, LI, MSU, "region.guarded.end"); 3122 BasicBlock *RegionBarrierBB = 3123 SplitBlock(RegionEndBB, &*RegionEndBB->getFirstInsertionPt(), DT, LI, 3124 MSU, "region.barrier"); 3125 BasicBlock *RegionExitBB = 3126 SplitBlock(RegionBarrierBB, &*RegionBarrierBB->getFirstInsertionPt(), 3127 DT, LI, MSU, "region.exit"); 3128 BasicBlock *RegionStartBB = 3129 SplitBlock(ParentBB, RegionStartI, DT, LI, MSU, "region.guarded"); 3130 3131 assert(ParentBB->getUniqueSuccessor() == RegionStartBB && 3132 "Expected a different CFG"); 3133 3134 BasicBlock *RegionCheckTidBB = SplitBlock( 3135 ParentBB, ParentBB->getTerminator(), DT, LI, MSU, "region.check.tid"); 3136 3137 // Register basic blocks with the Attributor. 3138 A.registerManifestAddedBasicBlock(*RegionEndBB); 3139 A.registerManifestAddedBasicBlock(*RegionBarrierBB); 3140 A.registerManifestAddedBasicBlock(*RegionExitBB); 3141 A.registerManifestAddedBasicBlock(*RegionStartBB); 3142 A.registerManifestAddedBasicBlock(*RegionCheckTidBB); 3143 3144 bool HasBroadcastValues = false; 3145 // Find escaping outputs from the guarded region to outside users and 3146 // broadcast their values to them. 3147 for (Instruction &I : *RegionStartBB) { 3148 SmallPtrSet<Instruction *, 4> OutsideUsers; 3149 for (User *Usr : I.users()) { 3150 Instruction &UsrI = *cast<Instruction>(Usr); 3151 if (UsrI.getParent() != RegionStartBB) 3152 OutsideUsers.insert(&UsrI); 3153 } 3154 3155 if (OutsideUsers.empty()) 3156 continue; 3157 3158 HasBroadcastValues = true; 3159 3160 // Emit a global variable in shared memory to store the broadcasted 3161 // value. 3162 auto *SharedMem = new GlobalVariable( 3163 M, I.getType(), /* IsConstant */ false, 3164 GlobalValue::InternalLinkage, UndefValue::get(I.getType()), 3165 I.getName() + ".guarded.output.alloc", nullptr, 3166 GlobalValue::NotThreadLocal, 3167 static_cast<unsigned>(AddressSpace::Shared)); 3168 3169 // Emit a store instruction to update the value. 3170 new StoreInst(&I, SharedMem, RegionEndBB->getTerminator()); 3171 3172 LoadInst *LoadI = new LoadInst(I.getType(), SharedMem, 3173 I.getName() + ".guarded.output.load", 3174 RegionBarrierBB->getTerminator()); 3175 3176 // Emit a load instruction and replace uses of the output value. 3177 for (Instruction *UsrI : OutsideUsers) { 3178 assert(UsrI->getParent() == RegionExitBB && 3179 "Expected escaping users in exit region"); 3180 UsrI->replaceUsesOfWith(&I, LoadI); 3181 } 3182 } 3183 3184 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 3185 3186 // Go to tid check BB in ParentBB. 3187 const DebugLoc DL = ParentBB->getTerminator()->getDebugLoc(); 3188 ParentBB->getTerminator()->eraseFromParent(); 3189 OpenMPIRBuilder::LocationDescription Loc( 3190 InsertPointTy(ParentBB, ParentBB->end()), DL); 3191 OMPInfoCache.OMPBuilder.updateToLocation(Loc); 3192 auto *SrcLocStr = OMPInfoCache.OMPBuilder.getOrCreateSrcLocStr(Loc); 3193 Value *Ident = OMPInfoCache.OMPBuilder.getOrCreateIdent(SrcLocStr); 3194 BranchInst::Create(RegionCheckTidBB, ParentBB)->setDebugLoc(DL); 3195 3196 // Add check for Tid in RegionCheckTidBB 3197 RegionCheckTidBB->getTerminator()->eraseFromParent(); 3198 OpenMPIRBuilder::LocationDescription LocRegionCheckTid( 3199 InsertPointTy(RegionCheckTidBB, RegionCheckTidBB->end()), DL); 3200 OMPInfoCache.OMPBuilder.updateToLocation(LocRegionCheckTid); 3201 FunctionCallee HardwareTidFn = 3202 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( 3203 M, OMPRTL___kmpc_get_hardware_thread_id_in_block); 3204 Value *Tid = 3205 OMPInfoCache.OMPBuilder.Builder.CreateCall(HardwareTidFn, {}); 3206 Value *TidCheck = OMPInfoCache.OMPBuilder.Builder.CreateIsNull(Tid); 3207 OMPInfoCache.OMPBuilder.Builder 3208 .CreateCondBr(TidCheck, RegionStartBB, RegionBarrierBB) 3209 ->setDebugLoc(DL); 3210 3211 // First barrier for synchronization, ensures main thread has updated 3212 // values. 3213 FunctionCallee BarrierFn = 3214 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( 3215 M, OMPRTL___kmpc_barrier_simple_spmd); 3216 OMPInfoCache.OMPBuilder.updateToLocation(InsertPointTy( 3217 RegionBarrierBB, RegionBarrierBB->getFirstInsertionPt())); 3218 OMPInfoCache.OMPBuilder.Builder.CreateCall(BarrierFn, {Ident, Tid}) 3219 ->setDebugLoc(DL); 3220 3221 // Second barrier ensures workers have read broadcast values. 3222 if (HasBroadcastValues) 3223 CallInst::Create(BarrierFn, {Ident, Tid}, "", 3224 RegionBarrierBB->getTerminator()) 3225 ->setDebugLoc(DL); 3226 }; 3227 3228 auto &AllocSharedRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared]; 3229 SmallPtrSet<BasicBlock *, 8> Visited; 3230 for (Instruction *GuardedI : SPMDCompatibilityTracker) { 3231 BasicBlock *BB = GuardedI->getParent(); 3232 if (!Visited.insert(BB).second) 3233 continue; 3234 3235 SmallVector<std::pair<Instruction *, Instruction *>> Reorders; 3236 Instruction *LastEffect = nullptr; 3237 BasicBlock::reverse_iterator IP = BB->rbegin(), IPEnd = BB->rend(); 3238 while (++IP != IPEnd) { 3239 if (!IP->mayHaveSideEffects() && !IP->mayReadFromMemory()) 3240 continue; 3241 Instruction *I = &*IP; 3242 if (OpenMPOpt::getCallIfRegularCall(*I, &AllocSharedRFI)) 3243 continue; 3244 if (!I->user_empty() || !SPMDCompatibilityTracker.contains(I)) { 3245 LastEffect = nullptr; 3246 continue; 3247 } 3248 if (LastEffect) 3249 Reorders.push_back({I, LastEffect}); 3250 LastEffect = &*IP; 3251 } 3252 for (auto &Reorder : Reorders) 3253 Reorder.first->moveBefore(Reorder.second); 3254 } 3255 3256 SmallVector<std::pair<Instruction *, Instruction *>, 4> GuardedRegions; 3257 3258 for (Instruction *GuardedI : SPMDCompatibilityTracker) { 3259 BasicBlock *BB = GuardedI->getParent(); 3260 auto *CalleeAA = A.lookupAAFor<AAKernelInfo>( 3261 IRPosition::function(*GuardedI->getFunction()), nullptr, 3262 DepClassTy::NONE); 3263 assert(CalleeAA != nullptr && "Expected Callee AAKernelInfo"); 3264 auto &CalleeAAFunction = *cast<AAKernelInfoFunction>(CalleeAA); 3265 // Continue if instruction is already guarded. 3266 if (CalleeAAFunction.getGuardedInstructions().contains(GuardedI)) 3267 continue; 3268 3269 Instruction *GuardedRegionStart = nullptr, *GuardedRegionEnd = nullptr; 3270 for (Instruction &I : *BB) { 3271 // If instruction I needs to be guarded update the guarded region 3272 // bounds. 3273 if (SPMDCompatibilityTracker.contains(&I)) { 3274 CalleeAAFunction.getGuardedInstructions().insert(&I); 3275 if (GuardedRegionStart) 3276 GuardedRegionEnd = &I; 3277 else 3278 GuardedRegionStart = GuardedRegionEnd = &I; 3279 3280 continue; 3281 } 3282 3283 // Instruction I does not need guarding, store 3284 // any region found and reset bounds. 3285 if (GuardedRegionStart) { 3286 GuardedRegions.push_back( 3287 std::make_pair(GuardedRegionStart, GuardedRegionEnd)); 3288 GuardedRegionStart = nullptr; 3289 GuardedRegionEnd = nullptr; 3290 } 3291 } 3292 } 3293 3294 for (auto &GR : GuardedRegions) 3295 CreateGuardedRegion(GR.first, GR.second); 3296 3297 // Adjust the global exec mode flag that tells the runtime what mode this 3298 // kernel is executed in. 3299 Function *Kernel = getAnchorScope(); 3300 GlobalVariable *ExecMode = Kernel->getParent()->getGlobalVariable( 3301 (Kernel->getName() + "_exec_mode").str()); 3302 assert(ExecMode && "Kernel without exec mode?"); 3303 assert(ExecMode->getInitializer() && "ExecMode doesn't have initializer!"); 3304 3305 // Set the global exec mode flag to indicate SPMD-Generic mode. 3306 assert(isa<ConstantInt>(ExecMode->getInitializer()) && 3307 "ExecMode is not an integer!"); 3308 const int8_t ExecModeVal = 3309 cast<ConstantInt>(ExecMode->getInitializer())->getSExtValue(); 3310 assert(ExecModeVal == OMP_TGT_EXEC_MODE_GENERIC && 3311 "Initially non-SPMD kernel has SPMD exec mode!"); 3312 ExecMode->setInitializer( 3313 ConstantInt::get(ExecMode->getInitializer()->getType(), 3314 ExecModeVal | OMP_TGT_EXEC_MODE_GENERIC_SPMD)); 3315 3316 // Next rewrite the init and deinit calls to indicate we use SPMD-mode now. 3317 const int InitModeArgNo = 1; 3318 const int DeinitModeArgNo = 1; 3319 const int InitUseStateMachineArgNo = 2; 3320 const int InitRequiresFullRuntimeArgNo = 3; 3321 const int DeinitRequiresFullRuntimeArgNo = 2; 3322 3323 auto &Ctx = getAnchorValue().getContext(); 3324 A.changeUseAfterManifest( 3325 KernelInitCB->getArgOperandUse(InitModeArgNo), 3326 *ConstantInt::getSigned(IntegerType::getInt8Ty(Ctx), 3327 OMP_TGT_EXEC_MODE_SPMD)); 3328 A.changeUseAfterManifest( 3329 KernelInitCB->getArgOperandUse(InitUseStateMachineArgNo), 3330 *ConstantInt::getBool(Ctx, 0)); 3331 A.changeUseAfterManifest( 3332 KernelDeinitCB->getArgOperandUse(DeinitModeArgNo), 3333 *ConstantInt::getSigned(IntegerType::getInt8Ty(Ctx), 3334 OMP_TGT_EXEC_MODE_SPMD)); 3335 A.changeUseAfterManifest( 3336 KernelInitCB->getArgOperandUse(InitRequiresFullRuntimeArgNo), 3337 *ConstantInt::getBool(Ctx, 0)); 3338 A.changeUseAfterManifest( 3339 KernelDeinitCB->getArgOperandUse(DeinitRequiresFullRuntimeArgNo), 3340 *ConstantInt::getBool(Ctx, 0)); 3341 3342 ++NumOpenMPTargetRegionKernelsSPMD; 3343 3344 auto Remark = [&](OptimizationRemark OR) { 3345 return OR << "Transformed generic-mode kernel to SPMD-mode."; 3346 }; 3347 A.emitRemark<OptimizationRemark>(KernelInitCB, "OMP120", Remark); 3348 return true; 3349 }; 3350 3351 ChangeStatus buildCustomStateMachine(Attributor &A) { 3352 // If we have disabled state machine rewrites, don't make a custom one 3353 if (DisableOpenMPOptStateMachineRewrite) 3354 return ChangeStatus::UNCHANGED; 3355 3356 // Don't rewrite the state machine if we are not in a valid state. 3357 if (!ReachedKnownParallelRegions.isValidState()) 3358 return ChangeStatus::UNCHANGED; 3359 3360 const int InitModeArgNo = 1; 3361 const int InitUseStateMachineArgNo = 2; 3362 3363 // Check if the current configuration is non-SPMD and generic state machine. 3364 // If we already have SPMD mode or a custom state machine we do not need to 3365 // go any further. If it is anything but a constant something is weird and 3366 // we give up. 3367 ConstantInt *UseStateMachine = dyn_cast<ConstantInt>( 3368 KernelInitCB->getArgOperand(InitUseStateMachineArgNo)); 3369 ConstantInt *Mode = 3370 dyn_cast<ConstantInt>(KernelInitCB->getArgOperand(InitModeArgNo)); 3371 3372 // If we are stuck with generic mode, try to create a custom device (=GPU) 3373 // state machine which is specialized for the parallel regions that are 3374 // reachable by the kernel. 3375 if (!UseStateMachine || UseStateMachine->isZero() || !Mode || 3376 (Mode->getSExtValue() & OMP_TGT_EXEC_MODE_SPMD)) 3377 return ChangeStatus::UNCHANGED; 3378 3379 // If not SPMD mode, indicate we use a custom state machine now. 3380 auto &Ctx = getAnchorValue().getContext(); 3381 auto *FalseVal = ConstantInt::getBool(Ctx, 0); 3382 A.changeUseAfterManifest( 3383 KernelInitCB->getArgOperandUse(InitUseStateMachineArgNo), *FalseVal); 3384 3385 // If we don't actually need a state machine we are done here. This can 3386 // happen if there simply are no parallel regions. In the resulting kernel 3387 // all worker threads will simply exit right away, leaving the main thread 3388 // to do the work alone. 3389 if (!mayContainParallelRegion()) { 3390 ++NumOpenMPTargetRegionKernelsWithoutStateMachine; 3391 3392 auto Remark = [&](OptimizationRemark OR) { 3393 return OR << "Removing unused state machine from generic-mode kernel."; 3394 }; 3395 A.emitRemark<OptimizationRemark>(KernelInitCB, "OMP130", Remark); 3396 3397 return ChangeStatus::CHANGED; 3398 } 3399 3400 // Keep track in the statistics of our new shiny custom state machine. 3401 if (ReachedUnknownParallelRegions.empty()) { 3402 ++NumOpenMPTargetRegionKernelsCustomStateMachineWithoutFallback; 3403 3404 auto Remark = [&](OptimizationRemark OR) { 3405 return OR << "Rewriting generic-mode kernel with a customized state " 3406 "machine."; 3407 }; 3408 A.emitRemark<OptimizationRemark>(KernelInitCB, "OMP131", Remark); 3409 } else { 3410 ++NumOpenMPTargetRegionKernelsCustomStateMachineWithFallback; 3411 3412 auto Remark = [&](OptimizationRemarkAnalysis OR) { 3413 return OR << "Generic-mode kernel is executed with a customized state " 3414 "machine that requires a fallback."; 3415 }; 3416 A.emitRemark<OptimizationRemarkAnalysis>(KernelInitCB, "OMP132", Remark); 3417 3418 // Tell the user why we ended up with a fallback. 3419 for (CallBase *UnknownParallelRegionCB : ReachedUnknownParallelRegions) { 3420 if (!UnknownParallelRegionCB) 3421 continue; 3422 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 3423 return ORA << "Call may contain unknown parallel regions. Use " 3424 << "`__attribute__((assume(\"omp_no_parallelism\")))` to " 3425 "override."; 3426 }; 3427 A.emitRemark<OptimizationRemarkAnalysis>(UnknownParallelRegionCB, 3428 "OMP133", Remark); 3429 } 3430 } 3431 3432 // Create all the blocks: 3433 // 3434 // InitCB = __kmpc_target_init(...) 3435 // bool IsWorker = InitCB >= 0; 3436 // if (IsWorker) { 3437 // SMBeginBB: __kmpc_barrier_simple_spmd(...); 3438 // void *WorkFn; 3439 // bool Active = __kmpc_kernel_parallel(&WorkFn); 3440 // if (!WorkFn) return; 3441 // SMIsActiveCheckBB: if (Active) { 3442 // SMIfCascadeCurrentBB: if (WorkFn == <ParFn0>) 3443 // ParFn0(...); 3444 // SMIfCascadeCurrentBB: else if (WorkFn == <ParFn1>) 3445 // ParFn1(...); 3446 // ... 3447 // SMIfCascadeCurrentBB: else 3448 // ((WorkFnTy*)WorkFn)(...); 3449 // SMEndParallelBB: __kmpc_kernel_end_parallel(...); 3450 // } 3451 // SMDoneBB: __kmpc_barrier_simple_spmd(...); 3452 // goto SMBeginBB; 3453 // } 3454 // UserCodeEntryBB: // user code 3455 // __kmpc_target_deinit(...) 3456 // 3457 Function *Kernel = getAssociatedFunction(); 3458 assert(Kernel && "Expected an associated function!"); 3459 3460 BasicBlock *InitBB = KernelInitCB->getParent(); 3461 BasicBlock *UserCodeEntryBB = InitBB->splitBasicBlock( 3462 KernelInitCB->getNextNode(), "thread.user_code.check"); 3463 BasicBlock *StateMachineBeginBB = BasicBlock::Create( 3464 Ctx, "worker_state_machine.begin", Kernel, UserCodeEntryBB); 3465 BasicBlock *StateMachineFinishedBB = BasicBlock::Create( 3466 Ctx, "worker_state_machine.finished", Kernel, UserCodeEntryBB); 3467 BasicBlock *StateMachineIsActiveCheckBB = BasicBlock::Create( 3468 Ctx, "worker_state_machine.is_active.check", Kernel, UserCodeEntryBB); 3469 BasicBlock *StateMachineIfCascadeCurrentBB = 3470 BasicBlock::Create(Ctx, "worker_state_machine.parallel_region.check", 3471 Kernel, UserCodeEntryBB); 3472 BasicBlock *StateMachineEndParallelBB = 3473 BasicBlock::Create(Ctx, "worker_state_machine.parallel_region.end", 3474 Kernel, UserCodeEntryBB); 3475 BasicBlock *StateMachineDoneBarrierBB = BasicBlock::Create( 3476 Ctx, "worker_state_machine.done.barrier", Kernel, UserCodeEntryBB); 3477 A.registerManifestAddedBasicBlock(*InitBB); 3478 A.registerManifestAddedBasicBlock(*UserCodeEntryBB); 3479 A.registerManifestAddedBasicBlock(*StateMachineBeginBB); 3480 A.registerManifestAddedBasicBlock(*StateMachineFinishedBB); 3481 A.registerManifestAddedBasicBlock(*StateMachineIsActiveCheckBB); 3482 A.registerManifestAddedBasicBlock(*StateMachineIfCascadeCurrentBB); 3483 A.registerManifestAddedBasicBlock(*StateMachineEndParallelBB); 3484 A.registerManifestAddedBasicBlock(*StateMachineDoneBarrierBB); 3485 3486 const DebugLoc &DLoc = KernelInitCB->getDebugLoc(); 3487 ReturnInst::Create(Ctx, StateMachineFinishedBB)->setDebugLoc(DLoc); 3488 3489 InitBB->getTerminator()->eraseFromParent(); 3490 Instruction *IsWorker = 3491 ICmpInst::Create(ICmpInst::ICmp, llvm::CmpInst::ICMP_NE, KernelInitCB, 3492 ConstantInt::get(KernelInitCB->getType(), -1), 3493 "thread.is_worker", InitBB); 3494 IsWorker->setDebugLoc(DLoc); 3495 BranchInst::Create(StateMachineBeginBB, UserCodeEntryBB, IsWorker, InitBB); 3496 3497 Module &M = *Kernel->getParent(); 3498 3499 // Create local storage for the work function pointer. 3500 const DataLayout &DL = M.getDataLayout(); 3501 Type *VoidPtrTy = Type::getInt8PtrTy(Ctx); 3502 Instruction *WorkFnAI = 3503 new AllocaInst(VoidPtrTy, DL.getAllocaAddrSpace(), nullptr, 3504 "worker.work_fn.addr", &Kernel->getEntryBlock().front()); 3505 WorkFnAI->setDebugLoc(DLoc); 3506 3507 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 3508 OMPInfoCache.OMPBuilder.updateToLocation( 3509 OpenMPIRBuilder::LocationDescription( 3510 IRBuilder<>::InsertPoint(StateMachineBeginBB, 3511 StateMachineBeginBB->end()), 3512 DLoc)); 3513 3514 Value *Ident = KernelInitCB->getArgOperand(0); 3515 Value *GTid = KernelInitCB; 3516 3517 FunctionCallee BarrierFn = 3518 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( 3519 M, OMPRTL___kmpc_barrier_simple_spmd); 3520 CallInst::Create(BarrierFn, {Ident, GTid}, "", StateMachineBeginBB) 3521 ->setDebugLoc(DLoc); 3522 3523 if (WorkFnAI->getType()->getPointerAddressSpace() != 3524 (unsigned int)AddressSpace::Generic) { 3525 WorkFnAI = new AddrSpaceCastInst( 3526 WorkFnAI, 3527 PointerType::getWithSamePointeeType( 3528 cast<PointerType>(WorkFnAI->getType()), 3529 (unsigned int)AddressSpace::Generic), 3530 WorkFnAI->getName() + ".generic", StateMachineBeginBB); 3531 WorkFnAI->setDebugLoc(DLoc); 3532 } 3533 3534 FunctionCallee KernelParallelFn = 3535 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( 3536 M, OMPRTL___kmpc_kernel_parallel); 3537 Instruction *IsActiveWorker = CallInst::Create( 3538 KernelParallelFn, {WorkFnAI}, "worker.is_active", StateMachineBeginBB); 3539 IsActiveWorker->setDebugLoc(DLoc); 3540 Instruction *WorkFn = new LoadInst(VoidPtrTy, WorkFnAI, "worker.work_fn", 3541 StateMachineBeginBB); 3542 WorkFn->setDebugLoc(DLoc); 3543 3544 FunctionType *ParallelRegionFnTy = FunctionType::get( 3545 Type::getVoidTy(Ctx), {Type::getInt16Ty(Ctx), Type::getInt32Ty(Ctx)}, 3546 false); 3547 Value *WorkFnCast = BitCastInst::CreatePointerBitCastOrAddrSpaceCast( 3548 WorkFn, ParallelRegionFnTy->getPointerTo(), "worker.work_fn.addr_cast", 3549 StateMachineBeginBB); 3550 3551 Instruction *IsDone = 3552 ICmpInst::Create(ICmpInst::ICmp, llvm::CmpInst::ICMP_EQ, WorkFn, 3553 Constant::getNullValue(VoidPtrTy), "worker.is_done", 3554 StateMachineBeginBB); 3555 IsDone->setDebugLoc(DLoc); 3556 BranchInst::Create(StateMachineFinishedBB, StateMachineIsActiveCheckBB, 3557 IsDone, StateMachineBeginBB) 3558 ->setDebugLoc(DLoc); 3559 3560 BranchInst::Create(StateMachineIfCascadeCurrentBB, 3561 StateMachineDoneBarrierBB, IsActiveWorker, 3562 StateMachineIsActiveCheckBB) 3563 ->setDebugLoc(DLoc); 3564 3565 Value *ZeroArg = 3566 Constant::getNullValue(ParallelRegionFnTy->getParamType(0)); 3567 3568 // Now that we have most of the CFG skeleton it is time for the if-cascade 3569 // that checks the function pointer we got from the runtime against the 3570 // parallel regions we expect, if there are any. 3571 for (int I = 0, E = ReachedKnownParallelRegions.size(); I < E; ++I) { 3572 auto *ParallelRegion = ReachedKnownParallelRegions[I]; 3573 BasicBlock *PRExecuteBB = BasicBlock::Create( 3574 Ctx, "worker_state_machine.parallel_region.execute", Kernel, 3575 StateMachineEndParallelBB); 3576 CallInst::Create(ParallelRegion, {ZeroArg, GTid}, "", PRExecuteBB) 3577 ->setDebugLoc(DLoc); 3578 BranchInst::Create(StateMachineEndParallelBB, PRExecuteBB) 3579 ->setDebugLoc(DLoc); 3580 3581 BasicBlock *PRNextBB = 3582 BasicBlock::Create(Ctx, "worker_state_machine.parallel_region.check", 3583 Kernel, StateMachineEndParallelBB); 3584 3585 // Check if we need to compare the pointer at all or if we can just 3586 // call the parallel region function. 3587 Value *IsPR; 3588 if (I + 1 < E || !ReachedUnknownParallelRegions.empty()) { 3589 Instruction *CmpI = ICmpInst::Create( 3590 ICmpInst::ICmp, llvm::CmpInst::ICMP_EQ, WorkFnCast, ParallelRegion, 3591 "worker.check_parallel_region", StateMachineIfCascadeCurrentBB); 3592 CmpI->setDebugLoc(DLoc); 3593 IsPR = CmpI; 3594 } else { 3595 IsPR = ConstantInt::getTrue(Ctx); 3596 } 3597 3598 BranchInst::Create(PRExecuteBB, PRNextBB, IsPR, 3599 StateMachineIfCascadeCurrentBB) 3600 ->setDebugLoc(DLoc); 3601 StateMachineIfCascadeCurrentBB = PRNextBB; 3602 } 3603 3604 // At the end of the if-cascade we place the indirect function pointer call 3605 // in case we might need it, that is if there can be parallel regions we 3606 // have not handled in the if-cascade above. 3607 if (!ReachedUnknownParallelRegions.empty()) { 3608 StateMachineIfCascadeCurrentBB->setName( 3609 "worker_state_machine.parallel_region.fallback.execute"); 3610 CallInst::Create(ParallelRegionFnTy, WorkFnCast, {ZeroArg, GTid}, "", 3611 StateMachineIfCascadeCurrentBB) 3612 ->setDebugLoc(DLoc); 3613 } 3614 BranchInst::Create(StateMachineEndParallelBB, 3615 StateMachineIfCascadeCurrentBB) 3616 ->setDebugLoc(DLoc); 3617 3618 CallInst::Create(OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( 3619 M, OMPRTL___kmpc_kernel_end_parallel), 3620 {}, "", StateMachineEndParallelBB) 3621 ->setDebugLoc(DLoc); 3622 BranchInst::Create(StateMachineDoneBarrierBB, StateMachineEndParallelBB) 3623 ->setDebugLoc(DLoc); 3624 3625 CallInst::Create(BarrierFn, {Ident, GTid}, "", StateMachineDoneBarrierBB) 3626 ->setDebugLoc(DLoc); 3627 BranchInst::Create(StateMachineBeginBB, StateMachineDoneBarrierBB) 3628 ->setDebugLoc(DLoc); 3629 3630 return ChangeStatus::CHANGED; 3631 } 3632 3633 /// Fixpoint iteration update function. Will be called every time a dependence 3634 /// changed its state (and in the beginning). 3635 ChangeStatus updateImpl(Attributor &A) override { 3636 KernelInfoState StateBefore = getState(); 3637 3638 // Callback to check a read/write instruction. 3639 auto CheckRWInst = [&](Instruction &I) { 3640 // We handle calls later. 3641 if (isa<CallBase>(I)) 3642 return true; 3643 // We only care about write effects. 3644 if (!I.mayWriteToMemory()) 3645 return true; 3646 if (auto *SI = dyn_cast<StoreInst>(&I)) { 3647 SmallVector<const Value *> Objects; 3648 getUnderlyingObjects(SI->getPointerOperand(), Objects); 3649 if (llvm::all_of(Objects, 3650 [](const Value *Obj) { return isa<AllocaInst>(Obj); })) 3651 return true; 3652 // Check for AAHeapToStack moved objects which must not be guarded. 3653 auto &HS = A.getAAFor<AAHeapToStack>( 3654 *this, IRPosition::function(*I.getFunction()), 3655 DepClassTy::REQUIRED); 3656 if (llvm::all_of(Objects, [&HS](const Value *Obj) { 3657 auto *CB = dyn_cast<CallBase>(Obj); 3658 if (!CB) 3659 return false; 3660 return HS.isAssumedHeapToStack(*CB); 3661 })) { 3662 return true; 3663 } 3664 } 3665 3666 // Insert instruction that needs guarding. 3667 SPMDCompatibilityTracker.insert(&I); 3668 return true; 3669 }; 3670 3671 bool UsedAssumedInformationInCheckRWInst = false; 3672 if (!SPMDCompatibilityTracker.isAtFixpoint()) 3673 if (!A.checkForAllReadWriteInstructions( 3674 CheckRWInst, *this, UsedAssumedInformationInCheckRWInst)) 3675 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 3676 3677 if (!IsKernelEntry) { 3678 updateReachingKernelEntries(A); 3679 updateParallelLevels(A); 3680 3681 if (!ParallelLevels.isValidState()) 3682 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 3683 } 3684 3685 // Callback to check a call instruction. 3686 bool AllSPMDStatesWereFixed = true; 3687 auto CheckCallInst = [&](Instruction &I) { 3688 auto &CB = cast<CallBase>(I); 3689 auto &CBAA = A.getAAFor<AAKernelInfo>( 3690 *this, IRPosition::callsite_function(CB), DepClassTy::OPTIONAL); 3691 getState() ^= CBAA.getState(); 3692 AllSPMDStatesWereFixed &= CBAA.SPMDCompatibilityTracker.isAtFixpoint(); 3693 return true; 3694 }; 3695 3696 bool UsedAssumedInformationInCheckCallInst = false; 3697 if (!A.checkForAllCallLikeInstructions( 3698 CheckCallInst, *this, UsedAssumedInformationInCheckCallInst)) { 3699 LLVM_DEBUG(dbgs() << TAG << "Failed to visit all call-like instructions!\n";); 3700 return indicatePessimisticFixpoint(); 3701 } 3702 3703 // If we haven't used any assumed information for the SPMD state we can fix 3704 // it. 3705 if (!UsedAssumedInformationInCheckRWInst && 3706 !UsedAssumedInformationInCheckCallInst && AllSPMDStatesWereFixed) 3707 SPMDCompatibilityTracker.indicateOptimisticFixpoint(); 3708 3709 return StateBefore == getState() ? ChangeStatus::UNCHANGED 3710 : ChangeStatus::CHANGED; 3711 } 3712 3713 private: 3714 /// Update info regarding reaching kernels. 3715 void updateReachingKernelEntries(Attributor &A) { 3716 auto PredCallSite = [&](AbstractCallSite ACS) { 3717 Function *Caller = ACS.getInstruction()->getFunction(); 3718 3719 assert(Caller && "Caller is nullptr"); 3720 3721 auto &CAA = A.getOrCreateAAFor<AAKernelInfo>( 3722 IRPosition::function(*Caller), this, DepClassTy::REQUIRED); 3723 if (CAA.ReachingKernelEntries.isValidState()) { 3724 ReachingKernelEntries ^= CAA.ReachingKernelEntries; 3725 return true; 3726 } 3727 3728 // We lost track of the caller of the associated function, any kernel 3729 // could reach now. 3730 ReachingKernelEntries.indicatePessimisticFixpoint(); 3731 3732 return true; 3733 }; 3734 3735 bool AllCallSitesKnown; 3736 if (!A.checkForAllCallSites(PredCallSite, *this, 3737 true /* RequireAllCallSites */, 3738 AllCallSitesKnown)) 3739 ReachingKernelEntries.indicatePessimisticFixpoint(); 3740 } 3741 3742 /// Update info regarding parallel levels. 3743 void updateParallelLevels(Attributor &A) { 3744 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 3745 OMPInformationCache::RuntimeFunctionInfo &Parallel51RFI = 3746 OMPInfoCache.RFIs[OMPRTL___kmpc_parallel_51]; 3747 3748 auto PredCallSite = [&](AbstractCallSite ACS) { 3749 Function *Caller = ACS.getInstruction()->getFunction(); 3750 3751 assert(Caller && "Caller is nullptr"); 3752 3753 auto &CAA = 3754 A.getOrCreateAAFor<AAKernelInfo>(IRPosition::function(*Caller)); 3755 if (CAA.ParallelLevels.isValidState()) { 3756 // Any function that is called by `__kmpc_parallel_51` will not be 3757 // folded as the parallel level in the function is updated. In order to 3758 // get it right, all the analysis would depend on the implentation. That 3759 // said, if in the future any change to the implementation, the analysis 3760 // could be wrong. As a consequence, we are just conservative here. 3761 if (Caller == Parallel51RFI.Declaration) { 3762 ParallelLevels.indicatePessimisticFixpoint(); 3763 return true; 3764 } 3765 3766 ParallelLevels ^= CAA.ParallelLevels; 3767 3768 return true; 3769 } 3770 3771 // We lost track of the caller of the associated function, any kernel 3772 // could reach now. 3773 ParallelLevels.indicatePessimisticFixpoint(); 3774 3775 return true; 3776 }; 3777 3778 bool AllCallSitesKnown = true; 3779 if (!A.checkForAllCallSites(PredCallSite, *this, 3780 true /* RequireAllCallSites */, 3781 AllCallSitesKnown)) 3782 ParallelLevels.indicatePessimisticFixpoint(); 3783 } 3784 }; 3785 3786 /// The call site kernel info abstract attribute, basically, what can we say 3787 /// about a call site with regards to the KernelInfoState. For now this simply 3788 /// forwards the information from the callee. 3789 struct AAKernelInfoCallSite : AAKernelInfo { 3790 AAKernelInfoCallSite(const IRPosition &IRP, Attributor &A) 3791 : AAKernelInfo(IRP, A) {} 3792 3793 /// See AbstractAttribute::initialize(...). 3794 void initialize(Attributor &A) override { 3795 AAKernelInfo::initialize(A); 3796 3797 CallBase &CB = cast<CallBase>(getAssociatedValue()); 3798 Function *Callee = getAssociatedFunction(); 3799 3800 // Helper to lookup an assumption string. 3801 auto HasAssumption = [](CallBase &CB, StringRef AssumptionStr) { 3802 return hasAssumption(CB, AssumptionStr); 3803 }; 3804 3805 // Check for SPMD-mode assumptions. 3806 if (HasAssumption(CB, "ompx_spmd_amenable")) { 3807 SPMDCompatibilityTracker.indicateOptimisticFixpoint(); 3808 indicateOptimisticFixpoint(); 3809 } 3810 3811 // First weed out calls we do not care about, that is readonly/readnone 3812 // calls, intrinsics, and "no_openmp" calls. Neither of these can reach a 3813 // parallel region or anything else we are looking for. 3814 if (!CB.mayWriteToMemory() || isa<IntrinsicInst>(CB)) { 3815 indicateOptimisticFixpoint(); 3816 return; 3817 } 3818 3819 // Next we check if we know the callee. If it is a known OpenMP function 3820 // we will handle them explicitly in the switch below. If it is not, we 3821 // will use an AAKernelInfo object on the callee to gather information and 3822 // merge that into the current state. The latter happens in the updateImpl. 3823 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 3824 const auto &It = OMPInfoCache.RuntimeFunctionIDMap.find(Callee); 3825 if (It == OMPInfoCache.RuntimeFunctionIDMap.end()) { 3826 // Unknown caller or declarations are not analyzable, we give up. 3827 if (!Callee || !A.isFunctionIPOAmendable(*Callee)) { 3828 3829 // Unknown callees might contain parallel regions, except if they have 3830 // an appropriate assumption attached. 3831 if (!(HasAssumption(CB, "omp_no_openmp") || 3832 HasAssumption(CB, "omp_no_parallelism"))) 3833 ReachedUnknownParallelRegions.insert(&CB); 3834 3835 // If SPMDCompatibilityTracker is not fixed, we need to give up on the 3836 // idea we can run something unknown in SPMD-mode. 3837 if (!SPMDCompatibilityTracker.isAtFixpoint()) { 3838 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 3839 SPMDCompatibilityTracker.insert(&CB); 3840 } 3841 3842 // We have updated the state for this unknown call properly, there won't 3843 // be any change so we indicate a fixpoint. 3844 indicateOptimisticFixpoint(); 3845 } 3846 // If the callee is known and can be used in IPO, we will update the state 3847 // based on the callee state in updateImpl. 3848 return; 3849 } 3850 3851 const unsigned int WrapperFunctionArgNo = 6; 3852 RuntimeFunction RF = It->getSecond(); 3853 switch (RF) { 3854 // All the functions we know are compatible with SPMD mode. 3855 case OMPRTL___kmpc_is_spmd_exec_mode: 3856 case OMPRTL___kmpc_distribute_static_fini: 3857 case OMPRTL___kmpc_for_static_fini: 3858 case OMPRTL___kmpc_global_thread_num: 3859 case OMPRTL___kmpc_get_hardware_num_threads_in_block: 3860 case OMPRTL___kmpc_get_hardware_num_blocks: 3861 case OMPRTL___kmpc_single: 3862 case OMPRTL___kmpc_end_single: 3863 case OMPRTL___kmpc_master: 3864 case OMPRTL___kmpc_end_master: 3865 case OMPRTL___kmpc_barrier: 3866 break; 3867 case OMPRTL___kmpc_distribute_static_init_4: 3868 case OMPRTL___kmpc_distribute_static_init_4u: 3869 case OMPRTL___kmpc_distribute_static_init_8: 3870 case OMPRTL___kmpc_distribute_static_init_8u: 3871 case OMPRTL___kmpc_for_static_init_4: 3872 case OMPRTL___kmpc_for_static_init_4u: 3873 case OMPRTL___kmpc_for_static_init_8: 3874 case OMPRTL___kmpc_for_static_init_8u: { 3875 // Check the schedule and allow static schedule in SPMD mode. 3876 unsigned ScheduleArgOpNo = 2; 3877 auto *ScheduleTypeCI = 3878 dyn_cast<ConstantInt>(CB.getArgOperand(ScheduleArgOpNo)); 3879 unsigned ScheduleTypeVal = 3880 ScheduleTypeCI ? ScheduleTypeCI->getZExtValue() : 0; 3881 switch (OMPScheduleType(ScheduleTypeVal)) { 3882 case OMPScheduleType::Static: 3883 case OMPScheduleType::StaticChunked: 3884 case OMPScheduleType::Distribute: 3885 case OMPScheduleType::DistributeChunked: 3886 break; 3887 default: 3888 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 3889 SPMDCompatibilityTracker.insert(&CB); 3890 break; 3891 }; 3892 } break; 3893 case OMPRTL___kmpc_target_init: 3894 KernelInitCB = &CB; 3895 break; 3896 case OMPRTL___kmpc_target_deinit: 3897 KernelDeinitCB = &CB; 3898 break; 3899 case OMPRTL___kmpc_parallel_51: 3900 if (auto *ParallelRegion = dyn_cast<Function>( 3901 CB.getArgOperand(WrapperFunctionArgNo)->stripPointerCasts())) { 3902 ReachedKnownParallelRegions.insert(ParallelRegion); 3903 break; 3904 } 3905 // The condition above should usually get the parallel region function 3906 // pointer and record it. In the off chance it doesn't we assume the 3907 // worst. 3908 ReachedUnknownParallelRegions.insert(&CB); 3909 break; 3910 case OMPRTL___kmpc_omp_task: 3911 // We do not look into tasks right now, just give up. 3912 SPMDCompatibilityTracker.insert(&CB); 3913 ReachedUnknownParallelRegions.insert(&CB); 3914 break; 3915 case OMPRTL___kmpc_alloc_shared: 3916 case OMPRTL___kmpc_free_shared: 3917 // Return without setting a fixpoint, to be resolved in updateImpl. 3918 return; 3919 default: 3920 // Unknown OpenMP runtime calls cannot be executed in SPMD-mode, 3921 // generally. However, they do not hide parallel regions. 3922 SPMDCompatibilityTracker.insert(&CB); 3923 break; 3924 } 3925 // All other OpenMP runtime calls will not reach parallel regions so they 3926 // can be safely ignored for now. Since it is a known OpenMP runtime call we 3927 // have now modeled all effects and there is no need for any update. 3928 indicateOptimisticFixpoint(); 3929 } 3930 3931 ChangeStatus updateImpl(Attributor &A) override { 3932 // TODO: Once we have call site specific value information we can provide 3933 // call site specific liveness information and then it makes 3934 // sense to specialize attributes for call sites arguments instead of 3935 // redirecting requests to the callee argument. 3936 Function *F = getAssociatedFunction(); 3937 3938 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 3939 const auto &It = OMPInfoCache.RuntimeFunctionIDMap.find(F); 3940 3941 // If F is not a runtime function, propagate the AAKernelInfo of the callee. 3942 if (It == OMPInfoCache.RuntimeFunctionIDMap.end()) { 3943 const IRPosition &FnPos = IRPosition::function(*F); 3944 auto &FnAA = A.getAAFor<AAKernelInfo>(*this, FnPos, DepClassTy::REQUIRED); 3945 if (getState() == FnAA.getState()) 3946 return ChangeStatus::UNCHANGED; 3947 getState() = FnAA.getState(); 3948 return ChangeStatus::CHANGED; 3949 } 3950 3951 // F is a runtime function that allocates or frees memory, check 3952 // AAHeapToStack and AAHeapToShared. 3953 KernelInfoState StateBefore = getState(); 3954 assert((It->getSecond() == OMPRTL___kmpc_alloc_shared || 3955 It->getSecond() == OMPRTL___kmpc_free_shared) && 3956 "Expected a __kmpc_alloc_shared or __kmpc_free_shared runtime call"); 3957 3958 CallBase &CB = cast<CallBase>(getAssociatedValue()); 3959 3960 auto &HeapToStackAA = A.getAAFor<AAHeapToStack>( 3961 *this, IRPosition::function(*CB.getCaller()), DepClassTy::OPTIONAL); 3962 auto &HeapToSharedAA = A.getAAFor<AAHeapToShared>( 3963 *this, IRPosition::function(*CB.getCaller()), DepClassTy::OPTIONAL); 3964 3965 RuntimeFunction RF = It->getSecond(); 3966 3967 switch (RF) { 3968 // If neither HeapToStack nor HeapToShared assume the call is removed, 3969 // assume SPMD incompatibility. 3970 case OMPRTL___kmpc_alloc_shared: 3971 if (!HeapToStackAA.isAssumedHeapToStack(CB) && 3972 !HeapToSharedAA.isAssumedHeapToShared(CB)) 3973 SPMDCompatibilityTracker.insert(&CB); 3974 break; 3975 case OMPRTL___kmpc_free_shared: 3976 if (!HeapToStackAA.isAssumedHeapToStackRemovedFree(CB) && 3977 !HeapToSharedAA.isAssumedHeapToSharedRemovedFree(CB)) 3978 SPMDCompatibilityTracker.insert(&CB); 3979 break; 3980 default: 3981 SPMDCompatibilityTracker.insert(&CB); 3982 } 3983 3984 return StateBefore == getState() ? ChangeStatus::UNCHANGED 3985 : ChangeStatus::CHANGED; 3986 } 3987 }; 3988 3989 struct AAFoldRuntimeCall 3990 : public StateWrapper<BooleanState, AbstractAttribute> { 3991 using Base = StateWrapper<BooleanState, AbstractAttribute>; 3992 3993 AAFoldRuntimeCall(const IRPosition &IRP, Attributor &A) : Base(IRP) {} 3994 3995 /// Statistics are tracked as part of manifest for now. 3996 void trackStatistics() const override {} 3997 3998 /// Create an abstract attribute biew for the position \p IRP. 3999 static AAFoldRuntimeCall &createForPosition(const IRPosition &IRP, 4000 Attributor &A); 4001 4002 /// See AbstractAttribute::getName() 4003 const std::string getName() const override { return "AAFoldRuntimeCall"; } 4004 4005 /// See AbstractAttribute::getIdAddr() 4006 const char *getIdAddr() const override { return &ID; } 4007 4008 /// This function should return true if the type of the \p AA is 4009 /// AAFoldRuntimeCall 4010 static bool classof(const AbstractAttribute *AA) { 4011 return (AA->getIdAddr() == &ID); 4012 } 4013 4014 static const char ID; 4015 }; 4016 4017 struct AAFoldRuntimeCallCallSiteReturned : AAFoldRuntimeCall { 4018 AAFoldRuntimeCallCallSiteReturned(const IRPosition &IRP, Attributor &A) 4019 : AAFoldRuntimeCall(IRP, A) {} 4020 4021 /// See AbstractAttribute::getAsStr() 4022 const std::string getAsStr() const override { 4023 if (!isValidState()) 4024 return "<invalid>"; 4025 4026 std::string Str("simplified value: "); 4027 4028 if (!SimplifiedValue.hasValue()) 4029 return Str + std::string("none"); 4030 4031 if (!SimplifiedValue.getValue()) 4032 return Str + std::string("nullptr"); 4033 4034 if (ConstantInt *CI = dyn_cast<ConstantInt>(SimplifiedValue.getValue())) 4035 return Str + std::to_string(CI->getSExtValue()); 4036 4037 return Str + std::string("unknown"); 4038 } 4039 4040 void initialize(Attributor &A) override { 4041 if (DisableOpenMPOptFolding) 4042 indicatePessimisticFixpoint(); 4043 4044 Function *Callee = getAssociatedFunction(); 4045 4046 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 4047 const auto &It = OMPInfoCache.RuntimeFunctionIDMap.find(Callee); 4048 assert(It != OMPInfoCache.RuntimeFunctionIDMap.end() && 4049 "Expected a known OpenMP runtime function"); 4050 4051 RFKind = It->getSecond(); 4052 4053 CallBase &CB = cast<CallBase>(getAssociatedValue()); 4054 A.registerSimplificationCallback( 4055 IRPosition::callsite_returned(CB), 4056 [&](const IRPosition &IRP, const AbstractAttribute *AA, 4057 bool &UsedAssumedInformation) -> Optional<Value *> { 4058 assert((isValidState() || (SimplifiedValue.hasValue() && 4059 SimplifiedValue.getValue() == nullptr)) && 4060 "Unexpected invalid state!"); 4061 4062 if (!isAtFixpoint()) { 4063 UsedAssumedInformation = true; 4064 if (AA) 4065 A.recordDependence(*this, *AA, DepClassTy::OPTIONAL); 4066 } 4067 return SimplifiedValue; 4068 }); 4069 } 4070 4071 ChangeStatus updateImpl(Attributor &A) override { 4072 ChangeStatus Changed = ChangeStatus::UNCHANGED; 4073 switch (RFKind) { 4074 case OMPRTL___kmpc_is_spmd_exec_mode: 4075 Changed |= foldIsSPMDExecMode(A); 4076 break; 4077 case OMPRTL___kmpc_is_generic_main_thread_id: 4078 Changed |= foldIsGenericMainThread(A); 4079 break; 4080 case OMPRTL___kmpc_parallel_level: 4081 Changed |= foldParallelLevel(A); 4082 break; 4083 case OMPRTL___kmpc_get_hardware_num_threads_in_block: 4084 Changed = Changed | foldKernelFnAttribute(A, "omp_target_thread_limit"); 4085 break; 4086 case OMPRTL___kmpc_get_hardware_num_blocks: 4087 Changed = Changed | foldKernelFnAttribute(A, "omp_target_num_teams"); 4088 break; 4089 default: 4090 llvm_unreachable("Unhandled OpenMP runtime function!"); 4091 } 4092 4093 return Changed; 4094 } 4095 4096 ChangeStatus manifest(Attributor &A) override { 4097 ChangeStatus Changed = ChangeStatus::UNCHANGED; 4098 4099 if (SimplifiedValue.hasValue() && SimplifiedValue.getValue()) { 4100 Instruction &I = *getCtxI(); 4101 A.changeValueAfterManifest(I, **SimplifiedValue); 4102 A.deleteAfterManifest(I); 4103 4104 CallBase *CB = dyn_cast<CallBase>(&I); 4105 auto Remark = [&](OptimizationRemark OR) { 4106 if (auto *C = dyn_cast<ConstantInt>(*SimplifiedValue)) 4107 return OR << "Replacing OpenMP runtime call " 4108 << CB->getCalledFunction()->getName() << " with " 4109 << ore::NV("FoldedValue", C->getZExtValue()) << "."; 4110 return OR << "Replacing OpenMP runtime call " 4111 << CB->getCalledFunction()->getName() << "."; 4112 }; 4113 4114 if (CB && EnableVerboseRemarks) 4115 A.emitRemark<OptimizationRemark>(CB, "OMP180", Remark); 4116 4117 LLVM_DEBUG(dbgs() << TAG << "Replacing runtime call: " << I << " with " 4118 << **SimplifiedValue << "\n"); 4119 4120 Changed = ChangeStatus::CHANGED; 4121 } 4122 4123 return Changed; 4124 } 4125 4126 ChangeStatus indicatePessimisticFixpoint() override { 4127 SimplifiedValue = nullptr; 4128 return AAFoldRuntimeCall::indicatePessimisticFixpoint(); 4129 } 4130 4131 private: 4132 /// Fold __kmpc_is_spmd_exec_mode into a constant if possible. 4133 ChangeStatus foldIsSPMDExecMode(Attributor &A) { 4134 Optional<Value *> SimplifiedValueBefore = SimplifiedValue; 4135 4136 unsigned AssumedSPMDCount = 0, KnownSPMDCount = 0; 4137 unsigned AssumedNonSPMDCount = 0, KnownNonSPMDCount = 0; 4138 auto &CallerKernelInfoAA = A.getAAFor<AAKernelInfo>( 4139 *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED); 4140 4141 if (!CallerKernelInfoAA.ReachingKernelEntries.isValidState()) 4142 return indicatePessimisticFixpoint(); 4143 4144 for (Kernel K : CallerKernelInfoAA.ReachingKernelEntries) { 4145 auto &AA = A.getAAFor<AAKernelInfo>(*this, IRPosition::function(*K), 4146 DepClassTy::REQUIRED); 4147 4148 if (!AA.isValidState()) { 4149 SimplifiedValue = nullptr; 4150 return indicatePessimisticFixpoint(); 4151 } 4152 4153 if (AA.SPMDCompatibilityTracker.isAssumed()) { 4154 if (AA.SPMDCompatibilityTracker.isAtFixpoint()) 4155 ++KnownSPMDCount; 4156 else 4157 ++AssumedSPMDCount; 4158 } else { 4159 if (AA.SPMDCompatibilityTracker.isAtFixpoint()) 4160 ++KnownNonSPMDCount; 4161 else 4162 ++AssumedNonSPMDCount; 4163 } 4164 } 4165 4166 if ((AssumedSPMDCount + KnownSPMDCount) && 4167 (AssumedNonSPMDCount + KnownNonSPMDCount)) 4168 return indicatePessimisticFixpoint(); 4169 4170 auto &Ctx = getAnchorValue().getContext(); 4171 if (KnownSPMDCount || AssumedSPMDCount) { 4172 assert(KnownNonSPMDCount == 0 && AssumedNonSPMDCount == 0 && 4173 "Expected only SPMD kernels!"); 4174 // All reaching kernels are in SPMD mode. Update all function calls to 4175 // __kmpc_is_spmd_exec_mode to 1. 4176 SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), true); 4177 } else if (KnownNonSPMDCount || AssumedNonSPMDCount) { 4178 assert(KnownSPMDCount == 0 && AssumedSPMDCount == 0 && 4179 "Expected only non-SPMD kernels!"); 4180 // All reaching kernels are in non-SPMD mode. Update all function 4181 // calls to __kmpc_is_spmd_exec_mode to 0. 4182 SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), false); 4183 } else { 4184 // We have empty reaching kernels, therefore we cannot tell if the 4185 // associated call site can be folded. At this moment, SimplifiedValue 4186 // must be none. 4187 assert(!SimplifiedValue.hasValue() && "SimplifiedValue should be none"); 4188 } 4189 4190 return SimplifiedValue == SimplifiedValueBefore ? ChangeStatus::UNCHANGED 4191 : ChangeStatus::CHANGED; 4192 } 4193 4194 /// Fold __kmpc_is_generic_main_thread_id into a constant if possible. 4195 ChangeStatus foldIsGenericMainThread(Attributor &A) { 4196 Optional<Value *> SimplifiedValueBefore = SimplifiedValue; 4197 4198 CallBase &CB = cast<CallBase>(getAssociatedValue()); 4199 Function *F = CB.getFunction(); 4200 const auto &ExecutionDomainAA = A.getAAFor<AAExecutionDomain>( 4201 *this, IRPosition::function(*F), DepClassTy::REQUIRED); 4202 4203 if (!ExecutionDomainAA.isValidState()) 4204 return indicatePessimisticFixpoint(); 4205 4206 auto &Ctx = getAnchorValue().getContext(); 4207 if (ExecutionDomainAA.isExecutedByInitialThreadOnly(CB)) 4208 SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), true); 4209 else 4210 return indicatePessimisticFixpoint(); 4211 4212 return SimplifiedValue == SimplifiedValueBefore ? ChangeStatus::UNCHANGED 4213 : ChangeStatus::CHANGED; 4214 } 4215 4216 /// Fold __kmpc_parallel_level into a constant if possible. 4217 ChangeStatus foldParallelLevel(Attributor &A) { 4218 Optional<Value *> SimplifiedValueBefore = SimplifiedValue; 4219 4220 auto &CallerKernelInfoAA = A.getAAFor<AAKernelInfo>( 4221 *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED); 4222 4223 if (!CallerKernelInfoAA.ParallelLevels.isValidState()) 4224 return indicatePessimisticFixpoint(); 4225 4226 if (!CallerKernelInfoAA.ReachingKernelEntries.isValidState()) 4227 return indicatePessimisticFixpoint(); 4228 4229 if (CallerKernelInfoAA.ReachingKernelEntries.empty()) { 4230 assert(!SimplifiedValue.hasValue() && 4231 "SimplifiedValue should keep none at this point"); 4232 return ChangeStatus::UNCHANGED; 4233 } 4234 4235 unsigned AssumedSPMDCount = 0, KnownSPMDCount = 0; 4236 unsigned AssumedNonSPMDCount = 0, KnownNonSPMDCount = 0; 4237 for (Kernel K : CallerKernelInfoAA.ReachingKernelEntries) { 4238 auto &AA = A.getAAFor<AAKernelInfo>(*this, IRPosition::function(*K), 4239 DepClassTy::REQUIRED); 4240 if (!AA.SPMDCompatibilityTracker.isValidState()) 4241 return indicatePessimisticFixpoint(); 4242 4243 if (AA.SPMDCompatibilityTracker.isAssumed()) { 4244 if (AA.SPMDCompatibilityTracker.isAtFixpoint()) 4245 ++KnownSPMDCount; 4246 else 4247 ++AssumedSPMDCount; 4248 } else { 4249 if (AA.SPMDCompatibilityTracker.isAtFixpoint()) 4250 ++KnownNonSPMDCount; 4251 else 4252 ++AssumedNonSPMDCount; 4253 } 4254 } 4255 4256 if ((AssumedSPMDCount + KnownSPMDCount) && 4257 (AssumedNonSPMDCount + KnownNonSPMDCount)) 4258 return indicatePessimisticFixpoint(); 4259 4260 auto &Ctx = getAnchorValue().getContext(); 4261 // If the caller can only be reached by SPMD kernel entries, the parallel 4262 // level is 1. Similarly, if the caller can only be reached by non-SPMD 4263 // kernel entries, it is 0. 4264 if (AssumedSPMDCount || KnownSPMDCount) { 4265 assert(KnownNonSPMDCount == 0 && AssumedNonSPMDCount == 0 && 4266 "Expected only SPMD kernels!"); 4267 SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), 1); 4268 } else { 4269 assert(KnownSPMDCount == 0 && AssumedSPMDCount == 0 && 4270 "Expected only non-SPMD kernels!"); 4271 SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), 0); 4272 } 4273 return SimplifiedValue == SimplifiedValueBefore ? ChangeStatus::UNCHANGED 4274 : ChangeStatus::CHANGED; 4275 } 4276 4277 ChangeStatus foldKernelFnAttribute(Attributor &A, llvm::StringRef Attr) { 4278 // Specialize only if all the calls agree with the attribute constant value 4279 int32_t CurrentAttrValue = -1; 4280 Optional<Value *> SimplifiedValueBefore = SimplifiedValue; 4281 4282 auto &CallerKernelInfoAA = A.getAAFor<AAKernelInfo>( 4283 *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED); 4284 4285 if (!CallerKernelInfoAA.ReachingKernelEntries.isValidState()) 4286 return indicatePessimisticFixpoint(); 4287 4288 // Iterate over the kernels that reach this function 4289 for (Kernel K : CallerKernelInfoAA.ReachingKernelEntries) { 4290 int32_t NextAttrVal = -1; 4291 if (K->hasFnAttribute(Attr)) 4292 NextAttrVal = 4293 std::stoi(K->getFnAttribute(Attr).getValueAsString().str()); 4294 4295 if (NextAttrVal == -1 || 4296 (CurrentAttrValue != -1 && CurrentAttrValue != NextAttrVal)) 4297 return indicatePessimisticFixpoint(); 4298 CurrentAttrValue = NextAttrVal; 4299 } 4300 4301 if (CurrentAttrValue != -1) { 4302 auto &Ctx = getAnchorValue().getContext(); 4303 SimplifiedValue = 4304 ConstantInt::get(Type::getInt32Ty(Ctx), CurrentAttrValue); 4305 } 4306 return SimplifiedValue == SimplifiedValueBefore ? ChangeStatus::UNCHANGED 4307 : ChangeStatus::CHANGED; 4308 } 4309 4310 /// An optional value the associated value is assumed to fold to. That is, we 4311 /// assume the associated value (which is a call) can be replaced by this 4312 /// simplified value. 4313 Optional<Value *> SimplifiedValue; 4314 4315 /// The runtime function kind of the callee of the associated call site. 4316 RuntimeFunction RFKind; 4317 }; 4318 4319 } // namespace 4320 4321 /// Register folding callsite 4322 void OpenMPOpt::registerFoldRuntimeCall(RuntimeFunction RF) { 4323 auto &RFI = OMPInfoCache.RFIs[RF]; 4324 RFI.foreachUse(SCC, [&](Use &U, Function &F) { 4325 CallInst *CI = OpenMPOpt::getCallIfRegularCall(U, &RFI); 4326 if (!CI) 4327 return false; 4328 A.getOrCreateAAFor<AAFoldRuntimeCall>( 4329 IRPosition::callsite_returned(*CI), /* QueryingAA */ nullptr, 4330 DepClassTy::NONE, /* ForceUpdate */ false, 4331 /* UpdateAfterInit */ false); 4332 return false; 4333 }); 4334 } 4335 4336 void OpenMPOpt::registerAAs(bool IsModulePass) { 4337 if (SCC.empty()) 4338 4339 return; 4340 if (IsModulePass) { 4341 // Ensure we create the AAKernelInfo AAs first and without triggering an 4342 // update. This will make sure we register all value simplification 4343 // callbacks before any other AA has the chance to create an AAValueSimplify 4344 // or similar. 4345 for (Function *Kernel : OMPInfoCache.Kernels) 4346 A.getOrCreateAAFor<AAKernelInfo>( 4347 IRPosition::function(*Kernel), /* QueryingAA */ nullptr, 4348 DepClassTy::NONE, /* ForceUpdate */ false, 4349 /* UpdateAfterInit */ false); 4350 4351 registerFoldRuntimeCall(OMPRTL___kmpc_is_generic_main_thread_id); 4352 registerFoldRuntimeCall(OMPRTL___kmpc_is_spmd_exec_mode); 4353 registerFoldRuntimeCall(OMPRTL___kmpc_parallel_level); 4354 registerFoldRuntimeCall(OMPRTL___kmpc_get_hardware_num_threads_in_block); 4355 registerFoldRuntimeCall(OMPRTL___kmpc_get_hardware_num_blocks); 4356 } 4357 4358 // Create CallSite AA for all Getters. 4359 for (int Idx = 0; Idx < OMPInfoCache.ICVs.size() - 1; ++Idx) { 4360 auto ICVInfo = OMPInfoCache.ICVs[static_cast<InternalControlVar>(Idx)]; 4361 4362 auto &GetterRFI = OMPInfoCache.RFIs[ICVInfo.Getter]; 4363 4364 auto CreateAA = [&](Use &U, Function &Caller) { 4365 CallInst *CI = OpenMPOpt::getCallIfRegularCall(U, &GetterRFI); 4366 if (!CI) 4367 return false; 4368 4369 auto &CB = cast<CallBase>(*CI); 4370 4371 IRPosition CBPos = IRPosition::callsite_function(CB); 4372 A.getOrCreateAAFor<AAICVTracker>(CBPos); 4373 return false; 4374 }; 4375 4376 GetterRFI.foreachUse(SCC, CreateAA); 4377 } 4378 auto &GlobalizationRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared]; 4379 auto CreateAA = [&](Use &U, Function &F) { 4380 A.getOrCreateAAFor<AAHeapToShared>(IRPosition::function(F)); 4381 return false; 4382 }; 4383 if (!DisableOpenMPOptDeglobalization) 4384 GlobalizationRFI.foreachUse(SCC, CreateAA); 4385 4386 // Create an ExecutionDomain AA for every function and a HeapToStack AA for 4387 // every function if there is a device kernel. 4388 if (!isOpenMPDevice(M)) 4389 return; 4390 4391 for (auto *F : SCC) { 4392 if (F->isDeclaration()) 4393 continue; 4394 4395 A.getOrCreateAAFor<AAExecutionDomain>(IRPosition::function(*F)); 4396 if (!DisableOpenMPOptDeglobalization) 4397 A.getOrCreateAAFor<AAHeapToStack>(IRPosition::function(*F)); 4398 4399 for (auto &I : instructions(*F)) { 4400 if (auto *LI = dyn_cast<LoadInst>(&I)) { 4401 bool UsedAssumedInformation = false; 4402 A.getAssumedSimplified(IRPosition::value(*LI), /* AA */ nullptr, 4403 UsedAssumedInformation); 4404 } 4405 } 4406 } 4407 } 4408 4409 const char AAICVTracker::ID = 0; 4410 const char AAKernelInfo::ID = 0; 4411 const char AAExecutionDomain::ID = 0; 4412 const char AAHeapToShared::ID = 0; 4413 const char AAFoldRuntimeCall::ID = 0; 4414 4415 AAICVTracker &AAICVTracker::createForPosition(const IRPosition &IRP, 4416 Attributor &A) { 4417 AAICVTracker *AA = nullptr; 4418 switch (IRP.getPositionKind()) { 4419 case IRPosition::IRP_INVALID: 4420 case IRPosition::IRP_FLOAT: 4421 case IRPosition::IRP_ARGUMENT: 4422 case IRPosition::IRP_CALL_SITE_ARGUMENT: 4423 llvm_unreachable("ICVTracker can only be created for function position!"); 4424 case IRPosition::IRP_RETURNED: 4425 AA = new (A.Allocator) AAICVTrackerFunctionReturned(IRP, A); 4426 break; 4427 case IRPosition::IRP_CALL_SITE_RETURNED: 4428 AA = new (A.Allocator) AAICVTrackerCallSiteReturned(IRP, A); 4429 break; 4430 case IRPosition::IRP_CALL_SITE: 4431 AA = new (A.Allocator) AAICVTrackerCallSite(IRP, A); 4432 break; 4433 case IRPosition::IRP_FUNCTION: 4434 AA = new (A.Allocator) AAICVTrackerFunction(IRP, A); 4435 break; 4436 } 4437 4438 return *AA; 4439 } 4440 4441 AAExecutionDomain &AAExecutionDomain::createForPosition(const IRPosition &IRP, 4442 Attributor &A) { 4443 AAExecutionDomainFunction *AA = nullptr; 4444 switch (IRP.getPositionKind()) { 4445 case IRPosition::IRP_INVALID: 4446 case IRPosition::IRP_FLOAT: 4447 case IRPosition::IRP_ARGUMENT: 4448 case IRPosition::IRP_CALL_SITE_ARGUMENT: 4449 case IRPosition::IRP_RETURNED: 4450 case IRPosition::IRP_CALL_SITE_RETURNED: 4451 case IRPosition::IRP_CALL_SITE: 4452 llvm_unreachable( 4453 "AAExecutionDomain can only be created for function position!"); 4454 case IRPosition::IRP_FUNCTION: 4455 AA = new (A.Allocator) AAExecutionDomainFunction(IRP, A); 4456 break; 4457 } 4458 4459 return *AA; 4460 } 4461 4462 AAHeapToShared &AAHeapToShared::createForPosition(const IRPosition &IRP, 4463 Attributor &A) { 4464 AAHeapToSharedFunction *AA = nullptr; 4465 switch (IRP.getPositionKind()) { 4466 case IRPosition::IRP_INVALID: 4467 case IRPosition::IRP_FLOAT: 4468 case IRPosition::IRP_ARGUMENT: 4469 case IRPosition::IRP_CALL_SITE_ARGUMENT: 4470 case IRPosition::IRP_RETURNED: 4471 case IRPosition::IRP_CALL_SITE_RETURNED: 4472 case IRPosition::IRP_CALL_SITE: 4473 llvm_unreachable( 4474 "AAHeapToShared can only be created for function position!"); 4475 case IRPosition::IRP_FUNCTION: 4476 AA = new (A.Allocator) AAHeapToSharedFunction(IRP, A); 4477 break; 4478 } 4479 4480 return *AA; 4481 } 4482 4483 AAKernelInfo &AAKernelInfo::createForPosition(const IRPosition &IRP, 4484 Attributor &A) { 4485 AAKernelInfo *AA = nullptr; 4486 switch (IRP.getPositionKind()) { 4487 case IRPosition::IRP_INVALID: 4488 case IRPosition::IRP_FLOAT: 4489 case IRPosition::IRP_ARGUMENT: 4490 case IRPosition::IRP_RETURNED: 4491 case IRPosition::IRP_CALL_SITE_RETURNED: 4492 case IRPosition::IRP_CALL_SITE_ARGUMENT: 4493 llvm_unreachable("KernelInfo can only be created for function position!"); 4494 case IRPosition::IRP_CALL_SITE: 4495 AA = new (A.Allocator) AAKernelInfoCallSite(IRP, A); 4496 break; 4497 case IRPosition::IRP_FUNCTION: 4498 AA = new (A.Allocator) AAKernelInfoFunction(IRP, A); 4499 break; 4500 } 4501 4502 return *AA; 4503 } 4504 4505 AAFoldRuntimeCall &AAFoldRuntimeCall::createForPosition(const IRPosition &IRP, 4506 Attributor &A) { 4507 AAFoldRuntimeCall *AA = nullptr; 4508 switch (IRP.getPositionKind()) { 4509 case IRPosition::IRP_INVALID: 4510 case IRPosition::IRP_FLOAT: 4511 case IRPosition::IRP_ARGUMENT: 4512 case IRPosition::IRP_RETURNED: 4513 case IRPosition::IRP_FUNCTION: 4514 case IRPosition::IRP_CALL_SITE: 4515 case IRPosition::IRP_CALL_SITE_ARGUMENT: 4516 llvm_unreachable("KernelInfo can only be created for call site position!"); 4517 case IRPosition::IRP_CALL_SITE_RETURNED: 4518 AA = new (A.Allocator) AAFoldRuntimeCallCallSiteReturned(IRP, A); 4519 break; 4520 } 4521 4522 return *AA; 4523 } 4524 4525 PreservedAnalyses OpenMPOptPass::run(Module &M, ModuleAnalysisManager &AM) { 4526 if (!containsOpenMP(M)) 4527 return PreservedAnalyses::all(); 4528 if (DisableOpenMPOptimizations) 4529 return PreservedAnalyses::all(); 4530 4531 FunctionAnalysisManager &FAM = 4532 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 4533 KernelSet Kernels = getDeviceKernels(M); 4534 4535 auto IsCalled = [&](Function &F) { 4536 if (Kernels.contains(&F)) 4537 return true; 4538 for (const User *U : F.users()) 4539 if (!isa<BlockAddress>(U)) 4540 return true; 4541 return false; 4542 }; 4543 4544 auto EmitRemark = [&](Function &F) { 4545 auto &ORE = FAM.getResult<OptimizationRemarkEmitterAnalysis>(F); 4546 ORE.emit([&]() { 4547 OptimizationRemarkAnalysis ORA(DEBUG_TYPE, "OMP140", &F); 4548 return ORA << "Could not internalize function. " 4549 << "Some optimizations may not be possible. [OMP140]"; 4550 }); 4551 }; 4552 4553 // Create internal copies of each function if this is a kernel Module. This 4554 // allows iterprocedural passes to see every call edge. 4555 DenseMap<Function *, Function *> InternalizedMap; 4556 if (isOpenMPDevice(M)) { 4557 SmallPtrSet<Function *, 16> InternalizeFns; 4558 for (Function &F : M) 4559 if (!F.isDeclaration() && !Kernels.contains(&F) && IsCalled(F) && 4560 !DisableInternalization) { 4561 if (Attributor::isInternalizable(F)) { 4562 InternalizeFns.insert(&F); 4563 } else if (!F.hasLocalLinkage() && !F.hasFnAttribute(Attribute::Cold)) { 4564 EmitRemark(F); 4565 } 4566 } 4567 4568 Attributor::internalizeFunctions(InternalizeFns, InternalizedMap); 4569 } 4570 4571 // Look at every function in the Module unless it was internalized. 4572 SmallVector<Function *, 16> SCC; 4573 for (Function &F : M) 4574 if (!F.isDeclaration() && !InternalizedMap.lookup(&F)) 4575 SCC.push_back(&F); 4576 4577 if (SCC.empty()) 4578 return PreservedAnalyses::all(); 4579 4580 AnalysisGetter AG(FAM); 4581 4582 auto OREGetter = [&FAM](Function *F) -> OptimizationRemarkEmitter & { 4583 return FAM.getResult<OptimizationRemarkEmitterAnalysis>(*F); 4584 }; 4585 4586 BumpPtrAllocator Allocator; 4587 CallGraphUpdater CGUpdater; 4588 4589 SetVector<Function *> Functions(SCC.begin(), SCC.end()); 4590 OMPInformationCache InfoCache(M, AG, Allocator, /*CGSCC*/ Functions, Kernels); 4591 4592 unsigned MaxFixpointIterations = 4593 (isOpenMPDevice(M)) ? SetFixpointIterations : 32; 4594 Attributor A(Functions, InfoCache, CGUpdater, nullptr, true, false, 4595 MaxFixpointIterations, OREGetter, DEBUG_TYPE); 4596 4597 OpenMPOpt OMPOpt(SCC, CGUpdater, OREGetter, InfoCache, A); 4598 bool Changed = OMPOpt.run(true); 4599 4600 // Optionally inline device functions for potentially better performance. 4601 if (AlwaysInlineDeviceFunctions && isOpenMPDevice(M)) 4602 for (Function &F : M) 4603 if (!F.isDeclaration() && !Kernels.contains(&F) && 4604 !F.hasFnAttribute(Attribute::NoInline)) 4605 F.addFnAttr(Attribute::AlwaysInline); 4606 4607 if (PrintModuleAfterOptimizations) 4608 LLVM_DEBUG(dbgs() << TAG << "Module after OpenMPOpt Module Pass:\n" << M); 4609 4610 if (Changed) 4611 return PreservedAnalyses::none(); 4612 4613 return PreservedAnalyses::all(); 4614 } 4615 4616 PreservedAnalyses OpenMPOptCGSCCPass::run(LazyCallGraph::SCC &C, 4617 CGSCCAnalysisManager &AM, 4618 LazyCallGraph &CG, 4619 CGSCCUpdateResult &UR) { 4620 if (!containsOpenMP(*C.begin()->getFunction().getParent())) 4621 return PreservedAnalyses::all(); 4622 if (DisableOpenMPOptimizations) 4623 return PreservedAnalyses::all(); 4624 4625 SmallVector<Function *, 16> SCC; 4626 // If there are kernels in the module, we have to run on all SCC's. 4627 for (LazyCallGraph::Node &N : C) { 4628 Function *Fn = &N.getFunction(); 4629 SCC.push_back(Fn); 4630 } 4631 4632 if (SCC.empty()) 4633 return PreservedAnalyses::all(); 4634 4635 Module &M = *C.begin()->getFunction().getParent(); 4636 4637 KernelSet Kernels = getDeviceKernels(M); 4638 4639 FunctionAnalysisManager &FAM = 4640 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager(); 4641 4642 AnalysisGetter AG(FAM); 4643 4644 auto OREGetter = [&FAM](Function *F) -> OptimizationRemarkEmitter & { 4645 return FAM.getResult<OptimizationRemarkEmitterAnalysis>(*F); 4646 }; 4647 4648 BumpPtrAllocator Allocator; 4649 CallGraphUpdater CGUpdater; 4650 CGUpdater.initialize(CG, C, AM, UR); 4651 4652 SetVector<Function *> Functions(SCC.begin(), SCC.end()); 4653 OMPInformationCache InfoCache(*(Functions.back()->getParent()), AG, Allocator, 4654 /*CGSCC*/ Functions, Kernels); 4655 4656 unsigned MaxFixpointIterations = 4657 (isOpenMPDevice(M)) ? SetFixpointIterations : 32; 4658 Attributor A(Functions, InfoCache, CGUpdater, nullptr, false, true, 4659 MaxFixpointIterations, OREGetter, DEBUG_TYPE); 4660 4661 OpenMPOpt OMPOpt(SCC, CGUpdater, OREGetter, InfoCache, A); 4662 bool Changed = OMPOpt.run(false); 4663 4664 if (PrintModuleAfterOptimizations) 4665 LLVM_DEBUG(dbgs() << TAG << "Module after OpenMPOpt CGSCC Pass:\n" << M); 4666 4667 if (Changed) 4668 return PreservedAnalyses::none(); 4669 4670 return PreservedAnalyses::all(); 4671 } 4672 4673 namespace { 4674 4675 struct OpenMPOptCGSCCLegacyPass : public CallGraphSCCPass { 4676 CallGraphUpdater CGUpdater; 4677 static char ID; 4678 4679 OpenMPOptCGSCCLegacyPass() : CallGraphSCCPass(ID) { 4680 initializeOpenMPOptCGSCCLegacyPassPass(*PassRegistry::getPassRegistry()); 4681 } 4682 4683 void getAnalysisUsage(AnalysisUsage &AU) const override { 4684 CallGraphSCCPass::getAnalysisUsage(AU); 4685 } 4686 4687 bool runOnSCC(CallGraphSCC &CGSCC) override { 4688 if (!containsOpenMP(CGSCC.getCallGraph().getModule())) 4689 return false; 4690 if (DisableOpenMPOptimizations || skipSCC(CGSCC)) 4691 return false; 4692 4693 SmallVector<Function *, 16> SCC; 4694 // If there are kernels in the module, we have to run on all SCC's. 4695 for (CallGraphNode *CGN : CGSCC) { 4696 Function *Fn = CGN->getFunction(); 4697 if (!Fn || Fn->isDeclaration()) 4698 continue; 4699 SCC.push_back(Fn); 4700 } 4701 4702 if (SCC.empty()) 4703 return false; 4704 4705 Module &M = CGSCC.getCallGraph().getModule(); 4706 KernelSet Kernels = getDeviceKernels(M); 4707 4708 CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph(); 4709 CGUpdater.initialize(CG, CGSCC); 4710 4711 // Maintain a map of functions to avoid rebuilding the ORE 4712 DenseMap<Function *, std::unique_ptr<OptimizationRemarkEmitter>> OREMap; 4713 auto OREGetter = [&OREMap](Function *F) -> OptimizationRemarkEmitter & { 4714 std::unique_ptr<OptimizationRemarkEmitter> &ORE = OREMap[F]; 4715 if (!ORE) 4716 ORE = std::make_unique<OptimizationRemarkEmitter>(F); 4717 return *ORE; 4718 }; 4719 4720 AnalysisGetter AG; 4721 SetVector<Function *> Functions(SCC.begin(), SCC.end()); 4722 BumpPtrAllocator Allocator; 4723 OMPInformationCache InfoCache(*(Functions.back()->getParent()), AG, 4724 Allocator, 4725 /*CGSCC*/ Functions, Kernels); 4726 4727 unsigned MaxFixpointIterations = 4728 (isOpenMPDevice(M)) ? SetFixpointIterations : 32; 4729 Attributor A(Functions, InfoCache, CGUpdater, nullptr, false, true, 4730 MaxFixpointIterations, OREGetter, DEBUG_TYPE); 4731 4732 OpenMPOpt OMPOpt(SCC, CGUpdater, OREGetter, InfoCache, A); 4733 bool Result = OMPOpt.run(false); 4734 4735 if (PrintModuleAfterOptimizations) 4736 LLVM_DEBUG(dbgs() << TAG << "Module after OpenMPOpt CGSCC Pass:\n" << M); 4737 4738 return Result; 4739 } 4740 4741 bool doFinalization(CallGraph &CG) override { return CGUpdater.finalize(); } 4742 }; 4743 4744 } // end anonymous namespace 4745 4746 KernelSet llvm::omp::getDeviceKernels(Module &M) { 4747 // TODO: Create a more cross-platform way of determining device kernels. 4748 NamedMDNode *MD = M.getOrInsertNamedMetadata("nvvm.annotations"); 4749 KernelSet Kernels; 4750 4751 if (!MD) 4752 return Kernels; 4753 4754 for (auto *Op : MD->operands()) { 4755 if (Op->getNumOperands() < 2) 4756 continue; 4757 MDString *KindID = dyn_cast<MDString>(Op->getOperand(1)); 4758 if (!KindID || KindID->getString() != "kernel") 4759 continue; 4760 4761 Function *KernelFn = 4762 mdconst::dyn_extract_or_null<Function>(Op->getOperand(0)); 4763 if (!KernelFn) 4764 continue; 4765 4766 ++NumOpenMPTargetRegionKernels; 4767 4768 Kernels.insert(KernelFn); 4769 } 4770 4771 return Kernels; 4772 } 4773 4774 bool llvm::omp::containsOpenMP(Module &M) { 4775 Metadata *MD = M.getModuleFlag("openmp"); 4776 if (!MD) 4777 return false; 4778 4779 return true; 4780 } 4781 4782 bool llvm::omp::isOpenMPDevice(Module &M) { 4783 Metadata *MD = M.getModuleFlag("openmp-device"); 4784 if (!MD) 4785 return false; 4786 4787 return true; 4788 } 4789 4790 char OpenMPOptCGSCCLegacyPass::ID = 0; 4791 4792 INITIALIZE_PASS_BEGIN(OpenMPOptCGSCCLegacyPass, "openmp-opt-cgscc", 4793 "OpenMP specific optimizations", false, false) 4794 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass) 4795 INITIALIZE_PASS_END(OpenMPOptCGSCCLegacyPass, "openmp-opt-cgscc", 4796 "OpenMP specific optimizations", false, false) 4797 4798 Pass *llvm::createOpenMPOptCGSCCLegacyPass() { 4799 return new OpenMPOptCGSCCLegacyPass(); 4800 } 4801