1 //===-- IPO/OpenMPOpt.cpp - Collection of OpenMP specific optimizations ---===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // OpenMP specific optimizations: 10 // 11 // - Deduplication of runtime calls, e.g., omp_get_thread_num. 12 // - Replacing globalized device memory with stack memory. 13 // - Replacing globalized device memory with shared memory. 14 // - Parallel region merging. 15 // - Transforming generic-mode device kernels to SPMD mode. 16 // - Specializing the state machine for generic-mode device kernels. 17 // 18 //===----------------------------------------------------------------------===// 19 20 #include "llvm/Transforms/IPO/OpenMPOpt.h" 21 22 #include "llvm/ADT/EnumeratedArray.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/Analysis/CallGraph.h" 26 #include "llvm/Analysis/CallGraphSCCPass.h" 27 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 28 #include "llvm/Analysis/ValueTracking.h" 29 #include "llvm/Frontend/OpenMP/OMPConstants.h" 30 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 31 #include "llvm/IR/Assumptions.h" 32 #include "llvm/IR/DiagnosticInfo.h" 33 #include "llvm/IR/GlobalValue.h" 34 #include "llvm/IR/Instruction.h" 35 #include "llvm/IR/IntrinsicInst.h" 36 #include "llvm/InitializePasses.h" 37 #include "llvm/Support/CommandLine.h" 38 #include "llvm/Transforms/IPO.h" 39 #include "llvm/Transforms/IPO/Attributor.h" 40 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 41 #include "llvm/Transforms/Utils/CallGraphUpdater.h" 42 #include "llvm/Transforms/Utils/CodeExtractor.h" 43 44 using namespace llvm; 45 using namespace omp; 46 47 #define DEBUG_TYPE "openmp-opt" 48 49 static cl::opt<bool> DisableOpenMPOptimizations( 50 "openmp-opt-disable", cl::ZeroOrMore, 51 cl::desc("Disable OpenMP specific optimizations."), cl::Hidden, 52 cl::init(false)); 53 54 static cl::opt<bool> EnableParallelRegionMerging( 55 "openmp-opt-enable-merging", cl::ZeroOrMore, 56 cl::desc("Enable the OpenMP region merging optimization."), cl::Hidden, 57 cl::init(false)); 58 59 static cl::opt<bool> 60 DisableInternalization("openmp-opt-disable-internalization", cl::ZeroOrMore, 61 cl::desc("Disable function internalization."), 62 cl::Hidden, cl::init(false)); 63 64 static cl::opt<bool> PrintICVValues("openmp-print-icv-values", cl::init(false), 65 cl::Hidden); 66 static cl::opt<bool> PrintOpenMPKernels("openmp-print-gpu-kernels", 67 cl::init(false), cl::Hidden); 68 69 static cl::opt<bool> HideMemoryTransferLatency( 70 "openmp-hide-memory-transfer-latency", 71 cl::desc("[WIP] Tries to hide the latency of host to device memory" 72 " transfers"), 73 cl::Hidden, cl::init(false)); 74 75 STATISTIC(NumOpenMPRuntimeCallsDeduplicated, 76 "Number of OpenMP runtime calls deduplicated"); 77 STATISTIC(NumOpenMPParallelRegionsDeleted, 78 "Number of OpenMP parallel regions deleted"); 79 STATISTIC(NumOpenMPRuntimeFunctionsIdentified, 80 "Number of OpenMP runtime functions identified"); 81 STATISTIC(NumOpenMPRuntimeFunctionUsesIdentified, 82 "Number of OpenMP runtime function uses identified"); 83 STATISTIC(NumOpenMPTargetRegionKernels, 84 "Number of OpenMP target region entry points (=kernels) identified"); 85 STATISTIC(NumOpenMPTargetRegionKernelsSPMD, 86 "Number of OpenMP target region entry points (=kernels) executed in " 87 "SPMD-mode instead of generic-mode"); 88 STATISTIC(NumOpenMPTargetRegionKernelsWithoutStateMachine, 89 "Number of OpenMP target region entry points (=kernels) executed in " 90 "generic-mode without a state machines"); 91 STATISTIC(NumOpenMPTargetRegionKernelsCustomStateMachineWithFallback, 92 "Number of OpenMP target region entry points (=kernels) executed in " 93 "generic-mode with customized state machines with fallback"); 94 STATISTIC(NumOpenMPTargetRegionKernelsCustomStateMachineWithoutFallback, 95 "Number of OpenMP target region entry points (=kernels) executed in " 96 "generic-mode with customized state machines without fallback"); 97 STATISTIC( 98 NumOpenMPParallelRegionsReplacedInGPUStateMachine, 99 "Number of OpenMP parallel regions replaced with ID in GPU state machines"); 100 STATISTIC(NumOpenMPParallelRegionsMerged, 101 "Number of OpenMP parallel regions merged"); 102 STATISTIC(NumBytesMovedToSharedMemory, 103 "Amount of memory pushed to shared memory"); 104 105 #if !defined(NDEBUG) 106 static constexpr auto TAG = "[" DEBUG_TYPE "]"; 107 #endif 108 109 namespace { 110 111 enum class AddressSpace : unsigned { 112 Generic = 0, 113 Global = 1, 114 Shared = 3, 115 Constant = 4, 116 Local = 5, 117 }; 118 119 struct AAHeapToShared; 120 121 struct AAICVTracker; 122 123 /// OpenMP specific information. For now, stores RFIs and ICVs also needed for 124 /// Attributor runs. 125 struct OMPInformationCache : public InformationCache { 126 OMPInformationCache(Module &M, AnalysisGetter &AG, 127 BumpPtrAllocator &Allocator, SetVector<Function *> &CGSCC, 128 SmallPtrSetImpl<Kernel> &Kernels) 129 : InformationCache(M, AG, Allocator, &CGSCC), OMPBuilder(M), 130 Kernels(Kernels) { 131 132 OMPBuilder.initialize(); 133 initializeRuntimeFunctions(); 134 initializeInternalControlVars(); 135 } 136 137 /// Generic information that describes an internal control variable. 138 struct InternalControlVarInfo { 139 /// The kind, as described by InternalControlVar enum. 140 InternalControlVar Kind; 141 142 /// The name of the ICV. 143 StringRef Name; 144 145 /// Environment variable associated with this ICV. 146 StringRef EnvVarName; 147 148 /// Initial value kind. 149 ICVInitValue InitKind; 150 151 /// Initial value. 152 ConstantInt *InitValue; 153 154 /// Setter RTL function associated with this ICV. 155 RuntimeFunction Setter; 156 157 /// Getter RTL function associated with this ICV. 158 RuntimeFunction Getter; 159 160 /// RTL Function corresponding to the override clause of this ICV 161 RuntimeFunction Clause; 162 }; 163 164 /// Generic information that describes a runtime function 165 struct RuntimeFunctionInfo { 166 167 /// The kind, as described by the RuntimeFunction enum. 168 RuntimeFunction Kind; 169 170 /// The name of the function. 171 StringRef Name; 172 173 /// Flag to indicate a variadic function. 174 bool IsVarArg; 175 176 /// The return type of the function. 177 Type *ReturnType; 178 179 /// The argument types of the function. 180 SmallVector<Type *, 8> ArgumentTypes; 181 182 /// The declaration if available. 183 Function *Declaration = nullptr; 184 185 /// Uses of this runtime function per function containing the use. 186 using UseVector = SmallVector<Use *, 16>; 187 188 /// Clear UsesMap for runtime function. 189 void clearUsesMap() { UsesMap.clear(); } 190 191 /// Boolean conversion that is true if the runtime function was found. 192 operator bool() const { return Declaration; } 193 194 /// Return the vector of uses in function \p F. 195 UseVector &getOrCreateUseVector(Function *F) { 196 std::shared_ptr<UseVector> &UV = UsesMap[F]; 197 if (!UV) 198 UV = std::make_shared<UseVector>(); 199 return *UV; 200 } 201 202 /// Return the vector of uses in function \p F or `nullptr` if there are 203 /// none. 204 const UseVector *getUseVector(Function &F) const { 205 auto I = UsesMap.find(&F); 206 if (I != UsesMap.end()) 207 return I->second.get(); 208 return nullptr; 209 } 210 211 /// Return how many functions contain uses of this runtime function. 212 size_t getNumFunctionsWithUses() const { return UsesMap.size(); } 213 214 /// Return the number of arguments (or the minimal number for variadic 215 /// functions). 216 size_t getNumArgs() const { return ArgumentTypes.size(); } 217 218 /// Run the callback \p CB on each use and forget the use if the result is 219 /// true. The callback will be fed the function in which the use was 220 /// encountered as second argument. 221 void foreachUse(SmallVectorImpl<Function *> &SCC, 222 function_ref<bool(Use &, Function &)> CB) { 223 for (Function *F : SCC) 224 foreachUse(CB, F); 225 } 226 227 /// Run the callback \p CB on each use within the function \p F and forget 228 /// the use if the result is true. 229 void foreachUse(function_ref<bool(Use &, Function &)> CB, Function *F) { 230 SmallVector<unsigned, 8> ToBeDeleted; 231 ToBeDeleted.clear(); 232 233 unsigned Idx = 0; 234 UseVector &UV = getOrCreateUseVector(F); 235 236 for (Use *U : UV) { 237 if (CB(*U, *F)) 238 ToBeDeleted.push_back(Idx); 239 ++Idx; 240 } 241 242 // Remove the to-be-deleted indices in reverse order as prior 243 // modifications will not modify the smaller indices. 244 while (!ToBeDeleted.empty()) { 245 unsigned Idx = ToBeDeleted.pop_back_val(); 246 UV[Idx] = UV.back(); 247 UV.pop_back(); 248 } 249 } 250 251 private: 252 /// Map from functions to all uses of this runtime function contained in 253 /// them. 254 DenseMap<Function *, std::shared_ptr<UseVector>> UsesMap; 255 256 public: 257 /// Iterators for the uses of this runtime function. 258 decltype(UsesMap)::iterator begin() { return UsesMap.begin(); } 259 decltype(UsesMap)::iterator end() { return UsesMap.end(); } 260 }; 261 262 /// An OpenMP-IR-Builder instance 263 OpenMPIRBuilder OMPBuilder; 264 265 /// Map from runtime function kind to the runtime function description. 266 EnumeratedArray<RuntimeFunctionInfo, RuntimeFunction, 267 RuntimeFunction::OMPRTL___last> 268 RFIs; 269 270 /// Map from function declarations/definitions to their runtime enum type. 271 DenseMap<Function *, RuntimeFunction> RuntimeFunctionIDMap; 272 273 /// Map from ICV kind to the ICV description. 274 EnumeratedArray<InternalControlVarInfo, InternalControlVar, 275 InternalControlVar::ICV___last> 276 ICVs; 277 278 /// Helper to initialize all internal control variable information for those 279 /// defined in OMPKinds.def. 280 void initializeInternalControlVars() { 281 #define ICV_RT_SET(_Name, RTL) \ 282 { \ 283 auto &ICV = ICVs[_Name]; \ 284 ICV.Setter = RTL; \ 285 } 286 #define ICV_RT_GET(Name, RTL) \ 287 { \ 288 auto &ICV = ICVs[Name]; \ 289 ICV.Getter = RTL; \ 290 } 291 #define ICV_DATA_ENV(Enum, _Name, _EnvVarName, Init) \ 292 { \ 293 auto &ICV = ICVs[Enum]; \ 294 ICV.Name = _Name; \ 295 ICV.Kind = Enum; \ 296 ICV.InitKind = Init; \ 297 ICV.EnvVarName = _EnvVarName; \ 298 switch (ICV.InitKind) { \ 299 case ICV_IMPLEMENTATION_DEFINED: \ 300 ICV.InitValue = nullptr; \ 301 break; \ 302 case ICV_ZERO: \ 303 ICV.InitValue = ConstantInt::get( \ 304 Type::getInt32Ty(OMPBuilder.Int32->getContext()), 0); \ 305 break; \ 306 case ICV_FALSE: \ 307 ICV.InitValue = ConstantInt::getFalse(OMPBuilder.Int1->getContext()); \ 308 break; \ 309 case ICV_LAST: \ 310 break; \ 311 } \ 312 } 313 #include "llvm/Frontend/OpenMP/OMPKinds.def" 314 } 315 316 /// Returns true if the function declaration \p F matches the runtime 317 /// function types, that is, return type \p RTFRetType, and argument types 318 /// \p RTFArgTypes. 319 static bool declMatchesRTFTypes(Function *F, Type *RTFRetType, 320 SmallVector<Type *, 8> &RTFArgTypes) { 321 // TODO: We should output information to the user (under debug output 322 // and via remarks). 323 324 if (!F) 325 return false; 326 if (F->getReturnType() != RTFRetType) 327 return false; 328 if (F->arg_size() != RTFArgTypes.size()) 329 return false; 330 331 auto RTFTyIt = RTFArgTypes.begin(); 332 for (Argument &Arg : F->args()) { 333 if (Arg.getType() != *RTFTyIt) 334 return false; 335 336 ++RTFTyIt; 337 } 338 339 return true; 340 } 341 342 // Helper to collect all uses of the declaration in the UsesMap. 343 unsigned collectUses(RuntimeFunctionInfo &RFI, bool CollectStats = true) { 344 unsigned NumUses = 0; 345 if (!RFI.Declaration) 346 return NumUses; 347 OMPBuilder.addAttributes(RFI.Kind, *RFI.Declaration); 348 349 if (CollectStats) { 350 NumOpenMPRuntimeFunctionsIdentified += 1; 351 NumOpenMPRuntimeFunctionUsesIdentified += RFI.Declaration->getNumUses(); 352 } 353 354 // TODO: We directly convert uses into proper calls and unknown uses. 355 for (Use &U : RFI.Declaration->uses()) { 356 if (Instruction *UserI = dyn_cast<Instruction>(U.getUser())) { 357 if (ModuleSlice.count(UserI->getFunction())) { 358 RFI.getOrCreateUseVector(UserI->getFunction()).push_back(&U); 359 ++NumUses; 360 } 361 } else { 362 RFI.getOrCreateUseVector(nullptr).push_back(&U); 363 ++NumUses; 364 } 365 } 366 return NumUses; 367 } 368 369 // Helper function to recollect uses of a runtime function. 370 void recollectUsesForFunction(RuntimeFunction RTF) { 371 auto &RFI = RFIs[RTF]; 372 RFI.clearUsesMap(); 373 collectUses(RFI, /*CollectStats*/ false); 374 } 375 376 // Helper function to recollect uses of all runtime functions. 377 void recollectUses() { 378 for (int Idx = 0; Idx < RFIs.size(); ++Idx) 379 recollectUsesForFunction(static_cast<RuntimeFunction>(Idx)); 380 } 381 382 /// Helper to initialize all runtime function information for those defined 383 /// in OpenMPKinds.def. 384 void initializeRuntimeFunctions() { 385 Module &M = *((*ModuleSlice.begin())->getParent()); 386 387 // Helper macros for handling __VA_ARGS__ in OMP_RTL 388 #define OMP_TYPE(VarName, ...) \ 389 Type *VarName = OMPBuilder.VarName; \ 390 (void)VarName; 391 392 #define OMP_ARRAY_TYPE(VarName, ...) \ 393 ArrayType *VarName##Ty = OMPBuilder.VarName##Ty; \ 394 (void)VarName##Ty; \ 395 PointerType *VarName##PtrTy = OMPBuilder.VarName##PtrTy; \ 396 (void)VarName##PtrTy; 397 398 #define OMP_FUNCTION_TYPE(VarName, ...) \ 399 FunctionType *VarName = OMPBuilder.VarName; \ 400 (void)VarName; \ 401 PointerType *VarName##Ptr = OMPBuilder.VarName##Ptr; \ 402 (void)VarName##Ptr; 403 404 #define OMP_STRUCT_TYPE(VarName, ...) \ 405 StructType *VarName = OMPBuilder.VarName; \ 406 (void)VarName; \ 407 PointerType *VarName##Ptr = OMPBuilder.VarName##Ptr; \ 408 (void)VarName##Ptr; 409 410 #define OMP_RTL(_Enum, _Name, _IsVarArg, _ReturnType, ...) \ 411 { \ 412 SmallVector<Type *, 8> ArgsTypes({__VA_ARGS__}); \ 413 Function *F = M.getFunction(_Name); \ 414 RTLFunctions.insert(F); \ 415 if (declMatchesRTFTypes(F, OMPBuilder._ReturnType, ArgsTypes)) { \ 416 RuntimeFunctionIDMap[F] = _Enum; \ 417 F->removeFnAttr(Attribute::NoInline); \ 418 auto &RFI = RFIs[_Enum]; \ 419 RFI.Kind = _Enum; \ 420 RFI.Name = _Name; \ 421 RFI.IsVarArg = _IsVarArg; \ 422 RFI.ReturnType = OMPBuilder._ReturnType; \ 423 RFI.ArgumentTypes = std::move(ArgsTypes); \ 424 RFI.Declaration = F; \ 425 unsigned NumUses = collectUses(RFI); \ 426 (void)NumUses; \ 427 LLVM_DEBUG({ \ 428 dbgs() << TAG << RFI.Name << (RFI.Declaration ? "" : " not") \ 429 << " found\n"; \ 430 if (RFI.Declaration) \ 431 dbgs() << TAG << "-> got " << NumUses << " uses in " \ 432 << RFI.getNumFunctionsWithUses() \ 433 << " different functions.\n"; \ 434 }); \ 435 } \ 436 } 437 #include "llvm/Frontend/OpenMP/OMPKinds.def" 438 439 // TODO: We should attach the attributes defined in OMPKinds.def. 440 } 441 442 /// Collection of known kernels (\see Kernel) in the module. 443 SmallPtrSetImpl<Kernel> &Kernels; 444 445 /// Collection of known OpenMP runtime functions.. 446 DenseSet<const Function *> RTLFunctions; 447 }; 448 449 template <typename Ty, bool InsertInvalidates = true> 450 struct BooleanStateWithSetVector : public BooleanState { 451 bool contains(const Ty &Elem) const { return Set.contains(Elem); } 452 bool insert(const Ty &Elem) { 453 if (InsertInvalidates) 454 BooleanState::indicatePessimisticFixpoint(); 455 return Set.insert(Elem); 456 } 457 458 const Ty &operator[](int Idx) const { return Set[Idx]; } 459 bool operator==(const BooleanStateWithSetVector &RHS) const { 460 return BooleanState::operator==(RHS) && Set == RHS.Set; 461 } 462 bool operator!=(const BooleanStateWithSetVector &RHS) const { 463 return !(*this == RHS); 464 } 465 466 bool empty() const { return Set.empty(); } 467 size_t size() const { return Set.size(); } 468 469 /// "Clamp" this state with \p RHS. 470 BooleanStateWithSetVector &operator^=(const BooleanStateWithSetVector &RHS) { 471 BooleanState::operator^=(RHS); 472 Set.insert(RHS.Set.begin(), RHS.Set.end()); 473 return *this; 474 } 475 476 private: 477 /// A set to keep track of elements. 478 SetVector<Ty> Set; 479 480 public: 481 typename decltype(Set)::iterator begin() { return Set.begin(); } 482 typename decltype(Set)::iterator end() { return Set.end(); } 483 typename decltype(Set)::const_iterator begin() const { return Set.begin(); } 484 typename decltype(Set)::const_iterator end() const { return Set.end(); } 485 }; 486 487 template <typename Ty, bool InsertInvalidates = true> 488 using BooleanStateWithPtrSetVector = 489 BooleanStateWithSetVector<Ty *, InsertInvalidates>; 490 491 struct KernelInfoState : AbstractState { 492 /// Flag to track if we reached a fixpoint. 493 bool IsAtFixpoint = false; 494 495 /// The parallel regions (identified by the outlined parallel functions) that 496 /// can be reached from the associated function. 497 BooleanStateWithPtrSetVector<Function, /* InsertInvalidates */ false> 498 ReachedKnownParallelRegions; 499 500 /// State to track what parallel region we might reach. 501 BooleanStateWithPtrSetVector<CallBase> ReachedUnknownParallelRegions; 502 503 /// State to track if we are in SPMD-mode, assumed or know, and why we decided 504 /// we cannot be. If it is assumed, then RequiresFullRuntime should also be 505 /// false. 506 BooleanStateWithPtrSetVector<Instruction> SPMDCompatibilityTracker; 507 508 /// The __kmpc_target_init call in this kernel, if any. If we find more than 509 /// one we abort as the kernel is malformed. 510 CallBase *KernelInitCB = nullptr; 511 512 /// The __kmpc_target_deinit call in this kernel, if any. If we find more than 513 /// one we abort as the kernel is malformed. 514 CallBase *KernelDeinitCB = nullptr; 515 516 /// Flag to indicate if the associated function is a kernel entry. 517 bool IsKernelEntry = false; 518 519 /// State to track what kernel entries can reach the associated function. 520 BooleanStateWithPtrSetVector<Function, false> ReachingKernelEntries; 521 522 /// State to indicate if we can track parallel level of the associated 523 /// function. We will give up tracking if we encounter unknown caller or the 524 /// caller is __kmpc_parallel_51. 525 BooleanStateWithSetVector<uint8_t> ParallelLevels; 526 527 /// Abstract State interface 528 ///{ 529 530 KernelInfoState() {} 531 KernelInfoState(bool BestState) { 532 if (!BestState) 533 indicatePessimisticFixpoint(); 534 } 535 536 /// See AbstractState::isValidState(...) 537 bool isValidState() const override { return true; } 538 539 /// See AbstractState::isAtFixpoint(...) 540 bool isAtFixpoint() const override { return IsAtFixpoint; } 541 542 /// See AbstractState::indicatePessimisticFixpoint(...) 543 ChangeStatus indicatePessimisticFixpoint() override { 544 IsAtFixpoint = true; 545 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 546 ReachedUnknownParallelRegions.indicatePessimisticFixpoint(); 547 return ChangeStatus::CHANGED; 548 } 549 550 /// See AbstractState::indicateOptimisticFixpoint(...) 551 ChangeStatus indicateOptimisticFixpoint() override { 552 IsAtFixpoint = true; 553 return ChangeStatus::UNCHANGED; 554 } 555 556 /// Return the assumed state 557 KernelInfoState &getAssumed() { return *this; } 558 const KernelInfoState &getAssumed() const { return *this; } 559 560 bool operator==(const KernelInfoState &RHS) const { 561 if (SPMDCompatibilityTracker != RHS.SPMDCompatibilityTracker) 562 return false; 563 if (ReachedKnownParallelRegions != RHS.ReachedKnownParallelRegions) 564 return false; 565 if (ReachedUnknownParallelRegions != RHS.ReachedUnknownParallelRegions) 566 return false; 567 if (ReachingKernelEntries != RHS.ReachingKernelEntries) 568 return false; 569 return true; 570 } 571 572 /// Return empty set as the best state of potential values. 573 static KernelInfoState getBestState() { return KernelInfoState(true); } 574 575 static KernelInfoState getBestState(KernelInfoState &KIS) { 576 return getBestState(); 577 } 578 579 /// Return full set as the worst state of potential values. 580 static KernelInfoState getWorstState() { return KernelInfoState(false); } 581 582 /// "Clamp" this state with \p KIS. 583 KernelInfoState operator^=(const KernelInfoState &KIS) { 584 // Do not merge two different _init and _deinit call sites. 585 if (KIS.KernelInitCB) { 586 if (KernelInitCB && KernelInitCB != KIS.KernelInitCB) 587 indicatePessimisticFixpoint(); 588 KernelInitCB = KIS.KernelInitCB; 589 } 590 if (KIS.KernelDeinitCB) { 591 if (KernelDeinitCB && KernelDeinitCB != KIS.KernelDeinitCB) 592 indicatePessimisticFixpoint(); 593 KernelDeinitCB = KIS.KernelDeinitCB; 594 } 595 SPMDCompatibilityTracker ^= KIS.SPMDCompatibilityTracker; 596 ReachedKnownParallelRegions ^= KIS.ReachedKnownParallelRegions; 597 ReachedUnknownParallelRegions ^= KIS.ReachedUnknownParallelRegions; 598 return *this; 599 } 600 601 KernelInfoState operator&=(const KernelInfoState &KIS) { 602 return (*this ^= KIS); 603 } 604 605 ///} 606 }; 607 608 /// Used to map the values physically (in the IR) stored in an offload 609 /// array, to a vector in memory. 610 struct OffloadArray { 611 /// Physical array (in the IR). 612 AllocaInst *Array = nullptr; 613 /// Mapped values. 614 SmallVector<Value *, 8> StoredValues; 615 /// Last stores made in the offload array. 616 SmallVector<StoreInst *, 8> LastAccesses; 617 618 OffloadArray() = default; 619 620 /// Initializes the OffloadArray with the values stored in \p Array before 621 /// instruction \p Before is reached. Returns false if the initialization 622 /// fails. 623 /// This MUST be used immediately after the construction of the object. 624 bool initialize(AllocaInst &Array, Instruction &Before) { 625 if (!Array.getAllocatedType()->isArrayTy()) 626 return false; 627 628 if (!getValues(Array, Before)) 629 return false; 630 631 this->Array = &Array; 632 return true; 633 } 634 635 static const unsigned DeviceIDArgNum = 1; 636 static const unsigned BasePtrsArgNum = 3; 637 static const unsigned PtrsArgNum = 4; 638 static const unsigned SizesArgNum = 5; 639 640 private: 641 /// Traverses the BasicBlock where \p Array is, collecting the stores made to 642 /// \p Array, leaving StoredValues with the values stored before the 643 /// instruction \p Before is reached. 644 bool getValues(AllocaInst &Array, Instruction &Before) { 645 // Initialize container. 646 const uint64_t NumValues = Array.getAllocatedType()->getArrayNumElements(); 647 StoredValues.assign(NumValues, nullptr); 648 LastAccesses.assign(NumValues, nullptr); 649 650 // TODO: This assumes the instruction \p Before is in the same 651 // BasicBlock as Array. Make it general, for any control flow graph. 652 BasicBlock *BB = Array.getParent(); 653 if (BB != Before.getParent()) 654 return false; 655 656 const DataLayout &DL = Array.getModule()->getDataLayout(); 657 const unsigned int PointerSize = DL.getPointerSize(); 658 659 for (Instruction &I : *BB) { 660 if (&I == &Before) 661 break; 662 663 if (!isa<StoreInst>(&I)) 664 continue; 665 666 auto *S = cast<StoreInst>(&I); 667 int64_t Offset = -1; 668 auto *Dst = 669 GetPointerBaseWithConstantOffset(S->getPointerOperand(), Offset, DL); 670 if (Dst == &Array) { 671 int64_t Idx = Offset / PointerSize; 672 StoredValues[Idx] = getUnderlyingObject(S->getValueOperand()); 673 LastAccesses[Idx] = S; 674 } 675 } 676 677 return isFilled(); 678 } 679 680 /// Returns true if all values in StoredValues and 681 /// LastAccesses are not nullptrs. 682 bool isFilled() { 683 const unsigned NumValues = StoredValues.size(); 684 for (unsigned I = 0; I < NumValues; ++I) { 685 if (!StoredValues[I] || !LastAccesses[I]) 686 return false; 687 } 688 689 return true; 690 } 691 }; 692 693 struct OpenMPOpt { 694 695 using OptimizationRemarkGetter = 696 function_ref<OptimizationRemarkEmitter &(Function *)>; 697 698 OpenMPOpt(SmallVectorImpl<Function *> &SCC, CallGraphUpdater &CGUpdater, 699 OptimizationRemarkGetter OREGetter, 700 OMPInformationCache &OMPInfoCache, Attributor &A) 701 : M(*(*SCC.begin())->getParent()), SCC(SCC), CGUpdater(CGUpdater), 702 OREGetter(OREGetter), OMPInfoCache(OMPInfoCache), A(A) {} 703 704 /// Check if any remarks are enabled for openmp-opt 705 bool remarksEnabled() { 706 auto &Ctx = M.getContext(); 707 return Ctx.getDiagHandlerPtr()->isAnyRemarkEnabled(DEBUG_TYPE); 708 } 709 710 /// Run all OpenMP optimizations on the underlying SCC/ModuleSlice. 711 bool run(bool IsModulePass) { 712 if (SCC.empty()) 713 return false; 714 715 bool Changed = false; 716 717 LLVM_DEBUG(dbgs() << TAG << "Run on SCC with " << SCC.size() 718 << " functions in a slice with " 719 << OMPInfoCache.ModuleSlice.size() << " functions\n"); 720 721 if (IsModulePass) { 722 Changed |= runAttributor(IsModulePass); 723 724 // Recollect uses, in case Attributor deleted any. 725 OMPInfoCache.recollectUses(); 726 727 // TODO: This should be folded into buildCustomStateMachine. 728 Changed |= rewriteDeviceCodeStateMachine(); 729 730 if (remarksEnabled()) 731 analysisGlobalization(); 732 } else { 733 if (PrintICVValues) 734 printICVs(); 735 if (PrintOpenMPKernels) 736 printKernels(); 737 738 Changed |= runAttributor(IsModulePass); 739 740 // Recollect uses, in case Attributor deleted any. 741 OMPInfoCache.recollectUses(); 742 743 Changed |= deleteParallelRegions(); 744 745 if (HideMemoryTransferLatency) 746 Changed |= hideMemTransfersLatency(); 747 Changed |= deduplicateRuntimeCalls(); 748 if (EnableParallelRegionMerging) { 749 if (mergeParallelRegions()) { 750 deduplicateRuntimeCalls(); 751 Changed = true; 752 } 753 } 754 } 755 756 return Changed; 757 } 758 759 /// Print initial ICV values for testing. 760 /// FIXME: This should be done from the Attributor once it is added. 761 void printICVs() const { 762 InternalControlVar ICVs[] = {ICV_nthreads, ICV_active_levels, ICV_cancel, 763 ICV_proc_bind}; 764 765 for (Function *F : OMPInfoCache.ModuleSlice) { 766 for (auto ICV : ICVs) { 767 auto ICVInfo = OMPInfoCache.ICVs[ICV]; 768 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 769 return ORA << "OpenMP ICV " << ore::NV("OpenMPICV", ICVInfo.Name) 770 << " Value: " 771 << (ICVInfo.InitValue 772 ? toString(ICVInfo.InitValue->getValue(), 10, true) 773 : "IMPLEMENTATION_DEFINED"); 774 }; 775 776 emitRemark<OptimizationRemarkAnalysis>(F, "OpenMPICVTracker", Remark); 777 } 778 } 779 } 780 781 /// Print OpenMP GPU kernels for testing. 782 void printKernels() const { 783 for (Function *F : SCC) { 784 if (!OMPInfoCache.Kernels.count(F)) 785 continue; 786 787 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 788 return ORA << "OpenMP GPU kernel " 789 << ore::NV("OpenMPGPUKernel", F->getName()) << "\n"; 790 }; 791 792 emitRemark<OptimizationRemarkAnalysis>(F, "OpenMPGPU", Remark); 793 } 794 } 795 796 /// Return the call if \p U is a callee use in a regular call. If \p RFI is 797 /// given it has to be the callee or a nullptr is returned. 798 static CallInst *getCallIfRegularCall( 799 Use &U, OMPInformationCache::RuntimeFunctionInfo *RFI = nullptr) { 800 CallInst *CI = dyn_cast<CallInst>(U.getUser()); 801 if (CI && CI->isCallee(&U) && !CI->hasOperandBundles() && 802 (!RFI || 803 (RFI->Declaration && CI->getCalledFunction() == RFI->Declaration))) 804 return CI; 805 return nullptr; 806 } 807 808 /// Return the call if \p V is a regular call. If \p RFI is given it has to be 809 /// the callee or a nullptr is returned. 810 static CallInst *getCallIfRegularCall( 811 Value &V, OMPInformationCache::RuntimeFunctionInfo *RFI = nullptr) { 812 CallInst *CI = dyn_cast<CallInst>(&V); 813 if (CI && !CI->hasOperandBundles() && 814 (!RFI || 815 (RFI->Declaration && CI->getCalledFunction() == RFI->Declaration))) 816 return CI; 817 return nullptr; 818 } 819 820 private: 821 /// Merge parallel regions when it is safe. 822 bool mergeParallelRegions() { 823 const unsigned CallbackCalleeOperand = 2; 824 const unsigned CallbackFirstArgOperand = 3; 825 using InsertPointTy = OpenMPIRBuilder::InsertPointTy; 826 827 // Check if there are any __kmpc_fork_call calls to merge. 828 OMPInformationCache::RuntimeFunctionInfo &RFI = 829 OMPInfoCache.RFIs[OMPRTL___kmpc_fork_call]; 830 831 if (!RFI.Declaration) 832 return false; 833 834 // Unmergable calls that prevent merging a parallel region. 835 OMPInformationCache::RuntimeFunctionInfo UnmergableCallsInfo[] = { 836 OMPInfoCache.RFIs[OMPRTL___kmpc_push_proc_bind], 837 OMPInfoCache.RFIs[OMPRTL___kmpc_push_num_threads], 838 }; 839 840 bool Changed = false; 841 LoopInfo *LI = nullptr; 842 DominatorTree *DT = nullptr; 843 844 SmallDenseMap<BasicBlock *, SmallPtrSet<Instruction *, 4>> BB2PRMap; 845 846 BasicBlock *StartBB = nullptr, *EndBB = nullptr; 847 auto BodyGenCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, 848 BasicBlock &ContinuationIP) { 849 BasicBlock *CGStartBB = CodeGenIP.getBlock(); 850 BasicBlock *CGEndBB = 851 SplitBlock(CGStartBB, &*CodeGenIP.getPoint(), DT, LI); 852 assert(StartBB != nullptr && "StartBB should not be null"); 853 CGStartBB->getTerminator()->setSuccessor(0, StartBB); 854 assert(EndBB != nullptr && "EndBB should not be null"); 855 EndBB->getTerminator()->setSuccessor(0, CGEndBB); 856 }; 857 858 auto PrivCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, Value &, 859 Value &Inner, Value *&ReplacementValue) -> InsertPointTy { 860 ReplacementValue = &Inner; 861 return CodeGenIP; 862 }; 863 864 auto FiniCB = [&](InsertPointTy CodeGenIP) {}; 865 866 /// Create a sequential execution region within a merged parallel region, 867 /// encapsulated in a master construct with a barrier for synchronization. 868 auto CreateSequentialRegion = [&](Function *OuterFn, 869 BasicBlock *OuterPredBB, 870 Instruction *SeqStartI, 871 Instruction *SeqEndI) { 872 // Isolate the instructions of the sequential region to a separate 873 // block. 874 BasicBlock *ParentBB = SeqStartI->getParent(); 875 BasicBlock *SeqEndBB = 876 SplitBlock(ParentBB, SeqEndI->getNextNode(), DT, LI); 877 BasicBlock *SeqAfterBB = 878 SplitBlock(SeqEndBB, &*SeqEndBB->getFirstInsertionPt(), DT, LI); 879 BasicBlock *SeqStartBB = 880 SplitBlock(ParentBB, SeqStartI, DT, LI, nullptr, "seq.par.merged"); 881 882 assert(ParentBB->getUniqueSuccessor() == SeqStartBB && 883 "Expected a different CFG"); 884 const DebugLoc DL = ParentBB->getTerminator()->getDebugLoc(); 885 ParentBB->getTerminator()->eraseFromParent(); 886 887 auto BodyGenCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, 888 BasicBlock &ContinuationIP) { 889 BasicBlock *CGStartBB = CodeGenIP.getBlock(); 890 BasicBlock *CGEndBB = 891 SplitBlock(CGStartBB, &*CodeGenIP.getPoint(), DT, LI); 892 assert(SeqStartBB != nullptr && "SeqStartBB should not be null"); 893 CGStartBB->getTerminator()->setSuccessor(0, SeqStartBB); 894 assert(SeqEndBB != nullptr && "SeqEndBB should not be null"); 895 SeqEndBB->getTerminator()->setSuccessor(0, CGEndBB); 896 }; 897 auto FiniCB = [&](InsertPointTy CodeGenIP) {}; 898 899 // Find outputs from the sequential region to outside users and 900 // broadcast their values to them. 901 for (Instruction &I : *SeqStartBB) { 902 SmallPtrSet<Instruction *, 4> OutsideUsers; 903 for (User *Usr : I.users()) { 904 Instruction &UsrI = *cast<Instruction>(Usr); 905 // Ignore outputs to LT intrinsics, code extraction for the merged 906 // parallel region will fix them. 907 if (UsrI.isLifetimeStartOrEnd()) 908 continue; 909 910 if (UsrI.getParent() != SeqStartBB) 911 OutsideUsers.insert(&UsrI); 912 } 913 914 if (OutsideUsers.empty()) 915 continue; 916 917 // Emit an alloca in the outer region to store the broadcasted 918 // value. 919 const DataLayout &DL = M.getDataLayout(); 920 AllocaInst *AllocaI = new AllocaInst( 921 I.getType(), DL.getAllocaAddrSpace(), nullptr, 922 I.getName() + ".seq.output.alloc", &OuterFn->front().front()); 923 924 // Emit a store instruction in the sequential BB to update the 925 // value. 926 new StoreInst(&I, AllocaI, SeqStartBB->getTerminator()); 927 928 // Emit a load instruction and replace the use of the output value 929 // with it. 930 for (Instruction *UsrI : OutsideUsers) { 931 LoadInst *LoadI = new LoadInst( 932 I.getType(), AllocaI, I.getName() + ".seq.output.load", UsrI); 933 UsrI->replaceUsesOfWith(&I, LoadI); 934 } 935 } 936 937 OpenMPIRBuilder::LocationDescription Loc( 938 InsertPointTy(ParentBB, ParentBB->end()), DL); 939 InsertPointTy SeqAfterIP = 940 OMPInfoCache.OMPBuilder.createMaster(Loc, BodyGenCB, FiniCB); 941 942 OMPInfoCache.OMPBuilder.createBarrier(SeqAfterIP, OMPD_parallel); 943 944 BranchInst::Create(SeqAfterBB, SeqAfterIP.getBlock()); 945 946 LLVM_DEBUG(dbgs() << TAG << "After sequential inlining " << *OuterFn 947 << "\n"); 948 }; 949 950 // Helper to merge the __kmpc_fork_call calls in MergableCIs. They are all 951 // contained in BB and only separated by instructions that can be 952 // redundantly executed in parallel. The block BB is split before the first 953 // call (in MergableCIs) and after the last so the entire region we merge 954 // into a single parallel region is contained in a single basic block 955 // without any other instructions. We use the OpenMPIRBuilder to outline 956 // that block and call the resulting function via __kmpc_fork_call. 957 auto Merge = [&](SmallVectorImpl<CallInst *> &MergableCIs, BasicBlock *BB) { 958 // TODO: Change the interface to allow single CIs expanded, e.g, to 959 // include an outer loop. 960 assert(MergableCIs.size() > 1 && "Assumed multiple mergable CIs"); 961 962 auto Remark = [&](OptimizationRemark OR) { 963 OR << "Parallel region merged with parallel region" 964 << (MergableCIs.size() > 2 ? "s" : "") << " at "; 965 for (auto *CI : llvm::drop_begin(MergableCIs)) { 966 OR << ore::NV("OpenMPParallelMerge", CI->getDebugLoc()); 967 if (CI != MergableCIs.back()) 968 OR << ", "; 969 } 970 return OR << "."; 971 }; 972 973 emitRemark<OptimizationRemark>(MergableCIs.front(), "OMP150", Remark); 974 975 Function *OriginalFn = BB->getParent(); 976 LLVM_DEBUG(dbgs() << TAG << "Merge " << MergableCIs.size() 977 << " parallel regions in " << OriginalFn->getName() 978 << "\n"); 979 980 // Isolate the calls to merge in a separate block. 981 EndBB = SplitBlock(BB, MergableCIs.back()->getNextNode(), DT, LI); 982 BasicBlock *AfterBB = 983 SplitBlock(EndBB, &*EndBB->getFirstInsertionPt(), DT, LI); 984 StartBB = SplitBlock(BB, MergableCIs.front(), DT, LI, nullptr, 985 "omp.par.merged"); 986 987 assert(BB->getUniqueSuccessor() == StartBB && "Expected a different CFG"); 988 const DebugLoc DL = BB->getTerminator()->getDebugLoc(); 989 BB->getTerminator()->eraseFromParent(); 990 991 // Create sequential regions for sequential instructions that are 992 // in-between mergable parallel regions. 993 for (auto *It = MergableCIs.begin(), *End = MergableCIs.end() - 1; 994 It != End; ++It) { 995 Instruction *ForkCI = *It; 996 Instruction *NextForkCI = *(It + 1); 997 998 // Continue if there are not in-between instructions. 999 if (ForkCI->getNextNode() == NextForkCI) 1000 continue; 1001 1002 CreateSequentialRegion(OriginalFn, BB, ForkCI->getNextNode(), 1003 NextForkCI->getPrevNode()); 1004 } 1005 1006 OpenMPIRBuilder::LocationDescription Loc(InsertPointTy(BB, BB->end()), 1007 DL); 1008 IRBuilder<>::InsertPoint AllocaIP( 1009 &OriginalFn->getEntryBlock(), 1010 OriginalFn->getEntryBlock().getFirstInsertionPt()); 1011 // Create the merged parallel region with default proc binding, to 1012 // avoid overriding binding settings, and without explicit cancellation. 1013 InsertPointTy AfterIP = OMPInfoCache.OMPBuilder.createParallel( 1014 Loc, AllocaIP, BodyGenCB, PrivCB, FiniCB, nullptr, nullptr, 1015 OMP_PROC_BIND_default, /* IsCancellable */ false); 1016 BranchInst::Create(AfterBB, AfterIP.getBlock()); 1017 1018 // Perform the actual outlining. 1019 OMPInfoCache.OMPBuilder.finalize(OriginalFn, 1020 /* AllowExtractorSinking */ true); 1021 1022 Function *OutlinedFn = MergableCIs.front()->getCaller(); 1023 1024 // Replace the __kmpc_fork_call calls with direct calls to the outlined 1025 // callbacks. 1026 SmallVector<Value *, 8> Args; 1027 for (auto *CI : MergableCIs) { 1028 Value *Callee = 1029 CI->getArgOperand(CallbackCalleeOperand)->stripPointerCasts(); 1030 FunctionType *FT = 1031 cast<FunctionType>(Callee->getType()->getPointerElementType()); 1032 Args.clear(); 1033 Args.push_back(OutlinedFn->getArg(0)); 1034 Args.push_back(OutlinedFn->getArg(1)); 1035 for (unsigned U = CallbackFirstArgOperand, E = CI->getNumArgOperands(); 1036 U < E; ++U) 1037 Args.push_back(CI->getArgOperand(U)); 1038 1039 CallInst *NewCI = CallInst::Create(FT, Callee, Args, "", CI); 1040 if (CI->getDebugLoc()) 1041 NewCI->setDebugLoc(CI->getDebugLoc()); 1042 1043 // Forward parameter attributes from the callback to the callee. 1044 for (unsigned U = CallbackFirstArgOperand, E = CI->getNumArgOperands(); 1045 U < E; ++U) 1046 for (const Attribute &A : CI->getAttributes().getParamAttributes(U)) 1047 NewCI->addParamAttr( 1048 U - (CallbackFirstArgOperand - CallbackCalleeOperand), A); 1049 1050 // Emit an explicit barrier to replace the implicit fork-join barrier. 1051 if (CI != MergableCIs.back()) { 1052 // TODO: Remove barrier if the merged parallel region includes the 1053 // 'nowait' clause. 1054 OMPInfoCache.OMPBuilder.createBarrier( 1055 InsertPointTy(NewCI->getParent(), 1056 NewCI->getNextNode()->getIterator()), 1057 OMPD_parallel); 1058 } 1059 1060 CI->eraseFromParent(); 1061 } 1062 1063 assert(OutlinedFn != OriginalFn && "Outlining failed"); 1064 CGUpdater.registerOutlinedFunction(*OriginalFn, *OutlinedFn); 1065 CGUpdater.reanalyzeFunction(*OriginalFn); 1066 1067 NumOpenMPParallelRegionsMerged += MergableCIs.size(); 1068 1069 return true; 1070 }; 1071 1072 // Helper function that identifes sequences of 1073 // __kmpc_fork_call uses in a basic block. 1074 auto DetectPRsCB = [&](Use &U, Function &F) { 1075 CallInst *CI = getCallIfRegularCall(U, &RFI); 1076 BB2PRMap[CI->getParent()].insert(CI); 1077 1078 return false; 1079 }; 1080 1081 BB2PRMap.clear(); 1082 RFI.foreachUse(SCC, DetectPRsCB); 1083 SmallVector<SmallVector<CallInst *, 4>, 4> MergableCIsVector; 1084 // Find mergable parallel regions within a basic block that are 1085 // safe to merge, that is any in-between instructions can safely 1086 // execute in parallel after merging. 1087 // TODO: support merging across basic-blocks. 1088 for (auto &It : BB2PRMap) { 1089 auto &CIs = It.getSecond(); 1090 if (CIs.size() < 2) 1091 continue; 1092 1093 BasicBlock *BB = It.getFirst(); 1094 SmallVector<CallInst *, 4> MergableCIs; 1095 1096 /// Returns true if the instruction is mergable, false otherwise. 1097 /// A terminator instruction is unmergable by definition since merging 1098 /// works within a BB. Instructions before the mergable region are 1099 /// mergable if they are not calls to OpenMP runtime functions that may 1100 /// set different execution parameters for subsequent parallel regions. 1101 /// Instructions in-between parallel regions are mergable if they are not 1102 /// calls to any non-intrinsic function since that may call a non-mergable 1103 /// OpenMP runtime function. 1104 auto IsMergable = [&](Instruction &I, bool IsBeforeMergableRegion) { 1105 // We do not merge across BBs, hence return false (unmergable) if the 1106 // instruction is a terminator. 1107 if (I.isTerminator()) 1108 return false; 1109 1110 if (!isa<CallInst>(&I)) 1111 return true; 1112 1113 CallInst *CI = cast<CallInst>(&I); 1114 if (IsBeforeMergableRegion) { 1115 Function *CalledFunction = CI->getCalledFunction(); 1116 if (!CalledFunction) 1117 return false; 1118 // Return false (unmergable) if the call before the parallel 1119 // region calls an explicit affinity (proc_bind) or number of 1120 // threads (num_threads) compiler-generated function. Those settings 1121 // may be incompatible with following parallel regions. 1122 // TODO: ICV tracking to detect compatibility. 1123 for (const auto &RFI : UnmergableCallsInfo) { 1124 if (CalledFunction == RFI.Declaration) 1125 return false; 1126 } 1127 } else { 1128 // Return false (unmergable) if there is a call instruction 1129 // in-between parallel regions when it is not an intrinsic. It 1130 // may call an unmergable OpenMP runtime function in its callpath. 1131 // TODO: Keep track of possible OpenMP calls in the callpath. 1132 if (!isa<IntrinsicInst>(CI)) 1133 return false; 1134 } 1135 1136 return true; 1137 }; 1138 // Find maximal number of parallel region CIs that are safe to merge. 1139 for (auto It = BB->begin(), End = BB->end(); It != End;) { 1140 Instruction &I = *It; 1141 ++It; 1142 1143 if (CIs.count(&I)) { 1144 MergableCIs.push_back(cast<CallInst>(&I)); 1145 continue; 1146 } 1147 1148 // Continue expanding if the instruction is mergable. 1149 if (IsMergable(I, MergableCIs.empty())) 1150 continue; 1151 1152 // Forward the instruction iterator to skip the next parallel region 1153 // since there is an unmergable instruction which can affect it. 1154 for (; It != End; ++It) { 1155 Instruction &SkipI = *It; 1156 if (CIs.count(&SkipI)) { 1157 LLVM_DEBUG(dbgs() << TAG << "Skip parallel region " << SkipI 1158 << " due to " << I << "\n"); 1159 ++It; 1160 break; 1161 } 1162 } 1163 1164 // Store mergable regions found. 1165 if (MergableCIs.size() > 1) { 1166 MergableCIsVector.push_back(MergableCIs); 1167 LLVM_DEBUG(dbgs() << TAG << "Found " << MergableCIs.size() 1168 << " parallel regions in block " << BB->getName() 1169 << " of function " << BB->getParent()->getName() 1170 << "\n";); 1171 } 1172 1173 MergableCIs.clear(); 1174 } 1175 1176 if (!MergableCIsVector.empty()) { 1177 Changed = true; 1178 1179 for (auto &MergableCIs : MergableCIsVector) 1180 Merge(MergableCIs, BB); 1181 MergableCIsVector.clear(); 1182 } 1183 } 1184 1185 if (Changed) { 1186 /// Re-collect use for fork calls, emitted barrier calls, and 1187 /// any emitted master/end_master calls. 1188 OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_fork_call); 1189 OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_barrier); 1190 OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_master); 1191 OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_end_master); 1192 } 1193 1194 return Changed; 1195 } 1196 1197 /// Try to delete parallel regions if possible. 1198 bool deleteParallelRegions() { 1199 const unsigned CallbackCalleeOperand = 2; 1200 1201 OMPInformationCache::RuntimeFunctionInfo &RFI = 1202 OMPInfoCache.RFIs[OMPRTL___kmpc_fork_call]; 1203 1204 if (!RFI.Declaration) 1205 return false; 1206 1207 bool Changed = false; 1208 auto DeleteCallCB = [&](Use &U, Function &) { 1209 CallInst *CI = getCallIfRegularCall(U); 1210 if (!CI) 1211 return false; 1212 auto *Fn = dyn_cast<Function>( 1213 CI->getArgOperand(CallbackCalleeOperand)->stripPointerCasts()); 1214 if (!Fn) 1215 return false; 1216 if (!Fn->onlyReadsMemory()) 1217 return false; 1218 if (!Fn->hasFnAttribute(Attribute::WillReturn)) 1219 return false; 1220 1221 LLVM_DEBUG(dbgs() << TAG << "Delete read-only parallel region in " 1222 << CI->getCaller()->getName() << "\n"); 1223 1224 auto Remark = [&](OptimizationRemark OR) { 1225 return OR << "Removing parallel region with no side-effects."; 1226 }; 1227 emitRemark<OptimizationRemark>(CI, "OMP160", Remark); 1228 1229 CGUpdater.removeCallSite(*CI); 1230 CI->eraseFromParent(); 1231 Changed = true; 1232 ++NumOpenMPParallelRegionsDeleted; 1233 return true; 1234 }; 1235 1236 RFI.foreachUse(SCC, DeleteCallCB); 1237 1238 return Changed; 1239 } 1240 1241 /// Try to eliminate runtime calls by reusing existing ones. 1242 bool deduplicateRuntimeCalls() { 1243 bool Changed = false; 1244 1245 RuntimeFunction DeduplicableRuntimeCallIDs[] = { 1246 OMPRTL_omp_get_num_threads, 1247 OMPRTL_omp_in_parallel, 1248 OMPRTL_omp_get_cancellation, 1249 OMPRTL_omp_get_thread_limit, 1250 OMPRTL_omp_get_supported_active_levels, 1251 OMPRTL_omp_get_level, 1252 OMPRTL_omp_get_ancestor_thread_num, 1253 OMPRTL_omp_get_team_size, 1254 OMPRTL_omp_get_active_level, 1255 OMPRTL_omp_in_final, 1256 OMPRTL_omp_get_proc_bind, 1257 OMPRTL_omp_get_num_places, 1258 OMPRTL_omp_get_num_procs, 1259 OMPRTL_omp_get_place_num, 1260 OMPRTL_omp_get_partition_num_places, 1261 OMPRTL_omp_get_partition_place_nums}; 1262 1263 // Global-tid is handled separately. 1264 SmallSetVector<Value *, 16> GTIdArgs; 1265 collectGlobalThreadIdArguments(GTIdArgs); 1266 LLVM_DEBUG(dbgs() << TAG << "Found " << GTIdArgs.size() 1267 << " global thread ID arguments\n"); 1268 1269 for (Function *F : SCC) { 1270 for (auto DeduplicableRuntimeCallID : DeduplicableRuntimeCallIDs) 1271 Changed |= deduplicateRuntimeCalls( 1272 *F, OMPInfoCache.RFIs[DeduplicableRuntimeCallID]); 1273 1274 // __kmpc_global_thread_num is special as we can replace it with an 1275 // argument in enough cases to make it worth trying. 1276 Value *GTIdArg = nullptr; 1277 for (Argument &Arg : F->args()) 1278 if (GTIdArgs.count(&Arg)) { 1279 GTIdArg = &Arg; 1280 break; 1281 } 1282 Changed |= deduplicateRuntimeCalls( 1283 *F, OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num], GTIdArg); 1284 } 1285 1286 return Changed; 1287 } 1288 1289 /// Tries to hide the latency of runtime calls that involve host to 1290 /// device memory transfers by splitting them into their "issue" and "wait" 1291 /// versions. The "issue" is moved upwards as much as possible. The "wait" is 1292 /// moved downards as much as possible. The "issue" issues the memory transfer 1293 /// asynchronously, returning a handle. The "wait" waits in the returned 1294 /// handle for the memory transfer to finish. 1295 bool hideMemTransfersLatency() { 1296 auto &RFI = OMPInfoCache.RFIs[OMPRTL___tgt_target_data_begin_mapper]; 1297 bool Changed = false; 1298 auto SplitMemTransfers = [&](Use &U, Function &Decl) { 1299 auto *RTCall = getCallIfRegularCall(U, &RFI); 1300 if (!RTCall) 1301 return false; 1302 1303 OffloadArray OffloadArrays[3]; 1304 if (!getValuesInOffloadArrays(*RTCall, OffloadArrays)) 1305 return false; 1306 1307 LLVM_DEBUG(dumpValuesInOffloadArrays(OffloadArrays)); 1308 1309 // TODO: Check if can be moved upwards. 1310 bool WasSplit = false; 1311 Instruction *WaitMovementPoint = canBeMovedDownwards(*RTCall); 1312 if (WaitMovementPoint) 1313 WasSplit = splitTargetDataBeginRTC(*RTCall, *WaitMovementPoint); 1314 1315 Changed |= WasSplit; 1316 return WasSplit; 1317 }; 1318 RFI.foreachUse(SCC, SplitMemTransfers); 1319 1320 return Changed; 1321 } 1322 1323 void analysisGlobalization() { 1324 auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared]; 1325 1326 auto CheckGlobalization = [&](Use &U, Function &Decl) { 1327 if (CallInst *CI = getCallIfRegularCall(U, &RFI)) { 1328 auto Remark = [&](OptimizationRemarkMissed ORM) { 1329 return ORM 1330 << "Found thread data sharing on the GPU. " 1331 << "Expect degraded performance due to data globalization."; 1332 }; 1333 emitRemark<OptimizationRemarkMissed>(CI, "OMP112", Remark); 1334 } 1335 1336 return false; 1337 }; 1338 1339 RFI.foreachUse(SCC, CheckGlobalization); 1340 } 1341 1342 /// Maps the values stored in the offload arrays passed as arguments to 1343 /// \p RuntimeCall into the offload arrays in \p OAs. 1344 bool getValuesInOffloadArrays(CallInst &RuntimeCall, 1345 MutableArrayRef<OffloadArray> OAs) { 1346 assert(OAs.size() == 3 && "Need space for three offload arrays!"); 1347 1348 // A runtime call that involves memory offloading looks something like: 1349 // call void @__tgt_target_data_begin_mapper(arg0, arg1, 1350 // i8** %offload_baseptrs, i8** %offload_ptrs, i64* %offload_sizes, 1351 // ...) 1352 // So, the idea is to access the allocas that allocate space for these 1353 // offload arrays, offload_baseptrs, offload_ptrs, offload_sizes. 1354 // Therefore: 1355 // i8** %offload_baseptrs. 1356 Value *BasePtrsArg = 1357 RuntimeCall.getArgOperand(OffloadArray::BasePtrsArgNum); 1358 // i8** %offload_ptrs. 1359 Value *PtrsArg = RuntimeCall.getArgOperand(OffloadArray::PtrsArgNum); 1360 // i8** %offload_sizes. 1361 Value *SizesArg = RuntimeCall.getArgOperand(OffloadArray::SizesArgNum); 1362 1363 // Get values stored in **offload_baseptrs. 1364 auto *V = getUnderlyingObject(BasePtrsArg); 1365 if (!isa<AllocaInst>(V)) 1366 return false; 1367 auto *BasePtrsArray = cast<AllocaInst>(V); 1368 if (!OAs[0].initialize(*BasePtrsArray, RuntimeCall)) 1369 return false; 1370 1371 // Get values stored in **offload_baseptrs. 1372 V = getUnderlyingObject(PtrsArg); 1373 if (!isa<AllocaInst>(V)) 1374 return false; 1375 auto *PtrsArray = cast<AllocaInst>(V); 1376 if (!OAs[1].initialize(*PtrsArray, RuntimeCall)) 1377 return false; 1378 1379 // Get values stored in **offload_sizes. 1380 V = getUnderlyingObject(SizesArg); 1381 // If it's a [constant] global array don't analyze it. 1382 if (isa<GlobalValue>(V)) 1383 return isa<Constant>(V); 1384 if (!isa<AllocaInst>(V)) 1385 return false; 1386 1387 auto *SizesArray = cast<AllocaInst>(V); 1388 if (!OAs[2].initialize(*SizesArray, RuntimeCall)) 1389 return false; 1390 1391 return true; 1392 } 1393 1394 /// Prints the values in the OffloadArrays \p OAs using LLVM_DEBUG. 1395 /// For now this is a way to test that the function getValuesInOffloadArrays 1396 /// is working properly. 1397 /// TODO: Move this to a unittest when unittests are available for OpenMPOpt. 1398 void dumpValuesInOffloadArrays(ArrayRef<OffloadArray> OAs) { 1399 assert(OAs.size() == 3 && "There are three offload arrays to debug!"); 1400 1401 LLVM_DEBUG(dbgs() << TAG << " Successfully got offload values:\n"); 1402 std::string ValuesStr; 1403 raw_string_ostream Printer(ValuesStr); 1404 std::string Separator = " --- "; 1405 1406 for (auto *BP : OAs[0].StoredValues) { 1407 BP->print(Printer); 1408 Printer << Separator; 1409 } 1410 LLVM_DEBUG(dbgs() << "\t\toffload_baseptrs: " << Printer.str() << "\n"); 1411 ValuesStr.clear(); 1412 1413 for (auto *P : OAs[1].StoredValues) { 1414 P->print(Printer); 1415 Printer << Separator; 1416 } 1417 LLVM_DEBUG(dbgs() << "\t\toffload_ptrs: " << Printer.str() << "\n"); 1418 ValuesStr.clear(); 1419 1420 for (auto *S : OAs[2].StoredValues) { 1421 S->print(Printer); 1422 Printer << Separator; 1423 } 1424 LLVM_DEBUG(dbgs() << "\t\toffload_sizes: " << Printer.str() << "\n"); 1425 } 1426 1427 /// Returns the instruction where the "wait" counterpart \p RuntimeCall can be 1428 /// moved. Returns nullptr if the movement is not possible, or not worth it. 1429 Instruction *canBeMovedDownwards(CallInst &RuntimeCall) { 1430 // FIXME: This traverses only the BasicBlock where RuntimeCall is. 1431 // Make it traverse the CFG. 1432 1433 Instruction *CurrentI = &RuntimeCall; 1434 bool IsWorthIt = false; 1435 while ((CurrentI = CurrentI->getNextNode())) { 1436 1437 // TODO: Once we detect the regions to be offloaded we should use the 1438 // alias analysis manager to check if CurrentI may modify one of 1439 // the offloaded regions. 1440 if (CurrentI->mayHaveSideEffects() || CurrentI->mayReadFromMemory()) { 1441 if (IsWorthIt) 1442 return CurrentI; 1443 1444 return nullptr; 1445 } 1446 1447 // FIXME: For now if we move it over anything without side effect 1448 // is worth it. 1449 IsWorthIt = true; 1450 } 1451 1452 // Return end of BasicBlock. 1453 return RuntimeCall.getParent()->getTerminator(); 1454 } 1455 1456 /// Splits \p RuntimeCall into its "issue" and "wait" counterparts. 1457 bool splitTargetDataBeginRTC(CallInst &RuntimeCall, 1458 Instruction &WaitMovementPoint) { 1459 // Create stack allocated handle (__tgt_async_info) at the beginning of the 1460 // function. Used for storing information of the async transfer, allowing to 1461 // wait on it later. 1462 auto &IRBuilder = OMPInfoCache.OMPBuilder; 1463 auto *F = RuntimeCall.getCaller(); 1464 Instruction *FirstInst = &(F->getEntryBlock().front()); 1465 AllocaInst *Handle = new AllocaInst( 1466 IRBuilder.AsyncInfo, F->getAddressSpace(), "handle", FirstInst); 1467 1468 // Add "issue" runtime call declaration: 1469 // declare %struct.tgt_async_info @__tgt_target_data_begin_issue(i64, i32, 1470 // i8**, i8**, i64*, i64*) 1471 FunctionCallee IssueDecl = IRBuilder.getOrCreateRuntimeFunction( 1472 M, OMPRTL___tgt_target_data_begin_mapper_issue); 1473 1474 // Change RuntimeCall call site for its asynchronous version. 1475 SmallVector<Value *, 16> Args; 1476 for (auto &Arg : RuntimeCall.args()) 1477 Args.push_back(Arg.get()); 1478 Args.push_back(Handle); 1479 1480 CallInst *IssueCallsite = 1481 CallInst::Create(IssueDecl, Args, /*NameStr=*/"", &RuntimeCall); 1482 RuntimeCall.eraseFromParent(); 1483 1484 // Add "wait" runtime call declaration: 1485 // declare void @__tgt_target_data_begin_wait(i64, %struct.__tgt_async_info) 1486 FunctionCallee WaitDecl = IRBuilder.getOrCreateRuntimeFunction( 1487 M, OMPRTL___tgt_target_data_begin_mapper_wait); 1488 1489 Value *WaitParams[2] = { 1490 IssueCallsite->getArgOperand( 1491 OffloadArray::DeviceIDArgNum), // device_id. 1492 Handle // handle to wait on. 1493 }; 1494 CallInst::Create(WaitDecl, WaitParams, /*NameStr=*/"", &WaitMovementPoint); 1495 1496 return true; 1497 } 1498 1499 static Value *combinedIdentStruct(Value *CurrentIdent, Value *NextIdent, 1500 bool GlobalOnly, bool &SingleChoice) { 1501 if (CurrentIdent == NextIdent) 1502 return CurrentIdent; 1503 1504 // TODO: Figure out how to actually combine multiple debug locations. For 1505 // now we just keep an existing one if there is a single choice. 1506 if (!GlobalOnly || isa<GlobalValue>(NextIdent)) { 1507 SingleChoice = !CurrentIdent; 1508 return NextIdent; 1509 } 1510 return nullptr; 1511 } 1512 1513 /// Return an `struct ident_t*` value that represents the ones used in the 1514 /// calls of \p RFI inside of \p F. If \p GlobalOnly is true, we will not 1515 /// return a local `struct ident_t*`. For now, if we cannot find a suitable 1516 /// return value we create one from scratch. We also do not yet combine 1517 /// information, e.g., the source locations, see combinedIdentStruct. 1518 Value * 1519 getCombinedIdentFromCallUsesIn(OMPInformationCache::RuntimeFunctionInfo &RFI, 1520 Function &F, bool GlobalOnly) { 1521 bool SingleChoice = true; 1522 Value *Ident = nullptr; 1523 auto CombineIdentStruct = [&](Use &U, Function &Caller) { 1524 CallInst *CI = getCallIfRegularCall(U, &RFI); 1525 if (!CI || &F != &Caller) 1526 return false; 1527 Ident = combinedIdentStruct(Ident, CI->getArgOperand(0), 1528 /* GlobalOnly */ true, SingleChoice); 1529 return false; 1530 }; 1531 RFI.foreachUse(SCC, CombineIdentStruct); 1532 1533 if (!Ident || !SingleChoice) { 1534 // The IRBuilder uses the insertion block to get to the module, this is 1535 // unfortunate but we work around it for now. 1536 if (!OMPInfoCache.OMPBuilder.getInsertionPoint().getBlock()) 1537 OMPInfoCache.OMPBuilder.updateToLocation(OpenMPIRBuilder::InsertPointTy( 1538 &F.getEntryBlock(), F.getEntryBlock().begin())); 1539 // Create a fallback location if non was found. 1540 // TODO: Use the debug locations of the calls instead. 1541 Constant *Loc = OMPInfoCache.OMPBuilder.getOrCreateDefaultSrcLocStr(); 1542 Ident = OMPInfoCache.OMPBuilder.getOrCreateIdent(Loc); 1543 } 1544 return Ident; 1545 } 1546 1547 /// Try to eliminate calls of \p RFI in \p F by reusing an existing one or 1548 /// \p ReplVal if given. 1549 bool deduplicateRuntimeCalls(Function &F, 1550 OMPInformationCache::RuntimeFunctionInfo &RFI, 1551 Value *ReplVal = nullptr) { 1552 auto *UV = RFI.getUseVector(F); 1553 if (!UV || UV->size() + (ReplVal != nullptr) < 2) 1554 return false; 1555 1556 LLVM_DEBUG( 1557 dbgs() << TAG << "Deduplicate " << UV->size() << " uses of " << RFI.Name 1558 << (ReplVal ? " with an existing value\n" : "\n") << "\n"); 1559 1560 assert((!ReplVal || (isa<Argument>(ReplVal) && 1561 cast<Argument>(ReplVal)->getParent() == &F)) && 1562 "Unexpected replacement value!"); 1563 1564 // TODO: Use dominance to find a good position instead. 1565 auto CanBeMoved = [this](CallBase &CB) { 1566 unsigned NumArgs = CB.getNumArgOperands(); 1567 if (NumArgs == 0) 1568 return true; 1569 if (CB.getArgOperand(0)->getType() != OMPInfoCache.OMPBuilder.IdentPtr) 1570 return false; 1571 for (unsigned u = 1; u < NumArgs; ++u) 1572 if (isa<Instruction>(CB.getArgOperand(u))) 1573 return false; 1574 return true; 1575 }; 1576 1577 if (!ReplVal) { 1578 for (Use *U : *UV) 1579 if (CallInst *CI = getCallIfRegularCall(*U, &RFI)) { 1580 if (!CanBeMoved(*CI)) 1581 continue; 1582 1583 // If the function is a kernel, dedup will move 1584 // the runtime call right after the kernel init callsite. Otherwise, 1585 // it will move it to the beginning of the caller function. 1586 if (isKernel(F)) { 1587 auto &KernelInitRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_target_init]; 1588 auto *KernelInitUV = KernelInitRFI.getUseVector(F); 1589 1590 if (KernelInitUV->empty()) 1591 continue; 1592 1593 assert(KernelInitUV->size() == 1 && 1594 "Expected a single __kmpc_target_init in kernel\n"); 1595 1596 CallInst *KernelInitCI = 1597 getCallIfRegularCall(*KernelInitUV->front(), &KernelInitRFI); 1598 assert(KernelInitCI && 1599 "Expected a call to __kmpc_target_init in kernel\n"); 1600 1601 CI->moveAfter(KernelInitCI); 1602 } else 1603 CI->moveBefore(&*F.getEntryBlock().getFirstInsertionPt()); 1604 ReplVal = CI; 1605 break; 1606 } 1607 if (!ReplVal) 1608 return false; 1609 } 1610 1611 // If we use a call as a replacement value we need to make sure the ident is 1612 // valid at the new location. For now we just pick a global one, either 1613 // existing and used by one of the calls, or created from scratch. 1614 if (CallBase *CI = dyn_cast<CallBase>(ReplVal)) { 1615 if (CI->getNumArgOperands() > 0 && 1616 CI->getArgOperand(0)->getType() == OMPInfoCache.OMPBuilder.IdentPtr) { 1617 Value *Ident = getCombinedIdentFromCallUsesIn(RFI, F, 1618 /* GlobalOnly */ true); 1619 CI->setArgOperand(0, Ident); 1620 } 1621 } 1622 1623 bool Changed = false; 1624 auto ReplaceAndDeleteCB = [&](Use &U, Function &Caller) { 1625 CallInst *CI = getCallIfRegularCall(U, &RFI); 1626 if (!CI || CI == ReplVal || &F != &Caller) 1627 return false; 1628 assert(CI->getCaller() == &F && "Unexpected call!"); 1629 1630 auto Remark = [&](OptimizationRemark OR) { 1631 return OR << "OpenMP runtime call " 1632 << ore::NV("OpenMPOptRuntime", RFI.Name) << " deduplicated."; 1633 }; 1634 if (CI->getDebugLoc()) 1635 emitRemark<OptimizationRemark>(CI, "OMP170", Remark); 1636 else 1637 emitRemark<OptimizationRemark>(&F, "OMP170", Remark); 1638 1639 CGUpdater.removeCallSite(*CI); 1640 CI->replaceAllUsesWith(ReplVal); 1641 CI->eraseFromParent(); 1642 ++NumOpenMPRuntimeCallsDeduplicated; 1643 Changed = true; 1644 return true; 1645 }; 1646 RFI.foreachUse(SCC, ReplaceAndDeleteCB); 1647 1648 return Changed; 1649 } 1650 1651 /// Collect arguments that represent the global thread id in \p GTIdArgs. 1652 void collectGlobalThreadIdArguments(SmallSetVector<Value *, 16> >IdArgs) { 1653 // TODO: Below we basically perform a fixpoint iteration with a pessimistic 1654 // initialization. We could define an AbstractAttribute instead and 1655 // run the Attributor here once it can be run as an SCC pass. 1656 1657 // Helper to check the argument \p ArgNo at all call sites of \p F for 1658 // a GTId. 1659 auto CallArgOpIsGTId = [&](Function &F, unsigned ArgNo, CallInst &RefCI) { 1660 if (!F.hasLocalLinkage()) 1661 return false; 1662 for (Use &U : F.uses()) { 1663 if (CallInst *CI = getCallIfRegularCall(U)) { 1664 Value *ArgOp = CI->getArgOperand(ArgNo); 1665 if (CI == &RefCI || GTIdArgs.count(ArgOp) || 1666 getCallIfRegularCall( 1667 *ArgOp, &OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num])) 1668 continue; 1669 } 1670 return false; 1671 } 1672 return true; 1673 }; 1674 1675 // Helper to identify uses of a GTId as GTId arguments. 1676 auto AddUserArgs = [&](Value >Id) { 1677 for (Use &U : GTId.uses()) 1678 if (CallInst *CI = dyn_cast<CallInst>(U.getUser())) 1679 if (CI->isArgOperand(&U)) 1680 if (Function *Callee = CI->getCalledFunction()) 1681 if (CallArgOpIsGTId(*Callee, U.getOperandNo(), *CI)) 1682 GTIdArgs.insert(Callee->getArg(U.getOperandNo())); 1683 }; 1684 1685 // The argument users of __kmpc_global_thread_num calls are GTIds. 1686 OMPInformationCache::RuntimeFunctionInfo &GlobThreadNumRFI = 1687 OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num]; 1688 1689 GlobThreadNumRFI.foreachUse(SCC, [&](Use &U, Function &F) { 1690 if (CallInst *CI = getCallIfRegularCall(U, &GlobThreadNumRFI)) 1691 AddUserArgs(*CI); 1692 return false; 1693 }); 1694 1695 // Transitively search for more arguments by looking at the users of the 1696 // ones we know already. During the search the GTIdArgs vector is extended 1697 // so we cannot cache the size nor can we use a range based for. 1698 for (unsigned u = 0; u < GTIdArgs.size(); ++u) 1699 AddUserArgs(*GTIdArgs[u]); 1700 } 1701 1702 /// Kernel (=GPU) optimizations and utility functions 1703 /// 1704 ///{{ 1705 1706 /// Check if \p F is a kernel, hence entry point for target offloading. 1707 bool isKernel(Function &F) { return OMPInfoCache.Kernels.count(&F); } 1708 1709 /// Cache to remember the unique kernel for a function. 1710 DenseMap<Function *, Optional<Kernel>> UniqueKernelMap; 1711 1712 /// Find the unique kernel that will execute \p F, if any. 1713 Kernel getUniqueKernelFor(Function &F); 1714 1715 /// Find the unique kernel that will execute \p I, if any. 1716 Kernel getUniqueKernelFor(Instruction &I) { 1717 return getUniqueKernelFor(*I.getFunction()); 1718 } 1719 1720 /// Rewrite the device (=GPU) code state machine create in non-SPMD mode in 1721 /// the cases we can avoid taking the address of a function. 1722 bool rewriteDeviceCodeStateMachine(); 1723 1724 /// 1725 ///}} 1726 1727 /// Emit a remark generically 1728 /// 1729 /// This template function can be used to generically emit a remark. The 1730 /// RemarkKind should be one of the following: 1731 /// - OptimizationRemark to indicate a successful optimization attempt 1732 /// - OptimizationRemarkMissed to report a failed optimization attempt 1733 /// - OptimizationRemarkAnalysis to provide additional information about an 1734 /// optimization attempt 1735 /// 1736 /// The remark is built using a callback function provided by the caller that 1737 /// takes a RemarkKind as input and returns a RemarkKind. 1738 template <typename RemarkKind, typename RemarkCallBack> 1739 void emitRemark(Instruction *I, StringRef RemarkName, 1740 RemarkCallBack &&RemarkCB) const { 1741 Function *F = I->getParent()->getParent(); 1742 auto &ORE = OREGetter(F); 1743 1744 if (RemarkName.startswith("OMP")) 1745 ORE.emit([&]() { 1746 return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, I)) 1747 << " [" << RemarkName << "]"; 1748 }); 1749 else 1750 ORE.emit( 1751 [&]() { return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, I)); }); 1752 } 1753 1754 /// Emit a remark on a function. 1755 template <typename RemarkKind, typename RemarkCallBack> 1756 void emitRemark(Function *F, StringRef RemarkName, 1757 RemarkCallBack &&RemarkCB) const { 1758 auto &ORE = OREGetter(F); 1759 1760 if (RemarkName.startswith("OMP")) 1761 ORE.emit([&]() { 1762 return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, F)) 1763 << " [" << RemarkName << "]"; 1764 }); 1765 else 1766 ORE.emit( 1767 [&]() { return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, F)); }); 1768 } 1769 1770 /// RAII struct to temporarily change an RTL function's linkage to external. 1771 /// This prevents it from being mistakenly removed by other optimizations. 1772 struct ExternalizationRAII { 1773 ExternalizationRAII(OMPInformationCache &OMPInfoCache, 1774 RuntimeFunction RFKind) 1775 : Declaration(OMPInfoCache.RFIs[RFKind].Declaration) { 1776 if (!Declaration) 1777 return; 1778 1779 LinkageType = Declaration->getLinkage(); 1780 Declaration->setLinkage(GlobalValue::ExternalLinkage); 1781 } 1782 1783 ~ExternalizationRAII() { 1784 if (!Declaration) 1785 return; 1786 1787 Declaration->setLinkage(LinkageType); 1788 } 1789 1790 Function *Declaration; 1791 GlobalValue::LinkageTypes LinkageType; 1792 }; 1793 1794 /// The underlying module. 1795 Module &M; 1796 1797 /// The SCC we are operating on. 1798 SmallVectorImpl<Function *> &SCC; 1799 1800 /// Callback to update the call graph, the first argument is a removed call, 1801 /// the second an optional replacement call. 1802 CallGraphUpdater &CGUpdater; 1803 1804 /// Callback to get an OptimizationRemarkEmitter from a Function * 1805 OptimizationRemarkGetter OREGetter; 1806 1807 /// OpenMP-specific information cache. Also Used for Attributor runs. 1808 OMPInformationCache &OMPInfoCache; 1809 1810 /// Attributor instance. 1811 Attributor &A; 1812 1813 /// Helper function to run Attributor on SCC. 1814 bool runAttributor(bool IsModulePass) { 1815 if (SCC.empty()) 1816 return false; 1817 1818 // Temporarily make these function have external linkage so the Attributor 1819 // doesn't remove them when we try to look them up later. 1820 ExternalizationRAII Parallel(OMPInfoCache, OMPRTL___kmpc_kernel_parallel); 1821 ExternalizationRAII EndParallel(OMPInfoCache, 1822 OMPRTL___kmpc_kernel_end_parallel); 1823 ExternalizationRAII BarrierSPMD(OMPInfoCache, 1824 OMPRTL___kmpc_barrier_simple_spmd); 1825 1826 registerAAs(IsModulePass); 1827 1828 ChangeStatus Changed = A.run(); 1829 1830 LLVM_DEBUG(dbgs() << "[Attributor] Done with " << SCC.size() 1831 << " functions, result: " << Changed << ".\n"); 1832 1833 return Changed == ChangeStatus::CHANGED; 1834 } 1835 1836 void registerFoldRuntimeCall(RuntimeFunction RF); 1837 1838 /// Populate the Attributor with abstract attribute opportunities in the 1839 /// function. 1840 void registerAAs(bool IsModulePass); 1841 }; 1842 1843 Kernel OpenMPOpt::getUniqueKernelFor(Function &F) { 1844 if (!OMPInfoCache.ModuleSlice.count(&F)) 1845 return nullptr; 1846 1847 // Use a scope to keep the lifetime of the CachedKernel short. 1848 { 1849 Optional<Kernel> &CachedKernel = UniqueKernelMap[&F]; 1850 if (CachedKernel) 1851 return *CachedKernel; 1852 1853 // TODO: We should use an AA to create an (optimistic and callback 1854 // call-aware) call graph. For now we stick to simple patterns that 1855 // are less powerful, basically the worst fixpoint. 1856 if (isKernel(F)) { 1857 CachedKernel = Kernel(&F); 1858 return *CachedKernel; 1859 } 1860 1861 CachedKernel = nullptr; 1862 if (!F.hasLocalLinkage()) { 1863 1864 // See https://openmp.llvm.org/remarks/OptimizationRemarks.html 1865 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 1866 return ORA << "Potentially unknown OpenMP target region caller."; 1867 }; 1868 emitRemark<OptimizationRemarkAnalysis>(&F, "OMP100", Remark); 1869 1870 return nullptr; 1871 } 1872 } 1873 1874 auto GetUniqueKernelForUse = [&](const Use &U) -> Kernel { 1875 if (auto *Cmp = dyn_cast<ICmpInst>(U.getUser())) { 1876 // Allow use in equality comparisons. 1877 if (Cmp->isEquality()) 1878 return getUniqueKernelFor(*Cmp); 1879 return nullptr; 1880 } 1881 if (auto *CB = dyn_cast<CallBase>(U.getUser())) { 1882 // Allow direct calls. 1883 if (CB->isCallee(&U)) 1884 return getUniqueKernelFor(*CB); 1885 1886 OMPInformationCache::RuntimeFunctionInfo &KernelParallelRFI = 1887 OMPInfoCache.RFIs[OMPRTL___kmpc_parallel_51]; 1888 // Allow the use in __kmpc_parallel_51 calls. 1889 if (OpenMPOpt::getCallIfRegularCall(*U.getUser(), &KernelParallelRFI)) 1890 return getUniqueKernelFor(*CB); 1891 return nullptr; 1892 } 1893 // Disallow every other use. 1894 return nullptr; 1895 }; 1896 1897 // TODO: In the future we want to track more than just a unique kernel. 1898 SmallPtrSet<Kernel, 2> PotentialKernels; 1899 OMPInformationCache::foreachUse(F, [&](const Use &U) { 1900 PotentialKernels.insert(GetUniqueKernelForUse(U)); 1901 }); 1902 1903 Kernel K = nullptr; 1904 if (PotentialKernels.size() == 1) 1905 K = *PotentialKernels.begin(); 1906 1907 // Cache the result. 1908 UniqueKernelMap[&F] = K; 1909 1910 return K; 1911 } 1912 1913 bool OpenMPOpt::rewriteDeviceCodeStateMachine() { 1914 OMPInformationCache::RuntimeFunctionInfo &KernelParallelRFI = 1915 OMPInfoCache.RFIs[OMPRTL___kmpc_parallel_51]; 1916 1917 bool Changed = false; 1918 if (!KernelParallelRFI) 1919 return Changed; 1920 1921 for (Function *F : SCC) { 1922 1923 // Check if the function is a use in a __kmpc_parallel_51 call at 1924 // all. 1925 bool UnknownUse = false; 1926 bool KernelParallelUse = false; 1927 unsigned NumDirectCalls = 0; 1928 1929 SmallVector<Use *, 2> ToBeReplacedStateMachineUses; 1930 OMPInformationCache::foreachUse(*F, [&](Use &U) { 1931 if (auto *CB = dyn_cast<CallBase>(U.getUser())) 1932 if (CB->isCallee(&U)) { 1933 ++NumDirectCalls; 1934 return; 1935 } 1936 1937 if (isa<ICmpInst>(U.getUser())) { 1938 ToBeReplacedStateMachineUses.push_back(&U); 1939 return; 1940 } 1941 1942 // Find wrapper functions that represent parallel kernels. 1943 CallInst *CI = 1944 OpenMPOpt::getCallIfRegularCall(*U.getUser(), &KernelParallelRFI); 1945 const unsigned int WrapperFunctionArgNo = 6; 1946 if (!KernelParallelUse && CI && 1947 CI->getArgOperandNo(&U) == WrapperFunctionArgNo) { 1948 KernelParallelUse = true; 1949 ToBeReplacedStateMachineUses.push_back(&U); 1950 return; 1951 } 1952 UnknownUse = true; 1953 }); 1954 1955 // Do not emit a remark if we haven't seen a __kmpc_parallel_51 1956 // use. 1957 if (!KernelParallelUse) 1958 continue; 1959 1960 // If this ever hits, we should investigate. 1961 // TODO: Checking the number of uses is not a necessary restriction and 1962 // should be lifted. 1963 if (UnknownUse || NumDirectCalls != 1 || 1964 ToBeReplacedStateMachineUses.size() > 2) { 1965 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 1966 return ORA << "Parallel region is used in " 1967 << (UnknownUse ? "unknown" : "unexpected") 1968 << " ways. Will not attempt to rewrite the state machine."; 1969 }; 1970 emitRemark<OptimizationRemarkAnalysis>(F, "OMP101", Remark); 1971 continue; 1972 } 1973 1974 // Even if we have __kmpc_parallel_51 calls, we (for now) give 1975 // up if the function is not called from a unique kernel. 1976 Kernel K = getUniqueKernelFor(*F); 1977 if (!K) { 1978 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 1979 return ORA << "Parallel region is not called from a unique kernel. " 1980 "Will not attempt to rewrite the state machine."; 1981 }; 1982 emitRemark<OptimizationRemarkAnalysis>(F, "OMP102", Remark); 1983 continue; 1984 } 1985 1986 // We now know F is a parallel body function called only from the kernel K. 1987 // We also identified the state machine uses in which we replace the 1988 // function pointer by a new global symbol for identification purposes. This 1989 // ensures only direct calls to the function are left. 1990 1991 Module &M = *F->getParent(); 1992 Type *Int8Ty = Type::getInt8Ty(M.getContext()); 1993 1994 auto *ID = new GlobalVariable( 1995 M, Int8Ty, /* isConstant */ true, GlobalValue::PrivateLinkage, 1996 UndefValue::get(Int8Ty), F->getName() + ".ID"); 1997 1998 for (Use *U : ToBeReplacedStateMachineUses) 1999 U->set(ConstantExpr::getBitCast(ID, U->get()->getType())); 2000 2001 ++NumOpenMPParallelRegionsReplacedInGPUStateMachine; 2002 2003 Changed = true; 2004 } 2005 2006 return Changed; 2007 } 2008 2009 /// Abstract Attribute for tracking ICV values. 2010 struct AAICVTracker : public StateWrapper<BooleanState, AbstractAttribute> { 2011 using Base = StateWrapper<BooleanState, AbstractAttribute>; 2012 AAICVTracker(const IRPosition &IRP, Attributor &A) : Base(IRP) {} 2013 2014 void initialize(Attributor &A) override { 2015 Function *F = getAnchorScope(); 2016 if (!F || !A.isFunctionIPOAmendable(*F)) 2017 indicatePessimisticFixpoint(); 2018 } 2019 2020 /// Returns true if value is assumed to be tracked. 2021 bool isAssumedTracked() const { return getAssumed(); } 2022 2023 /// Returns true if value is known to be tracked. 2024 bool isKnownTracked() const { return getAssumed(); } 2025 2026 /// Create an abstract attribute biew for the position \p IRP. 2027 static AAICVTracker &createForPosition(const IRPosition &IRP, Attributor &A); 2028 2029 /// Return the value with which \p I can be replaced for specific \p ICV. 2030 virtual Optional<Value *> getReplacementValue(InternalControlVar ICV, 2031 const Instruction *I, 2032 Attributor &A) const { 2033 return None; 2034 } 2035 2036 /// Return an assumed unique ICV value if a single candidate is found. If 2037 /// there cannot be one, return a nullptr. If it is not clear yet, return the 2038 /// Optional::NoneType. 2039 virtual Optional<Value *> 2040 getUniqueReplacementValue(InternalControlVar ICV) const = 0; 2041 2042 // Currently only nthreads is being tracked. 2043 // this array will only grow with time. 2044 InternalControlVar TrackableICVs[1] = {ICV_nthreads}; 2045 2046 /// See AbstractAttribute::getName() 2047 const std::string getName() const override { return "AAICVTracker"; } 2048 2049 /// See AbstractAttribute::getIdAddr() 2050 const char *getIdAddr() const override { return &ID; } 2051 2052 /// This function should return true if the type of the \p AA is AAICVTracker 2053 static bool classof(const AbstractAttribute *AA) { 2054 return (AA->getIdAddr() == &ID); 2055 } 2056 2057 static const char ID; 2058 }; 2059 2060 struct AAICVTrackerFunction : public AAICVTracker { 2061 AAICVTrackerFunction(const IRPosition &IRP, Attributor &A) 2062 : AAICVTracker(IRP, A) {} 2063 2064 // FIXME: come up with better string. 2065 const std::string getAsStr() const override { return "ICVTrackerFunction"; } 2066 2067 // FIXME: come up with some stats. 2068 void trackStatistics() const override {} 2069 2070 /// We don't manifest anything for this AA. 2071 ChangeStatus manifest(Attributor &A) override { 2072 return ChangeStatus::UNCHANGED; 2073 } 2074 2075 // Map of ICV to their values at specific program point. 2076 EnumeratedArray<DenseMap<Instruction *, Value *>, InternalControlVar, 2077 InternalControlVar::ICV___last> 2078 ICVReplacementValuesMap; 2079 2080 ChangeStatus updateImpl(Attributor &A) override { 2081 ChangeStatus HasChanged = ChangeStatus::UNCHANGED; 2082 2083 Function *F = getAnchorScope(); 2084 2085 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2086 2087 for (InternalControlVar ICV : TrackableICVs) { 2088 auto &SetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Setter]; 2089 2090 auto &ValuesMap = ICVReplacementValuesMap[ICV]; 2091 auto TrackValues = [&](Use &U, Function &) { 2092 CallInst *CI = OpenMPOpt::getCallIfRegularCall(U); 2093 if (!CI) 2094 return false; 2095 2096 // FIXME: handle setters with more that 1 arguments. 2097 /// Track new value. 2098 if (ValuesMap.insert(std::make_pair(CI, CI->getArgOperand(0))).second) 2099 HasChanged = ChangeStatus::CHANGED; 2100 2101 return false; 2102 }; 2103 2104 auto CallCheck = [&](Instruction &I) { 2105 Optional<Value *> ReplVal = getValueForCall(A, &I, ICV); 2106 if (ReplVal.hasValue() && 2107 ValuesMap.insert(std::make_pair(&I, *ReplVal)).second) 2108 HasChanged = ChangeStatus::CHANGED; 2109 2110 return true; 2111 }; 2112 2113 // Track all changes of an ICV. 2114 SetterRFI.foreachUse(TrackValues, F); 2115 2116 bool UsedAssumedInformation = false; 2117 A.checkForAllInstructions(CallCheck, *this, {Instruction::Call}, 2118 UsedAssumedInformation, 2119 /* CheckBBLivenessOnly */ true); 2120 2121 /// TODO: Figure out a way to avoid adding entry in 2122 /// ICVReplacementValuesMap 2123 Instruction *Entry = &F->getEntryBlock().front(); 2124 if (HasChanged == ChangeStatus::CHANGED && !ValuesMap.count(Entry)) 2125 ValuesMap.insert(std::make_pair(Entry, nullptr)); 2126 } 2127 2128 return HasChanged; 2129 } 2130 2131 /// Hepler to check if \p I is a call and get the value for it if it is 2132 /// unique. 2133 Optional<Value *> getValueForCall(Attributor &A, const Instruction *I, 2134 InternalControlVar &ICV) const { 2135 2136 const auto *CB = dyn_cast<CallBase>(I); 2137 if (!CB || CB->hasFnAttr("no_openmp") || 2138 CB->hasFnAttr("no_openmp_routines")) 2139 return None; 2140 2141 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2142 auto &GetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Getter]; 2143 auto &SetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Setter]; 2144 Function *CalledFunction = CB->getCalledFunction(); 2145 2146 // Indirect call, assume ICV changes. 2147 if (CalledFunction == nullptr) 2148 return nullptr; 2149 if (CalledFunction == GetterRFI.Declaration) 2150 return None; 2151 if (CalledFunction == SetterRFI.Declaration) { 2152 if (ICVReplacementValuesMap[ICV].count(I)) 2153 return ICVReplacementValuesMap[ICV].lookup(I); 2154 2155 return nullptr; 2156 } 2157 2158 // Since we don't know, assume it changes the ICV. 2159 if (CalledFunction->isDeclaration()) 2160 return nullptr; 2161 2162 const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>( 2163 *this, IRPosition::callsite_returned(*CB), DepClassTy::REQUIRED); 2164 2165 if (ICVTrackingAA.isAssumedTracked()) 2166 return ICVTrackingAA.getUniqueReplacementValue(ICV); 2167 2168 // If we don't know, assume it changes. 2169 return nullptr; 2170 } 2171 2172 // We don't check unique value for a function, so return None. 2173 Optional<Value *> 2174 getUniqueReplacementValue(InternalControlVar ICV) const override { 2175 return None; 2176 } 2177 2178 /// Return the value with which \p I can be replaced for specific \p ICV. 2179 Optional<Value *> getReplacementValue(InternalControlVar ICV, 2180 const Instruction *I, 2181 Attributor &A) const override { 2182 const auto &ValuesMap = ICVReplacementValuesMap[ICV]; 2183 if (ValuesMap.count(I)) 2184 return ValuesMap.lookup(I); 2185 2186 SmallVector<const Instruction *, 16> Worklist; 2187 SmallPtrSet<const Instruction *, 16> Visited; 2188 Worklist.push_back(I); 2189 2190 Optional<Value *> ReplVal; 2191 2192 while (!Worklist.empty()) { 2193 const Instruction *CurrInst = Worklist.pop_back_val(); 2194 if (!Visited.insert(CurrInst).second) 2195 continue; 2196 2197 const BasicBlock *CurrBB = CurrInst->getParent(); 2198 2199 // Go up and look for all potential setters/calls that might change the 2200 // ICV. 2201 while ((CurrInst = CurrInst->getPrevNode())) { 2202 if (ValuesMap.count(CurrInst)) { 2203 Optional<Value *> NewReplVal = ValuesMap.lookup(CurrInst); 2204 // Unknown value, track new. 2205 if (!ReplVal.hasValue()) { 2206 ReplVal = NewReplVal; 2207 break; 2208 } 2209 2210 // If we found a new value, we can't know the icv value anymore. 2211 if (NewReplVal.hasValue()) 2212 if (ReplVal != NewReplVal) 2213 return nullptr; 2214 2215 break; 2216 } 2217 2218 Optional<Value *> NewReplVal = getValueForCall(A, CurrInst, ICV); 2219 if (!NewReplVal.hasValue()) 2220 continue; 2221 2222 // Unknown value, track new. 2223 if (!ReplVal.hasValue()) { 2224 ReplVal = NewReplVal; 2225 break; 2226 } 2227 2228 // if (NewReplVal.hasValue()) 2229 // We found a new value, we can't know the icv value anymore. 2230 if (ReplVal != NewReplVal) 2231 return nullptr; 2232 } 2233 2234 // If we are in the same BB and we have a value, we are done. 2235 if (CurrBB == I->getParent() && ReplVal.hasValue()) 2236 return ReplVal; 2237 2238 // Go through all predecessors and add terminators for analysis. 2239 for (const BasicBlock *Pred : predecessors(CurrBB)) 2240 if (const Instruction *Terminator = Pred->getTerminator()) 2241 Worklist.push_back(Terminator); 2242 } 2243 2244 return ReplVal; 2245 } 2246 }; 2247 2248 struct AAICVTrackerFunctionReturned : AAICVTracker { 2249 AAICVTrackerFunctionReturned(const IRPosition &IRP, Attributor &A) 2250 : AAICVTracker(IRP, A) {} 2251 2252 // FIXME: come up with better string. 2253 const std::string getAsStr() const override { 2254 return "ICVTrackerFunctionReturned"; 2255 } 2256 2257 // FIXME: come up with some stats. 2258 void trackStatistics() const override {} 2259 2260 /// We don't manifest anything for this AA. 2261 ChangeStatus manifest(Attributor &A) override { 2262 return ChangeStatus::UNCHANGED; 2263 } 2264 2265 // Map of ICV to their values at specific program point. 2266 EnumeratedArray<Optional<Value *>, InternalControlVar, 2267 InternalControlVar::ICV___last> 2268 ICVReplacementValuesMap; 2269 2270 /// Return the value with which \p I can be replaced for specific \p ICV. 2271 Optional<Value *> 2272 getUniqueReplacementValue(InternalControlVar ICV) const override { 2273 return ICVReplacementValuesMap[ICV]; 2274 } 2275 2276 ChangeStatus updateImpl(Attributor &A) override { 2277 ChangeStatus Changed = ChangeStatus::UNCHANGED; 2278 const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>( 2279 *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED); 2280 2281 if (!ICVTrackingAA.isAssumedTracked()) 2282 return indicatePessimisticFixpoint(); 2283 2284 for (InternalControlVar ICV : TrackableICVs) { 2285 Optional<Value *> &ReplVal = ICVReplacementValuesMap[ICV]; 2286 Optional<Value *> UniqueICVValue; 2287 2288 auto CheckReturnInst = [&](Instruction &I) { 2289 Optional<Value *> NewReplVal = 2290 ICVTrackingAA.getReplacementValue(ICV, &I, A); 2291 2292 // If we found a second ICV value there is no unique returned value. 2293 if (UniqueICVValue.hasValue() && UniqueICVValue != NewReplVal) 2294 return false; 2295 2296 UniqueICVValue = NewReplVal; 2297 2298 return true; 2299 }; 2300 2301 bool UsedAssumedInformation = false; 2302 if (!A.checkForAllInstructions(CheckReturnInst, *this, {Instruction::Ret}, 2303 UsedAssumedInformation, 2304 /* CheckBBLivenessOnly */ true)) 2305 UniqueICVValue = nullptr; 2306 2307 if (UniqueICVValue == ReplVal) 2308 continue; 2309 2310 ReplVal = UniqueICVValue; 2311 Changed = ChangeStatus::CHANGED; 2312 } 2313 2314 return Changed; 2315 } 2316 }; 2317 2318 struct AAICVTrackerCallSite : AAICVTracker { 2319 AAICVTrackerCallSite(const IRPosition &IRP, Attributor &A) 2320 : AAICVTracker(IRP, A) {} 2321 2322 void initialize(Attributor &A) override { 2323 Function *F = getAnchorScope(); 2324 if (!F || !A.isFunctionIPOAmendable(*F)) 2325 indicatePessimisticFixpoint(); 2326 2327 // We only initialize this AA for getters, so we need to know which ICV it 2328 // gets. 2329 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2330 for (InternalControlVar ICV : TrackableICVs) { 2331 auto ICVInfo = OMPInfoCache.ICVs[ICV]; 2332 auto &Getter = OMPInfoCache.RFIs[ICVInfo.Getter]; 2333 if (Getter.Declaration == getAssociatedFunction()) { 2334 AssociatedICV = ICVInfo.Kind; 2335 return; 2336 } 2337 } 2338 2339 /// Unknown ICV. 2340 indicatePessimisticFixpoint(); 2341 } 2342 2343 ChangeStatus manifest(Attributor &A) override { 2344 if (!ReplVal.hasValue() || !ReplVal.getValue()) 2345 return ChangeStatus::UNCHANGED; 2346 2347 A.changeValueAfterManifest(*getCtxI(), **ReplVal); 2348 A.deleteAfterManifest(*getCtxI()); 2349 2350 return ChangeStatus::CHANGED; 2351 } 2352 2353 // FIXME: come up with better string. 2354 const std::string getAsStr() const override { return "ICVTrackerCallSite"; } 2355 2356 // FIXME: come up with some stats. 2357 void trackStatistics() const override {} 2358 2359 InternalControlVar AssociatedICV; 2360 Optional<Value *> ReplVal; 2361 2362 ChangeStatus updateImpl(Attributor &A) override { 2363 const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>( 2364 *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED); 2365 2366 // We don't have any information, so we assume it changes the ICV. 2367 if (!ICVTrackingAA.isAssumedTracked()) 2368 return indicatePessimisticFixpoint(); 2369 2370 Optional<Value *> NewReplVal = 2371 ICVTrackingAA.getReplacementValue(AssociatedICV, getCtxI(), A); 2372 2373 if (ReplVal == NewReplVal) 2374 return ChangeStatus::UNCHANGED; 2375 2376 ReplVal = NewReplVal; 2377 return ChangeStatus::CHANGED; 2378 } 2379 2380 // Return the value with which associated value can be replaced for specific 2381 // \p ICV. 2382 Optional<Value *> 2383 getUniqueReplacementValue(InternalControlVar ICV) const override { 2384 return ReplVal; 2385 } 2386 }; 2387 2388 struct AAICVTrackerCallSiteReturned : AAICVTracker { 2389 AAICVTrackerCallSiteReturned(const IRPosition &IRP, Attributor &A) 2390 : AAICVTracker(IRP, A) {} 2391 2392 // FIXME: come up with better string. 2393 const std::string getAsStr() const override { 2394 return "ICVTrackerCallSiteReturned"; 2395 } 2396 2397 // FIXME: come up with some stats. 2398 void trackStatistics() const override {} 2399 2400 /// We don't manifest anything for this AA. 2401 ChangeStatus manifest(Attributor &A) override { 2402 return ChangeStatus::UNCHANGED; 2403 } 2404 2405 // Map of ICV to their values at specific program point. 2406 EnumeratedArray<Optional<Value *>, InternalControlVar, 2407 InternalControlVar::ICV___last> 2408 ICVReplacementValuesMap; 2409 2410 /// Return the value with which associated value can be replaced for specific 2411 /// \p ICV. 2412 Optional<Value *> 2413 getUniqueReplacementValue(InternalControlVar ICV) const override { 2414 return ICVReplacementValuesMap[ICV]; 2415 } 2416 2417 ChangeStatus updateImpl(Attributor &A) override { 2418 ChangeStatus Changed = ChangeStatus::UNCHANGED; 2419 const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>( 2420 *this, IRPosition::returned(*getAssociatedFunction()), 2421 DepClassTy::REQUIRED); 2422 2423 // We don't have any information, so we assume it changes the ICV. 2424 if (!ICVTrackingAA.isAssumedTracked()) 2425 return indicatePessimisticFixpoint(); 2426 2427 for (InternalControlVar ICV : TrackableICVs) { 2428 Optional<Value *> &ReplVal = ICVReplacementValuesMap[ICV]; 2429 Optional<Value *> NewReplVal = 2430 ICVTrackingAA.getUniqueReplacementValue(ICV); 2431 2432 if (ReplVal == NewReplVal) 2433 continue; 2434 2435 ReplVal = NewReplVal; 2436 Changed = ChangeStatus::CHANGED; 2437 } 2438 return Changed; 2439 } 2440 }; 2441 2442 struct AAExecutionDomainFunction : public AAExecutionDomain { 2443 AAExecutionDomainFunction(const IRPosition &IRP, Attributor &A) 2444 : AAExecutionDomain(IRP, A) {} 2445 2446 const std::string getAsStr() const override { 2447 return "[AAExecutionDomain] " + std::to_string(SingleThreadedBBs.size()) + 2448 "/" + std::to_string(NumBBs) + " BBs thread 0 only."; 2449 } 2450 2451 /// See AbstractAttribute::trackStatistics(). 2452 void trackStatistics() const override {} 2453 2454 void initialize(Attributor &A) override { 2455 Function *F = getAnchorScope(); 2456 for (const auto &BB : *F) 2457 SingleThreadedBBs.insert(&BB); 2458 NumBBs = SingleThreadedBBs.size(); 2459 } 2460 2461 ChangeStatus manifest(Attributor &A) override { 2462 LLVM_DEBUG({ 2463 for (const BasicBlock *BB : SingleThreadedBBs) 2464 dbgs() << TAG << " Basic block @" << getAnchorScope()->getName() << " " 2465 << BB->getName() << " is executed by a single thread.\n"; 2466 }); 2467 return ChangeStatus::UNCHANGED; 2468 } 2469 2470 ChangeStatus updateImpl(Attributor &A) override; 2471 2472 /// Check if an instruction is executed by a single thread. 2473 bool isExecutedByInitialThreadOnly(const Instruction &I) const override { 2474 return isExecutedByInitialThreadOnly(*I.getParent()); 2475 } 2476 2477 bool isExecutedByInitialThreadOnly(const BasicBlock &BB) const override { 2478 return isValidState() && SingleThreadedBBs.contains(&BB); 2479 } 2480 2481 /// Set of basic blocks that are executed by a single thread. 2482 DenseSet<const BasicBlock *> SingleThreadedBBs; 2483 2484 /// Total number of basic blocks in this function. 2485 long unsigned NumBBs; 2486 }; 2487 2488 ChangeStatus AAExecutionDomainFunction::updateImpl(Attributor &A) { 2489 Function *F = getAnchorScope(); 2490 ReversePostOrderTraversal<Function *> RPOT(F); 2491 auto NumSingleThreadedBBs = SingleThreadedBBs.size(); 2492 2493 bool AllCallSitesKnown; 2494 auto PredForCallSite = [&](AbstractCallSite ACS) { 2495 const auto &ExecutionDomainAA = A.getAAFor<AAExecutionDomain>( 2496 *this, IRPosition::function(*ACS.getInstruction()->getFunction()), 2497 DepClassTy::REQUIRED); 2498 return ACS.isDirectCall() && 2499 ExecutionDomainAA.isExecutedByInitialThreadOnly( 2500 *ACS.getInstruction()); 2501 }; 2502 2503 if (!A.checkForAllCallSites(PredForCallSite, *this, 2504 /* RequiresAllCallSites */ true, 2505 AllCallSitesKnown)) 2506 SingleThreadedBBs.erase(&F->getEntryBlock()); 2507 2508 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2509 auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_target_init]; 2510 2511 // Check if the edge into the successor block compares the __kmpc_target_init 2512 // result with -1. If we are in non-SPMD-mode that signals only the main 2513 // thread will execute the edge. 2514 auto IsInitialThreadOnly = [&](BranchInst *Edge, BasicBlock *SuccessorBB) { 2515 if (!Edge || !Edge->isConditional()) 2516 return false; 2517 if (Edge->getSuccessor(0) != SuccessorBB) 2518 return false; 2519 2520 auto *Cmp = dyn_cast<CmpInst>(Edge->getCondition()); 2521 if (!Cmp || !Cmp->isTrueWhenEqual() || !Cmp->isEquality()) 2522 return false; 2523 2524 ConstantInt *C = dyn_cast<ConstantInt>(Cmp->getOperand(1)); 2525 if (!C) 2526 return false; 2527 2528 // Match: -1 == __kmpc_target_init (for non-SPMD kernels only!) 2529 if (C->isAllOnesValue()) { 2530 auto *CB = dyn_cast<CallBase>(Cmp->getOperand(0)); 2531 CB = CB ? OpenMPOpt::getCallIfRegularCall(*CB, &RFI) : nullptr; 2532 if (!CB) 2533 return false; 2534 const int InitIsSPMDArgNo = 1; 2535 auto *IsSPMDModeCI = 2536 dyn_cast<ConstantInt>(CB->getOperand(InitIsSPMDArgNo)); 2537 return IsSPMDModeCI && IsSPMDModeCI->isZero(); 2538 } 2539 2540 return false; 2541 }; 2542 2543 // Merge all the predecessor states into the current basic block. A basic 2544 // block is executed by a single thread if all of its predecessors are. 2545 auto MergePredecessorStates = [&](BasicBlock *BB) { 2546 if (pred_begin(BB) == pred_end(BB)) 2547 return SingleThreadedBBs.contains(BB); 2548 2549 bool IsInitialThread = true; 2550 for (auto PredBB = pred_begin(BB), PredEndBB = pred_end(BB); 2551 PredBB != PredEndBB; ++PredBB) { 2552 if (!IsInitialThreadOnly(dyn_cast<BranchInst>((*PredBB)->getTerminator()), 2553 BB)) 2554 IsInitialThread &= SingleThreadedBBs.contains(*PredBB); 2555 } 2556 2557 return IsInitialThread; 2558 }; 2559 2560 for (auto *BB : RPOT) { 2561 if (!MergePredecessorStates(BB)) 2562 SingleThreadedBBs.erase(BB); 2563 } 2564 2565 return (NumSingleThreadedBBs == SingleThreadedBBs.size()) 2566 ? ChangeStatus::UNCHANGED 2567 : ChangeStatus::CHANGED; 2568 } 2569 2570 /// Try to replace memory allocation calls called by a single thread with a 2571 /// static buffer of shared memory. 2572 struct AAHeapToShared : public StateWrapper<BooleanState, AbstractAttribute> { 2573 using Base = StateWrapper<BooleanState, AbstractAttribute>; 2574 AAHeapToShared(const IRPosition &IRP, Attributor &A) : Base(IRP) {} 2575 2576 /// Create an abstract attribute view for the position \p IRP. 2577 static AAHeapToShared &createForPosition(const IRPosition &IRP, 2578 Attributor &A); 2579 2580 /// Returns true if HeapToShared conversion is assumed to be possible. 2581 virtual bool isAssumedHeapToShared(CallBase &CB) const = 0; 2582 2583 /// Returns true if HeapToShared conversion is assumed and the CB is a 2584 /// callsite to a free operation to be removed. 2585 virtual bool isAssumedHeapToSharedRemovedFree(CallBase &CB) const = 0; 2586 2587 /// See AbstractAttribute::getName(). 2588 const std::string getName() const override { return "AAHeapToShared"; } 2589 2590 /// See AbstractAttribute::getIdAddr(). 2591 const char *getIdAddr() const override { return &ID; } 2592 2593 /// This function should return true if the type of the \p AA is 2594 /// AAHeapToShared. 2595 static bool classof(const AbstractAttribute *AA) { 2596 return (AA->getIdAddr() == &ID); 2597 } 2598 2599 /// Unique ID (due to the unique address) 2600 static const char ID; 2601 }; 2602 2603 struct AAHeapToSharedFunction : public AAHeapToShared { 2604 AAHeapToSharedFunction(const IRPosition &IRP, Attributor &A) 2605 : AAHeapToShared(IRP, A) {} 2606 2607 const std::string getAsStr() const override { 2608 return "[AAHeapToShared] " + std::to_string(MallocCalls.size()) + 2609 " malloc calls eligible."; 2610 } 2611 2612 /// See AbstractAttribute::trackStatistics(). 2613 void trackStatistics() const override {} 2614 2615 /// This functions finds free calls that will be removed by the 2616 /// HeapToShared transformation. 2617 void findPotentialRemovedFreeCalls(Attributor &A) { 2618 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2619 auto &FreeRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_free_shared]; 2620 2621 PotentialRemovedFreeCalls.clear(); 2622 // Update free call users of found malloc calls. 2623 for (CallBase *CB : MallocCalls) { 2624 SmallVector<CallBase *, 4> FreeCalls; 2625 for (auto *U : CB->users()) { 2626 CallBase *C = dyn_cast<CallBase>(U); 2627 if (C && C->getCalledFunction() == FreeRFI.Declaration) 2628 FreeCalls.push_back(C); 2629 } 2630 2631 if (FreeCalls.size() != 1) 2632 continue; 2633 2634 PotentialRemovedFreeCalls.insert(FreeCalls.front()); 2635 } 2636 } 2637 2638 void initialize(Attributor &A) override { 2639 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2640 auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared]; 2641 2642 for (User *U : RFI.Declaration->users()) 2643 if (CallBase *CB = dyn_cast<CallBase>(U)) 2644 MallocCalls.insert(CB); 2645 2646 findPotentialRemovedFreeCalls(A); 2647 } 2648 2649 bool isAssumedHeapToShared(CallBase &CB) const override { 2650 return isValidState() && MallocCalls.count(&CB); 2651 } 2652 2653 bool isAssumedHeapToSharedRemovedFree(CallBase &CB) const override { 2654 return isValidState() && PotentialRemovedFreeCalls.count(&CB); 2655 } 2656 2657 ChangeStatus manifest(Attributor &A) override { 2658 if (MallocCalls.empty()) 2659 return ChangeStatus::UNCHANGED; 2660 2661 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2662 auto &FreeCall = OMPInfoCache.RFIs[OMPRTL___kmpc_free_shared]; 2663 2664 Function *F = getAnchorScope(); 2665 auto *HS = A.lookupAAFor<AAHeapToStack>(IRPosition::function(*F), this, 2666 DepClassTy::OPTIONAL); 2667 2668 ChangeStatus Changed = ChangeStatus::UNCHANGED; 2669 for (CallBase *CB : MallocCalls) { 2670 // Skip replacing this if HeapToStack has already claimed it. 2671 if (HS && HS->isAssumedHeapToStack(*CB)) 2672 continue; 2673 2674 // Find the unique free call to remove it. 2675 SmallVector<CallBase *, 4> FreeCalls; 2676 for (auto *U : CB->users()) { 2677 CallBase *C = dyn_cast<CallBase>(U); 2678 if (C && C->getCalledFunction() == FreeCall.Declaration) 2679 FreeCalls.push_back(C); 2680 } 2681 if (FreeCalls.size() != 1) 2682 continue; 2683 2684 ConstantInt *AllocSize = dyn_cast<ConstantInt>(CB->getArgOperand(0)); 2685 2686 LLVM_DEBUG(dbgs() << TAG << "Replace globalization call in " 2687 << CB->getCaller()->getName() << " with " 2688 << AllocSize->getZExtValue() 2689 << " bytes of shared memory\n"); 2690 2691 // Create a new shared memory buffer of the same size as the allocation 2692 // and replace all the uses of the original allocation with it. 2693 Module *M = CB->getModule(); 2694 Type *Int8Ty = Type::getInt8Ty(M->getContext()); 2695 Type *Int8ArrTy = ArrayType::get(Int8Ty, AllocSize->getZExtValue()); 2696 auto *SharedMem = new GlobalVariable( 2697 *M, Int8ArrTy, /* IsConstant */ false, GlobalValue::InternalLinkage, 2698 UndefValue::get(Int8ArrTy), CB->getName(), nullptr, 2699 GlobalValue::NotThreadLocal, 2700 static_cast<unsigned>(AddressSpace::Shared)); 2701 auto *NewBuffer = 2702 ConstantExpr::getPointerCast(SharedMem, Int8Ty->getPointerTo()); 2703 2704 auto Remark = [&](OptimizationRemark OR) { 2705 return OR << "Replaced globalized variable with " 2706 << ore::NV("SharedMemory", AllocSize->getZExtValue()) 2707 << ((AllocSize->getZExtValue() != 1) ? " bytes " : " byte ") 2708 << "of shared memory."; 2709 }; 2710 A.emitRemark<OptimizationRemark>(CB, "OMP111", Remark); 2711 2712 SharedMem->setAlignment(MaybeAlign(32)); 2713 2714 A.changeValueAfterManifest(*CB, *NewBuffer); 2715 A.deleteAfterManifest(*CB); 2716 A.deleteAfterManifest(*FreeCalls.front()); 2717 2718 NumBytesMovedToSharedMemory += AllocSize->getZExtValue(); 2719 Changed = ChangeStatus::CHANGED; 2720 } 2721 2722 return Changed; 2723 } 2724 2725 ChangeStatus updateImpl(Attributor &A) override { 2726 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2727 auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared]; 2728 Function *F = getAnchorScope(); 2729 2730 auto NumMallocCalls = MallocCalls.size(); 2731 2732 // Only consider malloc calls executed by a single thread with a constant. 2733 for (User *U : RFI.Declaration->users()) { 2734 const auto &ED = A.getAAFor<AAExecutionDomain>( 2735 *this, IRPosition::function(*F), DepClassTy::REQUIRED); 2736 if (CallBase *CB = dyn_cast<CallBase>(U)) 2737 if (!dyn_cast<ConstantInt>(CB->getArgOperand(0)) || 2738 !ED.isExecutedByInitialThreadOnly(*CB)) 2739 MallocCalls.erase(CB); 2740 } 2741 2742 findPotentialRemovedFreeCalls(A); 2743 2744 if (NumMallocCalls != MallocCalls.size()) 2745 return ChangeStatus::CHANGED; 2746 2747 return ChangeStatus::UNCHANGED; 2748 } 2749 2750 /// Collection of all malloc calls in a function. 2751 SmallPtrSet<CallBase *, 4> MallocCalls; 2752 /// Collection of potentially removed free calls in a function. 2753 SmallPtrSet<CallBase *, 4> PotentialRemovedFreeCalls; 2754 }; 2755 2756 struct AAKernelInfo : public StateWrapper<KernelInfoState, AbstractAttribute> { 2757 using Base = StateWrapper<KernelInfoState, AbstractAttribute>; 2758 AAKernelInfo(const IRPosition &IRP, Attributor &A) : Base(IRP) {} 2759 2760 /// Statistics are tracked as part of manifest for now. 2761 void trackStatistics() const override {} 2762 2763 /// See AbstractAttribute::getAsStr() 2764 const std::string getAsStr() const override { 2765 if (!isValidState()) 2766 return "<invalid>"; 2767 return std::string(SPMDCompatibilityTracker.isAssumed() ? "SPMD" 2768 : "generic") + 2769 std::string(SPMDCompatibilityTracker.isAtFixpoint() ? " [FIX]" 2770 : "") + 2771 std::string(" #PRs: ") + 2772 std::to_string(ReachedKnownParallelRegions.size()) + 2773 ", #Unknown PRs: " + 2774 std::to_string(ReachedUnknownParallelRegions.size()); 2775 } 2776 2777 /// Create an abstract attribute biew for the position \p IRP. 2778 static AAKernelInfo &createForPosition(const IRPosition &IRP, Attributor &A); 2779 2780 /// See AbstractAttribute::getName() 2781 const std::string getName() const override { return "AAKernelInfo"; } 2782 2783 /// See AbstractAttribute::getIdAddr() 2784 const char *getIdAddr() const override { return &ID; } 2785 2786 /// This function should return true if the type of the \p AA is AAKernelInfo 2787 static bool classof(const AbstractAttribute *AA) { 2788 return (AA->getIdAddr() == &ID); 2789 } 2790 2791 static const char ID; 2792 }; 2793 2794 /// The function kernel info abstract attribute, basically, what can we say 2795 /// about a function with regards to the KernelInfoState. 2796 struct AAKernelInfoFunction : AAKernelInfo { 2797 AAKernelInfoFunction(const IRPosition &IRP, Attributor &A) 2798 : AAKernelInfo(IRP, A) {} 2799 2800 /// See AbstractAttribute::initialize(...). 2801 void initialize(Attributor &A) override { 2802 // This is a high-level transform that might change the constant arguments 2803 // of the init and dinit calls. We need to tell the Attributor about this 2804 // to avoid other parts using the current constant value for simpliication. 2805 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2806 2807 Function *Fn = getAnchorScope(); 2808 if (!OMPInfoCache.Kernels.count(Fn)) 2809 return; 2810 2811 // Add itself to the reaching kernel and set IsKernelEntry. 2812 ReachingKernelEntries.insert(Fn); 2813 IsKernelEntry = true; 2814 2815 OMPInformationCache::RuntimeFunctionInfo &InitRFI = 2816 OMPInfoCache.RFIs[OMPRTL___kmpc_target_init]; 2817 OMPInformationCache::RuntimeFunctionInfo &DeinitRFI = 2818 OMPInfoCache.RFIs[OMPRTL___kmpc_target_deinit]; 2819 2820 // For kernels we perform more initialization work, first we find the init 2821 // and deinit calls. 2822 auto StoreCallBase = [](Use &U, 2823 OMPInformationCache::RuntimeFunctionInfo &RFI, 2824 CallBase *&Storage) { 2825 CallBase *CB = OpenMPOpt::getCallIfRegularCall(U, &RFI); 2826 assert(CB && 2827 "Unexpected use of __kmpc_target_init or __kmpc_target_deinit!"); 2828 assert(!Storage && 2829 "Multiple uses of __kmpc_target_init or __kmpc_target_deinit!"); 2830 Storage = CB; 2831 return false; 2832 }; 2833 InitRFI.foreachUse( 2834 [&](Use &U, Function &) { 2835 StoreCallBase(U, InitRFI, KernelInitCB); 2836 return false; 2837 }, 2838 Fn); 2839 DeinitRFI.foreachUse( 2840 [&](Use &U, Function &) { 2841 StoreCallBase(U, DeinitRFI, KernelDeinitCB); 2842 return false; 2843 }, 2844 Fn); 2845 2846 assert((KernelInitCB && KernelDeinitCB) && 2847 "Kernel without __kmpc_target_init or __kmpc_target_deinit!"); 2848 2849 // For kernels we might need to initialize/finalize the IsSPMD state and 2850 // we need to register a simplification callback so that the Attributor 2851 // knows the constant arguments to __kmpc_target_init and 2852 // __kmpc_target_deinit might actually change. 2853 2854 Attributor::SimplifictionCallbackTy StateMachineSimplifyCB = 2855 [&](const IRPosition &IRP, const AbstractAttribute *AA, 2856 bool &UsedAssumedInformation) -> Optional<Value *> { 2857 // IRP represents the "use generic state machine" argument of an 2858 // __kmpc_target_init call. We will answer this one with the internal 2859 // state. As long as we are not in an invalid state, we will create a 2860 // custom state machine so the value should be a `i1 false`. If we are 2861 // in an invalid state, we won't change the value that is in the IR. 2862 if (!isValidState()) 2863 return nullptr; 2864 if (AA) 2865 A.recordDependence(*this, *AA, DepClassTy::OPTIONAL); 2866 UsedAssumedInformation = !isAtFixpoint(); 2867 auto *FalseVal = 2868 ConstantInt::getBool(IRP.getAnchorValue().getContext(), 0); 2869 return FalseVal; 2870 }; 2871 2872 Attributor::SimplifictionCallbackTy IsSPMDModeSimplifyCB = 2873 [&](const IRPosition &IRP, const AbstractAttribute *AA, 2874 bool &UsedAssumedInformation) -> Optional<Value *> { 2875 // IRP represents the "SPMDCompatibilityTracker" argument of an 2876 // __kmpc_target_init or 2877 // __kmpc_target_deinit call. We will answer this one with the internal 2878 // state. 2879 if (!SPMDCompatibilityTracker.isValidState()) 2880 return nullptr; 2881 if (!SPMDCompatibilityTracker.isAtFixpoint()) { 2882 if (AA) 2883 A.recordDependence(*this, *AA, DepClassTy::OPTIONAL); 2884 UsedAssumedInformation = true; 2885 } else { 2886 UsedAssumedInformation = false; 2887 } 2888 auto *Val = ConstantInt::getBool(IRP.getAnchorValue().getContext(), 2889 SPMDCompatibilityTracker.isAssumed()); 2890 return Val; 2891 }; 2892 2893 Attributor::SimplifictionCallbackTy IsGenericModeSimplifyCB = 2894 [&](const IRPosition &IRP, const AbstractAttribute *AA, 2895 bool &UsedAssumedInformation) -> Optional<Value *> { 2896 // IRP represents the "RequiresFullRuntime" argument of an 2897 // __kmpc_target_init or __kmpc_target_deinit call. We will answer this 2898 // one with the internal state of the SPMDCompatibilityTracker, so if 2899 // generic then true, if SPMD then false. 2900 if (!SPMDCompatibilityTracker.isValidState()) 2901 return nullptr; 2902 if (!SPMDCompatibilityTracker.isAtFixpoint()) { 2903 if (AA) 2904 A.recordDependence(*this, *AA, DepClassTy::OPTIONAL); 2905 UsedAssumedInformation = true; 2906 } else { 2907 UsedAssumedInformation = false; 2908 } 2909 auto *Val = ConstantInt::getBool(IRP.getAnchorValue().getContext(), 2910 !SPMDCompatibilityTracker.isAssumed()); 2911 return Val; 2912 }; 2913 2914 constexpr const int InitIsSPMDArgNo = 1; 2915 constexpr const int DeinitIsSPMDArgNo = 1; 2916 constexpr const int InitUseStateMachineArgNo = 2; 2917 constexpr const int InitRequiresFullRuntimeArgNo = 3; 2918 constexpr const int DeinitRequiresFullRuntimeArgNo = 2; 2919 A.registerSimplificationCallback( 2920 IRPosition::callsite_argument(*KernelInitCB, InitUseStateMachineArgNo), 2921 StateMachineSimplifyCB); 2922 A.registerSimplificationCallback( 2923 IRPosition::callsite_argument(*KernelInitCB, InitIsSPMDArgNo), 2924 IsSPMDModeSimplifyCB); 2925 A.registerSimplificationCallback( 2926 IRPosition::callsite_argument(*KernelDeinitCB, DeinitIsSPMDArgNo), 2927 IsSPMDModeSimplifyCB); 2928 A.registerSimplificationCallback( 2929 IRPosition::callsite_argument(*KernelInitCB, 2930 InitRequiresFullRuntimeArgNo), 2931 IsGenericModeSimplifyCB); 2932 A.registerSimplificationCallback( 2933 IRPosition::callsite_argument(*KernelDeinitCB, 2934 DeinitRequiresFullRuntimeArgNo), 2935 IsGenericModeSimplifyCB); 2936 2937 // Check if we know we are in SPMD-mode already. 2938 ConstantInt *IsSPMDArg = 2939 dyn_cast<ConstantInt>(KernelInitCB->getArgOperand(InitIsSPMDArgNo)); 2940 if (IsSPMDArg && !IsSPMDArg->isZero()) 2941 SPMDCompatibilityTracker.indicateOptimisticFixpoint(); 2942 } 2943 2944 /// Modify the IR based on the KernelInfoState as the fixpoint iteration is 2945 /// finished now. 2946 ChangeStatus manifest(Attributor &A) override { 2947 // If we are not looking at a kernel with __kmpc_target_init and 2948 // __kmpc_target_deinit call we cannot actually manifest the information. 2949 if (!KernelInitCB || !KernelDeinitCB) 2950 return ChangeStatus::UNCHANGED; 2951 2952 // Known SPMD-mode kernels need no manifest changes. 2953 if (SPMDCompatibilityTracker.isKnown()) 2954 return ChangeStatus::UNCHANGED; 2955 2956 // If we can we change the execution mode to SPMD-mode otherwise we build a 2957 // custom state machine. 2958 if (!changeToSPMDMode(A)) 2959 buildCustomStateMachine(A); 2960 2961 return ChangeStatus::CHANGED; 2962 } 2963 2964 bool changeToSPMDMode(Attributor &A) { 2965 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2966 2967 if (!SPMDCompatibilityTracker.isAssumed()) { 2968 for (Instruction *NonCompatibleI : SPMDCompatibilityTracker) { 2969 if (!NonCompatibleI) 2970 continue; 2971 2972 // Skip diagnostics on calls to known OpenMP runtime functions for now. 2973 if (auto *CB = dyn_cast<CallBase>(NonCompatibleI)) 2974 if (OMPInfoCache.RTLFunctions.contains(CB->getCalledFunction())) 2975 continue; 2976 2977 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 2978 ORA << "Value has potential side effects preventing SPMD-mode " 2979 "execution"; 2980 if (isa<CallBase>(NonCompatibleI)) { 2981 ORA << ". Add `__attribute__((assume(\"ompx_spmd_amenable\")))` to " 2982 "the called function to override"; 2983 } 2984 return ORA << "."; 2985 }; 2986 A.emitRemark<OptimizationRemarkAnalysis>(NonCompatibleI, "OMP121", 2987 Remark); 2988 2989 LLVM_DEBUG(dbgs() << TAG << "SPMD-incompatible side-effect: " 2990 << *NonCompatibleI << "\n"); 2991 } 2992 2993 return false; 2994 } 2995 2996 // Adjust the global exec mode flag that tells the runtime what mode this 2997 // kernel is executed in. 2998 Function *Kernel = getAnchorScope(); 2999 GlobalVariable *ExecMode = Kernel->getParent()->getGlobalVariable( 3000 (Kernel->getName() + "_exec_mode").str()); 3001 assert(ExecMode && "Kernel without exec mode?"); 3002 assert(ExecMode->getInitializer() && 3003 ExecMode->getInitializer()->isOneValue() && 3004 "Initially non-SPMD kernel has SPMD exec mode!"); 3005 3006 // Set the global exec mode flag to indicate SPMD-Generic mode. 3007 constexpr int SPMDGeneric = 2; 3008 if (!ExecMode->getInitializer()->isZeroValue()) 3009 ExecMode->setInitializer( 3010 ConstantInt::get(ExecMode->getInitializer()->getType(), SPMDGeneric)); 3011 3012 // Next rewrite the init and deinit calls to indicate we use SPMD-mode now. 3013 const int InitIsSPMDArgNo = 1; 3014 const int DeinitIsSPMDArgNo = 1; 3015 const int InitUseStateMachineArgNo = 2; 3016 const int InitRequiresFullRuntimeArgNo = 3; 3017 const int DeinitRequiresFullRuntimeArgNo = 2; 3018 3019 auto &Ctx = getAnchorValue().getContext(); 3020 A.changeUseAfterManifest(KernelInitCB->getArgOperandUse(InitIsSPMDArgNo), 3021 *ConstantInt::getBool(Ctx, 1)); 3022 A.changeUseAfterManifest( 3023 KernelInitCB->getArgOperandUse(InitUseStateMachineArgNo), 3024 *ConstantInt::getBool(Ctx, 0)); 3025 A.changeUseAfterManifest( 3026 KernelDeinitCB->getArgOperandUse(DeinitIsSPMDArgNo), 3027 *ConstantInt::getBool(Ctx, 1)); 3028 A.changeUseAfterManifest( 3029 KernelInitCB->getArgOperandUse(InitRequiresFullRuntimeArgNo), 3030 *ConstantInt::getBool(Ctx, 0)); 3031 A.changeUseAfterManifest( 3032 KernelDeinitCB->getArgOperandUse(DeinitRequiresFullRuntimeArgNo), 3033 *ConstantInt::getBool(Ctx, 0)); 3034 3035 ++NumOpenMPTargetRegionKernelsSPMD; 3036 3037 auto Remark = [&](OptimizationRemark OR) { 3038 return OR << "Transformed generic-mode kernel to SPMD-mode."; 3039 }; 3040 A.emitRemark<OptimizationRemark>(KernelInitCB, "OMP120", Remark); 3041 return true; 3042 }; 3043 3044 ChangeStatus buildCustomStateMachine(Attributor &A) { 3045 assert(ReachedKnownParallelRegions.isValidState() && 3046 "Custom state machine with invalid parallel region states?"); 3047 3048 const int InitIsSPMDArgNo = 1; 3049 const int InitUseStateMachineArgNo = 2; 3050 3051 // Check if the current configuration is non-SPMD and generic state machine. 3052 // If we already have SPMD mode or a custom state machine we do not need to 3053 // go any further. If it is anything but a constant something is weird and 3054 // we give up. 3055 ConstantInt *UseStateMachine = dyn_cast<ConstantInt>( 3056 KernelInitCB->getArgOperand(InitUseStateMachineArgNo)); 3057 ConstantInt *IsSPMD = 3058 dyn_cast<ConstantInt>(KernelInitCB->getArgOperand(InitIsSPMDArgNo)); 3059 3060 // If we are stuck with generic mode, try to create a custom device (=GPU) 3061 // state machine which is specialized for the parallel regions that are 3062 // reachable by the kernel. 3063 if (!UseStateMachine || UseStateMachine->isZero() || !IsSPMD || 3064 !IsSPMD->isZero()) 3065 return ChangeStatus::UNCHANGED; 3066 3067 // If not SPMD mode, indicate we use a custom state machine now. 3068 auto &Ctx = getAnchorValue().getContext(); 3069 auto *FalseVal = ConstantInt::getBool(Ctx, 0); 3070 A.changeUseAfterManifest( 3071 KernelInitCB->getArgOperandUse(InitUseStateMachineArgNo), *FalseVal); 3072 3073 // If we don't actually need a state machine we are done here. This can 3074 // happen if there simply are no parallel regions. In the resulting kernel 3075 // all worker threads will simply exit right away, leaving the main thread 3076 // to do the work alone. 3077 if (ReachedKnownParallelRegions.empty() && 3078 ReachedUnknownParallelRegions.empty()) { 3079 ++NumOpenMPTargetRegionKernelsWithoutStateMachine; 3080 3081 auto Remark = [&](OptimizationRemark OR) { 3082 return OR << "Removing unused state machine from generic-mode kernel."; 3083 }; 3084 A.emitRemark<OptimizationRemark>(KernelInitCB, "OMP130", Remark); 3085 3086 return ChangeStatus::CHANGED; 3087 } 3088 3089 // Keep track in the statistics of our new shiny custom state machine. 3090 if (ReachedUnknownParallelRegions.empty()) { 3091 ++NumOpenMPTargetRegionKernelsCustomStateMachineWithoutFallback; 3092 3093 auto Remark = [&](OptimizationRemark OR) { 3094 return OR << "Rewriting generic-mode kernel with a customized state " 3095 "machine."; 3096 }; 3097 A.emitRemark<OptimizationRemark>(KernelInitCB, "OMP131", Remark); 3098 } else { 3099 ++NumOpenMPTargetRegionKernelsCustomStateMachineWithFallback; 3100 3101 auto Remark = [&](OptimizationRemarkAnalysis OR) { 3102 return OR << "Generic-mode kernel is executed with a customized state " 3103 "machine that requires a fallback."; 3104 }; 3105 A.emitRemark<OptimizationRemarkAnalysis>(KernelInitCB, "OMP132", Remark); 3106 3107 // Tell the user why we ended up with a fallback. 3108 for (CallBase *UnknownParallelRegionCB : ReachedUnknownParallelRegions) { 3109 if (!UnknownParallelRegionCB) 3110 continue; 3111 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 3112 return ORA << "Call may contain unknown parallel regions. Use " 3113 << "`__attribute__((assume(\"omp_no_parallelism\")))` to " 3114 "override."; 3115 }; 3116 A.emitRemark<OptimizationRemarkAnalysis>(UnknownParallelRegionCB, 3117 "OMP133", Remark); 3118 } 3119 } 3120 3121 // Create all the blocks: 3122 // 3123 // InitCB = __kmpc_target_init(...) 3124 // bool IsWorker = InitCB >= 0; 3125 // if (IsWorker) { 3126 // SMBeginBB: __kmpc_barrier_simple_spmd(...); 3127 // void *WorkFn; 3128 // bool Active = __kmpc_kernel_parallel(&WorkFn); 3129 // if (!WorkFn) return; 3130 // SMIsActiveCheckBB: if (Active) { 3131 // SMIfCascadeCurrentBB: if (WorkFn == <ParFn0>) 3132 // ParFn0(...); 3133 // SMIfCascadeCurrentBB: else if (WorkFn == <ParFn1>) 3134 // ParFn1(...); 3135 // ... 3136 // SMIfCascadeCurrentBB: else 3137 // ((WorkFnTy*)WorkFn)(...); 3138 // SMEndParallelBB: __kmpc_kernel_end_parallel(...); 3139 // } 3140 // SMDoneBB: __kmpc_barrier_simple_spmd(...); 3141 // goto SMBeginBB; 3142 // } 3143 // UserCodeEntryBB: // user code 3144 // __kmpc_target_deinit(...) 3145 // 3146 Function *Kernel = getAssociatedFunction(); 3147 assert(Kernel && "Expected an associated function!"); 3148 3149 BasicBlock *InitBB = KernelInitCB->getParent(); 3150 BasicBlock *UserCodeEntryBB = InitBB->splitBasicBlock( 3151 KernelInitCB->getNextNode(), "thread.user_code.check"); 3152 BasicBlock *StateMachineBeginBB = BasicBlock::Create( 3153 Ctx, "worker_state_machine.begin", Kernel, UserCodeEntryBB); 3154 BasicBlock *StateMachineFinishedBB = BasicBlock::Create( 3155 Ctx, "worker_state_machine.finished", Kernel, UserCodeEntryBB); 3156 BasicBlock *StateMachineIsActiveCheckBB = BasicBlock::Create( 3157 Ctx, "worker_state_machine.is_active.check", Kernel, UserCodeEntryBB); 3158 BasicBlock *StateMachineIfCascadeCurrentBB = 3159 BasicBlock::Create(Ctx, "worker_state_machine.parallel_region.check", 3160 Kernel, UserCodeEntryBB); 3161 BasicBlock *StateMachineEndParallelBB = 3162 BasicBlock::Create(Ctx, "worker_state_machine.parallel_region.end", 3163 Kernel, UserCodeEntryBB); 3164 BasicBlock *StateMachineDoneBarrierBB = BasicBlock::Create( 3165 Ctx, "worker_state_machine.done.barrier", Kernel, UserCodeEntryBB); 3166 A.registerManifestAddedBasicBlock(*InitBB); 3167 A.registerManifestAddedBasicBlock(*UserCodeEntryBB); 3168 A.registerManifestAddedBasicBlock(*StateMachineBeginBB); 3169 A.registerManifestAddedBasicBlock(*StateMachineFinishedBB); 3170 A.registerManifestAddedBasicBlock(*StateMachineIsActiveCheckBB); 3171 A.registerManifestAddedBasicBlock(*StateMachineIfCascadeCurrentBB); 3172 A.registerManifestAddedBasicBlock(*StateMachineEndParallelBB); 3173 A.registerManifestAddedBasicBlock(*StateMachineDoneBarrierBB); 3174 3175 const DebugLoc &DLoc = KernelInitCB->getDebugLoc(); 3176 ReturnInst::Create(Ctx, StateMachineFinishedBB)->setDebugLoc(DLoc); 3177 3178 InitBB->getTerminator()->eraseFromParent(); 3179 Instruction *IsWorker = 3180 ICmpInst::Create(ICmpInst::ICmp, llvm::CmpInst::ICMP_NE, KernelInitCB, 3181 ConstantInt::get(KernelInitCB->getType(), -1), 3182 "thread.is_worker", InitBB); 3183 IsWorker->setDebugLoc(DLoc); 3184 BranchInst::Create(StateMachineBeginBB, UserCodeEntryBB, IsWorker, InitBB); 3185 3186 // Create local storage for the work function pointer. 3187 Type *VoidPtrTy = Type::getInt8PtrTy(Ctx); 3188 AllocaInst *WorkFnAI = new AllocaInst(VoidPtrTy, 0, "worker.work_fn.addr", 3189 &Kernel->getEntryBlock().front()); 3190 WorkFnAI->setDebugLoc(DLoc); 3191 3192 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 3193 OMPInfoCache.OMPBuilder.updateToLocation( 3194 OpenMPIRBuilder::LocationDescription( 3195 IRBuilder<>::InsertPoint(StateMachineBeginBB, 3196 StateMachineBeginBB->end()), 3197 DLoc)); 3198 3199 Value *Ident = KernelInitCB->getArgOperand(0); 3200 Value *GTid = KernelInitCB; 3201 3202 Module &M = *Kernel->getParent(); 3203 FunctionCallee BarrierFn = 3204 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( 3205 M, OMPRTL___kmpc_barrier_simple_spmd); 3206 CallInst::Create(BarrierFn, {Ident, GTid}, "", StateMachineBeginBB) 3207 ->setDebugLoc(DLoc); 3208 3209 FunctionCallee KernelParallelFn = 3210 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( 3211 M, OMPRTL___kmpc_kernel_parallel); 3212 Instruction *IsActiveWorker = CallInst::Create( 3213 KernelParallelFn, {WorkFnAI}, "worker.is_active", StateMachineBeginBB); 3214 IsActiveWorker->setDebugLoc(DLoc); 3215 Instruction *WorkFn = new LoadInst(VoidPtrTy, WorkFnAI, "worker.work_fn", 3216 StateMachineBeginBB); 3217 WorkFn->setDebugLoc(DLoc); 3218 3219 FunctionType *ParallelRegionFnTy = FunctionType::get( 3220 Type::getVoidTy(Ctx), {Type::getInt16Ty(Ctx), Type::getInt32Ty(Ctx)}, 3221 false); 3222 Value *WorkFnCast = BitCastInst::CreatePointerBitCastOrAddrSpaceCast( 3223 WorkFn, ParallelRegionFnTy->getPointerTo(), "worker.work_fn.addr_cast", 3224 StateMachineBeginBB); 3225 3226 Instruction *IsDone = 3227 ICmpInst::Create(ICmpInst::ICmp, llvm::CmpInst::ICMP_EQ, WorkFn, 3228 Constant::getNullValue(VoidPtrTy), "worker.is_done", 3229 StateMachineBeginBB); 3230 IsDone->setDebugLoc(DLoc); 3231 BranchInst::Create(StateMachineFinishedBB, StateMachineIsActiveCheckBB, 3232 IsDone, StateMachineBeginBB) 3233 ->setDebugLoc(DLoc); 3234 3235 BranchInst::Create(StateMachineIfCascadeCurrentBB, 3236 StateMachineDoneBarrierBB, IsActiveWorker, 3237 StateMachineIsActiveCheckBB) 3238 ->setDebugLoc(DLoc); 3239 3240 Value *ZeroArg = 3241 Constant::getNullValue(ParallelRegionFnTy->getParamType(0)); 3242 3243 // Now that we have most of the CFG skeleton it is time for the if-cascade 3244 // that checks the function pointer we got from the runtime against the 3245 // parallel regions we expect, if there are any. 3246 for (int i = 0, e = ReachedKnownParallelRegions.size(); i < e; ++i) { 3247 auto *ParallelRegion = ReachedKnownParallelRegions[i]; 3248 BasicBlock *PRExecuteBB = BasicBlock::Create( 3249 Ctx, "worker_state_machine.parallel_region.execute", Kernel, 3250 StateMachineEndParallelBB); 3251 CallInst::Create(ParallelRegion, {ZeroArg, GTid}, "", PRExecuteBB) 3252 ->setDebugLoc(DLoc); 3253 BranchInst::Create(StateMachineEndParallelBB, PRExecuteBB) 3254 ->setDebugLoc(DLoc); 3255 3256 BasicBlock *PRNextBB = 3257 BasicBlock::Create(Ctx, "worker_state_machine.parallel_region.check", 3258 Kernel, StateMachineEndParallelBB); 3259 3260 // Check if we need to compare the pointer at all or if we can just 3261 // call the parallel region function. 3262 Value *IsPR; 3263 if (i + 1 < e || !ReachedUnknownParallelRegions.empty()) { 3264 Instruction *CmpI = ICmpInst::Create( 3265 ICmpInst::ICmp, llvm::CmpInst::ICMP_EQ, WorkFnCast, ParallelRegion, 3266 "worker.check_parallel_region", StateMachineIfCascadeCurrentBB); 3267 CmpI->setDebugLoc(DLoc); 3268 IsPR = CmpI; 3269 } else { 3270 IsPR = ConstantInt::getTrue(Ctx); 3271 } 3272 3273 BranchInst::Create(PRExecuteBB, PRNextBB, IsPR, 3274 StateMachineIfCascadeCurrentBB) 3275 ->setDebugLoc(DLoc); 3276 StateMachineIfCascadeCurrentBB = PRNextBB; 3277 } 3278 3279 // At the end of the if-cascade we place the indirect function pointer call 3280 // in case we might need it, that is if there can be parallel regions we 3281 // have not handled in the if-cascade above. 3282 if (!ReachedUnknownParallelRegions.empty()) { 3283 StateMachineIfCascadeCurrentBB->setName( 3284 "worker_state_machine.parallel_region.fallback.execute"); 3285 CallInst::Create(ParallelRegionFnTy, WorkFnCast, {ZeroArg, GTid}, "", 3286 StateMachineIfCascadeCurrentBB) 3287 ->setDebugLoc(DLoc); 3288 } 3289 BranchInst::Create(StateMachineEndParallelBB, 3290 StateMachineIfCascadeCurrentBB) 3291 ->setDebugLoc(DLoc); 3292 3293 CallInst::Create(OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( 3294 M, OMPRTL___kmpc_kernel_end_parallel), 3295 {}, "", StateMachineEndParallelBB) 3296 ->setDebugLoc(DLoc); 3297 BranchInst::Create(StateMachineDoneBarrierBB, StateMachineEndParallelBB) 3298 ->setDebugLoc(DLoc); 3299 3300 CallInst::Create(BarrierFn, {Ident, GTid}, "", StateMachineDoneBarrierBB) 3301 ->setDebugLoc(DLoc); 3302 BranchInst::Create(StateMachineBeginBB, StateMachineDoneBarrierBB) 3303 ->setDebugLoc(DLoc); 3304 3305 return ChangeStatus::CHANGED; 3306 } 3307 3308 /// Fixpoint iteration update function. Will be called every time a dependence 3309 /// changed its state (and in the beginning). 3310 ChangeStatus updateImpl(Attributor &A) override { 3311 KernelInfoState StateBefore = getState(); 3312 3313 // Callback to check a read/write instruction. 3314 auto CheckRWInst = [&](Instruction &I) { 3315 // We handle calls later. 3316 if (isa<CallBase>(I)) 3317 return true; 3318 // We only care about write effects. 3319 if (!I.mayWriteToMemory()) 3320 return true; 3321 if (auto *SI = dyn_cast<StoreInst>(&I)) { 3322 SmallVector<const Value *> Objects; 3323 getUnderlyingObjects(SI->getPointerOperand(), Objects); 3324 if (llvm::all_of(Objects, 3325 [](const Value *Obj) { return isa<AllocaInst>(Obj); })) 3326 return true; 3327 } 3328 // For now we give up on everything but stores. 3329 SPMDCompatibilityTracker.insert(&I); 3330 return true; 3331 }; 3332 3333 bool UsedAssumedInformationInCheckRWInst = false; 3334 if (!SPMDCompatibilityTracker.isAtFixpoint()) 3335 if (!A.checkForAllReadWriteInstructions( 3336 CheckRWInst, *this, UsedAssumedInformationInCheckRWInst)) 3337 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 3338 3339 if (!IsKernelEntry) { 3340 updateReachingKernelEntries(A); 3341 updateParallelLevels(A); 3342 } 3343 3344 // Callback to check a call instruction. 3345 bool AllSPMDStatesWereFixed = true; 3346 auto CheckCallInst = [&](Instruction &I) { 3347 auto &CB = cast<CallBase>(I); 3348 auto &CBAA = A.getAAFor<AAKernelInfo>( 3349 *this, IRPosition::callsite_function(CB), DepClassTy::OPTIONAL); 3350 getState() ^= CBAA.getState(); 3351 AllSPMDStatesWereFixed &= CBAA.SPMDCompatibilityTracker.isAtFixpoint(); 3352 return true; 3353 }; 3354 3355 bool UsedAssumedInformationInCheckCallInst = false; 3356 if (!A.checkForAllCallLikeInstructions( 3357 CheckCallInst, *this, UsedAssumedInformationInCheckCallInst)) 3358 return indicatePessimisticFixpoint(); 3359 3360 // If we haven't used any assumed information for the SPMD state we can fix 3361 // it. 3362 if (!UsedAssumedInformationInCheckRWInst && 3363 !UsedAssumedInformationInCheckCallInst && AllSPMDStatesWereFixed) 3364 SPMDCompatibilityTracker.indicateOptimisticFixpoint(); 3365 3366 return StateBefore == getState() ? ChangeStatus::UNCHANGED 3367 : ChangeStatus::CHANGED; 3368 } 3369 3370 private: 3371 /// Update info regarding reaching kernels. 3372 void updateReachingKernelEntries(Attributor &A) { 3373 auto PredCallSite = [&](AbstractCallSite ACS) { 3374 Function *Caller = ACS.getInstruction()->getFunction(); 3375 3376 assert(Caller && "Caller is nullptr"); 3377 3378 auto &CAA = A.getOrCreateAAFor<AAKernelInfo>( 3379 IRPosition::function(*Caller), this, DepClassTy::REQUIRED); 3380 if (CAA.ReachingKernelEntries.isValidState()) { 3381 ReachingKernelEntries ^= CAA.ReachingKernelEntries; 3382 return true; 3383 } 3384 3385 // We lost track of the caller of the associated function, any kernel 3386 // could reach now. 3387 ReachingKernelEntries.indicatePessimisticFixpoint(); 3388 3389 return true; 3390 }; 3391 3392 bool AllCallSitesKnown; 3393 if (!A.checkForAllCallSites(PredCallSite, *this, 3394 true /* RequireAllCallSites */, 3395 AllCallSitesKnown)) 3396 ReachingKernelEntries.indicatePessimisticFixpoint(); 3397 } 3398 3399 /// Update info regarding parallel levels. 3400 void updateParallelLevels(Attributor &A) { 3401 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 3402 OMPInformationCache::RuntimeFunctionInfo &Parallel51RFI = 3403 OMPInfoCache.RFIs[OMPRTL___kmpc_parallel_51]; 3404 3405 auto PredCallSite = [&](AbstractCallSite ACS) { 3406 Function *Caller = ACS.getInstruction()->getFunction(); 3407 3408 assert(Caller && "Caller is nullptr"); 3409 3410 auto &CAA = 3411 A.getOrCreateAAFor<AAKernelInfo>(IRPosition::function(*Caller)); 3412 if (CAA.ParallelLevels.isValidState()) { 3413 // Any function that is called by `__kmpc_parallel_51` will not be 3414 // folded as the parallel level in the function is updated. In order to 3415 // get it right, all the analysis would depend on the implentation. That 3416 // said, if in the future any change to the implementation, the analysis 3417 // could be wrong. As a consequence, we are just conservative here. 3418 if (Caller == Parallel51RFI.Declaration) { 3419 ParallelLevels.indicatePessimisticFixpoint(); 3420 return true; 3421 } 3422 3423 ParallelLevels ^= CAA.ParallelLevels; 3424 3425 return true; 3426 } 3427 3428 // We lost track of the caller of the associated function, any kernel 3429 // could reach now. 3430 ParallelLevels.indicatePessimisticFixpoint(); 3431 3432 return true; 3433 }; 3434 3435 bool AllCallSitesKnown = true; 3436 if (!A.checkForAllCallSites(PredCallSite, *this, 3437 true /* RequireAllCallSites */, 3438 AllCallSitesKnown)) 3439 ParallelLevels.indicatePessimisticFixpoint(); 3440 } 3441 }; 3442 3443 /// The call site kernel info abstract attribute, basically, what can we say 3444 /// about a call site with regards to the KernelInfoState. For now this simply 3445 /// forwards the information from the callee. 3446 struct AAKernelInfoCallSite : AAKernelInfo { 3447 AAKernelInfoCallSite(const IRPosition &IRP, Attributor &A) 3448 : AAKernelInfo(IRP, A) {} 3449 3450 /// See AbstractAttribute::initialize(...). 3451 void initialize(Attributor &A) override { 3452 AAKernelInfo::initialize(A); 3453 3454 CallBase &CB = cast<CallBase>(getAssociatedValue()); 3455 Function *Callee = getAssociatedFunction(); 3456 3457 // Helper to lookup an assumption string. 3458 auto HasAssumption = [](Function *Fn, StringRef AssumptionStr) { 3459 return Fn && hasAssumption(*Fn, AssumptionStr); 3460 }; 3461 3462 // Check for SPMD-mode assumptions. 3463 if (HasAssumption(Callee, "ompx_spmd_amenable")) 3464 SPMDCompatibilityTracker.indicateOptimisticFixpoint(); 3465 3466 // First weed out calls we do not care about, that is readonly/readnone 3467 // calls, intrinsics, and "no_openmp" calls. Neither of these can reach a 3468 // parallel region or anything else we are looking for. 3469 if (!CB.mayWriteToMemory() || isa<IntrinsicInst>(CB)) { 3470 indicateOptimisticFixpoint(); 3471 return; 3472 } 3473 3474 // Next we check if we know the callee. If it is a known OpenMP function 3475 // we will handle them explicitly in the switch below. If it is not, we 3476 // will use an AAKernelInfo object on the callee to gather information and 3477 // merge that into the current state. The latter happens in the updateImpl. 3478 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 3479 const auto &It = OMPInfoCache.RuntimeFunctionIDMap.find(Callee); 3480 if (It == OMPInfoCache.RuntimeFunctionIDMap.end()) { 3481 // Unknown caller or declarations are not analyzable, we give up. 3482 if (!Callee || !A.isFunctionIPOAmendable(*Callee)) { 3483 3484 // Unknown callees might contain parallel regions, except if they have 3485 // an appropriate assumption attached. 3486 if (!(HasAssumption(Callee, "omp_no_openmp") || 3487 HasAssumption(Callee, "omp_no_parallelism"))) 3488 ReachedUnknownParallelRegions.insert(&CB); 3489 3490 // If SPMDCompatibilityTracker is not fixed, we need to give up on the 3491 // idea we can run something unknown in SPMD-mode. 3492 if (!SPMDCompatibilityTracker.isAtFixpoint()) 3493 SPMDCompatibilityTracker.insert(&CB); 3494 3495 // We have updated the state for this unknown call properly, there won't 3496 // be any change so we indicate a fixpoint. 3497 indicateOptimisticFixpoint(); 3498 } 3499 // If the callee is known and can be used in IPO, we will update the state 3500 // based on the callee state in updateImpl. 3501 return; 3502 } 3503 3504 const unsigned int WrapperFunctionArgNo = 6; 3505 RuntimeFunction RF = It->getSecond(); 3506 switch (RF) { 3507 // All the functions we know are compatible with SPMD mode. 3508 case OMPRTL___kmpc_is_spmd_exec_mode: 3509 case OMPRTL___kmpc_for_static_fini: 3510 case OMPRTL___kmpc_global_thread_num: 3511 case OMPRTL___kmpc_get_hardware_num_threads_in_block: 3512 case OMPRTL___kmpc_get_hardware_num_blocks: 3513 case OMPRTL___kmpc_single: 3514 case OMPRTL___kmpc_end_single: 3515 case OMPRTL___kmpc_master: 3516 case OMPRTL___kmpc_end_master: 3517 case OMPRTL___kmpc_barrier: 3518 break; 3519 case OMPRTL___kmpc_for_static_init_4: 3520 case OMPRTL___kmpc_for_static_init_4u: 3521 case OMPRTL___kmpc_for_static_init_8: 3522 case OMPRTL___kmpc_for_static_init_8u: { 3523 // Check the schedule and allow static schedule in SPMD mode. 3524 unsigned ScheduleArgOpNo = 2; 3525 auto *ScheduleTypeCI = 3526 dyn_cast<ConstantInt>(CB.getArgOperand(ScheduleArgOpNo)); 3527 unsigned ScheduleTypeVal = 3528 ScheduleTypeCI ? ScheduleTypeCI->getZExtValue() : 0; 3529 switch (OMPScheduleType(ScheduleTypeVal)) { 3530 case OMPScheduleType::Static: 3531 case OMPScheduleType::StaticChunked: 3532 case OMPScheduleType::Distribute: 3533 case OMPScheduleType::DistributeChunked: 3534 break; 3535 default: 3536 SPMDCompatibilityTracker.insert(&CB); 3537 break; 3538 }; 3539 } break; 3540 case OMPRTL___kmpc_target_init: 3541 KernelInitCB = &CB; 3542 break; 3543 case OMPRTL___kmpc_target_deinit: 3544 KernelDeinitCB = &CB; 3545 break; 3546 case OMPRTL___kmpc_parallel_51: 3547 if (auto *ParallelRegion = dyn_cast<Function>( 3548 CB.getArgOperand(WrapperFunctionArgNo)->stripPointerCasts())) { 3549 ReachedKnownParallelRegions.insert(ParallelRegion); 3550 break; 3551 } 3552 // The condition above should usually get the parallel region function 3553 // pointer and record it. In the off chance it doesn't we assume the 3554 // worst. 3555 ReachedUnknownParallelRegions.insert(&CB); 3556 break; 3557 case OMPRTL___kmpc_omp_task: 3558 // We do not look into tasks right now, just give up. 3559 SPMDCompatibilityTracker.insert(&CB); 3560 ReachedUnknownParallelRegions.insert(&CB); 3561 break; 3562 case OMPRTL___kmpc_alloc_shared: 3563 case OMPRTL___kmpc_free_shared: 3564 // Return without setting a fixpoint, to be resolved in updateImpl. 3565 return; 3566 default: 3567 // Unknown OpenMP runtime calls cannot be executed in SPMD-mode, 3568 // generally. 3569 SPMDCompatibilityTracker.insert(&CB); 3570 break; 3571 } 3572 // All other OpenMP runtime calls will not reach parallel regions so they 3573 // can be safely ignored for now. Since it is a known OpenMP runtime call we 3574 // have now modeled all effects and there is no need for any update. 3575 indicateOptimisticFixpoint(); 3576 } 3577 3578 ChangeStatus updateImpl(Attributor &A) override { 3579 // TODO: Once we have call site specific value information we can provide 3580 // call site specific liveness information and then it makes 3581 // sense to specialize attributes for call sites arguments instead of 3582 // redirecting requests to the callee argument. 3583 Function *F = getAssociatedFunction(); 3584 3585 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 3586 const auto &It = OMPInfoCache.RuntimeFunctionIDMap.find(F); 3587 3588 // If F is not a runtime function, propagate the AAKernelInfo of the callee. 3589 if (It == OMPInfoCache.RuntimeFunctionIDMap.end()) { 3590 const IRPosition &FnPos = IRPosition::function(*F); 3591 auto &FnAA = A.getAAFor<AAKernelInfo>(*this, FnPos, DepClassTy::REQUIRED); 3592 if (getState() == FnAA.getState()) 3593 return ChangeStatus::UNCHANGED; 3594 getState() = FnAA.getState(); 3595 return ChangeStatus::CHANGED; 3596 } 3597 3598 // F is a runtime function that allocates or frees memory, check 3599 // AAHeapToStack and AAHeapToShared. 3600 KernelInfoState StateBefore = getState(); 3601 assert((It->getSecond() == OMPRTL___kmpc_alloc_shared || 3602 It->getSecond() == OMPRTL___kmpc_free_shared) && 3603 "Expected a __kmpc_alloc_shared or __kmpc_free_shared runtime call"); 3604 3605 CallBase &CB = cast<CallBase>(getAssociatedValue()); 3606 3607 auto &HeapToStackAA = A.getAAFor<AAHeapToStack>( 3608 *this, IRPosition::function(*CB.getCaller()), DepClassTy::OPTIONAL); 3609 auto &HeapToSharedAA = A.getAAFor<AAHeapToShared>( 3610 *this, IRPosition::function(*CB.getCaller()), DepClassTy::OPTIONAL); 3611 3612 RuntimeFunction RF = It->getSecond(); 3613 3614 switch (RF) { 3615 // If neither HeapToStack nor HeapToShared assume the call is removed, 3616 // assume SPMD incompatibility. 3617 case OMPRTL___kmpc_alloc_shared: 3618 if (!HeapToStackAA.isAssumedHeapToStack(CB) && 3619 !HeapToSharedAA.isAssumedHeapToShared(CB)) 3620 SPMDCompatibilityTracker.insert(&CB); 3621 break; 3622 case OMPRTL___kmpc_free_shared: 3623 if (!HeapToStackAA.isAssumedHeapToStackRemovedFree(CB) && 3624 !HeapToSharedAA.isAssumedHeapToSharedRemovedFree(CB)) 3625 SPMDCompatibilityTracker.insert(&CB); 3626 break; 3627 default: 3628 SPMDCompatibilityTracker.insert(&CB); 3629 } 3630 3631 return StateBefore == getState() ? ChangeStatus::UNCHANGED 3632 : ChangeStatus::CHANGED; 3633 } 3634 }; 3635 3636 struct AAFoldRuntimeCall 3637 : public StateWrapper<BooleanState, AbstractAttribute> { 3638 using Base = StateWrapper<BooleanState, AbstractAttribute>; 3639 3640 AAFoldRuntimeCall(const IRPosition &IRP, Attributor &A) : Base(IRP) {} 3641 3642 /// Statistics are tracked as part of manifest for now. 3643 void trackStatistics() const override {} 3644 3645 /// Create an abstract attribute biew for the position \p IRP. 3646 static AAFoldRuntimeCall &createForPosition(const IRPosition &IRP, 3647 Attributor &A); 3648 3649 /// See AbstractAttribute::getName() 3650 const std::string getName() const override { return "AAFoldRuntimeCall"; } 3651 3652 /// See AbstractAttribute::getIdAddr() 3653 const char *getIdAddr() const override { return &ID; } 3654 3655 /// This function should return true if the type of the \p AA is 3656 /// AAFoldRuntimeCall 3657 static bool classof(const AbstractAttribute *AA) { 3658 return (AA->getIdAddr() == &ID); 3659 } 3660 3661 static const char ID; 3662 }; 3663 3664 struct AAFoldRuntimeCallCallSiteReturned : AAFoldRuntimeCall { 3665 AAFoldRuntimeCallCallSiteReturned(const IRPosition &IRP, Attributor &A) 3666 : AAFoldRuntimeCall(IRP, A) {} 3667 3668 /// See AbstractAttribute::getAsStr() 3669 const std::string getAsStr() const override { 3670 if (!isValidState()) 3671 return "<invalid>"; 3672 3673 std::string Str("simplified value: "); 3674 3675 if (!SimplifiedValue.hasValue()) 3676 return Str + std::string("none"); 3677 3678 if (!SimplifiedValue.getValue()) 3679 return Str + std::string("nullptr"); 3680 3681 if (ConstantInt *CI = dyn_cast<ConstantInt>(SimplifiedValue.getValue())) 3682 return Str + std::to_string(CI->getSExtValue()); 3683 3684 return Str + std::string("unknown"); 3685 } 3686 3687 void initialize(Attributor &A) override { 3688 Function *Callee = getAssociatedFunction(); 3689 3690 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 3691 const auto &It = OMPInfoCache.RuntimeFunctionIDMap.find(Callee); 3692 assert(It != OMPInfoCache.RuntimeFunctionIDMap.end() && 3693 "Expected a known OpenMP runtime function"); 3694 3695 RFKind = It->getSecond(); 3696 3697 CallBase &CB = cast<CallBase>(getAssociatedValue()); 3698 A.registerSimplificationCallback( 3699 IRPosition::callsite_returned(CB), 3700 [&](const IRPosition &IRP, const AbstractAttribute *AA, 3701 bool &UsedAssumedInformation) -> Optional<Value *> { 3702 assert((isValidState() || (SimplifiedValue.hasValue() && 3703 SimplifiedValue.getValue() == nullptr)) && 3704 "Unexpected invalid state!"); 3705 3706 if (!isAtFixpoint()) { 3707 UsedAssumedInformation = true; 3708 if (AA) 3709 A.recordDependence(*this, *AA, DepClassTy::OPTIONAL); 3710 } 3711 return SimplifiedValue; 3712 }); 3713 } 3714 3715 ChangeStatus updateImpl(Attributor &A) override { 3716 ChangeStatus Changed = ChangeStatus::UNCHANGED; 3717 switch (RFKind) { 3718 case OMPRTL___kmpc_is_spmd_exec_mode: 3719 Changed |= foldIsSPMDExecMode(A); 3720 break; 3721 case OMPRTL___kmpc_is_generic_main_thread_id: 3722 Changed |= foldIsGenericMainThread(A); 3723 break; 3724 case OMPRTL___kmpc_parallel_level: 3725 Changed |= foldParallelLevel(A); 3726 break; 3727 case OMPRTL___kmpc_get_hardware_num_threads_in_block: 3728 Changed = Changed | foldKernelFnAttribute(A, "omp_target_thread_limit"); 3729 break; 3730 case OMPRTL___kmpc_get_hardware_num_blocks: 3731 Changed = Changed | foldKernelFnAttribute(A, "omp_target_num_teams"); 3732 break; 3733 default: 3734 llvm_unreachable("Unhandled OpenMP runtime function!"); 3735 } 3736 3737 return Changed; 3738 } 3739 3740 ChangeStatus manifest(Attributor &A) override { 3741 ChangeStatus Changed = ChangeStatus::UNCHANGED; 3742 3743 if (SimplifiedValue.hasValue() && SimplifiedValue.getValue()) { 3744 Instruction &CB = *getCtxI(); 3745 A.changeValueAfterManifest(CB, **SimplifiedValue); 3746 A.deleteAfterManifest(CB); 3747 3748 LLVM_DEBUG(dbgs() << TAG << "Folding runtime call: " << CB << " with " 3749 << **SimplifiedValue << "\n"); 3750 3751 Changed = ChangeStatus::CHANGED; 3752 } 3753 3754 return Changed; 3755 } 3756 3757 ChangeStatus indicatePessimisticFixpoint() override { 3758 SimplifiedValue = nullptr; 3759 return AAFoldRuntimeCall::indicatePessimisticFixpoint(); 3760 } 3761 3762 private: 3763 /// Fold __kmpc_is_spmd_exec_mode into a constant if possible. 3764 ChangeStatus foldIsSPMDExecMode(Attributor &A) { 3765 Optional<Value *> SimplifiedValueBefore = SimplifiedValue; 3766 3767 unsigned AssumedSPMDCount = 0, KnownSPMDCount = 0; 3768 unsigned AssumedNonSPMDCount = 0, KnownNonSPMDCount = 0; 3769 auto &CallerKernelInfoAA = A.getAAFor<AAKernelInfo>( 3770 *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED); 3771 3772 if (!CallerKernelInfoAA.ReachingKernelEntries.isValidState()) 3773 return indicatePessimisticFixpoint(); 3774 3775 for (Kernel K : CallerKernelInfoAA.ReachingKernelEntries) { 3776 auto &AA = A.getAAFor<AAKernelInfo>(*this, IRPosition::function(*K), 3777 DepClassTy::REQUIRED); 3778 3779 if (!AA.isValidState()) { 3780 SimplifiedValue = nullptr; 3781 return indicatePessimisticFixpoint(); 3782 } 3783 3784 if (AA.SPMDCompatibilityTracker.isAssumed()) { 3785 if (AA.SPMDCompatibilityTracker.isAtFixpoint()) 3786 ++KnownSPMDCount; 3787 else 3788 ++AssumedSPMDCount; 3789 } else { 3790 if (AA.SPMDCompatibilityTracker.isAtFixpoint()) 3791 ++KnownNonSPMDCount; 3792 else 3793 ++AssumedNonSPMDCount; 3794 } 3795 } 3796 3797 if ((AssumedSPMDCount + KnownSPMDCount) && 3798 (AssumedNonSPMDCount + KnownNonSPMDCount)) 3799 return indicatePessimisticFixpoint(); 3800 3801 auto &Ctx = getAnchorValue().getContext(); 3802 if (KnownSPMDCount || AssumedSPMDCount) { 3803 assert(KnownNonSPMDCount == 0 && AssumedNonSPMDCount == 0 && 3804 "Expected only SPMD kernels!"); 3805 // All reaching kernels are in SPMD mode. Update all function calls to 3806 // __kmpc_is_spmd_exec_mode to 1. 3807 SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), true); 3808 } else if (KnownNonSPMDCount || AssumedNonSPMDCount) { 3809 assert(KnownSPMDCount == 0 && AssumedSPMDCount == 0 && 3810 "Expected only non-SPMD kernels!"); 3811 // All reaching kernels are in non-SPMD mode. Update all function 3812 // calls to __kmpc_is_spmd_exec_mode to 0. 3813 SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), false); 3814 } else { 3815 // We have empty reaching kernels, therefore we cannot tell if the 3816 // associated call site can be folded. At this moment, SimplifiedValue 3817 // must be none. 3818 assert(!SimplifiedValue.hasValue() && "SimplifiedValue should be none"); 3819 } 3820 3821 return SimplifiedValue == SimplifiedValueBefore ? ChangeStatus::UNCHANGED 3822 : ChangeStatus::CHANGED; 3823 } 3824 3825 /// Fold __kmpc_is_generic_main_thread_id into a constant if possible. 3826 ChangeStatus foldIsGenericMainThread(Attributor &A) { 3827 Optional<Value *> SimplifiedValueBefore = SimplifiedValue; 3828 3829 CallBase &CB = cast<CallBase>(getAssociatedValue()); 3830 Function *F = CB.getFunction(); 3831 const auto &ExecutionDomainAA = A.getAAFor<AAExecutionDomain>( 3832 *this, IRPosition::function(*F), DepClassTy::REQUIRED); 3833 3834 if (!ExecutionDomainAA.isValidState()) 3835 return indicatePessimisticFixpoint(); 3836 3837 auto &Ctx = getAnchorValue().getContext(); 3838 if (ExecutionDomainAA.isExecutedByInitialThreadOnly(CB)) 3839 SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), true); 3840 else 3841 return indicatePessimisticFixpoint(); 3842 3843 return SimplifiedValue == SimplifiedValueBefore ? ChangeStatus::UNCHANGED 3844 : ChangeStatus::CHANGED; 3845 } 3846 3847 /// Fold __kmpc_parallel_level into a constant if possible. 3848 ChangeStatus foldParallelLevel(Attributor &A) { 3849 Optional<Value *> SimplifiedValueBefore = SimplifiedValue; 3850 3851 auto &CallerKernelInfoAA = A.getAAFor<AAKernelInfo>( 3852 *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED); 3853 3854 if (!CallerKernelInfoAA.ParallelLevels.isValidState()) 3855 return indicatePessimisticFixpoint(); 3856 3857 if (!CallerKernelInfoAA.ReachingKernelEntries.isValidState()) 3858 return indicatePessimisticFixpoint(); 3859 3860 if (CallerKernelInfoAA.ReachingKernelEntries.empty()) { 3861 assert(!SimplifiedValue.hasValue() && 3862 "SimplifiedValue should keep none at this point"); 3863 return ChangeStatus::UNCHANGED; 3864 } 3865 3866 unsigned AssumedSPMDCount = 0, KnownSPMDCount = 0; 3867 unsigned AssumedNonSPMDCount = 0, KnownNonSPMDCount = 0; 3868 for (Kernel K : CallerKernelInfoAA.ReachingKernelEntries) { 3869 auto &AA = A.getAAFor<AAKernelInfo>(*this, IRPosition::function(*K), 3870 DepClassTy::REQUIRED); 3871 if (!AA.SPMDCompatibilityTracker.isValidState()) 3872 return indicatePessimisticFixpoint(); 3873 3874 if (AA.SPMDCompatibilityTracker.isAssumed()) { 3875 if (AA.SPMDCompatibilityTracker.isAtFixpoint()) 3876 ++KnownSPMDCount; 3877 else 3878 ++AssumedSPMDCount; 3879 } else { 3880 if (AA.SPMDCompatibilityTracker.isAtFixpoint()) 3881 ++KnownNonSPMDCount; 3882 else 3883 ++AssumedNonSPMDCount; 3884 } 3885 } 3886 3887 if ((AssumedSPMDCount + KnownSPMDCount) && 3888 (AssumedNonSPMDCount + KnownNonSPMDCount)) 3889 return indicatePessimisticFixpoint(); 3890 3891 auto &Ctx = getAnchorValue().getContext(); 3892 // If the caller can only be reached by SPMD kernel entries, the parallel 3893 // level is 1. Similarly, if the caller can only be reached by non-SPMD 3894 // kernel entries, it is 0. 3895 if (AssumedSPMDCount || KnownSPMDCount) { 3896 assert(KnownNonSPMDCount == 0 && AssumedNonSPMDCount == 0 && 3897 "Expected only SPMD kernels!"); 3898 SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), 1); 3899 } else { 3900 assert(KnownSPMDCount == 0 && AssumedSPMDCount == 0 && 3901 "Expected only non-SPMD kernels!"); 3902 SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), 0); 3903 } 3904 return SimplifiedValue == SimplifiedValueBefore ? ChangeStatus::UNCHANGED 3905 : ChangeStatus::CHANGED; 3906 } 3907 3908 ChangeStatus foldKernelFnAttribute(Attributor &A, llvm::StringRef Attr) { 3909 // Specialize only if all the calls agree with the attribute constant value 3910 int32_t CurrentAttrValue = -1; 3911 Optional<Value *> SimplifiedValueBefore = SimplifiedValue; 3912 3913 auto &CallerKernelInfoAA = A.getAAFor<AAKernelInfo>( 3914 *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED); 3915 3916 if (!CallerKernelInfoAA.ReachingKernelEntries.isValidState()) 3917 return indicatePessimisticFixpoint(); 3918 3919 // Iterate over the kernels that reach this function 3920 for (Kernel K : CallerKernelInfoAA.ReachingKernelEntries) { 3921 int32_t NextAttrVal = -1; 3922 if (K->hasFnAttribute(Attr)) 3923 NextAttrVal = 3924 std::stoi(K->getFnAttribute(Attr).getValueAsString().str()); 3925 3926 if (NextAttrVal == -1 || 3927 (CurrentAttrValue != -1 && CurrentAttrValue != NextAttrVal)) 3928 return indicatePessimisticFixpoint(); 3929 CurrentAttrValue = NextAttrVal; 3930 } 3931 3932 if (CurrentAttrValue != -1) { 3933 auto &Ctx = getAnchorValue().getContext(); 3934 SimplifiedValue = 3935 ConstantInt::get(Type::getInt32Ty(Ctx), CurrentAttrValue); 3936 } 3937 return SimplifiedValue == SimplifiedValueBefore ? ChangeStatus::UNCHANGED 3938 : ChangeStatus::CHANGED; 3939 } 3940 3941 /// An optional value the associated value is assumed to fold to. That is, we 3942 /// assume the associated value (which is a call) can be replaced by this 3943 /// simplified value. 3944 Optional<Value *> SimplifiedValue; 3945 3946 /// The runtime function kind of the callee of the associated call site. 3947 RuntimeFunction RFKind; 3948 }; 3949 3950 } // namespace 3951 3952 /// Register folding callsite 3953 void OpenMPOpt::registerFoldRuntimeCall(RuntimeFunction RF) { 3954 auto &RFI = OMPInfoCache.RFIs[RF]; 3955 RFI.foreachUse(SCC, [&](Use &U, Function &F) { 3956 CallInst *CI = OpenMPOpt::getCallIfRegularCall(U, &RFI); 3957 if (!CI) 3958 return false; 3959 A.getOrCreateAAFor<AAFoldRuntimeCall>( 3960 IRPosition::callsite_returned(*CI), /* QueryingAA */ nullptr, 3961 DepClassTy::NONE, /* ForceUpdate */ false, 3962 /* UpdateAfterInit */ false); 3963 return false; 3964 }); 3965 } 3966 3967 void OpenMPOpt::registerAAs(bool IsModulePass) { 3968 if (SCC.empty()) 3969 3970 return; 3971 if (IsModulePass) { 3972 // Ensure we create the AAKernelInfo AAs first and without triggering an 3973 // update. This will make sure we register all value simplification 3974 // callbacks before any other AA has the chance to create an AAValueSimplify 3975 // or similar. 3976 for (Function *Kernel : OMPInfoCache.Kernels) 3977 A.getOrCreateAAFor<AAKernelInfo>( 3978 IRPosition::function(*Kernel), /* QueryingAA */ nullptr, 3979 DepClassTy::NONE, /* ForceUpdate */ false, 3980 /* UpdateAfterInit */ false); 3981 3982 3983 registerFoldRuntimeCall(OMPRTL___kmpc_is_generic_main_thread_id); 3984 registerFoldRuntimeCall(OMPRTL___kmpc_is_spmd_exec_mode); 3985 registerFoldRuntimeCall(OMPRTL___kmpc_parallel_level); 3986 registerFoldRuntimeCall(OMPRTL___kmpc_get_hardware_num_threads_in_block); 3987 registerFoldRuntimeCall(OMPRTL___kmpc_get_hardware_num_blocks); 3988 } 3989 3990 // Create CallSite AA for all Getters. 3991 for (int Idx = 0; Idx < OMPInfoCache.ICVs.size() - 1; ++Idx) { 3992 auto ICVInfo = OMPInfoCache.ICVs[static_cast<InternalControlVar>(Idx)]; 3993 3994 auto &GetterRFI = OMPInfoCache.RFIs[ICVInfo.Getter]; 3995 3996 auto CreateAA = [&](Use &U, Function &Caller) { 3997 CallInst *CI = OpenMPOpt::getCallIfRegularCall(U, &GetterRFI); 3998 if (!CI) 3999 return false; 4000 4001 auto &CB = cast<CallBase>(*CI); 4002 4003 IRPosition CBPos = IRPosition::callsite_function(CB); 4004 A.getOrCreateAAFor<AAICVTracker>(CBPos); 4005 return false; 4006 }; 4007 4008 GetterRFI.foreachUse(SCC, CreateAA); 4009 } 4010 auto &GlobalizationRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared]; 4011 auto CreateAA = [&](Use &U, Function &F) { 4012 A.getOrCreateAAFor<AAHeapToShared>(IRPosition::function(F)); 4013 return false; 4014 }; 4015 GlobalizationRFI.foreachUse(SCC, CreateAA); 4016 4017 // Create an ExecutionDomain AA for every function and a HeapToStack AA for 4018 // every function if there is a device kernel. 4019 if (!isOpenMPDevice(M)) 4020 return; 4021 4022 for (auto *F : SCC) { 4023 if (F->isDeclaration()) 4024 continue; 4025 4026 A.getOrCreateAAFor<AAExecutionDomain>(IRPosition::function(*F)); 4027 A.getOrCreateAAFor<AAHeapToStack>(IRPosition::function(*F)); 4028 4029 for (auto &I : instructions(*F)) { 4030 if (auto *LI = dyn_cast<LoadInst>(&I)) { 4031 bool UsedAssumedInformation = false; 4032 A.getAssumedSimplified(IRPosition::value(*LI), /* AA */ nullptr, 4033 UsedAssumedInformation); 4034 } 4035 } 4036 } 4037 } 4038 4039 const char AAICVTracker::ID = 0; 4040 const char AAKernelInfo::ID = 0; 4041 const char AAExecutionDomain::ID = 0; 4042 const char AAHeapToShared::ID = 0; 4043 const char AAFoldRuntimeCall::ID = 0; 4044 4045 AAICVTracker &AAICVTracker::createForPosition(const IRPosition &IRP, 4046 Attributor &A) { 4047 AAICVTracker *AA = nullptr; 4048 switch (IRP.getPositionKind()) { 4049 case IRPosition::IRP_INVALID: 4050 case IRPosition::IRP_FLOAT: 4051 case IRPosition::IRP_ARGUMENT: 4052 case IRPosition::IRP_CALL_SITE_ARGUMENT: 4053 llvm_unreachable("ICVTracker can only be created for function position!"); 4054 case IRPosition::IRP_RETURNED: 4055 AA = new (A.Allocator) AAICVTrackerFunctionReturned(IRP, A); 4056 break; 4057 case IRPosition::IRP_CALL_SITE_RETURNED: 4058 AA = new (A.Allocator) AAICVTrackerCallSiteReturned(IRP, A); 4059 break; 4060 case IRPosition::IRP_CALL_SITE: 4061 AA = new (A.Allocator) AAICVTrackerCallSite(IRP, A); 4062 break; 4063 case IRPosition::IRP_FUNCTION: 4064 AA = new (A.Allocator) AAICVTrackerFunction(IRP, A); 4065 break; 4066 } 4067 4068 return *AA; 4069 } 4070 4071 AAExecutionDomain &AAExecutionDomain::createForPosition(const IRPosition &IRP, 4072 Attributor &A) { 4073 AAExecutionDomainFunction *AA = nullptr; 4074 switch (IRP.getPositionKind()) { 4075 case IRPosition::IRP_INVALID: 4076 case IRPosition::IRP_FLOAT: 4077 case IRPosition::IRP_ARGUMENT: 4078 case IRPosition::IRP_CALL_SITE_ARGUMENT: 4079 case IRPosition::IRP_RETURNED: 4080 case IRPosition::IRP_CALL_SITE_RETURNED: 4081 case IRPosition::IRP_CALL_SITE: 4082 llvm_unreachable( 4083 "AAExecutionDomain can only be created for function position!"); 4084 case IRPosition::IRP_FUNCTION: 4085 AA = new (A.Allocator) AAExecutionDomainFunction(IRP, A); 4086 break; 4087 } 4088 4089 return *AA; 4090 } 4091 4092 AAHeapToShared &AAHeapToShared::createForPosition(const IRPosition &IRP, 4093 Attributor &A) { 4094 AAHeapToSharedFunction *AA = nullptr; 4095 switch (IRP.getPositionKind()) { 4096 case IRPosition::IRP_INVALID: 4097 case IRPosition::IRP_FLOAT: 4098 case IRPosition::IRP_ARGUMENT: 4099 case IRPosition::IRP_CALL_SITE_ARGUMENT: 4100 case IRPosition::IRP_RETURNED: 4101 case IRPosition::IRP_CALL_SITE_RETURNED: 4102 case IRPosition::IRP_CALL_SITE: 4103 llvm_unreachable( 4104 "AAHeapToShared can only be created for function position!"); 4105 case IRPosition::IRP_FUNCTION: 4106 AA = new (A.Allocator) AAHeapToSharedFunction(IRP, A); 4107 break; 4108 } 4109 4110 return *AA; 4111 } 4112 4113 AAKernelInfo &AAKernelInfo::createForPosition(const IRPosition &IRP, 4114 Attributor &A) { 4115 AAKernelInfo *AA = nullptr; 4116 switch (IRP.getPositionKind()) { 4117 case IRPosition::IRP_INVALID: 4118 case IRPosition::IRP_FLOAT: 4119 case IRPosition::IRP_ARGUMENT: 4120 case IRPosition::IRP_RETURNED: 4121 case IRPosition::IRP_CALL_SITE_RETURNED: 4122 case IRPosition::IRP_CALL_SITE_ARGUMENT: 4123 llvm_unreachable("KernelInfo can only be created for function position!"); 4124 case IRPosition::IRP_CALL_SITE: 4125 AA = new (A.Allocator) AAKernelInfoCallSite(IRP, A); 4126 break; 4127 case IRPosition::IRP_FUNCTION: 4128 AA = new (A.Allocator) AAKernelInfoFunction(IRP, A); 4129 break; 4130 } 4131 4132 return *AA; 4133 } 4134 4135 AAFoldRuntimeCall &AAFoldRuntimeCall::createForPosition(const IRPosition &IRP, 4136 Attributor &A) { 4137 AAFoldRuntimeCall *AA = nullptr; 4138 switch (IRP.getPositionKind()) { 4139 case IRPosition::IRP_INVALID: 4140 case IRPosition::IRP_FLOAT: 4141 case IRPosition::IRP_ARGUMENT: 4142 case IRPosition::IRP_RETURNED: 4143 case IRPosition::IRP_FUNCTION: 4144 case IRPosition::IRP_CALL_SITE: 4145 case IRPosition::IRP_CALL_SITE_ARGUMENT: 4146 llvm_unreachable("KernelInfo can only be created for call site position!"); 4147 case IRPosition::IRP_CALL_SITE_RETURNED: 4148 AA = new (A.Allocator) AAFoldRuntimeCallCallSiteReturned(IRP, A); 4149 break; 4150 } 4151 4152 return *AA; 4153 } 4154 4155 PreservedAnalyses OpenMPOptPass::run(Module &M, ModuleAnalysisManager &AM) { 4156 if (!containsOpenMP(M)) 4157 return PreservedAnalyses::all(); 4158 if (DisableOpenMPOptimizations) 4159 return PreservedAnalyses::all(); 4160 4161 FunctionAnalysisManager &FAM = 4162 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 4163 KernelSet Kernels = getDeviceKernels(M); 4164 4165 auto IsCalled = [&](Function &F) { 4166 if (Kernels.contains(&F)) 4167 return true; 4168 for (const User *U : F.users()) 4169 if (!isa<BlockAddress>(U)) 4170 return true; 4171 return false; 4172 }; 4173 4174 auto EmitRemark = [&](Function &F) { 4175 auto &ORE = FAM.getResult<OptimizationRemarkEmitterAnalysis>(F); 4176 ORE.emit([&]() { 4177 OptimizationRemarkAnalysis ORA(DEBUG_TYPE, "OMP140", &F); 4178 return ORA << "Could not internalize function. " 4179 << "Some optimizations may not be possible."; 4180 }); 4181 }; 4182 4183 // Create internal copies of each function if this is a kernel Module. This 4184 // allows iterprocedural passes to see every call edge. 4185 DenseSet<const Function *> InternalizedFuncs; 4186 if (isOpenMPDevice(M)) 4187 for (Function &F : M) 4188 if (!F.isDeclaration() && !Kernels.contains(&F) && IsCalled(F) && 4189 !DisableInternalization) { 4190 if (Attributor::internalizeFunction(F, /* Force */ true)) { 4191 InternalizedFuncs.insert(&F); 4192 } else if (!F.hasLocalLinkage() && !F.hasFnAttribute(Attribute::Cold)) { 4193 EmitRemark(F); 4194 } 4195 } 4196 4197 // Look at every function in the Module unless it was internalized. 4198 SmallVector<Function *, 16> SCC; 4199 for (Function &F : M) 4200 if (!F.isDeclaration() && !InternalizedFuncs.contains(&F)) 4201 SCC.push_back(&F); 4202 4203 if (SCC.empty()) 4204 return PreservedAnalyses::all(); 4205 4206 AnalysisGetter AG(FAM); 4207 4208 auto OREGetter = [&FAM](Function *F) -> OptimizationRemarkEmitter & { 4209 return FAM.getResult<OptimizationRemarkEmitterAnalysis>(*F); 4210 }; 4211 4212 BumpPtrAllocator Allocator; 4213 CallGraphUpdater CGUpdater; 4214 4215 SetVector<Function *> Functions(SCC.begin(), SCC.end()); 4216 OMPInformationCache InfoCache(M, AG, Allocator, /*CGSCC*/ Functions, Kernels); 4217 4218 unsigned MaxFixpointIterations = (isOpenMPDevice(M)) ? 128 : 32; 4219 Attributor A(Functions, InfoCache, CGUpdater, nullptr, true, false, 4220 MaxFixpointIterations, OREGetter, DEBUG_TYPE); 4221 4222 OpenMPOpt OMPOpt(SCC, CGUpdater, OREGetter, InfoCache, A); 4223 bool Changed = OMPOpt.run(true); 4224 if (Changed) 4225 return PreservedAnalyses::none(); 4226 4227 return PreservedAnalyses::all(); 4228 } 4229 4230 PreservedAnalyses OpenMPOptCGSCCPass::run(LazyCallGraph::SCC &C, 4231 CGSCCAnalysisManager &AM, 4232 LazyCallGraph &CG, 4233 CGSCCUpdateResult &UR) { 4234 if (!containsOpenMP(*C.begin()->getFunction().getParent())) 4235 return PreservedAnalyses::all(); 4236 if (DisableOpenMPOptimizations) 4237 return PreservedAnalyses::all(); 4238 4239 SmallVector<Function *, 16> SCC; 4240 // If there are kernels in the module, we have to run on all SCC's. 4241 for (LazyCallGraph::Node &N : C) { 4242 Function *Fn = &N.getFunction(); 4243 SCC.push_back(Fn); 4244 } 4245 4246 if (SCC.empty()) 4247 return PreservedAnalyses::all(); 4248 4249 Module &M = *C.begin()->getFunction().getParent(); 4250 4251 KernelSet Kernels = getDeviceKernels(M); 4252 4253 FunctionAnalysisManager &FAM = 4254 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager(); 4255 4256 AnalysisGetter AG(FAM); 4257 4258 auto OREGetter = [&FAM](Function *F) -> OptimizationRemarkEmitter & { 4259 return FAM.getResult<OptimizationRemarkEmitterAnalysis>(*F); 4260 }; 4261 4262 BumpPtrAllocator Allocator; 4263 CallGraphUpdater CGUpdater; 4264 CGUpdater.initialize(CG, C, AM, UR); 4265 4266 SetVector<Function *> Functions(SCC.begin(), SCC.end()); 4267 OMPInformationCache InfoCache(*(Functions.back()->getParent()), AG, Allocator, 4268 /*CGSCC*/ Functions, Kernels); 4269 4270 unsigned MaxFixpointIterations = (isOpenMPDevice(M)) ? 128 : 32; 4271 Attributor A(Functions, InfoCache, CGUpdater, nullptr, false, true, 4272 MaxFixpointIterations, OREGetter, DEBUG_TYPE); 4273 4274 OpenMPOpt OMPOpt(SCC, CGUpdater, OREGetter, InfoCache, A); 4275 bool Changed = OMPOpt.run(false); 4276 if (Changed) 4277 return PreservedAnalyses::none(); 4278 4279 return PreservedAnalyses::all(); 4280 } 4281 4282 namespace { 4283 4284 struct OpenMPOptCGSCCLegacyPass : public CallGraphSCCPass { 4285 CallGraphUpdater CGUpdater; 4286 static char ID; 4287 4288 OpenMPOptCGSCCLegacyPass() : CallGraphSCCPass(ID) { 4289 initializeOpenMPOptCGSCCLegacyPassPass(*PassRegistry::getPassRegistry()); 4290 } 4291 4292 void getAnalysisUsage(AnalysisUsage &AU) const override { 4293 CallGraphSCCPass::getAnalysisUsage(AU); 4294 } 4295 4296 bool runOnSCC(CallGraphSCC &CGSCC) override { 4297 if (!containsOpenMP(CGSCC.getCallGraph().getModule())) 4298 return false; 4299 if (DisableOpenMPOptimizations || skipSCC(CGSCC)) 4300 return false; 4301 4302 SmallVector<Function *, 16> SCC; 4303 // If there are kernels in the module, we have to run on all SCC's. 4304 for (CallGraphNode *CGN : CGSCC) { 4305 Function *Fn = CGN->getFunction(); 4306 if (!Fn || Fn->isDeclaration()) 4307 continue; 4308 SCC.push_back(Fn); 4309 } 4310 4311 if (SCC.empty()) 4312 return false; 4313 4314 Module &M = CGSCC.getCallGraph().getModule(); 4315 KernelSet Kernels = getDeviceKernels(M); 4316 4317 CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph(); 4318 CGUpdater.initialize(CG, CGSCC); 4319 4320 // Maintain a map of functions to avoid rebuilding the ORE 4321 DenseMap<Function *, std::unique_ptr<OptimizationRemarkEmitter>> OREMap; 4322 auto OREGetter = [&OREMap](Function *F) -> OptimizationRemarkEmitter & { 4323 std::unique_ptr<OptimizationRemarkEmitter> &ORE = OREMap[F]; 4324 if (!ORE) 4325 ORE = std::make_unique<OptimizationRemarkEmitter>(F); 4326 return *ORE; 4327 }; 4328 4329 AnalysisGetter AG; 4330 SetVector<Function *> Functions(SCC.begin(), SCC.end()); 4331 BumpPtrAllocator Allocator; 4332 OMPInformationCache InfoCache(*(Functions.back()->getParent()), AG, 4333 Allocator, 4334 /*CGSCC*/ Functions, Kernels); 4335 4336 unsigned MaxFixpointIterations = (isOpenMPDevice(M)) ? 128 : 32; 4337 Attributor A(Functions, InfoCache, CGUpdater, nullptr, false, true, 4338 MaxFixpointIterations, OREGetter, DEBUG_TYPE); 4339 4340 OpenMPOpt OMPOpt(SCC, CGUpdater, OREGetter, InfoCache, A); 4341 return OMPOpt.run(false); 4342 } 4343 4344 bool doFinalization(CallGraph &CG) override { return CGUpdater.finalize(); } 4345 }; 4346 4347 } // end anonymous namespace 4348 4349 KernelSet llvm::omp::getDeviceKernels(Module &M) { 4350 // TODO: Create a more cross-platform way of determining device kernels. 4351 NamedMDNode *MD = M.getOrInsertNamedMetadata("nvvm.annotations"); 4352 KernelSet Kernels; 4353 4354 if (!MD) 4355 return Kernels; 4356 4357 for (auto *Op : MD->operands()) { 4358 if (Op->getNumOperands() < 2) 4359 continue; 4360 MDString *KindID = dyn_cast<MDString>(Op->getOperand(1)); 4361 if (!KindID || KindID->getString() != "kernel") 4362 continue; 4363 4364 Function *KernelFn = 4365 mdconst::dyn_extract_or_null<Function>(Op->getOperand(0)); 4366 if (!KernelFn) 4367 continue; 4368 4369 ++NumOpenMPTargetRegionKernels; 4370 4371 Kernels.insert(KernelFn); 4372 } 4373 4374 return Kernels; 4375 } 4376 4377 bool llvm::omp::containsOpenMP(Module &M) { 4378 Metadata *MD = M.getModuleFlag("openmp"); 4379 if (!MD) 4380 return false; 4381 4382 return true; 4383 } 4384 4385 bool llvm::omp::isOpenMPDevice(Module &M) { 4386 Metadata *MD = M.getModuleFlag("openmp-device"); 4387 if (!MD) 4388 return false; 4389 4390 return true; 4391 } 4392 4393 char OpenMPOptCGSCCLegacyPass::ID = 0; 4394 4395 INITIALIZE_PASS_BEGIN(OpenMPOptCGSCCLegacyPass, "openmp-opt-cgscc", 4396 "OpenMP specific optimizations", false, false) 4397 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass) 4398 INITIALIZE_PASS_END(OpenMPOptCGSCCLegacyPass, "openmp-opt-cgscc", 4399 "OpenMP specific optimizations", false, false) 4400 4401 Pass *llvm::createOpenMPOptCGSCCLegacyPass() { 4402 return new OpenMPOptCGSCCLegacyPass(); 4403 } 4404