1 //===-- IPO/OpenMPOpt.cpp - Collection of OpenMP specific optimizations ---===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // OpenMP specific optimizations: 10 // 11 // - Deduplication of runtime calls, e.g., omp_get_thread_num. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/IPO/OpenMPOpt.h" 16 17 #include "llvm/ADT/EnumeratedArray.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/CallGraph.h" 20 #include "llvm/Analysis/CallGraphSCCPass.h" 21 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 22 #include "llvm/Frontend/OpenMP/OMPConstants.h" 23 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 24 #include "llvm/InitializePasses.h" 25 #include "llvm/Support/CommandLine.h" 26 #include "llvm/Transforms/IPO.h" 27 #include "llvm/Transforms/Utils/CallGraphUpdater.h" 28 29 using namespace llvm; 30 using namespace omp; 31 using namespace types; 32 33 #define DEBUG_TYPE "openmp-opt" 34 35 static cl::opt<bool> DisableOpenMPOptimizations( 36 "openmp-opt-disable", cl::ZeroOrMore, 37 cl::desc("Disable OpenMP specific optimizations."), cl::Hidden, 38 cl::init(false)); 39 40 STATISTIC(NumOpenMPRuntimeCallsDeduplicated, 41 "Number of OpenMP runtime calls deduplicated"); 42 STATISTIC(NumOpenMPRuntimeFunctionsIdentified, 43 "Number of OpenMP runtime functions identified"); 44 STATISTIC(NumOpenMPRuntimeFunctionUsesIdentified, 45 "Number of OpenMP runtime function uses identified"); 46 47 #if !defined(NDEBUG) 48 static constexpr auto TAG = "[" DEBUG_TYPE "]"; 49 #endif 50 51 namespace { 52 struct OpenMPOpt { 53 54 using OptimizationRemarkGetter = 55 function_ref<OptimizationRemarkEmitter &(Function *)>; 56 57 OpenMPOpt(SmallVectorImpl<Function *> &SCC, 58 SmallPtrSetImpl<Function *> &ModuleSlice, 59 CallGraphUpdater &CGUpdater, OptimizationRemarkGetter OREGetter) 60 : M(*(*SCC.begin())->getParent()), SCC(SCC), ModuleSlice(ModuleSlice), 61 OMPBuilder(M), CGUpdater(CGUpdater), OREGetter(OREGetter) { 62 initializeTypes(M); 63 initializeRuntimeFunctions(); 64 OMPBuilder.initialize(); 65 } 66 67 /// Generic information that describes a runtime function 68 struct RuntimeFunctionInfo { 69 70 /// The kind, as described by the RuntimeFunction enum. 71 RuntimeFunction Kind; 72 73 /// The name of the function. 74 StringRef Name; 75 76 /// Flag to indicate a variadic function. 77 bool IsVarArg; 78 79 /// The return type of the function. 80 Type *ReturnType; 81 82 /// The argument types of the function. 83 SmallVector<Type *, 8> ArgumentTypes; 84 85 /// The declaration if available. 86 Function *Declaration = nullptr; 87 88 /// Uses of this runtime function per function containing the use. 89 using UseVector = SmallVector<Use *, 16>; 90 91 /// Return the vector of uses in function \p F. 92 UseVector &getOrCreateUseVector(Function *F) { 93 std::unique_ptr<UseVector> &UV = UsesMap[F]; 94 if (!UV) 95 UV = std::make_unique<UseVector>(); 96 return *UV; 97 } 98 99 /// Return the vector of uses in function \p F or `nullptr` if there are 100 /// none. 101 const UseVector *getUseVector(Function &F) const { 102 auto I = UsesMap.find(&F); 103 if (I != UsesMap.end()) 104 return I->second.get(); 105 return nullptr; 106 } 107 108 /// Return how many functions contain uses of this runtime function. 109 size_t getNumFunctionsWithUses() const { return UsesMap.size(); } 110 111 /// Return the number of arguments (or the minimal number for variadic 112 /// functions). 113 size_t getNumArgs() const { return ArgumentTypes.size(); } 114 115 /// Run the callback \p CB on each use and forget the use if the result is 116 /// true. The callback will be fed the function in which the use was 117 /// encountered as second argument. 118 void foreachUse(function_ref<bool(Use &, Function &)> CB) { 119 SmallVector<unsigned, 8> ToBeDeleted; 120 for (auto &It : UsesMap) { 121 ToBeDeleted.clear(); 122 unsigned Idx = 0; 123 UseVector &UV = *It.second; 124 for (Use *U : UV) { 125 if (CB(*U, *It.first)) 126 ToBeDeleted.push_back(Idx); 127 ++Idx; 128 } 129 130 // Remove the to-be-deleted indices in reverse order as prior 131 // modifcations will not modify the smaller indices. 132 while (!ToBeDeleted.empty()) { 133 unsigned Idx = ToBeDeleted.pop_back_val(); 134 UV[Idx] = UV.back(); 135 UV.pop_back(); 136 } 137 } 138 } 139 140 private: 141 /// Map from functions to all uses of this runtime function contained in 142 /// them. 143 DenseMap<Function *, std::unique_ptr<UseVector>> UsesMap; 144 }; 145 146 /// Run all OpenMP optimizations on the underlying SCC/ModuleSlice. 147 bool run() { 148 bool Changed = false; 149 150 LLVM_DEBUG(dbgs() << TAG << "Run on SCC with " << SCC.size() 151 << " functions in a slice with " << ModuleSlice.size() 152 << " functions\n"); 153 154 Changed |= deduplicateRuntimeCalls(); 155 Changed |= deleteParallelRegions(); 156 157 return Changed; 158 } 159 160 private: 161 /// Try to delete parallel regions if possible. 162 bool deleteParallelRegions() { 163 const unsigned CallbackCalleeOperand = 2; 164 165 RuntimeFunctionInfo &RFI = RFIs[OMPRTL___kmpc_fork_call]; 166 if (!RFI.Declaration) 167 return false; 168 169 bool Changed = false; 170 auto DeleteCallCB = [&](Use &U, Function &) { 171 CallInst *CI = getCallIfRegularCall(U); 172 if (!CI) 173 return false; 174 auto *Fn = dyn_cast<Function>( 175 CI->getArgOperand(CallbackCalleeOperand)->stripPointerCasts()); 176 if (!Fn) 177 return false; 178 if (!Fn->onlyReadsMemory()) 179 return false; 180 if (!Fn->hasFnAttribute(Attribute::WillReturn)) 181 return false; 182 183 LLVM_DEBUG(dbgs() << TAG << "Delete read-only parallel region in " 184 << CI->getCaller()->getName() << "\n"); 185 186 auto Remark = [&](OptimizationRemark OR) { 187 return OR << "Parallel region in " 188 << ore::NV("OpenMPParallelDelete", CI->getCaller()->getName()) 189 << " deleted"; 190 }; 191 emitRemark<OptimizationRemark>(CI, "OpenMPParallelRegionDeletion", 192 Remark); 193 194 CGUpdater.removeCallSite(*CI); 195 CI->eraseFromParent(); 196 Changed = true; 197 return true; 198 }; 199 200 RFI.foreachUse(DeleteCallCB); 201 202 return Changed; 203 } 204 205 /// Try to eliminiate runtime calls by reusing existing ones. 206 bool deduplicateRuntimeCalls() { 207 bool Changed = false; 208 209 RuntimeFunction DeduplicableRuntimeCallIDs[] = { 210 OMPRTL_omp_get_num_threads, 211 OMPRTL_omp_in_parallel, 212 OMPRTL_omp_get_cancellation, 213 OMPRTL_omp_get_thread_limit, 214 OMPRTL_omp_get_supported_active_levels, 215 OMPRTL_omp_get_level, 216 OMPRTL_omp_get_ancestor_thread_num, 217 OMPRTL_omp_get_team_size, 218 OMPRTL_omp_get_active_level, 219 OMPRTL_omp_in_final, 220 OMPRTL_omp_get_proc_bind, 221 OMPRTL_omp_get_num_places, 222 OMPRTL_omp_get_num_procs, 223 OMPRTL_omp_get_place_num, 224 OMPRTL_omp_get_partition_num_places, 225 OMPRTL_omp_get_partition_place_nums}; 226 227 // Global-tid is handled separatly. 228 SmallSetVector<Value *, 16> GTIdArgs; 229 collectGlobalThreadIdArguments(GTIdArgs); 230 LLVM_DEBUG(dbgs() << TAG << "Found " << GTIdArgs.size() 231 << " global thread ID arguments\n"); 232 233 for (Function *F : SCC) { 234 for (auto DeduplicableRuntimeCallID : DeduplicableRuntimeCallIDs) 235 deduplicateRuntimeCalls(*F, RFIs[DeduplicableRuntimeCallID]); 236 237 // __kmpc_global_thread_num is special as we can replace it with an 238 // argument in enough cases to make it worth trying. 239 Value *GTIdArg = nullptr; 240 for (Argument &Arg : F->args()) 241 if (GTIdArgs.count(&Arg)) { 242 GTIdArg = &Arg; 243 break; 244 } 245 Changed |= deduplicateRuntimeCalls( 246 *F, RFIs[OMPRTL___kmpc_global_thread_num], GTIdArg); 247 } 248 249 return Changed; 250 } 251 252 static Value *combinedIdentStruct(Value *CurrentIdent, Value *NextIdent, 253 bool GlobalOnly, bool &SingleChoice) { 254 if (CurrentIdent == NextIdent) 255 return CurrentIdent; 256 257 // TODO: Figure out how to actually combine multiple debug locations. For 258 // now we just keep an existing one if there is a single choice. 259 if (!GlobalOnly || isa<GlobalValue>(NextIdent)) { 260 SingleChoice = !CurrentIdent; 261 return NextIdent; 262 } 263 return nullptr; 264 } 265 266 /// Return an `struct ident_t*` value that represents the ones used in the 267 /// calls of \p RFI inside of \p F. If \p GlobalOnly is true, we will not 268 /// return a local `struct ident_t*`. For now, if we cannot find a suitable 269 /// return value we create one from scratch. We also do not yet combine 270 /// information, e.g., the source locations, see combinedIdentStruct. 271 Value *getCombinedIdentFromCallUsesIn(RuntimeFunctionInfo &RFI, Function &F, 272 bool GlobalOnly) { 273 bool SingleChoice = true; 274 Value *Ident = nullptr; 275 auto CombineIdentStruct = [&](Use &U, Function &Caller) { 276 CallInst *CI = getCallIfRegularCall(U, &RFI); 277 if (!CI || &F != &Caller) 278 return false; 279 Ident = combinedIdentStruct(Ident, CI->getArgOperand(0), 280 /* GlobalOnly */ true, SingleChoice); 281 return false; 282 }; 283 RFI.foreachUse(CombineIdentStruct); 284 285 if (!Ident || !SingleChoice) { 286 // The IRBuilder uses the insertion block to get to the module, this is 287 // unfortunate but we work around it for now. 288 if (!OMPBuilder.getInsertionPoint().getBlock()) 289 OMPBuilder.updateToLocation(OpenMPIRBuilder::InsertPointTy( 290 &F.getEntryBlock(), F.getEntryBlock().begin())); 291 // Create a fallback location if non was found. 292 // TODO: Use the debug locations of the calls instead. 293 Constant *Loc = OMPBuilder.getOrCreateDefaultSrcLocStr(); 294 Ident = OMPBuilder.getOrCreateIdent(Loc); 295 } 296 return Ident; 297 } 298 299 /// Try to eliminiate calls of \p RFI in \p F by reusing an existing one or 300 /// \p ReplVal if given. 301 bool deduplicateRuntimeCalls(Function &F, RuntimeFunctionInfo &RFI, 302 Value *ReplVal = nullptr) { 303 auto *UV = RFI.getUseVector(F); 304 if (!UV || UV->size() + (ReplVal != nullptr) < 2) 305 return false; 306 307 LLVM_DEBUG(dbgs() << TAG << "Deduplicate " << UV->size() << " uses of " 308 << RFI.Name 309 << (ReplVal ? " with an existing value\n" : "\n") 310 << "\n"); 311 assert((!ReplVal || (isa<Argument>(ReplVal) && 312 cast<Argument>(ReplVal)->getParent() == &F)) && 313 "Unexpected replacement value!"); 314 315 // TODO: Use dominance to find a good position instead. 316 auto CanBeMoved = [](CallBase &CB) { 317 unsigned NumArgs = CB.getNumArgOperands(); 318 if (NumArgs == 0) 319 return true; 320 if (CB.getArgOperand(0)->getType() != IdentPtr) 321 return false; 322 for (unsigned u = 1; u < NumArgs; ++u) 323 if (isa<Instruction>(CB.getArgOperand(u))) 324 return false; 325 return true; 326 }; 327 328 if (!ReplVal) { 329 for (Use *U : *UV) 330 if (CallInst *CI = getCallIfRegularCall(*U, &RFI)) { 331 if (!CanBeMoved(*CI)) 332 continue; 333 334 auto Remark = [&](OptimizationRemark OR) { 335 auto newLoc = &*F.getEntryBlock().getFirstInsertionPt(); 336 return OR << "OpenMP runtime call " 337 << ore::NV("OpenMPOptRuntime", RFI.Name) << " moved to " 338 << ore::NV("OpenMPRuntimeMoves", newLoc->getDebugLoc()); 339 }; 340 emitRemark<OptimizationRemark>(CI, "OpenMPRuntimeCodeMotion", Remark); 341 342 CI->moveBefore(&*F.getEntryBlock().getFirstInsertionPt()); 343 ReplVal = CI; 344 break; 345 } 346 if (!ReplVal) 347 return false; 348 } 349 350 // If we use a call as a replacement value we need to make sure the ident is 351 // valid at the new location. For now we just pick a global one, either 352 // existing and used by one of the calls, or created from scratch. 353 if (CallBase *CI = dyn_cast<CallBase>(ReplVal)) { 354 if (CI->getNumArgOperands() > 0 && 355 CI->getArgOperand(0)->getType() == IdentPtr) { 356 Value *Ident = getCombinedIdentFromCallUsesIn(RFI, F, 357 /* GlobalOnly */ true); 358 CI->setArgOperand(0, Ident); 359 } 360 } 361 362 bool Changed = false; 363 auto ReplaceAndDeleteCB = [&](Use &U, Function &Caller) { 364 CallInst *CI = getCallIfRegularCall(U, &RFI); 365 if (!CI || CI == ReplVal || &F != &Caller) 366 return false; 367 assert(CI->getCaller() == &F && "Unexpected call!"); 368 369 auto Remark = [&](OptimizationRemark OR) { 370 return OR << "OpenMP runtime call " 371 << ore::NV("OpenMPOptRuntime", RFI.Name) << " deduplicated"; 372 }; 373 emitRemark<OptimizationRemark>(CI, "OpenMPRuntimeDeduplicated", Remark); 374 375 CGUpdater.removeCallSite(*CI); 376 CI->replaceAllUsesWith(ReplVal); 377 CI->eraseFromParent(); 378 ++NumOpenMPRuntimeCallsDeduplicated; 379 Changed = true; 380 return true; 381 }; 382 RFI.foreachUse(ReplaceAndDeleteCB); 383 384 return Changed; 385 } 386 387 /// Collect arguments that represent the global thread id in \p GTIdArgs. 388 void collectGlobalThreadIdArguments(SmallSetVector<Value *, 16> >IdArgs) { 389 // TODO: Below we basically perform a fixpoint iteration with a pessimistic 390 // initialization. We could define an AbstractAttribute instead and 391 // run the Attributor here once it can be run as an SCC pass. 392 393 // Helper to check the argument \p ArgNo at all call sites of \p F for 394 // a GTId. 395 auto CallArgOpIsGTId = [&](Function &F, unsigned ArgNo, CallInst &RefCI) { 396 if (!F.hasLocalLinkage()) 397 return false; 398 for (Use &U : F.uses()) { 399 if (CallInst *CI = getCallIfRegularCall(U)) { 400 Value *ArgOp = CI->getArgOperand(ArgNo); 401 if (CI == &RefCI || GTIdArgs.count(ArgOp) || 402 getCallIfRegularCall(*ArgOp, 403 &RFIs[OMPRTL___kmpc_global_thread_num])) 404 continue; 405 } 406 return false; 407 } 408 return true; 409 }; 410 411 // Helper to identify uses of a GTId as GTId arguments. 412 auto AddUserArgs = [&](Value >Id) { 413 for (Use &U : GTId.uses()) 414 if (CallInst *CI = dyn_cast<CallInst>(U.getUser())) 415 if (CI->isArgOperand(&U)) 416 if (Function *Callee = CI->getCalledFunction()) 417 if (CallArgOpIsGTId(*Callee, U.getOperandNo(), *CI)) 418 GTIdArgs.insert(Callee->getArg(U.getOperandNo())); 419 }; 420 421 // The argument users of __kmpc_global_thread_num calls are GTIds. 422 RuntimeFunctionInfo &GlobThreadNumRFI = 423 RFIs[OMPRTL___kmpc_global_thread_num]; 424 GlobThreadNumRFI.foreachUse([&](Use &U, Function &F) { 425 if (CallInst *CI = getCallIfRegularCall(U, &GlobThreadNumRFI)) 426 AddUserArgs(*CI); 427 return false; 428 }); 429 430 // Transitively search for more arguments by looking at the users of the 431 // ones we know already. During the search the GTIdArgs vector is extended 432 // so we cannot cache the size nor can we use a range based for. 433 for (unsigned u = 0; u < GTIdArgs.size(); ++u) 434 AddUserArgs(*GTIdArgs[u]); 435 } 436 437 /// Return the call if \p U is a callee use in a regular call. If \p RFI is 438 /// given it has to be the callee or a nullptr is returned. 439 CallInst *getCallIfRegularCall(Use &U, RuntimeFunctionInfo *RFI = nullptr) { 440 CallInst *CI = dyn_cast<CallInst>(U.getUser()); 441 if (CI && CI->isCallee(&U) && !CI->hasOperandBundles() && 442 (!RFI || CI->getCalledFunction() == RFI->Declaration)) 443 return CI; 444 return nullptr; 445 } 446 447 /// Return the call if \p V is a regular call. If \p RFI is given it has to be 448 /// the callee or a nullptr is returned. 449 CallInst *getCallIfRegularCall(Value &V, RuntimeFunctionInfo *RFI = nullptr) { 450 CallInst *CI = dyn_cast<CallInst>(&V); 451 if (CI && !CI->hasOperandBundles() && 452 (!RFI || CI->getCalledFunction() == RFI->Declaration)) 453 return CI; 454 return nullptr; 455 } 456 457 /// Returns true if the function declaration \p F matches the runtime 458 /// function types, that is, return type \p RTFRetType, and argument types 459 /// \p RTFArgTypes. 460 static bool declMatchesRTFTypes(Function *F, Type *RTFRetType, 461 SmallVector<Type *, 8> &RTFArgTypes) { 462 // TODO: We should output information to the user (under debug output 463 // and via remarks). 464 465 if (!F) 466 return false; 467 if (F->getReturnType() != RTFRetType) 468 return false; 469 if (F->arg_size() != RTFArgTypes.size()) 470 return false; 471 472 auto RTFTyIt = RTFArgTypes.begin(); 473 for (Argument &Arg : F->args()) { 474 if (Arg.getType() != *RTFTyIt) 475 return false; 476 477 ++RTFTyIt; 478 } 479 480 return true; 481 } 482 483 /// Helper to initialize all runtime function information for those defined in 484 /// OpenMPKinds.def. 485 void initializeRuntimeFunctions() { 486 // Helper to collect all uses of the decleration in the UsesMap. 487 auto CollectUses = [&](RuntimeFunctionInfo &RFI) { 488 unsigned NumUses = 0; 489 if (!RFI.Declaration) 490 return NumUses; 491 OMPBuilder.addAttributes(RFI.Kind, *RFI.Declaration); 492 493 NumOpenMPRuntimeFunctionsIdentified += 1; 494 NumOpenMPRuntimeFunctionUsesIdentified += RFI.Declaration->getNumUses(); 495 496 // TODO: We directly convert uses into proper calls and unknown uses. 497 for (Use &U : RFI.Declaration->uses()) { 498 if (Instruction *UserI = dyn_cast<Instruction>(U.getUser())) { 499 if (ModuleSlice.count(UserI->getFunction())) { 500 RFI.getOrCreateUseVector(UserI->getFunction()).push_back(&U); 501 ++NumUses; 502 } 503 } else { 504 RFI.getOrCreateUseVector(nullptr).push_back(&U); 505 ++NumUses; 506 } 507 } 508 return NumUses; 509 }; 510 511 #define OMP_RTL(_Enum, _Name, _IsVarArg, _ReturnType, ...) \ 512 { \ 513 SmallVector<Type *, 8> ArgsTypes({__VA_ARGS__}); \ 514 Function *F = M.getFunction(_Name); \ 515 if (declMatchesRTFTypes(F, _ReturnType, ArgsTypes)) { \ 516 auto &RFI = RFIs[_Enum]; \ 517 RFI.Kind = _Enum; \ 518 RFI.Name = _Name; \ 519 RFI.IsVarArg = _IsVarArg; \ 520 RFI.ReturnType = _ReturnType; \ 521 RFI.ArgumentTypes = std::move(ArgsTypes); \ 522 RFI.Declaration = F; \ 523 unsigned NumUses = CollectUses(RFI); \ 524 (void)NumUses; \ 525 LLVM_DEBUG({ \ 526 dbgs() << TAG << RFI.Name << (RFI.Declaration ? "" : " not") \ 527 << " found\n"; \ 528 if (RFI.Declaration) \ 529 dbgs() << TAG << "-> got " << NumUses << " uses in " \ 530 << RFI.getNumFunctionsWithUses() \ 531 << " different functions.\n"; \ 532 }); \ 533 } \ 534 } 535 #include "llvm/Frontend/OpenMP/OMPKinds.def" 536 537 // TODO: We should attach the attributes defined in OMPKinds.def. 538 } 539 540 /// Emit a remark generically 541 /// 542 /// This template function can be used to generically emit a remark. The 543 /// RemarkKind should be one of the following: 544 /// - OptimizationRemark to indicate a successful optimization attempt 545 /// - OptimizationRemarkMissed to report a failed optimization attempt 546 /// - OptimizationRemarkAnalysis to provide additional information about an 547 /// optimization attempt 548 /// 549 /// The remark is built using a callback function provided by the caller that 550 /// takes a RemarkKind as input and returns a RemarkKind. 551 template <typename RemarkKind, 552 typename RemarkCallBack = function_ref<RemarkKind(RemarkKind &&)>> 553 void emitRemark(Instruction *Inst, StringRef RemarkName, 554 RemarkCallBack &&RemarkCB) { 555 Function *F = Inst->getParent()->getParent(); 556 auto &ORE = OREGetter(F); 557 558 ORE.emit([&]() { 559 return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, Inst)); 560 }); 561 } 562 563 /// The underyling module. 564 Module &M; 565 566 /// The SCC we are operating on. 567 SmallVectorImpl<Function *> &SCC; 568 569 /// The slice of the module we are allowed to look at. 570 SmallPtrSetImpl<Function *> &ModuleSlice; 571 572 /// An OpenMP-IR-Builder instance 573 OpenMPIRBuilder OMPBuilder; 574 575 /// Callback to update the call graph, the first argument is a removed call, 576 /// the second an optional replacement call. 577 CallGraphUpdater &CGUpdater; 578 579 /// Callback to get an OptimizationRemarkEmitter from a Function * 580 OptimizationRemarkGetter OREGetter; 581 582 /// Map from runtime function kind to the runtime function description. 583 EnumeratedArray<RuntimeFunctionInfo, RuntimeFunction, 584 RuntimeFunction::OMPRTL___last> 585 RFIs; 586 }; 587 } // namespace 588 589 PreservedAnalyses OpenMPOptPass::run(LazyCallGraph::SCC &C, 590 CGSCCAnalysisManager &AM, 591 LazyCallGraph &CG, CGSCCUpdateResult &UR) { 592 if (!containsOpenMP(*C.begin()->getFunction().getParent(), OMPInModule)) 593 return PreservedAnalyses::all(); 594 595 if (DisableOpenMPOptimizations) 596 return PreservedAnalyses::all(); 597 598 SmallPtrSet<Function *, 16> ModuleSlice; 599 SmallVector<Function *, 16> SCC; 600 for (LazyCallGraph::Node &N : C) { 601 SCC.push_back(&N.getFunction()); 602 ModuleSlice.insert(SCC.back()); 603 } 604 605 if (SCC.empty()) 606 return PreservedAnalyses::all(); 607 608 auto OREGetter = [&C, &CG, &AM](Function *F) -> OptimizationRemarkEmitter & { 609 FunctionAnalysisManager &FAM = 610 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager(); 611 return FAM.getResult<OptimizationRemarkEmitterAnalysis>(*F); 612 }; 613 614 CallGraphUpdater CGUpdater; 615 CGUpdater.initialize(CG, C, AM, UR); 616 // TODO: Compute the module slice we are allowed to look at. 617 OpenMPOpt OMPOpt(SCC, ModuleSlice, CGUpdater, OREGetter); 618 bool Changed = OMPOpt.run(); 619 (void)Changed; 620 return PreservedAnalyses::all(); 621 } 622 623 namespace { 624 625 struct OpenMPOptLegacyPass : public CallGraphSCCPass { 626 CallGraphUpdater CGUpdater; 627 OpenMPInModule OMPInModule; 628 static char ID; 629 630 OpenMPOptLegacyPass() : CallGraphSCCPass(ID) { 631 initializeOpenMPOptLegacyPassPass(*PassRegistry::getPassRegistry()); 632 } 633 634 void getAnalysisUsage(AnalysisUsage &AU) const override { 635 CallGraphSCCPass::getAnalysisUsage(AU); 636 } 637 638 bool doInitialization(CallGraph &CG) override { 639 // Disable the pass if there is no OpenMP (runtime call) in the module. 640 containsOpenMP(CG.getModule(), OMPInModule); 641 return false; 642 } 643 644 bool runOnSCC(CallGraphSCC &CGSCC) override { 645 if (!containsOpenMP(CGSCC.getCallGraph().getModule(), OMPInModule)) 646 return false; 647 if (DisableOpenMPOptimizations || skipSCC(CGSCC)) 648 return false; 649 650 SmallPtrSet<Function *, 16> ModuleSlice; 651 SmallVector<Function *, 16> SCC; 652 for (CallGraphNode *CGN : CGSCC) 653 if (Function *Fn = CGN->getFunction()) 654 if (!Fn->isDeclaration()) { 655 SCC.push_back(Fn); 656 ModuleSlice.insert(Fn); 657 } 658 659 if (SCC.empty()) 660 return false; 661 662 CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph(); 663 CGUpdater.initialize(CG, CGSCC); 664 665 // Maintain a map of functions to avoid rebuilding the ORE 666 DenseMap<Function *, std::unique_ptr<OptimizationRemarkEmitter>> OREMap; 667 auto OREGetter = [&OREMap](Function *F) -> OptimizationRemarkEmitter & { 668 std::unique_ptr<OptimizationRemarkEmitter> &ORE = OREMap[F]; 669 if (!ORE) 670 ORE = std::make_unique<OptimizationRemarkEmitter>(F); 671 return *ORE; 672 }; 673 674 // TODO: Compute the module slice we are allowed to look at. 675 OpenMPOpt OMPOpt(SCC, ModuleSlice, CGUpdater, OREGetter); 676 return OMPOpt.run(); 677 } 678 679 bool doFinalization(CallGraph &CG) override { return CGUpdater.finalize(); } 680 }; 681 682 } // end anonymous namespace 683 684 bool llvm::omp::containsOpenMP(Module &M, OpenMPInModule &OMPInModule) { 685 if (OMPInModule.isKnown()) 686 return OMPInModule; 687 688 #define OMP_RTL(_Enum, _Name, ...) \ 689 if (M.getFunction(_Name)) \ 690 return OMPInModule = true; 691 #include "llvm/Frontend/OpenMP/OMPKinds.def" 692 return OMPInModule = false; 693 } 694 695 char OpenMPOptLegacyPass::ID = 0; 696 697 INITIALIZE_PASS_BEGIN(OpenMPOptLegacyPass, "openmpopt", 698 "OpenMP specific optimizations", false, false) 699 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass) 700 INITIALIZE_PASS_END(OpenMPOptLegacyPass, "openmpopt", 701 "OpenMP specific optimizations", false, false) 702 703 Pass *llvm::createOpenMPOptLegacyPass() { return new OpenMPOptLegacyPass(); } 704