1 //===-- IPO/OpenMPOpt.cpp - Collection of OpenMP specific optimizations ---===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // OpenMP specific optimizations: 10 // 11 // - Deduplication of runtime calls, e.g., omp_get_thread_num. 12 // - Replacing globalized device memory with stack memory. 13 // - Replacing globalized device memory with shared memory. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/Transforms/IPO/OpenMPOpt.h" 18 19 #include "llvm/ADT/EnumeratedArray.h" 20 #include "llvm/ADT/PostOrderIterator.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/CallGraph.h" 23 #include "llvm/Analysis/CallGraphSCCPass.h" 24 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 25 #include "llvm/Analysis/ValueTracking.h" 26 #include "llvm/Frontend/OpenMP/OMPConstants.h" 27 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 28 #include "llvm/IR/Assumptions.h" 29 #include "llvm/IR/DiagnosticInfo.h" 30 #include "llvm/IR/GlobalValue.h" 31 #include "llvm/IR/Instruction.h" 32 #include "llvm/IR/IntrinsicInst.h" 33 #include "llvm/InitializePasses.h" 34 #include "llvm/Support/CommandLine.h" 35 #include "llvm/Transforms/IPO.h" 36 #include "llvm/Transforms/IPO/Attributor.h" 37 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 38 #include "llvm/Transforms/Utils/CallGraphUpdater.h" 39 #include "llvm/Transforms/Utils/CodeExtractor.h" 40 41 using namespace llvm; 42 using namespace omp; 43 44 #define DEBUG_TYPE "openmp-opt" 45 46 static cl::opt<bool> DisableOpenMPOptimizations( 47 "openmp-opt-disable", cl::ZeroOrMore, 48 cl::desc("Disable OpenMP specific optimizations."), cl::Hidden, 49 cl::init(false)); 50 51 static cl::opt<bool> EnableParallelRegionMerging( 52 "openmp-opt-enable-merging", cl::ZeroOrMore, 53 cl::desc("Enable the OpenMP region merging optimization."), cl::Hidden, 54 cl::init(false)); 55 56 static cl::opt<bool> PrintICVValues("openmp-print-icv-values", cl::init(false), 57 cl::Hidden); 58 static cl::opt<bool> PrintOpenMPKernels("openmp-print-gpu-kernels", 59 cl::init(false), cl::Hidden); 60 61 static cl::opt<bool> HideMemoryTransferLatency( 62 "openmp-hide-memory-transfer-latency", 63 cl::desc("[WIP] Tries to hide the latency of host to device memory" 64 " transfers"), 65 cl::Hidden, cl::init(false)); 66 67 STATISTIC(NumOpenMPRuntimeCallsDeduplicated, 68 "Number of OpenMP runtime calls deduplicated"); 69 STATISTIC(NumOpenMPParallelRegionsDeleted, 70 "Number of OpenMP parallel regions deleted"); 71 STATISTIC(NumOpenMPRuntimeFunctionsIdentified, 72 "Number of OpenMP runtime functions identified"); 73 STATISTIC(NumOpenMPRuntimeFunctionUsesIdentified, 74 "Number of OpenMP runtime function uses identified"); 75 STATISTIC(NumOpenMPTargetRegionKernels, 76 "Number of OpenMP target region entry points (=kernels) identified"); 77 STATISTIC(NumOpenMPTargetRegionKernelsSPMD, 78 "Number of OpenMP target region entry points (=kernels) executed in " 79 "SPMD-mode instead of generic-mode"); 80 STATISTIC(NumOpenMPTargetRegionKernelsWithoutStateMachine, 81 "Number of OpenMP target region entry points (=kernels) executed in " 82 "generic-mode without a state machines"); 83 STATISTIC(NumOpenMPTargetRegionKernelsCustomStateMachineWithFallback, 84 "Number of OpenMP target region entry points (=kernels) executed in " 85 "generic-mode with customized state machines with fallback"); 86 STATISTIC(NumOpenMPTargetRegionKernelsCustomStateMachineWithoutFallback, 87 "Number of OpenMP target region entry points (=kernels) executed in " 88 "generic-mode with customized state machines without fallback"); 89 STATISTIC( 90 NumOpenMPParallelRegionsReplacedInGPUStateMachine, 91 "Number of OpenMP parallel regions replaced with ID in GPU state machines"); 92 STATISTIC(NumOpenMPParallelRegionsMerged, 93 "Number of OpenMP parallel regions merged"); 94 STATISTIC(NumBytesMovedToSharedMemory, 95 "Amount of memory pushed to shared memory"); 96 97 #if !defined(NDEBUG) 98 static constexpr auto TAG = "[" DEBUG_TYPE "]"; 99 #endif 100 101 namespace { 102 103 enum class AddressSpace : unsigned { 104 Generic = 0, 105 Global = 1, 106 Shared = 3, 107 Constant = 4, 108 Local = 5, 109 }; 110 111 struct AAHeapToShared; 112 113 struct AAICVTracker; 114 115 /// OpenMP specific information. For now, stores RFIs and ICVs also needed for 116 /// Attributor runs. 117 struct OMPInformationCache : public InformationCache { 118 OMPInformationCache(Module &M, AnalysisGetter &AG, 119 BumpPtrAllocator &Allocator, SetVector<Function *> &CGSCC, 120 SmallPtrSetImpl<Kernel> &Kernels) 121 : InformationCache(M, AG, Allocator, &CGSCC), OMPBuilder(M), 122 Kernels(Kernels) { 123 124 OMPBuilder.initialize(); 125 initializeRuntimeFunctions(); 126 initializeInternalControlVars(); 127 } 128 129 /// Generic information that describes an internal control variable. 130 struct InternalControlVarInfo { 131 /// The kind, as described by InternalControlVar enum. 132 InternalControlVar Kind; 133 134 /// The name of the ICV. 135 StringRef Name; 136 137 /// Environment variable associated with this ICV. 138 StringRef EnvVarName; 139 140 /// Initial value kind. 141 ICVInitValue InitKind; 142 143 /// Initial value. 144 ConstantInt *InitValue; 145 146 /// Setter RTL function associated with this ICV. 147 RuntimeFunction Setter; 148 149 /// Getter RTL function associated with this ICV. 150 RuntimeFunction Getter; 151 152 /// RTL Function corresponding to the override clause of this ICV 153 RuntimeFunction Clause; 154 }; 155 156 /// Generic information that describes a runtime function 157 struct RuntimeFunctionInfo { 158 159 /// The kind, as described by the RuntimeFunction enum. 160 RuntimeFunction Kind; 161 162 /// The name of the function. 163 StringRef Name; 164 165 /// Flag to indicate a variadic function. 166 bool IsVarArg; 167 168 /// The return type of the function. 169 Type *ReturnType; 170 171 /// The argument types of the function. 172 SmallVector<Type *, 8> ArgumentTypes; 173 174 /// The declaration if available. 175 Function *Declaration = nullptr; 176 177 /// Uses of this runtime function per function containing the use. 178 using UseVector = SmallVector<Use *, 16>; 179 180 /// Clear UsesMap for runtime function. 181 void clearUsesMap() { UsesMap.clear(); } 182 183 /// Boolean conversion that is true if the runtime function was found. 184 operator bool() const { return Declaration; } 185 186 /// Return the vector of uses in function \p F. 187 UseVector &getOrCreateUseVector(Function *F) { 188 std::shared_ptr<UseVector> &UV = UsesMap[F]; 189 if (!UV) 190 UV = std::make_shared<UseVector>(); 191 return *UV; 192 } 193 194 /// Return the vector of uses in function \p F or `nullptr` if there are 195 /// none. 196 const UseVector *getUseVector(Function &F) const { 197 auto I = UsesMap.find(&F); 198 if (I != UsesMap.end()) 199 return I->second.get(); 200 return nullptr; 201 } 202 203 /// Return how many functions contain uses of this runtime function. 204 size_t getNumFunctionsWithUses() const { return UsesMap.size(); } 205 206 /// Return the number of arguments (or the minimal number for variadic 207 /// functions). 208 size_t getNumArgs() const { return ArgumentTypes.size(); } 209 210 /// Run the callback \p CB on each use and forget the use if the result is 211 /// true. The callback will be fed the function in which the use was 212 /// encountered as second argument. 213 void foreachUse(SmallVectorImpl<Function *> &SCC, 214 function_ref<bool(Use &, Function &)> CB) { 215 for (Function *F : SCC) 216 foreachUse(CB, F); 217 } 218 219 /// Run the callback \p CB on each use within the function \p F and forget 220 /// the use if the result is true. 221 void foreachUse(function_ref<bool(Use &, Function &)> CB, Function *F) { 222 SmallVector<unsigned, 8> ToBeDeleted; 223 ToBeDeleted.clear(); 224 225 unsigned Idx = 0; 226 UseVector &UV = getOrCreateUseVector(F); 227 228 for (Use *U : UV) { 229 if (CB(*U, *F)) 230 ToBeDeleted.push_back(Idx); 231 ++Idx; 232 } 233 234 // Remove the to-be-deleted indices in reverse order as prior 235 // modifications will not modify the smaller indices. 236 while (!ToBeDeleted.empty()) { 237 unsigned Idx = ToBeDeleted.pop_back_val(); 238 UV[Idx] = UV.back(); 239 UV.pop_back(); 240 } 241 } 242 243 private: 244 /// Map from functions to all uses of this runtime function contained in 245 /// them. 246 DenseMap<Function *, std::shared_ptr<UseVector>> UsesMap; 247 248 public: 249 /// Iterators for the uses of this runtime function. 250 decltype(UsesMap)::iterator begin() { return UsesMap.begin(); } 251 decltype(UsesMap)::iterator end() { return UsesMap.end(); } 252 }; 253 254 /// An OpenMP-IR-Builder instance 255 OpenMPIRBuilder OMPBuilder; 256 257 /// Map from runtime function kind to the runtime function description. 258 EnumeratedArray<RuntimeFunctionInfo, RuntimeFunction, 259 RuntimeFunction::OMPRTL___last> 260 RFIs; 261 262 /// Map from function declarations/definitions to their runtime enum type. 263 DenseMap<Function *, RuntimeFunction> RuntimeFunctionIDMap; 264 265 /// Map from ICV kind to the ICV description. 266 EnumeratedArray<InternalControlVarInfo, InternalControlVar, 267 InternalControlVar::ICV___last> 268 ICVs; 269 270 /// Helper to initialize all internal control variable information for those 271 /// defined in OMPKinds.def. 272 void initializeInternalControlVars() { 273 #define ICV_RT_SET(_Name, RTL) \ 274 { \ 275 auto &ICV = ICVs[_Name]; \ 276 ICV.Setter = RTL; \ 277 } 278 #define ICV_RT_GET(Name, RTL) \ 279 { \ 280 auto &ICV = ICVs[Name]; \ 281 ICV.Getter = RTL; \ 282 } 283 #define ICV_DATA_ENV(Enum, _Name, _EnvVarName, Init) \ 284 { \ 285 auto &ICV = ICVs[Enum]; \ 286 ICV.Name = _Name; \ 287 ICV.Kind = Enum; \ 288 ICV.InitKind = Init; \ 289 ICV.EnvVarName = _EnvVarName; \ 290 switch (ICV.InitKind) { \ 291 case ICV_IMPLEMENTATION_DEFINED: \ 292 ICV.InitValue = nullptr; \ 293 break; \ 294 case ICV_ZERO: \ 295 ICV.InitValue = ConstantInt::get( \ 296 Type::getInt32Ty(OMPBuilder.Int32->getContext()), 0); \ 297 break; \ 298 case ICV_FALSE: \ 299 ICV.InitValue = ConstantInt::getFalse(OMPBuilder.Int1->getContext()); \ 300 break; \ 301 case ICV_LAST: \ 302 break; \ 303 } \ 304 } 305 #include "llvm/Frontend/OpenMP/OMPKinds.def" 306 } 307 308 /// Returns true if the function declaration \p F matches the runtime 309 /// function types, that is, return type \p RTFRetType, and argument types 310 /// \p RTFArgTypes. 311 static bool declMatchesRTFTypes(Function *F, Type *RTFRetType, 312 SmallVector<Type *, 8> &RTFArgTypes) { 313 // TODO: We should output information to the user (under debug output 314 // and via remarks). 315 316 if (!F) 317 return false; 318 if (F->getReturnType() != RTFRetType) 319 return false; 320 if (F->arg_size() != RTFArgTypes.size()) 321 return false; 322 323 auto RTFTyIt = RTFArgTypes.begin(); 324 for (Argument &Arg : F->args()) { 325 if (Arg.getType() != *RTFTyIt) 326 return false; 327 328 ++RTFTyIt; 329 } 330 331 return true; 332 } 333 334 // Helper to collect all uses of the declaration in the UsesMap. 335 unsigned collectUses(RuntimeFunctionInfo &RFI, bool CollectStats = true) { 336 unsigned NumUses = 0; 337 if (!RFI.Declaration) 338 return NumUses; 339 OMPBuilder.addAttributes(RFI.Kind, *RFI.Declaration); 340 341 if (CollectStats) { 342 NumOpenMPRuntimeFunctionsIdentified += 1; 343 NumOpenMPRuntimeFunctionUsesIdentified += RFI.Declaration->getNumUses(); 344 } 345 346 // TODO: We directly convert uses into proper calls and unknown uses. 347 for (Use &U : RFI.Declaration->uses()) { 348 if (Instruction *UserI = dyn_cast<Instruction>(U.getUser())) { 349 if (ModuleSlice.count(UserI->getFunction())) { 350 RFI.getOrCreateUseVector(UserI->getFunction()).push_back(&U); 351 ++NumUses; 352 } 353 } else { 354 RFI.getOrCreateUseVector(nullptr).push_back(&U); 355 ++NumUses; 356 } 357 } 358 return NumUses; 359 } 360 361 // Helper function to recollect uses of a runtime function. 362 void recollectUsesForFunction(RuntimeFunction RTF) { 363 auto &RFI = RFIs[RTF]; 364 RFI.clearUsesMap(); 365 collectUses(RFI, /*CollectStats*/ false); 366 } 367 368 // Helper function to recollect uses of all runtime functions. 369 void recollectUses() { 370 for (int Idx = 0; Idx < RFIs.size(); ++Idx) 371 recollectUsesForFunction(static_cast<RuntimeFunction>(Idx)); 372 } 373 374 /// Helper to initialize all runtime function information for those defined 375 /// in OpenMPKinds.def. 376 void initializeRuntimeFunctions() { 377 Module &M = *((*ModuleSlice.begin())->getParent()); 378 379 // Helper macros for handling __VA_ARGS__ in OMP_RTL 380 #define OMP_TYPE(VarName, ...) \ 381 Type *VarName = OMPBuilder.VarName; \ 382 (void)VarName; 383 384 #define OMP_ARRAY_TYPE(VarName, ...) \ 385 ArrayType *VarName##Ty = OMPBuilder.VarName##Ty; \ 386 (void)VarName##Ty; \ 387 PointerType *VarName##PtrTy = OMPBuilder.VarName##PtrTy; \ 388 (void)VarName##PtrTy; 389 390 #define OMP_FUNCTION_TYPE(VarName, ...) \ 391 FunctionType *VarName = OMPBuilder.VarName; \ 392 (void)VarName; \ 393 PointerType *VarName##Ptr = OMPBuilder.VarName##Ptr; \ 394 (void)VarName##Ptr; 395 396 #define OMP_STRUCT_TYPE(VarName, ...) \ 397 StructType *VarName = OMPBuilder.VarName; \ 398 (void)VarName; \ 399 PointerType *VarName##Ptr = OMPBuilder.VarName##Ptr; \ 400 (void)VarName##Ptr; 401 402 #define OMP_RTL(_Enum, _Name, _IsVarArg, _ReturnType, ...) \ 403 { \ 404 SmallVector<Type *, 8> ArgsTypes({__VA_ARGS__}); \ 405 Function *F = M.getFunction(_Name); \ 406 if (declMatchesRTFTypes(F, OMPBuilder._ReturnType, ArgsTypes)) { \ 407 RuntimeFunctionIDMap[F] = _Enum; \ 408 auto &RFI = RFIs[_Enum]; \ 409 RFI.Kind = _Enum; \ 410 RFI.Name = _Name; \ 411 RFI.IsVarArg = _IsVarArg; \ 412 RFI.ReturnType = OMPBuilder._ReturnType; \ 413 RFI.ArgumentTypes = std::move(ArgsTypes); \ 414 RFI.Declaration = F; \ 415 unsigned NumUses = collectUses(RFI); \ 416 (void)NumUses; \ 417 LLVM_DEBUG({ \ 418 dbgs() << TAG << RFI.Name << (RFI.Declaration ? "" : " not") \ 419 << " found\n"; \ 420 if (RFI.Declaration) \ 421 dbgs() << TAG << "-> got " << NumUses << " uses in " \ 422 << RFI.getNumFunctionsWithUses() \ 423 << " different functions.\n"; \ 424 }); \ 425 } \ 426 } 427 #include "llvm/Frontend/OpenMP/OMPKinds.def" 428 429 // TODO: We should attach the attributes defined in OMPKinds.def. 430 } 431 432 /// Collection of known kernels (\see Kernel) in the module. 433 SmallPtrSetImpl<Kernel> &Kernels; 434 }; 435 436 template <typename Ty, bool InsertInvalidates = true> 437 struct BooleanStateWithPtrSetVector : public BooleanState { 438 439 bool contains(Ty *Elem) const { return Set.contains(Elem); } 440 bool insert(Ty *Elem) { 441 if (InsertInvalidates) 442 BooleanState::indicatePessimisticFixpoint(); 443 return Set.insert(Elem); 444 } 445 446 Ty *operator[](int Idx) const { return Set[Idx]; } 447 bool operator==(const BooleanStateWithPtrSetVector &RHS) const { 448 return BooleanState::operator==(RHS) && Set == RHS.Set; 449 } 450 bool operator!=(const BooleanStateWithPtrSetVector &RHS) const { 451 return !(*this == RHS); 452 } 453 454 bool empty() const { return Set.empty(); } 455 size_t size() const { return Set.size(); } 456 457 /// "Clamp" this state with \p RHS. 458 BooleanStateWithPtrSetVector & 459 operator^=(const BooleanStateWithPtrSetVector &RHS) { 460 BooleanState::operator^=(RHS); 461 Set.insert(RHS.Set.begin(), RHS.Set.end()); 462 return *this; 463 } 464 465 private: 466 /// A set to keep track of elements. 467 SetVector<Ty *> Set; 468 469 public: 470 typename decltype(Set)::iterator begin() { return Set.begin(); } 471 typename decltype(Set)::iterator end() { return Set.end(); } 472 typename decltype(Set)::const_iterator begin() const { return Set.begin(); } 473 typename decltype(Set)::const_iterator end() const { return Set.end(); } 474 }; 475 476 struct KernelInfoState : AbstractState { 477 /// Flag to track if we reached a fixpoint. 478 bool IsAtFixpoint = false; 479 480 /// The parallel regions (identified by the outlined parallel functions) that 481 /// can be reached from the associated function. 482 BooleanStateWithPtrSetVector<Function, /* InsertInvalidates */ false> 483 ReachedKnownParallelRegions; 484 485 /// State to track what parallel region we might reach. 486 BooleanStateWithPtrSetVector<CallBase> ReachedUnknownParallelRegions; 487 488 /// State to track if we are in SPMD-mode, assumed or know, and why we decided 489 /// we cannot be. 490 BooleanStateWithPtrSetVector<Instruction> SPMDCompatibilityTracker; 491 492 /// The __kmpc_target_init call in this kernel, if any. If we find more than 493 /// one we abort as the kernel is malformed. 494 CallBase *KernelInitCB = nullptr; 495 496 /// The __kmpc_target_deinit call in this kernel, if any. If we find more than 497 /// one we abort as the kernel is malformed. 498 CallBase *KernelDeinitCB = nullptr; 499 500 /// Abstract State interface 501 ///{ 502 503 KernelInfoState() {} 504 KernelInfoState(bool BestState) { 505 if (!BestState) 506 indicatePessimisticFixpoint(); 507 } 508 509 /// See AbstractState::isValidState(...) 510 bool isValidState() const override { return true; } 511 512 /// See AbstractState::isAtFixpoint(...) 513 bool isAtFixpoint() const override { return IsAtFixpoint; } 514 515 /// See AbstractState::indicatePessimisticFixpoint(...) 516 ChangeStatus indicatePessimisticFixpoint() override { 517 IsAtFixpoint = true; 518 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 519 ReachedUnknownParallelRegions.indicatePessimisticFixpoint(); 520 return ChangeStatus::CHANGED; 521 } 522 523 /// See AbstractState::indicateOptimisticFixpoint(...) 524 ChangeStatus indicateOptimisticFixpoint() override { 525 IsAtFixpoint = true; 526 return ChangeStatus::UNCHANGED; 527 } 528 529 /// Return the assumed state 530 KernelInfoState &getAssumed() { return *this; } 531 const KernelInfoState &getAssumed() const { return *this; } 532 533 bool operator==(const KernelInfoState &RHS) const { 534 if (SPMDCompatibilityTracker != RHS.SPMDCompatibilityTracker) 535 return false; 536 if (ReachedKnownParallelRegions != RHS.ReachedKnownParallelRegions) 537 return false; 538 if (ReachedUnknownParallelRegions != RHS.ReachedUnknownParallelRegions) 539 return false; 540 return true; 541 } 542 543 /// Return empty set as the best state of potential values. 544 static KernelInfoState getBestState() { return KernelInfoState(true); } 545 546 static KernelInfoState getBestState(KernelInfoState &KIS) { 547 return getBestState(); 548 } 549 550 /// Return full set as the worst state of potential values. 551 static KernelInfoState getWorstState() { return KernelInfoState(false); } 552 553 /// "Clamp" this state with \p KIS. 554 KernelInfoState operator^=(const KernelInfoState &KIS) { 555 // Do not merge two different _init and _deinit call sites. 556 if (KIS.KernelInitCB) { 557 if (KernelInitCB && KernelInitCB != KIS.KernelInitCB) 558 indicatePessimisticFixpoint(); 559 KernelInitCB = KIS.KernelInitCB; 560 } 561 if (KIS.KernelDeinitCB) { 562 if (KernelDeinitCB && KernelDeinitCB != KIS.KernelDeinitCB) 563 indicatePessimisticFixpoint(); 564 KernelDeinitCB = KIS.KernelDeinitCB; 565 } 566 SPMDCompatibilityTracker ^= KIS.SPMDCompatibilityTracker; 567 ReachedKnownParallelRegions ^= KIS.ReachedKnownParallelRegions; 568 ReachedUnknownParallelRegions ^= KIS.ReachedUnknownParallelRegions; 569 return *this; 570 } 571 572 KernelInfoState operator&=(const KernelInfoState &KIS) { 573 return (*this ^= KIS); 574 } 575 576 ///} 577 }; 578 579 /// Used to map the values physically (in the IR) stored in an offload 580 /// array, to a vector in memory. 581 struct OffloadArray { 582 /// Physical array (in the IR). 583 AllocaInst *Array = nullptr; 584 /// Mapped values. 585 SmallVector<Value *, 8> StoredValues; 586 /// Last stores made in the offload array. 587 SmallVector<StoreInst *, 8> LastAccesses; 588 589 OffloadArray() = default; 590 591 /// Initializes the OffloadArray with the values stored in \p Array before 592 /// instruction \p Before is reached. Returns false if the initialization 593 /// fails. 594 /// This MUST be used immediately after the construction of the object. 595 bool initialize(AllocaInst &Array, Instruction &Before) { 596 if (!Array.getAllocatedType()->isArrayTy()) 597 return false; 598 599 if (!getValues(Array, Before)) 600 return false; 601 602 this->Array = &Array; 603 return true; 604 } 605 606 static const unsigned DeviceIDArgNum = 1; 607 static const unsigned BasePtrsArgNum = 3; 608 static const unsigned PtrsArgNum = 4; 609 static const unsigned SizesArgNum = 5; 610 611 private: 612 /// Traverses the BasicBlock where \p Array is, collecting the stores made to 613 /// \p Array, leaving StoredValues with the values stored before the 614 /// instruction \p Before is reached. 615 bool getValues(AllocaInst &Array, Instruction &Before) { 616 // Initialize container. 617 const uint64_t NumValues = Array.getAllocatedType()->getArrayNumElements(); 618 StoredValues.assign(NumValues, nullptr); 619 LastAccesses.assign(NumValues, nullptr); 620 621 // TODO: This assumes the instruction \p Before is in the same 622 // BasicBlock as Array. Make it general, for any control flow graph. 623 BasicBlock *BB = Array.getParent(); 624 if (BB != Before.getParent()) 625 return false; 626 627 const DataLayout &DL = Array.getModule()->getDataLayout(); 628 const unsigned int PointerSize = DL.getPointerSize(); 629 630 for (Instruction &I : *BB) { 631 if (&I == &Before) 632 break; 633 634 if (!isa<StoreInst>(&I)) 635 continue; 636 637 auto *S = cast<StoreInst>(&I); 638 int64_t Offset = -1; 639 auto *Dst = 640 GetPointerBaseWithConstantOffset(S->getPointerOperand(), Offset, DL); 641 if (Dst == &Array) { 642 int64_t Idx = Offset / PointerSize; 643 StoredValues[Idx] = getUnderlyingObject(S->getValueOperand()); 644 LastAccesses[Idx] = S; 645 } 646 } 647 648 return isFilled(); 649 } 650 651 /// Returns true if all values in StoredValues and 652 /// LastAccesses are not nullptrs. 653 bool isFilled() { 654 const unsigned NumValues = StoredValues.size(); 655 for (unsigned I = 0; I < NumValues; ++I) { 656 if (!StoredValues[I] || !LastAccesses[I]) 657 return false; 658 } 659 660 return true; 661 } 662 }; 663 664 struct OpenMPOpt { 665 666 using OptimizationRemarkGetter = 667 function_ref<OptimizationRemarkEmitter &(Function *)>; 668 669 OpenMPOpt(SmallVectorImpl<Function *> &SCC, CallGraphUpdater &CGUpdater, 670 OptimizationRemarkGetter OREGetter, 671 OMPInformationCache &OMPInfoCache, Attributor &A) 672 : M(*(*SCC.begin())->getParent()), SCC(SCC), CGUpdater(CGUpdater), 673 OREGetter(OREGetter), OMPInfoCache(OMPInfoCache), A(A) {} 674 675 /// Check if any remarks are enabled for openmp-opt 676 bool remarksEnabled() { 677 auto &Ctx = M.getContext(); 678 return Ctx.getDiagHandlerPtr()->isAnyRemarkEnabled(DEBUG_TYPE); 679 } 680 681 /// Run all OpenMP optimizations on the underlying SCC/ModuleSlice. 682 bool run(bool IsModulePass) { 683 if (SCC.empty()) 684 return false; 685 686 bool Changed = false; 687 688 LLVM_DEBUG(dbgs() << TAG << "Run on SCC with " << SCC.size() 689 << " functions in a slice with " 690 << OMPInfoCache.ModuleSlice.size() << " functions\n"); 691 692 if (IsModulePass) { 693 Changed |= runAttributor(IsModulePass); 694 695 // Recollect uses, in case Attributor deleted any. 696 OMPInfoCache.recollectUses(); 697 698 if (remarksEnabled()) 699 analysisGlobalization(); 700 } else { 701 if (PrintICVValues) 702 printICVs(); 703 if (PrintOpenMPKernels) 704 printKernels(); 705 706 Changed |= runAttributor(IsModulePass); 707 708 // Recollect uses, in case Attributor deleted any. 709 OMPInfoCache.recollectUses(); 710 711 Changed |= deleteParallelRegions(); 712 Changed |= rewriteDeviceCodeStateMachine(); 713 714 if (HideMemoryTransferLatency) 715 Changed |= hideMemTransfersLatency(); 716 Changed |= deduplicateRuntimeCalls(); 717 if (EnableParallelRegionMerging) { 718 if (mergeParallelRegions()) { 719 deduplicateRuntimeCalls(); 720 Changed = true; 721 } 722 } 723 } 724 725 return Changed; 726 } 727 728 /// Print initial ICV values for testing. 729 /// FIXME: This should be done from the Attributor once it is added. 730 void printICVs() const { 731 InternalControlVar ICVs[] = {ICV_nthreads, ICV_active_levels, ICV_cancel, 732 ICV_proc_bind}; 733 734 for (Function *F : OMPInfoCache.ModuleSlice) { 735 for (auto ICV : ICVs) { 736 auto ICVInfo = OMPInfoCache.ICVs[ICV]; 737 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 738 return ORA << "OpenMP ICV " << ore::NV("OpenMPICV", ICVInfo.Name) 739 << " Value: " 740 << (ICVInfo.InitValue 741 ? toString(ICVInfo.InitValue->getValue(), 10, true) 742 : "IMPLEMENTATION_DEFINED"); 743 }; 744 745 emitRemark<OptimizationRemarkAnalysis>(F, "OpenMPICVTracker", Remark); 746 } 747 } 748 } 749 750 /// Print OpenMP GPU kernels for testing. 751 void printKernels() const { 752 for (Function *F : SCC) { 753 if (!OMPInfoCache.Kernels.count(F)) 754 continue; 755 756 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 757 return ORA << "OpenMP GPU kernel " 758 << ore::NV("OpenMPGPUKernel", F->getName()) << "\n"; 759 }; 760 761 emitRemark<OptimizationRemarkAnalysis>(F, "OpenMPGPU", Remark); 762 } 763 } 764 765 /// Return the call if \p U is a callee use in a regular call. If \p RFI is 766 /// given it has to be the callee or a nullptr is returned. 767 static CallInst *getCallIfRegularCall( 768 Use &U, OMPInformationCache::RuntimeFunctionInfo *RFI = nullptr) { 769 CallInst *CI = dyn_cast<CallInst>(U.getUser()); 770 if (CI && CI->isCallee(&U) && !CI->hasOperandBundles() && 771 (!RFI || CI->getCalledFunction() == RFI->Declaration)) 772 return CI; 773 return nullptr; 774 } 775 776 /// Return the call if \p V is a regular call. If \p RFI is given it has to be 777 /// the callee or a nullptr is returned. 778 static CallInst *getCallIfRegularCall( 779 Value &V, OMPInformationCache::RuntimeFunctionInfo *RFI = nullptr) { 780 CallInst *CI = dyn_cast<CallInst>(&V); 781 if (CI && !CI->hasOperandBundles() && 782 (!RFI || CI->getCalledFunction() == RFI->Declaration)) 783 return CI; 784 return nullptr; 785 } 786 787 private: 788 /// Merge parallel regions when it is safe. 789 bool mergeParallelRegions() { 790 const unsigned CallbackCalleeOperand = 2; 791 const unsigned CallbackFirstArgOperand = 3; 792 using InsertPointTy = OpenMPIRBuilder::InsertPointTy; 793 794 // Check if there are any __kmpc_fork_call calls to merge. 795 OMPInformationCache::RuntimeFunctionInfo &RFI = 796 OMPInfoCache.RFIs[OMPRTL___kmpc_fork_call]; 797 798 if (!RFI.Declaration) 799 return false; 800 801 // Unmergable calls that prevent merging a parallel region. 802 OMPInformationCache::RuntimeFunctionInfo UnmergableCallsInfo[] = { 803 OMPInfoCache.RFIs[OMPRTL___kmpc_push_proc_bind], 804 OMPInfoCache.RFIs[OMPRTL___kmpc_push_num_threads], 805 }; 806 807 bool Changed = false; 808 LoopInfo *LI = nullptr; 809 DominatorTree *DT = nullptr; 810 811 SmallDenseMap<BasicBlock *, SmallPtrSet<Instruction *, 4>> BB2PRMap; 812 813 BasicBlock *StartBB = nullptr, *EndBB = nullptr; 814 auto BodyGenCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, 815 BasicBlock &ContinuationIP) { 816 BasicBlock *CGStartBB = CodeGenIP.getBlock(); 817 BasicBlock *CGEndBB = 818 SplitBlock(CGStartBB, &*CodeGenIP.getPoint(), DT, LI); 819 assert(StartBB != nullptr && "StartBB should not be null"); 820 CGStartBB->getTerminator()->setSuccessor(0, StartBB); 821 assert(EndBB != nullptr && "EndBB should not be null"); 822 EndBB->getTerminator()->setSuccessor(0, CGEndBB); 823 }; 824 825 auto PrivCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, Value &, 826 Value &Inner, Value *&ReplacementValue) -> InsertPointTy { 827 ReplacementValue = &Inner; 828 return CodeGenIP; 829 }; 830 831 auto FiniCB = [&](InsertPointTy CodeGenIP) {}; 832 833 /// Create a sequential execution region within a merged parallel region, 834 /// encapsulated in a master construct with a barrier for synchronization. 835 auto CreateSequentialRegion = [&](Function *OuterFn, 836 BasicBlock *OuterPredBB, 837 Instruction *SeqStartI, 838 Instruction *SeqEndI) { 839 // Isolate the instructions of the sequential region to a separate 840 // block. 841 BasicBlock *ParentBB = SeqStartI->getParent(); 842 BasicBlock *SeqEndBB = 843 SplitBlock(ParentBB, SeqEndI->getNextNode(), DT, LI); 844 BasicBlock *SeqAfterBB = 845 SplitBlock(SeqEndBB, &*SeqEndBB->getFirstInsertionPt(), DT, LI); 846 BasicBlock *SeqStartBB = 847 SplitBlock(ParentBB, SeqStartI, DT, LI, nullptr, "seq.par.merged"); 848 849 assert(ParentBB->getUniqueSuccessor() == SeqStartBB && 850 "Expected a different CFG"); 851 const DebugLoc DL = ParentBB->getTerminator()->getDebugLoc(); 852 ParentBB->getTerminator()->eraseFromParent(); 853 854 auto BodyGenCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, 855 BasicBlock &ContinuationIP) { 856 BasicBlock *CGStartBB = CodeGenIP.getBlock(); 857 BasicBlock *CGEndBB = 858 SplitBlock(CGStartBB, &*CodeGenIP.getPoint(), DT, LI); 859 assert(SeqStartBB != nullptr && "SeqStartBB should not be null"); 860 CGStartBB->getTerminator()->setSuccessor(0, SeqStartBB); 861 assert(SeqEndBB != nullptr && "SeqEndBB should not be null"); 862 SeqEndBB->getTerminator()->setSuccessor(0, CGEndBB); 863 }; 864 auto FiniCB = [&](InsertPointTy CodeGenIP) {}; 865 866 // Find outputs from the sequential region to outside users and 867 // broadcast their values to them. 868 for (Instruction &I : *SeqStartBB) { 869 SmallPtrSet<Instruction *, 4> OutsideUsers; 870 for (User *Usr : I.users()) { 871 Instruction &UsrI = *cast<Instruction>(Usr); 872 // Ignore outputs to LT intrinsics, code extraction for the merged 873 // parallel region will fix them. 874 if (UsrI.isLifetimeStartOrEnd()) 875 continue; 876 877 if (UsrI.getParent() != SeqStartBB) 878 OutsideUsers.insert(&UsrI); 879 } 880 881 if (OutsideUsers.empty()) 882 continue; 883 884 // Emit an alloca in the outer region to store the broadcasted 885 // value. 886 const DataLayout &DL = M.getDataLayout(); 887 AllocaInst *AllocaI = new AllocaInst( 888 I.getType(), DL.getAllocaAddrSpace(), nullptr, 889 I.getName() + ".seq.output.alloc", &OuterFn->front().front()); 890 891 // Emit a store instruction in the sequential BB to update the 892 // value. 893 new StoreInst(&I, AllocaI, SeqStartBB->getTerminator()); 894 895 // Emit a load instruction and replace the use of the output value 896 // with it. 897 for (Instruction *UsrI : OutsideUsers) { 898 LoadInst *LoadI = new LoadInst( 899 I.getType(), AllocaI, I.getName() + ".seq.output.load", UsrI); 900 UsrI->replaceUsesOfWith(&I, LoadI); 901 } 902 } 903 904 OpenMPIRBuilder::LocationDescription Loc( 905 InsertPointTy(ParentBB, ParentBB->end()), DL); 906 InsertPointTy SeqAfterIP = 907 OMPInfoCache.OMPBuilder.createMaster(Loc, BodyGenCB, FiniCB); 908 909 OMPInfoCache.OMPBuilder.createBarrier(SeqAfterIP, OMPD_parallel); 910 911 BranchInst::Create(SeqAfterBB, SeqAfterIP.getBlock()); 912 913 LLVM_DEBUG(dbgs() << TAG << "After sequential inlining " << *OuterFn 914 << "\n"); 915 }; 916 917 // Helper to merge the __kmpc_fork_call calls in MergableCIs. They are all 918 // contained in BB and only separated by instructions that can be 919 // redundantly executed in parallel. The block BB is split before the first 920 // call (in MergableCIs) and after the last so the entire region we merge 921 // into a single parallel region is contained in a single basic block 922 // without any other instructions. We use the OpenMPIRBuilder to outline 923 // that block and call the resulting function via __kmpc_fork_call. 924 auto Merge = [&](SmallVectorImpl<CallInst *> &MergableCIs, BasicBlock *BB) { 925 // TODO: Change the interface to allow single CIs expanded, e.g, to 926 // include an outer loop. 927 assert(MergableCIs.size() > 1 && "Assumed multiple mergable CIs"); 928 929 auto Remark = [&](OptimizationRemark OR) { 930 OR << "Parallel region at " 931 << ore::NV("OpenMPParallelMergeFront", 932 MergableCIs.front()->getDebugLoc()) 933 << " merged with parallel regions at "; 934 for (auto *CI : llvm::drop_begin(MergableCIs)) { 935 OR << ore::NV("OpenMPParallelMerge", CI->getDebugLoc()); 936 if (CI != MergableCIs.back()) 937 OR << ", "; 938 } 939 return OR; 940 }; 941 942 emitRemark<OptimizationRemark>(MergableCIs.front(), 943 "OpenMPParallelRegionMerging", Remark); 944 945 Function *OriginalFn = BB->getParent(); 946 LLVM_DEBUG(dbgs() << TAG << "Merge " << MergableCIs.size() 947 << " parallel regions in " << OriginalFn->getName() 948 << "\n"); 949 950 // Isolate the calls to merge in a separate block. 951 EndBB = SplitBlock(BB, MergableCIs.back()->getNextNode(), DT, LI); 952 BasicBlock *AfterBB = 953 SplitBlock(EndBB, &*EndBB->getFirstInsertionPt(), DT, LI); 954 StartBB = SplitBlock(BB, MergableCIs.front(), DT, LI, nullptr, 955 "omp.par.merged"); 956 957 assert(BB->getUniqueSuccessor() == StartBB && "Expected a different CFG"); 958 const DebugLoc DL = BB->getTerminator()->getDebugLoc(); 959 BB->getTerminator()->eraseFromParent(); 960 961 // Create sequential regions for sequential instructions that are 962 // in-between mergable parallel regions. 963 for (auto *It = MergableCIs.begin(), *End = MergableCIs.end() - 1; 964 It != End; ++It) { 965 Instruction *ForkCI = *It; 966 Instruction *NextForkCI = *(It + 1); 967 968 // Continue if there are not in-between instructions. 969 if (ForkCI->getNextNode() == NextForkCI) 970 continue; 971 972 CreateSequentialRegion(OriginalFn, BB, ForkCI->getNextNode(), 973 NextForkCI->getPrevNode()); 974 } 975 976 OpenMPIRBuilder::LocationDescription Loc(InsertPointTy(BB, BB->end()), 977 DL); 978 IRBuilder<>::InsertPoint AllocaIP( 979 &OriginalFn->getEntryBlock(), 980 OriginalFn->getEntryBlock().getFirstInsertionPt()); 981 // Create the merged parallel region with default proc binding, to 982 // avoid overriding binding settings, and without explicit cancellation. 983 InsertPointTy AfterIP = OMPInfoCache.OMPBuilder.createParallel( 984 Loc, AllocaIP, BodyGenCB, PrivCB, FiniCB, nullptr, nullptr, 985 OMP_PROC_BIND_default, /* IsCancellable */ false); 986 BranchInst::Create(AfterBB, AfterIP.getBlock()); 987 988 // Perform the actual outlining. 989 OMPInfoCache.OMPBuilder.finalize(OriginalFn, 990 /* AllowExtractorSinking */ true); 991 992 Function *OutlinedFn = MergableCIs.front()->getCaller(); 993 994 // Replace the __kmpc_fork_call calls with direct calls to the outlined 995 // callbacks. 996 SmallVector<Value *, 8> Args; 997 for (auto *CI : MergableCIs) { 998 Value *Callee = 999 CI->getArgOperand(CallbackCalleeOperand)->stripPointerCasts(); 1000 FunctionType *FT = 1001 cast<FunctionType>(Callee->getType()->getPointerElementType()); 1002 Args.clear(); 1003 Args.push_back(OutlinedFn->getArg(0)); 1004 Args.push_back(OutlinedFn->getArg(1)); 1005 for (unsigned U = CallbackFirstArgOperand, E = CI->getNumArgOperands(); 1006 U < E; ++U) 1007 Args.push_back(CI->getArgOperand(U)); 1008 1009 CallInst *NewCI = CallInst::Create(FT, Callee, Args, "", CI); 1010 if (CI->getDebugLoc()) 1011 NewCI->setDebugLoc(CI->getDebugLoc()); 1012 1013 // Forward parameter attributes from the callback to the callee. 1014 for (unsigned U = CallbackFirstArgOperand, E = CI->getNumArgOperands(); 1015 U < E; ++U) 1016 for (const Attribute &A : CI->getAttributes().getParamAttributes(U)) 1017 NewCI->addParamAttr( 1018 U - (CallbackFirstArgOperand - CallbackCalleeOperand), A); 1019 1020 // Emit an explicit barrier to replace the implicit fork-join barrier. 1021 if (CI != MergableCIs.back()) { 1022 // TODO: Remove barrier if the merged parallel region includes the 1023 // 'nowait' clause. 1024 OMPInfoCache.OMPBuilder.createBarrier( 1025 InsertPointTy(NewCI->getParent(), 1026 NewCI->getNextNode()->getIterator()), 1027 OMPD_parallel); 1028 } 1029 1030 auto Remark = [&](OptimizationRemark OR) { 1031 return OR << "Parallel region at " 1032 << ore::NV("OpenMPParallelMerge", CI->getDebugLoc()) 1033 << " merged with " 1034 << ore::NV("OpenMPParallelMergeFront", 1035 MergableCIs.front()->getDebugLoc()); 1036 }; 1037 if (CI != MergableCIs.front()) 1038 emitRemark<OptimizationRemark>(CI, "OpenMPParallelRegionMerging", 1039 Remark); 1040 1041 CI->eraseFromParent(); 1042 } 1043 1044 assert(OutlinedFn != OriginalFn && "Outlining failed"); 1045 CGUpdater.registerOutlinedFunction(*OriginalFn, *OutlinedFn); 1046 CGUpdater.reanalyzeFunction(*OriginalFn); 1047 1048 NumOpenMPParallelRegionsMerged += MergableCIs.size(); 1049 1050 return true; 1051 }; 1052 1053 // Helper function that identifes sequences of 1054 // __kmpc_fork_call uses in a basic block. 1055 auto DetectPRsCB = [&](Use &U, Function &F) { 1056 CallInst *CI = getCallIfRegularCall(U, &RFI); 1057 BB2PRMap[CI->getParent()].insert(CI); 1058 1059 return false; 1060 }; 1061 1062 BB2PRMap.clear(); 1063 RFI.foreachUse(SCC, DetectPRsCB); 1064 SmallVector<SmallVector<CallInst *, 4>, 4> MergableCIsVector; 1065 // Find mergable parallel regions within a basic block that are 1066 // safe to merge, that is any in-between instructions can safely 1067 // execute in parallel after merging. 1068 // TODO: support merging across basic-blocks. 1069 for (auto &It : BB2PRMap) { 1070 auto &CIs = It.getSecond(); 1071 if (CIs.size() < 2) 1072 continue; 1073 1074 BasicBlock *BB = It.getFirst(); 1075 SmallVector<CallInst *, 4> MergableCIs; 1076 1077 /// Returns true if the instruction is mergable, false otherwise. 1078 /// A terminator instruction is unmergable by definition since merging 1079 /// works within a BB. Instructions before the mergable region are 1080 /// mergable if they are not calls to OpenMP runtime functions that may 1081 /// set different execution parameters for subsequent parallel regions. 1082 /// Instructions in-between parallel regions are mergable if they are not 1083 /// calls to any non-intrinsic function since that may call a non-mergable 1084 /// OpenMP runtime function. 1085 auto IsMergable = [&](Instruction &I, bool IsBeforeMergableRegion) { 1086 // We do not merge across BBs, hence return false (unmergable) if the 1087 // instruction is a terminator. 1088 if (I.isTerminator()) 1089 return false; 1090 1091 if (!isa<CallInst>(&I)) 1092 return true; 1093 1094 CallInst *CI = cast<CallInst>(&I); 1095 if (IsBeforeMergableRegion) { 1096 Function *CalledFunction = CI->getCalledFunction(); 1097 if (!CalledFunction) 1098 return false; 1099 // Return false (unmergable) if the call before the parallel 1100 // region calls an explicit affinity (proc_bind) or number of 1101 // threads (num_threads) compiler-generated function. Those settings 1102 // may be incompatible with following parallel regions. 1103 // TODO: ICV tracking to detect compatibility. 1104 for (const auto &RFI : UnmergableCallsInfo) { 1105 if (CalledFunction == RFI.Declaration) 1106 return false; 1107 } 1108 } else { 1109 // Return false (unmergable) if there is a call instruction 1110 // in-between parallel regions when it is not an intrinsic. It 1111 // may call an unmergable OpenMP runtime function in its callpath. 1112 // TODO: Keep track of possible OpenMP calls in the callpath. 1113 if (!isa<IntrinsicInst>(CI)) 1114 return false; 1115 } 1116 1117 return true; 1118 }; 1119 // Find maximal number of parallel region CIs that are safe to merge. 1120 for (auto It = BB->begin(), End = BB->end(); It != End;) { 1121 Instruction &I = *It; 1122 ++It; 1123 1124 if (CIs.count(&I)) { 1125 MergableCIs.push_back(cast<CallInst>(&I)); 1126 continue; 1127 } 1128 1129 // Continue expanding if the instruction is mergable. 1130 if (IsMergable(I, MergableCIs.empty())) 1131 continue; 1132 1133 // Forward the instruction iterator to skip the next parallel region 1134 // since there is an unmergable instruction which can affect it. 1135 for (; It != End; ++It) { 1136 Instruction &SkipI = *It; 1137 if (CIs.count(&SkipI)) { 1138 LLVM_DEBUG(dbgs() << TAG << "Skip parallel region " << SkipI 1139 << " due to " << I << "\n"); 1140 ++It; 1141 break; 1142 } 1143 } 1144 1145 // Store mergable regions found. 1146 if (MergableCIs.size() > 1) { 1147 MergableCIsVector.push_back(MergableCIs); 1148 LLVM_DEBUG(dbgs() << TAG << "Found " << MergableCIs.size() 1149 << " parallel regions in block " << BB->getName() 1150 << " of function " << BB->getParent()->getName() 1151 << "\n";); 1152 } 1153 1154 MergableCIs.clear(); 1155 } 1156 1157 if (!MergableCIsVector.empty()) { 1158 Changed = true; 1159 1160 for (auto &MergableCIs : MergableCIsVector) 1161 Merge(MergableCIs, BB); 1162 MergableCIsVector.clear(); 1163 } 1164 } 1165 1166 if (Changed) { 1167 /// Re-collect use for fork calls, emitted barrier calls, and 1168 /// any emitted master/end_master calls. 1169 OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_fork_call); 1170 OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_barrier); 1171 OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_master); 1172 OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_end_master); 1173 } 1174 1175 return Changed; 1176 } 1177 1178 /// Try to delete parallel regions if possible. 1179 bool deleteParallelRegions() { 1180 const unsigned CallbackCalleeOperand = 2; 1181 1182 OMPInformationCache::RuntimeFunctionInfo &RFI = 1183 OMPInfoCache.RFIs[OMPRTL___kmpc_fork_call]; 1184 1185 if (!RFI.Declaration) 1186 return false; 1187 1188 bool Changed = false; 1189 auto DeleteCallCB = [&](Use &U, Function &) { 1190 CallInst *CI = getCallIfRegularCall(U); 1191 if (!CI) 1192 return false; 1193 auto *Fn = dyn_cast<Function>( 1194 CI->getArgOperand(CallbackCalleeOperand)->stripPointerCasts()); 1195 if (!Fn) 1196 return false; 1197 if (!Fn->onlyReadsMemory()) 1198 return false; 1199 if (!Fn->hasFnAttribute(Attribute::WillReturn)) 1200 return false; 1201 1202 LLVM_DEBUG(dbgs() << TAG << "Delete read-only parallel region in " 1203 << CI->getCaller()->getName() << "\n"); 1204 1205 auto Remark = [&](OptimizationRemark OR) { 1206 return OR << "Parallel region in " 1207 << ore::NV("OpenMPParallelDelete", CI->getCaller()->getName()) 1208 << " deleted"; 1209 }; 1210 emitRemark<OptimizationRemark>(CI, "OpenMPParallelRegionDeletion", 1211 Remark); 1212 1213 CGUpdater.removeCallSite(*CI); 1214 CI->eraseFromParent(); 1215 Changed = true; 1216 ++NumOpenMPParallelRegionsDeleted; 1217 return true; 1218 }; 1219 1220 RFI.foreachUse(SCC, DeleteCallCB); 1221 1222 return Changed; 1223 } 1224 1225 /// Try to eliminate runtime calls by reusing existing ones. 1226 bool deduplicateRuntimeCalls() { 1227 bool Changed = false; 1228 1229 RuntimeFunction DeduplicableRuntimeCallIDs[] = { 1230 OMPRTL_omp_get_num_threads, 1231 OMPRTL_omp_in_parallel, 1232 OMPRTL_omp_get_cancellation, 1233 OMPRTL_omp_get_thread_limit, 1234 OMPRTL_omp_get_supported_active_levels, 1235 OMPRTL_omp_get_level, 1236 OMPRTL_omp_get_ancestor_thread_num, 1237 OMPRTL_omp_get_team_size, 1238 OMPRTL_omp_get_active_level, 1239 OMPRTL_omp_in_final, 1240 OMPRTL_omp_get_proc_bind, 1241 OMPRTL_omp_get_num_places, 1242 OMPRTL_omp_get_num_procs, 1243 OMPRTL_omp_get_place_num, 1244 OMPRTL_omp_get_partition_num_places, 1245 OMPRTL_omp_get_partition_place_nums}; 1246 1247 // Global-tid is handled separately. 1248 SmallSetVector<Value *, 16> GTIdArgs; 1249 collectGlobalThreadIdArguments(GTIdArgs); 1250 LLVM_DEBUG(dbgs() << TAG << "Found " << GTIdArgs.size() 1251 << " global thread ID arguments\n"); 1252 1253 for (Function *F : SCC) { 1254 for (auto DeduplicableRuntimeCallID : DeduplicableRuntimeCallIDs) 1255 Changed |= deduplicateRuntimeCalls( 1256 *F, OMPInfoCache.RFIs[DeduplicableRuntimeCallID]); 1257 1258 // __kmpc_global_thread_num is special as we can replace it with an 1259 // argument in enough cases to make it worth trying. 1260 Value *GTIdArg = nullptr; 1261 for (Argument &Arg : F->args()) 1262 if (GTIdArgs.count(&Arg)) { 1263 GTIdArg = &Arg; 1264 break; 1265 } 1266 Changed |= deduplicateRuntimeCalls( 1267 *F, OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num], GTIdArg); 1268 } 1269 1270 return Changed; 1271 } 1272 1273 /// Tries to hide the latency of runtime calls that involve host to 1274 /// device memory transfers by splitting them into their "issue" and "wait" 1275 /// versions. The "issue" is moved upwards as much as possible. The "wait" is 1276 /// moved downards as much as possible. The "issue" issues the memory transfer 1277 /// asynchronously, returning a handle. The "wait" waits in the returned 1278 /// handle for the memory transfer to finish. 1279 bool hideMemTransfersLatency() { 1280 auto &RFI = OMPInfoCache.RFIs[OMPRTL___tgt_target_data_begin_mapper]; 1281 bool Changed = false; 1282 auto SplitMemTransfers = [&](Use &U, Function &Decl) { 1283 auto *RTCall = getCallIfRegularCall(U, &RFI); 1284 if (!RTCall) 1285 return false; 1286 1287 OffloadArray OffloadArrays[3]; 1288 if (!getValuesInOffloadArrays(*RTCall, OffloadArrays)) 1289 return false; 1290 1291 LLVM_DEBUG(dumpValuesInOffloadArrays(OffloadArrays)); 1292 1293 // TODO: Check if can be moved upwards. 1294 bool WasSplit = false; 1295 Instruction *WaitMovementPoint = canBeMovedDownwards(*RTCall); 1296 if (WaitMovementPoint) 1297 WasSplit = splitTargetDataBeginRTC(*RTCall, *WaitMovementPoint); 1298 1299 Changed |= WasSplit; 1300 return WasSplit; 1301 }; 1302 RFI.foreachUse(SCC, SplitMemTransfers); 1303 1304 return Changed; 1305 } 1306 1307 void analysisGlobalization() { 1308 auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared]; 1309 1310 auto CheckGlobalization = [&](Use &U, Function &Decl) { 1311 if (CallInst *CI = getCallIfRegularCall(U, &RFI)) { 1312 auto Remark = [&](OptimizationRemarkMissed ORM) { 1313 return ORM 1314 << "Found thread data sharing on the GPU. " 1315 << "Expect degraded performance due to data globalization."; 1316 }; 1317 emitRemark<OptimizationRemarkMissed>(CI, "OpenMPGlobalization", Remark); 1318 } 1319 1320 return false; 1321 }; 1322 1323 RFI.foreachUse(SCC, CheckGlobalization); 1324 } 1325 1326 /// Maps the values stored in the offload arrays passed as arguments to 1327 /// \p RuntimeCall into the offload arrays in \p OAs. 1328 bool getValuesInOffloadArrays(CallInst &RuntimeCall, 1329 MutableArrayRef<OffloadArray> OAs) { 1330 assert(OAs.size() == 3 && "Need space for three offload arrays!"); 1331 1332 // A runtime call that involves memory offloading looks something like: 1333 // call void @__tgt_target_data_begin_mapper(arg0, arg1, 1334 // i8** %offload_baseptrs, i8** %offload_ptrs, i64* %offload_sizes, 1335 // ...) 1336 // So, the idea is to access the allocas that allocate space for these 1337 // offload arrays, offload_baseptrs, offload_ptrs, offload_sizes. 1338 // Therefore: 1339 // i8** %offload_baseptrs. 1340 Value *BasePtrsArg = 1341 RuntimeCall.getArgOperand(OffloadArray::BasePtrsArgNum); 1342 // i8** %offload_ptrs. 1343 Value *PtrsArg = RuntimeCall.getArgOperand(OffloadArray::PtrsArgNum); 1344 // i8** %offload_sizes. 1345 Value *SizesArg = RuntimeCall.getArgOperand(OffloadArray::SizesArgNum); 1346 1347 // Get values stored in **offload_baseptrs. 1348 auto *V = getUnderlyingObject(BasePtrsArg); 1349 if (!isa<AllocaInst>(V)) 1350 return false; 1351 auto *BasePtrsArray = cast<AllocaInst>(V); 1352 if (!OAs[0].initialize(*BasePtrsArray, RuntimeCall)) 1353 return false; 1354 1355 // Get values stored in **offload_baseptrs. 1356 V = getUnderlyingObject(PtrsArg); 1357 if (!isa<AllocaInst>(V)) 1358 return false; 1359 auto *PtrsArray = cast<AllocaInst>(V); 1360 if (!OAs[1].initialize(*PtrsArray, RuntimeCall)) 1361 return false; 1362 1363 // Get values stored in **offload_sizes. 1364 V = getUnderlyingObject(SizesArg); 1365 // If it's a [constant] global array don't analyze it. 1366 if (isa<GlobalValue>(V)) 1367 return isa<Constant>(V); 1368 if (!isa<AllocaInst>(V)) 1369 return false; 1370 1371 auto *SizesArray = cast<AllocaInst>(V); 1372 if (!OAs[2].initialize(*SizesArray, RuntimeCall)) 1373 return false; 1374 1375 return true; 1376 } 1377 1378 /// Prints the values in the OffloadArrays \p OAs using LLVM_DEBUG. 1379 /// For now this is a way to test that the function getValuesInOffloadArrays 1380 /// is working properly. 1381 /// TODO: Move this to a unittest when unittests are available for OpenMPOpt. 1382 void dumpValuesInOffloadArrays(ArrayRef<OffloadArray> OAs) { 1383 assert(OAs.size() == 3 && "There are three offload arrays to debug!"); 1384 1385 LLVM_DEBUG(dbgs() << TAG << " Successfully got offload values:\n"); 1386 std::string ValuesStr; 1387 raw_string_ostream Printer(ValuesStr); 1388 std::string Separator = " --- "; 1389 1390 for (auto *BP : OAs[0].StoredValues) { 1391 BP->print(Printer); 1392 Printer << Separator; 1393 } 1394 LLVM_DEBUG(dbgs() << "\t\toffload_baseptrs: " << Printer.str() << "\n"); 1395 ValuesStr.clear(); 1396 1397 for (auto *P : OAs[1].StoredValues) { 1398 P->print(Printer); 1399 Printer << Separator; 1400 } 1401 LLVM_DEBUG(dbgs() << "\t\toffload_ptrs: " << Printer.str() << "\n"); 1402 ValuesStr.clear(); 1403 1404 for (auto *S : OAs[2].StoredValues) { 1405 S->print(Printer); 1406 Printer << Separator; 1407 } 1408 LLVM_DEBUG(dbgs() << "\t\toffload_sizes: " << Printer.str() << "\n"); 1409 } 1410 1411 /// Returns the instruction where the "wait" counterpart \p RuntimeCall can be 1412 /// moved. Returns nullptr if the movement is not possible, or not worth it. 1413 Instruction *canBeMovedDownwards(CallInst &RuntimeCall) { 1414 // FIXME: This traverses only the BasicBlock where RuntimeCall is. 1415 // Make it traverse the CFG. 1416 1417 Instruction *CurrentI = &RuntimeCall; 1418 bool IsWorthIt = false; 1419 while ((CurrentI = CurrentI->getNextNode())) { 1420 1421 // TODO: Once we detect the regions to be offloaded we should use the 1422 // alias analysis manager to check if CurrentI may modify one of 1423 // the offloaded regions. 1424 if (CurrentI->mayHaveSideEffects() || CurrentI->mayReadFromMemory()) { 1425 if (IsWorthIt) 1426 return CurrentI; 1427 1428 return nullptr; 1429 } 1430 1431 // FIXME: For now if we move it over anything without side effect 1432 // is worth it. 1433 IsWorthIt = true; 1434 } 1435 1436 // Return end of BasicBlock. 1437 return RuntimeCall.getParent()->getTerminator(); 1438 } 1439 1440 /// Splits \p RuntimeCall into its "issue" and "wait" counterparts. 1441 bool splitTargetDataBeginRTC(CallInst &RuntimeCall, 1442 Instruction &WaitMovementPoint) { 1443 // Create stack allocated handle (__tgt_async_info) at the beginning of the 1444 // function. Used for storing information of the async transfer, allowing to 1445 // wait on it later. 1446 auto &IRBuilder = OMPInfoCache.OMPBuilder; 1447 auto *F = RuntimeCall.getCaller(); 1448 Instruction *FirstInst = &(F->getEntryBlock().front()); 1449 AllocaInst *Handle = new AllocaInst( 1450 IRBuilder.AsyncInfo, F->getAddressSpace(), "handle", FirstInst); 1451 1452 // Add "issue" runtime call declaration: 1453 // declare %struct.tgt_async_info @__tgt_target_data_begin_issue(i64, i32, 1454 // i8**, i8**, i64*, i64*) 1455 FunctionCallee IssueDecl = IRBuilder.getOrCreateRuntimeFunction( 1456 M, OMPRTL___tgt_target_data_begin_mapper_issue); 1457 1458 // Change RuntimeCall call site for its asynchronous version. 1459 SmallVector<Value *, 16> Args; 1460 for (auto &Arg : RuntimeCall.args()) 1461 Args.push_back(Arg.get()); 1462 Args.push_back(Handle); 1463 1464 CallInst *IssueCallsite = 1465 CallInst::Create(IssueDecl, Args, /*NameStr=*/"", &RuntimeCall); 1466 RuntimeCall.eraseFromParent(); 1467 1468 // Add "wait" runtime call declaration: 1469 // declare void @__tgt_target_data_begin_wait(i64, %struct.__tgt_async_info) 1470 FunctionCallee WaitDecl = IRBuilder.getOrCreateRuntimeFunction( 1471 M, OMPRTL___tgt_target_data_begin_mapper_wait); 1472 1473 Value *WaitParams[2] = { 1474 IssueCallsite->getArgOperand( 1475 OffloadArray::DeviceIDArgNum), // device_id. 1476 Handle // handle to wait on. 1477 }; 1478 CallInst::Create(WaitDecl, WaitParams, /*NameStr=*/"", &WaitMovementPoint); 1479 1480 return true; 1481 } 1482 1483 static Value *combinedIdentStruct(Value *CurrentIdent, Value *NextIdent, 1484 bool GlobalOnly, bool &SingleChoice) { 1485 if (CurrentIdent == NextIdent) 1486 return CurrentIdent; 1487 1488 // TODO: Figure out how to actually combine multiple debug locations. For 1489 // now we just keep an existing one if there is a single choice. 1490 if (!GlobalOnly || isa<GlobalValue>(NextIdent)) { 1491 SingleChoice = !CurrentIdent; 1492 return NextIdent; 1493 } 1494 return nullptr; 1495 } 1496 1497 /// Return an `struct ident_t*` value that represents the ones used in the 1498 /// calls of \p RFI inside of \p F. If \p GlobalOnly is true, we will not 1499 /// return a local `struct ident_t*`. For now, if we cannot find a suitable 1500 /// return value we create one from scratch. We also do not yet combine 1501 /// information, e.g., the source locations, see combinedIdentStruct. 1502 Value * 1503 getCombinedIdentFromCallUsesIn(OMPInformationCache::RuntimeFunctionInfo &RFI, 1504 Function &F, bool GlobalOnly) { 1505 bool SingleChoice = true; 1506 Value *Ident = nullptr; 1507 auto CombineIdentStruct = [&](Use &U, Function &Caller) { 1508 CallInst *CI = getCallIfRegularCall(U, &RFI); 1509 if (!CI || &F != &Caller) 1510 return false; 1511 Ident = combinedIdentStruct(Ident, CI->getArgOperand(0), 1512 /* GlobalOnly */ true, SingleChoice); 1513 return false; 1514 }; 1515 RFI.foreachUse(SCC, CombineIdentStruct); 1516 1517 if (!Ident || !SingleChoice) { 1518 // The IRBuilder uses the insertion block to get to the module, this is 1519 // unfortunate but we work around it for now. 1520 if (!OMPInfoCache.OMPBuilder.getInsertionPoint().getBlock()) 1521 OMPInfoCache.OMPBuilder.updateToLocation(OpenMPIRBuilder::InsertPointTy( 1522 &F.getEntryBlock(), F.getEntryBlock().begin())); 1523 // Create a fallback location if non was found. 1524 // TODO: Use the debug locations of the calls instead. 1525 Constant *Loc = OMPInfoCache.OMPBuilder.getOrCreateDefaultSrcLocStr(); 1526 Ident = OMPInfoCache.OMPBuilder.getOrCreateIdent(Loc); 1527 } 1528 return Ident; 1529 } 1530 1531 /// Try to eliminate calls of \p RFI in \p F by reusing an existing one or 1532 /// \p ReplVal if given. 1533 bool deduplicateRuntimeCalls(Function &F, 1534 OMPInformationCache::RuntimeFunctionInfo &RFI, 1535 Value *ReplVal = nullptr) { 1536 auto *UV = RFI.getUseVector(F); 1537 if (!UV || UV->size() + (ReplVal != nullptr) < 2) 1538 return false; 1539 1540 LLVM_DEBUG( 1541 dbgs() << TAG << "Deduplicate " << UV->size() << " uses of " << RFI.Name 1542 << (ReplVal ? " with an existing value\n" : "\n") << "\n"); 1543 1544 assert((!ReplVal || (isa<Argument>(ReplVal) && 1545 cast<Argument>(ReplVal)->getParent() == &F)) && 1546 "Unexpected replacement value!"); 1547 1548 // TODO: Use dominance to find a good position instead. 1549 auto CanBeMoved = [this](CallBase &CB) { 1550 unsigned NumArgs = CB.getNumArgOperands(); 1551 if (NumArgs == 0) 1552 return true; 1553 if (CB.getArgOperand(0)->getType() != OMPInfoCache.OMPBuilder.IdentPtr) 1554 return false; 1555 for (unsigned u = 1; u < NumArgs; ++u) 1556 if (isa<Instruction>(CB.getArgOperand(u))) 1557 return false; 1558 return true; 1559 }; 1560 1561 if (!ReplVal) { 1562 for (Use *U : *UV) 1563 if (CallInst *CI = getCallIfRegularCall(*U, &RFI)) { 1564 if (!CanBeMoved(*CI)) 1565 continue; 1566 1567 auto Remark = [&](OptimizationRemark OR) { 1568 return OR << "OpenMP runtime call " 1569 << ore::NV("OpenMPOptRuntime", RFI.Name) 1570 << " moved to beginning of OpenMP region"; 1571 }; 1572 emitRemark<OptimizationRemark>(&F, "OpenMPRuntimeCodeMotion", Remark); 1573 1574 CI->moveBefore(&*F.getEntryBlock().getFirstInsertionPt()); 1575 ReplVal = CI; 1576 break; 1577 } 1578 if (!ReplVal) 1579 return false; 1580 } 1581 1582 // If we use a call as a replacement value we need to make sure the ident is 1583 // valid at the new location. For now we just pick a global one, either 1584 // existing and used by one of the calls, or created from scratch. 1585 if (CallBase *CI = dyn_cast<CallBase>(ReplVal)) { 1586 if (CI->getNumArgOperands() > 0 && 1587 CI->getArgOperand(0)->getType() == OMPInfoCache.OMPBuilder.IdentPtr) { 1588 Value *Ident = getCombinedIdentFromCallUsesIn(RFI, F, 1589 /* GlobalOnly */ true); 1590 CI->setArgOperand(0, Ident); 1591 } 1592 } 1593 1594 bool Changed = false; 1595 auto ReplaceAndDeleteCB = [&](Use &U, Function &Caller) { 1596 CallInst *CI = getCallIfRegularCall(U, &RFI); 1597 if (!CI || CI == ReplVal || &F != &Caller) 1598 return false; 1599 assert(CI->getCaller() == &F && "Unexpected call!"); 1600 1601 auto Remark = [&](OptimizationRemark OR) { 1602 return OR << "OpenMP runtime call " 1603 << ore::NV("OpenMPOptRuntime", RFI.Name) << " deduplicated"; 1604 }; 1605 emitRemark<OptimizationRemark>(&F, "OpenMPRuntimeDeduplicated", Remark); 1606 1607 CGUpdater.removeCallSite(*CI); 1608 CI->replaceAllUsesWith(ReplVal); 1609 CI->eraseFromParent(); 1610 ++NumOpenMPRuntimeCallsDeduplicated; 1611 Changed = true; 1612 return true; 1613 }; 1614 RFI.foreachUse(SCC, ReplaceAndDeleteCB); 1615 1616 return Changed; 1617 } 1618 1619 /// Collect arguments that represent the global thread id in \p GTIdArgs. 1620 void collectGlobalThreadIdArguments(SmallSetVector<Value *, 16> >IdArgs) { 1621 // TODO: Below we basically perform a fixpoint iteration with a pessimistic 1622 // initialization. We could define an AbstractAttribute instead and 1623 // run the Attributor here once it can be run as an SCC pass. 1624 1625 // Helper to check the argument \p ArgNo at all call sites of \p F for 1626 // a GTId. 1627 auto CallArgOpIsGTId = [&](Function &F, unsigned ArgNo, CallInst &RefCI) { 1628 if (!F.hasLocalLinkage()) 1629 return false; 1630 for (Use &U : F.uses()) { 1631 if (CallInst *CI = getCallIfRegularCall(U)) { 1632 Value *ArgOp = CI->getArgOperand(ArgNo); 1633 if (CI == &RefCI || GTIdArgs.count(ArgOp) || 1634 getCallIfRegularCall( 1635 *ArgOp, &OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num])) 1636 continue; 1637 } 1638 return false; 1639 } 1640 return true; 1641 }; 1642 1643 // Helper to identify uses of a GTId as GTId arguments. 1644 auto AddUserArgs = [&](Value >Id) { 1645 for (Use &U : GTId.uses()) 1646 if (CallInst *CI = dyn_cast<CallInst>(U.getUser())) 1647 if (CI->isArgOperand(&U)) 1648 if (Function *Callee = CI->getCalledFunction()) 1649 if (CallArgOpIsGTId(*Callee, U.getOperandNo(), *CI)) 1650 GTIdArgs.insert(Callee->getArg(U.getOperandNo())); 1651 }; 1652 1653 // The argument users of __kmpc_global_thread_num calls are GTIds. 1654 OMPInformationCache::RuntimeFunctionInfo &GlobThreadNumRFI = 1655 OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num]; 1656 1657 GlobThreadNumRFI.foreachUse(SCC, [&](Use &U, Function &F) { 1658 if (CallInst *CI = getCallIfRegularCall(U, &GlobThreadNumRFI)) 1659 AddUserArgs(*CI); 1660 return false; 1661 }); 1662 1663 // Transitively search for more arguments by looking at the users of the 1664 // ones we know already. During the search the GTIdArgs vector is extended 1665 // so we cannot cache the size nor can we use a range based for. 1666 for (unsigned u = 0; u < GTIdArgs.size(); ++u) 1667 AddUserArgs(*GTIdArgs[u]); 1668 } 1669 1670 /// Kernel (=GPU) optimizations and utility functions 1671 /// 1672 ///{{ 1673 1674 /// Check if \p F is a kernel, hence entry point for target offloading. 1675 bool isKernel(Function &F) { return OMPInfoCache.Kernels.count(&F); } 1676 1677 /// Cache to remember the unique kernel for a function. 1678 DenseMap<Function *, Optional<Kernel>> UniqueKernelMap; 1679 1680 /// Find the unique kernel that will execute \p F, if any. 1681 Kernel getUniqueKernelFor(Function &F); 1682 1683 /// Find the unique kernel that will execute \p I, if any. 1684 Kernel getUniqueKernelFor(Instruction &I) { 1685 return getUniqueKernelFor(*I.getFunction()); 1686 } 1687 1688 /// Rewrite the device (=GPU) code state machine create in non-SPMD mode in 1689 /// the cases we can avoid taking the address of a function. 1690 bool rewriteDeviceCodeStateMachine(); 1691 1692 /// 1693 ///}} 1694 1695 /// Emit a remark generically 1696 /// 1697 /// This template function can be used to generically emit a remark. The 1698 /// RemarkKind should be one of the following: 1699 /// - OptimizationRemark to indicate a successful optimization attempt 1700 /// - OptimizationRemarkMissed to report a failed optimization attempt 1701 /// - OptimizationRemarkAnalysis to provide additional information about an 1702 /// optimization attempt 1703 /// 1704 /// The remark is built using a callback function provided by the caller that 1705 /// takes a RemarkKind as input and returns a RemarkKind. 1706 template <typename RemarkKind, typename RemarkCallBack> 1707 void emitRemark(Instruction *I, StringRef RemarkName, 1708 RemarkCallBack &&RemarkCB) const { 1709 Function *F = I->getParent()->getParent(); 1710 auto &ORE = OREGetter(F); 1711 1712 ORE.emit([&]() { return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, I)); }); 1713 } 1714 1715 /// Emit a remark on a function. 1716 template <typename RemarkKind, typename RemarkCallBack> 1717 void emitRemark(Function *F, StringRef RemarkName, 1718 RemarkCallBack &&RemarkCB) const { 1719 auto &ORE = OREGetter(F); 1720 1721 ORE.emit([&]() { return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, F)); }); 1722 } 1723 1724 /// The underlying module. 1725 Module &M; 1726 1727 /// The SCC we are operating on. 1728 SmallVectorImpl<Function *> &SCC; 1729 1730 /// Callback to update the call graph, the first argument is a removed call, 1731 /// the second an optional replacement call. 1732 CallGraphUpdater &CGUpdater; 1733 1734 /// Callback to get an OptimizationRemarkEmitter from a Function * 1735 OptimizationRemarkGetter OREGetter; 1736 1737 /// OpenMP-specific information cache. Also Used for Attributor runs. 1738 OMPInformationCache &OMPInfoCache; 1739 1740 /// Attributor instance. 1741 Attributor &A; 1742 1743 /// Helper function to run Attributor on SCC. 1744 bool runAttributor(bool IsModulePass) { 1745 if (SCC.empty()) 1746 return false; 1747 1748 registerAAs(IsModulePass); 1749 1750 ChangeStatus Changed = A.run(); 1751 1752 LLVM_DEBUG(dbgs() << "[Attributor] Done with " << SCC.size() 1753 << " functions, result: " << Changed << ".\n"); 1754 1755 return Changed == ChangeStatus::CHANGED; 1756 } 1757 1758 /// Populate the Attributor with abstract attribute opportunities in the 1759 /// function. 1760 void registerAAs(bool IsModulePass); 1761 }; 1762 1763 Kernel OpenMPOpt::getUniqueKernelFor(Function &F) { 1764 if (!OMPInfoCache.ModuleSlice.count(&F)) 1765 return nullptr; 1766 1767 // Use a scope to keep the lifetime of the CachedKernel short. 1768 { 1769 Optional<Kernel> &CachedKernel = UniqueKernelMap[&F]; 1770 if (CachedKernel) 1771 return *CachedKernel; 1772 1773 // TODO: We should use an AA to create an (optimistic and callback 1774 // call-aware) call graph. For now we stick to simple patterns that 1775 // are less powerful, basically the worst fixpoint. 1776 if (isKernel(F)) { 1777 CachedKernel = Kernel(&F); 1778 return *CachedKernel; 1779 } 1780 1781 CachedKernel = nullptr; 1782 if (!F.hasLocalLinkage()) { 1783 1784 // See https://openmp.llvm.org/remarks/OptimizationRemarks.html 1785 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 1786 return ORA 1787 << "[OMP100] Potentially unknown OpenMP target region caller"; 1788 }; 1789 emitRemark<OptimizationRemarkAnalysis>(&F, "OMP100", Remark); 1790 1791 return nullptr; 1792 } 1793 } 1794 1795 auto GetUniqueKernelForUse = [&](const Use &U) -> Kernel { 1796 if (auto *Cmp = dyn_cast<ICmpInst>(U.getUser())) { 1797 // Allow use in equality comparisons. 1798 if (Cmp->isEquality()) 1799 return getUniqueKernelFor(*Cmp); 1800 return nullptr; 1801 } 1802 if (auto *CB = dyn_cast<CallBase>(U.getUser())) { 1803 // Allow direct calls. 1804 if (CB->isCallee(&U)) 1805 return getUniqueKernelFor(*CB); 1806 1807 OMPInformationCache::RuntimeFunctionInfo &KernelParallelRFI = 1808 OMPInfoCache.RFIs[OMPRTL___kmpc_parallel_51]; 1809 // Allow the use in __kmpc_parallel_51 calls. 1810 if (OpenMPOpt::getCallIfRegularCall(*U.getUser(), &KernelParallelRFI)) 1811 return getUniqueKernelFor(*CB); 1812 return nullptr; 1813 } 1814 // Disallow every other use. 1815 return nullptr; 1816 }; 1817 1818 // TODO: In the future we want to track more than just a unique kernel. 1819 SmallPtrSet<Kernel, 2> PotentialKernels; 1820 OMPInformationCache::foreachUse(F, [&](const Use &U) { 1821 PotentialKernels.insert(GetUniqueKernelForUse(U)); 1822 }); 1823 1824 Kernel K = nullptr; 1825 if (PotentialKernels.size() == 1) 1826 K = *PotentialKernels.begin(); 1827 1828 // Cache the result. 1829 UniqueKernelMap[&F] = K; 1830 1831 return K; 1832 } 1833 1834 bool OpenMPOpt::rewriteDeviceCodeStateMachine() { 1835 OMPInformationCache::RuntimeFunctionInfo &KernelParallelRFI = 1836 OMPInfoCache.RFIs[OMPRTL___kmpc_parallel_51]; 1837 1838 bool Changed = false; 1839 if (!KernelParallelRFI) 1840 return Changed; 1841 1842 for (Function *F : SCC) { 1843 1844 // Check if the function is a use in a __kmpc_parallel_51 call at 1845 // all. 1846 bool UnknownUse = false; 1847 bool KernelParallelUse = false; 1848 unsigned NumDirectCalls = 0; 1849 1850 SmallVector<Use *, 2> ToBeReplacedStateMachineUses; 1851 OMPInformationCache::foreachUse(*F, [&](Use &U) { 1852 if (auto *CB = dyn_cast<CallBase>(U.getUser())) 1853 if (CB->isCallee(&U)) { 1854 ++NumDirectCalls; 1855 return; 1856 } 1857 1858 if (isa<ICmpInst>(U.getUser())) { 1859 ToBeReplacedStateMachineUses.push_back(&U); 1860 return; 1861 } 1862 1863 // Find wrapper functions that represent parallel kernels. 1864 CallInst *CI = 1865 OpenMPOpt::getCallIfRegularCall(*U.getUser(), &KernelParallelRFI); 1866 const unsigned int WrapperFunctionArgNo = 6; 1867 if (!KernelParallelUse && CI && 1868 CI->getArgOperandNo(&U) == WrapperFunctionArgNo) { 1869 KernelParallelUse = true; 1870 ToBeReplacedStateMachineUses.push_back(&U); 1871 return; 1872 } 1873 UnknownUse = true; 1874 }); 1875 1876 // Do not emit a remark if we haven't seen a __kmpc_parallel_51 1877 // use. 1878 if (!KernelParallelUse) 1879 continue; 1880 1881 { 1882 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 1883 return ORA << "Found a parallel region that is called in a target " 1884 "region but not part of a combined target construct nor " 1885 "nested inside a target construct without intermediate " 1886 "code. This can lead to excessive register usage for " 1887 "unrelated target regions in the same translation unit " 1888 "due to spurious call edges assumed by ptxas."; 1889 }; 1890 emitRemark<OptimizationRemarkAnalysis>(F, "OpenMPParallelRegionInNonSPMD", 1891 Remark); 1892 } 1893 1894 // If this ever hits, we should investigate. 1895 // TODO: Checking the number of uses is not a necessary restriction and 1896 // should be lifted. 1897 if (UnknownUse || NumDirectCalls != 1 || 1898 ToBeReplacedStateMachineUses.size() > 2) { 1899 { 1900 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 1901 return ORA << "Parallel region is used in " 1902 << (UnknownUse ? "unknown" : "unexpected") 1903 << " ways; will not attempt to rewrite the state machine."; 1904 }; 1905 emitRemark<OptimizationRemarkAnalysis>( 1906 F, "OpenMPParallelRegionInNonSPMD", Remark); 1907 } 1908 continue; 1909 } 1910 1911 // Even if we have __kmpc_parallel_51 calls, we (for now) give 1912 // up if the function is not called from a unique kernel. 1913 Kernel K = getUniqueKernelFor(*F); 1914 if (!K) { 1915 { 1916 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 1917 return ORA << "Parallel region is not known to be called from a " 1918 "unique single target region, maybe the surrounding " 1919 "function has external linkage?; will not attempt to " 1920 "rewrite the state machine use."; 1921 }; 1922 emitRemark<OptimizationRemarkAnalysis>( 1923 F, "OpenMPParallelRegionInMultipleKernesl", Remark); 1924 } 1925 continue; 1926 } 1927 1928 // We now know F is a parallel body function called only from the kernel K. 1929 // We also identified the state machine uses in which we replace the 1930 // function pointer by a new global symbol for identification purposes. This 1931 // ensures only direct calls to the function are left. 1932 1933 { 1934 auto RemarkParalleRegion = [&](OptimizationRemarkAnalysis ORA) { 1935 return ORA << "Specialize parallel region that is only reached from a " 1936 "single target region to avoid spurious call edges and " 1937 "excessive register usage in other target regions. " 1938 "(parallel region ID: " 1939 << ore::NV("OpenMPParallelRegion", F->getName()) 1940 << ", kernel ID: " 1941 << ore::NV("OpenMPTargetRegion", K->getName()) << ")"; 1942 }; 1943 emitRemark<OptimizationRemarkAnalysis>(F, "OpenMPParallelRegionInNonSPMD", 1944 RemarkParalleRegion); 1945 auto RemarkKernel = [&](OptimizationRemarkAnalysis ORA) { 1946 return ORA << "Target region containing the parallel region that is " 1947 "specialized. (parallel region ID: " 1948 << ore::NV("OpenMPParallelRegion", F->getName()) 1949 << ", kernel ID: " 1950 << ore::NV("OpenMPTargetRegion", K->getName()) << ")"; 1951 }; 1952 emitRemark<OptimizationRemarkAnalysis>(K, "OpenMPParallelRegionInNonSPMD", 1953 RemarkKernel); 1954 } 1955 1956 Module &M = *F->getParent(); 1957 Type *Int8Ty = Type::getInt8Ty(M.getContext()); 1958 1959 auto *ID = new GlobalVariable( 1960 M, Int8Ty, /* isConstant */ true, GlobalValue::PrivateLinkage, 1961 UndefValue::get(Int8Ty), F->getName() + ".ID"); 1962 1963 for (Use *U : ToBeReplacedStateMachineUses) 1964 U->set(ConstantExpr::getBitCast(ID, U->get()->getType())); 1965 1966 ++NumOpenMPParallelRegionsReplacedInGPUStateMachine; 1967 1968 Changed = true; 1969 } 1970 1971 return Changed; 1972 } 1973 1974 /// Abstract Attribute for tracking ICV values. 1975 struct AAICVTracker : public StateWrapper<BooleanState, AbstractAttribute> { 1976 using Base = StateWrapper<BooleanState, AbstractAttribute>; 1977 AAICVTracker(const IRPosition &IRP, Attributor &A) : Base(IRP) {} 1978 1979 void initialize(Attributor &A) override { 1980 Function *F = getAnchorScope(); 1981 if (!F || !A.isFunctionIPOAmendable(*F)) 1982 indicatePessimisticFixpoint(); 1983 } 1984 1985 /// Returns true if value is assumed to be tracked. 1986 bool isAssumedTracked() const { return getAssumed(); } 1987 1988 /// Returns true if value is known to be tracked. 1989 bool isKnownTracked() const { return getAssumed(); } 1990 1991 /// Create an abstract attribute biew for the position \p IRP. 1992 static AAICVTracker &createForPosition(const IRPosition &IRP, Attributor &A); 1993 1994 /// Return the value with which \p I can be replaced for specific \p ICV. 1995 virtual Optional<Value *> getReplacementValue(InternalControlVar ICV, 1996 const Instruction *I, 1997 Attributor &A) const { 1998 return None; 1999 } 2000 2001 /// Return an assumed unique ICV value if a single candidate is found. If 2002 /// there cannot be one, return a nullptr. If it is not clear yet, return the 2003 /// Optional::NoneType. 2004 virtual Optional<Value *> 2005 getUniqueReplacementValue(InternalControlVar ICV) const = 0; 2006 2007 // Currently only nthreads is being tracked. 2008 // this array will only grow with time. 2009 InternalControlVar TrackableICVs[1] = {ICV_nthreads}; 2010 2011 /// See AbstractAttribute::getName() 2012 const std::string getName() const override { return "AAICVTracker"; } 2013 2014 /// See AbstractAttribute::getIdAddr() 2015 const char *getIdAddr() const override { return &ID; } 2016 2017 /// This function should return true if the type of the \p AA is AAICVTracker 2018 static bool classof(const AbstractAttribute *AA) { 2019 return (AA->getIdAddr() == &ID); 2020 } 2021 2022 static const char ID; 2023 }; 2024 2025 struct AAICVTrackerFunction : public AAICVTracker { 2026 AAICVTrackerFunction(const IRPosition &IRP, Attributor &A) 2027 : AAICVTracker(IRP, A) {} 2028 2029 // FIXME: come up with better string. 2030 const std::string getAsStr() const override { return "ICVTrackerFunction"; } 2031 2032 // FIXME: come up with some stats. 2033 void trackStatistics() const override {} 2034 2035 /// We don't manifest anything for this AA. 2036 ChangeStatus manifest(Attributor &A) override { 2037 return ChangeStatus::UNCHANGED; 2038 } 2039 2040 // Map of ICV to their values at specific program point. 2041 EnumeratedArray<DenseMap<Instruction *, Value *>, InternalControlVar, 2042 InternalControlVar::ICV___last> 2043 ICVReplacementValuesMap; 2044 2045 ChangeStatus updateImpl(Attributor &A) override { 2046 ChangeStatus HasChanged = ChangeStatus::UNCHANGED; 2047 2048 Function *F = getAnchorScope(); 2049 2050 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2051 2052 for (InternalControlVar ICV : TrackableICVs) { 2053 auto &SetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Setter]; 2054 2055 auto &ValuesMap = ICVReplacementValuesMap[ICV]; 2056 auto TrackValues = [&](Use &U, Function &) { 2057 CallInst *CI = OpenMPOpt::getCallIfRegularCall(U); 2058 if (!CI) 2059 return false; 2060 2061 // FIXME: handle setters with more that 1 arguments. 2062 /// Track new value. 2063 if (ValuesMap.insert(std::make_pair(CI, CI->getArgOperand(0))).second) 2064 HasChanged = ChangeStatus::CHANGED; 2065 2066 return false; 2067 }; 2068 2069 auto CallCheck = [&](Instruction &I) { 2070 Optional<Value *> ReplVal = getValueForCall(A, &I, ICV); 2071 if (ReplVal.hasValue() && 2072 ValuesMap.insert(std::make_pair(&I, *ReplVal)).second) 2073 HasChanged = ChangeStatus::CHANGED; 2074 2075 return true; 2076 }; 2077 2078 // Track all changes of an ICV. 2079 SetterRFI.foreachUse(TrackValues, F); 2080 2081 bool UsedAssumedInformation = false; 2082 A.checkForAllInstructions(CallCheck, *this, {Instruction::Call}, 2083 UsedAssumedInformation, 2084 /* CheckBBLivenessOnly */ true); 2085 2086 /// TODO: Figure out a way to avoid adding entry in 2087 /// ICVReplacementValuesMap 2088 Instruction *Entry = &F->getEntryBlock().front(); 2089 if (HasChanged == ChangeStatus::CHANGED && !ValuesMap.count(Entry)) 2090 ValuesMap.insert(std::make_pair(Entry, nullptr)); 2091 } 2092 2093 return HasChanged; 2094 } 2095 2096 /// Hepler to check if \p I is a call and get the value for it if it is 2097 /// unique. 2098 Optional<Value *> getValueForCall(Attributor &A, const Instruction *I, 2099 InternalControlVar &ICV) const { 2100 2101 const auto *CB = dyn_cast<CallBase>(I); 2102 if (!CB || CB->hasFnAttr("no_openmp") || 2103 CB->hasFnAttr("no_openmp_routines")) 2104 return None; 2105 2106 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2107 auto &GetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Getter]; 2108 auto &SetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Setter]; 2109 Function *CalledFunction = CB->getCalledFunction(); 2110 2111 // Indirect call, assume ICV changes. 2112 if (CalledFunction == nullptr) 2113 return nullptr; 2114 if (CalledFunction == GetterRFI.Declaration) 2115 return None; 2116 if (CalledFunction == SetterRFI.Declaration) { 2117 if (ICVReplacementValuesMap[ICV].count(I)) 2118 return ICVReplacementValuesMap[ICV].lookup(I); 2119 2120 return nullptr; 2121 } 2122 2123 // Since we don't know, assume it changes the ICV. 2124 if (CalledFunction->isDeclaration()) 2125 return nullptr; 2126 2127 const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>( 2128 *this, IRPosition::callsite_returned(*CB), DepClassTy::REQUIRED); 2129 2130 if (ICVTrackingAA.isAssumedTracked()) 2131 return ICVTrackingAA.getUniqueReplacementValue(ICV); 2132 2133 // If we don't know, assume it changes. 2134 return nullptr; 2135 } 2136 2137 // We don't check unique value for a function, so return None. 2138 Optional<Value *> 2139 getUniqueReplacementValue(InternalControlVar ICV) const override { 2140 return None; 2141 } 2142 2143 /// Return the value with which \p I can be replaced for specific \p ICV. 2144 Optional<Value *> getReplacementValue(InternalControlVar ICV, 2145 const Instruction *I, 2146 Attributor &A) const override { 2147 const auto &ValuesMap = ICVReplacementValuesMap[ICV]; 2148 if (ValuesMap.count(I)) 2149 return ValuesMap.lookup(I); 2150 2151 SmallVector<const Instruction *, 16> Worklist; 2152 SmallPtrSet<const Instruction *, 16> Visited; 2153 Worklist.push_back(I); 2154 2155 Optional<Value *> ReplVal; 2156 2157 while (!Worklist.empty()) { 2158 const Instruction *CurrInst = Worklist.pop_back_val(); 2159 if (!Visited.insert(CurrInst).second) 2160 continue; 2161 2162 const BasicBlock *CurrBB = CurrInst->getParent(); 2163 2164 // Go up and look for all potential setters/calls that might change the 2165 // ICV. 2166 while ((CurrInst = CurrInst->getPrevNode())) { 2167 if (ValuesMap.count(CurrInst)) { 2168 Optional<Value *> NewReplVal = ValuesMap.lookup(CurrInst); 2169 // Unknown value, track new. 2170 if (!ReplVal.hasValue()) { 2171 ReplVal = NewReplVal; 2172 break; 2173 } 2174 2175 // If we found a new value, we can't know the icv value anymore. 2176 if (NewReplVal.hasValue()) 2177 if (ReplVal != NewReplVal) 2178 return nullptr; 2179 2180 break; 2181 } 2182 2183 Optional<Value *> NewReplVal = getValueForCall(A, CurrInst, ICV); 2184 if (!NewReplVal.hasValue()) 2185 continue; 2186 2187 // Unknown value, track new. 2188 if (!ReplVal.hasValue()) { 2189 ReplVal = NewReplVal; 2190 break; 2191 } 2192 2193 // if (NewReplVal.hasValue()) 2194 // We found a new value, we can't know the icv value anymore. 2195 if (ReplVal != NewReplVal) 2196 return nullptr; 2197 } 2198 2199 // If we are in the same BB and we have a value, we are done. 2200 if (CurrBB == I->getParent() && ReplVal.hasValue()) 2201 return ReplVal; 2202 2203 // Go through all predecessors and add terminators for analysis. 2204 for (const BasicBlock *Pred : predecessors(CurrBB)) 2205 if (const Instruction *Terminator = Pred->getTerminator()) 2206 Worklist.push_back(Terminator); 2207 } 2208 2209 return ReplVal; 2210 } 2211 }; 2212 2213 struct AAICVTrackerFunctionReturned : AAICVTracker { 2214 AAICVTrackerFunctionReturned(const IRPosition &IRP, Attributor &A) 2215 : AAICVTracker(IRP, A) {} 2216 2217 // FIXME: come up with better string. 2218 const std::string getAsStr() const override { 2219 return "ICVTrackerFunctionReturned"; 2220 } 2221 2222 // FIXME: come up with some stats. 2223 void trackStatistics() const override {} 2224 2225 /// We don't manifest anything for this AA. 2226 ChangeStatus manifest(Attributor &A) override { 2227 return ChangeStatus::UNCHANGED; 2228 } 2229 2230 // Map of ICV to their values at specific program point. 2231 EnumeratedArray<Optional<Value *>, InternalControlVar, 2232 InternalControlVar::ICV___last> 2233 ICVReplacementValuesMap; 2234 2235 /// Return the value with which \p I can be replaced for specific \p ICV. 2236 Optional<Value *> 2237 getUniqueReplacementValue(InternalControlVar ICV) const override { 2238 return ICVReplacementValuesMap[ICV]; 2239 } 2240 2241 ChangeStatus updateImpl(Attributor &A) override { 2242 ChangeStatus Changed = ChangeStatus::UNCHANGED; 2243 const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>( 2244 *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED); 2245 2246 if (!ICVTrackingAA.isAssumedTracked()) 2247 return indicatePessimisticFixpoint(); 2248 2249 for (InternalControlVar ICV : TrackableICVs) { 2250 Optional<Value *> &ReplVal = ICVReplacementValuesMap[ICV]; 2251 Optional<Value *> UniqueICVValue; 2252 2253 auto CheckReturnInst = [&](Instruction &I) { 2254 Optional<Value *> NewReplVal = 2255 ICVTrackingAA.getReplacementValue(ICV, &I, A); 2256 2257 // If we found a second ICV value there is no unique returned value. 2258 if (UniqueICVValue.hasValue() && UniqueICVValue != NewReplVal) 2259 return false; 2260 2261 UniqueICVValue = NewReplVal; 2262 2263 return true; 2264 }; 2265 2266 bool UsedAssumedInformation = false; 2267 if (!A.checkForAllInstructions(CheckReturnInst, *this, {Instruction::Ret}, 2268 UsedAssumedInformation, 2269 /* CheckBBLivenessOnly */ true)) 2270 UniqueICVValue = nullptr; 2271 2272 if (UniqueICVValue == ReplVal) 2273 continue; 2274 2275 ReplVal = UniqueICVValue; 2276 Changed = ChangeStatus::CHANGED; 2277 } 2278 2279 return Changed; 2280 } 2281 }; 2282 2283 struct AAICVTrackerCallSite : AAICVTracker { 2284 AAICVTrackerCallSite(const IRPosition &IRP, Attributor &A) 2285 : AAICVTracker(IRP, A) {} 2286 2287 void initialize(Attributor &A) override { 2288 Function *F = getAnchorScope(); 2289 if (!F || !A.isFunctionIPOAmendable(*F)) 2290 indicatePessimisticFixpoint(); 2291 2292 // We only initialize this AA for getters, so we need to know which ICV it 2293 // gets. 2294 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2295 for (InternalControlVar ICV : TrackableICVs) { 2296 auto ICVInfo = OMPInfoCache.ICVs[ICV]; 2297 auto &Getter = OMPInfoCache.RFIs[ICVInfo.Getter]; 2298 if (Getter.Declaration == getAssociatedFunction()) { 2299 AssociatedICV = ICVInfo.Kind; 2300 return; 2301 } 2302 } 2303 2304 /// Unknown ICV. 2305 indicatePessimisticFixpoint(); 2306 } 2307 2308 ChangeStatus manifest(Attributor &A) override { 2309 if (!ReplVal.hasValue() || !ReplVal.getValue()) 2310 return ChangeStatus::UNCHANGED; 2311 2312 A.changeValueAfterManifest(*getCtxI(), **ReplVal); 2313 A.deleteAfterManifest(*getCtxI()); 2314 2315 return ChangeStatus::CHANGED; 2316 } 2317 2318 // FIXME: come up with better string. 2319 const std::string getAsStr() const override { return "ICVTrackerCallSite"; } 2320 2321 // FIXME: come up with some stats. 2322 void trackStatistics() const override {} 2323 2324 InternalControlVar AssociatedICV; 2325 Optional<Value *> ReplVal; 2326 2327 ChangeStatus updateImpl(Attributor &A) override { 2328 const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>( 2329 *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED); 2330 2331 // We don't have any information, so we assume it changes the ICV. 2332 if (!ICVTrackingAA.isAssumedTracked()) 2333 return indicatePessimisticFixpoint(); 2334 2335 Optional<Value *> NewReplVal = 2336 ICVTrackingAA.getReplacementValue(AssociatedICV, getCtxI(), A); 2337 2338 if (ReplVal == NewReplVal) 2339 return ChangeStatus::UNCHANGED; 2340 2341 ReplVal = NewReplVal; 2342 return ChangeStatus::CHANGED; 2343 } 2344 2345 // Return the value with which associated value can be replaced for specific 2346 // \p ICV. 2347 Optional<Value *> 2348 getUniqueReplacementValue(InternalControlVar ICV) const override { 2349 return ReplVal; 2350 } 2351 }; 2352 2353 struct AAICVTrackerCallSiteReturned : AAICVTracker { 2354 AAICVTrackerCallSiteReturned(const IRPosition &IRP, Attributor &A) 2355 : AAICVTracker(IRP, A) {} 2356 2357 // FIXME: come up with better string. 2358 const std::string getAsStr() const override { 2359 return "ICVTrackerCallSiteReturned"; 2360 } 2361 2362 // FIXME: come up with some stats. 2363 void trackStatistics() const override {} 2364 2365 /// We don't manifest anything for this AA. 2366 ChangeStatus manifest(Attributor &A) override { 2367 return ChangeStatus::UNCHANGED; 2368 } 2369 2370 // Map of ICV to their values at specific program point. 2371 EnumeratedArray<Optional<Value *>, InternalControlVar, 2372 InternalControlVar::ICV___last> 2373 ICVReplacementValuesMap; 2374 2375 /// Return the value with which associated value can be replaced for specific 2376 /// \p ICV. 2377 Optional<Value *> 2378 getUniqueReplacementValue(InternalControlVar ICV) const override { 2379 return ICVReplacementValuesMap[ICV]; 2380 } 2381 2382 ChangeStatus updateImpl(Attributor &A) override { 2383 ChangeStatus Changed = ChangeStatus::UNCHANGED; 2384 const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>( 2385 *this, IRPosition::returned(*getAssociatedFunction()), 2386 DepClassTy::REQUIRED); 2387 2388 // We don't have any information, so we assume it changes the ICV. 2389 if (!ICVTrackingAA.isAssumedTracked()) 2390 return indicatePessimisticFixpoint(); 2391 2392 for (InternalControlVar ICV : TrackableICVs) { 2393 Optional<Value *> &ReplVal = ICVReplacementValuesMap[ICV]; 2394 Optional<Value *> NewReplVal = 2395 ICVTrackingAA.getUniqueReplacementValue(ICV); 2396 2397 if (ReplVal == NewReplVal) 2398 continue; 2399 2400 ReplVal = NewReplVal; 2401 Changed = ChangeStatus::CHANGED; 2402 } 2403 return Changed; 2404 } 2405 }; 2406 2407 struct AAExecutionDomainFunction : public AAExecutionDomain { 2408 AAExecutionDomainFunction(const IRPosition &IRP, Attributor &A) 2409 : AAExecutionDomain(IRP, A) {} 2410 2411 const std::string getAsStr() const override { 2412 return "[AAExecutionDomain] " + std::to_string(SingleThreadedBBs.size()) + 2413 "/" + std::to_string(NumBBs) + " BBs thread 0 only."; 2414 } 2415 2416 /// See AbstractAttribute::trackStatistics(). 2417 void trackStatistics() const override {} 2418 2419 void initialize(Attributor &A) override { 2420 Function *F = getAnchorScope(); 2421 for (const auto &BB : *F) 2422 SingleThreadedBBs.insert(&BB); 2423 NumBBs = SingleThreadedBBs.size(); 2424 } 2425 2426 ChangeStatus manifest(Attributor &A) override { 2427 LLVM_DEBUG({ 2428 for (const BasicBlock *BB : SingleThreadedBBs) 2429 dbgs() << TAG << " Basic block @" << getAnchorScope()->getName() << " " 2430 << BB->getName() << " is executed by a single thread.\n"; 2431 }); 2432 return ChangeStatus::UNCHANGED; 2433 } 2434 2435 ChangeStatus updateImpl(Attributor &A) override; 2436 2437 /// Check if an instruction is executed by a single thread. 2438 bool isExecutedByInitialThreadOnly(const Instruction &I) const override { 2439 return isExecutedByInitialThreadOnly(*I.getParent()); 2440 } 2441 2442 bool isExecutedByInitialThreadOnly(const BasicBlock &BB) const override { 2443 return isValidState() && SingleThreadedBBs.contains(&BB); 2444 } 2445 2446 /// Set of basic blocks that are executed by a single thread. 2447 DenseSet<const BasicBlock *> SingleThreadedBBs; 2448 2449 /// Total number of basic blocks in this function. 2450 long unsigned NumBBs; 2451 }; 2452 2453 ChangeStatus AAExecutionDomainFunction::updateImpl(Attributor &A) { 2454 Function *F = getAnchorScope(); 2455 ReversePostOrderTraversal<Function *> RPOT(F); 2456 auto NumSingleThreadedBBs = SingleThreadedBBs.size(); 2457 2458 bool AllCallSitesKnown; 2459 auto PredForCallSite = [&](AbstractCallSite ACS) { 2460 const auto &ExecutionDomainAA = A.getAAFor<AAExecutionDomain>( 2461 *this, IRPosition::function(*ACS.getInstruction()->getFunction()), 2462 DepClassTy::REQUIRED); 2463 return ACS.isDirectCall() && 2464 ExecutionDomainAA.isExecutedByInitialThreadOnly( 2465 *ACS.getInstruction()); 2466 }; 2467 2468 if (!A.checkForAllCallSites(PredForCallSite, *this, 2469 /* RequiresAllCallSites */ true, 2470 AllCallSitesKnown)) 2471 SingleThreadedBBs.erase(&F->getEntryBlock()); 2472 2473 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2474 auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_target_init]; 2475 2476 // Check if the edge into the successor block compares the __kmpc_target_init 2477 // result with -1. If we are in non-SPMD-mode that signals only the main 2478 // thread will execute the edge. 2479 auto IsInitialThreadOnly = [&](BranchInst *Edge, BasicBlock *SuccessorBB) { 2480 if (!Edge || !Edge->isConditional()) 2481 return false; 2482 if (Edge->getSuccessor(0) != SuccessorBB) 2483 return false; 2484 2485 auto *Cmp = dyn_cast<CmpInst>(Edge->getCondition()); 2486 if (!Cmp || !Cmp->isTrueWhenEqual() || !Cmp->isEquality()) 2487 return false; 2488 2489 ConstantInt *C = dyn_cast<ConstantInt>(Cmp->getOperand(1)); 2490 if (!C) 2491 return false; 2492 2493 // Match: -1 == __kmpc_target_init (for non-SPMD kernels only!) 2494 if (C->isAllOnesValue()) { 2495 auto *CB = dyn_cast<CallBase>(Cmp->getOperand(0)); 2496 if (!CB || CB->getCalledFunction() != RFI.Declaration) 2497 return false; 2498 const int InitIsSPMDArgNo = 1; 2499 auto *IsSPMDModeCI = 2500 dyn_cast<ConstantInt>(CB->getOperand(InitIsSPMDArgNo)); 2501 return IsSPMDModeCI && IsSPMDModeCI->isZero(); 2502 } 2503 2504 return false; 2505 }; 2506 2507 // Merge all the predecessor states into the current basic block. A basic 2508 // block is executed by a single thread if all of its predecessors are. 2509 auto MergePredecessorStates = [&](BasicBlock *BB) { 2510 if (pred_begin(BB) == pred_end(BB)) 2511 return SingleThreadedBBs.contains(BB); 2512 2513 bool IsInitialThread = true; 2514 for (auto PredBB = pred_begin(BB), PredEndBB = pred_end(BB); 2515 PredBB != PredEndBB; ++PredBB) { 2516 if (!IsInitialThreadOnly(dyn_cast<BranchInst>((*PredBB)->getTerminator()), 2517 BB)) 2518 IsInitialThread &= SingleThreadedBBs.contains(*PredBB); 2519 } 2520 2521 return IsInitialThread; 2522 }; 2523 2524 for (auto *BB : RPOT) { 2525 if (!MergePredecessorStates(BB)) 2526 SingleThreadedBBs.erase(BB); 2527 } 2528 2529 return (NumSingleThreadedBBs == SingleThreadedBBs.size()) 2530 ? ChangeStatus::UNCHANGED 2531 : ChangeStatus::CHANGED; 2532 } 2533 2534 /// Try to replace memory allocation calls called by a single thread with a 2535 /// static buffer of shared memory. 2536 struct AAHeapToShared : public StateWrapper<BooleanState, AbstractAttribute> { 2537 using Base = StateWrapper<BooleanState, AbstractAttribute>; 2538 AAHeapToShared(const IRPosition &IRP, Attributor &A) : Base(IRP) {} 2539 2540 /// Create an abstract attribute view for the position \p IRP. 2541 static AAHeapToShared &createForPosition(const IRPosition &IRP, 2542 Attributor &A); 2543 2544 /// See AbstractAttribute::getName(). 2545 const std::string getName() const override { return "AAHeapToShared"; } 2546 2547 /// See AbstractAttribute::getIdAddr(). 2548 const char *getIdAddr() const override { return &ID; } 2549 2550 /// This function should return true if the type of the \p AA is 2551 /// AAHeapToShared. 2552 static bool classof(const AbstractAttribute *AA) { 2553 return (AA->getIdAddr() == &ID); 2554 } 2555 2556 /// Unique ID (due to the unique address) 2557 static const char ID; 2558 }; 2559 2560 struct AAHeapToSharedFunction : public AAHeapToShared { 2561 AAHeapToSharedFunction(const IRPosition &IRP, Attributor &A) 2562 : AAHeapToShared(IRP, A) {} 2563 2564 const std::string getAsStr() const override { 2565 return "[AAHeapToShared] " + std::to_string(MallocCalls.size()) + 2566 " malloc calls eligible."; 2567 } 2568 2569 /// See AbstractAttribute::trackStatistics(). 2570 void trackStatistics() const override {} 2571 2572 void initialize(Attributor &A) override { 2573 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2574 auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared]; 2575 2576 for (User *U : RFI.Declaration->users()) 2577 if (CallBase *CB = dyn_cast<CallBase>(U)) 2578 MallocCalls.insert(CB); 2579 } 2580 2581 ChangeStatus manifest(Attributor &A) override { 2582 if (MallocCalls.empty()) 2583 return ChangeStatus::UNCHANGED; 2584 2585 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2586 auto &FreeCall = OMPInfoCache.RFIs[OMPRTL___kmpc_free_shared]; 2587 2588 Function *F = getAnchorScope(); 2589 auto *HS = A.lookupAAFor<AAHeapToStack>(IRPosition::function(*F), this, 2590 DepClassTy::OPTIONAL); 2591 2592 ChangeStatus Changed = ChangeStatus::UNCHANGED; 2593 for (CallBase *CB : MallocCalls) { 2594 // Skip replacing this if HeapToStack has already claimed it. 2595 if (HS && HS->isAssumedHeapToStack(*CB)) 2596 continue; 2597 2598 // Find the unique free call to remove it. 2599 SmallVector<CallBase *, 4> FreeCalls; 2600 for (auto *U : CB->users()) { 2601 CallBase *C = dyn_cast<CallBase>(U); 2602 if (C && C->getCalledFunction() == FreeCall.Declaration) 2603 FreeCalls.push_back(C); 2604 } 2605 if (FreeCalls.size() != 1) 2606 continue; 2607 2608 ConstantInt *AllocSize = dyn_cast<ConstantInt>(CB->getArgOperand(0)); 2609 2610 LLVM_DEBUG(dbgs() << TAG << "Replace globalization call in " 2611 << CB->getCaller()->getName() << " with " 2612 << AllocSize->getZExtValue() 2613 << " bytes of shared memory\n"); 2614 2615 // Create a new shared memory buffer of the same size as the allocation 2616 // and replace all the uses of the original allocation with it. 2617 Module *M = CB->getModule(); 2618 Type *Int8Ty = Type::getInt8Ty(M->getContext()); 2619 Type *Int8ArrTy = ArrayType::get(Int8Ty, AllocSize->getZExtValue()); 2620 auto *SharedMem = new GlobalVariable( 2621 *M, Int8ArrTy, /* IsConstant */ false, GlobalValue::InternalLinkage, 2622 UndefValue::get(Int8ArrTy), CB->getName(), nullptr, 2623 GlobalValue::NotThreadLocal, 2624 static_cast<unsigned>(AddressSpace::Shared)); 2625 auto *NewBuffer = 2626 ConstantExpr::getPointerCast(SharedMem, Int8Ty->getPointerTo()); 2627 2628 auto Remark = [&](OptimizationRemark OR) { 2629 return OR << "Replaced globalized variable with " 2630 << ore::NV("SharedMemory", AllocSize->getZExtValue()) 2631 << ((AllocSize->getZExtValue() != 1) ? " bytes " : " byte ") 2632 << "of shared memory"; 2633 }; 2634 A.emitRemark<OptimizationRemark>(CB, "OpenMPReplaceGlobalization", 2635 Remark); 2636 2637 SharedMem->setAlignment(MaybeAlign(32)); 2638 2639 A.changeValueAfterManifest(*CB, *NewBuffer); 2640 A.deleteAfterManifest(*CB); 2641 A.deleteAfterManifest(*FreeCalls.front()); 2642 2643 NumBytesMovedToSharedMemory += AllocSize->getZExtValue(); 2644 Changed = ChangeStatus::CHANGED; 2645 } 2646 2647 return Changed; 2648 } 2649 2650 ChangeStatus updateImpl(Attributor &A) override { 2651 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2652 auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared]; 2653 Function *F = getAnchorScope(); 2654 2655 auto NumMallocCalls = MallocCalls.size(); 2656 2657 // Only consider malloc calls executed by a single thread with a constant. 2658 for (User *U : RFI.Declaration->users()) { 2659 const auto &ED = A.getAAFor<AAExecutionDomain>( 2660 *this, IRPosition::function(*F), DepClassTy::REQUIRED); 2661 if (CallBase *CB = dyn_cast<CallBase>(U)) 2662 if (!dyn_cast<ConstantInt>(CB->getArgOperand(0)) || 2663 !ED.isExecutedByInitialThreadOnly(*CB)) 2664 MallocCalls.erase(CB); 2665 } 2666 2667 if (NumMallocCalls != MallocCalls.size()) 2668 return ChangeStatus::CHANGED; 2669 2670 return ChangeStatus::UNCHANGED; 2671 } 2672 2673 /// Collection of all malloc calls in a function. 2674 SmallPtrSet<CallBase *, 4> MallocCalls; 2675 }; 2676 2677 struct AAKernelInfo : public StateWrapper<KernelInfoState, AbstractAttribute> { 2678 using Base = StateWrapper<KernelInfoState, AbstractAttribute>; 2679 AAKernelInfo(const IRPosition &IRP, Attributor &A) : Base(IRP) {} 2680 2681 /// Statistics are tracked as part of manifest for now. 2682 void trackStatistics() const override {} 2683 2684 /// See AbstractAttribute::getAsStr() 2685 const std::string getAsStr() const override { 2686 if (!isValidState()) 2687 return "<invalid>"; 2688 return std::string(SPMDCompatibilityTracker.isAssumed() ? "SPMD" 2689 : "generic") + 2690 std::string(SPMDCompatibilityTracker.isAtFixpoint() ? " [FIX]" 2691 : "") + 2692 std::string(" #PRs: ") + 2693 std::to_string(ReachedKnownParallelRegions.size()) + 2694 ", #Unknown PRs: " + 2695 std::to_string(ReachedUnknownParallelRegions.size()); 2696 } 2697 2698 /// Create an abstract attribute biew for the position \p IRP. 2699 static AAKernelInfo &createForPosition(const IRPosition &IRP, Attributor &A); 2700 2701 /// See AbstractAttribute::getName() 2702 const std::string getName() const override { return "AAKernelInfo"; } 2703 2704 /// See AbstractAttribute::getIdAddr() 2705 const char *getIdAddr() const override { return &ID; } 2706 2707 /// This function should return true if the type of the \p AA is AAKernelInfo 2708 static bool classof(const AbstractAttribute *AA) { 2709 return (AA->getIdAddr() == &ID); 2710 } 2711 2712 static const char ID; 2713 }; 2714 2715 /// The function kernel info abstract attribute, basically, what can we say 2716 /// about a function with regards to the KernelInfoState. 2717 struct AAKernelInfoFunction : AAKernelInfo { 2718 AAKernelInfoFunction(const IRPosition &IRP, Attributor &A) 2719 : AAKernelInfo(IRP, A) {} 2720 2721 /// See AbstractAttribute::initialize(...). 2722 void initialize(Attributor &A) override { 2723 // This is a high-level transform that might change the constant arguments 2724 // of the init and dinit calls. We need to tell the Attributor about this 2725 // to avoid other parts using the current constant value for simpliication. 2726 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2727 2728 Function *Fn = getAnchorScope(); 2729 if (!OMPInfoCache.Kernels.count(Fn)) 2730 return; 2731 2732 OMPInformationCache::RuntimeFunctionInfo &InitRFI = 2733 OMPInfoCache.RFIs[OMPRTL___kmpc_target_init]; 2734 OMPInformationCache::RuntimeFunctionInfo &DeinitRFI = 2735 OMPInfoCache.RFIs[OMPRTL___kmpc_target_deinit]; 2736 2737 // For kernels we perform more initialization work, first we find the init 2738 // and deinit calls. 2739 auto StoreCallBase = [](Use &U, 2740 OMPInformationCache::RuntimeFunctionInfo &RFI, 2741 CallBase *&Storage) { 2742 CallBase *CB = OpenMPOpt::getCallIfRegularCall(U, &RFI); 2743 assert(CB && 2744 "Unexpected use of __kmpc_target_init or __kmpc_target_deinit!"); 2745 assert(!Storage && 2746 "Multiple uses of __kmpc_target_init or __kmpc_target_deinit!"); 2747 Storage = CB; 2748 return false; 2749 }; 2750 InitRFI.foreachUse( 2751 [&](Use &U, Function &) { 2752 StoreCallBase(U, InitRFI, KernelInitCB); 2753 return false; 2754 }, 2755 Fn); 2756 DeinitRFI.foreachUse( 2757 [&](Use &U, Function &) { 2758 StoreCallBase(U, DeinitRFI, KernelDeinitCB); 2759 return false; 2760 }, 2761 Fn); 2762 2763 assert((KernelInitCB && KernelDeinitCB) && 2764 "Kernel without __kmpc_target_init or __kmpc_target_deinit!"); 2765 2766 // For kernels we might need to initialize/finalize the IsSPMD state and 2767 // we need to register a simplification callback so that the Attributor 2768 // knows the constant arguments to __kmpc_target_init and 2769 // __kmpc_target_deinit might actually change. 2770 2771 Attributor::SimplifictionCallbackTy StateMachineSimplifyCB = 2772 [&](const IRPosition &IRP, const AbstractAttribute *AA, 2773 bool &UsedAssumedInformation) -> Optional<Value *> { 2774 // IRP represents the "use generic state machine" argument of an 2775 // __kmpc_target_init call. We will answer this one with the internal 2776 // state. As long as we are not in an invalid state, we will create a 2777 // custom state machine so the value should be a `i1 false`. If we are 2778 // in an invalid state, we won't change the value that is in the IR. 2779 if (!isValidState()) 2780 return nullptr; 2781 if (AA) 2782 A.recordDependence(*this, *AA, DepClassTy::OPTIONAL); 2783 UsedAssumedInformation = !isAtFixpoint(); 2784 auto *FalseVal = 2785 ConstantInt::getBool(IRP.getAnchorValue().getContext(), 0); 2786 return FalseVal; 2787 }; 2788 2789 Attributor::SimplifictionCallbackTy IsSPMDModeSimplifyCB = 2790 [&](const IRPosition &IRP, const AbstractAttribute *AA, 2791 bool &UsedAssumedInformation) -> Optional<Value *> { 2792 // IRP represents the "SPMDCompatibilityTracker" argument of an 2793 // __kmpc_target_init or 2794 // __kmpc_target_deinit call. We will answer this one with the internal 2795 // state. 2796 if (!isValidState()) 2797 return nullptr; 2798 if (!SPMDCompatibilityTracker.isAtFixpoint()) { 2799 if (AA) 2800 A.recordDependence(*this, *AA, DepClassTy::OPTIONAL); 2801 UsedAssumedInformation = true; 2802 } else { 2803 UsedAssumedInformation = false; 2804 } 2805 auto *Val = ConstantInt::getBool(IRP.getAnchorValue().getContext(), 2806 SPMDCompatibilityTracker.isAssumed()); 2807 return Val; 2808 }; 2809 2810 constexpr const int InitIsSPMDArgNo = 1; 2811 constexpr const int DeinitIsSPMDArgNo = 1; 2812 constexpr const int InitUseStateMachineArgNo = 2; 2813 A.registerSimplificationCallback( 2814 IRPosition::callsite_argument(*KernelInitCB, InitUseStateMachineArgNo), 2815 StateMachineSimplifyCB); 2816 A.registerSimplificationCallback( 2817 IRPosition::callsite_argument(*KernelInitCB, InitIsSPMDArgNo), 2818 IsSPMDModeSimplifyCB); 2819 A.registerSimplificationCallback( 2820 IRPosition::callsite_argument(*KernelDeinitCB, DeinitIsSPMDArgNo), 2821 IsSPMDModeSimplifyCB); 2822 2823 // Check if we know we are in SPMD-mode already. 2824 ConstantInt *IsSPMDArg = 2825 dyn_cast<ConstantInt>(KernelInitCB->getArgOperand(InitIsSPMDArgNo)); 2826 if (IsSPMDArg && !IsSPMDArg->isZero()) 2827 SPMDCompatibilityTracker.indicateOptimisticFixpoint(); 2828 } 2829 2830 /// Modify the IR based on the KernelInfoState as the fixpoint iteration is 2831 /// finished now. 2832 ChangeStatus manifest(Attributor &A) override { 2833 // If we are not looking at a kernel with __kmpc_target_init and 2834 // __kmpc_target_deinit call we cannot actually manifest the information. 2835 if (!KernelInitCB || !KernelDeinitCB) 2836 return ChangeStatus::UNCHANGED; 2837 2838 // Known SPMD-mode kernels need no manifest changes. 2839 if (SPMDCompatibilityTracker.isKnown()) 2840 return ChangeStatus::UNCHANGED; 2841 2842 // If we can we change the execution mode to SPMD-mode otherwise we build a 2843 // custom state machine. 2844 if (!changeToSPMDMode(A)) 2845 buildCustomStateMachine(A); 2846 2847 return ChangeStatus::CHANGED; 2848 } 2849 2850 bool changeToSPMDMode(Attributor &A) { 2851 if (!SPMDCompatibilityTracker.isAssumed()) { 2852 for (Instruction *NonCompatibleI : SPMDCompatibilityTracker) { 2853 if (!NonCompatibleI) 2854 continue; 2855 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 2856 ORA << "Kernel will be executed in generic-mode due to this " 2857 "potential side-effect"; 2858 if (auto *CI = dyn_cast<CallBase>(NonCompatibleI)) { 2859 if (Function *F = CI->getCalledFunction()) 2860 ORA << ", consider to add " 2861 "`__attribute__((assume(\"ompx_spmd_amenable\")))`" 2862 " to the called function '" 2863 << F->getName() << "'"; 2864 } 2865 return ORA << "."; 2866 }; 2867 A.emitRemark<OptimizationRemarkAnalysis>( 2868 NonCompatibleI, "OpenMPKernelNonSPMDMode", Remark); 2869 2870 LLVM_DEBUG(dbgs() << TAG << "SPMD-incompatible side-effect: " 2871 << *NonCompatibleI << "\n"); 2872 } 2873 2874 return false; 2875 } 2876 2877 // Adjust the global exec mode flag that tells the runtime what mode this 2878 // kernel is executed in. 2879 Function *Kernel = getAnchorScope(); 2880 GlobalVariable *ExecMode = Kernel->getParent()->getGlobalVariable( 2881 (Kernel->getName() + "_exec_mode").str()); 2882 assert(ExecMode && "Kernel without exec mode?"); 2883 assert(ExecMode->getInitializer() && 2884 ExecMode->getInitializer()->isOneValue() && 2885 "Initially non-SPMD kernel has SPMD exec mode!"); 2886 ExecMode->setInitializer( 2887 ConstantInt::get(ExecMode->getInitializer()->getType(), 0)); 2888 2889 // Next rewrite the init and deinit calls to indicate we use SPMD-mode now. 2890 const int InitIsSPMDArgNo = 1; 2891 const int DeinitIsSPMDArgNo = 1; 2892 const int InitUseStateMachineArgNo = 2; 2893 2894 auto &Ctx = getAnchorValue().getContext(); 2895 A.changeUseAfterManifest(KernelInitCB->getArgOperandUse(InitIsSPMDArgNo), 2896 *ConstantInt::getBool(Ctx, 1)); 2897 A.changeUseAfterManifest( 2898 KernelInitCB->getArgOperandUse(InitUseStateMachineArgNo), 2899 *ConstantInt::getBool(Ctx, 0)); 2900 A.changeUseAfterManifest( 2901 KernelDeinitCB->getArgOperandUse(DeinitIsSPMDArgNo), 2902 *ConstantInt::getBool(Ctx, 1)); 2903 ++NumOpenMPTargetRegionKernelsSPMD; 2904 2905 auto Remark = [&](OptimizationRemark OR) { 2906 return OR << "Generic-mode kernel is changed to SPMD-mode."; 2907 }; 2908 A.emitRemark<OptimizationRemark>(KernelInitCB, "OpenMPKernelSPMDMode", 2909 Remark); 2910 return true; 2911 }; 2912 2913 ChangeStatus buildCustomStateMachine(Attributor &A) { 2914 assert(ReachedKnownParallelRegions.isValidState() && 2915 "Custom state machine with invalid parallel region states?"); 2916 2917 const int InitIsSPMDArgNo = 1; 2918 const int InitUseStateMachineArgNo = 2; 2919 2920 // Check if the current configuration is non-SPMD and generic state machine. 2921 // If we already have SPMD mode or a custom state machine we do not need to 2922 // go any further. If it is anything but a constant something is weird and 2923 // we give up. 2924 ConstantInt *UseStateMachine = dyn_cast<ConstantInt>( 2925 KernelInitCB->getArgOperand(InitUseStateMachineArgNo)); 2926 ConstantInt *IsSPMD = 2927 dyn_cast<ConstantInt>(KernelInitCB->getArgOperand(InitIsSPMDArgNo)); 2928 2929 // If we are stuck with generic mode, try to create a custom device (=GPU) 2930 // state machine which is specialized for the parallel regions that are 2931 // reachable by the kernel. 2932 if (!UseStateMachine || UseStateMachine->isZero() || !IsSPMD || 2933 !IsSPMD->isZero()) 2934 return ChangeStatus::UNCHANGED; 2935 2936 // If not SPMD mode, indicate we use a custom state machine now. 2937 auto &Ctx = getAnchorValue().getContext(); 2938 auto *FalseVal = ConstantInt::getBool(Ctx, 0); 2939 A.changeUseAfterManifest( 2940 KernelInitCB->getArgOperandUse(InitUseStateMachineArgNo), *FalseVal); 2941 2942 // If we don't actually need a state machine we are done here. This can 2943 // happen if there simply are no parallel regions. In the resulting kernel 2944 // all worker threads will simply exit right away, leaving the main thread 2945 // to do the work alone. 2946 if (ReachedKnownParallelRegions.empty() && 2947 ReachedUnknownParallelRegions.empty()) { 2948 ++NumOpenMPTargetRegionKernelsWithoutStateMachine; 2949 2950 auto Remark = [&](OptimizationRemark OR) { 2951 return OR << "Generic-mode kernel is executed without state machine " 2952 "(good)"; 2953 }; 2954 A.emitRemark<OptimizationRemark>( 2955 KernelInitCB, "OpenMPKernelWithoutStateMachine", Remark); 2956 2957 return ChangeStatus::CHANGED; 2958 } 2959 2960 // Keep track in the statistics of our new shiny custom state machine. 2961 if (ReachedUnknownParallelRegions.empty()) { 2962 ++NumOpenMPTargetRegionKernelsCustomStateMachineWithoutFallback; 2963 2964 auto Remark = [&](OptimizationRemark OR) { 2965 return OR << "Generic-mode kernel is executed with a customized state " 2966 "machine [" 2967 << ore::NV("ParallelRegions", 2968 ReachedKnownParallelRegions.size()) 2969 << " known parallel regions] (good)."; 2970 }; 2971 A.emitRemark<OptimizationRemark>( 2972 KernelInitCB, "OpenMPKernelWithCustomizedStateMachine", Remark); 2973 } else { 2974 ++NumOpenMPTargetRegionKernelsCustomStateMachineWithFallback; 2975 2976 auto Remark = [&](OptimizationRemark OR) { 2977 return OR << "Generic-mode kernel is executed with a customized state " 2978 "machine that requires a fallback [" 2979 << ore::NV("ParallelRegions", 2980 ReachedKnownParallelRegions.size()) 2981 << " known parallel regions, " 2982 << ore::NV("UnknownParallelRegions", 2983 ReachedUnknownParallelRegions.size()) 2984 << " unkown parallel regions] (bad)."; 2985 }; 2986 A.emitRemark<OptimizationRemark>( 2987 KernelInitCB, "OpenMPKernelWithCustomizedStateMachineAndFallback", 2988 Remark); 2989 2990 // Tell the user why we ended up with a fallback. 2991 for (CallBase *UnknownParallelRegionCB : ReachedUnknownParallelRegions) { 2992 if (!UnknownParallelRegionCB) 2993 continue; 2994 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 2995 return ORA 2996 << "State machine fallback caused by this call. If it is a " 2997 "false positive, use " 2998 "`__attribute__((assume(\"omp_no_openmp\")))` " 2999 "(or \"omp_no_parallelism\")."; 3000 }; 3001 A.emitRemark<OptimizationRemarkAnalysis>( 3002 UnknownParallelRegionCB, 3003 "OpenMPKernelWithCustomizedStateMachineAndFallback", Remark); 3004 } 3005 } 3006 3007 // Create all the blocks: 3008 // 3009 // InitCB = __kmpc_target_init(...) 3010 // bool IsWorker = InitCB >= 0; 3011 // if (IsWorker) { 3012 // SMBeginBB: __kmpc_barrier_simple_spmd(...); 3013 // void *WorkFn; 3014 // bool Active = __kmpc_kernel_parallel(&WorkFn); 3015 // if (!WorkFn) return; 3016 // SMIsActiveCheckBB: if (Active) { 3017 // SMIfCascadeCurrentBB: if (WorkFn == <ParFn0>) 3018 // ParFn0(...); 3019 // SMIfCascadeCurrentBB: else if (WorkFn == <ParFn1>) 3020 // ParFn1(...); 3021 // ... 3022 // SMIfCascadeCurrentBB: else 3023 // ((WorkFnTy*)WorkFn)(...); 3024 // SMEndParallelBB: __kmpc_kernel_end_parallel(...); 3025 // } 3026 // SMDoneBB: __kmpc_barrier_simple_spmd(...); 3027 // goto SMBeginBB; 3028 // } 3029 // UserCodeEntryBB: // user code 3030 // __kmpc_target_deinit(...) 3031 // 3032 Function *Kernel = getAssociatedFunction(); 3033 assert(Kernel && "Expected an associated function!"); 3034 3035 BasicBlock *InitBB = KernelInitCB->getParent(); 3036 BasicBlock *UserCodeEntryBB = InitBB->splitBasicBlock( 3037 KernelInitCB->getNextNode(), "thread.user_code.check"); 3038 BasicBlock *StateMachineBeginBB = BasicBlock::Create( 3039 Ctx, "worker_state_machine.begin", Kernel, UserCodeEntryBB); 3040 BasicBlock *StateMachineFinishedBB = BasicBlock::Create( 3041 Ctx, "worker_state_machine.finished", Kernel, UserCodeEntryBB); 3042 BasicBlock *StateMachineIsActiveCheckBB = BasicBlock::Create( 3043 Ctx, "worker_state_machine.is_active.check", Kernel, UserCodeEntryBB); 3044 BasicBlock *StateMachineIfCascadeCurrentBB = 3045 BasicBlock::Create(Ctx, "worker_state_machine.parallel_region.check", 3046 Kernel, UserCodeEntryBB); 3047 BasicBlock *StateMachineEndParallelBB = 3048 BasicBlock::Create(Ctx, "worker_state_machine.parallel_region.end", 3049 Kernel, UserCodeEntryBB); 3050 BasicBlock *StateMachineDoneBarrierBB = BasicBlock::Create( 3051 Ctx, "worker_state_machine.done.barrier", Kernel, UserCodeEntryBB); 3052 3053 const DebugLoc &DLoc = KernelInitCB->getDebugLoc(); 3054 ReturnInst::Create(Ctx, StateMachineFinishedBB)->setDebugLoc(DLoc); 3055 3056 InitBB->getTerminator()->eraseFromParent(); 3057 Instruction *IsWorker = 3058 ICmpInst::Create(ICmpInst::ICmp, llvm::CmpInst::ICMP_NE, KernelInitCB, 3059 ConstantInt::get(KernelInitCB->getType(), -1), 3060 "thread.is_worker", InitBB); 3061 IsWorker->setDebugLoc(DLoc); 3062 BranchInst::Create(StateMachineBeginBB, UserCodeEntryBB, IsWorker, InitBB); 3063 3064 // Create local storage for the work function pointer. 3065 Type *VoidPtrTy = Type::getInt8PtrTy(Ctx); 3066 AllocaInst *WorkFnAI = new AllocaInst(VoidPtrTy, 0, "worker.work_fn.addr", 3067 &Kernel->getEntryBlock().front()); 3068 WorkFnAI->setDebugLoc(DLoc); 3069 3070 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 3071 OMPInfoCache.OMPBuilder.updateToLocation( 3072 OpenMPIRBuilder::LocationDescription( 3073 IRBuilder<>::InsertPoint(StateMachineBeginBB, 3074 StateMachineBeginBB->end()), 3075 DLoc)); 3076 3077 Value *Ident = KernelInitCB->getArgOperand(0); 3078 Value *GTid = KernelInitCB; 3079 3080 Module &M = *Kernel->getParent(); 3081 FunctionCallee BarrierFn = 3082 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( 3083 M, OMPRTL___kmpc_barrier_simple_spmd); 3084 CallInst::Create(BarrierFn, {Ident, GTid}, "", StateMachineBeginBB) 3085 ->setDebugLoc(DLoc); 3086 3087 FunctionCallee KernelParallelFn = 3088 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( 3089 M, OMPRTL___kmpc_kernel_parallel); 3090 Instruction *IsActiveWorker = CallInst::Create( 3091 KernelParallelFn, {WorkFnAI}, "worker.is_active", StateMachineBeginBB); 3092 IsActiveWorker->setDebugLoc(DLoc); 3093 Instruction *WorkFn = new LoadInst(VoidPtrTy, WorkFnAI, "worker.work_fn", 3094 StateMachineBeginBB); 3095 WorkFn->setDebugLoc(DLoc); 3096 3097 FunctionType *ParallelRegionFnTy = FunctionType::get( 3098 Type::getVoidTy(Ctx), {Type::getInt16Ty(Ctx), Type::getInt32Ty(Ctx)}, 3099 false); 3100 Value *WorkFnCast = BitCastInst::CreatePointerBitCastOrAddrSpaceCast( 3101 WorkFn, ParallelRegionFnTy->getPointerTo(), "worker.work_fn.addr_cast", 3102 StateMachineBeginBB); 3103 3104 Instruction *IsDone = 3105 ICmpInst::Create(ICmpInst::ICmp, llvm::CmpInst::ICMP_EQ, WorkFn, 3106 Constant::getNullValue(VoidPtrTy), "worker.is_done", 3107 StateMachineBeginBB); 3108 IsDone->setDebugLoc(DLoc); 3109 BranchInst::Create(StateMachineFinishedBB, StateMachineIsActiveCheckBB, 3110 IsDone, StateMachineBeginBB) 3111 ->setDebugLoc(DLoc); 3112 3113 BranchInst::Create(StateMachineIfCascadeCurrentBB, 3114 StateMachineDoneBarrierBB, IsActiveWorker, 3115 StateMachineIsActiveCheckBB) 3116 ->setDebugLoc(DLoc); 3117 3118 Value *ZeroArg = 3119 Constant::getNullValue(ParallelRegionFnTy->getParamType(0)); 3120 3121 // Now that we have most of the CFG skeleton it is time for the if-cascade 3122 // that checks the function pointer we got from the runtime against the 3123 // parallel regions we expect, if there are any. 3124 for (int i = 0, e = ReachedKnownParallelRegions.size(); i < e; ++i) { 3125 auto *ParallelRegion = ReachedKnownParallelRegions[i]; 3126 BasicBlock *PRExecuteBB = BasicBlock::Create( 3127 Ctx, "worker_state_machine.parallel_region.execute", Kernel, 3128 StateMachineEndParallelBB); 3129 CallInst::Create(ParallelRegion, {ZeroArg, GTid}, "", PRExecuteBB) 3130 ->setDebugLoc(DLoc); 3131 BranchInst::Create(StateMachineEndParallelBB, PRExecuteBB) 3132 ->setDebugLoc(DLoc); 3133 3134 BasicBlock *PRNextBB = 3135 BasicBlock::Create(Ctx, "worker_state_machine.parallel_region.check", 3136 Kernel, StateMachineEndParallelBB); 3137 3138 // Check if we need to compare the pointer at all or if we can just 3139 // call the parallel region function. 3140 Value *IsPR; 3141 if (i + 1 < e || !ReachedUnknownParallelRegions.empty()) { 3142 Instruction *CmpI = ICmpInst::Create( 3143 ICmpInst::ICmp, llvm::CmpInst::ICMP_EQ, WorkFnCast, ParallelRegion, 3144 "worker.check_parallel_region", StateMachineIfCascadeCurrentBB); 3145 CmpI->setDebugLoc(DLoc); 3146 IsPR = CmpI; 3147 } else { 3148 IsPR = ConstantInt::getTrue(Ctx); 3149 } 3150 3151 BranchInst::Create(PRExecuteBB, PRNextBB, IsPR, 3152 StateMachineIfCascadeCurrentBB) 3153 ->setDebugLoc(DLoc); 3154 StateMachineIfCascadeCurrentBB = PRNextBB; 3155 } 3156 3157 // At the end of the if-cascade we place the indirect function pointer call 3158 // in case we might need it, that is if there can be parallel regions we 3159 // have not handled in the if-cascade above. 3160 if (!ReachedUnknownParallelRegions.empty()) { 3161 StateMachineIfCascadeCurrentBB->setName( 3162 "worker_state_machine.parallel_region.fallback.execute"); 3163 CallInst::Create(ParallelRegionFnTy, WorkFnCast, {ZeroArg, GTid}, "", 3164 StateMachineIfCascadeCurrentBB) 3165 ->setDebugLoc(DLoc); 3166 } 3167 BranchInst::Create(StateMachineEndParallelBB, 3168 StateMachineIfCascadeCurrentBB) 3169 ->setDebugLoc(DLoc); 3170 3171 CallInst::Create(OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( 3172 M, OMPRTL___kmpc_kernel_end_parallel), 3173 {}, "", StateMachineEndParallelBB) 3174 ->setDebugLoc(DLoc); 3175 BranchInst::Create(StateMachineDoneBarrierBB, StateMachineEndParallelBB) 3176 ->setDebugLoc(DLoc); 3177 3178 CallInst::Create(BarrierFn, {Ident, GTid}, "", StateMachineDoneBarrierBB) 3179 ->setDebugLoc(DLoc); 3180 BranchInst::Create(StateMachineBeginBB, StateMachineDoneBarrierBB) 3181 ->setDebugLoc(DLoc); 3182 3183 return ChangeStatus::CHANGED; 3184 } 3185 3186 /// Fixpoint iteration update function. Will be called every time a dependence 3187 /// changed its state (and in the beginning). 3188 ChangeStatus updateImpl(Attributor &A) override { 3189 KernelInfoState StateBefore = getState(); 3190 3191 // Callback to check a read/write instruction. 3192 auto CheckRWInst = [&](Instruction &I) { 3193 // We handle calls later. 3194 if (isa<CallBase>(I)) 3195 return true; 3196 // We only care about write effects. 3197 if (!I.mayWriteToMemory()) 3198 return true; 3199 if (auto *SI = dyn_cast<StoreInst>(&I)) { 3200 SmallVector<const Value *> Objects; 3201 getUnderlyingObjects(SI->getPointerOperand(), Objects); 3202 if (llvm::all_of(Objects, 3203 [](const Value *Obj) { return isa<AllocaInst>(Obj); })) 3204 return true; 3205 } 3206 // For now we give up on everything but stores. 3207 SPMDCompatibilityTracker.insert(&I); 3208 return true; 3209 }; 3210 3211 bool UsedAssumedInformationInCheckRWInst = false; 3212 if (!A.checkForAllReadWriteInstructions( 3213 CheckRWInst, *this, UsedAssumedInformationInCheckRWInst)) 3214 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 3215 3216 // Callback to check a call instruction. 3217 auto CheckCallInst = [&](Instruction &I) { 3218 auto &CB = cast<CallBase>(I); 3219 auto &CBAA = A.getAAFor<AAKernelInfo>( 3220 *this, IRPosition::callsite_function(CB), DepClassTy::OPTIONAL); 3221 if (CBAA.getState().isValidState()) 3222 getState() ^= CBAA.getState(); 3223 return true; 3224 }; 3225 3226 bool UsedAssumedInformationInCheckCallInst = false; 3227 if (!A.checkForAllCallLikeInstructions( 3228 CheckCallInst, *this, UsedAssumedInformationInCheckCallInst)) 3229 return indicatePessimisticFixpoint(); 3230 3231 return StateBefore == getState() ? ChangeStatus::UNCHANGED 3232 : ChangeStatus::CHANGED; 3233 } 3234 }; 3235 3236 /// The call site kernel info abstract attribute, basically, what can we say 3237 /// about a call site with regards to the KernelInfoState. For now this simply 3238 /// forwards the information from the callee. 3239 struct AAKernelInfoCallSite : AAKernelInfo { 3240 AAKernelInfoCallSite(const IRPosition &IRP, Attributor &A) 3241 : AAKernelInfo(IRP, A) {} 3242 3243 /// See AbstractAttribute::initialize(...). 3244 void initialize(Attributor &A) override { 3245 AAKernelInfo::initialize(A); 3246 3247 CallBase &CB = cast<CallBase>(getAssociatedValue()); 3248 Function *Callee = getAssociatedFunction(); 3249 3250 // Helper to lookup an assumption string. 3251 auto HasAssumption = [](Function *Fn, StringRef AssumptionStr) { 3252 return Fn && hasAssumption(*Fn, AssumptionStr); 3253 }; 3254 3255 // Check for SPMD-mode assumptions. 3256 if (HasAssumption(Callee, "ompx_spmd_amenable")) 3257 SPMDCompatibilityTracker.indicateOptimisticFixpoint(); 3258 3259 // First weed out calls we do not care about, that is readonly/readnone 3260 // calls, intrinsics, and "no_openmp" calls. Neither of these can reach a 3261 // parallel region or anything else we are looking for. 3262 if (!CB.mayWriteToMemory() || isa<IntrinsicInst>(CB)) { 3263 indicateOptimisticFixpoint(); 3264 return; 3265 } 3266 3267 // Next we check if we know the callee. If it is a known OpenMP function 3268 // we will handle them explicitly in the switch below. If it is not, we 3269 // will use an AAKernelInfo object on the callee to gather information and 3270 // merge that into the current state. The latter happens in the updateImpl. 3271 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 3272 const auto &It = OMPInfoCache.RuntimeFunctionIDMap.find(Callee); 3273 if (It == OMPInfoCache.RuntimeFunctionIDMap.end()) { 3274 // Unknown caller or declarations are not analyzable, we give up. 3275 if (!Callee || !A.isFunctionIPOAmendable(*Callee)) { 3276 3277 // Unknown callees might contain parallel regions, except if they have 3278 // an appropriate assumption attached. 3279 if (!(HasAssumption(Callee, "omp_no_openmp") || 3280 HasAssumption(Callee, "omp_no_parallelism"))) 3281 ReachedUnknownParallelRegions.insert(&CB); 3282 3283 // If SPMDCompatibilityTracker is not fixed, we need to give up on the 3284 // idea we can run something unknown in SPMD-mode. 3285 if (!SPMDCompatibilityTracker.isAtFixpoint()) 3286 SPMDCompatibilityTracker.insert(&CB); 3287 3288 // We have updated the state for this unknown call properly, there won't 3289 // be any change so we indicate a fixpoint. 3290 indicateOptimisticFixpoint(); 3291 } 3292 // If the callee is known and can be used in IPO, we will update the state 3293 // based on the callee state in updateImpl. 3294 return; 3295 } 3296 3297 const unsigned int WrapperFunctionArgNo = 6; 3298 RuntimeFunction RF = It->getSecond(); 3299 switch (RF) { 3300 // All the functions we know are compatible with SPMD mode. 3301 case OMPRTL___kmpc_is_spmd_exec_mode: 3302 case OMPRTL___kmpc_for_static_fini: 3303 case OMPRTL___kmpc_global_thread_num: 3304 case OMPRTL___kmpc_single: 3305 case OMPRTL___kmpc_end_single: 3306 case OMPRTL___kmpc_master: 3307 case OMPRTL___kmpc_end_master: 3308 case OMPRTL___kmpc_barrier: 3309 break; 3310 case OMPRTL___kmpc_for_static_init_4: 3311 case OMPRTL___kmpc_for_static_init_4u: 3312 case OMPRTL___kmpc_for_static_init_8: 3313 case OMPRTL___kmpc_for_static_init_8u: { 3314 // Check the schedule and allow static schedule in SPMD mode. 3315 unsigned ScheduleArgOpNo = 2; 3316 auto *ScheduleTypeCI = 3317 dyn_cast<ConstantInt>(CB.getArgOperand(ScheduleArgOpNo)); 3318 unsigned ScheduleTypeVal = 3319 ScheduleTypeCI ? ScheduleTypeCI->getZExtValue() : 0; 3320 switch (OMPScheduleType(ScheduleTypeVal)) { 3321 case OMPScheduleType::Static: 3322 case OMPScheduleType::StaticChunked: 3323 case OMPScheduleType::Distribute: 3324 case OMPScheduleType::DistributeChunked: 3325 break; 3326 default: 3327 SPMDCompatibilityTracker.insert(&CB); 3328 break; 3329 }; 3330 } break; 3331 case OMPRTL___kmpc_target_init: 3332 KernelInitCB = &CB; 3333 break; 3334 case OMPRTL___kmpc_target_deinit: 3335 KernelDeinitCB = &CB; 3336 break; 3337 case OMPRTL___kmpc_parallel_51: 3338 if (auto *ParallelRegion = dyn_cast<Function>( 3339 CB.getArgOperand(WrapperFunctionArgNo)->stripPointerCasts())) { 3340 ReachedKnownParallelRegions.insert(ParallelRegion); 3341 break; 3342 } 3343 // The condition above should usually get the parallel region function 3344 // pointer and record it. In the off chance it doesn't we assume the 3345 // worst. 3346 ReachedUnknownParallelRegions.insert(&CB); 3347 break; 3348 case OMPRTL___kmpc_omp_task: 3349 // We do not look into tasks right now, just give up. 3350 SPMDCompatibilityTracker.insert(&CB); 3351 ReachedUnknownParallelRegions.insert(&CB); 3352 break; 3353 default: 3354 // Unknown OpenMP runtime calls cannot be executed in SPMD-mode, 3355 // generally. 3356 SPMDCompatibilityTracker.insert(&CB); 3357 break; 3358 } 3359 // All other OpenMP runtime calls will not reach parallel regions so they 3360 // can be safely ignored for now. Since it is a known OpenMP runtime call we 3361 // have now modeled all effects and there is no need for any update. 3362 indicateOptimisticFixpoint(); 3363 } 3364 3365 ChangeStatus updateImpl(Attributor &A) override { 3366 // TODO: Once we have call site specific value information we can provide 3367 // call site specific liveness information and then it makes 3368 // sense to specialize attributes for call sites arguments instead of 3369 // redirecting requests to the callee argument. 3370 Function *F = getAssociatedFunction(); 3371 const IRPosition &FnPos = IRPosition::function(*F); 3372 auto &FnAA = A.getAAFor<AAKernelInfo>(*this, FnPos, DepClassTy::REQUIRED); 3373 if (getState() == FnAA.getState()) 3374 return ChangeStatus::UNCHANGED; 3375 getState() = FnAA.getState(); 3376 return ChangeStatus::CHANGED; 3377 } 3378 }; 3379 3380 } // namespace 3381 3382 void OpenMPOpt::registerAAs(bool IsModulePass) { 3383 if (SCC.empty()) 3384 3385 return; 3386 if (IsModulePass) { 3387 // Ensure we create the AAKernelInfo AAs first and without triggering an 3388 // update. This will make sure we register all value simplification 3389 // callbacks before any other AA has the chance to create an AAValueSimplify 3390 // or similar. 3391 for (Function *Kernel : OMPInfoCache.Kernels) 3392 A.getOrCreateAAFor<AAKernelInfo>( 3393 IRPosition::function(*Kernel), /* QueryingAA */ nullptr, 3394 DepClassTy::NONE, /* ForceUpdate */ false, 3395 /* UpdateAfterInit */ false); 3396 } 3397 3398 // Create CallSite AA for all Getters. 3399 for (int Idx = 0; Idx < OMPInfoCache.ICVs.size() - 1; ++Idx) { 3400 auto ICVInfo = OMPInfoCache.ICVs[static_cast<InternalControlVar>(Idx)]; 3401 3402 auto &GetterRFI = OMPInfoCache.RFIs[ICVInfo.Getter]; 3403 3404 auto CreateAA = [&](Use &U, Function &Caller) { 3405 CallInst *CI = OpenMPOpt::getCallIfRegularCall(U, &GetterRFI); 3406 if (!CI) 3407 return false; 3408 3409 auto &CB = cast<CallBase>(*CI); 3410 3411 IRPosition CBPos = IRPosition::callsite_function(CB); 3412 A.getOrCreateAAFor<AAICVTracker>(CBPos); 3413 return false; 3414 }; 3415 3416 GetterRFI.foreachUse(SCC, CreateAA); 3417 } 3418 auto &GlobalizationRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared]; 3419 auto CreateAA = [&](Use &U, Function &F) { 3420 A.getOrCreateAAFor<AAHeapToShared>(IRPosition::function(F)); 3421 return false; 3422 }; 3423 GlobalizationRFI.foreachUse(SCC, CreateAA); 3424 3425 // Create an ExecutionDomain AA for every function and a HeapToStack AA for 3426 // every function if there is a device kernel. 3427 for (auto *F : SCC) { 3428 if (!F->isDeclaration()) 3429 A.getOrCreateAAFor<AAExecutionDomain>(IRPosition::function(*F)); 3430 if (isOpenMPDevice(M)) 3431 A.getOrCreateAAFor<AAHeapToStack>(IRPosition::function(*F)); 3432 } 3433 } 3434 3435 const char AAICVTracker::ID = 0; 3436 const char AAKernelInfo::ID = 0; 3437 const char AAExecutionDomain::ID = 0; 3438 const char AAHeapToShared::ID = 0; 3439 3440 AAICVTracker &AAICVTracker::createForPosition(const IRPosition &IRP, 3441 Attributor &A) { 3442 AAICVTracker *AA = nullptr; 3443 switch (IRP.getPositionKind()) { 3444 case IRPosition::IRP_INVALID: 3445 case IRPosition::IRP_FLOAT: 3446 case IRPosition::IRP_ARGUMENT: 3447 case IRPosition::IRP_CALL_SITE_ARGUMENT: 3448 llvm_unreachable("ICVTracker can only be created for function position!"); 3449 case IRPosition::IRP_RETURNED: 3450 AA = new (A.Allocator) AAICVTrackerFunctionReturned(IRP, A); 3451 break; 3452 case IRPosition::IRP_CALL_SITE_RETURNED: 3453 AA = new (A.Allocator) AAICVTrackerCallSiteReturned(IRP, A); 3454 break; 3455 case IRPosition::IRP_CALL_SITE: 3456 AA = new (A.Allocator) AAICVTrackerCallSite(IRP, A); 3457 break; 3458 case IRPosition::IRP_FUNCTION: 3459 AA = new (A.Allocator) AAICVTrackerFunction(IRP, A); 3460 break; 3461 } 3462 3463 return *AA; 3464 } 3465 3466 AAExecutionDomain &AAExecutionDomain::createForPosition(const IRPosition &IRP, 3467 Attributor &A) { 3468 AAExecutionDomainFunction *AA = nullptr; 3469 switch (IRP.getPositionKind()) { 3470 case IRPosition::IRP_INVALID: 3471 case IRPosition::IRP_FLOAT: 3472 case IRPosition::IRP_ARGUMENT: 3473 case IRPosition::IRP_CALL_SITE_ARGUMENT: 3474 case IRPosition::IRP_RETURNED: 3475 case IRPosition::IRP_CALL_SITE_RETURNED: 3476 case IRPosition::IRP_CALL_SITE: 3477 llvm_unreachable( 3478 "AAExecutionDomain can only be created for function position!"); 3479 case IRPosition::IRP_FUNCTION: 3480 AA = new (A.Allocator) AAExecutionDomainFunction(IRP, A); 3481 break; 3482 } 3483 3484 return *AA; 3485 } 3486 3487 AAHeapToShared &AAHeapToShared::createForPosition(const IRPosition &IRP, 3488 Attributor &A) { 3489 AAHeapToSharedFunction *AA = nullptr; 3490 switch (IRP.getPositionKind()) { 3491 case IRPosition::IRP_INVALID: 3492 case IRPosition::IRP_FLOAT: 3493 case IRPosition::IRP_ARGUMENT: 3494 case IRPosition::IRP_CALL_SITE_ARGUMENT: 3495 case IRPosition::IRP_RETURNED: 3496 case IRPosition::IRP_CALL_SITE_RETURNED: 3497 case IRPosition::IRP_CALL_SITE: 3498 llvm_unreachable( 3499 "AAHeapToShared can only be created for function position!"); 3500 case IRPosition::IRP_FUNCTION: 3501 AA = new (A.Allocator) AAHeapToSharedFunction(IRP, A); 3502 break; 3503 } 3504 3505 return *AA; 3506 } 3507 3508 AAKernelInfo &AAKernelInfo::createForPosition(const IRPosition &IRP, 3509 Attributor &A) { 3510 AAKernelInfo *AA = nullptr; 3511 switch (IRP.getPositionKind()) { 3512 case IRPosition::IRP_INVALID: 3513 case IRPosition::IRP_FLOAT: 3514 case IRPosition::IRP_ARGUMENT: 3515 case IRPosition::IRP_RETURNED: 3516 case IRPosition::IRP_CALL_SITE_RETURNED: 3517 case IRPosition::IRP_CALL_SITE_ARGUMENT: 3518 llvm_unreachable("KernelInfo can only be created for function position!"); 3519 case IRPosition::IRP_CALL_SITE: 3520 AA = new (A.Allocator) AAKernelInfoCallSite(IRP, A); 3521 break; 3522 case IRPosition::IRP_FUNCTION: 3523 AA = new (A.Allocator) AAKernelInfoFunction(IRP, A); 3524 break; 3525 } 3526 3527 return *AA; 3528 } 3529 3530 PreservedAnalyses OpenMPOptPass::run(Module &M, ModuleAnalysisManager &AM) { 3531 if (!containsOpenMP(M)) 3532 return PreservedAnalyses::all(); 3533 if (DisableOpenMPOptimizations) 3534 return PreservedAnalyses::all(); 3535 3536 FunctionAnalysisManager &FAM = 3537 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 3538 KernelSet Kernels = getDeviceKernels(M); 3539 3540 auto IsCalled = [&](Function &F) { 3541 if (Kernels.contains(&F)) 3542 return true; 3543 for (const User *U : F.users()) 3544 if (!isa<BlockAddress>(U)) 3545 return true; 3546 return false; 3547 }; 3548 3549 auto EmitRemark = [&](Function &F) { 3550 auto &ORE = FAM.getResult<OptimizationRemarkEmitterAnalysis>(F); 3551 ORE.emit([&]() { 3552 OptimizationRemarkAnalysis ORA(DEBUG_TYPE, "InternalizationFailure", &F); 3553 return ORA << "Could not internalize function. " 3554 << "Some optimizations may not be possible."; 3555 }); 3556 }; 3557 3558 // Create internal copies of each function if this is a kernel Module. This 3559 // allows iterprocedural passes to see every call edge. 3560 DenseSet<const Function *> InternalizedFuncs; 3561 if (isOpenMPDevice(M)) 3562 for (Function &F : M) 3563 if (!F.isDeclaration() && !Kernels.contains(&F) && IsCalled(F)) { 3564 if (Attributor::internalizeFunction(F, /* Force */ true)) { 3565 InternalizedFuncs.insert(&F); 3566 } else if (!F.hasLocalLinkage() && !F.hasFnAttribute(Attribute::Cold)) { 3567 EmitRemark(F); 3568 } 3569 } 3570 3571 // Look at every function in the Module unless it was internalized. 3572 SmallVector<Function *, 16> SCC; 3573 for (Function &F : M) 3574 if (!F.isDeclaration() && !InternalizedFuncs.contains(&F)) 3575 SCC.push_back(&F); 3576 3577 if (SCC.empty()) 3578 return PreservedAnalyses::all(); 3579 3580 AnalysisGetter AG(FAM); 3581 3582 auto OREGetter = [&FAM](Function *F) -> OptimizationRemarkEmitter & { 3583 return FAM.getResult<OptimizationRemarkEmitterAnalysis>(*F); 3584 }; 3585 3586 BumpPtrAllocator Allocator; 3587 CallGraphUpdater CGUpdater; 3588 3589 SetVector<Function *> Functions(SCC.begin(), SCC.end()); 3590 OMPInformationCache InfoCache(M, AG, Allocator, /*CGSCC*/ Functions, Kernels); 3591 3592 unsigned MaxFixpointIterations = (isOpenMPDevice(M)) ? 128 : 32; 3593 Attributor A(Functions, InfoCache, CGUpdater, nullptr, true, false, 3594 MaxFixpointIterations, OREGetter, DEBUG_TYPE); 3595 3596 OpenMPOpt OMPOpt(SCC, CGUpdater, OREGetter, InfoCache, A); 3597 bool Changed = OMPOpt.run(true); 3598 if (Changed) 3599 return PreservedAnalyses::none(); 3600 3601 return PreservedAnalyses::all(); 3602 } 3603 3604 PreservedAnalyses OpenMPOptCGSCCPass::run(LazyCallGraph::SCC &C, 3605 CGSCCAnalysisManager &AM, 3606 LazyCallGraph &CG, 3607 CGSCCUpdateResult &UR) { 3608 if (!containsOpenMP(*C.begin()->getFunction().getParent())) 3609 return PreservedAnalyses::all(); 3610 if (DisableOpenMPOptimizations) 3611 return PreservedAnalyses::all(); 3612 3613 SmallVector<Function *, 16> SCC; 3614 // If there are kernels in the module, we have to run on all SCC's. 3615 for (LazyCallGraph::Node &N : C) { 3616 Function *Fn = &N.getFunction(); 3617 SCC.push_back(Fn); 3618 } 3619 3620 if (SCC.empty()) 3621 return PreservedAnalyses::all(); 3622 3623 Module &M = *C.begin()->getFunction().getParent(); 3624 3625 KernelSet Kernels = getDeviceKernels(M); 3626 3627 FunctionAnalysisManager &FAM = 3628 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager(); 3629 3630 AnalysisGetter AG(FAM); 3631 3632 auto OREGetter = [&FAM](Function *F) -> OptimizationRemarkEmitter & { 3633 return FAM.getResult<OptimizationRemarkEmitterAnalysis>(*F); 3634 }; 3635 3636 BumpPtrAllocator Allocator; 3637 CallGraphUpdater CGUpdater; 3638 CGUpdater.initialize(CG, C, AM, UR); 3639 3640 SetVector<Function *> Functions(SCC.begin(), SCC.end()); 3641 OMPInformationCache InfoCache(*(Functions.back()->getParent()), AG, Allocator, 3642 /*CGSCC*/ Functions, Kernels); 3643 3644 unsigned MaxFixpointIterations = (isOpenMPDevice(M)) ? 128 : 32; 3645 Attributor A(Functions, InfoCache, CGUpdater, nullptr, false, true, 3646 MaxFixpointIterations, OREGetter, DEBUG_TYPE); 3647 3648 OpenMPOpt OMPOpt(SCC, CGUpdater, OREGetter, InfoCache, A); 3649 bool Changed = OMPOpt.run(false); 3650 if (Changed) 3651 return PreservedAnalyses::none(); 3652 3653 return PreservedAnalyses::all(); 3654 } 3655 3656 namespace { 3657 3658 struct OpenMPOptCGSCCLegacyPass : public CallGraphSCCPass { 3659 CallGraphUpdater CGUpdater; 3660 static char ID; 3661 3662 OpenMPOptCGSCCLegacyPass() : CallGraphSCCPass(ID) { 3663 initializeOpenMPOptCGSCCLegacyPassPass(*PassRegistry::getPassRegistry()); 3664 } 3665 3666 void getAnalysisUsage(AnalysisUsage &AU) const override { 3667 CallGraphSCCPass::getAnalysisUsage(AU); 3668 } 3669 3670 bool runOnSCC(CallGraphSCC &CGSCC) override { 3671 if (!containsOpenMP(CGSCC.getCallGraph().getModule())) 3672 return false; 3673 if (DisableOpenMPOptimizations || skipSCC(CGSCC)) 3674 return false; 3675 3676 SmallVector<Function *, 16> SCC; 3677 // If there are kernels in the module, we have to run on all SCC's. 3678 for (CallGraphNode *CGN : CGSCC) { 3679 Function *Fn = CGN->getFunction(); 3680 if (!Fn || Fn->isDeclaration()) 3681 continue; 3682 SCC.push_back(Fn); 3683 } 3684 3685 if (SCC.empty()) 3686 return false; 3687 3688 Module &M = CGSCC.getCallGraph().getModule(); 3689 KernelSet Kernels = getDeviceKernels(M); 3690 3691 CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph(); 3692 CGUpdater.initialize(CG, CGSCC); 3693 3694 // Maintain a map of functions to avoid rebuilding the ORE 3695 DenseMap<Function *, std::unique_ptr<OptimizationRemarkEmitter>> OREMap; 3696 auto OREGetter = [&OREMap](Function *F) -> OptimizationRemarkEmitter & { 3697 std::unique_ptr<OptimizationRemarkEmitter> &ORE = OREMap[F]; 3698 if (!ORE) 3699 ORE = std::make_unique<OptimizationRemarkEmitter>(F); 3700 return *ORE; 3701 }; 3702 3703 AnalysisGetter AG; 3704 SetVector<Function *> Functions(SCC.begin(), SCC.end()); 3705 BumpPtrAllocator Allocator; 3706 OMPInformationCache InfoCache(*(Functions.back()->getParent()), AG, 3707 Allocator, 3708 /*CGSCC*/ Functions, Kernels); 3709 3710 unsigned MaxFixpointIterations = (isOpenMPDevice(M)) ? 128 : 32; 3711 Attributor A(Functions, InfoCache, CGUpdater, nullptr, false, true, 3712 MaxFixpointIterations, OREGetter, DEBUG_TYPE); 3713 3714 OpenMPOpt OMPOpt(SCC, CGUpdater, OREGetter, InfoCache, A); 3715 return OMPOpt.run(false); 3716 } 3717 3718 bool doFinalization(CallGraph &CG) override { return CGUpdater.finalize(); } 3719 }; 3720 3721 } // end anonymous namespace 3722 3723 KernelSet llvm::omp::getDeviceKernels(Module &M) { 3724 // TODO: Create a more cross-platform way of determining device kernels. 3725 NamedMDNode *MD = M.getOrInsertNamedMetadata("nvvm.annotations"); 3726 KernelSet Kernels; 3727 3728 if (!MD) 3729 return Kernels; 3730 3731 for (auto *Op : MD->operands()) { 3732 if (Op->getNumOperands() < 2) 3733 continue; 3734 MDString *KindID = dyn_cast<MDString>(Op->getOperand(1)); 3735 if (!KindID || KindID->getString() != "kernel") 3736 continue; 3737 3738 Function *KernelFn = 3739 mdconst::dyn_extract_or_null<Function>(Op->getOperand(0)); 3740 if (!KernelFn) 3741 continue; 3742 3743 ++NumOpenMPTargetRegionKernels; 3744 3745 Kernels.insert(KernelFn); 3746 } 3747 3748 return Kernels; 3749 } 3750 3751 bool llvm::omp::containsOpenMP(Module &M) { 3752 Metadata *MD = M.getModuleFlag("openmp"); 3753 if (!MD) 3754 return false; 3755 3756 return true; 3757 } 3758 3759 bool llvm::omp::isOpenMPDevice(Module &M) { 3760 Metadata *MD = M.getModuleFlag("openmp-device"); 3761 if (!MD) 3762 return false; 3763 3764 return true; 3765 } 3766 3767 char OpenMPOptCGSCCLegacyPass::ID = 0; 3768 3769 INITIALIZE_PASS_BEGIN(OpenMPOptCGSCCLegacyPass, "openmp-opt-cgscc", 3770 "OpenMP specific optimizations", false, false) 3771 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass) 3772 INITIALIZE_PASS_END(OpenMPOptCGSCCLegacyPass, "openmp-opt-cgscc", 3773 "OpenMP specific optimizations", false, false) 3774 3775 Pass *llvm::createOpenMPOptCGSCCLegacyPass() { 3776 return new OpenMPOptCGSCCLegacyPass(); 3777 } 3778