1 //===-- IPO/OpenMPOpt.cpp - Collection of OpenMP specific optimizations ---===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // OpenMP specific optimizations: 10 // 11 // - Deduplication of runtime calls, e.g., omp_get_thread_num. 12 // - Replacing globalized device memory with stack memory. 13 // - Replacing globalized device memory with shared memory. 14 // - Parallel region merging. 15 // - Transforming generic-mode device kernels to SPMD mode. 16 // - Specializing the state machine for generic-mode device kernels. 17 // 18 //===----------------------------------------------------------------------===// 19 20 #include "llvm/Transforms/IPO/OpenMPOpt.h" 21 22 #include "llvm/ADT/EnumeratedArray.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/ADT/SetVector.h" 25 #include "llvm/ADT/Statistic.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/Analysis/CallGraph.h" 28 #include "llvm/Analysis/CallGraphSCCPass.h" 29 #include "llvm/Analysis/MemoryLocation.h" 30 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 31 #include "llvm/Analysis/ValueTracking.h" 32 #include "llvm/Frontend/OpenMP/OMPConstants.h" 33 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 34 #include "llvm/IR/Assumptions.h" 35 #include "llvm/IR/Constants.h" 36 #include "llvm/IR/DiagnosticInfo.h" 37 #include "llvm/IR/GlobalValue.h" 38 #include "llvm/IR/GlobalVariable.h" 39 #include "llvm/IR/Instruction.h" 40 #include "llvm/IR/Instructions.h" 41 #include "llvm/IR/IntrinsicInst.h" 42 #include "llvm/IR/IntrinsicsAMDGPU.h" 43 #include "llvm/IR/IntrinsicsNVPTX.h" 44 #include "llvm/IR/LLVMContext.h" 45 #include "llvm/InitializePasses.h" 46 #include "llvm/Support/CommandLine.h" 47 #include "llvm/Support/Debug.h" 48 #include "llvm/Transforms/IPO.h" 49 #include "llvm/Transforms/IPO/Attributor.h" 50 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 51 #include "llvm/Transforms/Utils/CallGraphUpdater.h" 52 #include "llvm/Transforms/Utils/CodeExtractor.h" 53 54 #include <algorithm> 55 56 using namespace llvm; 57 using namespace omp; 58 59 #define DEBUG_TYPE "openmp-opt" 60 61 static cl::opt<bool> DisableOpenMPOptimizations( 62 "openmp-opt-disable", cl::ZeroOrMore, 63 cl::desc("Disable OpenMP specific optimizations."), cl::Hidden, 64 cl::init(false)); 65 66 static cl::opt<bool> EnableParallelRegionMerging( 67 "openmp-opt-enable-merging", cl::ZeroOrMore, 68 cl::desc("Enable the OpenMP region merging optimization."), cl::Hidden, 69 cl::init(false)); 70 71 static cl::opt<bool> 72 DisableInternalization("openmp-opt-disable-internalization", cl::ZeroOrMore, 73 cl::desc("Disable function internalization."), 74 cl::Hidden, cl::init(false)); 75 76 static cl::opt<bool> PrintICVValues("openmp-print-icv-values", cl::init(false), 77 cl::Hidden); 78 static cl::opt<bool> PrintOpenMPKernels("openmp-print-gpu-kernels", 79 cl::init(false), cl::Hidden); 80 81 static cl::opt<bool> HideMemoryTransferLatency( 82 "openmp-hide-memory-transfer-latency", 83 cl::desc("[WIP] Tries to hide the latency of host to device memory" 84 " transfers"), 85 cl::Hidden, cl::init(false)); 86 87 static cl::opt<bool> DisableOpenMPOptDeglobalization( 88 "openmp-opt-disable-deglobalization", cl::ZeroOrMore, 89 cl::desc("Disable OpenMP optimizations involving deglobalization."), 90 cl::Hidden, cl::init(false)); 91 92 static cl::opt<bool> DisableOpenMPOptSPMDization( 93 "openmp-opt-disable-spmdization", cl::ZeroOrMore, 94 cl::desc("Disable OpenMP optimizations involving SPMD-ization."), 95 cl::Hidden, cl::init(false)); 96 97 static cl::opt<bool> DisableOpenMPOptFolding( 98 "openmp-opt-disable-folding", cl::ZeroOrMore, 99 cl::desc("Disable OpenMP optimizations involving folding."), cl::Hidden, 100 cl::init(false)); 101 102 static cl::opt<bool> DisableOpenMPOptStateMachineRewrite( 103 "openmp-opt-disable-state-machine-rewrite", cl::ZeroOrMore, 104 cl::desc("Disable OpenMP optimizations that replace the state machine."), 105 cl::Hidden, cl::init(false)); 106 107 static cl::opt<bool> DisableOpenMPOptBarrierElimination( 108 "openmp-opt-disable-barrier-elimination", cl::ZeroOrMore, 109 cl::desc("Disable OpenMP optimizations that eliminate barriers."), 110 cl::Hidden, cl::init(false)); 111 112 static cl::opt<bool> PrintModuleAfterOptimizations( 113 "openmp-opt-print-module", cl::ZeroOrMore, 114 cl::desc("Print the current module after OpenMP optimizations."), 115 cl::Hidden, cl::init(false)); 116 117 static cl::opt<bool> AlwaysInlineDeviceFunctions( 118 "openmp-opt-inline-device", cl::ZeroOrMore, 119 cl::desc("Inline all applicible functions on the device."), cl::Hidden, 120 cl::init(false)); 121 122 static cl::opt<bool> 123 EnableVerboseRemarks("openmp-opt-verbose-remarks", cl::ZeroOrMore, 124 cl::desc("Enables more verbose remarks."), cl::Hidden, 125 cl::init(false)); 126 127 static cl::opt<unsigned> 128 SetFixpointIterations("openmp-opt-max-iterations", cl::Hidden, 129 cl::desc("Maximal number of attributor iterations."), 130 cl::init(256)); 131 132 static cl::opt<unsigned> 133 SharedMemoryLimit("openmp-opt-shared-limit", cl::Hidden, 134 cl::desc("Maximum amount of shared memory to use."), 135 cl::init(std::numeric_limits<unsigned>::max())); 136 137 STATISTIC(NumOpenMPRuntimeCallsDeduplicated, 138 "Number of OpenMP runtime calls deduplicated"); 139 STATISTIC(NumOpenMPParallelRegionsDeleted, 140 "Number of OpenMP parallel regions deleted"); 141 STATISTIC(NumOpenMPRuntimeFunctionsIdentified, 142 "Number of OpenMP runtime functions identified"); 143 STATISTIC(NumOpenMPRuntimeFunctionUsesIdentified, 144 "Number of OpenMP runtime function uses identified"); 145 STATISTIC(NumOpenMPTargetRegionKernels, 146 "Number of OpenMP target region entry points (=kernels) identified"); 147 STATISTIC(NumOpenMPTargetRegionKernelsSPMD, 148 "Number of OpenMP target region entry points (=kernels) executed in " 149 "SPMD-mode instead of generic-mode"); 150 STATISTIC(NumOpenMPTargetRegionKernelsWithoutStateMachine, 151 "Number of OpenMP target region entry points (=kernels) executed in " 152 "generic-mode without a state machines"); 153 STATISTIC(NumOpenMPTargetRegionKernelsCustomStateMachineWithFallback, 154 "Number of OpenMP target region entry points (=kernels) executed in " 155 "generic-mode with customized state machines with fallback"); 156 STATISTIC(NumOpenMPTargetRegionKernelsCustomStateMachineWithoutFallback, 157 "Number of OpenMP target region entry points (=kernels) executed in " 158 "generic-mode with customized state machines without fallback"); 159 STATISTIC( 160 NumOpenMPParallelRegionsReplacedInGPUStateMachine, 161 "Number of OpenMP parallel regions replaced with ID in GPU state machines"); 162 STATISTIC(NumOpenMPParallelRegionsMerged, 163 "Number of OpenMP parallel regions merged"); 164 STATISTIC(NumBytesMovedToSharedMemory, 165 "Amount of memory pushed to shared memory"); 166 STATISTIC(NumBarriersEliminated, "Number of redundant barriers eliminated"); 167 168 #if !defined(NDEBUG) 169 static constexpr auto TAG = "[" DEBUG_TYPE "]"; 170 #endif 171 172 namespace { 173 174 struct AAHeapToShared; 175 176 struct AAICVTracker; 177 178 /// OpenMP specific information. For now, stores RFIs and ICVs also needed for 179 /// Attributor runs. 180 struct OMPInformationCache : public InformationCache { 181 OMPInformationCache(Module &M, AnalysisGetter &AG, 182 BumpPtrAllocator &Allocator, SetVector<Function *> &CGSCC, 183 KernelSet &Kernels) 184 : InformationCache(M, AG, Allocator, &CGSCC), OMPBuilder(M), 185 Kernels(Kernels) { 186 187 OMPBuilder.initialize(); 188 initializeRuntimeFunctions(); 189 initializeInternalControlVars(); 190 } 191 192 /// Generic information that describes an internal control variable. 193 struct InternalControlVarInfo { 194 /// The kind, as described by InternalControlVar enum. 195 InternalControlVar Kind; 196 197 /// The name of the ICV. 198 StringRef Name; 199 200 /// Environment variable associated with this ICV. 201 StringRef EnvVarName; 202 203 /// Initial value kind. 204 ICVInitValue InitKind; 205 206 /// Initial value. 207 ConstantInt *InitValue; 208 209 /// Setter RTL function associated with this ICV. 210 RuntimeFunction Setter; 211 212 /// Getter RTL function associated with this ICV. 213 RuntimeFunction Getter; 214 215 /// RTL Function corresponding to the override clause of this ICV 216 RuntimeFunction Clause; 217 }; 218 219 /// Generic information that describes a runtime function 220 struct RuntimeFunctionInfo { 221 222 /// The kind, as described by the RuntimeFunction enum. 223 RuntimeFunction Kind; 224 225 /// The name of the function. 226 StringRef Name; 227 228 /// Flag to indicate a variadic function. 229 bool IsVarArg; 230 231 /// The return type of the function. 232 Type *ReturnType; 233 234 /// The argument types of the function. 235 SmallVector<Type *, 8> ArgumentTypes; 236 237 /// The declaration if available. 238 Function *Declaration = nullptr; 239 240 /// Uses of this runtime function per function containing the use. 241 using UseVector = SmallVector<Use *, 16>; 242 243 /// Clear UsesMap for runtime function. 244 void clearUsesMap() { UsesMap.clear(); } 245 246 /// Boolean conversion that is true if the runtime function was found. 247 operator bool() const { return Declaration; } 248 249 /// Return the vector of uses in function \p F. 250 UseVector &getOrCreateUseVector(Function *F) { 251 std::shared_ptr<UseVector> &UV = UsesMap[F]; 252 if (!UV) 253 UV = std::make_shared<UseVector>(); 254 return *UV; 255 } 256 257 /// Return the vector of uses in function \p F or `nullptr` if there are 258 /// none. 259 const UseVector *getUseVector(Function &F) const { 260 auto I = UsesMap.find(&F); 261 if (I != UsesMap.end()) 262 return I->second.get(); 263 return nullptr; 264 } 265 266 /// Return how many functions contain uses of this runtime function. 267 size_t getNumFunctionsWithUses() const { return UsesMap.size(); } 268 269 /// Return the number of arguments (or the minimal number for variadic 270 /// functions). 271 size_t getNumArgs() const { return ArgumentTypes.size(); } 272 273 /// Run the callback \p CB on each use and forget the use if the result is 274 /// true. The callback will be fed the function in which the use was 275 /// encountered as second argument. 276 void foreachUse(SmallVectorImpl<Function *> &SCC, 277 function_ref<bool(Use &, Function &)> CB) { 278 for (Function *F : SCC) 279 foreachUse(CB, F); 280 } 281 282 /// Run the callback \p CB on each use within the function \p F and forget 283 /// the use if the result is true. 284 void foreachUse(function_ref<bool(Use &, Function &)> CB, Function *F) { 285 SmallVector<unsigned, 8> ToBeDeleted; 286 ToBeDeleted.clear(); 287 288 unsigned Idx = 0; 289 UseVector &UV = getOrCreateUseVector(F); 290 291 for (Use *U : UV) { 292 if (CB(*U, *F)) 293 ToBeDeleted.push_back(Idx); 294 ++Idx; 295 } 296 297 // Remove the to-be-deleted indices in reverse order as prior 298 // modifications will not modify the smaller indices. 299 while (!ToBeDeleted.empty()) { 300 unsigned Idx = ToBeDeleted.pop_back_val(); 301 UV[Idx] = UV.back(); 302 UV.pop_back(); 303 } 304 } 305 306 private: 307 /// Map from functions to all uses of this runtime function contained in 308 /// them. 309 DenseMap<Function *, std::shared_ptr<UseVector>> UsesMap; 310 311 public: 312 /// Iterators for the uses of this runtime function. 313 decltype(UsesMap)::iterator begin() { return UsesMap.begin(); } 314 decltype(UsesMap)::iterator end() { return UsesMap.end(); } 315 }; 316 317 /// An OpenMP-IR-Builder instance 318 OpenMPIRBuilder OMPBuilder; 319 320 /// Map from runtime function kind to the runtime function description. 321 EnumeratedArray<RuntimeFunctionInfo, RuntimeFunction, 322 RuntimeFunction::OMPRTL___last> 323 RFIs; 324 325 /// Map from function declarations/definitions to their runtime enum type. 326 DenseMap<Function *, RuntimeFunction> RuntimeFunctionIDMap; 327 328 /// Map from ICV kind to the ICV description. 329 EnumeratedArray<InternalControlVarInfo, InternalControlVar, 330 InternalControlVar::ICV___last> 331 ICVs; 332 333 /// Helper to initialize all internal control variable information for those 334 /// defined in OMPKinds.def. 335 void initializeInternalControlVars() { 336 #define ICV_RT_SET(_Name, RTL) \ 337 { \ 338 auto &ICV = ICVs[_Name]; \ 339 ICV.Setter = RTL; \ 340 } 341 #define ICV_RT_GET(Name, RTL) \ 342 { \ 343 auto &ICV = ICVs[Name]; \ 344 ICV.Getter = RTL; \ 345 } 346 #define ICV_DATA_ENV(Enum, _Name, _EnvVarName, Init) \ 347 { \ 348 auto &ICV = ICVs[Enum]; \ 349 ICV.Name = _Name; \ 350 ICV.Kind = Enum; \ 351 ICV.InitKind = Init; \ 352 ICV.EnvVarName = _EnvVarName; \ 353 switch (ICV.InitKind) { \ 354 case ICV_IMPLEMENTATION_DEFINED: \ 355 ICV.InitValue = nullptr; \ 356 break; \ 357 case ICV_ZERO: \ 358 ICV.InitValue = ConstantInt::get( \ 359 Type::getInt32Ty(OMPBuilder.Int32->getContext()), 0); \ 360 break; \ 361 case ICV_FALSE: \ 362 ICV.InitValue = ConstantInt::getFalse(OMPBuilder.Int1->getContext()); \ 363 break; \ 364 case ICV_LAST: \ 365 break; \ 366 } \ 367 } 368 #include "llvm/Frontend/OpenMP/OMPKinds.def" 369 } 370 371 /// Returns true if the function declaration \p F matches the runtime 372 /// function types, that is, return type \p RTFRetType, and argument types 373 /// \p RTFArgTypes. 374 static bool declMatchesRTFTypes(Function *F, Type *RTFRetType, 375 SmallVector<Type *, 8> &RTFArgTypes) { 376 // TODO: We should output information to the user (under debug output 377 // and via remarks). 378 379 if (!F) 380 return false; 381 if (F->getReturnType() != RTFRetType) 382 return false; 383 if (F->arg_size() != RTFArgTypes.size()) 384 return false; 385 386 auto *RTFTyIt = RTFArgTypes.begin(); 387 for (Argument &Arg : F->args()) { 388 if (Arg.getType() != *RTFTyIt) 389 return false; 390 391 ++RTFTyIt; 392 } 393 394 return true; 395 } 396 397 // Helper to collect all uses of the declaration in the UsesMap. 398 unsigned collectUses(RuntimeFunctionInfo &RFI, bool CollectStats = true) { 399 unsigned NumUses = 0; 400 if (!RFI.Declaration) 401 return NumUses; 402 OMPBuilder.addAttributes(RFI.Kind, *RFI.Declaration); 403 404 if (CollectStats) { 405 NumOpenMPRuntimeFunctionsIdentified += 1; 406 NumOpenMPRuntimeFunctionUsesIdentified += RFI.Declaration->getNumUses(); 407 } 408 409 // TODO: We directly convert uses into proper calls and unknown uses. 410 for (Use &U : RFI.Declaration->uses()) { 411 if (Instruction *UserI = dyn_cast<Instruction>(U.getUser())) { 412 if (ModuleSlice.count(UserI->getFunction())) { 413 RFI.getOrCreateUseVector(UserI->getFunction()).push_back(&U); 414 ++NumUses; 415 } 416 } else { 417 RFI.getOrCreateUseVector(nullptr).push_back(&U); 418 ++NumUses; 419 } 420 } 421 return NumUses; 422 } 423 424 // Helper function to recollect uses of a runtime function. 425 void recollectUsesForFunction(RuntimeFunction RTF) { 426 auto &RFI = RFIs[RTF]; 427 RFI.clearUsesMap(); 428 collectUses(RFI, /*CollectStats*/ false); 429 } 430 431 // Helper function to recollect uses of all runtime functions. 432 void recollectUses() { 433 for (int Idx = 0; Idx < RFIs.size(); ++Idx) 434 recollectUsesForFunction(static_cast<RuntimeFunction>(Idx)); 435 } 436 437 // Helper function to inherit the calling convention of the function callee. 438 void setCallingConvention(FunctionCallee Callee, CallInst *CI) { 439 if (Function *Fn = dyn_cast<Function>(Callee.getCallee())) 440 CI->setCallingConv(Fn->getCallingConv()); 441 } 442 443 /// Helper to initialize all runtime function information for those defined 444 /// in OpenMPKinds.def. 445 void initializeRuntimeFunctions() { 446 Module &M = *((*ModuleSlice.begin())->getParent()); 447 448 // Helper macros for handling __VA_ARGS__ in OMP_RTL 449 #define OMP_TYPE(VarName, ...) \ 450 Type *VarName = OMPBuilder.VarName; \ 451 (void)VarName; 452 453 #define OMP_ARRAY_TYPE(VarName, ...) \ 454 ArrayType *VarName##Ty = OMPBuilder.VarName##Ty; \ 455 (void)VarName##Ty; \ 456 PointerType *VarName##PtrTy = OMPBuilder.VarName##PtrTy; \ 457 (void)VarName##PtrTy; 458 459 #define OMP_FUNCTION_TYPE(VarName, ...) \ 460 FunctionType *VarName = OMPBuilder.VarName; \ 461 (void)VarName; \ 462 PointerType *VarName##Ptr = OMPBuilder.VarName##Ptr; \ 463 (void)VarName##Ptr; 464 465 #define OMP_STRUCT_TYPE(VarName, ...) \ 466 StructType *VarName = OMPBuilder.VarName; \ 467 (void)VarName; \ 468 PointerType *VarName##Ptr = OMPBuilder.VarName##Ptr; \ 469 (void)VarName##Ptr; 470 471 #define OMP_RTL(_Enum, _Name, _IsVarArg, _ReturnType, ...) \ 472 { \ 473 SmallVector<Type *, 8> ArgsTypes({__VA_ARGS__}); \ 474 Function *F = M.getFunction(_Name); \ 475 RTLFunctions.insert(F); \ 476 if (declMatchesRTFTypes(F, OMPBuilder._ReturnType, ArgsTypes)) { \ 477 RuntimeFunctionIDMap[F] = _Enum; \ 478 auto &RFI = RFIs[_Enum]; \ 479 RFI.Kind = _Enum; \ 480 RFI.Name = _Name; \ 481 RFI.IsVarArg = _IsVarArg; \ 482 RFI.ReturnType = OMPBuilder._ReturnType; \ 483 RFI.ArgumentTypes = std::move(ArgsTypes); \ 484 RFI.Declaration = F; \ 485 unsigned NumUses = collectUses(RFI); \ 486 (void)NumUses; \ 487 LLVM_DEBUG({ \ 488 dbgs() << TAG << RFI.Name << (RFI.Declaration ? "" : " not") \ 489 << " found\n"; \ 490 if (RFI.Declaration) \ 491 dbgs() << TAG << "-> got " << NumUses << " uses in " \ 492 << RFI.getNumFunctionsWithUses() \ 493 << " different functions.\n"; \ 494 }); \ 495 } \ 496 } 497 #include "llvm/Frontend/OpenMP/OMPKinds.def" 498 499 // Remove the `noinline` attribute from `__kmpc`, `_OMP::` and `omp_` 500 // functions, except if `optnone` is present. 501 for (Function &F : M) { 502 for (StringRef Prefix : {"__kmpc", "_ZN4_OMP", "omp_"}) 503 if (F.getName().startswith(Prefix) && 504 !F.hasFnAttribute(Attribute::OptimizeNone)) 505 F.removeFnAttr(Attribute::NoInline); 506 } 507 508 // TODO: We should attach the attributes defined in OMPKinds.def. 509 } 510 511 /// Collection of known kernels (\see Kernel) in the module. 512 KernelSet &Kernels; 513 514 /// Collection of known OpenMP runtime functions.. 515 DenseSet<const Function *> RTLFunctions; 516 }; 517 518 template <typename Ty, bool InsertInvalidates = true> 519 struct BooleanStateWithSetVector : public BooleanState { 520 bool contains(const Ty &Elem) const { return Set.contains(Elem); } 521 bool insert(const Ty &Elem) { 522 if (InsertInvalidates) 523 BooleanState::indicatePessimisticFixpoint(); 524 return Set.insert(Elem); 525 } 526 527 const Ty &operator[](int Idx) const { return Set[Idx]; } 528 bool operator==(const BooleanStateWithSetVector &RHS) const { 529 return BooleanState::operator==(RHS) && Set == RHS.Set; 530 } 531 bool operator!=(const BooleanStateWithSetVector &RHS) const { 532 return !(*this == RHS); 533 } 534 535 bool empty() const { return Set.empty(); } 536 size_t size() const { return Set.size(); } 537 538 /// "Clamp" this state with \p RHS. 539 BooleanStateWithSetVector &operator^=(const BooleanStateWithSetVector &RHS) { 540 BooleanState::operator^=(RHS); 541 Set.insert(RHS.Set.begin(), RHS.Set.end()); 542 return *this; 543 } 544 545 private: 546 /// A set to keep track of elements. 547 SetVector<Ty> Set; 548 549 public: 550 typename decltype(Set)::iterator begin() { return Set.begin(); } 551 typename decltype(Set)::iterator end() { return Set.end(); } 552 typename decltype(Set)::const_iterator begin() const { return Set.begin(); } 553 typename decltype(Set)::const_iterator end() const { return Set.end(); } 554 }; 555 556 template <typename Ty, bool InsertInvalidates = true> 557 using BooleanStateWithPtrSetVector = 558 BooleanStateWithSetVector<Ty *, InsertInvalidates>; 559 560 struct KernelInfoState : AbstractState { 561 /// Flag to track if we reached a fixpoint. 562 bool IsAtFixpoint = false; 563 564 /// The parallel regions (identified by the outlined parallel functions) that 565 /// can be reached from the associated function. 566 BooleanStateWithPtrSetVector<Function, /* InsertInvalidates */ false> 567 ReachedKnownParallelRegions; 568 569 /// State to track what parallel region we might reach. 570 BooleanStateWithPtrSetVector<CallBase> ReachedUnknownParallelRegions; 571 572 /// State to track if we are in SPMD-mode, assumed or know, and why we decided 573 /// we cannot be. If it is assumed, then RequiresFullRuntime should also be 574 /// false. 575 BooleanStateWithPtrSetVector<Instruction, false> SPMDCompatibilityTracker; 576 577 /// The __kmpc_target_init call in this kernel, if any. If we find more than 578 /// one we abort as the kernel is malformed. 579 CallBase *KernelInitCB = nullptr; 580 581 /// The __kmpc_target_deinit call in this kernel, if any. If we find more than 582 /// one we abort as the kernel is malformed. 583 CallBase *KernelDeinitCB = nullptr; 584 585 /// Flag to indicate if the associated function is a kernel entry. 586 bool IsKernelEntry = false; 587 588 /// State to track what kernel entries can reach the associated function. 589 BooleanStateWithPtrSetVector<Function, false> ReachingKernelEntries; 590 591 /// State to indicate if we can track parallel level of the associated 592 /// function. We will give up tracking if we encounter unknown caller or the 593 /// caller is __kmpc_parallel_51. 594 BooleanStateWithSetVector<uint8_t> ParallelLevels; 595 596 /// Abstract State interface 597 ///{ 598 599 KernelInfoState() = default; 600 KernelInfoState(bool BestState) { 601 if (!BestState) 602 indicatePessimisticFixpoint(); 603 } 604 605 /// See AbstractState::isValidState(...) 606 bool isValidState() const override { return true; } 607 608 /// See AbstractState::isAtFixpoint(...) 609 bool isAtFixpoint() const override { return IsAtFixpoint; } 610 611 /// See AbstractState::indicatePessimisticFixpoint(...) 612 ChangeStatus indicatePessimisticFixpoint() override { 613 IsAtFixpoint = true; 614 ReachingKernelEntries.indicatePessimisticFixpoint(); 615 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 616 ReachedKnownParallelRegions.indicatePessimisticFixpoint(); 617 ReachedUnknownParallelRegions.indicatePessimisticFixpoint(); 618 return ChangeStatus::CHANGED; 619 } 620 621 /// See AbstractState::indicateOptimisticFixpoint(...) 622 ChangeStatus indicateOptimisticFixpoint() override { 623 IsAtFixpoint = true; 624 ReachingKernelEntries.indicateOptimisticFixpoint(); 625 SPMDCompatibilityTracker.indicateOptimisticFixpoint(); 626 ReachedKnownParallelRegions.indicateOptimisticFixpoint(); 627 ReachedUnknownParallelRegions.indicateOptimisticFixpoint(); 628 return ChangeStatus::UNCHANGED; 629 } 630 631 /// Return the assumed state 632 KernelInfoState &getAssumed() { return *this; } 633 const KernelInfoState &getAssumed() const { return *this; } 634 635 bool operator==(const KernelInfoState &RHS) const { 636 if (SPMDCompatibilityTracker != RHS.SPMDCompatibilityTracker) 637 return false; 638 if (ReachedKnownParallelRegions != RHS.ReachedKnownParallelRegions) 639 return false; 640 if (ReachedUnknownParallelRegions != RHS.ReachedUnknownParallelRegions) 641 return false; 642 if (ReachingKernelEntries != RHS.ReachingKernelEntries) 643 return false; 644 return true; 645 } 646 647 /// Returns true if this kernel contains any OpenMP parallel regions. 648 bool mayContainParallelRegion() { 649 return !ReachedKnownParallelRegions.empty() || 650 !ReachedUnknownParallelRegions.empty(); 651 } 652 653 /// Return empty set as the best state of potential values. 654 static KernelInfoState getBestState() { return KernelInfoState(true); } 655 656 static KernelInfoState getBestState(KernelInfoState &KIS) { 657 return getBestState(); 658 } 659 660 /// Return full set as the worst state of potential values. 661 static KernelInfoState getWorstState() { return KernelInfoState(false); } 662 663 /// "Clamp" this state with \p KIS. 664 KernelInfoState operator^=(const KernelInfoState &KIS) { 665 // Do not merge two different _init and _deinit call sites. 666 if (KIS.KernelInitCB) { 667 if (KernelInitCB && KernelInitCB != KIS.KernelInitCB) 668 llvm_unreachable("Kernel that calls another kernel violates OpenMP-Opt " 669 "assumptions."); 670 KernelInitCB = KIS.KernelInitCB; 671 } 672 if (KIS.KernelDeinitCB) { 673 if (KernelDeinitCB && KernelDeinitCB != KIS.KernelDeinitCB) 674 llvm_unreachable("Kernel that calls another kernel violates OpenMP-Opt " 675 "assumptions."); 676 KernelDeinitCB = KIS.KernelDeinitCB; 677 } 678 SPMDCompatibilityTracker ^= KIS.SPMDCompatibilityTracker; 679 ReachedKnownParallelRegions ^= KIS.ReachedKnownParallelRegions; 680 ReachedUnknownParallelRegions ^= KIS.ReachedUnknownParallelRegions; 681 return *this; 682 } 683 684 KernelInfoState operator&=(const KernelInfoState &KIS) { 685 return (*this ^= KIS); 686 } 687 688 ///} 689 }; 690 691 /// Used to map the values physically (in the IR) stored in an offload 692 /// array, to a vector in memory. 693 struct OffloadArray { 694 /// Physical array (in the IR). 695 AllocaInst *Array = nullptr; 696 /// Mapped values. 697 SmallVector<Value *, 8> StoredValues; 698 /// Last stores made in the offload array. 699 SmallVector<StoreInst *, 8> LastAccesses; 700 701 OffloadArray() = default; 702 703 /// Initializes the OffloadArray with the values stored in \p Array before 704 /// instruction \p Before is reached. Returns false if the initialization 705 /// fails. 706 /// This MUST be used immediately after the construction of the object. 707 bool initialize(AllocaInst &Array, Instruction &Before) { 708 if (!Array.getAllocatedType()->isArrayTy()) 709 return false; 710 711 if (!getValues(Array, Before)) 712 return false; 713 714 this->Array = &Array; 715 return true; 716 } 717 718 static const unsigned DeviceIDArgNum = 1; 719 static const unsigned BasePtrsArgNum = 3; 720 static const unsigned PtrsArgNum = 4; 721 static const unsigned SizesArgNum = 5; 722 723 private: 724 /// Traverses the BasicBlock where \p Array is, collecting the stores made to 725 /// \p Array, leaving StoredValues with the values stored before the 726 /// instruction \p Before is reached. 727 bool getValues(AllocaInst &Array, Instruction &Before) { 728 // Initialize container. 729 const uint64_t NumValues = Array.getAllocatedType()->getArrayNumElements(); 730 StoredValues.assign(NumValues, nullptr); 731 LastAccesses.assign(NumValues, nullptr); 732 733 // TODO: This assumes the instruction \p Before is in the same 734 // BasicBlock as Array. Make it general, for any control flow graph. 735 BasicBlock *BB = Array.getParent(); 736 if (BB != Before.getParent()) 737 return false; 738 739 const DataLayout &DL = Array.getModule()->getDataLayout(); 740 const unsigned int PointerSize = DL.getPointerSize(); 741 742 for (Instruction &I : *BB) { 743 if (&I == &Before) 744 break; 745 746 if (!isa<StoreInst>(&I)) 747 continue; 748 749 auto *S = cast<StoreInst>(&I); 750 int64_t Offset = -1; 751 auto *Dst = 752 GetPointerBaseWithConstantOffset(S->getPointerOperand(), Offset, DL); 753 if (Dst == &Array) { 754 int64_t Idx = Offset / PointerSize; 755 StoredValues[Idx] = getUnderlyingObject(S->getValueOperand()); 756 LastAccesses[Idx] = S; 757 } 758 } 759 760 return isFilled(); 761 } 762 763 /// Returns true if all values in StoredValues and 764 /// LastAccesses are not nullptrs. 765 bool isFilled() { 766 const unsigned NumValues = StoredValues.size(); 767 for (unsigned I = 0; I < NumValues; ++I) { 768 if (!StoredValues[I] || !LastAccesses[I]) 769 return false; 770 } 771 772 return true; 773 } 774 }; 775 776 struct OpenMPOpt { 777 778 using OptimizationRemarkGetter = 779 function_ref<OptimizationRemarkEmitter &(Function *)>; 780 781 OpenMPOpt(SmallVectorImpl<Function *> &SCC, CallGraphUpdater &CGUpdater, 782 OptimizationRemarkGetter OREGetter, 783 OMPInformationCache &OMPInfoCache, Attributor &A) 784 : M(*(*SCC.begin())->getParent()), SCC(SCC), CGUpdater(CGUpdater), 785 OREGetter(OREGetter), OMPInfoCache(OMPInfoCache), A(A) {} 786 787 /// Check if any remarks are enabled for openmp-opt 788 bool remarksEnabled() { 789 auto &Ctx = M.getContext(); 790 return Ctx.getDiagHandlerPtr()->isAnyRemarkEnabled(DEBUG_TYPE); 791 } 792 793 /// Run all OpenMP optimizations on the underlying SCC/ModuleSlice. 794 bool run(bool IsModulePass) { 795 if (SCC.empty()) 796 return false; 797 798 bool Changed = false; 799 800 LLVM_DEBUG(dbgs() << TAG << "Run on SCC with " << SCC.size() 801 << " functions in a slice with " 802 << OMPInfoCache.ModuleSlice.size() << " functions\n"); 803 804 if (IsModulePass) { 805 Changed |= runAttributor(IsModulePass); 806 807 // Recollect uses, in case Attributor deleted any. 808 OMPInfoCache.recollectUses(); 809 810 // TODO: This should be folded into buildCustomStateMachine. 811 Changed |= rewriteDeviceCodeStateMachine(); 812 813 if (remarksEnabled()) 814 analysisGlobalization(); 815 816 Changed |= eliminateBarriers(); 817 } else { 818 if (PrintICVValues) 819 printICVs(); 820 if (PrintOpenMPKernels) 821 printKernels(); 822 823 Changed |= runAttributor(IsModulePass); 824 825 // Recollect uses, in case Attributor deleted any. 826 OMPInfoCache.recollectUses(); 827 828 Changed |= deleteParallelRegions(); 829 830 if (HideMemoryTransferLatency) 831 Changed |= hideMemTransfersLatency(); 832 Changed |= deduplicateRuntimeCalls(); 833 if (EnableParallelRegionMerging) { 834 if (mergeParallelRegions()) { 835 deduplicateRuntimeCalls(); 836 Changed = true; 837 } 838 } 839 840 Changed |= eliminateBarriers(); 841 } 842 843 return Changed; 844 } 845 846 /// Print initial ICV values for testing. 847 /// FIXME: This should be done from the Attributor once it is added. 848 void printICVs() const { 849 InternalControlVar ICVs[] = {ICV_nthreads, ICV_active_levels, ICV_cancel, 850 ICV_proc_bind}; 851 852 for (Function *F : OMPInfoCache.ModuleSlice) { 853 for (auto ICV : ICVs) { 854 auto ICVInfo = OMPInfoCache.ICVs[ICV]; 855 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 856 return ORA << "OpenMP ICV " << ore::NV("OpenMPICV", ICVInfo.Name) 857 << " Value: " 858 << (ICVInfo.InitValue 859 ? toString(ICVInfo.InitValue->getValue(), 10, true) 860 : "IMPLEMENTATION_DEFINED"); 861 }; 862 863 emitRemark<OptimizationRemarkAnalysis>(F, "OpenMPICVTracker", Remark); 864 } 865 } 866 } 867 868 /// Print OpenMP GPU kernels for testing. 869 void printKernels() const { 870 for (Function *F : SCC) { 871 if (!OMPInfoCache.Kernels.count(F)) 872 continue; 873 874 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 875 return ORA << "OpenMP GPU kernel " 876 << ore::NV("OpenMPGPUKernel", F->getName()) << "\n"; 877 }; 878 879 emitRemark<OptimizationRemarkAnalysis>(F, "OpenMPGPU", Remark); 880 } 881 } 882 883 /// Return the call if \p U is a callee use in a regular call. If \p RFI is 884 /// given it has to be the callee or a nullptr is returned. 885 static CallInst *getCallIfRegularCall( 886 Use &U, OMPInformationCache::RuntimeFunctionInfo *RFI = nullptr) { 887 CallInst *CI = dyn_cast<CallInst>(U.getUser()); 888 if (CI && CI->isCallee(&U) && !CI->hasOperandBundles() && 889 (!RFI || 890 (RFI->Declaration && CI->getCalledFunction() == RFI->Declaration))) 891 return CI; 892 return nullptr; 893 } 894 895 /// Return the call if \p V is a regular call. If \p RFI is given it has to be 896 /// the callee or a nullptr is returned. 897 static CallInst *getCallIfRegularCall( 898 Value &V, OMPInformationCache::RuntimeFunctionInfo *RFI = nullptr) { 899 CallInst *CI = dyn_cast<CallInst>(&V); 900 if (CI && !CI->hasOperandBundles() && 901 (!RFI || 902 (RFI->Declaration && CI->getCalledFunction() == RFI->Declaration))) 903 return CI; 904 return nullptr; 905 } 906 907 private: 908 /// Merge parallel regions when it is safe. 909 bool mergeParallelRegions() { 910 const unsigned CallbackCalleeOperand = 2; 911 const unsigned CallbackFirstArgOperand = 3; 912 using InsertPointTy = OpenMPIRBuilder::InsertPointTy; 913 914 // Check if there are any __kmpc_fork_call calls to merge. 915 OMPInformationCache::RuntimeFunctionInfo &RFI = 916 OMPInfoCache.RFIs[OMPRTL___kmpc_fork_call]; 917 918 if (!RFI.Declaration) 919 return false; 920 921 // Unmergable calls that prevent merging a parallel region. 922 OMPInformationCache::RuntimeFunctionInfo UnmergableCallsInfo[] = { 923 OMPInfoCache.RFIs[OMPRTL___kmpc_push_proc_bind], 924 OMPInfoCache.RFIs[OMPRTL___kmpc_push_num_threads], 925 }; 926 927 bool Changed = false; 928 LoopInfo *LI = nullptr; 929 DominatorTree *DT = nullptr; 930 931 SmallDenseMap<BasicBlock *, SmallPtrSet<Instruction *, 4>> BB2PRMap; 932 933 BasicBlock *StartBB = nullptr, *EndBB = nullptr; 934 auto BodyGenCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, 935 BasicBlock &ContinuationIP) { 936 BasicBlock *CGStartBB = CodeGenIP.getBlock(); 937 BasicBlock *CGEndBB = 938 SplitBlock(CGStartBB, &*CodeGenIP.getPoint(), DT, LI); 939 assert(StartBB != nullptr && "StartBB should not be null"); 940 CGStartBB->getTerminator()->setSuccessor(0, StartBB); 941 assert(EndBB != nullptr && "EndBB should not be null"); 942 EndBB->getTerminator()->setSuccessor(0, CGEndBB); 943 }; 944 945 auto PrivCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, Value &, 946 Value &Inner, Value *&ReplacementValue) -> InsertPointTy { 947 ReplacementValue = &Inner; 948 return CodeGenIP; 949 }; 950 951 auto FiniCB = [&](InsertPointTy CodeGenIP) {}; 952 953 /// Create a sequential execution region within a merged parallel region, 954 /// encapsulated in a master construct with a barrier for synchronization. 955 auto CreateSequentialRegion = [&](Function *OuterFn, 956 BasicBlock *OuterPredBB, 957 Instruction *SeqStartI, 958 Instruction *SeqEndI) { 959 // Isolate the instructions of the sequential region to a separate 960 // block. 961 BasicBlock *ParentBB = SeqStartI->getParent(); 962 BasicBlock *SeqEndBB = 963 SplitBlock(ParentBB, SeqEndI->getNextNode(), DT, LI); 964 BasicBlock *SeqAfterBB = 965 SplitBlock(SeqEndBB, &*SeqEndBB->getFirstInsertionPt(), DT, LI); 966 BasicBlock *SeqStartBB = 967 SplitBlock(ParentBB, SeqStartI, DT, LI, nullptr, "seq.par.merged"); 968 969 assert(ParentBB->getUniqueSuccessor() == SeqStartBB && 970 "Expected a different CFG"); 971 const DebugLoc DL = ParentBB->getTerminator()->getDebugLoc(); 972 ParentBB->getTerminator()->eraseFromParent(); 973 974 auto BodyGenCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, 975 BasicBlock &ContinuationIP) { 976 BasicBlock *CGStartBB = CodeGenIP.getBlock(); 977 BasicBlock *CGEndBB = 978 SplitBlock(CGStartBB, &*CodeGenIP.getPoint(), DT, LI); 979 assert(SeqStartBB != nullptr && "SeqStartBB should not be null"); 980 CGStartBB->getTerminator()->setSuccessor(0, SeqStartBB); 981 assert(SeqEndBB != nullptr && "SeqEndBB should not be null"); 982 SeqEndBB->getTerminator()->setSuccessor(0, CGEndBB); 983 }; 984 auto FiniCB = [&](InsertPointTy CodeGenIP) {}; 985 986 // Find outputs from the sequential region to outside users and 987 // broadcast their values to them. 988 for (Instruction &I : *SeqStartBB) { 989 SmallPtrSet<Instruction *, 4> OutsideUsers; 990 for (User *Usr : I.users()) { 991 Instruction &UsrI = *cast<Instruction>(Usr); 992 // Ignore outputs to LT intrinsics, code extraction for the merged 993 // parallel region will fix them. 994 if (UsrI.isLifetimeStartOrEnd()) 995 continue; 996 997 if (UsrI.getParent() != SeqStartBB) 998 OutsideUsers.insert(&UsrI); 999 } 1000 1001 if (OutsideUsers.empty()) 1002 continue; 1003 1004 // Emit an alloca in the outer region to store the broadcasted 1005 // value. 1006 const DataLayout &DL = M.getDataLayout(); 1007 AllocaInst *AllocaI = new AllocaInst( 1008 I.getType(), DL.getAllocaAddrSpace(), nullptr, 1009 I.getName() + ".seq.output.alloc", &OuterFn->front().front()); 1010 1011 // Emit a store instruction in the sequential BB to update the 1012 // value. 1013 new StoreInst(&I, AllocaI, SeqStartBB->getTerminator()); 1014 1015 // Emit a load instruction and replace the use of the output value 1016 // with it. 1017 for (Instruction *UsrI : OutsideUsers) { 1018 LoadInst *LoadI = new LoadInst( 1019 I.getType(), AllocaI, I.getName() + ".seq.output.load", UsrI); 1020 UsrI->replaceUsesOfWith(&I, LoadI); 1021 } 1022 } 1023 1024 OpenMPIRBuilder::LocationDescription Loc( 1025 InsertPointTy(ParentBB, ParentBB->end()), DL); 1026 InsertPointTy SeqAfterIP = 1027 OMPInfoCache.OMPBuilder.createMaster(Loc, BodyGenCB, FiniCB); 1028 1029 OMPInfoCache.OMPBuilder.createBarrier(SeqAfterIP, OMPD_parallel); 1030 1031 BranchInst::Create(SeqAfterBB, SeqAfterIP.getBlock()); 1032 1033 LLVM_DEBUG(dbgs() << TAG << "After sequential inlining " << *OuterFn 1034 << "\n"); 1035 }; 1036 1037 // Helper to merge the __kmpc_fork_call calls in MergableCIs. They are all 1038 // contained in BB and only separated by instructions that can be 1039 // redundantly executed in parallel. The block BB is split before the first 1040 // call (in MergableCIs) and after the last so the entire region we merge 1041 // into a single parallel region is contained in a single basic block 1042 // without any other instructions. We use the OpenMPIRBuilder to outline 1043 // that block and call the resulting function via __kmpc_fork_call. 1044 auto Merge = [&](const SmallVectorImpl<CallInst *> &MergableCIs, 1045 BasicBlock *BB) { 1046 // TODO: Change the interface to allow single CIs expanded, e.g, to 1047 // include an outer loop. 1048 assert(MergableCIs.size() > 1 && "Assumed multiple mergable CIs"); 1049 1050 auto Remark = [&](OptimizationRemark OR) { 1051 OR << "Parallel region merged with parallel region" 1052 << (MergableCIs.size() > 2 ? "s" : "") << " at "; 1053 for (auto *CI : llvm::drop_begin(MergableCIs)) { 1054 OR << ore::NV("OpenMPParallelMerge", CI->getDebugLoc()); 1055 if (CI != MergableCIs.back()) 1056 OR << ", "; 1057 } 1058 return OR << "."; 1059 }; 1060 1061 emitRemark<OptimizationRemark>(MergableCIs.front(), "OMP150", Remark); 1062 1063 Function *OriginalFn = BB->getParent(); 1064 LLVM_DEBUG(dbgs() << TAG << "Merge " << MergableCIs.size() 1065 << " parallel regions in " << OriginalFn->getName() 1066 << "\n"); 1067 1068 // Isolate the calls to merge in a separate block. 1069 EndBB = SplitBlock(BB, MergableCIs.back()->getNextNode(), DT, LI); 1070 BasicBlock *AfterBB = 1071 SplitBlock(EndBB, &*EndBB->getFirstInsertionPt(), DT, LI); 1072 StartBB = SplitBlock(BB, MergableCIs.front(), DT, LI, nullptr, 1073 "omp.par.merged"); 1074 1075 assert(BB->getUniqueSuccessor() == StartBB && "Expected a different CFG"); 1076 const DebugLoc DL = BB->getTerminator()->getDebugLoc(); 1077 BB->getTerminator()->eraseFromParent(); 1078 1079 // Create sequential regions for sequential instructions that are 1080 // in-between mergable parallel regions. 1081 for (auto *It = MergableCIs.begin(), *End = MergableCIs.end() - 1; 1082 It != End; ++It) { 1083 Instruction *ForkCI = *It; 1084 Instruction *NextForkCI = *(It + 1); 1085 1086 // Continue if there are not in-between instructions. 1087 if (ForkCI->getNextNode() == NextForkCI) 1088 continue; 1089 1090 CreateSequentialRegion(OriginalFn, BB, ForkCI->getNextNode(), 1091 NextForkCI->getPrevNode()); 1092 } 1093 1094 OpenMPIRBuilder::LocationDescription Loc(InsertPointTy(BB, BB->end()), 1095 DL); 1096 IRBuilder<>::InsertPoint AllocaIP( 1097 &OriginalFn->getEntryBlock(), 1098 OriginalFn->getEntryBlock().getFirstInsertionPt()); 1099 // Create the merged parallel region with default proc binding, to 1100 // avoid overriding binding settings, and without explicit cancellation. 1101 InsertPointTy AfterIP = OMPInfoCache.OMPBuilder.createParallel( 1102 Loc, AllocaIP, BodyGenCB, PrivCB, FiniCB, nullptr, nullptr, 1103 OMP_PROC_BIND_default, /* IsCancellable */ false); 1104 BranchInst::Create(AfterBB, AfterIP.getBlock()); 1105 1106 // Perform the actual outlining. 1107 OMPInfoCache.OMPBuilder.finalize(OriginalFn); 1108 1109 Function *OutlinedFn = MergableCIs.front()->getCaller(); 1110 1111 // Replace the __kmpc_fork_call calls with direct calls to the outlined 1112 // callbacks. 1113 SmallVector<Value *, 8> Args; 1114 for (auto *CI : MergableCIs) { 1115 Value *Callee = 1116 CI->getArgOperand(CallbackCalleeOperand)->stripPointerCasts(); 1117 FunctionType *FT = 1118 cast<FunctionType>(Callee->getType()->getPointerElementType()); 1119 Args.clear(); 1120 Args.push_back(OutlinedFn->getArg(0)); 1121 Args.push_back(OutlinedFn->getArg(1)); 1122 for (unsigned U = CallbackFirstArgOperand, E = CI->arg_size(); U < E; 1123 ++U) 1124 Args.push_back(CI->getArgOperand(U)); 1125 1126 CallInst *NewCI = CallInst::Create(FT, Callee, Args, "", CI); 1127 if (CI->getDebugLoc()) 1128 NewCI->setDebugLoc(CI->getDebugLoc()); 1129 1130 // Forward parameter attributes from the callback to the callee. 1131 for (unsigned U = CallbackFirstArgOperand, E = CI->arg_size(); U < E; 1132 ++U) 1133 for (const Attribute &A : CI->getAttributes().getParamAttrs(U)) 1134 NewCI->addParamAttr( 1135 U - (CallbackFirstArgOperand - CallbackCalleeOperand), A); 1136 1137 // Emit an explicit barrier to replace the implicit fork-join barrier. 1138 if (CI != MergableCIs.back()) { 1139 // TODO: Remove barrier if the merged parallel region includes the 1140 // 'nowait' clause. 1141 OMPInfoCache.OMPBuilder.createBarrier( 1142 InsertPointTy(NewCI->getParent(), 1143 NewCI->getNextNode()->getIterator()), 1144 OMPD_parallel); 1145 } 1146 1147 CI->eraseFromParent(); 1148 } 1149 1150 assert(OutlinedFn != OriginalFn && "Outlining failed"); 1151 CGUpdater.registerOutlinedFunction(*OriginalFn, *OutlinedFn); 1152 CGUpdater.reanalyzeFunction(*OriginalFn); 1153 1154 NumOpenMPParallelRegionsMerged += MergableCIs.size(); 1155 1156 return true; 1157 }; 1158 1159 // Helper function that identifes sequences of 1160 // __kmpc_fork_call uses in a basic block. 1161 auto DetectPRsCB = [&](Use &U, Function &F) { 1162 CallInst *CI = getCallIfRegularCall(U, &RFI); 1163 BB2PRMap[CI->getParent()].insert(CI); 1164 1165 return false; 1166 }; 1167 1168 BB2PRMap.clear(); 1169 RFI.foreachUse(SCC, DetectPRsCB); 1170 SmallVector<SmallVector<CallInst *, 4>, 4> MergableCIsVector; 1171 // Find mergable parallel regions within a basic block that are 1172 // safe to merge, that is any in-between instructions can safely 1173 // execute in parallel after merging. 1174 // TODO: support merging across basic-blocks. 1175 for (auto &It : BB2PRMap) { 1176 auto &CIs = It.getSecond(); 1177 if (CIs.size() < 2) 1178 continue; 1179 1180 BasicBlock *BB = It.getFirst(); 1181 SmallVector<CallInst *, 4> MergableCIs; 1182 1183 /// Returns true if the instruction is mergable, false otherwise. 1184 /// A terminator instruction is unmergable by definition since merging 1185 /// works within a BB. Instructions before the mergable region are 1186 /// mergable if they are not calls to OpenMP runtime functions that may 1187 /// set different execution parameters for subsequent parallel regions. 1188 /// Instructions in-between parallel regions are mergable if they are not 1189 /// calls to any non-intrinsic function since that may call a non-mergable 1190 /// OpenMP runtime function. 1191 auto IsMergable = [&](Instruction &I, bool IsBeforeMergableRegion) { 1192 // We do not merge across BBs, hence return false (unmergable) if the 1193 // instruction is a terminator. 1194 if (I.isTerminator()) 1195 return false; 1196 1197 if (!isa<CallInst>(&I)) 1198 return true; 1199 1200 CallInst *CI = cast<CallInst>(&I); 1201 if (IsBeforeMergableRegion) { 1202 Function *CalledFunction = CI->getCalledFunction(); 1203 if (!CalledFunction) 1204 return false; 1205 // Return false (unmergable) if the call before the parallel 1206 // region calls an explicit affinity (proc_bind) or number of 1207 // threads (num_threads) compiler-generated function. Those settings 1208 // may be incompatible with following parallel regions. 1209 // TODO: ICV tracking to detect compatibility. 1210 for (const auto &RFI : UnmergableCallsInfo) { 1211 if (CalledFunction == RFI.Declaration) 1212 return false; 1213 } 1214 } else { 1215 // Return false (unmergable) if there is a call instruction 1216 // in-between parallel regions when it is not an intrinsic. It 1217 // may call an unmergable OpenMP runtime function in its callpath. 1218 // TODO: Keep track of possible OpenMP calls in the callpath. 1219 if (!isa<IntrinsicInst>(CI)) 1220 return false; 1221 } 1222 1223 return true; 1224 }; 1225 // Find maximal number of parallel region CIs that are safe to merge. 1226 for (auto It = BB->begin(), End = BB->end(); It != End;) { 1227 Instruction &I = *It; 1228 ++It; 1229 1230 if (CIs.count(&I)) { 1231 MergableCIs.push_back(cast<CallInst>(&I)); 1232 continue; 1233 } 1234 1235 // Continue expanding if the instruction is mergable. 1236 if (IsMergable(I, MergableCIs.empty())) 1237 continue; 1238 1239 // Forward the instruction iterator to skip the next parallel region 1240 // since there is an unmergable instruction which can affect it. 1241 for (; It != End; ++It) { 1242 Instruction &SkipI = *It; 1243 if (CIs.count(&SkipI)) { 1244 LLVM_DEBUG(dbgs() << TAG << "Skip parallel region " << SkipI 1245 << " due to " << I << "\n"); 1246 ++It; 1247 break; 1248 } 1249 } 1250 1251 // Store mergable regions found. 1252 if (MergableCIs.size() > 1) { 1253 MergableCIsVector.push_back(MergableCIs); 1254 LLVM_DEBUG(dbgs() << TAG << "Found " << MergableCIs.size() 1255 << " parallel regions in block " << BB->getName() 1256 << " of function " << BB->getParent()->getName() 1257 << "\n";); 1258 } 1259 1260 MergableCIs.clear(); 1261 } 1262 1263 if (!MergableCIsVector.empty()) { 1264 Changed = true; 1265 1266 for (auto &MergableCIs : MergableCIsVector) 1267 Merge(MergableCIs, BB); 1268 MergableCIsVector.clear(); 1269 } 1270 } 1271 1272 if (Changed) { 1273 /// Re-collect use for fork calls, emitted barrier calls, and 1274 /// any emitted master/end_master calls. 1275 OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_fork_call); 1276 OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_barrier); 1277 OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_master); 1278 OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_end_master); 1279 } 1280 1281 return Changed; 1282 } 1283 1284 /// Try to delete parallel regions if possible. 1285 bool deleteParallelRegions() { 1286 const unsigned CallbackCalleeOperand = 2; 1287 1288 OMPInformationCache::RuntimeFunctionInfo &RFI = 1289 OMPInfoCache.RFIs[OMPRTL___kmpc_fork_call]; 1290 1291 if (!RFI.Declaration) 1292 return false; 1293 1294 bool Changed = false; 1295 auto DeleteCallCB = [&](Use &U, Function &) { 1296 CallInst *CI = getCallIfRegularCall(U); 1297 if (!CI) 1298 return false; 1299 auto *Fn = dyn_cast<Function>( 1300 CI->getArgOperand(CallbackCalleeOperand)->stripPointerCasts()); 1301 if (!Fn) 1302 return false; 1303 if (!Fn->onlyReadsMemory()) 1304 return false; 1305 if (!Fn->hasFnAttribute(Attribute::WillReturn)) 1306 return false; 1307 1308 LLVM_DEBUG(dbgs() << TAG << "Delete read-only parallel region in " 1309 << CI->getCaller()->getName() << "\n"); 1310 1311 auto Remark = [&](OptimizationRemark OR) { 1312 return OR << "Removing parallel region with no side-effects."; 1313 }; 1314 emitRemark<OptimizationRemark>(CI, "OMP160", Remark); 1315 1316 CGUpdater.removeCallSite(*CI); 1317 CI->eraseFromParent(); 1318 Changed = true; 1319 ++NumOpenMPParallelRegionsDeleted; 1320 return true; 1321 }; 1322 1323 RFI.foreachUse(SCC, DeleteCallCB); 1324 1325 return Changed; 1326 } 1327 1328 /// Try to eliminate runtime calls by reusing existing ones. 1329 bool deduplicateRuntimeCalls() { 1330 bool Changed = false; 1331 1332 RuntimeFunction DeduplicableRuntimeCallIDs[] = { 1333 OMPRTL_omp_get_num_threads, 1334 OMPRTL_omp_in_parallel, 1335 OMPRTL_omp_get_cancellation, 1336 OMPRTL_omp_get_thread_limit, 1337 OMPRTL_omp_get_supported_active_levels, 1338 OMPRTL_omp_get_level, 1339 OMPRTL_omp_get_ancestor_thread_num, 1340 OMPRTL_omp_get_team_size, 1341 OMPRTL_omp_get_active_level, 1342 OMPRTL_omp_in_final, 1343 OMPRTL_omp_get_proc_bind, 1344 OMPRTL_omp_get_num_places, 1345 OMPRTL_omp_get_num_procs, 1346 OMPRTL_omp_get_place_num, 1347 OMPRTL_omp_get_partition_num_places, 1348 OMPRTL_omp_get_partition_place_nums}; 1349 1350 // Global-tid is handled separately. 1351 SmallSetVector<Value *, 16> GTIdArgs; 1352 collectGlobalThreadIdArguments(GTIdArgs); 1353 LLVM_DEBUG(dbgs() << TAG << "Found " << GTIdArgs.size() 1354 << " global thread ID arguments\n"); 1355 1356 for (Function *F : SCC) { 1357 for (auto DeduplicableRuntimeCallID : DeduplicableRuntimeCallIDs) 1358 Changed |= deduplicateRuntimeCalls( 1359 *F, OMPInfoCache.RFIs[DeduplicableRuntimeCallID]); 1360 1361 // __kmpc_global_thread_num is special as we can replace it with an 1362 // argument in enough cases to make it worth trying. 1363 Value *GTIdArg = nullptr; 1364 for (Argument &Arg : F->args()) 1365 if (GTIdArgs.count(&Arg)) { 1366 GTIdArg = &Arg; 1367 break; 1368 } 1369 Changed |= deduplicateRuntimeCalls( 1370 *F, OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num], GTIdArg); 1371 } 1372 1373 return Changed; 1374 } 1375 1376 /// Tries to hide the latency of runtime calls that involve host to 1377 /// device memory transfers by splitting them into their "issue" and "wait" 1378 /// versions. The "issue" is moved upwards as much as possible. The "wait" is 1379 /// moved downards as much as possible. The "issue" issues the memory transfer 1380 /// asynchronously, returning a handle. The "wait" waits in the returned 1381 /// handle for the memory transfer to finish. 1382 bool hideMemTransfersLatency() { 1383 auto &RFI = OMPInfoCache.RFIs[OMPRTL___tgt_target_data_begin_mapper]; 1384 bool Changed = false; 1385 auto SplitMemTransfers = [&](Use &U, Function &Decl) { 1386 auto *RTCall = getCallIfRegularCall(U, &RFI); 1387 if (!RTCall) 1388 return false; 1389 1390 OffloadArray OffloadArrays[3]; 1391 if (!getValuesInOffloadArrays(*RTCall, OffloadArrays)) 1392 return false; 1393 1394 LLVM_DEBUG(dumpValuesInOffloadArrays(OffloadArrays)); 1395 1396 // TODO: Check if can be moved upwards. 1397 bool WasSplit = false; 1398 Instruction *WaitMovementPoint = canBeMovedDownwards(*RTCall); 1399 if (WaitMovementPoint) 1400 WasSplit = splitTargetDataBeginRTC(*RTCall, *WaitMovementPoint); 1401 1402 Changed |= WasSplit; 1403 return WasSplit; 1404 }; 1405 RFI.foreachUse(SCC, SplitMemTransfers); 1406 1407 return Changed; 1408 } 1409 1410 /// Eliminates redundant, aligned barriers in OpenMP offloaded kernels. 1411 /// TODO: Make this an AA and expand it to work across blocks and functions. 1412 bool eliminateBarriers() { 1413 bool Changed = false; 1414 1415 if (DisableOpenMPOptBarrierElimination) 1416 return /*Changed=*/false; 1417 1418 if (OMPInfoCache.Kernels.empty()) 1419 return /*Changed=*/false; 1420 1421 enum ImplicitBarrierType { IBT_ENTRY, IBT_EXIT }; 1422 1423 class BarrierInfo { 1424 Instruction *I; 1425 enum ImplicitBarrierType Type; 1426 1427 public: 1428 BarrierInfo(enum ImplicitBarrierType Type) : I(nullptr), Type(Type) {} 1429 BarrierInfo(Instruction &I) : I(&I) {} 1430 1431 bool isImplicit() { return !I; } 1432 1433 bool isImplicitEntry() { return isImplicit() && Type == IBT_ENTRY; } 1434 1435 bool isImplicitExit() { return isImplicit() && Type == IBT_EXIT; } 1436 1437 Instruction *getInstruction() { return I; } 1438 }; 1439 1440 for (Function *Kernel : OMPInfoCache.Kernels) { 1441 for (BasicBlock &BB : *Kernel) { 1442 SmallVector<BarrierInfo, 8> BarriersInBlock; 1443 SmallPtrSet<Instruction *, 8> BarriersToBeDeleted; 1444 1445 // Add the kernel entry implicit barrier. 1446 if (&Kernel->getEntryBlock() == &BB) 1447 BarriersInBlock.push_back(IBT_ENTRY); 1448 1449 // Find implicit and explicit aligned barriers in the same basic block. 1450 for (Instruction &I : BB) { 1451 if (isa<ReturnInst>(I)) { 1452 // Add the implicit barrier when exiting the kernel. 1453 BarriersInBlock.push_back(IBT_EXIT); 1454 continue; 1455 } 1456 CallBase *CB = dyn_cast<CallBase>(&I); 1457 if (!CB) 1458 continue; 1459 1460 auto IsAlignBarrierCB = [&](CallBase &CB) { 1461 switch (CB.getIntrinsicID()) { 1462 case Intrinsic::nvvm_barrier0: 1463 case Intrinsic::nvvm_barrier0_and: 1464 case Intrinsic::nvvm_barrier0_or: 1465 case Intrinsic::nvvm_barrier0_popc: 1466 return true; 1467 default: 1468 break; 1469 } 1470 return hasAssumption(CB, 1471 KnownAssumptionString("ompx_aligned_barrier")); 1472 }; 1473 1474 if (IsAlignBarrierCB(*CB)) { 1475 // Add an explicit aligned barrier. 1476 BarriersInBlock.push_back(I); 1477 } 1478 } 1479 1480 if (BarriersInBlock.size() <= 1) 1481 continue; 1482 1483 // A barrier in a barrier pair is removeable if all instructions 1484 // between the barriers in the pair are side-effect free modulo the 1485 // barrier operation. 1486 auto IsBarrierRemoveable = [&Kernel](BarrierInfo *StartBI, 1487 BarrierInfo *EndBI) { 1488 assert( 1489 !StartBI->isImplicitExit() && 1490 "Expected start barrier to be other than a kernel exit barrier"); 1491 assert( 1492 !EndBI->isImplicitEntry() && 1493 "Expected end barrier to be other than a kernel entry barrier"); 1494 // If StarBI instructions is null then this the implicit 1495 // kernel entry barrier, so iterate from the first instruction in the 1496 // entry block. 1497 Instruction *I = (StartBI->isImplicitEntry()) 1498 ? &Kernel->getEntryBlock().front() 1499 : StartBI->getInstruction()->getNextNode(); 1500 assert(I && "Expected non-null start instruction"); 1501 Instruction *E = (EndBI->isImplicitExit()) 1502 ? I->getParent()->getTerminator() 1503 : EndBI->getInstruction(); 1504 assert(E && "Expected non-null end instruction"); 1505 1506 for (; I != E; I = I->getNextNode()) { 1507 if (!I->mayHaveSideEffects() && !I->mayReadFromMemory()) 1508 continue; 1509 1510 auto IsPotentiallyAffectedByBarrier = 1511 [](Optional<MemoryLocation> Loc) { 1512 const Value *Obj = (Loc && Loc->Ptr) 1513 ? getUnderlyingObject(Loc->Ptr) 1514 : nullptr; 1515 if (!Obj) { 1516 LLVM_DEBUG( 1517 dbgs() 1518 << "Access to unknown location requires barriers\n"); 1519 return true; 1520 } 1521 if (isa<UndefValue>(Obj)) 1522 return false; 1523 if (isa<AllocaInst>(Obj)) 1524 return false; 1525 if (auto *GV = dyn_cast<GlobalVariable>(Obj)) { 1526 if (GV->isConstant()) 1527 return false; 1528 if (GV->isThreadLocal()) 1529 return false; 1530 if (GV->getAddressSpace() == (int)AddressSpace::Local) 1531 return false; 1532 if (GV->getAddressSpace() == (int)AddressSpace::Constant) 1533 return false; 1534 } 1535 LLVM_DEBUG(dbgs() << "Access to '" << *Obj 1536 << "' requires barriers\n"); 1537 return true; 1538 }; 1539 1540 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) { 1541 Optional<MemoryLocation> Loc = MemoryLocation::getForDest(MI); 1542 if (IsPotentiallyAffectedByBarrier(Loc)) 1543 return false; 1544 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(I)) { 1545 Optional<MemoryLocation> Loc = 1546 MemoryLocation::getForSource(MTI); 1547 if (IsPotentiallyAffectedByBarrier(Loc)) 1548 return false; 1549 } 1550 continue; 1551 } 1552 1553 if (auto *LI = dyn_cast<LoadInst>(I)) 1554 if (LI->hasMetadata(LLVMContext::MD_invariant_load)) 1555 continue; 1556 1557 Optional<MemoryLocation> Loc = MemoryLocation::getOrNone(I); 1558 if (IsPotentiallyAffectedByBarrier(Loc)) 1559 return false; 1560 } 1561 1562 return true; 1563 }; 1564 1565 // Iterate barrier pairs and remove an explicit barrier if analysis 1566 // deems it removeable. 1567 for (auto *It = BarriersInBlock.begin(), 1568 *End = BarriersInBlock.end() - 1; 1569 It != End; ++It) { 1570 1571 BarrierInfo *StartBI = It; 1572 BarrierInfo *EndBI = (It + 1); 1573 1574 // Cannot remove when both are implicit barriers, continue. 1575 if (StartBI->isImplicit() && EndBI->isImplicit()) 1576 continue; 1577 1578 if (!IsBarrierRemoveable(StartBI, EndBI)) 1579 continue; 1580 1581 assert(!(StartBI->isImplicit() && EndBI->isImplicit()) && 1582 "Expected at least one explicit barrier to remove."); 1583 1584 // Remove an explicit barrier, check first, then second. 1585 if (!StartBI->isImplicit()) { 1586 LLVM_DEBUG(dbgs() << "Remove start barrier " 1587 << *StartBI->getInstruction() << "\n"); 1588 BarriersToBeDeleted.insert(StartBI->getInstruction()); 1589 } else { 1590 LLVM_DEBUG(dbgs() << "Remove end barrier " 1591 << *EndBI->getInstruction() << "\n"); 1592 BarriersToBeDeleted.insert(EndBI->getInstruction()); 1593 } 1594 } 1595 1596 if (BarriersToBeDeleted.empty()) 1597 continue; 1598 1599 Changed = true; 1600 for (Instruction *I : BarriersToBeDeleted) { 1601 ++NumBarriersEliminated; 1602 auto Remark = [&](OptimizationRemark OR) { 1603 return OR << "Redundant barrier eliminated."; 1604 }; 1605 1606 if (EnableVerboseRemarks) 1607 emitRemark<OptimizationRemark>(I, "OMP190", Remark); 1608 I->eraseFromParent(); 1609 } 1610 } 1611 } 1612 1613 return Changed; 1614 } 1615 1616 void analysisGlobalization() { 1617 auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared]; 1618 1619 auto CheckGlobalization = [&](Use &U, Function &Decl) { 1620 if (CallInst *CI = getCallIfRegularCall(U, &RFI)) { 1621 auto Remark = [&](OptimizationRemarkMissed ORM) { 1622 return ORM 1623 << "Found thread data sharing on the GPU. " 1624 << "Expect degraded performance due to data globalization."; 1625 }; 1626 emitRemark<OptimizationRemarkMissed>(CI, "OMP112", Remark); 1627 } 1628 1629 return false; 1630 }; 1631 1632 RFI.foreachUse(SCC, CheckGlobalization); 1633 } 1634 1635 /// Maps the values stored in the offload arrays passed as arguments to 1636 /// \p RuntimeCall into the offload arrays in \p OAs. 1637 bool getValuesInOffloadArrays(CallInst &RuntimeCall, 1638 MutableArrayRef<OffloadArray> OAs) { 1639 assert(OAs.size() == 3 && "Need space for three offload arrays!"); 1640 1641 // A runtime call that involves memory offloading looks something like: 1642 // call void @__tgt_target_data_begin_mapper(arg0, arg1, 1643 // i8** %offload_baseptrs, i8** %offload_ptrs, i64* %offload_sizes, 1644 // ...) 1645 // So, the idea is to access the allocas that allocate space for these 1646 // offload arrays, offload_baseptrs, offload_ptrs, offload_sizes. 1647 // Therefore: 1648 // i8** %offload_baseptrs. 1649 Value *BasePtrsArg = 1650 RuntimeCall.getArgOperand(OffloadArray::BasePtrsArgNum); 1651 // i8** %offload_ptrs. 1652 Value *PtrsArg = RuntimeCall.getArgOperand(OffloadArray::PtrsArgNum); 1653 // i8** %offload_sizes. 1654 Value *SizesArg = RuntimeCall.getArgOperand(OffloadArray::SizesArgNum); 1655 1656 // Get values stored in **offload_baseptrs. 1657 auto *V = getUnderlyingObject(BasePtrsArg); 1658 if (!isa<AllocaInst>(V)) 1659 return false; 1660 auto *BasePtrsArray = cast<AllocaInst>(V); 1661 if (!OAs[0].initialize(*BasePtrsArray, RuntimeCall)) 1662 return false; 1663 1664 // Get values stored in **offload_baseptrs. 1665 V = getUnderlyingObject(PtrsArg); 1666 if (!isa<AllocaInst>(V)) 1667 return false; 1668 auto *PtrsArray = cast<AllocaInst>(V); 1669 if (!OAs[1].initialize(*PtrsArray, RuntimeCall)) 1670 return false; 1671 1672 // Get values stored in **offload_sizes. 1673 V = getUnderlyingObject(SizesArg); 1674 // If it's a [constant] global array don't analyze it. 1675 if (isa<GlobalValue>(V)) 1676 return isa<Constant>(V); 1677 if (!isa<AllocaInst>(V)) 1678 return false; 1679 1680 auto *SizesArray = cast<AllocaInst>(V); 1681 if (!OAs[2].initialize(*SizesArray, RuntimeCall)) 1682 return false; 1683 1684 return true; 1685 } 1686 1687 /// Prints the values in the OffloadArrays \p OAs using LLVM_DEBUG. 1688 /// For now this is a way to test that the function getValuesInOffloadArrays 1689 /// is working properly. 1690 /// TODO: Move this to a unittest when unittests are available for OpenMPOpt. 1691 void dumpValuesInOffloadArrays(ArrayRef<OffloadArray> OAs) { 1692 assert(OAs.size() == 3 && "There are three offload arrays to debug!"); 1693 1694 LLVM_DEBUG(dbgs() << TAG << " Successfully got offload values:\n"); 1695 std::string ValuesStr; 1696 raw_string_ostream Printer(ValuesStr); 1697 std::string Separator = " --- "; 1698 1699 for (auto *BP : OAs[0].StoredValues) { 1700 BP->print(Printer); 1701 Printer << Separator; 1702 } 1703 LLVM_DEBUG(dbgs() << "\t\toffload_baseptrs: " << Printer.str() << "\n"); 1704 ValuesStr.clear(); 1705 1706 for (auto *P : OAs[1].StoredValues) { 1707 P->print(Printer); 1708 Printer << Separator; 1709 } 1710 LLVM_DEBUG(dbgs() << "\t\toffload_ptrs: " << Printer.str() << "\n"); 1711 ValuesStr.clear(); 1712 1713 for (auto *S : OAs[2].StoredValues) { 1714 S->print(Printer); 1715 Printer << Separator; 1716 } 1717 LLVM_DEBUG(dbgs() << "\t\toffload_sizes: " << Printer.str() << "\n"); 1718 } 1719 1720 /// Returns the instruction where the "wait" counterpart \p RuntimeCall can be 1721 /// moved. Returns nullptr if the movement is not possible, or not worth it. 1722 Instruction *canBeMovedDownwards(CallInst &RuntimeCall) { 1723 // FIXME: This traverses only the BasicBlock where RuntimeCall is. 1724 // Make it traverse the CFG. 1725 1726 Instruction *CurrentI = &RuntimeCall; 1727 bool IsWorthIt = false; 1728 while ((CurrentI = CurrentI->getNextNode())) { 1729 1730 // TODO: Once we detect the regions to be offloaded we should use the 1731 // alias analysis manager to check if CurrentI may modify one of 1732 // the offloaded regions. 1733 if (CurrentI->mayHaveSideEffects() || CurrentI->mayReadFromMemory()) { 1734 if (IsWorthIt) 1735 return CurrentI; 1736 1737 return nullptr; 1738 } 1739 1740 // FIXME: For now if we move it over anything without side effect 1741 // is worth it. 1742 IsWorthIt = true; 1743 } 1744 1745 // Return end of BasicBlock. 1746 return RuntimeCall.getParent()->getTerminator(); 1747 } 1748 1749 /// Splits \p RuntimeCall into its "issue" and "wait" counterparts. 1750 bool splitTargetDataBeginRTC(CallInst &RuntimeCall, 1751 Instruction &WaitMovementPoint) { 1752 // Create stack allocated handle (__tgt_async_info) at the beginning of the 1753 // function. Used for storing information of the async transfer, allowing to 1754 // wait on it later. 1755 auto &IRBuilder = OMPInfoCache.OMPBuilder; 1756 auto *F = RuntimeCall.getCaller(); 1757 Instruction *FirstInst = &(F->getEntryBlock().front()); 1758 AllocaInst *Handle = new AllocaInst( 1759 IRBuilder.AsyncInfo, F->getAddressSpace(), "handle", FirstInst); 1760 1761 // Add "issue" runtime call declaration: 1762 // declare %struct.tgt_async_info @__tgt_target_data_begin_issue(i64, i32, 1763 // i8**, i8**, i64*, i64*) 1764 FunctionCallee IssueDecl = IRBuilder.getOrCreateRuntimeFunction( 1765 M, OMPRTL___tgt_target_data_begin_mapper_issue); 1766 1767 // Change RuntimeCall call site for its asynchronous version. 1768 SmallVector<Value *, 16> Args; 1769 for (auto &Arg : RuntimeCall.args()) 1770 Args.push_back(Arg.get()); 1771 Args.push_back(Handle); 1772 1773 CallInst *IssueCallsite = 1774 CallInst::Create(IssueDecl, Args, /*NameStr=*/"", &RuntimeCall); 1775 OMPInfoCache.setCallingConvention(IssueDecl, IssueCallsite); 1776 RuntimeCall.eraseFromParent(); 1777 1778 // Add "wait" runtime call declaration: 1779 // declare void @__tgt_target_data_begin_wait(i64, %struct.__tgt_async_info) 1780 FunctionCallee WaitDecl = IRBuilder.getOrCreateRuntimeFunction( 1781 M, OMPRTL___tgt_target_data_begin_mapper_wait); 1782 1783 Value *WaitParams[2] = { 1784 IssueCallsite->getArgOperand( 1785 OffloadArray::DeviceIDArgNum), // device_id. 1786 Handle // handle to wait on. 1787 }; 1788 CallInst *WaitCallsite = CallInst::Create( 1789 WaitDecl, WaitParams, /*NameStr=*/"", &WaitMovementPoint); 1790 OMPInfoCache.setCallingConvention(WaitDecl, WaitCallsite); 1791 1792 return true; 1793 } 1794 1795 static Value *combinedIdentStruct(Value *CurrentIdent, Value *NextIdent, 1796 bool GlobalOnly, bool &SingleChoice) { 1797 if (CurrentIdent == NextIdent) 1798 return CurrentIdent; 1799 1800 // TODO: Figure out how to actually combine multiple debug locations. For 1801 // now we just keep an existing one if there is a single choice. 1802 if (!GlobalOnly || isa<GlobalValue>(NextIdent)) { 1803 SingleChoice = !CurrentIdent; 1804 return NextIdent; 1805 } 1806 return nullptr; 1807 } 1808 1809 /// Return an `struct ident_t*` value that represents the ones used in the 1810 /// calls of \p RFI inside of \p F. If \p GlobalOnly is true, we will not 1811 /// return a local `struct ident_t*`. For now, if we cannot find a suitable 1812 /// return value we create one from scratch. We also do not yet combine 1813 /// information, e.g., the source locations, see combinedIdentStruct. 1814 Value * 1815 getCombinedIdentFromCallUsesIn(OMPInformationCache::RuntimeFunctionInfo &RFI, 1816 Function &F, bool GlobalOnly) { 1817 bool SingleChoice = true; 1818 Value *Ident = nullptr; 1819 auto CombineIdentStruct = [&](Use &U, Function &Caller) { 1820 CallInst *CI = getCallIfRegularCall(U, &RFI); 1821 if (!CI || &F != &Caller) 1822 return false; 1823 Ident = combinedIdentStruct(Ident, CI->getArgOperand(0), 1824 /* GlobalOnly */ true, SingleChoice); 1825 return false; 1826 }; 1827 RFI.foreachUse(SCC, CombineIdentStruct); 1828 1829 if (!Ident || !SingleChoice) { 1830 // The IRBuilder uses the insertion block to get to the module, this is 1831 // unfortunate but we work around it for now. 1832 if (!OMPInfoCache.OMPBuilder.getInsertionPoint().getBlock()) 1833 OMPInfoCache.OMPBuilder.updateToLocation(OpenMPIRBuilder::InsertPointTy( 1834 &F.getEntryBlock(), F.getEntryBlock().begin())); 1835 // Create a fallback location if non was found. 1836 // TODO: Use the debug locations of the calls instead. 1837 uint32_t SrcLocStrSize; 1838 Constant *Loc = 1839 OMPInfoCache.OMPBuilder.getOrCreateDefaultSrcLocStr(SrcLocStrSize); 1840 Ident = OMPInfoCache.OMPBuilder.getOrCreateIdent(Loc, SrcLocStrSize); 1841 } 1842 return Ident; 1843 } 1844 1845 /// Try to eliminate calls of \p RFI in \p F by reusing an existing one or 1846 /// \p ReplVal if given. 1847 bool deduplicateRuntimeCalls(Function &F, 1848 OMPInformationCache::RuntimeFunctionInfo &RFI, 1849 Value *ReplVal = nullptr) { 1850 auto *UV = RFI.getUseVector(F); 1851 if (!UV || UV->size() + (ReplVal != nullptr) < 2) 1852 return false; 1853 1854 LLVM_DEBUG( 1855 dbgs() << TAG << "Deduplicate " << UV->size() << " uses of " << RFI.Name 1856 << (ReplVal ? " with an existing value\n" : "\n") << "\n"); 1857 1858 assert((!ReplVal || (isa<Argument>(ReplVal) && 1859 cast<Argument>(ReplVal)->getParent() == &F)) && 1860 "Unexpected replacement value!"); 1861 1862 // TODO: Use dominance to find a good position instead. 1863 auto CanBeMoved = [this](CallBase &CB) { 1864 unsigned NumArgs = CB.arg_size(); 1865 if (NumArgs == 0) 1866 return true; 1867 if (CB.getArgOperand(0)->getType() != OMPInfoCache.OMPBuilder.IdentPtr) 1868 return false; 1869 for (unsigned U = 1; U < NumArgs; ++U) 1870 if (isa<Instruction>(CB.getArgOperand(U))) 1871 return false; 1872 return true; 1873 }; 1874 1875 if (!ReplVal) { 1876 for (Use *U : *UV) 1877 if (CallInst *CI = getCallIfRegularCall(*U, &RFI)) { 1878 if (!CanBeMoved(*CI)) 1879 continue; 1880 1881 // If the function is a kernel, dedup will move 1882 // the runtime call right after the kernel init callsite. Otherwise, 1883 // it will move it to the beginning of the caller function. 1884 if (isKernel(F)) { 1885 auto &KernelInitRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_target_init]; 1886 auto *KernelInitUV = KernelInitRFI.getUseVector(F); 1887 1888 if (KernelInitUV->empty()) 1889 continue; 1890 1891 assert(KernelInitUV->size() == 1 && 1892 "Expected a single __kmpc_target_init in kernel\n"); 1893 1894 CallInst *KernelInitCI = 1895 getCallIfRegularCall(*KernelInitUV->front(), &KernelInitRFI); 1896 assert(KernelInitCI && 1897 "Expected a call to __kmpc_target_init in kernel\n"); 1898 1899 CI->moveAfter(KernelInitCI); 1900 } else 1901 CI->moveBefore(&*F.getEntryBlock().getFirstInsertionPt()); 1902 ReplVal = CI; 1903 break; 1904 } 1905 if (!ReplVal) 1906 return false; 1907 } 1908 1909 // If we use a call as a replacement value we need to make sure the ident is 1910 // valid at the new location. For now we just pick a global one, either 1911 // existing and used by one of the calls, or created from scratch. 1912 if (CallBase *CI = dyn_cast<CallBase>(ReplVal)) { 1913 if (!CI->arg_empty() && 1914 CI->getArgOperand(0)->getType() == OMPInfoCache.OMPBuilder.IdentPtr) { 1915 Value *Ident = getCombinedIdentFromCallUsesIn(RFI, F, 1916 /* GlobalOnly */ true); 1917 CI->setArgOperand(0, Ident); 1918 } 1919 } 1920 1921 bool Changed = false; 1922 auto ReplaceAndDeleteCB = [&](Use &U, Function &Caller) { 1923 CallInst *CI = getCallIfRegularCall(U, &RFI); 1924 if (!CI || CI == ReplVal || &F != &Caller) 1925 return false; 1926 assert(CI->getCaller() == &F && "Unexpected call!"); 1927 1928 auto Remark = [&](OptimizationRemark OR) { 1929 return OR << "OpenMP runtime call " 1930 << ore::NV("OpenMPOptRuntime", RFI.Name) << " deduplicated."; 1931 }; 1932 if (CI->getDebugLoc()) 1933 emitRemark<OptimizationRemark>(CI, "OMP170", Remark); 1934 else 1935 emitRemark<OptimizationRemark>(&F, "OMP170", Remark); 1936 1937 CGUpdater.removeCallSite(*CI); 1938 CI->replaceAllUsesWith(ReplVal); 1939 CI->eraseFromParent(); 1940 ++NumOpenMPRuntimeCallsDeduplicated; 1941 Changed = true; 1942 return true; 1943 }; 1944 RFI.foreachUse(SCC, ReplaceAndDeleteCB); 1945 1946 return Changed; 1947 } 1948 1949 /// Collect arguments that represent the global thread id in \p GTIdArgs. 1950 void collectGlobalThreadIdArguments(SmallSetVector<Value *, 16> >IdArgs) { 1951 // TODO: Below we basically perform a fixpoint iteration with a pessimistic 1952 // initialization. We could define an AbstractAttribute instead and 1953 // run the Attributor here once it can be run as an SCC pass. 1954 1955 // Helper to check the argument \p ArgNo at all call sites of \p F for 1956 // a GTId. 1957 auto CallArgOpIsGTId = [&](Function &F, unsigned ArgNo, CallInst &RefCI) { 1958 if (!F.hasLocalLinkage()) 1959 return false; 1960 for (Use &U : F.uses()) { 1961 if (CallInst *CI = getCallIfRegularCall(U)) { 1962 Value *ArgOp = CI->getArgOperand(ArgNo); 1963 if (CI == &RefCI || GTIdArgs.count(ArgOp) || 1964 getCallIfRegularCall( 1965 *ArgOp, &OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num])) 1966 continue; 1967 } 1968 return false; 1969 } 1970 return true; 1971 }; 1972 1973 // Helper to identify uses of a GTId as GTId arguments. 1974 auto AddUserArgs = [&](Value >Id) { 1975 for (Use &U : GTId.uses()) 1976 if (CallInst *CI = dyn_cast<CallInst>(U.getUser())) 1977 if (CI->isArgOperand(&U)) 1978 if (Function *Callee = CI->getCalledFunction()) 1979 if (CallArgOpIsGTId(*Callee, U.getOperandNo(), *CI)) 1980 GTIdArgs.insert(Callee->getArg(U.getOperandNo())); 1981 }; 1982 1983 // The argument users of __kmpc_global_thread_num calls are GTIds. 1984 OMPInformationCache::RuntimeFunctionInfo &GlobThreadNumRFI = 1985 OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num]; 1986 1987 GlobThreadNumRFI.foreachUse(SCC, [&](Use &U, Function &F) { 1988 if (CallInst *CI = getCallIfRegularCall(U, &GlobThreadNumRFI)) 1989 AddUserArgs(*CI); 1990 return false; 1991 }); 1992 1993 // Transitively search for more arguments by looking at the users of the 1994 // ones we know already. During the search the GTIdArgs vector is extended 1995 // so we cannot cache the size nor can we use a range based for. 1996 for (unsigned U = 0; U < GTIdArgs.size(); ++U) 1997 AddUserArgs(*GTIdArgs[U]); 1998 } 1999 2000 /// Kernel (=GPU) optimizations and utility functions 2001 /// 2002 ///{{ 2003 2004 /// Check if \p F is a kernel, hence entry point for target offloading. 2005 bool isKernel(Function &F) { return OMPInfoCache.Kernels.count(&F); } 2006 2007 /// Cache to remember the unique kernel for a function. 2008 DenseMap<Function *, Optional<Kernel>> UniqueKernelMap; 2009 2010 /// Find the unique kernel that will execute \p F, if any. 2011 Kernel getUniqueKernelFor(Function &F); 2012 2013 /// Find the unique kernel that will execute \p I, if any. 2014 Kernel getUniqueKernelFor(Instruction &I) { 2015 return getUniqueKernelFor(*I.getFunction()); 2016 } 2017 2018 /// Rewrite the device (=GPU) code state machine create in non-SPMD mode in 2019 /// the cases we can avoid taking the address of a function. 2020 bool rewriteDeviceCodeStateMachine(); 2021 2022 /// 2023 ///}} 2024 2025 /// Emit a remark generically 2026 /// 2027 /// This template function can be used to generically emit a remark. The 2028 /// RemarkKind should be one of the following: 2029 /// - OptimizationRemark to indicate a successful optimization attempt 2030 /// - OptimizationRemarkMissed to report a failed optimization attempt 2031 /// - OptimizationRemarkAnalysis to provide additional information about an 2032 /// optimization attempt 2033 /// 2034 /// The remark is built using a callback function provided by the caller that 2035 /// takes a RemarkKind as input and returns a RemarkKind. 2036 template <typename RemarkKind, typename RemarkCallBack> 2037 void emitRemark(Instruction *I, StringRef RemarkName, 2038 RemarkCallBack &&RemarkCB) const { 2039 Function *F = I->getParent()->getParent(); 2040 auto &ORE = OREGetter(F); 2041 2042 if (RemarkName.startswith("OMP")) 2043 ORE.emit([&]() { 2044 return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, I)) 2045 << " [" << RemarkName << "]"; 2046 }); 2047 else 2048 ORE.emit( 2049 [&]() { return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, I)); }); 2050 } 2051 2052 /// Emit a remark on a function. 2053 template <typename RemarkKind, typename RemarkCallBack> 2054 void emitRemark(Function *F, StringRef RemarkName, 2055 RemarkCallBack &&RemarkCB) const { 2056 auto &ORE = OREGetter(F); 2057 2058 if (RemarkName.startswith("OMP")) 2059 ORE.emit([&]() { 2060 return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, F)) 2061 << " [" << RemarkName << "]"; 2062 }); 2063 else 2064 ORE.emit( 2065 [&]() { return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, F)); }); 2066 } 2067 2068 /// RAII struct to temporarily change an RTL function's linkage to external. 2069 /// This prevents it from being mistakenly removed by other optimizations. 2070 struct ExternalizationRAII { 2071 ExternalizationRAII(OMPInformationCache &OMPInfoCache, 2072 RuntimeFunction RFKind) 2073 : Declaration(OMPInfoCache.RFIs[RFKind].Declaration) { 2074 if (!Declaration) 2075 return; 2076 2077 LinkageType = Declaration->getLinkage(); 2078 Declaration->setLinkage(GlobalValue::ExternalLinkage); 2079 } 2080 2081 ~ExternalizationRAII() { 2082 if (!Declaration) 2083 return; 2084 2085 Declaration->setLinkage(LinkageType); 2086 } 2087 2088 Function *Declaration; 2089 GlobalValue::LinkageTypes LinkageType; 2090 }; 2091 2092 /// The underlying module. 2093 Module &M; 2094 2095 /// The SCC we are operating on. 2096 SmallVectorImpl<Function *> &SCC; 2097 2098 /// Callback to update the call graph, the first argument is a removed call, 2099 /// the second an optional replacement call. 2100 CallGraphUpdater &CGUpdater; 2101 2102 /// Callback to get an OptimizationRemarkEmitter from a Function * 2103 OptimizationRemarkGetter OREGetter; 2104 2105 /// OpenMP-specific information cache. Also Used for Attributor runs. 2106 OMPInformationCache &OMPInfoCache; 2107 2108 /// Attributor instance. 2109 Attributor &A; 2110 2111 /// Helper function to run Attributor on SCC. 2112 bool runAttributor(bool IsModulePass) { 2113 if (SCC.empty()) 2114 return false; 2115 2116 // Temporarily make these function have external linkage so the Attributor 2117 // doesn't remove them when we try to look them up later. 2118 ExternalizationRAII Parallel(OMPInfoCache, OMPRTL___kmpc_kernel_parallel); 2119 ExternalizationRAII EndParallel(OMPInfoCache, 2120 OMPRTL___kmpc_kernel_end_parallel); 2121 ExternalizationRAII BarrierSPMD(OMPInfoCache, 2122 OMPRTL___kmpc_barrier_simple_spmd); 2123 ExternalizationRAII BarrierGeneric(OMPInfoCache, 2124 OMPRTL___kmpc_barrier_simple_generic); 2125 ExternalizationRAII ThreadId(OMPInfoCache, 2126 OMPRTL___kmpc_get_hardware_thread_id_in_block); 2127 ExternalizationRAII NumThreads( 2128 OMPInfoCache, OMPRTL___kmpc_get_hardware_num_threads_in_block); 2129 ExternalizationRAII WarpSize(OMPInfoCache, OMPRTL___kmpc_get_warp_size); 2130 2131 registerAAs(IsModulePass); 2132 2133 ChangeStatus Changed = A.run(); 2134 2135 LLVM_DEBUG(dbgs() << "[Attributor] Done with " << SCC.size() 2136 << " functions, result: " << Changed << ".\n"); 2137 2138 return Changed == ChangeStatus::CHANGED; 2139 } 2140 2141 void registerFoldRuntimeCall(RuntimeFunction RF); 2142 2143 /// Populate the Attributor with abstract attribute opportunities in the 2144 /// function. 2145 void registerAAs(bool IsModulePass); 2146 }; 2147 2148 Kernel OpenMPOpt::getUniqueKernelFor(Function &F) { 2149 if (!OMPInfoCache.ModuleSlice.count(&F)) 2150 return nullptr; 2151 2152 // Use a scope to keep the lifetime of the CachedKernel short. 2153 { 2154 Optional<Kernel> &CachedKernel = UniqueKernelMap[&F]; 2155 if (CachedKernel) 2156 return *CachedKernel; 2157 2158 // TODO: We should use an AA to create an (optimistic and callback 2159 // call-aware) call graph. For now we stick to simple patterns that 2160 // are less powerful, basically the worst fixpoint. 2161 if (isKernel(F)) { 2162 CachedKernel = Kernel(&F); 2163 return *CachedKernel; 2164 } 2165 2166 CachedKernel = nullptr; 2167 if (!F.hasLocalLinkage()) { 2168 2169 // See https://openmp.llvm.org/remarks/OptimizationRemarks.html 2170 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 2171 return ORA << "Potentially unknown OpenMP target region caller."; 2172 }; 2173 emitRemark<OptimizationRemarkAnalysis>(&F, "OMP100", Remark); 2174 2175 return nullptr; 2176 } 2177 } 2178 2179 auto GetUniqueKernelForUse = [&](const Use &U) -> Kernel { 2180 if (auto *Cmp = dyn_cast<ICmpInst>(U.getUser())) { 2181 // Allow use in equality comparisons. 2182 if (Cmp->isEquality()) 2183 return getUniqueKernelFor(*Cmp); 2184 return nullptr; 2185 } 2186 if (auto *CB = dyn_cast<CallBase>(U.getUser())) { 2187 // Allow direct calls. 2188 if (CB->isCallee(&U)) 2189 return getUniqueKernelFor(*CB); 2190 2191 OMPInformationCache::RuntimeFunctionInfo &KernelParallelRFI = 2192 OMPInfoCache.RFIs[OMPRTL___kmpc_parallel_51]; 2193 // Allow the use in __kmpc_parallel_51 calls. 2194 if (OpenMPOpt::getCallIfRegularCall(*U.getUser(), &KernelParallelRFI)) 2195 return getUniqueKernelFor(*CB); 2196 return nullptr; 2197 } 2198 // Disallow every other use. 2199 return nullptr; 2200 }; 2201 2202 // TODO: In the future we want to track more than just a unique kernel. 2203 SmallPtrSet<Kernel, 2> PotentialKernels; 2204 OMPInformationCache::foreachUse(F, [&](const Use &U) { 2205 PotentialKernels.insert(GetUniqueKernelForUse(U)); 2206 }); 2207 2208 Kernel K = nullptr; 2209 if (PotentialKernels.size() == 1) 2210 K = *PotentialKernels.begin(); 2211 2212 // Cache the result. 2213 UniqueKernelMap[&F] = K; 2214 2215 return K; 2216 } 2217 2218 bool OpenMPOpt::rewriteDeviceCodeStateMachine() { 2219 OMPInformationCache::RuntimeFunctionInfo &KernelParallelRFI = 2220 OMPInfoCache.RFIs[OMPRTL___kmpc_parallel_51]; 2221 2222 bool Changed = false; 2223 if (!KernelParallelRFI) 2224 return Changed; 2225 2226 // If we have disabled state machine changes, exit 2227 if (DisableOpenMPOptStateMachineRewrite) 2228 return Changed; 2229 2230 for (Function *F : SCC) { 2231 2232 // Check if the function is a use in a __kmpc_parallel_51 call at 2233 // all. 2234 bool UnknownUse = false; 2235 bool KernelParallelUse = false; 2236 unsigned NumDirectCalls = 0; 2237 2238 SmallVector<Use *, 2> ToBeReplacedStateMachineUses; 2239 OMPInformationCache::foreachUse(*F, [&](Use &U) { 2240 if (auto *CB = dyn_cast<CallBase>(U.getUser())) 2241 if (CB->isCallee(&U)) { 2242 ++NumDirectCalls; 2243 return; 2244 } 2245 2246 if (isa<ICmpInst>(U.getUser())) { 2247 ToBeReplacedStateMachineUses.push_back(&U); 2248 return; 2249 } 2250 2251 // Find wrapper functions that represent parallel kernels. 2252 CallInst *CI = 2253 OpenMPOpt::getCallIfRegularCall(*U.getUser(), &KernelParallelRFI); 2254 const unsigned int WrapperFunctionArgNo = 6; 2255 if (!KernelParallelUse && CI && 2256 CI->getArgOperandNo(&U) == WrapperFunctionArgNo) { 2257 KernelParallelUse = true; 2258 ToBeReplacedStateMachineUses.push_back(&U); 2259 return; 2260 } 2261 UnknownUse = true; 2262 }); 2263 2264 // Do not emit a remark if we haven't seen a __kmpc_parallel_51 2265 // use. 2266 if (!KernelParallelUse) 2267 continue; 2268 2269 // If this ever hits, we should investigate. 2270 // TODO: Checking the number of uses is not a necessary restriction and 2271 // should be lifted. 2272 if (UnknownUse || NumDirectCalls != 1 || 2273 ToBeReplacedStateMachineUses.size() > 2) { 2274 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 2275 return ORA << "Parallel region is used in " 2276 << (UnknownUse ? "unknown" : "unexpected") 2277 << " ways. Will not attempt to rewrite the state machine."; 2278 }; 2279 emitRemark<OptimizationRemarkAnalysis>(F, "OMP101", Remark); 2280 continue; 2281 } 2282 2283 // Even if we have __kmpc_parallel_51 calls, we (for now) give 2284 // up if the function is not called from a unique kernel. 2285 Kernel K = getUniqueKernelFor(*F); 2286 if (!K) { 2287 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 2288 return ORA << "Parallel region is not called from a unique kernel. " 2289 "Will not attempt to rewrite the state machine."; 2290 }; 2291 emitRemark<OptimizationRemarkAnalysis>(F, "OMP102", Remark); 2292 continue; 2293 } 2294 2295 // We now know F is a parallel body function called only from the kernel K. 2296 // We also identified the state machine uses in which we replace the 2297 // function pointer by a new global symbol for identification purposes. This 2298 // ensures only direct calls to the function are left. 2299 2300 Module &M = *F->getParent(); 2301 Type *Int8Ty = Type::getInt8Ty(M.getContext()); 2302 2303 auto *ID = new GlobalVariable( 2304 M, Int8Ty, /* isConstant */ true, GlobalValue::PrivateLinkage, 2305 UndefValue::get(Int8Ty), F->getName() + ".ID"); 2306 2307 for (Use *U : ToBeReplacedStateMachineUses) 2308 U->set(ConstantExpr::getPointerBitCastOrAddrSpaceCast( 2309 ID, U->get()->getType())); 2310 2311 ++NumOpenMPParallelRegionsReplacedInGPUStateMachine; 2312 2313 Changed = true; 2314 } 2315 2316 return Changed; 2317 } 2318 2319 /// Abstract Attribute for tracking ICV values. 2320 struct AAICVTracker : public StateWrapper<BooleanState, AbstractAttribute> { 2321 using Base = StateWrapper<BooleanState, AbstractAttribute>; 2322 AAICVTracker(const IRPosition &IRP, Attributor &A) : Base(IRP) {} 2323 2324 void initialize(Attributor &A) override { 2325 Function *F = getAnchorScope(); 2326 if (!F || !A.isFunctionIPOAmendable(*F)) 2327 indicatePessimisticFixpoint(); 2328 } 2329 2330 /// Returns true if value is assumed to be tracked. 2331 bool isAssumedTracked() const { return getAssumed(); } 2332 2333 /// Returns true if value is known to be tracked. 2334 bool isKnownTracked() const { return getAssumed(); } 2335 2336 /// Create an abstract attribute biew for the position \p IRP. 2337 static AAICVTracker &createForPosition(const IRPosition &IRP, Attributor &A); 2338 2339 /// Return the value with which \p I can be replaced for specific \p ICV. 2340 virtual Optional<Value *> getReplacementValue(InternalControlVar ICV, 2341 const Instruction *I, 2342 Attributor &A) const { 2343 return None; 2344 } 2345 2346 /// Return an assumed unique ICV value if a single candidate is found. If 2347 /// there cannot be one, return a nullptr. If it is not clear yet, return the 2348 /// Optional::NoneType. 2349 virtual Optional<Value *> 2350 getUniqueReplacementValue(InternalControlVar ICV) const = 0; 2351 2352 // Currently only nthreads is being tracked. 2353 // this array will only grow with time. 2354 InternalControlVar TrackableICVs[1] = {ICV_nthreads}; 2355 2356 /// See AbstractAttribute::getName() 2357 const std::string getName() const override { return "AAICVTracker"; } 2358 2359 /// See AbstractAttribute::getIdAddr() 2360 const char *getIdAddr() const override { return &ID; } 2361 2362 /// This function should return true if the type of the \p AA is AAICVTracker 2363 static bool classof(const AbstractAttribute *AA) { 2364 return (AA->getIdAddr() == &ID); 2365 } 2366 2367 static const char ID; 2368 }; 2369 2370 struct AAICVTrackerFunction : public AAICVTracker { 2371 AAICVTrackerFunction(const IRPosition &IRP, Attributor &A) 2372 : AAICVTracker(IRP, A) {} 2373 2374 // FIXME: come up with better string. 2375 const std::string getAsStr() const override { return "ICVTrackerFunction"; } 2376 2377 // FIXME: come up with some stats. 2378 void trackStatistics() const override {} 2379 2380 /// We don't manifest anything for this AA. 2381 ChangeStatus manifest(Attributor &A) override { 2382 return ChangeStatus::UNCHANGED; 2383 } 2384 2385 // Map of ICV to their values at specific program point. 2386 EnumeratedArray<DenseMap<Instruction *, Value *>, InternalControlVar, 2387 InternalControlVar::ICV___last> 2388 ICVReplacementValuesMap; 2389 2390 ChangeStatus updateImpl(Attributor &A) override { 2391 ChangeStatus HasChanged = ChangeStatus::UNCHANGED; 2392 2393 Function *F = getAnchorScope(); 2394 2395 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2396 2397 for (InternalControlVar ICV : TrackableICVs) { 2398 auto &SetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Setter]; 2399 2400 auto &ValuesMap = ICVReplacementValuesMap[ICV]; 2401 auto TrackValues = [&](Use &U, Function &) { 2402 CallInst *CI = OpenMPOpt::getCallIfRegularCall(U); 2403 if (!CI) 2404 return false; 2405 2406 // FIXME: handle setters with more that 1 arguments. 2407 /// Track new value. 2408 if (ValuesMap.insert(std::make_pair(CI, CI->getArgOperand(0))).second) 2409 HasChanged = ChangeStatus::CHANGED; 2410 2411 return false; 2412 }; 2413 2414 auto CallCheck = [&](Instruction &I) { 2415 Optional<Value *> ReplVal = getValueForCall(A, I, ICV); 2416 if (ReplVal.hasValue() && 2417 ValuesMap.insert(std::make_pair(&I, *ReplVal)).second) 2418 HasChanged = ChangeStatus::CHANGED; 2419 2420 return true; 2421 }; 2422 2423 // Track all changes of an ICV. 2424 SetterRFI.foreachUse(TrackValues, F); 2425 2426 bool UsedAssumedInformation = false; 2427 A.checkForAllInstructions(CallCheck, *this, {Instruction::Call}, 2428 UsedAssumedInformation, 2429 /* CheckBBLivenessOnly */ true); 2430 2431 /// TODO: Figure out a way to avoid adding entry in 2432 /// ICVReplacementValuesMap 2433 Instruction *Entry = &F->getEntryBlock().front(); 2434 if (HasChanged == ChangeStatus::CHANGED && !ValuesMap.count(Entry)) 2435 ValuesMap.insert(std::make_pair(Entry, nullptr)); 2436 } 2437 2438 return HasChanged; 2439 } 2440 2441 /// Helper to check if \p I is a call and get the value for it if it is 2442 /// unique. 2443 Optional<Value *> getValueForCall(Attributor &A, const Instruction &I, 2444 InternalControlVar &ICV) const { 2445 2446 const auto *CB = dyn_cast<CallBase>(&I); 2447 if (!CB || CB->hasFnAttr("no_openmp") || 2448 CB->hasFnAttr("no_openmp_routines")) 2449 return None; 2450 2451 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2452 auto &GetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Getter]; 2453 auto &SetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Setter]; 2454 Function *CalledFunction = CB->getCalledFunction(); 2455 2456 // Indirect call, assume ICV changes. 2457 if (CalledFunction == nullptr) 2458 return nullptr; 2459 if (CalledFunction == GetterRFI.Declaration) 2460 return None; 2461 if (CalledFunction == SetterRFI.Declaration) { 2462 if (ICVReplacementValuesMap[ICV].count(&I)) 2463 return ICVReplacementValuesMap[ICV].lookup(&I); 2464 2465 return nullptr; 2466 } 2467 2468 // Since we don't know, assume it changes the ICV. 2469 if (CalledFunction->isDeclaration()) 2470 return nullptr; 2471 2472 const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>( 2473 *this, IRPosition::callsite_returned(*CB), DepClassTy::REQUIRED); 2474 2475 if (ICVTrackingAA.isAssumedTracked()) { 2476 Optional<Value *> URV = ICVTrackingAA.getUniqueReplacementValue(ICV); 2477 if (!URV || (*URV && AA::isValidAtPosition(**URV, I, OMPInfoCache))) 2478 return URV; 2479 } 2480 2481 // If we don't know, assume it changes. 2482 return nullptr; 2483 } 2484 2485 // We don't check unique value for a function, so return None. 2486 Optional<Value *> 2487 getUniqueReplacementValue(InternalControlVar ICV) const override { 2488 return None; 2489 } 2490 2491 /// Return the value with which \p I can be replaced for specific \p ICV. 2492 Optional<Value *> getReplacementValue(InternalControlVar ICV, 2493 const Instruction *I, 2494 Attributor &A) const override { 2495 const auto &ValuesMap = ICVReplacementValuesMap[ICV]; 2496 if (ValuesMap.count(I)) 2497 return ValuesMap.lookup(I); 2498 2499 SmallVector<const Instruction *, 16> Worklist; 2500 SmallPtrSet<const Instruction *, 16> Visited; 2501 Worklist.push_back(I); 2502 2503 Optional<Value *> ReplVal; 2504 2505 while (!Worklist.empty()) { 2506 const Instruction *CurrInst = Worklist.pop_back_val(); 2507 if (!Visited.insert(CurrInst).second) 2508 continue; 2509 2510 const BasicBlock *CurrBB = CurrInst->getParent(); 2511 2512 // Go up and look for all potential setters/calls that might change the 2513 // ICV. 2514 while ((CurrInst = CurrInst->getPrevNode())) { 2515 if (ValuesMap.count(CurrInst)) { 2516 Optional<Value *> NewReplVal = ValuesMap.lookup(CurrInst); 2517 // Unknown value, track new. 2518 if (!ReplVal.hasValue()) { 2519 ReplVal = NewReplVal; 2520 break; 2521 } 2522 2523 // If we found a new value, we can't know the icv value anymore. 2524 if (NewReplVal.hasValue()) 2525 if (ReplVal != NewReplVal) 2526 return nullptr; 2527 2528 break; 2529 } 2530 2531 Optional<Value *> NewReplVal = getValueForCall(A, *CurrInst, ICV); 2532 if (!NewReplVal.hasValue()) 2533 continue; 2534 2535 // Unknown value, track new. 2536 if (!ReplVal.hasValue()) { 2537 ReplVal = NewReplVal; 2538 break; 2539 } 2540 2541 // if (NewReplVal.hasValue()) 2542 // We found a new value, we can't know the icv value anymore. 2543 if (ReplVal != NewReplVal) 2544 return nullptr; 2545 } 2546 2547 // If we are in the same BB and we have a value, we are done. 2548 if (CurrBB == I->getParent() && ReplVal.hasValue()) 2549 return ReplVal; 2550 2551 // Go through all predecessors and add terminators for analysis. 2552 for (const BasicBlock *Pred : predecessors(CurrBB)) 2553 if (const Instruction *Terminator = Pred->getTerminator()) 2554 Worklist.push_back(Terminator); 2555 } 2556 2557 return ReplVal; 2558 } 2559 }; 2560 2561 struct AAICVTrackerFunctionReturned : AAICVTracker { 2562 AAICVTrackerFunctionReturned(const IRPosition &IRP, Attributor &A) 2563 : AAICVTracker(IRP, A) {} 2564 2565 // FIXME: come up with better string. 2566 const std::string getAsStr() const override { 2567 return "ICVTrackerFunctionReturned"; 2568 } 2569 2570 // FIXME: come up with some stats. 2571 void trackStatistics() const override {} 2572 2573 /// We don't manifest anything for this AA. 2574 ChangeStatus manifest(Attributor &A) override { 2575 return ChangeStatus::UNCHANGED; 2576 } 2577 2578 // Map of ICV to their values at specific program point. 2579 EnumeratedArray<Optional<Value *>, InternalControlVar, 2580 InternalControlVar::ICV___last> 2581 ICVReplacementValuesMap; 2582 2583 /// Return the value with which \p I can be replaced for specific \p ICV. 2584 Optional<Value *> 2585 getUniqueReplacementValue(InternalControlVar ICV) const override { 2586 return ICVReplacementValuesMap[ICV]; 2587 } 2588 2589 ChangeStatus updateImpl(Attributor &A) override { 2590 ChangeStatus Changed = ChangeStatus::UNCHANGED; 2591 const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>( 2592 *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED); 2593 2594 if (!ICVTrackingAA.isAssumedTracked()) 2595 return indicatePessimisticFixpoint(); 2596 2597 for (InternalControlVar ICV : TrackableICVs) { 2598 Optional<Value *> &ReplVal = ICVReplacementValuesMap[ICV]; 2599 Optional<Value *> UniqueICVValue; 2600 2601 auto CheckReturnInst = [&](Instruction &I) { 2602 Optional<Value *> NewReplVal = 2603 ICVTrackingAA.getReplacementValue(ICV, &I, A); 2604 2605 // If we found a second ICV value there is no unique returned value. 2606 if (UniqueICVValue.hasValue() && UniqueICVValue != NewReplVal) 2607 return false; 2608 2609 UniqueICVValue = NewReplVal; 2610 2611 return true; 2612 }; 2613 2614 bool UsedAssumedInformation = false; 2615 if (!A.checkForAllInstructions(CheckReturnInst, *this, {Instruction::Ret}, 2616 UsedAssumedInformation, 2617 /* CheckBBLivenessOnly */ true)) 2618 UniqueICVValue = nullptr; 2619 2620 if (UniqueICVValue == ReplVal) 2621 continue; 2622 2623 ReplVal = UniqueICVValue; 2624 Changed = ChangeStatus::CHANGED; 2625 } 2626 2627 return Changed; 2628 } 2629 }; 2630 2631 struct AAICVTrackerCallSite : AAICVTracker { 2632 AAICVTrackerCallSite(const IRPosition &IRP, Attributor &A) 2633 : AAICVTracker(IRP, A) {} 2634 2635 void initialize(Attributor &A) override { 2636 Function *F = getAnchorScope(); 2637 if (!F || !A.isFunctionIPOAmendable(*F)) 2638 indicatePessimisticFixpoint(); 2639 2640 // We only initialize this AA for getters, so we need to know which ICV it 2641 // gets. 2642 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2643 for (InternalControlVar ICV : TrackableICVs) { 2644 auto ICVInfo = OMPInfoCache.ICVs[ICV]; 2645 auto &Getter = OMPInfoCache.RFIs[ICVInfo.Getter]; 2646 if (Getter.Declaration == getAssociatedFunction()) { 2647 AssociatedICV = ICVInfo.Kind; 2648 return; 2649 } 2650 } 2651 2652 /// Unknown ICV. 2653 indicatePessimisticFixpoint(); 2654 } 2655 2656 ChangeStatus manifest(Attributor &A) override { 2657 if (!ReplVal.hasValue() || !ReplVal.getValue()) 2658 return ChangeStatus::UNCHANGED; 2659 2660 A.changeValueAfterManifest(*getCtxI(), **ReplVal); 2661 A.deleteAfterManifest(*getCtxI()); 2662 2663 return ChangeStatus::CHANGED; 2664 } 2665 2666 // FIXME: come up with better string. 2667 const std::string getAsStr() const override { return "ICVTrackerCallSite"; } 2668 2669 // FIXME: come up with some stats. 2670 void trackStatistics() const override {} 2671 2672 InternalControlVar AssociatedICV; 2673 Optional<Value *> ReplVal; 2674 2675 ChangeStatus updateImpl(Attributor &A) override { 2676 const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>( 2677 *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED); 2678 2679 // We don't have any information, so we assume it changes the ICV. 2680 if (!ICVTrackingAA.isAssumedTracked()) 2681 return indicatePessimisticFixpoint(); 2682 2683 Optional<Value *> NewReplVal = 2684 ICVTrackingAA.getReplacementValue(AssociatedICV, getCtxI(), A); 2685 2686 if (ReplVal == NewReplVal) 2687 return ChangeStatus::UNCHANGED; 2688 2689 ReplVal = NewReplVal; 2690 return ChangeStatus::CHANGED; 2691 } 2692 2693 // Return the value with which associated value can be replaced for specific 2694 // \p ICV. 2695 Optional<Value *> 2696 getUniqueReplacementValue(InternalControlVar ICV) const override { 2697 return ReplVal; 2698 } 2699 }; 2700 2701 struct AAICVTrackerCallSiteReturned : AAICVTracker { 2702 AAICVTrackerCallSiteReturned(const IRPosition &IRP, Attributor &A) 2703 : AAICVTracker(IRP, A) {} 2704 2705 // FIXME: come up with better string. 2706 const std::string getAsStr() const override { 2707 return "ICVTrackerCallSiteReturned"; 2708 } 2709 2710 // FIXME: come up with some stats. 2711 void trackStatistics() const override {} 2712 2713 /// We don't manifest anything for this AA. 2714 ChangeStatus manifest(Attributor &A) override { 2715 return ChangeStatus::UNCHANGED; 2716 } 2717 2718 // Map of ICV to their values at specific program point. 2719 EnumeratedArray<Optional<Value *>, InternalControlVar, 2720 InternalControlVar::ICV___last> 2721 ICVReplacementValuesMap; 2722 2723 /// Return the value with which associated value can be replaced for specific 2724 /// \p ICV. 2725 Optional<Value *> 2726 getUniqueReplacementValue(InternalControlVar ICV) const override { 2727 return ICVReplacementValuesMap[ICV]; 2728 } 2729 2730 ChangeStatus updateImpl(Attributor &A) override { 2731 ChangeStatus Changed = ChangeStatus::UNCHANGED; 2732 const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>( 2733 *this, IRPosition::returned(*getAssociatedFunction()), 2734 DepClassTy::REQUIRED); 2735 2736 // We don't have any information, so we assume it changes the ICV. 2737 if (!ICVTrackingAA.isAssumedTracked()) 2738 return indicatePessimisticFixpoint(); 2739 2740 for (InternalControlVar ICV : TrackableICVs) { 2741 Optional<Value *> &ReplVal = ICVReplacementValuesMap[ICV]; 2742 Optional<Value *> NewReplVal = 2743 ICVTrackingAA.getUniqueReplacementValue(ICV); 2744 2745 if (ReplVal == NewReplVal) 2746 continue; 2747 2748 ReplVal = NewReplVal; 2749 Changed = ChangeStatus::CHANGED; 2750 } 2751 return Changed; 2752 } 2753 }; 2754 2755 struct AAExecutionDomainFunction : public AAExecutionDomain { 2756 AAExecutionDomainFunction(const IRPosition &IRP, Attributor &A) 2757 : AAExecutionDomain(IRP, A) {} 2758 2759 const std::string getAsStr() const override { 2760 return "[AAExecutionDomain] " + std::to_string(SingleThreadedBBs.size()) + 2761 "/" + std::to_string(NumBBs) + " BBs thread 0 only."; 2762 } 2763 2764 /// See AbstractAttribute::trackStatistics(). 2765 void trackStatistics() const override {} 2766 2767 void initialize(Attributor &A) override { 2768 Function *F = getAnchorScope(); 2769 for (const auto &BB : *F) 2770 SingleThreadedBBs.insert(&BB); 2771 NumBBs = SingleThreadedBBs.size(); 2772 } 2773 2774 ChangeStatus manifest(Attributor &A) override { 2775 LLVM_DEBUG({ 2776 for (const BasicBlock *BB : SingleThreadedBBs) 2777 dbgs() << TAG << " Basic block @" << getAnchorScope()->getName() << " " 2778 << BB->getName() << " is executed by a single thread.\n"; 2779 }); 2780 return ChangeStatus::UNCHANGED; 2781 } 2782 2783 ChangeStatus updateImpl(Attributor &A) override; 2784 2785 /// Check if an instruction is executed by a single thread. 2786 bool isExecutedByInitialThreadOnly(const Instruction &I) const override { 2787 return isExecutedByInitialThreadOnly(*I.getParent()); 2788 } 2789 2790 bool isExecutedByInitialThreadOnly(const BasicBlock &BB) const override { 2791 return isValidState() && SingleThreadedBBs.contains(&BB); 2792 } 2793 2794 /// Set of basic blocks that are executed by a single thread. 2795 SmallSetVector<const BasicBlock *, 16> SingleThreadedBBs; 2796 2797 /// Total number of basic blocks in this function. 2798 long unsigned NumBBs; 2799 }; 2800 2801 ChangeStatus AAExecutionDomainFunction::updateImpl(Attributor &A) { 2802 Function *F = getAnchorScope(); 2803 ReversePostOrderTraversal<Function *> RPOT(F); 2804 auto NumSingleThreadedBBs = SingleThreadedBBs.size(); 2805 2806 bool AllCallSitesKnown; 2807 auto PredForCallSite = [&](AbstractCallSite ACS) { 2808 const auto &ExecutionDomainAA = A.getAAFor<AAExecutionDomain>( 2809 *this, IRPosition::function(*ACS.getInstruction()->getFunction()), 2810 DepClassTy::REQUIRED); 2811 return ACS.isDirectCall() && 2812 ExecutionDomainAA.isExecutedByInitialThreadOnly( 2813 *ACS.getInstruction()); 2814 }; 2815 2816 if (!A.checkForAllCallSites(PredForCallSite, *this, 2817 /* RequiresAllCallSites */ true, 2818 AllCallSitesKnown)) 2819 SingleThreadedBBs.remove(&F->getEntryBlock()); 2820 2821 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2822 auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_target_init]; 2823 2824 // Check if the edge into the successor block contains a condition that only 2825 // lets the main thread execute it. 2826 auto IsInitialThreadOnly = [&](BranchInst *Edge, BasicBlock *SuccessorBB) { 2827 if (!Edge || !Edge->isConditional()) 2828 return false; 2829 if (Edge->getSuccessor(0) != SuccessorBB) 2830 return false; 2831 2832 auto *Cmp = dyn_cast<CmpInst>(Edge->getCondition()); 2833 if (!Cmp || !Cmp->isTrueWhenEqual() || !Cmp->isEquality()) 2834 return false; 2835 2836 ConstantInt *C = dyn_cast<ConstantInt>(Cmp->getOperand(1)); 2837 if (!C) 2838 return false; 2839 2840 // Match: -1 == __kmpc_target_init (for non-SPMD kernels only!) 2841 if (C->isAllOnesValue()) { 2842 auto *CB = dyn_cast<CallBase>(Cmp->getOperand(0)); 2843 CB = CB ? OpenMPOpt::getCallIfRegularCall(*CB, &RFI) : nullptr; 2844 if (!CB) 2845 return false; 2846 const int InitModeArgNo = 1; 2847 auto *ModeCI = dyn_cast<ConstantInt>(CB->getOperand(InitModeArgNo)); 2848 return ModeCI && (ModeCI->getSExtValue() & OMP_TGT_EXEC_MODE_GENERIC); 2849 } 2850 2851 if (C->isZero()) { 2852 // Match: 0 == llvm.nvvm.read.ptx.sreg.tid.x() 2853 if (auto *II = dyn_cast<IntrinsicInst>(Cmp->getOperand(0))) 2854 if (II->getIntrinsicID() == Intrinsic::nvvm_read_ptx_sreg_tid_x) 2855 return true; 2856 2857 // Match: 0 == llvm.amdgcn.workitem.id.x() 2858 if (auto *II = dyn_cast<IntrinsicInst>(Cmp->getOperand(0))) 2859 if (II->getIntrinsicID() == Intrinsic::amdgcn_workitem_id_x) 2860 return true; 2861 } 2862 2863 return false; 2864 }; 2865 2866 // Merge all the predecessor states into the current basic block. A basic 2867 // block is executed by a single thread if all of its predecessors are. 2868 auto MergePredecessorStates = [&](BasicBlock *BB) { 2869 if (pred_empty(BB)) 2870 return SingleThreadedBBs.contains(BB); 2871 2872 bool IsInitialThread = true; 2873 for (BasicBlock *PredBB : predecessors(BB)) { 2874 if (!IsInitialThreadOnly(dyn_cast<BranchInst>(PredBB->getTerminator()), 2875 BB)) 2876 IsInitialThread &= SingleThreadedBBs.contains(PredBB); 2877 } 2878 2879 return IsInitialThread; 2880 }; 2881 2882 for (auto *BB : RPOT) { 2883 if (!MergePredecessorStates(BB)) 2884 SingleThreadedBBs.remove(BB); 2885 } 2886 2887 return (NumSingleThreadedBBs == SingleThreadedBBs.size()) 2888 ? ChangeStatus::UNCHANGED 2889 : ChangeStatus::CHANGED; 2890 } 2891 2892 /// Try to replace memory allocation calls called by a single thread with a 2893 /// static buffer of shared memory. 2894 struct AAHeapToShared : public StateWrapper<BooleanState, AbstractAttribute> { 2895 using Base = StateWrapper<BooleanState, AbstractAttribute>; 2896 AAHeapToShared(const IRPosition &IRP, Attributor &A) : Base(IRP) {} 2897 2898 /// Create an abstract attribute view for the position \p IRP. 2899 static AAHeapToShared &createForPosition(const IRPosition &IRP, 2900 Attributor &A); 2901 2902 /// Returns true if HeapToShared conversion is assumed to be possible. 2903 virtual bool isAssumedHeapToShared(CallBase &CB) const = 0; 2904 2905 /// Returns true if HeapToShared conversion is assumed and the CB is a 2906 /// callsite to a free operation to be removed. 2907 virtual bool isAssumedHeapToSharedRemovedFree(CallBase &CB) const = 0; 2908 2909 /// See AbstractAttribute::getName(). 2910 const std::string getName() const override { return "AAHeapToShared"; } 2911 2912 /// See AbstractAttribute::getIdAddr(). 2913 const char *getIdAddr() const override { return &ID; } 2914 2915 /// This function should return true if the type of the \p AA is 2916 /// AAHeapToShared. 2917 static bool classof(const AbstractAttribute *AA) { 2918 return (AA->getIdAddr() == &ID); 2919 } 2920 2921 /// Unique ID (due to the unique address) 2922 static const char ID; 2923 }; 2924 2925 struct AAHeapToSharedFunction : public AAHeapToShared { 2926 AAHeapToSharedFunction(const IRPosition &IRP, Attributor &A) 2927 : AAHeapToShared(IRP, A) {} 2928 2929 const std::string getAsStr() const override { 2930 return "[AAHeapToShared] " + std::to_string(MallocCalls.size()) + 2931 " malloc calls eligible."; 2932 } 2933 2934 /// See AbstractAttribute::trackStatistics(). 2935 void trackStatistics() const override {} 2936 2937 /// This functions finds free calls that will be removed by the 2938 /// HeapToShared transformation. 2939 void findPotentialRemovedFreeCalls(Attributor &A) { 2940 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2941 auto &FreeRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_free_shared]; 2942 2943 PotentialRemovedFreeCalls.clear(); 2944 // Update free call users of found malloc calls. 2945 for (CallBase *CB : MallocCalls) { 2946 SmallVector<CallBase *, 4> FreeCalls; 2947 for (auto *U : CB->users()) { 2948 CallBase *C = dyn_cast<CallBase>(U); 2949 if (C && C->getCalledFunction() == FreeRFI.Declaration) 2950 FreeCalls.push_back(C); 2951 } 2952 2953 if (FreeCalls.size() != 1) 2954 continue; 2955 2956 PotentialRemovedFreeCalls.insert(FreeCalls.front()); 2957 } 2958 } 2959 2960 void initialize(Attributor &A) override { 2961 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2962 auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared]; 2963 2964 for (User *U : RFI.Declaration->users()) 2965 if (CallBase *CB = dyn_cast<CallBase>(U)) 2966 MallocCalls.insert(CB); 2967 2968 findPotentialRemovedFreeCalls(A); 2969 } 2970 2971 bool isAssumedHeapToShared(CallBase &CB) const override { 2972 return isValidState() && MallocCalls.count(&CB); 2973 } 2974 2975 bool isAssumedHeapToSharedRemovedFree(CallBase &CB) const override { 2976 return isValidState() && PotentialRemovedFreeCalls.count(&CB); 2977 } 2978 2979 ChangeStatus manifest(Attributor &A) override { 2980 if (MallocCalls.empty()) 2981 return ChangeStatus::UNCHANGED; 2982 2983 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2984 auto &FreeCall = OMPInfoCache.RFIs[OMPRTL___kmpc_free_shared]; 2985 2986 Function *F = getAnchorScope(); 2987 auto *HS = A.lookupAAFor<AAHeapToStack>(IRPosition::function(*F), this, 2988 DepClassTy::OPTIONAL); 2989 2990 ChangeStatus Changed = ChangeStatus::UNCHANGED; 2991 for (CallBase *CB : MallocCalls) { 2992 // Skip replacing this if HeapToStack has already claimed it. 2993 if (HS && HS->isAssumedHeapToStack(*CB)) 2994 continue; 2995 2996 // Find the unique free call to remove it. 2997 SmallVector<CallBase *, 4> FreeCalls; 2998 for (auto *U : CB->users()) { 2999 CallBase *C = dyn_cast<CallBase>(U); 3000 if (C && C->getCalledFunction() == FreeCall.Declaration) 3001 FreeCalls.push_back(C); 3002 } 3003 if (FreeCalls.size() != 1) 3004 continue; 3005 3006 auto *AllocSize = cast<ConstantInt>(CB->getArgOperand(0)); 3007 3008 if (AllocSize->getZExtValue() + SharedMemoryUsed > SharedMemoryLimit) { 3009 LLVM_DEBUG(dbgs() << TAG << "Cannot replace call " << *CB 3010 << " with shared memory." 3011 << " Shared memory usage is limited to " 3012 << SharedMemoryLimit << " bytes\n"); 3013 continue; 3014 } 3015 3016 LLVM_DEBUG(dbgs() << TAG << "Replace globalization call " << *CB 3017 << " with " << AllocSize->getZExtValue() 3018 << " bytes of shared memory\n"); 3019 3020 // Create a new shared memory buffer of the same size as the allocation 3021 // and replace all the uses of the original allocation with it. 3022 Module *M = CB->getModule(); 3023 Type *Int8Ty = Type::getInt8Ty(M->getContext()); 3024 Type *Int8ArrTy = ArrayType::get(Int8Ty, AllocSize->getZExtValue()); 3025 auto *SharedMem = new GlobalVariable( 3026 *M, Int8ArrTy, /* IsConstant */ false, GlobalValue::InternalLinkage, 3027 UndefValue::get(Int8ArrTy), CB->getName() + "_shared", nullptr, 3028 GlobalValue::NotThreadLocal, 3029 static_cast<unsigned>(AddressSpace::Shared)); 3030 auto *NewBuffer = 3031 ConstantExpr::getPointerCast(SharedMem, Int8Ty->getPointerTo()); 3032 3033 auto Remark = [&](OptimizationRemark OR) { 3034 return OR << "Replaced globalized variable with " 3035 << ore::NV("SharedMemory", AllocSize->getZExtValue()) 3036 << ((AllocSize->getZExtValue() != 1) ? " bytes " : " byte ") 3037 << "of shared memory."; 3038 }; 3039 A.emitRemark<OptimizationRemark>(CB, "OMP111", Remark); 3040 3041 MaybeAlign Alignment = CB->getRetAlign(); 3042 assert(Alignment && 3043 "HeapToShared on allocation without alignment attribute"); 3044 SharedMem->setAlignment(MaybeAlign(Alignment)); 3045 3046 A.changeValueAfterManifest(*CB, *NewBuffer); 3047 A.deleteAfterManifest(*CB); 3048 A.deleteAfterManifest(*FreeCalls.front()); 3049 3050 SharedMemoryUsed += AllocSize->getZExtValue(); 3051 NumBytesMovedToSharedMemory = SharedMemoryUsed; 3052 Changed = ChangeStatus::CHANGED; 3053 } 3054 3055 return Changed; 3056 } 3057 3058 ChangeStatus updateImpl(Attributor &A) override { 3059 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 3060 auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared]; 3061 Function *F = getAnchorScope(); 3062 3063 auto NumMallocCalls = MallocCalls.size(); 3064 3065 // Only consider malloc calls executed by a single thread with a constant. 3066 for (User *U : RFI.Declaration->users()) { 3067 const auto &ED = A.getAAFor<AAExecutionDomain>( 3068 *this, IRPosition::function(*F), DepClassTy::REQUIRED); 3069 if (CallBase *CB = dyn_cast<CallBase>(U)) 3070 if (!isa<ConstantInt>(CB->getArgOperand(0)) || 3071 !ED.isExecutedByInitialThreadOnly(*CB)) 3072 MallocCalls.remove(CB); 3073 } 3074 3075 findPotentialRemovedFreeCalls(A); 3076 3077 if (NumMallocCalls != MallocCalls.size()) 3078 return ChangeStatus::CHANGED; 3079 3080 return ChangeStatus::UNCHANGED; 3081 } 3082 3083 /// Collection of all malloc calls in a function. 3084 SmallSetVector<CallBase *, 4> MallocCalls; 3085 /// Collection of potentially removed free calls in a function. 3086 SmallPtrSet<CallBase *, 4> PotentialRemovedFreeCalls; 3087 /// The total amount of shared memory that has been used for HeapToShared. 3088 unsigned SharedMemoryUsed = 0; 3089 }; 3090 3091 struct AAKernelInfo : public StateWrapper<KernelInfoState, AbstractAttribute> { 3092 using Base = StateWrapper<KernelInfoState, AbstractAttribute>; 3093 AAKernelInfo(const IRPosition &IRP, Attributor &A) : Base(IRP) {} 3094 3095 /// Statistics are tracked as part of manifest for now. 3096 void trackStatistics() const override {} 3097 3098 /// See AbstractAttribute::getAsStr() 3099 const std::string getAsStr() const override { 3100 if (!isValidState()) 3101 return "<invalid>"; 3102 return std::string(SPMDCompatibilityTracker.isAssumed() ? "SPMD" 3103 : "generic") + 3104 std::string(SPMDCompatibilityTracker.isAtFixpoint() ? " [FIX]" 3105 : "") + 3106 std::string(" #PRs: ") + 3107 (ReachedKnownParallelRegions.isValidState() 3108 ? std::to_string(ReachedKnownParallelRegions.size()) 3109 : "<invalid>") + 3110 ", #Unknown PRs: " + 3111 (ReachedUnknownParallelRegions.isValidState() 3112 ? std::to_string(ReachedUnknownParallelRegions.size()) 3113 : "<invalid>") + 3114 ", #Reaching Kernels: " + 3115 (ReachingKernelEntries.isValidState() 3116 ? std::to_string(ReachingKernelEntries.size()) 3117 : "<invalid>"); 3118 } 3119 3120 /// Create an abstract attribute biew for the position \p IRP. 3121 static AAKernelInfo &createForPosition(const IRPosition &IRP, Attributor &A); 3122 3123 /// See AbstractAttribute::getName() 3124 const std::string getName() const override { return "AAKernelInfo"; } 3125 3126 /// See AbstractAttribute::getIdAddr() 3127 const char *getIdAddr() const override { return &ID; } 3128 3129 /// This function should return true if the type of the \p AA is AAKernelInfo 3130 static bool classof(const AbstractAttribute *AA) { 3131 return (AA->getIdAddr() == &ID); 3132 } 3133 3134 static const char ID; 3135 }; 3136 3137 /// The function kernel info abstract attribute, basically, what can we say 3138 /// about a function with regards to the KernelInfoState. 3139 struct AAKernelInfoFunction : AAKernelInfo { 3140 AAKernelInfoFunction(const IRPosition &IRP, Attributor &A) 3141 : AAKernelInfo(IRP, A) {} 3142 3143 SmallPtrSet<Instruction *, 4> GuardedInstructions; 3144 3145 SmallPtrSetImpl<Instruction *> &getGuardedInstructions() { 3146 return GuardedInstructions; 3147 } 3148 3149 /// See AbstractAttribute::initialize(...). 3150 void initialize(Attributor &A) override { 3151 // This is a high-level transform that might change the constant arguments 3152 // of the init and dinit calls. We need to tell the Attributor about this 3153 // to avoid other parts using the current constant value for simpliication. 3154 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 3155 3156 Function *Fn = getAnchorScope(); 3157 if (!OMPInfoCache.Kernels.count(Fn)) 3158 return; 3159 3160 // Add itself to the reaching kernel and set IsKernelEntry. 3161 ReachingKernelEntries.insert(Fn); 3162 IsKernelEntry = true; 3163 3164 OMPInformationCache::RuntimeFunctionInfo &InitRFI = 3165 OMPInfoCache.RFIs[OMPRTL___kmpc_target_init]; 3166 OMPInformationCache::RuntimeFunctionInfo &DeinitRFI = 3167 OMPInfoCache.RFIs[OMPRTL___kmpc_target_deinit]; 3168 3169 // For kernels we perform more initialization work, first we find the init 3170 // and deinit calls. 3171 auto StoreCallBase = [](Use &U, 3172 OMPInformationCache::RuntimeFunctionInfo &RFI, 3173 CallBase *&Storage) { 3174 CallBase *CB = OpenMPOpt::getCallIfRegularCall(U, &RFI); 3175 assert(CB && 3176 "Unexpected use of __kmpc_target_init or __kmpc_target_deinit!"); 3177 assert(!Storage && 3178 "Multiple uses of __kmpc_target_init or __kmpc_target_deinit!"); 3179 Storage = CB; 3180 return false; 3181 }; 3182 InitRFI.foreachUse( 3183 [&](Use &U, Function &) { 3184 StoreCallBase(U, InitRFI, KernelInitCB); 3185 return false; 3186 }, 3187 Fn); 3188 DeinitRFI.foreachUse( 3189 [&](Use &U, Function &) { 3190 StoreCallBase(U, DeinitRFI, KernelDeinitCB); 3191 return false; 3192 }, 3193 Fn); 3194 3195 // Ignore kernels without initializers such as global constructors. 3196 if (!KernelInitCB || !KernelDeinitCB) { 3197 indicateOptimisticFixpoint(); 3198 return; 3199 } 3200 3201 // For kernels we might need to initialize/finalize the IsSPMD state and 3202 // we need to register a simplification callback so that the Attributor 3203 // knows the constant arguments to __kmpc_target_init and 3204 // __kmpc_target_deinit might actually change. 3205 3206 Attributor::SimplifictionCallbackTy StateMachineSimplifyCB = 3207 [&](const IRPosition &IRP, const AbstractAttribute *AA, 3208 bool &UsedAssumedInformation) -> Optional<Value *> { 3209 // IRP represents the "use generic state machine" argument of an 3210 // __kmpc_target_init call. We will answer this one with the internal 3211 // state. As long as we are not in an invalid state, we will create a 3212 // custom state machine so the value should be a `i1 false`. If we are 3213 // in an invalid state, we won't change the value that is in the IR. 3214 if (!ReachedKnownParallelRegions.isValidState()) 3215 return nullptr; 3216 // If we have disabled state machine rewrites, don't make a custom one. 3217 if (DisableOpenMPOptStateMachineRewrite) 3218 return nullptr; 3219 if (AA) 3220 A.recordDependence(*this, *AA, DepClassTy::OPTIONAL); 3221 UsedAssumedInformation = !isAtFixpoint(); 3222 auto *FalseVal = 3223 ConstantInt::getBool(IRP.getAnchorValue().getContext(), false); 3224 return FalseVal; 3225 }; 3226 3227 Attributor::SimplifictionCallbackTy ModeSimplifyCB = 3228 [&](const IRPosition &IRP, const AbstractAttribute *AA, 3229 bool &UsedAssumedInformation) -> Optional<Value *> { 3230 // IRP represents the "SPMDCompatibilityTracker" argument of an 3231 // __kmpc_target_init or 3232 // __kmpc_target_deinit call. We will answer this one with the internal 3233 // state. 3234 if (!SPMDCompatibilityTracker.isValidState()) 3235 return nullptr; 3236 if (!SPMDCompatibilityTracker.isAtFixpoint()) { 3237 if (AA) 3238 A.recordDependence(*this, *AA, DepClassTy::OPTIONAL); 3239 UsedAssumedInformation = true; 3240 } else { 3241 UsedAssumedInformation = false; 3242 } 3243 auto *Val = ConstantInt::getSigned( 3244 IntegerType::getInt8Ty(IRP.getAnchorValue().getContext()), 3245 SPMDCompatibilityTracker.isAssumed() ? OMP_TGT_EXEC_MODE_SPMD 3246 : OMP_TGT_EXEC_MODE_GENERIC); 3247 return Val; 3248 }; 3249 3250 Attributor::SimplifictionCallbackTy IsGenericModeSimplifyCB = 3251 [&](const IRPosition &IRP, const AbstractAttribute *AA, 3252 bool &UsedAssumedInformation) -> Optional<Value *> { 3253 // IRP represents the "RequiresFullRuntime" argument of an 3254 // __kmpc_target_init or __kmpc_target_deinit call. We will answer this 3255 // one with the internal state of the SPMDCompatibilityTracker, so if 3256 // generic then true, if SPMD then false. 3257 if (!SPMDCompatibilityTracker.isValidState()) 3258 return nullptr; 3259 if (!SPMDCompatibilityTracker.isAtFixpoint()) { 3260 if (AA) 3261 A.recordDependence(*this, *AA, DepClassTy::OPTIONAL); 3262 UsedAssumedInformation = true; 3263 } else { 3264 UsedAssumedInformation = false; 3265 } 3266 auto *Val = ConstantInt::getBool(IRP.getAnchorValue().getContext(), 3267 !SPMDCompatibilityTracker.isAssumed()); 3268 return Val; 3269 }; 3270 3271 constexpr const int InitModeArgNo = 1; 3272 constexpr const int DeinitModeArgNo = 1; 3273 constexpr const int InitUseStateMachineArgNo = 2; 3274 constexpr const int InitRequiresFullRuntimeArgNo = 3; 3275 constexpr const int DeinitRequiresFullRuntimeArgNo = 2; 3276 A.registerSimplificationCallback( 3277 IRPosition::callsite_argument(*KernelInitCB, InitUseStateMachineArgNo), 3278 StateMachineSimplifyCB); 3279 A.registerSimplificationCallback( 3280 IRPosition::callsite_argument(*KernelInitCB, InitModeArgNo), 3281 ModeSimplifyCB); 3282 A.registerSimplificationCallback( 3283 IRPosition::callsite_argument(*KernelDeinitCB, DeinitModeArgNo), 3284 ModeSimplifyCB); 3285 A.registerSimplificationCallback( 3286 IRPosition::callsite_argument(*KernelInitCB, 3287 InitRequiresFullRuntimeArgNo), 3288 IsGenericModeSimplifyCB); 3289 A.registerSimplificationCallback( 3290 IRPosition::callsite_argument(*KernelDeinitCB, 3291 DeinitRequiresFullRuntimeArgNo), 3292 IsGenericModeSimplifyCB); 3293 3294 // Check if we know we are in SPMD-mode already. 3295 ConstantInt *ModeArg = 3296 dyn_cast<ConstantInt>(KernelInitCB->getArgOperand(InitModeArgNo)); 3297 if (ModeArg && (ModeArg->getSExtValue() & OMP_TGT_EXEC_MODE_SPMD)) 3298 SPMDCompatibilityTracker.indicateOptimisticFixpoint(); 3299 // This is a generic region but SPMDization is disabled so stop tracking. 3300 else if (DisableOpenMPOptSPMDization) 3301 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 3302 } 3303 3304 /// Sanitize the string \p S such that it is a suitable global symbol name. 3305 static std::string sanitizeForGlobalName(std::string S) { 3306 std::replace_if( 3307 S.begin(), S.end(), 3308 [](const char C) { 3309 return !((C >= 'a' && C <= 'z') || (C >= 'A' && C <= 'Z') || 3310 (C >= '0' && C <= '9') || C == '_'); 3311 }, 3312 '.'); 3313 return S; 3314 } 3315 3316 /// Modify the IR based on the KernelInfoState as the fixpoint iteration is 3317 /// finished now. 3318 ChangeStatus manifest(Attributor &A) override { 3319 // If we are not looking at a kernel with __kmpc_target_init and 3320 // __kmpc_target_deinit call we cannot actually manifest the information. 3321 if (!KernelInitCB || !KernelDeinitCB) 3322 return ChangeStatus::UNCHANGED; 3323 3324 // If we can we change the execution mode to SPMD-mode otherwise we build a 3325 // custom state machine. 3326 ChangeStatus Changed = ChangeStatus::UNCHANGED; 3327 if (!changeToSPMDMode(A, Changed)) 3328 return buildCustomStateMachine(A); 3329 3330 return Changed; 3331 } 3332 3333 bool changeToSPMDMode(Attributor &A, ChangeStatus &Changed) { 3334 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 3335 3336 if (!SPMDCompatibilityTracker.isAssumed()) { 3337 for (Instruction *NonCompatibleI : SPMDCompatibilityTracker) { 3338 if (!NonCompatibleI) 3339 continue; 3340 3341 // Skip diagnostics on calls to known OpenMP runtime functions for now. 3342 if (auto *CB = dyn_cast<CallBase>(NonCompatibleI)) 3343 if (OMPInfoCache.RTLFunctions.contains(CB->getCalledFunction())) 3344 continue; 3345 3346 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 3347 ORA << "Value has potential side effects preventing SPMD-mode " 3348 "execution"; 3349 if (isa<CallBase>(NonCompatibleI)) { 3350 ORA << ". Add `__attribute__((assume(\"ompx_spmd_amenable\")))` to " 3351 "the called function to override"; 3352 } 3353 return ORA << "."; 3354 }; 3355 A.emitRemark<OptimizationRemarkAnalysis>(NonCompatibleI, "OMP121", 3356 Remark); 3357 3358 LLVM_DEBUG(dbgs() << TAG << "SPMD-incompatible side-effect: " 3359 << *NonCompatibleI << "\n"); 3360 } 3361 3362 return false; 3363 } 3364 3365 // Check if the kernel is already in SPMD mode, if so, return success. 3366 Function *Kernel = getAnchorScope(); 3367 GlobalVariable *ExecMode = Kernel->getParent()->getGlobalVariable( 3368 (Kernel->getName() + "_exec_mode").str()); 3369 assert(ExecMode && "Kernel without exec mode?"); 3370 assert(ExecMode->getInitializer() && "ExecMode doesn't have initializer!"); 3371 3372 // Set the global exec mode flag to indicate SPMD-Generic mode. 3373 assert(isa<ConstantInt>(ExecMode->getInitializer()) && 3374 "ExecMode is not an integer!"); 3375 const int8_t ExecModeVal = 3376 cast<ConstantInt>(ExecMode->getInitializer())->getSExtValue(); 3377 if (ExecModeVal != OMP_TGT_EXEC_MODE_GENERIC) 3378 return true; 3379 3380 // We will now unconditionally modify the IR, indicate a change. 3381 Changed = ChangeStatus::CHANGED; 3382 3383 auto CreateGuardedRegion = [&](Instruction *RegionStartI, 3384 Instruction *RegionEndI) { 3385 LoopInfo *LI = nullptr; 3386 DominatorTree *DT = nullptr; 3387 MemorySSAUpdater *MSU = nullptr; 3388 using InsertPointTy = OpenMPIRBuilder::InsertPointTy; 3389 3390 BasicBlock *ParentBB = RegionStartI->getParent(); 3391 Function *Fn = ParentBB->getParent(); 3392 Module &M = *Fn->getParent(); 3393 3394 // Create all the blocks and logic. 3395 // ParentBB: 3396 // goto RegionCheckTidBB 3397 // RegionCheckTidBB: 3398 // Tid = __kmpc_hardware_thread_id() 3399 // if (Tid != 0) 3400 // goto RegionBarrierBB 3401 // RegionStartBB: 3402 // <execute instructions guarded> 3403 // goto RegionEndBB 3404 // RegionEndBB: 3405 // <store escaping values to shared mem> 3406 // goto RegionBarrierBB 3407 // RegionBarrierBB: 3408 // __kmpc_simple_barrier_spmd() 3409 // // second barrier is omitted if lacking escaping values. 3410 // <load escaping values from shared mem> 3411 // __kmpc_simple_barrier_spmd() 3412 // goto RegionExitBB 3413 // RegionExitBB: 3414 // <execute rest of instructions> 3415 3416 BasicBlock *RegionEndBB = SplitBlock(ParentBB, RegionEndI->getNextNode(), 3417 DT, LI, MSU, "region.guarded.end"); 3418 BasicBlock *RegionBarrierBB = 3419 SplitBlock(RegionEndBB, &*RegionEndBB->getFirstInsertionPt(), DT, LI, 3420 MSU, "region.barrier"); 3421 BasicBlock *RegionExitBB = 3422 SplitBlock(RegionBarrierBB, &*RegionBarrierBB->getFirstInsertionPt(), 3423 DT, LI, MSU, "region.exit"); 3424 BasicBlock *RegionStartBB = 3425 SplitBlock(ParentBB, RegionStartI, DT, LI, MSU, "region.guarded"); 3426 3427 assert(ParentBB->getUniqueSuccessor() == RegionStartBB && 3428 "Expected a different CFG"); 3429 3430 BasicBlock *RegionCheckTidBB = SplitBlock( 3431 ParentBB, ParentBB->getTerminator(), DT, LI, MSU, "region.check.tid"); 3432 3433 // Register basic blocks with the Attributor. 3434 A.registerManifestAddedBasicBlock(*RegionEndBB); 3435 A.registerManifestAddedBasicBlock(*RegionBarrierBB); 3436 A.registerManifestAddedBasicBlock(*RegionExitBB); 3437 A.registerManifestAddedBasicBlock(*RegionStartBB); 3438 A.registerManifestAddedBasicBlock(*RegionCheckTidBB); 3439 3440 bool HasBroadcastValues = false; 3441 // Find escaping outputs from the guarded region to outside users and 3442 // broadcast their values to them. 3443 for (Instruction &I : *RegionStartBB) { 3444 SmallPtrSet<Instruction *, 4> OutsideUsers; 3445 for (User *Usr : I.users()) { 3446 Instruction &UsrI = *cast<Instruction>(Usr); 3447 if (UsrI.getParent() != RegionStartBB) 3448 OutsideUsers.insert(&UsrI); 3449 } 3450 3451 if (OutsideUsers.empty()) 3452 continue; 3453 3454 HasBroadcastValues = true; 3455 3456 // Emit a global variable in shared memory to store the broadcasted 3457 // value. 3458 auto *SharedMem = new GlobalVariable( 3459 M, I.getType(), /* IsConstant */ false, 3460 GlobalValue::InternalLinkage, UndefValue::get(I.getType()), 3461 sanitizeForGlobalName( 3462 (I.getName() + ".guarded.output.alloc").str()), 3463 nullptr, GlobalValue::NotThreadLocal, 3464 static_cast<unsigned>(AddressSpace::Shared)); 3465 3466 // Emit a store instruction to update the value. 3467 new StoreInst(&I, SharedMem, RegionEndBB->getTerminator()); 3468 3469 LoadInst *LoadI = new LoadInst(I.getType(), SharedMem, 3470 I.getName() + ".guarded.output.load", 3471 RegionBarrierBB->getTerminator()); 3472 3473 // Emit a load instruction and replace uses of the output value. 3474 for (Instruction *UsrI : OutsideUsers) 3475 UsrI->replaceUsesOfWith(&I, LoadI); 3476 } 3477 3478 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 3479 3480 // Go to tid check BB in ParentBB. 3481 const DebugLoc DL = ParentBB->getTerminator()->getDebugLoc(); 3482 ParentBB->getTerminator()->eraseFromParent(); 3483 OpenMPIRBuilder::LocationDescription Loc( 3484 InsertPointTy(ParentBB, ParentBB->end()), DL); 3485 OMPInfoCache.OMPBuilder.updateToLocation(Loc); 3486 uint32_t SrcLocStrSize; 3487 auto *SrcLocStr = 3488 OMPInfoCache.OMPBuilder.getOrCreateSrcLocStr(Loc, SrcLocStrSize); 3489 Value *Ident = 3490 OMPInfoCache.OMPBuilder.getOrCreateIdent(SrcLocStr, SrcLocStrSize); 3491 BranchInst::Create(RegionCheckTidBB, ParentBB)->setDebugLoc(DL); 3492 3493 // Add check for Tid in RegionCheckTidBB 3494 RegionCheckTidBB->getTerminator()->eraseFromParent(); 3495 OpenMPIRBuilder::LocationDescription LocRegionCheckTid( 3496 InsertPointTy(RegionCheckTidBB, RegionCheckTidBB->end()), DL); 3497 OMPInfoCache.OMPBuilder.updateToLocation(LocRegionCheckTid); 3498 FunctionCallee HardwareTidFn = 3499 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( 3500 M, OMPRTL___kmpc_get_hardware_thread_id_in_block); 3501 CallInst *Tid = 3502 OMPInfoCache.OMPBuilder.Builder.CreateCall(HardwareTidFn, {}); 3503 Tid->setDebugLoc(DL); 3504 OMPInfoCache.setCallingConvention(HardwareTidFn, Tid); 3505 Value *TidCheck = OMPInfoCache.OMPBuilder.Builder.CreateIsNull(Tid); 3506 OMPInfoCache.OMPBuilder.Builder 3507 .CreateCondBr(TidCheck, RegionStartBB, RegionBarrierBB) 3508 ->setDebugLoc(DL); 3509 3510 // First barrier for synchronization, ensures main thread has updated 3511 // values. 3512 FunctionCallee BarrierFn = 3513 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( 3514 M, OMPRTL___kmpc_barrier_simple_spmd); 3515 OMPInfoCache.OMPBuilder.updateToLocation(InsertPointTy( 3516 RegionBarrierBB, RegionBarrierBB->getFirstInsertionPt())); 3517 CallInst *Barrier = 3518 OMPInfoCache.OMPBuilder.Builder.CreateCall(BarrierFn, {Ident, Tid}); 3519 Barrier->setDebugLoc(DL); 3520 OMPInfoCache.setCallingConvention(BarrierFn, Barrier); 3521 3522 // Second barrier ensures workers have read broadcast values. 3523 if (HasBroadcastValues) { 3524 CallInst *Barrier = CallInst::Create(BarrierFn, {Ident, Tid}, "", 3525 RegionBarrierBB->getTerminator()); 3526 Barrier->setDebugLoc(DL); 3527 OMPInfoCache.setCallingConvention(BarrierFn, Barrier); 3528 } 3529 }; 3530 3531 auto &AllocSharedRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared]; 3532 SmallPtrSet<BasicBlock *, 8> Visited; 3533 for (Instruction *GuardedI : SPMDCompatibilityTracker) { 3534 BasicBlock *BB = GuardedI->getParent(); 3535 if (!Visited.insert(BB).second) 3536 continue; 3537 3538 SmallVector<std::pair<Instruction *, Instruction *>> Reorders; 3539 Instruction *LastEffect = nullptr; 3540 BasicBlock::reverse_iterator IP = BB->rbegin(), IPEnd = BB->rend(); 3541 while (++IP != IPEnd) { 3542 if (!IP->mayHaveSideEffects() && !IP->mayReadFromMemory()) 3543 continue; 3544 Instruction *I = &*IP; 3545 if (OpenMPOpt::getCallIfRegularCall(*I, &AllocSharedRFI)) 3546 continue; 3547 if (!I->user_empty() || !SPMDCompatibilityTracker.contains(I)) { 3548 LastEffect = nullptr; 3549 continue; 3550 } 3551 if (LastEffect) 3552 Reorders.push_back({I, LastEffect}); 3553 LastEffect = &*IP; 3554 } 3555 for (auto &Reorder : Reorders) 3556 Reorder.first->moveBefore(Reorder.second); 3557 } 3558 3559 SmallVector<std::pair<Instruction *, Instruction *>, 4> GuardedRegions; 3560 3561 for (Instruction *GuardedI : SPMDCompatibilityTracker) { 3562 BasicBlock *BB = GuardedI->getParent(); 3563 auto *CalleeAA = A.lookupAAFor<AAKernelInfo>( 3564 IRPosition::function(*GuardedI->getFunction()), nullptr, 3565 DepClassTy::NONE); 3566 assert(CalleeAA != nullptr && "Expected Callee AAKernelInfo"); 3567 auto &CalleeAAFunction = *cast<AAKernelInfoFunction>(CalleeAA); 3568 // Continue if instruction is already guarded. 3569 if (CalleeAAFunction.getGuardedInstructions().contains(GuardedI)) 3570 continue; 3571 3572 Instruction *GuardedRegionStart = nullptr, *GuardedRegionEnd = nullptr; 3573 for (Instruction &I : *BB) { 3574 // If instruction I needs to be guarded update the guarded region 3575 // bounds. 3576 if (SPMDCompatibilityTracker.contains(&I)) { 3577 CalleeAAFunction.getGuardedInstructions().insert(&I); 3578 if (GuardedRegionStart) 3579 GuardedRegionEnd = &I; 3580 else 3581 GuardedRegionStart = GuardedRegionEnd = &I; 3582 3583 continue; 3584 } 3585 3586 // Instruction I does not need guarding, store 3587 // any region found and reset bounds. 3588 if (GuardedRegionStart) { 3589 GuardedRegions.push_back( 3590 std::make_pair(GuardedRegionStart, GuardedRegionEnd)); 3591 GuardedRegionStart = nullptr; 3592 GuardedRegionEnd = nullptr; 3593 } 3594 } 3595 } 3596 3597 for (auto &GR : GuardedRegions) 3598 CreateGuardedRegion(GR.first, GR.second); 3599 3600 // Adjust the global exec mode flag that tells the runtime what mode this 3601 // kernel is executed in. 3602 assert(ExecModeVal == OMP_TGT_EXEC_MODE_GENERIC && 3603 "Initially non-SPMD kernel has SPMD exec mode!"); 3604 ExecMode->setInitializer( 3605 ConstantInt::get(ExecMode->getInitializer()->getType(), 3606 ExecModeVal | OMP_TGT_EXEC_MODE_GENERIC_SPMD)); 3607 3608 // Next rewrite the init and deinit calls to indicate we use SPMD-mode now. 3609 const int InitModeArgNo = 1; 3610 const int DeinitModeArgNo = 1; 3611 const int InitUseStateMachineArgNo = 2; 3612 const int InitRequiresFullRuntimeArgNo = 3; 3613 const int DeinitRequiresFullRuntimeArgNo = 2; 3614 3615 auto &Ctx = getAnchorValue().getContext(); 3616 A.changeUseAfterManifest( 3617 KernelInitCB->getArgOperandUse(InitModeArgNo), 3618 *ConstantInt::getSigned(IntegerType::getInt8Ty(Ctx), 3619 OMP_TGT_EXEC_MODE_SPMD)); 3620 A.changeUseAfterManifest( 3621 KernelInitCB->getArgOperandUse(InitUseStateMachineArgNo), 3622 *ConstantInt::getBool(Ctx, false)); 3623 A.changeUseAfterManifest( 3624 KernelDeinitCB->getArgOperandUse(DeinitModeArgNo), 3625 *ConstantInt::getSigned(IntegerType::getInt8Ty(Ctx), 3626 OMP_TGT_EXEC_MODE_SPMD)); 3627 A.changeUseAfterManifest( 3628 KernelInitCB->getArgOperandUse(InitRequiresFullRuntimeArgNo), 3629 *ConstantInt::getBool(Ctx, false)); 3630 A.changeUseAfterManifest( 3631 KernelDeinitCB->getArgOperandUse(DeinitRequiresFullRuntimeArgNo), 3632 *ConstantInt::getBool(Ctx, false)); 3633 3634 ++NumOpenMPTargetRegionKernelsSPMD; 3635 3636 auto Remark = [&](OptimizationRemark OR) { 3637 return OR << "Transformed generic-mode kernel to SPMD-mode."; 3638 }; 3639 A.emitRemark<OptimizationRemark>(KernelInitCB, "OMP120", Remark); 3640 return true; 3641 }; 3642 3643 ChangeStatus buildCustomStateMachine(Attributor &A) { 3644 // If we have disabled state machine rewrites, don't make a custom one 3645 if (DisableOpenMPOptStateMachineRewrite) 3646 return ChangeStatus::UNCHANGED; 3647 3648 // Don't rewrite the state machine if we are not in a valid state. 3649 if (!ReachedKnownParallelRegions.isValidState()) 3650 return ChangeStatus::UNCHANGED; 3651 3652 const int InitModeArgNo = 1; 3653 const int InitUseStateMachineArgNo = 2; 3654 3655 // Check if the current configuration is non-SPMD and generic state machine. 3656 // If we already have SPMD mode or a custom state machine we do not need to 3657 // go any further. If it is anything but a constant something is weird and 3658 // we give up. 3659 ConstantInt *UseStateMachine = dyn_cast<ConstantInt>( 3660 KernelInitCB->getArgOperand(InitUseStateMachineArgNo)); 3661 ConstantInt *Mode = 3662 dyn_cast<ConstantInt>(KernelInitCB->getArgOperand(InitModeArgNo)); 3663 3664 // If we are stuck with generic mode, try to create a custom device (=GPU) 3665 // state machine which is specialized for the parallel regions that are 3666 // reachable by the kernel. 3667 if (!UseStateMachine || UseStateMachine->isZero() || !Mode || 3668 (Mode->getSExtValue() & OMP_TGT_EXEC_MODE_SPMD)) 3669 return ChangeStatus::UNCHANGED; 3670 3671 // If not SPMD mode, indicate we use a custom state machine now. 3672 auto &Ctx = getAnchorValue().getContext(); 3673 auto *FalseVal = ConstantInt::getBool(Ctx, false); 3674 A.changeUseAfterManifest( 3675 KernelInitCB->getArgOperandUse(InitUseStateMachineArgNo), *FalseVal); 3676 3677 // If we don't actually need a state machine we are done here. This can 3678 // happen if there simply are no parallel regions. In the resulting kernel 3679 // all worker threads will simply exit right away, leaving the main thread 3680 // to do the work alone. 3681 if (!mayContainParallelRegion()) { 3682 ++NumOpenMPTargetRegionKernelsWithoutStateMachine; 3683 3684 auto Remark = [&](OptimizationRemark OR) { 3685 return OR << "Removing unused state machine from generic-mode kernel."; 3686 }; 3687 A.emitRemark<OptimizationRemark>(KernelInitCB, "OMP130", Remark); 3688 3689 return ChangeStatus::CHANGED; 3690 } 3691 3692 // Keep track in the statistics of our new shiny custom state machine. 3693 if (ReachedUnknownParallelRegions.empty()) { 3694 ++NumOpenMPTargetRegionKernelsCustomStateMachineWithoutFallback; 3695 3696 auto Remark = [&](OptimizationRemark OR) { 3697 return OR << "Rewriting generic-mode kernel with a customized state " 3698 "machine."; 3699 }; 3700 A.emitRemark<OptimizationRemark>(KernelInitCB, "OMP131", Remark); 3701 } else { 3702 ++NumOpenMPTargetRegionKernelsCustomStateMachineWithFallback; 3703 3704 auto Remark = [&](OptimizationRemarkAnalysis OR) { 3705 return OR << "Generic-mode kernel is executed with a customized state " 3706 "machine that requires a fallback."; 3707 }; 3708 A.emitRemark<OptimizationRemarkAnalysis>(KernelInitCB, "OMP132", Remark); 3709 3710 // Tell the user why we ended up with a fallback. 3711 for (CallBase *UnknownParallelRegionCB : ReachedUnknownParallelRegions) { 3712 if (!UnknownParallelRegionCB) 3713 continue; 3714 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 3715 return ORA << "Call may contain unknown parallel regions. Use " 3716 << "`__attribute__((assume(\"omp_no_parallelism\")))` to " 3717 "override."; 3718 }; 3719 A.emitRemark<OptimizationRemarkAnalysis>(UnknownParallelRegionCB, 3720 "OMP133", Remark); 3721 } 3722 } 3723 3724 // Create all the blocks: 3725 // 3726 // InitCB = __kmpc_target_init(...) 3727 // BlockHwSize = 3728 // __kmpc_get_hardware_num_threads_in_block(); 3729 // WarpSize = __kmpc_get_warp_size(); 3730 // BlockSize = BlockHwSize - WarpSize; 3731 // if (InitCB >= BlockSize) return; 3732 // IsWorkerCheckBB: bool IsWorker = InitCB >= 0; 3733 // if (IsWorker) { 3734 // SMBeginBB: __kmpc_barrier_simple_generic(...); 3735 // void *WorkFn; 3736 // bool Active = __kmpc_kernel_parallel(&WorkFn); 3737 // if (!WorkFn) return; 3738 // SMIsActiveCheckBB: if (Active) { 3739 // SMIfCascadeCurrentBB: if (WorkFn == <ParFn0>) 3740 // ParFn0(...); 3741 // SMIfCascadeCurrentBB: else if (WorkFn == <ParFn1>) 3742 // ParFn1(...); 3743 // ... 3744 // SMIfCascadeCurrentBB: else 3745 // ((WorkFnTy*)WorkFn)(...); 3746 // SMEndParallelBB: __kmpc_kernel_end_parallel(...); 3747 // } 3748 // SMDoneBB: __kmpc_barrier_simple_generic(...); 3749 // goto SMBeginBB; 3750 // } 3751 // UserCodeEntryBB: // user code 3752 // __kmpc_target_deinit(...) 3753 // 3754 Function *Kernel = getAssociatedFunction(); 3755 assert(Kernel && "Expected an associated function!"); 3756 3757 BasicBlock *InitBB = KernelInitCB->getParent(); 3758 BasicBlock *UserCodeEntryBB = InitBB->splitBasicBlock( 3759 KernelInitCB->getNextNode(), "thread.user_code.check"); 3760 BasicBlock *IsWorkerCheckBB = 3761 BasicBlock::Create(Ctx, "is_worker_check", Kernel, UserCodeEntryBB); 3762 BasicBlock *StateMachineBeginBB = BasicBlock::Create( 3763 Ctx, "worker_state_machine.begin", Kernel, UserCodeEntryBB); 3764 BasicBlock *StateMachineFinishedBB = BasicBlock::Create( 3765 Ctx, "worker_state_machine.finished", Kernel, UserCodeEntryBB); 3766 BasicBlock *StateMachineIsActiveCheckBB = BasicBlock::Create( 3767 Ctx, "worker_state_machine.is_active.check", Kernel, UserCodeEntryBB); 3768 BasicBlock *StateMachineIfCascadeCurrentBB = 3769 BasicBlock::Create(Ctx, "worker_state_machine.parallel_region.check", 3770 Kernel, UserCodeEntryBB); 3771 BasicBlock *StateMachineEndParallelBB = 3772 BasicBlock::Create(Ctx, "worker_state_machine.parallel_region.end", 3773 Kernel, UserCodeEntryBB); 3774 BasicBlock *StateMachineDoneBarrierBB = BasicBlock::Create( 3775 Ctx, "worker_state_machine.done.barrier", Kernel, UserCodeEntryBB); 3776 A.registerManifestAddedBasicBlock(*InitBB); 3777 A.registerManifestAddedBasicBlock(*UserCodeEntryBB); 3778 A.registerManifestAddedBasicBlock(*IsWorkerCheckBB); 3779 A.registerManifestAddedBasicBlock(*StateMachineBeginBB); 3780 A.registerManifestAddedBasicBlock(*StateMachineFinishedBB); 3781 A.registerManifestAddedBasicBlock(*StateMachineIsActiveCheckBB); 3782 A.registerManifestAddedBasicBlock(*StateMachineIfCascadeCurrentBB); 3783 A.registerManifestAddedBasicBlock(*StateMachineEndParallelBB); 3784 A.registerManifestAddedBasicBlock(*StateMachineDoneBarrierBB); 3785 3786 const DebugLoc &DLoc = KernelInitCB->getDebugLoc(); 3787 ReturnInst::Create(Ctx, StateMachineFinishedBB)->setDebugLoc(DLoc); 3788 InitBB->getTerminator()->eraseFromParent(); 3789 3790 Module &M = *Kernel->getParent(); 3791 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 3792 FunctionCallee BlockHwSizeFn = 3793 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( 3794 M, OMPRTL___kmpc_get_hardware_num_threads_in_block); 3795 FunctionCallee WarpSizeFn = 3796 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( 3797 M, OMPRTL___kmpc_get_warp_size); 3798 CallInst *BlockHwSize = 3799 CallInst::Create(BlockHwSizeFn, "block.hw_size", InitBB); 3800 OMPInfoCache.setCallingConvention(BlockHwSizeFn, BlockHwSize); 3801 BlockHwSize->setDebugLoc(DLoc); 3802 CallInst *WarpSize = CallInst::Create(WarpSizeFn, "warp.size", InitBB); 3803 OMPInfoCache.setCallingConvention(WarpSizeFn, WarpSize); 3804 WarpSize->setDebugLoc(DLoc); 3805 Instruction *BlockSize = 3806 BinaryOperator::CreateSub(BlockHwSize, WarpSize, "block.size", InitBB); 3807 BlockSize->setDebugLoc(DLoc); 3808 Instruction *IsMainOrWorker = 3809 ICmpInst::Create(ICmpInst::ICmp, llvm::CmpInst::ICMP_SLT, KernelInitCB, 3810 BlockSize, "thread.is_main_or_worker", InitBB); 3811 IsMainOrWorker->setDebugLoc(DLoc); 3812 BranchInst::Create(IsWorkerCheckBB, StateMachineFinishedBB, IsMainOrWorker, 3813 InitBB); 3814 3815 Instruction *IsWorker = 3816 ICmpInst::Create(ICmpInst::ICmp, llvm::CmpInst::ICMP_NE, KernelInitCB, 3817 ConstantInt::get(KernelInitCB->getType(), -1), 3818 "thread.is_worker", IsWorkerCheckBB); 3819 IsWorker->setDebugLoc(DLoc); 3820 BranchInst::Create(StateMachineBeginBB, UserCodeEntryBB, IsWorker, 3821 IsWorkerCheckBB); 3822 3823 // Create local storage for the work function pointer. 3824 const DataLayout &DL = M.getDataLayout(); 3825 Type *VoidPtrTy = Type::getInt8PtrTy(Ctx); 3826 Instruction *WorkFnAI = 3827 new AllocaInst(VoidPtrTy, DL.getAllocaAddrSpace(), nullptr, 3828 "worker.work_fn.addr", &Kernel->getEntryBlock().front()); 3829 WorkFnAI->setDebugLoc(DLoc); 3830 3831 OMPInfoCache.OMPBuilder.updateToLocation( 3832 OpenMPIRBuilder::LocationDescription( 3833 IRBuilder<>::InsertPoint(StateMachineBeginBB, 3834 StateMachineBeginBB->end()), 3835 DLoc)); 3836 3837 Value *Ident = KernelInitCB->getArgOperand(0); 3838 Value *GTid = KernelInitCB; 3839 3840 FunctionCallee BarrierFn = 3841 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( 3842 M, OMPRTL___kmpc_barrier_simple_generic); 3843 CallInst *Barrier = 3844 CallInst::Create(BarrierFn, {Ident, GTid}, "", StateMachineBeginBB); 3845 OMPInfoCache.setCallingConvention(BarrierFn, Barrier); 3846 Barrier->setDebugLoc(DLoc); 3847 3848 if (WorkFnAI->getType()->getPointerAddressSpace() != 3849 (unsigned int)AddressSpace::Generic) { 3850 WorkFnAI = new AddrSpaceCastInst( 3851 WorkFnAI, 3852 PointerType::getWithSamePointeeType( 3853 cast<PointerType>(WorkFnAI->getType()), 3854 (unsigned int)AddressSpace::Generic), 3855 WorkFnAI->getName() + ".generic", StateMachineBeginBB); 3856 WorkFnAI->setDebugLoc(DLoc); 3857 } 3858 3859 FunctionCallee KernelParallelFn = 3860 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( 3861 M, OMPRTL___kmpc_kernel_parallel); 3862 CallInst *IsActiveWorker = CallInst::Create( 3863 KernelParallelFn, {WorkFnAI}, "worker.is_active", StateMachineBeginBB); 3864 OMPInfoCache.setCallingConvention(KernelParallelFn, IsActiveWorker); 3865 IsActiveWorker->setDebugLoc(DLoc); 3866 Instruction *WorkFn = new LoadInst(VoidPtrTy, WorkFnAI, "worker.work_fn", 3867 StateMachineBeginBB); 3868 WorkFn->setDebugLoc(DLoc); 3869 3870 FunctionType *ParallelRegionFnTy = FunctionType::get( 3871 Type::getVoidTy(Ctx), {Type::getInt16Ty(Ctx), Type::getInt32Ty(Ctx)}, 3872 false); 3873 Value *WorkFnCast = BitCastInst::CreatePointerBitCastOrAddrSpaceCast( 3874 WorkFn, ParallelRegionFnTy->getPointerTo(), "worker.work_fn.addr_cast", 3875 StateMachineBeginBB); 3876 3877 Instruction *IsDone = 3878 ICmpInst::Create(ICmpInst::ICmp, llvm::CmpInst::ICMP_EQ, WorkFn, 3879 Constant::getNullValue(VoidPtrTy), "worker.is_done", 3880 StateMachineBeginBB); 3881 IsDone->setDebugLoc(DLoc); 3882 BranchInst::Create(StateMachineFinishedBB, StateMachineIsActiveCheckBB, 3883 IsDone, StateMachineBeginBB) 3884 ->setDebugLoc(DLoc); 3885 3886 BranchInst::Create(StateMachineIfCascadeCurrentBB, 3887 StateMachineDoneBarrierBB, IsActiveWorker, 3888 StateMachineIsActiveCheckBB) 3889 ->setDebugLoc(DLoc); 3890 3891 Value *ZeroArg = 3892 Constant::getNullValue(ParallelRegionFnTy->getParamType(0)); 3893 3894 // Now that we have most of the CFG skeleton it is time for the if-cascade 3895 // that checks the function pointer we got from the runtime against the 3896 // parallel regions we expect, if there are any. 3897 for (int I = 0, E = ReachedKnownParallelRegions.size(); I < E; ++I) { 3898 auto *ParallelRegion = ReachedKnownParallelRegions[I]; 3899 BasicBlock *PRExecuteBB = BasicBlock::Create( 3900 Ctx, "worker_state_machine.parallel_region.execute", Kernel, 3901 StateMachineEndParallelBB); 3902 CallInst::Create(ParallelRegion, {ZeroArg, GTid}, "", PRExecuteBB) 3903 ->setDebugLoc(DLoc); 3904 BranchInst::Create(StateMachineEndParallelBB, PRExecuteBB) 3905 ->setDebugLoc(DLoc); 3906 3907 BasicBlock *PRNextBB = 3908 BasicBlock::Create(Ctx, "worker_state_machine.parallel_region.check", 3909 Kernel, StateMachineEndParallelBB); 3910 3911 // Check if we need to compare the pointer at all or if we can just 3912 // call the parallel region function. 3913 Value *IsPR; 3914 if (I + 1 < E || !ReachedUnknownParallelRegions.empty()) { 3915 Instruction *CmpI = ICmpInst::Create( 3916 ICmpInst::ICmp, llvm::CmpInst::ICMP_EQ, WorkFnCast, ParallelRegion, 3917 "worker.check_parallel_region", StateMachineIfCascadeCurrentBB); 3918 CmpI->setDebugLoc(DLoc); 3919 IsPR = CmpI; 3920 } else { 3921 IsPR = ConstantInt::getTrue(Ctx); 3922 } 3923 3924 BranchInst::Create(PRExecuteBB, PRNextBB, IsPR, 3925 StateMachineIfCascadeCurrentBB) 3926 ->setDebugLoc(DLoc); 3927 StateMachineIfCascadeCurrentBB = PRNextBB; 3928 } 3929 3930 // At the end of the if-cascade we place the indirect function pointer call 3931 // in case we might need it, that is if there can be parallel regions we 3932 // have not handled in the if-cascade above. 3933 if (!ReachedUnknownParallelRegions.empty()) { 3934 StateMachineIfCascadeCurrentBB->setName( 3935 "worker_state_machine.parallel_region.fallback.execute"); 3936 CallInst::Create(ParallelRegionFnTy, WorkFnCast, {ZeroArg, GTid}, "", 3937 StateMachineIfCascadeCurrentBB) 3938 ->setDebugLoc(DLoc); 3939 } 3940 BranchInst::Create(StateMachineEndParallelBB, 3941 StateMachineIfCascadeCurrentBB) 3942 ->setDebugLoc(DLoc); 3943 3944 FunctionCallee EndParallelFn = 3945 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( 3946 M, OMPRTL___kmpc_kernel_end_parallel); 3947 CallInst *EndParallel = 3948 CallInst::Create(EndParallelFn, {}, "", StateMachineEndParallelBB); 3949 OMPInfoCache.setCallingConvention(EndParallelFn, EndParallel); 3950 EndParallel->setDebugLoc(DLoc); 3951 BranchInst::Create(StateMachineDoneBarrierBB, StateMachineEndParallelBB) 3952 ->setDebugLoc(DLoc); 3953 3954 CallInst::Create(BarrierFn, {Ident, GTid}, "", StateMachineDoneBarrierBB) 3955 ->setDebugLoc(DLoc); 3956 BranchInst::Create(StateMachineBeginBB, StateMachineDoneBarrierBB) 3957 ->setDebugLoc(DLoc); 3958 3959 return ChangeStatus::CHANGED; 3960 } 3961 3962 /// Fixpoint iteration update function. Will be called every time a dependence 3963 /// changed its state (and in the beginning). 3964 ChangeStatus updateImpl(Attributor &A) override { 3965 KernelInfoState StateBefore = getState(); 3966 3967 // Callback to check a read/write instruction. 3968 auto CheckRWInst = [&](Instruction &I) { 3969 // We handle calls later. 3970 if (isa<CallBase>(I)) 3971 return true; 3972 // We only care about write effects. 3973 if (!I.mayWriteToMemory()) 3974 return true; 3975 if (auto *SI = dyn_cast<StoreInst>(&I)) { 3976 SmallVector<const Value *> Objects; 3977 getUnderlyingObjects(SI->getPointerOperand(), Objects); 3978 if (llvm::all_of(Objects, 3979 [](const Value *Obj) { return isa<AllocaInst>(Obj); })) 3980 return true; 3981 // Check for AAHeapToStack moved objects which must not be guarded. 3982 auto &HS = A.getAAFor<AAHeapToStack>( 3983 *this, IRPosition::function(*I.getFunction()), 3984 DepClassTy::OPTIONAL); 3985 if (llvm::all_of(Objects, [&HS](const Value *Obj) { 3986 auto *CB = dyn_cast<CallBase>(Obj); 3987 if (!CB) 3988 return false; 3989 return HS.isAssumedHeapToStack(*CB); 3990 })) { 3991 return true; 3992 } 3993 } 3994 3995 // Insert instruction that needs guarding. 3996 SPMDCompatibilityTracker.insert(&I); 3997 return true; 3998 }; 3999 4000 bool UsedAssumedInformationInCheckRWInst = false; 4001 if (!SPMDCompatibilityTracker.isAtFixpoint()) 4002 if (!A.checkForAllReadWriteInstructions( 4003 CheckRWInst, *this, UsedAssumedInformationInCheckRWInst)) 4004 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 4005 4006 bool UsedAssumedInformationFromReachingKernels = false; 4007 if (!IsKernelEntry) { 4008 updateParallelLevels(A); 4009 4010 bool AllReachingKernelsKnown = true; 4011 updateReachingKernelEntries(A, AllReachingKernelsKnown); 4012 UsedAssumedInformationFromReachingKernels = !AllReachingKernelsKnown; 4013 4014 if (!ParallelLevels.isValidState()) 4015 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 4016 else if (!ReachingKernelEntries.isValidState()) 4017 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 4018 else if (!SPMDCompatibilityTracker.empty()) { 4019 // Check if all reaching kernels agree on the mode as we can otherwise 4020 // not guard instructions. We might not be sure about the mode so we 4021 // we cannot fix the internal spmd-zation state either. 4022 int SPMD = 0, Generic = 0; 4023 for (auto *Kernel : ReachingKernelEntries) { 4024 auto &CBAA = A.getAAFor<AAKernelInfo>( 4025 *this, IRPosition::function(*Kernel), DepClassTy::OPTIONAL); 4026 if (CBAA.SPMDCompatibilityTracker.isValidState() && 4027 CBAA.SPMDCompatibilityTracker.isAssumed()) 4028 ++SPMD; 4029 else 4030 ++Generic; 4031 if (!CBAA.SPMDCompatibilityTracker.isAtFixpoint()) 4032 UsedAssumedInformationFromReachingKernels = true; 4033 } 4034 if (SPMD != 0 && Generic != 0) 4035 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 4036 } 4037 } 4038 4039 // Callback to check a call instruction. 4040 bool AllParallelRegionStatesWereFixed = true; 4041 bool AllSPMDStatesWereFixed = true; 4042 auto CheckCallInst = [&](Instruction &I) { 4043 auto &CB = cast<CallBase>(I); 4044 auto &CBAA = A.getAAFor<AAKernelInfo>( 4045 *this, IRPosition::callsite_function(CB), DepClassTy::OPTIONAL); 4046 getState() ^= CBAA.getState(); 4047 AllSPMDStatesWereFixed &= CBAA.SPMDCompatibilityTracker.isAtFixpoint(); 4048 AllParallelRegionStatesWereFixed &= 4049 CBAA.ReachedKnownParallelRegions.isAtFixpoint(); 4050 AllParallelRegionStatesWereFixed &= 4051 CBAA.ReachedUnknownParallelRegions.isAtFixpoint(); 4052 return true; 4053 }; 4054 4055 bool UsedAssumedInformationInCheckCallInst = false; 4056 if (!A.checkForAllCallLikeInstructions( 4057 CheckCallInst, *this, UsedAssumedInformationInCheckCallInst)) { 4058 LLVM_DEBUG(dbgs() << TAG 4059 << "Failed to visit all call-like instructions!\n";); 4060 return indicatePessimisticFixpoint(); 4061 } 4062 4063 // If we haven't used any assumed information for the reached parallel 4064 // region states we can fix it. 4065 if (!UsedAssumedInformationInCheckCallInst && 4066 AllParallelRegionStatesWereFixed) { 4067 ReachedKnownParallelRegions.indicateOptimisticFixpoint(); 4068 ReachedUnknownParallelRegions.indicateOptimisticFixpoint(); 4069 } 4070 4071 // If we are sure there are no parallel regions in the kernel we do not 4072 // want SPMD mode. 4073 if (IsKernelEntry && ReachedUnknownParallelRegions.isAtFixpoint() && 4074 ReachedKnownParallelRegions.isAtFixpoint() && 4075 ReachedUnknownParallelRegions.isValidState() && 4076 ReachedKnownParallelRegions.isValidState() && 4077 !mayContainParallelRegion()) 4078 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 4079 4080 // If we haven't used any assumed information for the SPMD state we can fix 4081 // it. 4082 if (!UsedAssumedInformationInCheckRWInst && 4083 !UsedAssumedInformationInCheckCallInst && 4084 !UsedAssumedInformationFromReachingKernels && AllSPMDStatesWereFixed) 4085 SPMDCompatibilityTracker.indicateOptimisticFixpoint(); 4086 4087 return StateBefore == getState() ? ChangeStatus::UNCHANGED 4088 : ChangeStatus::CHANGED; 4089 } 4090 4091 private: 4092 /// Update info regarding reaching kernels. 4093 void updateReachingKernelEntries(Attributor &A, 4094 bool &AllReachingKernelsKnown) { 4095 auto PredCallSite = [&](AbstractCallSite ACS) { 4096 Function *Caller = ACS.getInstruction()->getFunction(); 4097 4098 assert(Caller && "Caller is nullptr"); 4099 4100 auto &CAA = A.getOrCreateAAFor<AAKernelInfo>( 4101 IRPosition::function(*Caller), this, DepClassTy::REQUIRED); 4102 if (CAA.ReachingKernelEntries.isValidState()) { 4103 ReachingKernelEntries ^= CAA.ReachingKernelEntries; 4104 return true; 4105 } 4106 4107 // We lost track of the caller of the associated function, any kernel 4108 // could reach now. 4109 ReachingKernelEntries.indicatePessimisticFixpoint(); 4110 4111 return true; 4112 }; 4113 4114 if (!A.checkForAllCallSites(PredCallSite, *this, 4115 true /* RequireAllCallSites */, 4116 AllReachingKernelsKnown)) 4117 ReachingKernelEntries.indicatePessimisticFixpoint(); 4118 } 4119 4120 /// Update info regarding parallel levels. 4121 void updateParallelLevels(Attributor &A) { 4122 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 4123 OMPInformationCache::RuntimeFunctionInfo &Parallel51RFI = 4124 OMPInfoCache.RFIs[OMPRTL___kmpc_parallel_51]; 4125 4126 auto PredCallSite = [&](AbstractCallSite ACS) { 4127 Function *Caller = ACS.getInstruction()->getFunction(); 4128 4129 assert(Caller && "Caller is nullptr"); 4130 4131 auto &CAA = 4132 A.getOrCreateAAFor<AAKernelInfo>(IRPosition::function(*Caller)); 4133 if (CAA.ParallelLevels.isValidState()) { 4134 // Any function that is called by `__kmpc_parallel_51` will not be 4135 // folded as the parallel level in the function is updated. In order to 4136 // get it right, all the analysis would depend on the implentation. That 4137 // said, if in the future any change to the implementation, the analysis 4138 // could be wrong. As a consequence, we are just conservative here. 4139 if (Caller == Parallel51RFI.Declaration) { 4140 ParallelLevels.indicatePessimisticFixpoint(); 4141 return true; 4142 } 4143 4144 ParallelLevels ^= CAA.ParallelLevels; 4145 4146 return true; 4147 } 4148 4149 // We lost track of the caller of the associated function, any kernel 4150 // could reach now. 4151 ParallelLevels.indicatePessimisticFixpoint(); 4152 4153 return true; 4154 }; 4155 4156 bool AllCallSitesKnown = true; 4157 if (!A.checkForAllCallSites(PredCallSite, *this, 4158 true /* RequireAllCallSites */, 4159 AllCallSitesKnown)) 4160 ParallelLevels.indicatePessimisticFixpoint(); 4161 } 4162 }; 4163 4164 /// The call site kernel info abstract attribute, basically, what can we say 4165 /// about a call site with regards to the KernelInfoState. For now this simply 4166 /// forwards the information from the callee. 4167 struct AAKernelInfoCallSite : AAKernelInfo { 4168 AAKernelInfoCallSite(const IRPosition &IRP, Attributor &A) 4169 : AAKernelInfo(IRP, A) {} 4170 4171 /// See AbstractAttribute::initialize(...). 4172 void initialize(Attributor &A) override { 4173 AAKernelInfo::initialize(A); 4174 4175 CallBase &CB = cast<CallBase>(getAssociatedValue()); 4176 Function *Callee = getAssociatedFunction(); 4177 4178 auto &AssumptionAA = A.getAAFor<AAAssumptionInfo>( 4179 *this, IRPosition::callsite_function(CB), DepClassTy::OPTIONAL); 4180 4181 // Check for SPMD-mode assumptions. 4182 if (AssumptionAA.hasAssumption("ompx_spmd_amenable")) { 4183 SPMDCompatibilityTracker.indicateOptimisticFixpoint(); 4184 indicateOptimisticFixpoint(); 4185 } 4186 4187 // First weed out calls we do not care about, that is readonly/readnone 4188 // calls, intrinsics, and "no_openmp" calls. Neither of these can reach a 4189 // parallel region or anything else we are looking for. 4190 if (!CB.mayWriteToMemory() || isa<IntrinsicInst>(CB)) { 4191 indicateOptimisticFixpoint(); 4192 return; 4193 } 4194 4195 // Next we check if we know the callee. If it is a known OpenMP function 4196 // we will handle them explicitly in the switch below. If it is not, we 4197 // will use an AAKernelInfo object on the callee to gather information and 4198 // merge that into the current state. The latter happens in the updateImpl. 4199 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 4200 const auto &It = OMPInfoCache.RuntimeFunctionIDMap.find(Callee); 4201 if (It == OMPInfoCache.RuntimeFunctionIDMap.end()) { 4202 // Unknown caller or declarations are not analyzable, we give up. 4203 if (!Callee || !A.isFunctionIPOAmendable(*Callee)) { 4204 4205 // Unknown callees might contain parallel regions, except if they have 4206 // an appropriate assumption attached. 4207 if (!(AssumptionAA.hasAssumption("omp_no_openmp") || 4208 AssumptionAA.hasAssumption("omp_no_parallelism"))) 4209 ReachedUnknownParallelRegions.insert(&CB); 4210 4211 // If SPMDCompatibilityTracker is not fixed, we need to give up on the 4212 // idea we can run something unknown in SPMD-mode. 4213 if (!SPMDCompatibilityTracker.isAtFixpoint()) { 4214 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 4215 SPMDCompatibilityTracker.insert(&CB); 4216 } 4217 4218 // We have updated the state for this unknown call properly, there won't 4219 // be any change so we indicate a fixpoint. 4220 indicateOptimisticFixpoint(); 4221 } 4222 // If the callee is known and can be used in IPO, we will update the state 4223 // based on the callee state in updateImpl. 4224 return; 4225 } 4226 4227 const unsigned int WrapperFunctionArgNo = 6; 4228 RuntimeFunction RF = It->getSecond(); 4229 switch (RF) { 4230 // All the functions we know are compatible with SPMD mode. 4231 case OMPRTL___kmpc_is_spmd_exec_mode: 4232 case OMPRTL___kmpc_distribute_static_fini: 4233 case OMPRTL___kmpc_for_static_fini: 4234 case OMPRTL___kmpc_global_thread_num: 4235 case OMPRTL___kmpc_get_hardware_num_threads_in_block: 4236 case OMPRTL___kmpc_get_hardware_num_blocks: 4237 case OMPRTL___kmpc_single: 4238 case OMPRTL___kmpc_end_single: 4239 case OMPRTL___kmpc_master: 4240 case OMPRTL___kmpc_end_master: 4241 case OMPRTL___kmpc_barrier: 4242 case OMPRTL___kmpc_nvptx_parallel_reduce_nowait_v2: 4243 case OMPRTL___kmpc_nvptx_teams_reduce_nowait_v2: 4244 case OMPRTL___kmpc_nvptx_end_reduce_nowait: 4245 break; 4246 case OMPRTL___kmpc_distribute_static_init_4: 4247 case OMPRTL___kmpc_distribute_static_init_4u: 4248 case OMPRTL___kmpc_distribute_static_init_8: 4249 case OMPRTL___kmpc_distribute_static_init_8u: 4250 case OMPRTL___kmpc_for_static_init_4: 4251 case OMPRTL___kmpc_for_static_init_4u: 4252 case OMPRTL___kmpc_for_static_init_8: 4253 case OMPRTL___kmpc_for_static_init_8u: { 4254 // Check the schedule and allow static schedule in SPMD mode. 4255 unsigned ScheduleArgOpNo = 2; 4256 auto *ScheduleTypeCI = 4257 dyn_cast<ConstantInt>(CB.getArgOperand(ScheduleArgOpNo)); 4258 unsigned ScheduleTypeVal = 4259 ScheduleTypeCI ? ScheduleTypeCI->getZExtValue() : 0; 4260 switch (OMPScheduleType(ScheduleTypeVal)) { 4261 case OMPScheduleType::Static: 4262 case OMPScheduleType::StaticChunked: 4263 case OMPScheduleType::Distribute: 4264 case OMPScheduleType::DistributeChunked: 4265 break; 4266 default: 4267 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 4268 SPMDCompatibilityTracker.insert(&CB); 4269 break; 4270 }; 4271 } break; 4272 case OMPRTL___kmpc_target_init: 4273 KernelInitCB = &CB; 4274 break; 4275 case OMPRTL___kmpc_target_deinit: 4276 KernelDeinitCB = &CB; 4277 break; 4278 case OMPRTL___kmpc_parallel_51: 4279 if (auto *ParallelRegion = dyn_cast<Function>( 4280 CB.getArgOperand(WrapperFunctionArgNo)->stripPointerCasts())) { 4281 ReachedKnownParallelRegions.insert(ParallelRegion); 4282 break; 4283 } 4284 // The condition above should usually get the parallel region function 4285 // pointer and record it. In the off chance it doesn't we assume the 4286 // worst. 4287 ReachedUnknownParallelRegions.insert(&CB); 4288 break; 4289 case OMPRTL___kmpc_omp_task: 4290 // We do not look into tasks right now, just give up. 4291 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 4292 SPMDCompatibilityTracker.insert(&CB); 4293 ReachedUnknownParallelRegions.insert(&CB); 4294 break; 4295 case OMPRTL___kmpc_alloc_shared: 4296 case OMPRTL___kmpc_free_shared: 4297 // Return without setting a fixpoint, to be resolved in updateImpl. 4298 return; 4299 default: 4300 // Unknown OpenMP runtime calls cannot be executed in SPMD-mode, 4301 // generally. However, they do not hide parallel regions. 4302 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 4303 SPMDCompatibilityTracker.insert(&CB); 4304 break; 4305 } 4306 // All other OpenMP runtime calls will not reach parallel regions so they 4307 // can be safely ignored for now. Since it is a known OpenMP runtime call we 4308 // have now modeled all effects and there is no need for any update. 4309 indicateOptimisticFixpoint(); 4310 } 4311 4312 ChangeStatus updateImpl(Attributor &A) override { 4313 // TODO: Once we have call site specific value information we can provide 4314 // call site specific liveness information and then it makes 4315 // sense to specialize attributes for call sites arguments instead of 4316 // redirecting requests to the callee argument. 4317 Function *F = getAssociatedFunction(); 4318 4319 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 4320 const auto &It = OMPInfoCache.RuntimeFunctionIDMap.find(F); 4321 4322 // If F is not a runtime function, propagate the AAKernelInfo of the callee. 4323 if (It == OMPInfoCache.RuntimeFunctionIDMap.end()) { 4324 const IRPosition &FnPos = IRPosition::function(*F); 4325 auto &FnAA = A.getAAFor<AAKernelInfo>(*this, FnPos, DepClassTy::REQUIRED); 4326 if (getState() == FnAA.getState()) 4327 return ChangeStatus::UNCHANGED; 4328 getState() = FnAA.getState(); 4329 return ChangeStatus::CHANGED; 4330 } 4331 4332 // F is a runtime function that allocates or frees memory, check 4333 // AAHeapToStack and AAHeapToShared. 4334 KernelInfoState StateBefore = getState(); 4335 assert((It->getSecond() == OMPRTL___kmpc_alloc_shared || 4336 It->getSecond() == OMPRTL___kmpc_free_shared) && 4337 "Expected a __kmpc_alloc_shared or __kmpc_free_shared runtime call"); 4338 4339 CallBase &CB = cast<CallBase>(getAssociatedValue()); 4340 4341 auto &HeapToStackAA = A.getAAFor<AAHeapToStack>( 4342 *this, IRPosition::function(*CB.getCaller()), DepClassTy::OPTIONAL); 4343 auto &HeapToSharedAA = A.getAAFor<AAHeapToShared>( 4344 *this, IRPosition::function(*CB.getCaller()), DepClassTy::OPTIONAL); 4345 4346 RuntimeFunction RF = It->getSecond(); 4347 4348 switch (RF) { 4349 // If neither HeapToStack nor HeapToShared assume the call is removed, 4350 // assume SPMD incompatibility. 4351 case OMPRTL___kmpc_alloc_shared: 4352 if (!HeapToStackAA.isAssumedHeapToStack(CB) && 4353 !HeapToSharedAA.isAssumedHeapToShared(CB)) 4354 SPMDCompatibilityTracker.insert(&CB); 4355 break; 4356 case OMPRTL___kmpc_free_shared: 4357 if (!HeapToStackAA.isAssumedHeapToStackRemovedFree(CB) && 4358 !HeapToSharedAA.isAssumedHeapToSharedRemovedFree(CB)) 4359 SPMDCompatibilityTracker.insert(&CB); 4360 break; 4361 default: 4362 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 4363 SPMDCompatibilityTracker.insert(&CB); 4364 } 4365 4366 return StateBefore == getState() ? ChangeStatus::UNCHANGED 4367 : ChangeStatus::CHANGED; 4368 } 4369 }; 4370 4371 struct AAFoldRuntimeCall 4372 : public StateWrapper<BooleanState, AbstractAttribute> { 4373 using Base = StateWrapper<BooleanState, AbstractAttribute>; 4374 4375 AAFoldRuntimeCall(const IRPosition &IRP, Attributor &A) : Base(IRP) {} 4376 4377 /// Statistics are tracked as part of manifest for now. 4378 void trackStatistics() const override {} 4379 4380 /// Create an abstract attribute biew for the position \p IRP. 4381 static AAFoldRuntimeCall &createForPosition(const IRPosition &IRP, 4382 Attributor &A); 4383 4384 /// See AbstractAttribute::getName() 4385 const std::string getName() const override { return "AAFoldRuntimeCall"; } 4386 4387 /// See AbstractAttribute::getIdAddr() 4388 const char *getIdAddr() const override { return &ID; } 4389 4390 /// This function should return true if the type of the \p AA is 4391 /// AAFoldRuntimeCall 4392 static bool classof(const AbstractAttribute *AA) { 4393 return (AA->getIdAddr() == &ID); 4394 } 4395 4396 static const char ID; 4397 }; 4398 4399 struct AAFoldRuntimeCallCallSiteReturned : AAFoldRuntimeCall { 4400 AAFoldRuntimeCallCallSiteReturned(const IRPosition &IRP, Attributor &A) 4401 : AAFoldRuntimeCall(IRP, A) {} 4402 4403 /// See AbstractAttribute::getAsStr() 4404 const std::string getAsStr() const override { 4405 if (!isValidState()) 4406 return "<invalid>"; 4407 4408 std::string Str("simplified value: "); 4409 4410 if (!SimplifiedValue.hasValue()) 4411 return Str + std::string("none"); 4412 4413 if (!SimplifiedValue.getValue()) 4414 return Str + std::string("nullptr"); 4415 4416 if (ConstantInt *CI = dyn_cast<ConstantInt>(SimplifiedValue.getValue())) 4417 return Str + std::to_string(CI->getSExtValue()); 4418 4419 return Str + std::string("unknown"); 4420 } 4421 4422 void initialize(Attributor &A) override { 4423 if (DisableOpenMPOptFolding) 4424 indicatePessimisticFixpoint(); 4425 4426 Function *Callee = getAssociatedFunction(); 4427 4428 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 4429 const auto &It = OMPInfoCache.RuntimeFunctionIDMap.find(Callee); 4430 assert(It != OMPInfoCache.RuntimeFunctionIDMap.end() && 4431 "Expected a known OpenMP runtime function"); 4432 4433 RFKind = It->getSecond(); 4434 4435 CallBase &CB = cast<CallBase>(getAssociatedValue()); 4436 A.registerSimplificationCallback( 4437 IRPosition::callsite_returned(CB), 4438 [&](const IRPosition &IRP, const AbstractAttribute *AA, 4439 bool &UsedAssumedInformation) -> Optional<Value *> { 4440 assert((isValidState() || (SimplifiedValue.hasValue() && 4441 SimplifiedValue.getValue() == nullptr)) && 4442 "Unexpected invalid state!"); 4443 4444 if (!isAtFixpoint()) { 4445 UsedAssumedInformation = true; 4446 if (AA) 4447 A.recordDependence(*this, *AA, DepClassTy::OPTIONAL); 4448 } 4449 return SimplifiedValue; 4450 }); 4451 } 4452 4453 ChangeStatus updateImpl(Attributor &A) override { 4454 ChangeStatus Changed = ChangeStatus::UNCHANGED; 4455 switch (RFKind) { 4456 case OMPRTL___kmpc_is_spmd_exec_mode: 4457 Changed |= foldIsSPMDExecMode(A); 4458 break; 4459 case OMPRTL___kmpc_is_generic_main_thread_id: 4460 Changed |= foldIsGenericMainThread(A); 4461 break; 4462 case OMPRTL___kmpc_parallel_level: 4463 Changed |= foldParallelLevel(A); 4464 break; 4465 case OMPRTL___kmpc_get_hardware_num_threads_in_block: 4466 Changed = Changed | foldKernelFnAttribute(A, "omp_target_thread_limit"); 4467 break; 4468 case OMPRTL___kmpc_get_hardware_num_blocks: 4469 Changed = Changed | foldKernelFnAttribute(A, "omp_target_num_teams"); 4470 break; 4471 default: 4472 llvm_unreachable("Unhandled OpenMP runtime function!"); 4473 } 4474 4475 return Changed; 4476 } 4477 4478 ChangeStatus manifest(Attributor &A) override { 4479 ChangeStatus Changed = ChangeStatus::UNCHANGED; 4480 4481 if (SimplifiedValue.hasValue() && SimplifiedValue.getValue()) { 4482 Instruction &I = *getCtxI(); 4483 A.changeValueAfterManifest(I, **SimplifiedValue); 4484 A.deleteAfterManifest(I); 4485 4486 CallBase *CB = dyn_cast<CallBase>(&I); 4487 auto Remark = [&](OptimizationRemark OR) { 4488 if (auto *C = dyn_cast<ConstantInt>(*SimplifiedValue)) 4489 return OR << "Replacing OpenMP runtime call " 4490 << CB->getCalledFunction()->getName() << " with " 4491 << ore::NV("FoldedValue", C->getZExtValue()) << "."; 4492 return OR << "Replacing OpenMP runtime call " 4493 << CB->getCalledFunction()->getName() << "."; 4494 }; 4495 4496 if (CB && EnableVerboseRemarks) 4497 A.emitRemark<OptimizationRemark>(CB, "OMP180", Remark); 4498 4499 LLVM_DEBUG(dbgs() << TAG << "Replacing runtime call: " << I << " with " 4500 << **SimplifiedValue << "\n"); 4501 4502 Changed = ChangeStatus::CHANGED; 4503 } 4504 4505 return Changed; 4506 } 4507 4508 ChangeStatus indicatePessimisticFixpoint() override { 4509 SimplifiedValue = nullptr; 4510 return AAFoldRuntimeCall::indicatePessimisticFixpoint(); 4511 } 4512 4513 private: 4514 /// Fold __kmpc_is_spmd_exec_mode into a constant if possible. 4515 ChangeStatus foldIsSPMDExecMode(Attributor &A) { 4516 Optional<Value *> SimplifiedValueBefore = SimplifiedValue; 4517 4518 unsigned AssumedSPMDCount = 0, KnownSPMDCount = 0; 4519 unsigned AssumedNonSPMDCount = 0, KnownNonSPMDCount = 0; 4520 auto &CallerKernelInfoAA = A.getAAFor<AAKernelInfo>( 4521 *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED); 4522 4523 if (!CallerKernelInfoAA.ReachingKernelEntries.isValidState()) 4524 return indicatePessimisticFixpoint(); 4525 4526 for (Kernel K : CallerKernelInfoAA.ReachingKernelEntries) { 4527 auto &AA = A.getAAFor<AAKernelInfo>(*this, IRPosition::function(*K), 4528 DepClassTy::REQUIRED); 4529 4530 if (!AA.isValidState()) { 4531 SimplifiedValue = nullptr; 4532 return indicatePessimisticFixpoint(); 4533 } 4534 4535 if (AA.SPMDCompatibilityTracker.isAssumed()) { 4536 if (AA.SPMDCompatibilityTracker.isAtFixpoint()) 4537 ++KnownSPMDCount; 4538 else 4539 ++AssumedSPMDCount; 4540 } else { 4541 if (AA.SPMDCompatibilityTracker.isAtFixpoint()) 4542 ++KnownNonSPMDCount; 4543 else 4544 ++AssumedNonSPMDCount; 4545 } 4546 } 4547 4548 if ((AssumedSPMDCount + KnownSPMDCount) && 4549 (AssumedNonSPMDCount + KnownNonSPMDCount)) 4550 return indicatePessimisticFixpoint(); 4551 4552 auto &Ctx = getAnchorValue().getContext(); 4553 if (KnownSPMDCount || AssumedSPMDCount) { 4554 assert(KnownNonSPMDCount == 0 && AssumedNonSPMDCount == 0 && 4555 "Expected only SPMD kernels!"); 4556 // All reaching kernels are in SPMD mode. Update all function calls to 4557 // __kmpc_is_spmd_exec_mode to 1. 4558 SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), true); 4559 } else if (KnownNonSPMDCount || AssumedNonSPMDCount) { 4560 assert(KnownSPMDCount == 0 && AssumedSPMDCount == 0 && 4561 "Expected only non-SPMD kernels!"); 4562 // All reaching kernels are in non-SPMD mode. Update all function 4563 // calls to __kmpc_is_spmd_exec_mode to 0. 4564 SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), false); 4565 } else { 4566 // We have empty reaching kernels, therefore we cannot tell if the 4567 // associated call site can be folded. At this moment, SimplifiedValue 4568 // must be none. 4569 assert(!SimplifiedValue.hasValue() && "SimplifiedValue should be none"); 4570 } 4571 4572 return SimplifiedValue == SimplifiedValueBefore ? ChangeStatus::UNCHANGED 4573 : ChangeStatus::CHANGED; 4574 } 4575 4576 /// Fold __kmpc_is_generic_main_thread_id into a constant if possible. 4577 ChangeStatus foldIsGenericMainThread(Attributor &A) { 4578 Optional<Value *> SimplifiedValueBefore = SimplifiedValue; 4579 4580 CallBase &CB = cast<CallBase>(getAssociatedValue()); 4581 Function *F = CB.getFunction(); 4582 const auto &ExecutionDomainAA = A.getAAFor<AAExecutionDomain>( 4583 *this, IRPosition::function(*F), DepClassTy::REQUIRED); 4584 4585 if (!ExecutionDomainAA.isValidState()) 4586 return indicatePessimisticFixpoint(); 4587 4588 auto &Ctx = getAnchorValue().getContext(); 4589 if (ExecutionDomainAA.isExecutedByInitialThreadOnly(CB)) 4590 SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), true); 4591 else 4592 return indicatePessimisticFixpoint(); 4593 4594 return SimplifiedValue == SimplifiedValueBefore ? ChangeStatus::UNCHANGED 4595 : ChangeStatus::CHANGED; 4596 } 4597 4598 /// Fold __kmpc_parallel_level into a constant if possible. 4599 ChangeStatus foldParallelLevel(Attributor &A) { 4600 Optional<Value *> SimplifiedValueBefore = SimplifiedValue; 4601 4602 auto &CallerKernelInfoAA = A.getAAFor<AAKernelInfo>( 4603 *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED); 4604 4605 if (!CallerKernelInfoAA.ParallelLevels.isValidState()) 4606 return indicatePessimisticFixpoint(); 4607 4608 if (!CallerKernelInfoAA.ReachingKernelEntries.isValidState()) 4609 return indicatePessimisticFixpoint(); 4610 4611 if (CallerKernelInfoAA.ReachingKernelEntries.empty()) { 4612 assert(!SimplifiedValue.hasValue() && 4613 "SimplifiedValue should keep none at this point"); 4614 return ChangeStatus::UNCHANGED; 4615 } 4616 4617 unsigned AssumedSPMDCount = 0, KnownSPMDCount = 0; 4618 unsigned AssumedNonSPMDCount = 0, KnownNonSPMDCount = 0; 4619 for (Kernel K : CallerKernelInfoAA.ReachingKernelEntries) { 4620 auto &AA = A.getAAFor<AAKernelInfo>(*this, IRPosition::function(*K), 4621 DepClassTy::REQUIRED); 4622 if (!AA.SPMDCompatibilityTracker.isValidState()) 4623 return indicatePessimisticFixpoint(); 4624 4625 if (AA.SPMDCompatibilityTracker.isAssumed()) { 4626 if (AA.SPMDCompatibilityTracker.isAtFixpoint()) 4627 ++KnownSPMDCount; 4628 else 4629 ++AssumedSPMDCount; 4630 } else { 4631 if (AA.SPMDCompatibilityTracker.isAtFixpoint()) 4632 ++KnownNonSPMDCount; 4633 else 4634 ++AssumedNonSPMDCount; 4635 } 4636 } 4637 4638 if ((AssumedSPMDCount + KnownSPMDCount) && 4639 (AssumedNonSPMDCount + KnownNonSPMDCount)) 4640 return indicatePessimisticFixpoint(); 4641 4642 auto &Ctx = getAnchorValue().getContext(); 4643 // If the caller can only be reached by SPMD kernel entries, the parallel 4644 // level is 1. Similarly, if the caller can only be reached by non-SPMD 4645 // kernel entries, it is 0. 4646 if (AssumedSPMDCount || KnownSPMDCount) { 4647 assert(KnownNonSPMDCount == 0 && AssumedNonSPMDCount == 0 && 4648 "Expected only SPMD kernels!"); 4649 SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), 1); 4650 } else { 4651 assert(KnownSPMDCount == 0 && AssumedSPMDCount == 0 && 4652 "Expected only non-SPMD kernels!"); 4653 SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), 0); 4654 } 4655 return SimplifiedValue == SimplifiedValueBefore ? ChangeStatus::UNCHANGED 4656 : ChangeStatus::CHANGED; 4657 } 4658 4659 ChangeStatus foldKernelFnAttribute(Attributor &A, llvm::StringRef Attr) { 4660 // Specialize only if all the calls agree with the attribute constant value 4661 int32_t CurrentAttrValue = -1; 4662 Optional<Value *> SimplifiedValueBefore = SimplifiedValue; 4663 4664 auto &CallerKernelInfoAA = A.getAAFor<AAKernelInfo>( 4665 *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED); 4666 4667 if (!CallerKernelInfoAA.ReachingKernelEntries.isValidState()) 4668 return indicatePessimisticFixpoint(); 4669 4670 // Iterate over the kernels that reach this function 4671 for (Kernel K : CallerKernelInfoAA.ReachingKernelEntries) { 4672 int32_t NextAttrVal = -1; 4673 if (K->hasFnAttribute(Attr)) 4674 NextAttrVal = 4675 std::stoi(K->getFnAttribute(Attr).getValueAsString().str()); 4676 4677 if (NextAttrVal == -1 || 4678 (CurrentAttrValue != -1 && CurrentAttrValue != NextAttrVal)) 4679 return indicatePessimisticFixpoint(); 4680 CurrentAttrValue = NextAttrVal; 4681 } 4682 4683 if (CurrentAttrValue != -1) { 4684 auto &Ctx = getAnchorValue().getContext(); 4685 SimplifiedValue = 4686 ConstantInt::get(Type::getInt32Ty(Ctx), CurrentAttrValue); 4687 } 4688 return SimplifiedValue == SimplifiedValueBefore ? ChangeStatus::UNCHANGED 4689 : ChangeStatus::CHANGED; 4690 } 4691 4692 /// An optional value the associated value is assumed to fold to. That is, we 4693 /// assume the associated value (which is a call) can be replaced by this 4694 /// simplified value. 4695 Optional<Value *> SimplifiedValue; 4696 4697 /// The runtime function kind of the callee of the associated call site. 4698 RuntimeFunction RFKind; 4699 }; 4700 4701 } // namespace 4702 4703 /// Register folding callsite 4704 void OpenMPOpt::registerFoldRuntimeCall(RuntimeFunction RF) { 4705 auto &RFI = OMPInfoCache.RFIs[RF]; 4706 RFI.foreachUse(SCC, [&](Use &U, Function &F) { 4707 CallInst *CI = OpenMPOpt::getCallIfRegularCall(U, &RFI); 4708 if (!CI) 4709 return false; 4710 A.getOrCreateAAFor<AAFoldRuntimeCall>( 4711 IRPosition::callsite_returned(*CI), /* QueryingAA */ nullptr, 4712 DepClassTy::NONE, /* ForceUpdate */ false, 4713 /* UpdateAfterInit */ false); 4714 return false; 4715 }); 4716 } 4717 4718 void OpenMPOpt::registerAAs(bool IsModulePass) { 4719 if (SCC.empty()) 4720 4721 return; 4722 if (IsModulePass) { 4723 // Ensure we create the AAKernelInfo AAs first and without triggering an 4724 // update. This will make sure we register all value simplification 4725 // callbacks before any other AA has the chance to create an AAValueSimplify 4726 // or similar. 4727 for (Function *Kernel : OMPInfoCache.Kernels) 4728 A.getOrCreateAAFor<AAKernelInfo>( 4729 IRPosition::function(*Kernel), /* QueryingAA */ nullptr, 4730 DepClassTy::NONE, /* ForceUpdate */ false, 4731 /* UpdateAfterInit */ false); 4732 4733 registerFoldRuntimeCall(OMPRTL___kmpc_is_generic_main_thread_id); 4734 registerFoldRuntimeCall(OMPRTL___kmpc_is_spmd_exec_mode); 4735 registerFoldRuntimeCall(OMPRTL___kmpc_parallel_level); 4736 registerFoldRuntimeCall(OMPRTL___kmpc_get_hardware_num_threads_in_block); 4737 registerFoldRuntimeCall(OMPRTL___kmpc_get_hardware_num_blocks); 4738 } 4739 4740 // Create CallSite AA for all Getters. 4741 for (int Idx = 0; Idx < OMPInfoCache.ICVs.size() - 1; ++Idx) { 4742 auto ICVInfo = OMPInfoCache.ICVs[static_cast<InternalControlVar>(Idx)]; 4743 4744 auto &GetterRFI = OMPInfoCache.RFIs[ICVInfo.Getter]; 4745 4746 auto CreateAA = [&](Use &U, Function &Caller) { 4747 CallInst *CI = OpenMPOpt::getCallIfRegularCall(U, &GetterRFI); 4748 if (!CI) 4749 return false; 4750 4751 auto &CB = cast<CallBase>(*CI); 4752 4753 IRPosition CBPos = IRPosition::callsite_function(CB); 4754 A.getOrCreateAAFor<AAICVTracker>(CBPos); 4755 return false; 4756 }; 4757 4758 GetterRFI.foreachUse(SCC, CreateAA); 4759 } 4760 auto &GlobalizationRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared]; 4761 auto CreateAA = [&](Use &U, Function &F) { 4762 A.getOrCreateAAFor<AAHeapToShared>(IRPosition::function(F)); 4763 return false; 4764 }; 4765 if (!DisableOpenMPOptDeglobalization) 4766 GlobalizationRFI.foreachUse(SCC, CreateAA); 4767 4768 // Create an ExecutionDomain AA for every function and a HeapToStack AA for 4769 // every function if there is a device kernel. 4770 if (!isOpenMPDevice(M)) 4771 return; 4772 4773 for (auto *F : SCC) { 4774 if (F->isDeclaration()) 4775 continue; 4776 4777 A.getOrCreateAAFor<AAExecutionDomain>(IRPosition::function(*F)); 4778 if (!DisableOpenMPOptDeglobalization) 4779 A.getOrCreateAAFor<AAHeapToStack>(IRPosition::function(*F)); 4780 4781 for (auto &I : instructions(*F)) { 4782 if (auto *LI = dyn_cast<LoadInst>(&I)) { 4783 bool UsedAssumedInformation = false; 4784 A.getAssumedSimplified(IRPosition::value(*LI), /* AA */ nullptr, 4785 UsedAssumedInformation); 4786 } else if (auto *SI = dyn_cast<StoreInst>(&I)) { 4787 A.getOrCreateAAFor<AAIsDead>(IRPosition::value(*SI)); 4788 } 4789 } 4790 } 4791 } 4792 4793 const char AAICVTracker::ID = 0; 4794 const char AAKernelInfo::ID = 0; 4795 const char AAExecutionDomain::ID = 0; 4796 const char AAHeapToShared::ID = 0; 4797 const char AAFoldRuntimeCall::ID = 0; 4798 4799 AAICVTracker &AAICVTracker::createForPosition(const IRPosition &IRP, 4800 Attributor &A) { 4801 AAICVTracker *AA = nullptr; 4802 switch (IRP.getPositionKind()) { 4803 case IRPosition::IRP_INVALID: 4804 case IRPosition::IRP_FLOAT: 4805 case IRPosition::IRP_ARGUMENT: 4806 case IRPosition::IRP_CALL_SITE_ARGUMENT: 4807 llvm_unreachable("ICVTracker can only be created for function position!"); 4808 case IRPosition::IRP_RETURNED: 4809 AA = new (A.Allocator) AAICVTrackerFunctionReturned(IRP, A); 4810 break; 4811 case IRPosition::IRP_CALL_SITE_RETURNED: 4812 AA = new (A.Allocator) AAICVTrackerCallSiteReturned(IRP, A); 4813 break; 4814 case IRPosition::IRP_CALL_SITE: 4815 AA = new (A.Allocator) AAICVTrackerCallSite(IRP, A); 4816 break; 4817 case IRPosition::IRP_FUNCTION: 4818 AA = new (A.Allocator) AAICVTrackerFunction(IRP, A); 4819 break; 4820 } 4821 4822 return *AA; 4823 } 4824 4825 AAExecutionDomain &AAExecutionDomain::createForPosition(const IRPosition &IRP, 4826 Attributor &A) { 4827 AAExecutionDomainFunction *AA = nullptr; 4828 switch (IRP.getPositionKind()) { 4829 case IRPosition::IRP_INVALID: 4830 case IRPosition::IRP_FLOAT: 4831 case IRPosition::IRP_ARGUMENT: 4832 case IRPosition::IRP_CALL_SITE_ARGUMENT: 4833 case IRPosition::IRP_RETURNED: 4834 case IRPosition::IRP_CALL_SITE_RETURNED: 4835 case IRPosition::IRP_CALL_SITE: 4836 llvm_unreachable( 4837 "AAExecutionDomain can only be created for function position!"); 4838 case IRPosition::IRP_FUNCTION: 4839 AA = new (A.Allocator) AAExecutionDomainFunction(IRP, A); 4840 break; 4841 } 4842 4843 return *AA; 4844 } 4845 4846 AAHeapToShared &AAHeapToShared::createForPosition(const IRPosition &IRP, 4847 Attributor &A) { 4848 AAHeapToSharedFunction *AA = nullptr; 4849 switch (IRP.getPositionKind()) { 4850 case IRPosition::IRP_INVALID: 4851 case IRPosition::IRP_FLOAT: 4852 case IRPosition::IRP_ARGUMENT: 4853 case IRPosition::IRP_CALL_SITE_ARGUMENT: 4854 case IRPosition::IRP_RETURNED: 4855 case IRPosition::IRP_CALL_SITE_RETURNED: 4856 case IRPosition::IRP_CALL_SITE: 4857 llvm_unreachable( 4858 "AAHeapToShared can only be created for function position!"); 4859 case IRPosition::IRP_FUNCTION: 4860 AA = new (A.Allocator) AAHeapToSharedFunction(IRP, A); 4861 break; 4862 } 4863 4864 return *AA; 4865 } 4866 4867 AAKernelInfo &AAKernelInfo::createForPosition(const IRPosition &IRP, 4868 Attributor &A) { 4869 AAKernelInfo *AA = nullptr; 4870 switch (IRP.getPositionKind()) { 4871 case IRPosition::IRP_INVALID: 4872 case IRPosition::IRP_FLOAT: 4873 case IRPosition::IRP_ARGUMENT: 4874 case IRPosition::IRP_RETURNED: 4875 case IRPosition::IRP_CALL_SITE_RETURNED: 4876 case IRPosition::IRP_CALL_SITE_ARGUMENT: 4877 llvm_unreachable("KernelInfo can only be created for function position!"); 4878 case IRPosition::IRP_CALL_SITE: 4879 AA = new (A.Allocator) AAKernelInfoCallSite(IRP, A); 4880 break; 4881 case IRPosition::IRP_FUNCTION: 4882 AA = new (A.Allocator) AAKernelInfoFunction(IRP, A); 4883 break; 4884 } 4885 4886 return *AA; 4887 } 4888 4889 AAFoldRuntimeCall &AAFoldRuntimeCall::createForPosition(const IRPosition &IRP, 4890 Attributor &A) { 4891 AAFoldRuntimeCall *AA = nullptr; 4892 switch (IRP.getPositionKind()) { 4893 case IRPosition::IRP_INVALID: 4894 case IRPosition::IRP_FLOAT: 4895 case IRPosition::IRP_ARGUMENT: 4896 case IRPosition::IRP_RETURNED: 4897 case IRPosition::IRP_FUNCTION: 4898 case IRPosition::IRP_CALL_SITE: 4899 case IRPosition::IRP_CALL_SITE_ARGUMENT: 4900 llvm_unreachable("KernelInfo can only be created for call site position!"); 4901 case IRPosition::IRP_CALL_SITE_RETURNED: 4902 AA = new (A.Allocator) AAFoldRuntimeCallCallSiteReturned(IRP, A); 4903 break; 4904 } 4905 4906 return *AA; 4907 } 4908 4909 PreservedAnalyses OpenMPOptPass::run(Module &M, ModuleAnalysisManager &AM) { 4910 if (!containsOpenMP(M)) 4911 return PreservedAnalyses::all(); 4912 if (DisableOpenMPOptimizations) 4913 return PreservedAnalyses::all(); 4914 4915 FunctionAnalysisManager &FAM = 4916 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 4917 KernelSet Kernels = getDeviceKernels(M); 4918 4919 auto IsCalled = [&](Function &F) { 4920 if (Kernels.contains(&F)) 4921 return true; 4922 for (const User *U : F.users()) 4923 if (!isa<BlockAddress>(U)) 4924 return true; 4925 return false; 4926 }; 4927 4928 auto EmitRemark = [&](Function &F) { 4929 auto &ORE = FAM.getResult<OptimizationRemarkEmitterAnalysis>(F); 4930 ORE.emit([&]() { 4931 OptimizationRemarkAnalysis ORA(DEBUG_TYPE, "OMP140", &F); 4932 return ORA << "Could not internalize function. " 4933 << "Some optimizations may not be possible. [OMP140]"; 4934 }); 4935 }; 4936 4937 // Create internal copies of each function if this is a kernel Module. This 4938 // allows iterprocedural passes to see every call edge. 4939 DenseMap<Function *, Function *> InternalizedMap; 4940 if (isOpenMPDevice(M)) { 4941 SmallPtrSet<Function *, 16> InternalizeFns; 4942 for (Function &F : M) 4943 if (!F.isDeclaration() && !Kernels.contains(&F) && IsCalled(F) && 4944 !DisableInternalization) { 4945 if (Attributor::isInternalizable(F)) { 4946 InternalizeFns.insert(&F); 4947 } else if (!F.hasLocalLinkage() && !F.hasFnAttribute(Attribute::Cold)) { 4948 EmitRemark(F); 4949 } 4950 } 4951 4952 Attributor::internalizeFunctions(InternalizeFns, InternalizedMap); 4953 } 4954 4955 // Look at every function in the Module unless it was internalized. 4956 SmallVector<Function *, 16> SCC; 4957 for (Function &F : M) 4958 if (!F.isDeclaration() && !InternalizedMap.lookup(&F)) 4959 SCC.push_back(&F); 4960 4961 if (SCC.empty()) 4962 return PreservedAnalyses::all(); 4963 4964 AnalysisGetter AG(FAM); 4965 4966 auto OREGetter = [&FAM](Function *F) -> OptimizationRemarkEmitter & { 4967 return FAM.getResult<OptimizationRemarkEmitterAnalysis>(*F); 4968 }; 4969 4970 BumpPtrAllocator Allocator; 4971 CallGraphUpdater CGUpdater; 4972 4973 SetVector<Function *> Functions(SCC.begin(), SCC.end()); 4974 OMPInformationCache InfoCache(M, AG, Allocator, /*CGSCC*/ Functions, Kernels); 4975 4976 unsigned MaxFixpointIterations = 4977 (isOpenMPDevice(M)) ? SetFixpointIterations : 32; 4978 Attributor A(Functions, InfoCache, CGUpdater, nullptr, true, false, 4979 MaxFixpointIterations, OREGetter, DEBUG_TYPE); 4980 4981 OpenMPOpt OMPOpt(SCC, CGUpdater, OREGetter, InfoCache, A); 4982 bool Changed = OMPOpt.run(true); 4983 4984 // Optionally inline device functions for potentially better performance. 4985 if (AlwaysInlineDeviceFunctions && isOpenMPDevice(M)) 4986 for (Function &F : M) 4987 if (!F.isDeclaration() && !Kernels.contains(&F) && 4988 !F.hasFnAttribute(Attribute::NoInline)) 4989 F.addFnAttr(Attribute::AlwaysInline); 4990 4991 if (PrintModuleAfterOptimizations) 4992 LLVM_DEBUG(dbgs() << TAG << "Module after OpenMPOpt Module Pass:\n" << M); 4993 4994 if (Changed) 4995 return PreservedAnalyses::none(); 4996 4997 return PreservedAnalyses::all(); 4998 } 4999 5000 PreservedAnalyses OpenMPOptCGSCCPass::run(LazyCallGraph::SCC &C, 5001 CGSCCAnalysisManager &AM, 5002 LazyCallGraph &CG, 5003 CGSCCUpdateResult &UR) { 5004 if (!containsOpenMP(*C.begin()->getFunction().getParent())) 5005 return PreservedAnalyses::all(); 5006 if (DisableOpenMPOptimizations) 5007 return PreservedAnalyses::all(); 5008 5009 SmallVector<Function *, 16> SCC; 5010 // If there are kernels in the module, we have to run on all SCC's. 5011 for (LazyCallGraph::Node &N : C) { 5012 Function *Fn = &N.getFunction(); 5013 SCC.push_back(Fn); 5014 } 5015 5016 if (SCC.empty()) 5017 return PreservedAnalyses::all(); 5018 5019 Module &M = *C.begin()->getFunction().getParent(); 5020 5021 KernelSet Kernels = getDeviceKernels(M); 5022 5023 FunctionAnalysisManager &FAM = 5024 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager(); 5025 5026 AnalysisGetter AG(FAM); 5027 5028 auto OREGetter = [&FAM](Function *F) -> OptimizationRemarkEmitter & { 5029 return FAM.getResult<OptimizationRemarkEmitterAnalysis>(*F); 5030 }; 5031 5032 BumpPtrAllocator Allocator; 5033 CallGraphUpdater CGUpdater; 5034 CGUpdater.initialize(CG, C, AM, UR); 5035 5036 SetVector<Function *> Functions(SCC.begin(), SCC.end()); 5037 OMPInformationCache InfoCache(*(Functions.back()->getParent()), AG, Allocator, 5038 /*CGSCC*/ Functions, Kernels); 5039 5040 unsigned MaxFixpointIterations = 5041 (isOpenMPDevice(M)) ? SetFixpointIterations : 32; 5042 Attributor A(Functions, InfoCache, CGUpdater, nullptr, false, true, 5043 MaxFixpointIterations, OREGetter, DEBUG_TYPE); 5044 5045 OpenMPOpt OMPOpt(SCC, CGUpdater, OREGetter, InfoCache, A); 5046 bool Changed = OMPOpt.run(false); 5047 5048 if (PrintModuleAfterOptimizations) 5049 LLVM_DEBUG(dbgs() << TAG << "Module after OpenMPOpt CGSCC Pass:\n" << M); 5050 5051 if (Changed) 5052 return PreservedAnalyses::none(); 5053 5054 return PreservedAnalyses::all(); 5055 } 5056 5057 namespace { 5058 5059 struct OpenMPOptCGSCCLegacyPass : public CallGraphSCCPass { 5060 CallGraphUpdater CGUpdater; 5061 static char ID; 5062 5063 OpenMPOptCGSCCLegacyPass() : CallGraphSCCPass(ID) { 5064 initializeOpenMPOptCGSCCLegacyPassPass(*PassRegistry::getPassRegistry()); 5065 } 5066 5067 void getAnalysisUsage(AnalysisUsage &AU) const override { 5068 CallGraphSCCPass::getAnalysisUsage(AU); 5069 } 5070 5071 bool runOnSCC(CallGraphSCC &CGSCC) override { 5072 if (!containsOpenMP(CGSCC.getCallGraph().getModule())) 5073 return false; 5074 if (DisableOpenMPOptimizations || skipSCC(CGSCC)) 5075 return false; 5076 5077 SmallVector<Function *, 16> SCC; 5078 // If there are kernels in the module, we have to run on all SCC's. 5079 for (CallGraphNode *CGN : CGSCC) { 5080 Function *Fn = CGN->getFunction(); 5081 if (!Fn || Fn->isDeclaration()) 5082 continue; 5083 SCC.push_back(Fn); 5084 } 5085 5086 if (SCC.empty()) 5087 return false; 5088 5089 Module &M = CGSCC.getCallGraph().getModule(); 5090 KernelSet Kernels = getDeviceKernels(M); 5091 5092 CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph(); 5093 CGUpdater.initialize(CG, CGSCC); 5094 5095 // Maintain a map of functions to avoid rebuilding the ORE 5096 DenseMap<Function *, std::unique_ptr<OptimizationRemarkEmitter>> OREMap; 5097 auto OREGetter = [&OREMap](Function *F) -> OptimizationRemarkEmitter & { 5098 std::unique_ptr<OptimizationRemarkEmitter> &ORE = OREMap[F]; 5099 if (!ORE) 5100 ORE = std::make_unique<OptimizationRemarkEmitter>(F); 5101 return *ORE; 5102 }; 5103 5104 AnalysisGetter AG; 5105 SetVector<Function *> Functions(SCC.begin(), SCC.end()); 5106 BumpPtrAllocator Allocator; 5107 OMPInformationCache InfoCache(*(Functions.back()->getParent()), AG, 5108 Allocator, 5109 /*CGSCC*/ Functions, Kernels); 5110 5111 unsigned MaxFixpointIterations = 5112 (isOpenMPDevice(M)) ? SetFixpointIterations : 32; 5113 Attributor A(Functions, InfoCache, CGUpdater, nullptr, false, true, 5114 MaxFixpointIterations, OREGetter, DEBUG_TYPE); 5115 5116 OpenMPOpt OMPOpt(SCC, CGUpdater, OREGetter, InfoCache, A); 5117 bool Result = OMPOpt.run(false); 5118 5119 if (PrintModuleAfterOptimizations) 5120 LLVM_DEBUG(dbgs() << TAG << "Module after OpenMPOpt CGSCC Pass:\n" << M); 5121 5122 return Result; 5123 } 5124 5125 bool doFinalization(CallGraph &CG) override { return CGUpdater.finalize(); } 5126 }; 5127 5128 } // end anonymous namespace 5129 5130 KernelSet llvm::omp::getDeviceKernels(Module &M) { 5131 // TODO: Create a more cross-platform way of determining device kernels. 5132 NamedMDNode *MD = M.getOrInsertNamedMetadata("nvvm.annotations"); 5133 KernelSet Kernels; 5134 5135 if (!MD) 5136 return Kernels; 5137 5138 for (auto *Op : MD->operands()) { 5139 if (Op->getNumOperands() < 2) 5140 continue; 5141 MDString *KindID = dyn_cast<MDString>(Op->getOperand(1)); 5142 if (!KindID || KindID->getString() != "kernel") 5143 continue; 5144 5145 Function *KernelFn = 5146 mdconst::dyn_extract_or_null<Function>(Op->getOperand(0)); 5147 if (!KernelFn) 5148 continue; 5149 5150 ++NumOpenMPTargetRegionKernels; 5151 5152 Kernels.insert(KernelFn); 5153 } 5154 5155 return Kernels; 5156 } 5157 5158 bool llvm::omp::containsOpenMP(Module &M) { 5159 Metadata *MD = M.getModuleFlag("openmp"); 5160 if (!MD) 5161 return false; 5162 5163 return true; 5164 } 5165 5166 bool llvm::omp::isOpenMPDevice(Module &M) { 5167 Metadata *MD = M.getModuleFlag("openmp-device"); 5168 if (!MD) 5169 return false; 5170 5171 return true; 5172 } 5173 5174 char OpenMPOptCGSCCLegacyPass::ID = 0; 5175 5176 INITIALIZE_PASS_BEGIN(OpenMPOptCGSCCLegacyPass, "openmp-opt-cgscc", 5177 "OpenMP specific optimizations", false, false) 5178 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass) 5179 INITIALIZE_PASS_END(OpenMPOptCGSCCLegacyPass, "openmp-opt-cgscc", 5180 "OpenMP specific optimizations", false, false) 5181 5182 Pass *llvm::createOpenMPOptCGSCCLegacyPass() { 5183 return new OpenMPOptCGSCCLegacyPass(); 5184 } 5185