1 //===-- IPO/OpenMPOpt.cpp - Collection of OpenMP specific optimizations ---===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // OpenMP specific optimizations: 10 // 11 // - Deduplication of runtime calls, e.g., omp_get_thread_num. 12 // - Replacing globalized device memory with stack memory. 13 // - Replacing globalized device memory with shared memory. 14 // - Parallel region merging. 15 // - Transforming generic-mode device kernels to SPMD mode. 16 // - Specializing the state machine for generic-mode device kernels. 17 // 18 //===----------------------------------------------------------------------===// 19 20 #include "llvm/Transforms/IPO/OpenMPOpt.h" 21 22 #include "llvm/ADT/EnumeratedArray.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/Analysis/CallGraph.h" 26 #include "llvm/Analysis/CallGraphSCCPass.h" 27 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 28 #include "llvm/Analysis/ValueTracking.h" 29 #include "llvm/Frontend/OpenMP/OMPConstants.h" 30 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 31 #include "llvm/IR/Assumptions.h" 32 #include "llvm/IR/DiagnosticInfo.h" 33 #include "llvm/IR/GlobalValue.h" 34 #include "llvm/IR/Instruction.h" 35 #include "llvm/IR/IntrinsicInst.h" 36 #include "llvm/InitializePasses.h" 37 #include "llvm/Support/CommandLine.h" 38 #include "llvm/Transforms/IPO.h" 39 #include "llvm/Transforms/IPO/Attributor.h" 40 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 41 #include "llvm/Transforms/Utils/CallGraphUpdater.h" 42 #include "llvm/Transforms/Utils/CodeExtractor.h" 43 44 using namespace llvm; 45 using namespace omp; 46 47 #define DEBUG_TYPE "openmp-opt" 48 49 static cl::opt<bool> DisableOpenMPOptimizations( 50 "openmp-opt-disable", cl::ZeroOrMore, 51 cl::desc("Disable OpenMP specific optimizations."), cl::Hidden, 52 cl::init(false)); 53 54 static cl::opt<bool> EnableParallelRegionMerging( 55 "openmp-opt-enable-merging", cl::ZeroOrMore, 56 cl::desc("Enable the OpenMP region merging optimization."), cl::Hidden, 57 cl::init(false)); 58 59 static cl::opt<bool> 60 DisableInternalization("openmp-opt-disable-internalization", cl::ZeroOrMore, 61 cl::desc("Disable function internalization."), 62 cl::Hidden, cl::init(false)); 63 64 static cl::opt<bool> PrintICVValues("openmp-print-icv-values", cl::init(false), 65 cl::Hidden); 66 static cl::opt<bool> PrintOpenMPKernels("openmp-print-gpu-kernels", 67 cl::init(false), cl::Hidden); 68 69 static cl::opt<bool> HideMemoryTransferLatency( 70 "openmp-hide-memory-transfer-latency", 71 cl::desc("[WIP] Tries to hide the latency of host to device memory" 72 " transfers"), 73 cl::Hidden, cl::init(false)); 74 75 static cl::opt<bool> DisableOpenMPOptDeglobalization( 76 "openmp-opt-disable-deglobalization", cl::ZeroOrMore, 77 cl::desc("Disable OpenMP optimizations involving deglobalization."), 78 cl::Hidden, cl::init(false)); 79 80 static cl::opt<bool> DisableOpenMPOptSPMDization( 81 "openmp-opt-disable-spmdization", cl::ZeroOrMore, 82 cl::desc("Disable OpenMP optimizations involving SPMD-ization."), 83 cl::Hidden, cl::init(false)); 84 85 static cl::opt<bool> DisableOpenMPOptFolding( 86 "openmp-opt-disable-folding", cl::ZeroOrMore, 87 cl::desc("Disable OpenMP optimizations involving folding."), cl::Hidden, 88 cl::init(false)); 89 90 static cl::opt<bool> DisableOpenMPOptStateMachineRewrite( 91 "openmp-opt-disable-state-machine-rewrite", cl::ZeroOrMore, 92 cl::desc("Disable OpenMP optimizations that replace the state machine."), 93 cl::Hidden, cl::init(false)); 94 95 static cl::opt<bool> PrintModuleAfterOptimizations( 96 "openmp-opt-print-module", cl::ZeroOrMore, 97 cl::desc("Print the current module after OpenMP optimizations."), 98 cl::Hidden, cl::init(false)); 99 100 STATISTIC(NumOpenMPRuntimeCallsDeduplicated, 101 "Number of OpenMP runtime calls deduplicated"); 102 STATISTIC(NumOpenMPParallelRegionsDeleted, 103 "Number of OpenMP parallel regions deleted"); 104 STATISTIC(NumOpenMPRuntimeFunctionsIdentified, 105 "Number of OpenMP runtime functions identified"); 106 STATISTIC(NumOpenMPRuntimeFunctionUsesIdentified, 107 "Number of OpenMP runtime function uses identified"); 108 STATISTIC(NumOpenMPTargetRegionKernels, 109 "Number of OpenMP target region entry points (=kernels) identified"); 110 STATISTIC(NumOpenMPTargetRegionKernelsSPMD, 111 "Number of OpenMP target region entry points (=kernels) executed in " 112 "SPMD-mode instead of generic-mode"); 113 STATISTIC(NumOpenMPTargetRegionKernelsWithoutStateMachine, 114 "Number of OpenMP target region entry points (=kernels) executed in " 115 "generic-mode without a state machines"); 116 STATISTIC(NumOpenMPTargetRegionKernelsCustomStateMachineWithFallback, 117 "Number of OpenMP target region entry points (=kernels) executed in " 118 "generic-mode with customized state machines with fallback"); 119 STATISTIC(NumOpenMPTargetRegionKernelsCustomStateMachineWithoutFallback, 120 "Number of OpenMP target region entry points (=kernels) executed in " 121 "generic-mode with customized state machines without fallback"); 122 STATISTIC( 123 NumOpenMPParallelRegionsReplacedInGPUStateMachine, 124 "Number of OpenMP parallel regions replaced with ID in GPU state machines"); 125 STATISTIC(NumOpenMPParallelRegionsMerged, 126 "Number of OpenMP parallel regions merged"); 127 STATISTIC(NumBytesMovedToSharedMemory, 128 "Amount of memory pushed to shared memory"); 129 130 #if !defined(NDEBUG) 131 static constexpr auto TAG = "[" DEBUG_TYPE "]"; 132 #endif 133 134 namespace { 135 136 enum class AddressSpace : unsigned { 137 Generic = 0, 138 Global = 1, 139 Shared = 3, 140 Constant = 4, 141 Local = 5, 142 }; 143 144 struct AAHeapToShared; 145 146 struct AAICVTracker; 147 148 /// OpenMP specific information. For now, stores RFIs and ICVs also needed for 149 /// Attributor runs. 150 struct OMPInformationCache : public InformationCache { 151 OMPInformationCache(Module &M, AnalysisGetter &AG, 152 BumpPtrAllocator &Allocator, SetVector<Function *> &CGSCC, 153 SmallPtrSetImpl<Kernel> &Kernels) 154 : InformationCache(M, AG, Allocator, &CGSCC), OMPBuilder(M), 155 Kernels(Kernels) { 156 157 OMPBuilder.initialize(); 158 initializeRuntimeFunctions(); 159 initializeInternalControlVars(); 160 } 161 162 /// Generic information that describes an internal control variable. 163 struct InternalControlVarInfo { 164 /// The kind, as described by InternalControlVar enum. 165 InternalControlVar Kind; 166 167 /// The name of the ICV. 168 StringRef Name; 169 170 /// Environment variable associated with this ICV. 171 StringRef EnvVarName; 172 173 /// Initial value kind. 174 ICVInitValue InitKind; 175 176 /// Initial value. 177 ConstantInt *InitValue; 178 179 /// Setter RTL function associated with this ICV. 180 RuntimeFunction Setter; 181 182 /// Getter RTL function associated with this ICV. 183 RuntimeFunction Getter; 184 185 /// RTL Function corresponding to the override clause of this ICV 186 RuntimeFunction Clause; 187 }; 188 189 /// Generic information that describes a runtime function 190 struct RuntimeFunctionInfo { 191 192 /// The kind, as described by the RuntimeFunction enum. 193 RuntimeFunction Kind; 194 195 /// The name of the function. 196 StringRef Name; 197 198 /// Flag to indicate a variadic function. 199 bool IsVarArg; 200 201 /// The return type of the function. 202 Type *ReturnType; 203 204 /// The argument types of the function. 205 SmallVector<Type *, 8> ArgumentTypes; 206 207 /// The declaration if available. 208 Function *Declaration = nullptr; 209 210 /// Uses of this runtime function per function containing the use. 211 using UseVector = SmallVector<Use *, 16>; 212 213 /// Clear UsesMap for runtime function. 214 void clearUsesMap() { UsesMap.clear(); } 215 216 /// Boolean conversion that is true if the runtime function was found. 217 operator bool() const { return Declaration; } 218 219 /// Return the vector of uses in function \p F. 220 UseVector &getOrCreateUseVector(Function *F) { 221 std::shared_ptr<UseVector> &UV = UsesMap[F]; 222 if (!UV) 223 UV = std::make_shared<UseVector>(); 224 return *UV; 225 } 226 227 /// Return the vector of uses in function \p F or `nullptr` if there are 228 /// none. 229 const UseVector *getUseVector(Function &F) const { 230 auto I = UsesMap.find(&F); 231 if (I != UsesMap.end()) 232 return I->second.get(); 233 return nullptr; 234 } 235 236 /// Return how many functions contain uses of this runtime function. 237 size_t getNumFunctionsWithUses() const { return UsesMap.size(); } 238 239 /// Return the number of arguments (or the minimal number for variadic 240 /// functions). 241 size_t getNumArgs() const { return ArgumentTypes.size(); } 242 243 /// Run the callback \p CB on each use and forget the use if the result is 244 /// true. The callback will be fed the function in which the use was 245 /// encountered as second argument. 246 void foreachUse(SmallVectorImpl<Function *> &SCC, 247 function_ref<bool(Use &, Function &)> CB) { 248 for (Function *F : SCC) 249 foreachUse(CB, F); 250 } 251 252 /// Run the callback \p CB on each use within the function \p F and forget 253 /// the use if the result is true. 254 void foreachUse(function_ref<bool(Use &, Function &)> CB, Function *F) { 255 SmallVector<unsigned, 8> ToBeDeleted; 256 ToBeDeleted.clear(); 257 258 unsigned Idx = 0; 259 UseVector &UV = getOrCreateUseVector(F); 260 261 for (Use *U : UV) { 262 if (CB(*U, *F)) 263 ToBeDeleted.push_back(Idx); 264 ++Idx; 265 } 266 267 // Remove the to-be-deleted indices in reverse order as prior 268 // modifications will not modify the smaller indices. 269 while (!ToBeDeleted.empty()) { 270 unsigned Idx = ToBeDeleted.pop_back_val(); 271 UV[Idx] = UV.back(); 272 UV.pop_back(); 273 } 274 } 275 276 private: 277 /// Map from functions to all uses of this runtime function contained in 278 /// them. 279 DenseMap<Function *, std::shared_ptr<UseVector>> UsesMap; 280 281 public: 282 /// Iterators for the uses of this runtime function. 283 decltype(UsesMap)::iterator begin() { return UsesMap.begin(); } 284 decltype(UsesMap)::iterator end() { return UsesMap.end(); } 285 }; 286 287 /// An OpenMP-IR-Builder instance 288 OpenMPIRBuilder OMPBuilder; 289 290 /// Map from runtime function kind to the runtime function description. 291 EnumeratedArray<RuntimeFunctionInfo, RuntimeFunction, 292 RuntimeFunction::OMPRTL___last> 293 RFIs; 294 295 /// Map from function declarations/definitions to their runtime enum type. 296 DenseMap<Function *, RuntimeFunction> RuntimeFunctionIDMap; 297 298 /// Map from ICV kind to the ICV description. 299 EnumeratedArray<InternalControlVarInfo, InternalControlVar, 300 InternalControlVar::ICV___last> 301 ICVs; 302 303 /// Helper to initialize all internal control variable information for those 304 /// defined in OMPKinds.def. 305 void initializeInternalControlVars() { 306 #define ICV_RT_SET(_Name, RTL) \ 307 { \ 308 auto &ICV = ICVs[_Name]; \ 309 ICV.Setter = RTL; \ 310 } 311 #define ICV_RT_GET(Name, RTL) \ 312 { \ 313 auto &ICV = ICVs[Name]; \ 314 ICV.Getter = RTL; \ 315 } 316 #define ICV_DATA_ENV(Enum, _Name, _EnvVarName, Init) \ 317 { \ 318 auto &ICV = ICVs[Enum]; \ 319 ICV.Name = _Name; \ 320 ICV.Kind = Enum; \ 321 ICV.InitKind = Init; \ 322 ICV.EnvVarName = _EnvVarName; \ 323 switch (ICV.InitKind) { \ 324 case ICV_IMPLEMENTATION_DEFINED: \ 325 ICV.InitValue = nullptr; \ 326 break; \ 327 case ICV_ZERO: \ 328 ICV.InitValue = ConstantInt::get( \ 329 Type::getInt32Ty(OMPBuilder.Int32->getContext()), 0); \ 330 break; \ 331 case ICV_FALSE: \ 332 ICV.InitValue = ConstantInt::getFalse(OMPBuilder.Int1->getContext()); \ 333 break; \ 334 case ICV_LAST: \ 335 break; \ 336 } \ 337 } 338 #include "llvm/Frontend/OpenMP/OMPKinds.def" 339 } 340 341 /// Returns true if the function declaration \p F matches the runtime 342 /// function types, that is, return type \p RTFRetType, and argument types 343 /// \p RTFArgTypes. 344 static bool declMatchesRTFTypes(Function *F, Type *RTFRetType, 345 SmallVector<Type *, 8> &RTFArgTypes) { 346 // TODO: We should output information to the user (under debug output 347 // and via remarks). 348 349 if (!F) 350 return false; 351 if (F->getReturnType() != RTFRetType) 352 return false; 353 if (F->arg_size() != RTFArgTypes.size()) 354 return false; 355 356 auto RTFTyIt = RTFArgTypes.begin(); 357 for (Argument &Arg : F->args()) { 358 if (Arg.getType() != *RTFTyIt) 359 return false; 360 361 ++RTFTyIt; 362 } 363 364 return true; 365 } 366 367 // Helper to collect all uses of the declaration in the UsesMap. 368 unsigned collectUses(RuntimeFunctionInfo &RFI, bool CollectStats = true) { 369 unsigned NumUses = 0; 370 if (!RFI.Declaration) 371 return NumUses; 372 OMPBuilder.addAttributes(RFI.Kind, *RFI.Declaration); 373 374 if (CollectStats) { 375 NumOpenMPRuntimeFunctionsIdentified += 1; 376 NumOpenMPRuntimeFunctionUsesIdentified += RFI.Declaration->getNumUses(); 377 } 378 379 // TODO: We directly convert uses into proper calls and unknown uses. 380 for (Use &U : RFI.Declaration->uses()) { 381 if (Instruction *UserI = dyn_cast<Instruction>(U.getUser())) { 382 if (ModuleSlice.count(UserI->getFunction())) { 383 RFI.getOrCreateUseVector(UserI->getFunction()).push_back(&U); 384 ++NumUses; 385 } 386 } else { 387 RFI.getOrCreateUseVector(nullptr).push_back(&U); 388 ++NumUses; 389 } 390 } 391 return NumUses; 392 } 393 394 // Helper function to recollect uses of a runtime function. 395 void recollectUsesForFunction(RuntimeFunction RTF) { 396 auto &RFI = RFIs[RTF]; 397 RFI.clearUsesMap(); 398 collectUses(RFI, /*CollectStats*/ false); 399 } 400 401 // Helper function to recollect uses of all runtime functions. 402 void recollectUses() { 403 for (int Idx = 0; Idx < RFIs.size(); ++Idx) 404 recollectUsesForFunction(static_cast<RuntimeFunction>(Idx)); 405 } 406 407 /// Helper to initialize all runtime function information for those defined 408 /// in OpenMPKinds.def. 409 void initializeRuntimeFunctions() { 410 Module &M = *((*ModuleSlice.begin())->getParent()); 411 412 // Helper macros for handling __VA_ARGS__ in OMP_RTL 413 #define OMP_TYPE(VarName, ...) \ 414 Type *VarName = OMPBuilder.VarName; \ 415 (void)VarName; 416 417 #define OMP_ARRAY_TYPE(VarName, ...) \ 418 ArrayType *VarName##Ty = OMPBuilder.VarName##Ty; \ 419 (void)VarName##Ty; \ 420 PointerType *VarName##PtrTy = OMPBuilder.VarName##PtrTy; \ 421 (void)VarName##PtrTy; 422 423 #define OMP_FUNCTION_TYPE(VarName, ...) \ 424 FunctionType *VarName = OMPBuilder.VarName; \ 425 (void)VarName; \ 426 PointerType *VarName##Ptr = OMPBuilder.VarName##Ptr; \ 427 (void)VarName##Ptr; 428 429 #define OMP_STRUCT_TYPE(VarName, ...) \ 430 StructType *VarName = OMPBuilder.VarName; \ 431 (void)VarName; \ 432 PointerType *VarName##Ptr = OMPBuilder.VarName##Ptr; \ 433 (void)VarName##Ptr; 434 435 #define OMP_RTL(_Enum, _Name, _IsVarArg, _ReturnType, ...) \ 436 { \ 437 SmallVector<Type *, 8> ArgsTypes({__VA_ARGS__}); \ 438 Function *F = M.getFunction(_Name); \ 439 RTLFunctions.insert(F); \ 440 if (declMatchesRTFTypes(F, OMPBuilder._ReturnType, ArgsTypes)) { \ 441 RuntimeFunctionIDMap[F] = _Enum; \ 442 F->removeFnAttr(Attribute::NoInline); \ 443 auto &RFI = RFIs[_Enum]; \ 444 RFI.Kind = _Enum; \ 445 RFI.Name = _Name; \ 446 RFI.IsVarArg = _IsVarArg; \ 447 RFI.ReturnType = OMPBuilder._ReturnType; \ 448 RFI.ArgumentTypes = std::move(ArgsTypes); \ 449 RFI.Declaration = F; \ 450 unsigned NumUses = collectUses(RFI); \ 451 (void)NumUses; \ 452 LLVM_DEBUG({ \ 453 dbgs() << TAG << RFI.Name << (RFI.Declaration ? "" : " not") \ 454 << " found\n"; \ 455 if (RFI.Declaration) \ 456 dbgs() << TAG << "-> got " << NumUses << " uses in " \ 457 << RFI.getNumFunctionsWithUses() \ 458 << " different functions.\n"; \ 459 }); \ 460 } \ 461 } 462 #include "llvm/Frontend/OpenMP/OMPKinds.def" 463 464 // TODO: We should attach the attributes defined in OMPKinds.def. 465 } 466 467 /// Collection of known kernels (\see Kernel) in the module. 468 SmallPtrSetImpl<Kernel> &Kernels; 469 470 /// Collection of known OpenMP runtime functions.. 471 DenseSet<const Function *> RTLFunctions; 472 }; 473 474 template <typename Ty, bool InsertInvalidates = true> 475 struct BooleanStateWithSetVector : public BooleanState { 476 bool contains(const Ty &Elem) const { return Set.contains(Elem); } 477 bool insert(const Ty &Elem) { 478 if (InsertInvalidates) 479 BooleanState::indicatePessimisticFixpoint(); 480 return Set.insert(Elem); 481 } 482 483 const Ty &operator[](int Idx) const { return Set[Idx]; } 484 bool operator==(const BooleanStateWithSetVector &RHS) const { 485 return BooleanState::operator==(RHS) && Set == RHS.Set; 486 } 487 bool operator!=(const BooleanStateWithSetVector &RHS) const { 488 return !(*this == RHS); 489 } 490 491 bool empty() const { return Set.empty(); } 492 size_t size() const { return Set.size(); } 493 494 /// "Clamp" this state with \p RHS. 495 BooleanStateWithSetVector &operator^=(const BooleanStateWithSetVector &RHS) { 496 BooleanState::operator^=(RHS); 497 Set.insert(RHS.Set.begin(), RHS.Set.end()); 498 return *this; 499 } 500 501 private: 502 /// A set to keep track of elements. 503 SetVector<Ty> Set; 504 505 public: 506 typename decltype(Set)::iterator begin() { return Set.begin(); } 507 typename decltype(Set)::iterator end() { return Set.end(); } 508 typename decltype(Set)::const_iterator begin() const { return Set.begin(); } 509 typename decltype(Set)::const_iterator end() const { return Set.end(); } 510 }; 511 512 template <typename Ty, bool InsertInvalidates = true> 513 using BooleanStateWithPtrSetVector = 514 BooleanStateWithSetVector<Ty *, InsertInvalidates>; 515 516 struct KernelInfoState : AbstractState { 517 /// Flag to track if we reached a fixpoint. 518 bool IsAtFixpoint = false; 519 520 /// The parallel regions (identified by the outlined parallel functions) that 521 /// can be reached from the associated function. 522 BooleanStateWithPtrSetVector<Function, /* InsertInvalidates */ false> 523 ReachedKnownParallelRegions; 524 525 /// State to track what parallel region we might reach. 526 BooleanStateWithPtrSetVector<CallBase> ReachedUnknownParallelRegions; 527 528 /// State to track if we are in SPMD-mode, assumed or know, and why we decided 529 /// we cannot be. If it is assumed, then RequiresFullRuntime should also be 530 /// false. 531 BooleanStateWithPtrSetVector<Instruction, false> SPMDCompatibilityTracker; 532 533 /// The __kmpc_target_init call in this kernel, if any. If we find more than 534 /// one we abort as the kernel is malformed. 535 CallBase *KernelInitCB = nullptr; 536 537 /// The __kmpc_target_deinit call in this kernel, if any. If we find more than 538 /// one we abort as the kernel is malformed. 539 CallBase *KernelDeinitCB = nullptr; 540 541 /// Flag to indicate if the associated function is a kernel entry. 542 bool IsKernelEntry = false; 543 544 /// State to track what kernel entries can reach the associated function. 545 BooleanStateWithPtrSetVector<Function, false> ReachingKernelEntries; 546 547 /// State to indicate if we can track parallel level of the associated 548 /// function. We will give up tracking if we encounter unknown caller or the 549 /// caller is __kmpc_parallel_51. 550 BooleanStateWithSetVector<uint8_t> ParallelLevels; 551 552 /// Abstract State interface 553 ///{ 554 555 KernelInfoState() {} 556 KernelInfoState(bool BestState) { 557 if (!BestState) 558 indicatePessimisticFixpoint(); 559 } 560 561 /// See AbstractState::isValidState(...) 562 bool isValidState() const override { return true; } 563 564 /// See AbstractState::isAtFixpoint(...) 565 bool isAtFixpoint() const override { return IsAtFixpoint; } 566 567 /// See AbstractState::indicatePessimisticFixpoint(...) 568 ChangeStatus indicatePessimisticFixpoint() override { 569 IsAtFixpoint = true; 570 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 571 ReachedUnknownParallelRegions.indicatePessimisticFixpoint(); 572 return ChangeStatus::CHANGED; 573 } 574 575 /// See AbstractState::indicateOptimisticFixpoint(...) 576 ChangeStatus indicateOptimisticFixpoint() override { 577 IsAtFixpoint = true; 578 return ChangeStatus::UNCHANGED; 579 } 580 581 /// Return the assumed state 582 KernelInfoState &getAssumed() { return *this; } 583 const KernelInfoState &getAssumed() const { return *this; } 584 585 bool operator==(const KernelInfoState &RHS) const { 586 if (SPMDCompatibilityTracker != RHS.SPMDCompatibilityTracker) 587 return false; 588 if (ReachedKnownParallelRegions != RHS.ReachedKnownParallelRegions) 589 return false; 590 if (ReachedUnknownParallelRegions != RHS.ReachedUnknownParallelRegions) 591 return false; 592 if (ReachingKernelEntries != RHS.ReachingKernelEntries) 593 return false; 594 return true; 595 } 596 597 /// Return empty set as the best state of potential values. 598 static KernelInfoState getBestState() { return KernelInfoState(true); } 599 600 static KernelInfoState getBestState(KernelInfoState &KIS) { 601 return getBestState(); 602 } 603 604 /// Return full set as the worst state of potential values. 605 static KernelInfoState getWorstState() { return KernelInfoState(false); } 606 607 /// "Clamp" this state with \p KIS. 608 KernelInfoState operator^=(const KernelInfoState &KIS) { 609 // Do not merge two different _init and _deinit call sites. 610 if (KIS.KernelInitCB) { 611 if (KernelInitCB && KernelInitCB != KIS.KernelInitCB) 612 indicatePessimisticFixpoint(); 613 KernelInitCB = KIS.KernelInitCB; 614 } 615 if (KIS.KernelDeinitCB) { 616 if (KernelDeinitCB && KernelDeinitCB != KIS.KernelDeinitCB) 617 indicatePessimisticFixpoint(); 618 KernelDeinitCB = KIS.KernelDeinitCB; 619 } 620 SPMDCompatibilityTracker ^= KIS.SPMDCompatibilityTracker; 621 ReachedKnownParallelRegions ^= KIS.ReachedKnownParallelRegions; 622 ReachedUnknownParallelRegions ^= KIS.ReachedUnknownParallelRegions; 623 return *this; 624 } 625 626 KernelInfoState operator&=(const KernelInfoState &KIS) { 627 return (*this ^= KIS); 628 } 629 630 ///} 631 }; 632 633 /// Used to map the values physically (in the IR) stored in an offload 634 /// array, to a vector in memory. 635 struct OffloadArray { 636 /// Physical array (in the IR). 637 AllocaInst *Array = nullptr; 638 /// Mapped values. 639 SmallVector<Value *, 8> StoredValues; 640 /// Last stores made in the offload array. 641 SmallVector<StoreInst *, 8> LastAccesses; 642 643 OffloadArray() = default; 644 645 /// Initializes the OffloadArray with the values stored in \p Array before 646 /// instruction \p Before is reached. Returns false if the initialization 647 /// fails. 648 /// This MUST be used immediately after the construction of the object. 649 bool initialize(AllocaInst &Array, Instruction &Before) { 650 if (!Array.getAllocatedType()->isArrayTy()) 651 return false; 652 653 if (!getValues(Array, Before)) 654 return false; 655 656 this->Array = &Array; 657 return true; 658 } 659 660 static const unsigned DeviceIDArgNum = 1; 661 static const unsigned BasePtrsArgNum = 3; 662 static const unsigned PtrsArgNum = 4; 663 static const unsigned SizesArgNum = 5; 664 665 private: 666 /// Traverses the BasicBlock where \p Array is, collecting the stores made to 667 /// \p Array, leaving StoredValues with the values stored before the 668 /// instruction \p Before is reached. 669 bool getValues(AllocaInst &Array, Instruction &Before) { 670 // Initialize container. 671 const uint64_t NumValues = Array.getAllocatedType()->getArrayNumElements(); 672 StoredValues.assign(NumValues, nullptr); 673 LastAccesses.assign(NumValues, nullptr); 674 675 // TODO: This assumes the instruction \p Before is in the same 676 // BasicBlock as Array. Make it general, for any control flow graph. 677 BasicBlock *BB = Array.getParent(); 678 if (BB != Before.getParent()) 679 return false; 680 681 const DataLayout &DL = Array.getModule()->getDataLayout(); 682 const unsigned int PointerSize = DL.getPointerSize(); 683 684 for (Instruction &I : *BB) { 685 if (&I == &Before) 686 break; 687 688 if (!isa<StoreInst>(&I)) 689 continue; 690 691 auto *S = cast<StoreInst>(&I); 692 int64_t Offset = -1; 693 auto *Dst = 694 GetPointerBaseWithConstantOffset(S->getPointerOperand(), Offset, DL); 695 if (Dst == &Array) { 696 int64_t Idx = Offset / PointerSize; 697 StoredValues[Idx] = getUnderlyingObject(S->getValueOperand()); 698 LastAccesses[Idx] = S; 699 } 700 } 701 702 return isFilled(); 703 } 704 705 /// Returns true if all values in StoredValues and 706 /// LastAccesses are not nullptrs. 707 bool isFilled() { 708 const unsigned NumValues = StoredValues.size(); 709 for (unsigned I = 0; I < NumValues; ++I) { 710 if (!StoredValues[I] || !LastAccesses[I]) 711 return false; 712 } 713 714 return true; 715 } 716 }; 717 718 struct OpenMPOpt { 719 720 using OptimizationRemarkGetter = 721 function_ref<OptimizationRemarkEmitter &(Function *)>; 722 723 OpenMPOpt(SmallVectorImpl<Function *> &SCC, CallGraphUpdater &CGUpdater, 724 OptimizationRemarkGetter OREGetter, 725 OMPInformationCache &OMPInfoCache, Attributor &A) 726 : M(*(*SCC.begin())->getParent()), SCC(SCC), CGUpdater(CGUpdater), 727 OREGetter(OREGetter), OMPInfoCache(OMPInfoCache), A(A) {} 728 729 /// Check if any remarks are enabled for openmp-opt 730 bool remarksEnabled() { 731 auto &Ctx = M.getContext(); 732 return Ctx.getDiagHandlerPtr()->isAnyRemarkEnabled(DEBUG_TYPE); 733 } 734 735 /// Run all OpenMP optimizations on the underlying SCC/ModuleSlice. 736 bool run(bool IsModulePass) { 737 if (SCC.empty()) 738 return false; 739 740 bool Changed = false; 741 742 LLVM_DEBUG(dbgs() << TAG << "Run on SCC with " << SCC.size() 743 << " functions in a slice with " 744 << OMPInfoCache.ModuleSlice.size() << " functions\n"); 745 746 if (IsModulePass) { 747 Changed |= runAttributor(IsModulePass); 748 749 // Recollect uses, in case Attributor deleted any. 750 OMPInfoCache.recollectUses(); 751 752 // TODO: This should be folded into buildCustomStateMachine. 753 Changed |= rewriteDeviceCodeStateMachine(); 754 755 if (remarksEnabled()) 756 analysisGlobalization(); 757 } else { 758 if (PrintICVValues) 759 printICVs(); 760 if (PrintOpenMPKernels) 761 printKernels(); 762 763 Changed |= runAttributor(IsModulePass); 764 765 // Recollect uses, in case Attributor deleted any. 766 OMPInfoCache.recollectUses(); 767 768 Changed |= deleteParallelRegions(); 769 770 if (HideMemoryTransferLatency) 771 Changed |= hideMemTransfersLatency(); 772 Changed |= deduplicateRuntimeCalls(); 773 if (EnableParallelRegionMerging) { 774 if (mergeParallelRegions()) { 775 deduplicateRuntimeCalls(); 776 Changed = true; 777 } 778 } 779 } 780 781 return Changed; 782 } 783 784 /// Print initial ICV values for testing. 785 /// FIXME: This should be done from the Attributor once it is added. 786 void printICVs() const { 787 InternalControlVar ICVs[] = {ICV_nthreads, ICV_active_levels, ICV_cancel, 788 ICV_proc_bind}; 789 790 for (Function *F : OMPInfoCache.ModuleSlice) { 791 for (auto ICV : ICVs) { 792 auto ICVInfo = OMPInfoCache.ICVs[ICV]; 793 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 794 return ORA << "OpenMP ICV " << ore::NV("OpenMPICV", ICVInfo.Name) 795 << " Value: " 796 << (ICVInfo.InitValue 797 ? toString(ICVInfo.InitValue->getValue(), 10, true) 798 : "IMPLEMENTATION_DEFINED"); 799 }; 800 801 emitRemark<OptimizationRemarkAnalysis>(F, "OpenMPICVTracker", Remark); 802 } 803 } 804 } 805 806 /// Print OpenMP GPU kernels for testing. 807 void printKernels() const { 808 for (Function *F : SCC) { 809 if (!OMPInfoCache.Kernels.count(F)) 810 continue; 811 812 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 813 return ORA << "OpenMP GPU kernel " 814 << ore::NV("OpenMPGPUKernel", F->getName()) << "\n"; 815 }; 816 817 emitRemark<OptimizationRemarkAnalysis>(F, "OpenMPGPU", Remark); 818 } 819 } 820 821 /// Return the call if \p U is a callee use in a regular call. If \p RFI is 822 /// given it has to be the callee or a nullptr is returned. 823 static CallInst *getCallIfRegularCall( 824 Use &U, OMPInformationCache::RuntimeFunctionInfo *RFI = nullptr) { 825 CallInst *CI = dyn_cast<CallInst>(U.getUser()); 826 if (CI && CI->isCallee(&U) && !CI->hasOperandBundles() && 827 (!RFI || 828 (RFI->Declaration && CI->getCalledFunction() == RFI->Declaration))) 829 return CI; 830 return nullptr; 831 } 832 833 /// Return the call if \p V is a regular call. If \p RFI is given it has to be 834 /// the callee or a nullptr is returned. 835 static CallInst *getCallIfRegularCall( 836 Value &V, OMPInformationCache::RuntimeFunctionInfo *RFI = nullptr) { 837 CallInst *CI = dyn_cast<CallInst>(&V); 838 if (CI && !CI->hasOperandBundles() && 839 (!RFI || 840 (RFI->Declaration && CI->getCalledFunction() == RFI->Declaration))) 841 return CI; 842 return nullptr; 843 } 844 845 private: 846 /// Merge parallel regions when it is safe. 847 bool mergeParallelRegions() { 848 const unsigned CallbackCalleeOperand = 2; 849 const unsigned CallbackFirstArgOperand = 3; 850 using InsertPointTy = OpenMPIRBuilder::InsertPointTy; 851 852 // Check if there are any __kmpc_fork_call calls to merge. 853 OMPInformationCache::RuntimeFunctionInfo &RFI = 854 OMPInfoCache.RFIs[OMPRTL___kmpc_fork_call]; 855 856 if (!RFI.Declaration) 857 return false; 858 859 // Unmergable calls that prevent merging a parallel region. 860 OMPInformationCache::RuntimeFunctionInfo UnmergableCallsInfo[] = { 861 OMPInfoCache.RFIs[OMPRTL___kmpc_push_proc_bind], 862 OMPInfoCache.RFIs[OMPRTL___kmpc_push_num_threads], 863 }; 864 865 bool Changed = false; 866 LoopInfo *LI = nullptr; 867 DominatorTree *DT = nullptr; 868 869 SmallDenseMap<BasicBlock *, SmallPtrSet<Instruction *, 4>> BB2PRMap; 870 871 BasicBlock *StartBB = nullptr, *EndBB = nullptr; 872 auto BodyGenCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, 873 BasicBlock &ContinuationIP) { 874 BasicBlock *CGStartBB = CodeGenIP.getBlock(); 875 BasicBlock *CGEndBB = 876 SplitBlock(CGStartBB, &*CodeGenIP.getPoint(), DT, LI); 877 assert(StartBB != nullptr && "StartBB should not be null"); 878 CGStartBB->getTerminator()->setSuccessor(0, StartBB); 879 assert(EndBB != nullptr && "EndBB should not be null"); 880 EndBB->getTerminator()->setSuccessor(0, CGEndBB); 881 }; 882 883 auto PrivCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, Value &, 884 Value &Inner, Value *&ReplacementValue) -> InsertPointTy { 885 ReplacementValue = &Inner; 886 return CodeGenIP; 887 }; 888 889 auto FiniCB = [&](InsertPointTy CodeGenIP) {}; 890 891 /// Create a sequential execution region within a merged parallel region, 892 /// encapsulated in a master construct with a barrier for synchronization. 893 auto CreateSequentialRegion = [&](Function *OuterFn, 894 BasicBlock *OuterPredBB, 895 Instruction *SeqStartI, 896 Instruction *SeqEndI) { 897 // Isolate the instructions of the sequential region to a separate 898 // block. 899 BasicBlock *ParentBB = SeqStartI->getParent(); 900 BasicBlock *SeqEndBB = 901 SplitBlock(ParentBB, SeqEndI->getNextNode(), DT, LI); 902 BasicBlock *SeqAfterBB = 903 SplitBlock(SeqEndBB, &*SeqEndBB->getFirstInsertionPt(), DT, LI); 904 BasicBlock *SeqStartBB = 905 SplitBlock(ParentBB, SeqStartI, DT, LI, nullptr, "seq.par.merged"); 906 907 assert(ParentBB->getUniqueSuccessor() == SeqStartBB && 908 "Expected a different CFG"); 909 const DebugLoc DL = ParentBB->getTerminator()->getDebugLoc(); 910 ParentBB->getTerminator()->eraseFromParent(); 911 912 auto BodyGenCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, 913 BasicBlock &ContinuationIP) { 914 BasicBlock *CGStartBB = CodeGenIP.getBlock(); 915 BasicBlock *CGEndBB = 916 SplitBlock(CGStartBB, &*CodeGenIP.getPoint(), DT, LI); 917 assert(SeqStartBB != nullptr && "SeqStartBB should not be null"); 918 CGStartBB->getTerminator()->setSuccessor(0, SeqStartBB); 919 assert(SeqEndBB != nullptr && "SeqEndBB should not be null"); 920 SeqEndBB->getTerminator()->setSuccessor(0, CGEndBB); 921 }; 922 auto FiniCB = [&](InsertPointTy CodeGenIP) {}; 923 924 // Find outputs from the sequential region to outside users and 925 // broadcast their values to them. 926 for (Instruction &I : *SeqStartBB) { 927 SmallPtrSet<Instruction *, 4> OutsideUsers; 928 for (User *Usr : I.users()) { 929 Instruction &UsrI = *cast<Instruction>(Usr); 930 // Ignore outputs to LT intrinsics, code extraction for the merged 931 // parallel region will fix them. 932 if (UsrI.isLifetimeStartOrEnd()) 933 continue; 934 935 if (UsrI.getParent() != SeqStartBB) 936 OutsideUsers.insert(&UsrI); 937 } 938 939 if (OutsideUsers.empty()) 940 continue; 941 942 // Emit an alloca in the outer region to store the broadcasted 943 // value. 944 const DataLayout &DL = M.getDataLayout(); 945 AllocaInst *AllocaI = new AllocaInst( 946 I.getType(), DL.getAllocaAddrSpace(), nullptr, 947 I.getName() + ".seq.output.alloc", &OuterFn->front().front()); 948 949 // Emit a store instruction in the sequential BB to update the 950 // value. 951 new StoreInst(&I, AllocaI, SeqStartBB->getTerminator()); 952 953 // Emit a load instruction and replace the use of the output value 954 // with it. 955 for (Instruction *UsrI : OutsideUsers) { 956 LoadInst *LoadI = new LoadInst( 957 I.getType(), AllocaI, I.getName() + ".seq.output.load", UsrI); 958 UsrI->replaceUsesOfWith(&I, LoadI); 959 } 960 } 961 962 OpenMPIRBuilder::LocationDescription Loc( 963 InsertPointTy(ParentBB, ParentBB->end()), DL); 964 InsertPointTy SeqAfterIP = 965 OMPInfoCache.OMPBuilder.createMaster(Loc, BodyGenCB, FiniCB); 966 967 OMPInfoCache.OMPBuilder.createBarrier(SeqAfterIP, OMPD_parallel); 968 969 BranchInst::Create(SeqAfterBB, SeqAfterIP.getBlock()); 970 971 LLVM_DEBUG(dbgs() << TAG << "After sequential inlining " << *OuterFn 972 << "\n"); 973 }; 974 975 // Helper to merge the __kmpc_fork_call calls in MergableCIs. They are all 976 // contained in BB and only separated by instructions that can be 977 // redundantly executed in parallel. The block BB is split before the first 978 // call (in MergableCIs) and after the last so the entire region we merge 979 // into a single parallel region is contained in a single basic block 980 // without any other instructions. We use the OpenMPIRBuilder to outline 981 // that block and call the resulting function via __kmpc_fork_call. 982 auto Merge = [&](SmallVectorImpl<CallInst *> &MergableCIs, BasicBlock *BB) { 983 // TODO: Change the interface to allow single CIs expanded, e.g, to 984 // include an outer loop. 985 assert(MergableCIs.size() > 1 && "Assumed multiple mergable CIs"); 986 987 auto Remark = [&](OptimizationRemark OR) { 988 OR << "Parallel region merged with parallel region" 989 << (MergableCIs.size() > 2 ? "s" : "") << " at "; 990 for (auto *CI : llvm::drop_begin(MergableCIs)) { 991 OR << ore::NV("OpenMPParallelMerge", CI->getDebugLoc()); 992 if (CI != MergableCIs.back()) 993 OR << ", "; 994 } 995 return OR << "."; 996 }; 997 998 emitRemark<OptimizationRemark>(MergableCIs.front(), "OMP150", Remark); 999 1000 Function *OriginalFn = BB->getParent(); 1001 LLVM_DEBUG(dbgs() << TAG << "Merge " << MergableCIs.size() 1002 << " parallel regions in " << OriginalFn->getName() 1003 << "\n"); 1004 1005 // Isolate the calls to merge in a separate block. 1006 EndBB = SplitBlock(BB, MergableCIs.back()->getNextNode(), DT, LI); 1007 BasicBlock *AfterBB = 1008 SplitBlock(EndBB, &*EndBB->getFirstInsertionPt(), DT, LI); 1009 StartBB = SplitBlock(BB, MergableCIs.front(), DT, LI, nullptr, 1010 "omp.par.merged"); 1011 1012 assert(BB->getUniqueSuccessor() == StartBB && "Expected a different CFG"); 1013 const DebugLoc DL = BB->getTerminator()->getDebugLoc(); 1014 BB->getTerminator()->eraseFromParent(); 1015 1016 // Create sequential regions for sequential instructions that are 1017 // in-between mergable parallel regions. 1018 for (auto *It = MergableCIs.begin(), *End = MergableCIs.end() - 1; 1019 It != End; ++It) { 1020 Instruction *ForkCI = *It; 1021 Instruction *NextForkCI = *(It + 1); 1022 1023 // Continue if there are not in-between instructions. 1024 if (ForkCI->getNextNode() == NextForkCI) 1025 continue; 1026 1027 CreateSequentialRegion(OriginalFn, BB, ForkCI->getNextNode(), 1028 NextForkCI->getPrevNode()); 1029 } 1030 1031 OpenMPIRBuilder::LocationDescription Loc(InsertPointTy(BB, BB->end()), 1032 DL); 1033 IRBuilder<>::InsertPoint AllocaIP( 1034 &OriginalFn->getEntryBlock(), 1035 OriginalFn->getEntryBlock().getFirstInsertionPt()); 1036 // Create the merged parallel region with default proc binding, to 1037 // avoid overriding binding settings, and without explicit cancellation. 1038 InsertPointTy AfterIP = OMPInfoCache.OMPBuilder.createParallel( 1039 Loc, AllocaIP, BodyGenCB, PrivCB, FiniCB, nullptr, nullptr, 1040 OMP_PROC_BIND_default, /* IsCancellable */ false); 1041 BranchInst::Create(AfterBB, AfterIP.getBlock()); 1042 1043 // Perform the actual outlining. 1044 OMPInfoCache.OMPBuilder.finalize(OriginalFn, 1045 /* AllowExtractorSinking */ true); 1046 1047 Function *OutlinedFn = MergableCIs.front()->getCaller(); 1048 1049 // Replace the __kmpc_fork_call calls with direct calls to the outlined 1050 // callbacks. 1051 SmallVector<Value *, 8> Args; 1052 for (auto *CI : MergableCIs) { 1053 Value *Callee = 1054 CI->getArgOperand(CallbackCalleeOperand)->stripPointerCasts(); 1055 FunctionType *FT = 1056 cast<FunctionType>(Callee->getType()->getPointerElementType()); 1057 Args.clear(); 1058 Args.push_back(OutlinedFn->getArg(0)); 1059 Args.push_back(OutlinedFn->getArg(1)); 1060 for (unsigned U = CallbackFirstArgOperand, E = CI->getNumArgOperands(); 1061 U < E; ++U) 1062 Args.push_back(CI->getArgOperand(U)); 1063 1064 CallInst *NewCI = CallInst::Create(FT, Callee, Args, "", CI); 1065 if (CI->getDebugLoc()) 1066 NewCI->setDebugLoc(CI->getDebugLoc()); 1067 1068 // Forward parameter attributes from the callback to the callee. 1069 for (unsigned U = CallbackFirstArgOperand, E = CI->getNumArgOperands(); 1070 U < E; ++U) 1071 for (const Attribute &A : CI->getAttributes().getParamAttrs(U)) 1072 NewCI->addParamAttr( 1073 U - (CallbackFirstArgOperand - CallbackCalleeOperand), A); 1074 1075 // Emit an explicit barrier to replace the implicit fork-join barrier. 1076 if (CI != MergableCIs.back()) { 1077 // TODO: Remove barrier if the merged parallel region includes the 1078 // 'nowait' clause. 1079 OMPInfoCache.OMPBuilder.createBarrier( 1080 InsertPointTy(NewCI->getParent(), 1081 NewCI->getNextNode()->getIterator()), 1082 OMPD_parallel); 1083 } 1084 1085 CI->eraseFromParent(); 1086 } 1087 1088 assert(OutlinedFn != OriginalFn && "Outlining failed"); 1089 CGUpdater.registerOutlinedFunction(*OriginalFn, *OutlinedFn); 1090 CGUpdater.reanalyzeFunction(*OriginalFn); 1091 1092 NumOpenMPParallelRegionsMerged += MergableCIs.size(); 1093 1094 return true; 1095 }; 1096 1097 // Helper function that identifes sequences of 1098 // __kmpc_fork_call uses in a basic block. 1099 auto DetectPRsCB = [&](Use &U, Function &F) { 1100 CallInst *CI = getCallIfRegularCall(U, &RFI); 1101 BB2PRMap[CI->getParent()].insert(CI); 1102 1103 return false; 1104 }; 1105 1106 BB2PRMap.clear(); 1107 RFI.foreachUse(SCC, DetectPRsCB); 1108 SmallVector<SmallVector<CallInst *, 4>, 4> MergableCIsVector; 1109 // Find mergable parallel regions within a basic block that are 1110 // safe to merge, that is any in-between instructions can safely 1111 // execute in parallel after merging. 1112 // TODO: support merging across basic-blocks. 1113 for (auto &It : BB2PRMap) { 1114 auto &CIs = It.getSecond(); 1115 if (CIs.size() < 2) 1116 continue; 1117 1118 BasicBlock *BB = It.getFirst(); 1119 SmallVector<CallInst *, 4> MergableCIs; 1120 1121 /// Returns true if the instruction is mergable, false otherwise. 1122 /// A terminator instruction is unmergable by definition since merging 1123 /// works within a BB. Instructions before the mergable region are 1124 /// mergable if they are not calls to OpenMP runtime functions that may 1125 /// set different execution parameters for subsequent parallel regions. 1126 /// Instructions in-between parallel regions are mergable if they are not 1127 /// calls to any non-intrinsic function since that may call a non-mergable 1128 /// OpenMP runtime function. 1129 auto IsMergable = [&](Instruction &I, bool IsBeforeMergableRegion) { 1130 // We do not merge across BBs, hence return false (unmergable) if the 1131 // instruction is a terminator. 1132 if (I.isTerminator()) 1133 return false; 1134 1135 if (!isa<CallInst>(&I)) 1136 return true; 1137 1138 CallInst *CI = cast<CallInst>(&I); 1139 if (IsBeforeMergableRegion) { 1140 Function *CalledFunction = CI->getCalledFunction(); 1141 if (!CalledFunction) 1142 return false; 1143 // Return false (unmergable) if the call before the parallel 1144 // region calls an explicit affinity (proc_bind) or number of 1145 // threads (num_threads) compiler-generated function. Those settings 1146 // may be incompatible with following parallel regions. 1147 // TODO: ICV tracking to detect compatibility. 1148 for (const auto &RFI : UnmergableCallsInfo) { 1149 if (CalledFunction == RFI.Declaration) 1150 return false; 1151 } 1152 } else { 1153 // Return false (unmergable) if there is a call instruction 1154 // in-between parallel regions when it is not an intrinsic. It 1155 // may call an unmergable OpenMP runtime function in its callpath. 1156 // TODO: Keep track of possible OpenMP calls in the callpath. 1157 if (!isa<IntrinsicInst>(CI)) 1158 return false; 1159 } 1160 1161 return true; 1162 }; 1163 // Find maximal number of parallel region CIs that are safe to merge. 1164 for (auto It = BB->begin(), End = BB->end(); It != End;) { 1165 Instruction &I = *It; 1166 ++It; 1167 1168 if (CIs.count(&I)) { 1169 MergableCIs.push_back(cast<CallInst>(&I)); 1170 continue; 1171 } 1172 1173 // Continue expanding if the instruction is mergable. 1174 if (IsMergable(I, MergableCIs.empty())) 1175 continue; 1176 1177 // Forward the instruction iterator to skip the next parallel region 1178 // since there is an unmergable instruction which can affect it. 1179 for (; It != End; ++It) { 1180 Instruction &SkipI = *It; 1181 if (CIs.count(&SkipI)) { 1182 LLVM_DEBUG(dbgs() << TAG << "Skip parallel region " << SkipI 1183 << " due to " << I << "\n"); 1184 ++It; 1185 break; 1186 } 1187 } 1188 1189 // Store mergable regions found. 1190 if (MergableCIs.size() > 1) { 1191 MergableCIsVector.push_back(MergableCIs); 1192 LLVM_DEBUG(dbgs() << TAG << "Found " << MergableCIs.size() 1193 << " parallel regions in block " << BB->getName() 1194 << " of function " << BB->getParent()->getName() 1195 << "\n";); 1196 } 1197 1198 MergableCIs.clear(); 1199 } 1200 1201 if (!MergableCIsVector.empty()) { 1202 Changed = true; 1203 1204 for (auto &MergableCIs : MergableCIsVector) 1205 Merge(MergableCIs, BB); 1206 MergableCIsVector.clear(); 1207 } 1208 } 1209 1210 if (Changed) { 1211 /// Re-collect use for fork calls, emitted barrier calls, and 1212 /// any emitted master/end_master calls. 1213 OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_fork_call); 1214 OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_barrier); 1215 OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_master); 1216 OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_end_master); 1217 } 1218 1219 return Changed; 1220 } 1221 1222 /// Try to delete parallel regions if possible. 1223 bool deleteParallelRegions() { 1224 const unsigned CallbackCalleeOperand = 2; 1225 1226 OMPInformationCache::RuntimeFunctionInfo &RFI = 1227 OMPInfoCache.RFIs[OMPRTL___kmpc_fork_call]; 1228 1229 if (!RFI.Declaration) 1230 return false; 1231 1232 bool Changed = false; 1233 auto DeleteCallCB = [&](Use &U, Function &) { 1234 CallInst *CI = getCallIfRegularCall(U); 1235 if (!CI) 1236 return false; 1237 auto *Fn = dyn_cast<Function>( 1238 CI->getArgOperand(CallbackCalleeOperand)->stripPointerCasts()); 1239 if (!Fn) 1240 return false; 1241 if (!Fn->onlyReadsMemory()) 1242 return false; 1243 if (!Fn->hasFnAttribute(Attribute::WillReturn)) 1244 return false; 1245 1246 LLVM_DEBUG(dbgs() << TAG << "Delete read-only parallel region in " 1247 << CI->getCaller()->getName() << "\n"); 1248 1249 auto Remark = [&](OptimizationRemark OR) { 1250 return OR << "Removing parallel region with no side-effects."; 1251 }; 1252 emitRemark<OptimizationRemark>(CI, "OMP160", Remark); 1253 1254 CGUpdater.removeCallSite(*CI); 1255 CI->eraseFromParent(); 1256 Changed = true; 1257 ++NumOpenMPParallelRegionsDeleted; 1258 return true; 1259 }; 1260 1261 RFI.foreachUse(SCC, DeleteCallCB); 1262 1263 return Changed; 1264 } 1265 1266 /// Try to eliminate runtime calls by reusing existing ones. 1267 bool deduplicateRuntimeCalls() { 1268 bool Changed = false; 1269 1270 RuntimeFunction DeduplicableRuntimeCallIDs[] = { 1271 OMPRTL_omp_get_num_threads, 1272 OMPRTL_omp_in_parallel, 1273 OMPRTL_omp_get_cancellation, 1274 OMPRTL_omp_get_thread_limit, 1275 OMPRTL_omp_get_supported_active_levels, 1276 OMPRTL_omp_get_level, 1277 OMPRTL_omp_get_ancestor_thread_num, 1278 OMPRTL_omp_get_team_size, 1279 OMPRTL_omp_get_active_level, 1280 OMPRTL_omp_in_final, 1281 OMPRTL_omp_get_proc_bind, 1282 OMPRTL_omp_get_num_places, 1283 OMPRTL_omp_get_num_procs, 1284 OMPRTL_omp_get_place_num, 1285 OMPRTL_omp_get_partition_num_places, 1286 OMPRTL_omp_get_partition_place_nums}; 1287 1288 // Global-tid is handled separately. 1289 SmallSetVector<Value *, 16> GTIdArgs; 1290 collectGlobalThreadIdArguments(GTIdArgs); 1291 LLVM_DEBUG(dbgs() << TAG << "Found " << GTIdArgs.size() 1292 << " global thread ID arguments\n"); 1293 1294 for (Function *F : SCC) { 1295 for (auto DeduplicableRuntimeCallID : DeduplicableRuntimeCallIDs) 1296 Changed |= deduplicateRuntimeCalls( 1297 *F, OMPInfoCache.RFIs[DeduplicableRuntimeCallID]); 1298 1299 // __kmpc_global_thread_num is special as we can replace it with an 1300 // argument in enough cases to make it worth trying. 1301 Value *GTIdArg = nullptr; 1302 for (Argument &Arg : F->args()) 1303 if (GTIdArgs.count(&Arg)) { 1304 GTIdArg = &Arg; 1305 break; 1306 } 1307 Changed |= deduplicateRuntimeCalls( 1308 *F, OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num], GTIdArg); 1309 } 1310 1311 return Changed; 1312 } 1313 1314 /// Tries to hide the latency of runtime calls that involve host to 1315 /// device memory transfers by splitting them into their "issue" and "wait" 1316 /// versions. The "issue" is moved upwards as much as possible. The "wait" is 1317 /// moved downards as much as possible. The "issue" issues the memory transfer 1318 /// asynchronously, returning a handle. The "wait" waits in the returned 1319 /// handle for the memory transfer to finish. 1320 bool hideMemTransfersLatency() { 1321 auto &RFI = OMPInfoCache.RFIs[OMPRTL___tgt_target_data_begin_mapper]; 1322 bool Changed = false; 1323 auto SplitMemTransfers = [&](Use &U, Function &Decl) { 1324 auto *RTCall = getCallIfRegularCall(U, &RFI); 1325 if (!RTCall) 1326 return false; 1327 1328 OffloadArray OffloadArrays[3]; 1329 if (!getValuesInOffloadArrays(*RTCall, OffloadArrays)) 1330 return false; 1331 1332 LLVM_DEBUG(dumpValuesInOffloadArrays(OffloadArrays)); 1333 1334 // TODO: Check if can be moved upwards. 1335 bool WasSplit = false; 1336 Instruction *WaitMovementPoint = canBeMovedDownwards(*RTCall); 1337 if (WaitMovementPoint) 1338 WasSplit = splitTargetDataBeginRTC(*RTCall, *WaitMovementPoint); 1339 1340 Changed |= WasSplit; 1341 return WasSplit; 1342 }; 1343 RFI.foreachUse(SCC, SplitMemTransfers); 1344 1345 return Changed; 1346 } 1347 1348 void analysisGlobalization() { 1349 auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared]; 1350 1351 auto CheckGlobalization = [&](Use &U, Function &Decl) { 1352 if (CallInst *CI = getCallIfRegularCall(U, &RFI)) { 1353 auto Remark = [&](OptimizationRemarkMissed ORM) { 1354 return ORM 1355 << "Found thread data sharing on the GPU. " 1356 << "Expect degraded performance due to data globalization."; 1357 }; 1358 emitRemark<OptimizationRemarkMissed>(CI, "OMP112", Remark); 1359 } 1360 1361 return false; 1362 }; 1363 1364 RFI.foreachUse(SCC, CheckGlobalization); 1365 } 1366 1367 /// Maps the values stored in the offload arrays passed as arguments to 1368 /// \p RuntimeCall into the offload arrays in \p OAs. 1369 bool getValuesInOffloadArrays(CallInst &RuntimeCall, 1370 MutableArrayRef<OffloadArray> OAs) { 1371 assert(OAs.size() == 3 && "Need space for three offload arrays!"); 1372 1373 // A runtime call that involves memory offloading looks something like: 1374 // call void @__tgt_target_data_begin_mapper(arg0, arg1, 1375 // i8** %offload_baseptrs, i8** %offload_ptrs, i64* %offload_sizes, 1376 // ...) 1377 // So, the idea is to access the allocas that allocate space for these 1378 // offload arrays, offload_baseptrs, offload_ptrs, offload_sizes. 1379 // Therefore: 1380 // i8** %offload_baseptrs. 1381 Value *BasePtrsArg = 1382 RuntimeCall.getArgOperand(OffloadArray::BasePtrsArgNum); 1383 // i8** %offload_ptrs. 1384 Value *PtrsArg = RuntimeCall.getArgOperand(OffloadArray::PtrsArgNum); 1385 // i8** %offload_sizes. 1386 Value *SizesArg = RuntimeCall.getArgOperand(OffloadArray::SizesArgNum); 1387 1388 // Get values stored in **offload_baseptrs. 1389 auto *V = getUnderlyingObject(BasePtrsArg); 1390 if (!isa<AllocaInst>(V)) 1391 return false; 1392 auto *BasePtrsArray = cast<AllocaInst>(V); 1393 if (!OAs[0].initialize(*BasePtrsArray, RuntimeCall)) 1394 return false; 1395 1396 // Get values stored in **offload_baseptrs. 1397 V = getUnderlyingObject(PtrsArg); 1398 if (!isa<AllocaInst>(V)) 1399 return false; 1400 auto *PtrsArray = cast<AllocaInst>(V); 1401 if (!OAs[1].initialize(*PtrsArray, RuntimeCall)) 1402 return false; 1403 1404 // Get values stored in **offload_sizes. 1405 V = getUnderlyingObject(SizesArg); 1406 // If it's a [constant] global array don't analyze it. 1407 if (isa<GlobalValue>(V)) 1408 return isa<Constant>(V); 1409 if (!isa<AllocaInst>(V)) 1410 return false; 1411 1412 auto *SizesArray = cast<AllocaInst>(V); 1413 if (!OAs[2].initialize(*SizesArray, RuntimeCall)) 1414 return false; 1415 1416 return true; 1417 } 1418 1419 /// Prints the values in the OffloadArrays \p OAs using LLVM_DEBUG. 1420 /// For now this is a way to test that the function getValuesInOffloadArrays 1421 /// is working properly. 1422 /// TODO: Move this to a unittest when unittests are available for OpenMPOpt. 1423 void dumpValuesInOffloadArrays(ArrayRef<OffloadArray> OAs) { 1424 assert(OAs.size() == 3 && "There are three offload arrays to debug!"); 1425 1426 LLVM_DEBUG(dbgs() << TAG << " Successfully got offload values:\n"); 1427 std::string ValuesStr; 1428 raw_string_ostream Printer(ValuesStr); 1429 std::string Separator = " --- "; 1430 1431 for (auto *BP : OAs[0].StoredValues) { 1432 BP->print(Printer); 1433 Printer << Separator; 1434 } 1435 LLVM_DEBUG(dbgs() << "\t\toffload_baseptrs: " << Printer.str() << "\n"); 1436 ValuesStr.clear(); 1437 1438 for (auto *P : OAs[1].StoredValues) { 1439 P->print(Printer); 1440 Printer << Separator; 1441 } 1442 LLVM_DEBUG(dbgs() << "\t\toffload_ptrs: " << Printer.str() << "\n"); 1443 ValuesStr.clear(); 1444 1445 for (auto *S : OAs[2].StoredValues) { 1446 S->print(Printer); 1447 Printer << Separator; 1448 } 1449 LLVM_DEBUG(dbgs() << "\t\toffload_sizes: " << Printer.str() << "\n"); 1450 } 1451 1452 /// Returns the instruction where the "wait" counterpart \p RuntimeCall can be 1453 /// moved. Returns nullptr if the movement is not possible, or not worth it. 1454 Instruction *canBeMovedDownwards(CallInst &RuntimeCall) { 1455 // FIXME: This traverses only the BasicBlock where RuntimeCall is. 1456 // Make it traverse the CFG. 1457 1458 Instruction *CurrentI = &RuntimeCall; 1459 bool IsWorthIt = false; 1460 while ((CurrentI = CurrentI->getNextNode())) { 1461 1462 // TODO: Once we detect the regions to be offloaded we should use the 1463 // alias analysis manager to check if CurrentI may modify one of 1464 // the offloaded regions. 1465 if (CurrentI->mayHaveSideEffects() || CurrentI->mayReadFromMemory()) { 1466 if (IsWorthIt) 1467 return CurrentI; 1468 1469 return nullptr; 1470 } 1471 1472 // FIXME: For now if we move it over anything without side effect 1473 // is worth it. 1474 IsWorthIt = true; 1475 } 1476 1477 // Return end of BasicBlock. 1478 return RuntimeCall.getParent()->getTerminator(); 1479 } 1480 1481 /// Splits \p RuntimeCall into its "issue" and "wait" counterparts. 1482 bool splitTargetDataBeginRTC(CallInst &RuntimeCall, 1483 Instruction &WaitMovementPoint) { 1484 // Create stack allocated handle (__tgt_async_info) at the beginning of the 1485 // function. Used for storing information of the async transfer, allowing to 1486 // wait on it later. 1487 auto &IRBuilder = OMPInfoCache.OMPBuilder; 1488 auto *F = RuntimeCall.getCaller(); 1489 Instruction *FirstInst = &(F->getEntryBlock().front()); 1490 AllocaInst *Handle = new AllocaInst( 1491 IRBuilder.AsyncInfo, F->getAddressSpace(), "handle", FirstInst); 1492 1493 // Add "issue" runtime call declaration: 1494 // declare %struct.tgt_async_info @__tgt_target_data_begin_issue(i64, i32, 1495 // i8**, i8**, i64*, i64*) 1496 FunctionCallee IssueDecl = IRBuilder.getOrCreateRuntimeFunction( 1497 M, OMPRTL___tgt_target_data_begin_mapper_issue); 1498 1499 // Change RuntimeCall call site for its asynchronous version. 1500 SmallVector<Value *, 16> Args; 1501 for (auto &Arg : RuntimeCall.args()) 1502 Args.push_back(Arg.get()); 1503 Args.push_back(Handle); 1504 1505 CallInst *IssueCallsite = 1506 CallInst::Create(IssueDecl, Args, /*NameStr=*/"", &RuntimeCall); 1507 RuntimeCall.eraseFromParent(); 1508 1509 // Add "wait" runtime call declaration: 1510 // declare void @__tgt_target_data_begin_wait(i64, %struct.__tgt_async_info) 1511 FunctionCallee WaitDecl = IRBuilder.getOrCreateRuntimeFunction( 1512 M, OMPRTL___tgt_target_data_begin_mapper_wait); 1513 1514 Value *WaitParams[2] = { 1515 IssueCallsite->getArgOperand( 1516 OffloadArray::DeviceIDArgNum), // device_id. 1517 Handle // handle to wait on. 1518 }; 1519 CallInst::Create(WaitDecl, WaitParams, /*NameStr=*/"", &WaitMovementPoint); 1520 1521 return true; 1522 } 1523 1524 static Value *combinedIdentStruct(Value *CurrentIdent, Value *NextIdent, 1525 bool GlobalOnly, bool &SingleChoice) { 1526 if (CurrentIdent == NextIdent) 1527 return CurrentIdent; 1528 1529 // TODO: Figure out how to actually combine multiple debug locations. For 1530 // now we just keep an existing one if there is a single choice. 1531 if (!GlobalOnly || isa<GlobalValue>(NextIdent)) { 1532 SingleChoice = !CurrentIdent; 1533 return NextIdent; 1534 } 1535 return nullptr; 1536 } 1537 1538 /// Return an `struct ident_t*` value that represents the ones used in the 1539 /// calls of \p RFI inside of \p F. If \p GlobalOnly is true, we will not 1540 /// return a local `struct ident_t*`. For now, if we cannot find a suitable 1541 /// return value we create one from scratch. We also do not yet combine 1542 /// information, e.g., the source locations, see combinedIdentStruct. 1543 Value * 1544 getCombinedIdentFromCallUsesIn(OMPInformationCache::RuntimeFunctionInfo &RFI, 1545 Function &F, bool GlobalOnly) { 1546 bool SingleChoice = true; 1547 Value *Ident = nullptr; 1548 auto CombineIdentStruct = [&](Use &U, Function &Caller) { 1549 CallInst *CI = getCallIfRegularCall(U, &RFI); 1550 if (!CI || &F != &Caller) 1551 return false; 1552 Ident = combinedIdentStruct(Ident, CI->getArgOperand(0), 1553 /* GlobalOnly */ true, SingleChoice); 1554 return false; 1555 }; 1556 RFI.foreachUse(SCC, CombineIdentStruct); 1557 1558 if (!Ident || !SingleChoice) { 1559 // The IRBuilder uses the insertion block to get to the module, this is 1560 // unfortunate but we work around it for now. 1561 if (!OMPInfoCache.OMPBuilder.getInsertionPoint().getBlock()) 1562 OMPInfoCache.OMPBuilder.updateToLocation(OpenMPIRBuilder::InsertPointTy( 1563 &F.getEntryBlock(), F.getEntryBlock().begin())); 1564 // Create a fallback location if non was found. 1565 // TODO: Use the debug locations of the calls instead. 1566 Constant *Loc = OMPInfoCache.OMPBuilder.getOrCreateDefaultSrcLocStr(); 1567 Ident = OMPInfoCache.OMPBuilder.getOrCreateIdent(Loc); 1568 } 1569 return Ident; 1570 } 1571 1572 /// Try to eliminate calls of \p RFI in \p F by reusing an existing one or 1573 /// \p ReplVal if given. 1574 bool deduplicateRuntimeCalls(Function &F, 1575 OMPInformationCache::RuntimeFunctionInfo &RFI, 1576 Value *ReplVal = nullptr) { 1577 auto *UV = RFI.getUseVector(F); 1578 if (!UV || UV->size() + (ReplVal != nullptr) < 2) 1579 return false; 1580 1581 LLVM_DEBUG( 1582 dbgs() << TAG << "Deduplicate " << UV->size() << " uses of " << RFI.Name 1583 << (ReplVal ? " with an existing value\n" : "\n") << "\n"); 1584 1585 assert((!ReplVal || (isa<Argument>(ReplVal) && 1586 cast<Argument>(ReplVal)->getParent() == &F)) && 1587 "Unexpected replacement value!"); 1588 1589 // TODO: Use dominance to find a good position instead. 1590 auto CanBeMoved = [this](CallBase &CB) { 1591 unsigned NumArgs = CB.getNumArgOperands(); 1592 if (NumArgs == 0) 1593 return true; 1594 if (CB.getArgOperand(0)->getType() != OMPInfoCache.OMPBuilder.IdentPtr) 1595 return false; 1596 for (unsigned u = 1; u < NumArgs; ++u) 1597 if (isa<Instruction>(CB.getArgOperand(u))) 1598 return false; 1599 return true; 1600 }; 1601 1602 if (!ReplVal) { 1603 for (Use *U : *UV) 1604 if (CallInst *CI = getCallIfRegularCall(*U, &RFI)) { 1605 if (!CanBeMoved(*CI)) 1606 continue; 1607 1608 // If the function is a kernel, dedup will move 1609 // the runtime call right after the kernel init callsite. Otherwise, 1610 // it will move it to the beginning of the caller function. 1611 if (isKernel(F)) { 1612 auto &KernelInitRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_target_init]; 1613 auto *KernelInitUV = KernelInitRFI.getUseVector(F); 1614 1615 if (KernelInitUV->empty()) 1616 continue; 1617 1618 assert(KernelInitUV->size() == 1 && 1619 "Expected a single __kmpc_target_init in kernel\n"); 1620 1621 CallInst *KernelInitCI = 1622 getCallIfRegularCall(*KernelInitUV->front(), &KernelInitRFI); 1623 assert(KernelInitCI && 1624 "Expected a call to __kmpc_target_init in kernel\n"); 1625 1626 CI->moveAfter(KernelInitCI); 1627 } else 1628 CI->moveBefore(&*F.getEntryBlock().getFirstInsertionPt()); 1629 ReplVal = CI; 1630 break; 1631 } 1632 if (!ReplVal) 1633 return false; 1634 } 1635 1636 // If we use a call as a replacement value we need to make sure the ident is 1637 // valid at the new location. For now we just pick a global one, either 1638 // existing and used by one of the calls, or created from scratch. 1639 if (CallBase *CI = dyn_cast<CallBase>(ReplVal)) { 1640 if (CI->getNumArgOperands() > 0 && 1641 CI->getArgOperand(0)->getType() == OMPInfoCache.OMPBuilder.IdentPtr) { 1642 Value *Ident = getCombinedIdentFromCallUsesIn(RFI, F, 1643 /* GlobalOnly */ true); 1644 CI->setArgOperand(0, Ident); 1645 } 1646 } 1647 1648 bool Changed = false; 1649 auto ReplaceAndDeleteCB = [&](Use &U, Function &Caller) { 1650 CallInst *CI = getCallIfRegularCall(U, &RFI); 1651 if (!CI || CI == ReplVal || &F != &Caller) 1652 return false; 1653 assert(CI->getCaller() == &F && "Unexpected call!"); 1654 1655 auto Remark = [&](OptimizationRemark OR) { 1656 return OR << "OpenMP runtime call " 1657 << ore::NV("OpenMPOptRuntime", RFI.Name) << " deduplicated."; 1658 }; 1659 if (CI->getDebugLoc()) 1660 emitRemark<OptimizationRemark>(CI, "OMP170", Remark); 1661 else 1662 emitRemark<OptimizationRemark>(&F, "OMP170", Remark); 1663 1664 CGUpdater.removeCallSite(*CI); 1665 CI->replaceAllUsesWith(ReplVal); 1666 CI->eraseFromParent(); 1667 ++NumOpenMPRuntimeCallsDeduplicated; 1668 Changed = true; 1669 return true; 1670 }; 1671 RFI.foreachUse(SCC, ReplaceAndDeleteCB); 1672 1673 return Changed; 1674 } 1675 1676 /// Collect arguments that represent the global thread id in \p GTIdArgs. 1677 void collectGlobalThreadIdArguments(SmallSetVector<Value *, 16> >IdArgs) { 1678 // TODO: Below we basically perform a fixpoint iteration with a pessimistic 1679 // initialization. We could define an AbstractAttribute instead and 1680 // run the Attributor here once it can be run as an SCC pass. 1681 1682 // Helper to check the argument \p ArgNo at all call sites of \p F for 1683 // a GTId. 1684 auto CallArgOpIsGTId = [&](Function &F, unsigned ArgNo, CallInst &RefCI) { 1685 if (!F.hasLocalLinkage()) 1686 return false; 1687 for (Use &U : F.uses()) { 1688 if (CallInst *CI = getCallIfRegularCall(U)) { 1689 Value *ArgOp = CI->getArgOperand(ArgNo); 1690 if (CI == &RefCI || GTIdArgs.count(ArgOp) || 1691 getCallIfRegularCall( 1692 *ArgOp, &OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num])) 1693 continue; 1694 } 1695 return false; 1696 } 1697 return true; 1698 }; 1699 1700 // Helper to identify uses of a GTId as GTId arguments. 1701 auto AddUserArgs = [&](Value >Id) { 1702 for (Use &U : GTId.uses()) 1703 if (CallInst *CI = dyn_cast<CallInst>(U.getUser())) 1704 if (CI->isArgOperand(&U)) 1705 if (Function *Callee = CI->getCalledFunction()) 1706 if (CallArgOpIsGTId(*Callee, U.getOperandNo(), *CI)) 1707 GTIdArgs.insert(Callee->getArg(U.getOperandNo())); 1708 }; 1709 1710 // The argument users of __kmpc_global_thread_num calls are GTIds. 1711 OMPInformationCache::RuntimeFunctionInfo &GlobThreadNumRFI = 1712 OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num]; 1713 1714 GlobThreadNumRFI.foreachUse(SCC, [&](Use &U, Function &F) { 1715 if (CallInst *CI = getCallIfRegularCall(U, &GlobThreadNumRFI)) 1716 AddUserArgs(*CI); 1717 return false; 1718 }); 1719 1720 // Transitively search for more arguments by looking at the users of the 1721 // ones we know already. During the search the GTIdArgs vector is extended 1722 // so we cannot cache the size nor can we use a range based for. 1723 for (unsigned u = 0; u < GTIdArgs.size(); ++u) 1724 AddUserArgs(*GTIdArgs[u]); 1725 } 1726 1727 /// Kernel (=GPU) optimizations and utility functions 1728 /// 1729 ///{{ 1730 1731 /// Check if \p F is a kernel, hence entry point for target offloading. 1732 bool isKernel(Function &F) { return OMPInfoCache.Kernels.count(&F); } 1733 1734 /// Cache to remember the unique kernel for a function. 1735 DenseMap<Function *, Optional<Kernel>> UniqueKernelMap; 1736 1737 /// Find the unique kernel that will execute \p F, if any. 1738 Kernel getUniqueKernelFor(Function &F); 1739 1740 /// Find the unique kernel that will execute \p I, if any. 1741 Kernel getUniqueKernelFor(Instruction &I) { 1742 return getUniqueKernelFor(*I.getFunction()); 1743 } 1744 1745 /// Rewrite the device (=GPU) code state machine create in non-SPMD mode in 1746 /// the cases we can avoid taking the address of a function. 1747 bool rewriteDeviceCodeStateMachine(); 1748 1749 /// 1750 ///}} 1751 1752 /// Emit a remark generically 1753 /// 1754 /// This template function can be used to generically emit a remark. The 1755 /// RemarkKind should be one of the following: 1756 /// - OptimizationRemark to indicate a successful optimization attempt 1757 /// - OptimizationRemarkMissed to report a failed optimization attempt 1758 /// - OptimizationRemarkAnalysis to provide additional information about an 1759 /// optimization attempt 1760 /// 1761 /// The remark is built using a callback function provided by the caller that 1762 /// takes a RemarkKind as input and returns a RemarkKind. 1763 template <typename RemarkKind, typename RemarkCallBack> 1764 void emitRemark(Instruction *I, StringRef RemarkName, 1765 RemarkCallBack &&RemarkCB) const { 1766 Function *F = I->getParent()->getParent(); 1767 auto &ORE = OREGetter(F); 1768 1769 if (RemarkName.startswith("OMP")) 1770 ORE.emit([&]() { 1771 return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, I)) 1772 << " [" << RemarkName << "]"; 1773 }); 1774 else 1775 ORE.emit( 1776 [&]() { return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, I)); }); 1777 } 1778 1779 /// Emit a remark on a function. 1780 template <typename RemarkKind, typename RemarkCallBack> 1781 void emitRemark(Function *F, StringRef RemarkName, 1782 RemarkCallBack &&RemarkCB) const { 1783 auto &ORE = OREGetter(F); 1784 1785 if (RemarkName.startswith("OMP")) 1786 ORE.emit([&]() { 1787 return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, F)) 1788 << " [" << RemarkName << "]"; 1789 }); 1790 else 1791 ORE.emit( 1792 [&]() { return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, F)); }); 1793 } 1794 1795 /// RAII struct to temporarily change an RTL function's linkage to external. 1796 /// This prevents it from being mistakenly removed by other optimizations. 1797 struct ExternalizationRAII { 1798 ExternalizationRAII(OMPInformationCache &OMPInfoCache, 1799 RuntimeFunction RFKind) 1800 : Declaration(OMPInfoCache.RFIs[RFKind].Declaration) { 1801 if (!Declaration) 1802 return; 1803 1804 LinkageType = Declaration->getLinkage(); 1805 Declaration->setLinkage(GlobalValue::ExternalLinkage); 1806 } 1807 1808 ~ExternalizationRAII() { 1809 if (!Declaration) 1810 return; 1811 1812 Declaration->setLinkage(LinkageType); 1813 } 1814 1815 Function *Declaration; 1816 GlobalValue::LinkageTypes LinkageType; 1817 }; 1818 1819 /// The underlying module. 1820 Module &M; 1821 1822 /// The SCC we are operating on. 1823 SmallVectorImpl<Function *> &SCC; 1824 1825 /// Callback to update the call graph, the first argument is a removed call, 1826 /// the second an optional replacement call. 1827 CallGraphUpdater &CGUpdater; 1828 1829 /// Callback to get an OptimizationRemarkEmitter from a Function * 1830 OptimizationRemarkGetter OREGetter; 1831 1832 /// OpenMP-specific information cache. Also Used for Attributor runs. 1833 OMPInformationCache &OMPInfoCache; 1834 1835 /// Attributor instance. 1836 Attributor &A; 1837 1838 /// Helper function to run Attributor on SCC. 1839 bool runAttributor(bool IsModulePass) { 1840 if (SCC.empty()) 1841 return false; 1842 1843 // Temporarily make these function have external linkage so the Attributor 1844 // doesn't remove them when we try to look them up later. 1845 ExternalizationRAII Parallel(OMPInfoCache, OMPRTL___kmpc_kernel_parallel); 1846 ExternalizationRAII EndParallel(OMPInfoCache, 1847 OMPRTL___kmpc_kernel_end_parallel); 1848 ExternalizationRAII BarrierSPMD(OMPInfoCache, 1849 OMPRTL___kmpc_barrier_simple_spmd); 1850 1851 registerAAs(IsModulePass); 1852 1853 ChangeStatus Changed = A.run(); 1854 1855 LLVM_DEBUG(dbgs() << "[Attributor] Done with " << SCC.size() 1856 << " functions, result: " << Changed << ".\n"); 1857 1858 return Changed == ChangeStatus::CHANGED; 1859 } 1860 1861 void registerFoldRuntimeCall(RuntimeFunction RF); 1862 1863 /// Populate the Attributor with abstract attribute opportunities in the 1864 /// function. 1865 void registerAAs(bool IsModulePass); 1866 }; 1867 1868 Kernel OpenMPOpt::getUniqueKernelFor(Function &F) { 1869 if (!OMPInfoCache.ModuleSlice.count(&F)) 1870 return nullptr; 1871 1872 // Use a scope to keep the lifetime of the CachedKernel short. 1873 { 1874 Optional<Kernel> &CachedKernel = UniqueKernelMap[&F]; 1875 if (CachedKernel) 1876 return *CachedKernel; 1877 1878 // TODO: We should use an AA to create an (optimistic and callback 1879 // call-aware) call graph. For now we stick to simple patterns that 1880 // are less powerful, basically the worst fixpoint. 1881 if (isKernel(F)) { 1882 CachedKernel = Kernel(&F); 1883 return *CachedKernel; 1884 } 1885 1886 CachedKernel = nullptr; 1887 if (!F.hasLocalLinkage()) { 1888 1889 // See https://openmp.llvm.org/remarks/OptimizationRemarks.html 1890 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 1891 return ORA << "Potentially unknown OpenMP target region caller."; 1892 }; 1893 emitRemark<OptimizationRemarkAnalysis>(&F, "OMP100", Remark); 1894 1895 return nullptr; 1896 } 1897 } 1898 1899 auto GetUniqueKernelForUse = [&](const Use &U) -> Kernel { 1900 if (auto *Cmp = dyn_cast<ICmpInst>(U.getUser())) { 1901 // Allow use in equality comparisons. 1902 if (Cmp->isEquality()) 1903 return getUniqueKernelFor(*Cmp); 1904 return nullptr; 1905 } 1906 if (auto *CB = dyn_cast<CallBase>(U.getUser())) { 1907 // Allow direct calls. 1908 if (CB->isCallee(&U)) 1909 return getUniqueKernelFor(*CB); 1910 1911 OMPInformationCache::RuntimeFunctionInfo &KernelParallelRFI = 1912 OMPInfoCache.RFIs[OMPRTL___kmpc_parallel_51]; 1913 // Allow the use in __kmpc_parallel_51 calls. 1914 if (OpenMPOpt::getCallIfRegularCall(*U.getUser(), &KernelParallelRFI)) 1915 return getUniqueKernelFor(*CB); 1916 return nullptr; 1917 } 1918 // Disallow every other use. 1919 return nullptr; 1920 }; 1921 1922 // TODO: In the future we want to track more than just a unique kernel. 1923 SmallPtrSet<Kernel, 2> PotentialKernels; 1924 OMPInformationCache::foreachUse(F, [&](const Use &U) { 1925 PotentialKernels.insert(GetUniqueKernelForUse(U)); 1926 }); 1927 1928 Kernel K = nullptr; 1929 if (PotentialKernels.size() == 1) 1930 K = *PotentialKernels.begin(); 1931 1932 // Cache the result. 1933 UniqueKernelMap[&F] = K; 1934 1935 return K; 1936 } 1937 1938 bool OpenMPOpt::rewriteDeviceCodeStateMachine() { 1939 OMPInformationCache::RuntimeFunctionInfo &KernelParallelRFI = 1940 OMPInfoCache.RFIs[OMPRTL___kmpc_parallel_51]; 1941 1942 bool Changed = false; 1943 if (!KernelParallelRFI) 1944 return Changed; 1945 1946 // If we have disabled state machine changes, exit 1947 if (DisableOpenMPOptStateMachineRewrite) 1948 return Changed; 1949 1950 for (Function *F : SCC) { 1951 1952 // Check if the function is a use in a __kmpc_parallel_51 call at 1953 // all. 1954 bool UnknownUse = false; 1955 bool KernelParallelUse = false; 1956 unsigned NumDirectCalls = 0; 1957 1958 SmallVector<Use *, 2> ToBeReplacedStateMachineUses; 1959 OMPInformationCache::foreachUse(*F, [&](Use &U) { 1960 if (auto *CB = dyn_cast<CallBase>(U.getUser())) 1961 if (CB->isCallee(&U)) { 1962 ++NumDirectCalls; 1963 return; 1964 } 1965 1966 if (isa<ICmpInst>(U.getUser())) { 1967 ToBeReplacedStateMachineUses.push_back(&U); 1968 return; 1969 } 1970 1971 // Find wrapper functions that represent parallel kernels. 1972 CallInst *CI = 1973 OpenMPOpt::getCallIfRegularCall(*U.getUser(), &KernelParallelRFI); 1974 const unsigned int WrapperFunctionArgNo = 6; 1975 if (!KernelParallelUse && CI && 1976 CI->getArgOperandNo(&U) == WrapperFunctionArgNo) { 1977 KernelParallelUse = true; 1978 ToBeReplacedStateMachineUses.push_back(&U); 1979 return; 1980 } 1981 UnknownUse = true; 1982 }); 1983 1984 // Do not emit a remark if we haven't seen a __kmpc_parallel_51 1985 // use. 1986 if (!KernelParallelUse) 1987 continue; 1988 1989 // If this ever hits, we should investigate. 1990 // TODO: Checking the number of uses is not a necessary restriction and 1991 // should be lifted. 1992 if (UnknownUse || NumDirectCalls != 1 || 1993 ToBeReplacedStateMachineUses.size() > 2) { 1994 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 1995 return ORA << "Parallel region is used in " 1996 << (UnknownUse ? "unknown" : "unexpected") 1997 << " ways. Will not attempt to rewrite the state machine."; 1998 }; 1999 emitRemark<OptimizationRemarkAnalysis>(F, "OMP101", Remark); 2000 continue; 2001 } 2002 2003 // Even if we have __kmpc_parallel_51 calls, we (for now) give 2004 // up if the function is not called from a unique kernel. 2005 Kernel K = getUniqueKernelFor(*F); 2006 if (!K) { 2007 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 2008 return ORA << "Parallel region is not called from a unique kernel. " 2009 "Will not attempt to rewrite the state machine."; 2010 }; 2011 emitRemark<OptimizationRemarkAnalysis>(F, "OMP102", Remark); 2012 continue; 2013 } 2014 2015 // We now know F is a parallel body function called only from the kernel K. 2016 // We also identified the state machine uses in which we replace the 2017 // function pointer by a new global symbol for identification purposes. This 2018 // ensures only direct calls to the function are left. 2019 2020 Module &M = *F->getParent(); 2021 Type *Int8Ty = Type::getInt8Ty(M.getContext()); 2022 2023 auto *ID = new GlobalVariable( 2024 M, Int8Ty, /* isConstant */ true, GlobalValue::PrivateLinkage, 2025 UndefValue::get(Int8Ty), F->getName() + ".ID"); 2026 2027 for (Use *U : ToBeReplacedStateMachineUses) 2028 U->set(ConstantExpr::getBitCast(ID, U->get()->getType())); 2029 2030 ++NumOpenMPParallelRegionsReplacedInGPUStateMachine; 2031 2032 Changed = true; 2033 } 2034 2035 return Changed; 2036 } 2037 2038 /// Abstract Attribute for tracking ICV values. 2039 struct AAICVTracker : public StateWrapper<BooleanState, AbstractAttribute> { 2040 using Base = StateWrapper<BooleanState, AbstractAttribute>; 2041 AAICVTracker(const IRPosition &IRP, Attributor &A) : Base(IRP) {} 2042 2043 void initialize(Attributor &A) override { 2044 Function *F = getAnchorScope(); 2045 if (!F || !A.isFunctionIPOAmendable(*F)) 2046 indicatePessimisticFixpoint(); 2047 } 2048 2049 /// Returns true if value is assumed to be tracked. 2050 bool isAssumedTracked() const { return getAssumed(); } 2051 2052 /// Returns true if value is known to be tracked. 2053 bool isKnownTracked() const { return getAssumed(); } 2054 2055 /// Create an abstract attribute biew for the position \p IRP. 2056 static AAICVTracker &createForPosition(const IRPosition &IRP, Attributor &A); 2057 2058 /// Return the value with which \p I can be replaced for specific \p ICV. 2059 virtual Optional<Value *> getReplacementValue(InternalControlVar ICV, 2060 const Instruction *I, 2061 Attributor &A) const { 2062 return None; 2063 } 2064 2065 /// Return an assumed unique ICV value if a single candidate is found. If 2066 /// there cannot be one, return a nullptr. If it is not clear yet, return the 2067 /// Optional::NoneType. 2068 virtual Optional<Value *> 2069 getUniqueReplacementValue(InternalControlVar ICV) const = 0; 2070 2071 // Currently only nthreads is being tracked. 2072 // this array will only grow with time. 2073 InternalControlVar TrackableICVs[1] = {ICV_nthreads}; 2074 2075 /// See AbstractAttribute::getName() 2076 const std::string getName() const override { return "AAICVTracker"; } 2077 2078 /// See AbstractAttribute::getIdAddr() 2079 const char *getIdAddr() const override { return &ID; } 2080 2081 /// This function should return true if the type of the \p AA is AAICVTracker 2082 static bool classof(const AbstractAttribute *AA) { 2083 return (AA->getIdAddr() == &ID); 2084 } 2085 2086 static const char ID; 2087 }; 2088 2089 struct AAICVTrackerFunction : public AAICVTracker { 2090 AAICVTrackerFunction(const IRPosition &IRP, Attributor &A) 2091 : AAICVTracker(IRP, A) {} 2092 2093 // FIXME: come up with better string. 2094 const std::string getAsStr() const override { return "ICVTrackerFunction"; } 2095 2096 // FIXME: come up with some stats. 2097 void trackStatistics() const override {} 2098 2099 /// We don't manifest anything for this AA. 2100 ChangeStatus manifest(Attributor &A) override { 2101 return ChangeStatus::UNCHANGED; 2102 } 2103 2104 // Map of ICV to their values at specific program point. 2105 EnumeratedArray<DenseMap<Instruction *, Value *>, InternalControlVar, 2106 InternalControlVar::ICV___last> 2107 ICVReplacementValuesMap; 2108 2109 ChangeStatus updateImpl(Attributor &A) override { 2110 ChangeStatus HasChanged = ChangeStatus::UNCHANGED; 2111 2112 Function *F = getAnchorScope(); 2113 2114 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2115 2116 for (InternalControlVar ICV : TrackableICVs) { 2117 auto &SetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Setter]; 2118 2119 auto &ValuesMap = ICVReplacementValuesMap[ICV]; 2120 auto TrackValues = [&](Use &U, Function &) { 2121 CallInst *CI = OpenMPOpt::getCallIfRegularCall(U); 2122 if (!CI) 2123 return false; 2124 2125 // FIXME: handle setters with more that 1 arguments. 2126 /// Track new value. 2127 if (ValuesMap.insert(std::make_pair(CI, CI->getArgOperand(0))).second) 2128 HasChanged = ChangeStatus::CHANGED; 2129 2130 return false; 2131 }; 2132 2133 auto CallCheck = [&](Instruction &I) { 2134 Optional<Value *> ReplVal = getValueForCall(A, &I, ICV); 2135 if (ReplVal.hasValue() && 2136 ValuesMap.insert(std::make_pair(&I, *ReplVal)).second) 2137 HasChanged = ChangeStatus::CHANGED; 2138 2139 return true; 2140 }; 2141 2142 // Track all changes of an ICV. 2143 SetterRFI.foreachUse(TrackValues, F); 2144 2145 bool UsedAssumedInformation = false; 2146 A.checkForAllInstructions(CallCheck, *this, {Instruction::Call}, 2147 UsedAssumedInformation, 2148 /* CheckBBLivenessOnly */ true); 2149 2150 /// TODO: Figure out a way to avoid adding entry in 2151 /// ICVReplacementValuesMap 2152 Instruction *Entry = &F->getEntryBlock().front(); 2153 if (HasChanged == ChangeStatus::CHANGED && !ValuesMap.count(Entry)) 2154 ValuesMap.insert(std::make_pair(Entry, nullptr)); 2155 } 2156 2157 return HasChanged; 2158 } 2159 2160 /// Hepler to check if \p I is a call and get the value for it if it is 2161 /// unique. 2162 Optional<Value *> getValueForCall(Attributor &A, const Instruction *I, 2163 InternalControlVar &ICV) const { 2164 2165 const auto *CB = dyn_cast<CallBase>(I); 2166 if (!CB || CB->hasFnAttr("no_openmp") || 2167 CB->hasFnAttr("no_openmp_routines")) 2168 return None; 2169 2170 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2171 auto &GetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Getter]; 2172 auto &SetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Setter]; 2173 Function *CalledFunction = CB->getCalledFunction(); 2174 2175 // Indirect call, assume ICV changes. 2176 if (CalledFunction == nullptr) 2177 return nullptr; 2178 if (CalledFunction == GetterRFI.Declaration) 2179 return None; 2180 if (CalledFunction == SetterRFI.Declaration) { 2181 if (ICVReplacementValuesMap[ICV].count(I)) 2182 return ICVReplacementValuesMap[ICV].lookup(I); 2183 2184 return nullptr; 2185 } 2186 2187 // Since we don't know, assume it changes the ICV. 2188 if (CalledFunction->isDeclaration()) 2189 return nullptr; 2190 2191 const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>( 2192 *this, IRPosition::callsite_returned(*CB), DepClassTy::REQUIRED); 2193 2194 if (ICVTrackingAA.isAssumedTracked()) 2195 return ICVTrackingAA.getUniqueReplacementValue(ICV); 2196 2197 // If we don't know, assume it changes. 2198 return nullptr; 2199 } 2200 2201 // We don't check unique value for a function, so return None. 2202 Optional<Value *> 2203 getUniqueReplacementValue(InternalControlVar ICV) const override { 2204 return None; 2205 } 2206 2207 /// Return the value with which \p I can be replaced for specific \p ICV. 2208 Optional<Value *> getReplacementValue(InternalControlVar ICV, 2209 const Instruction *I, 2210 Attributor &A) const override { 2211 const auto &ValuesMap = ICVReplacementValuesMap[ICV]; 2212 if (ValuesMap.count(I)) 2213 return ValuesMap.lookup(I); 2214 2215 SmallVector<const Instruction *, 16> Worklist; 2216 SmallPtrSet<const Instruction *, 16> Visited; 2217 Worklist.push_back(I); 2218 2219 Optional<Value *> ReplVal; 2220 2221 while (!Worklist.empty()) { 2222 const Instruction *CurrInst = Worklist.pop_back_val(); 2223 if (!Visited.insert(CurrInst).second) 2224 continue; 2225 2226 const BasicBlock *CurrBB = CurrInst->getParent(); 2227 2228 // Go up and look for all potential setters/calls that might change the 2229 // ICV. 2230 while ((CurrInst = CurrInst->getPrevNode())) { 2231 if (ValuesMap.count(CurrInst)) { 2232 Optional<Value *> NewReplVal = ValuesMap.lookup(CurrInst); 2233 // Unknown value, track new. 2234 if (!ReplVal.hasValue()) { 2235 ReplVal = NewReplVal; 2236 break; 2237 } 2238 2239 // If we found a new value, we can't know the icv value anymore. 2240 if (NewReplVal.hasValue()) 2241 if (ReplVal != NewReplVal) 2242 return nullptr; 2243 2244 break; 2245 } 2246 2247 Optional<Value *> NewReplVal = getValueForCall(A, CurrInst, ICV); 2248 if (!NewReplVal.hasValue()) 2249 continue; 2250 2251 // Unknown value, track new. 2252 if (!ReplVal.hasValue()) { 2253 ReplVal = NewReplVal; 2254 break; 2255 } 2256 2257 // if (NewReplVal.hasValue()) 2258 // We found a new value, we can't know the icv value anymore. 2259 if (ReplVal != NewReplVal) 2260 return nullptr; 2261 } 2262 2263 // If we are in the same BB and we have a value, we are done. 2264 if (CurrBB == I->getParent() && ReplVal.hasValue()) 2265 return ReplVal; 2266 2267 // Go through all predecessors and add terminators for analysis. 2268 for (const BasicBlock *Pred : predecessors(CurrBB)) 2269 if (const Instruction *Terminator = Pred->getTerminator()) 2270 Worklist.push_back(Terminator); 2271 } 2272 2273 return ReplVal; 2274 } 2275 }; 2276 2277 struct AAICVTrackerFunctionReturned : AAICVTracker { 2278 AAICVTrackerFunctionReturned(const IRPosition &IRP, Attributor &A) 2279 : AAICVTracker(IRP, A) {} 2280 2281 // FIXME: come up with better string. 2282 const std::string getAsStr() const override { 2283 return "ICVTrackerFunctionReturned"; 2284 } 2285 2286 // FIXME: come up with some stats. 2287 void trackStatistics() const override {} 2288 2289 /// We don't manifest anything for this AA. 2290 ChangeStatus manifest(Attributor &A) override { 2291 return ChangeStatus::UNCHANGED; 2292 } 2293 2294 // Map of ICV to their values at specific program point. 2295 EnumeratedArray<Optional<Value *>, InternalControlVar, 2296 InternalControlVar::ICV___last> 2297 ICVReplacementValuesMap; 2298 2299 /// Return the value with which \p I can be replaced for specific \p ICV. 2300 Optional<Value *> 2301 getUniqueReplacementValue(InternalControlVar ICV) const override { 2302 return ICVReplacementValuesMap[ICV]; 2303 } 2304 2305 ChangeStatus updateImpl(Attributor &A) override { 2306 ChangeStatus Changed = ChangeStatus::UNCHANGED; 2307 const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>( 2308 *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED); 2309 2310 if (!ICVTrackingAA.isAssumedTracked()) 2311 return indicatePessimisticFixpoint(); 2312 2313 for (InternalControlVar ICV : TrackableICVs) { 2314 Optional<Value *> &ReplVal = ICVReplacementValuesMap[ICV]; 2315 Optional<Value *> UniqueICVValue; 2316 2317 auto CheckReturnInst = [&](Instruction &I) { 2318 Optional<Value *> NewReplVal = 2319 ICVTrackingAA.getReplacementValue(ICV, &I, A); 2320 2321 // If we found a second ICV value there is no unique returned value. 2322 if (UniqueICVValue.hasValue() && UniqueICVValue != NewReplVal) 2323 return false; 2324 2325 UniqueICVValue = NewReplVal; 2326 2327 return true; 2328 }; 2329 2330 bool UsedAssumedInformation = false; 2331 if (!A.checkForAllInstructions(CheckReturnInst, *this, {Instruction::Ret}, 2332 UsedAssumedInformation, 2333 /* CheckBBLivenessOnly */ true)) 2334 UniqueICVValue = nullptr; 2335 2336 if (UniqueICVValue == ReplVal) 2337 continue; 2338 2339 ReplVal = UniqueICVValue; 2340 Changed = ChangeStatus::CHANGED; 2341 } 2342 2343 return Changed; 2344 } 2345 }; 2346 2347 struct AAICVTrackerCallSite : AAICVTracker { 2348 AAICVTrackerCallSite(const IRPosition &IRP, Attributor &A) 2349 : AAICVTracker(IRP, A) {} 2350 2351 void initialize(Attributor &A) override { 2352 Function *F = getAnchorScope(); 2353 if (!F || !A.isFunctionIPOAmendable(*F)) 2354 indicatePessimisticFixpoint(); 2355 2356 // We only initialize this AA for getters, so we need to know which ICV it 2357 // gets. 2358 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2359 for (InternalControlVar ICV : TrackableICVs) { 2360 auto ICVInfo = OMPInfoCache.ICVs[ICV]; 2361 auto &Getter = OMPInfoCache.RFIs[ICVInfo.Getter]; 2362 if (Getter.Declaration == getAssociatedFunction()) { 2363 AssociatedICV = ICVInfo.Kind; 2364 return; 2365 } 2366 } 2367 2368 /// Unknown ICV. 2369 indicatePessimisticFixpoint(); 2370 } 2371 2372 ChangeStatus manifest(Attributor &A) override { 2373 if (!ReplVal.hasValue() || !ReplVal.getValue()) 2374 return ChangeStatus::UNCHANGED; 2375 2376 A.changeValueAfterManifest(*getCtxI(), **ReplVal); 2377 A.deleteAfterManifest(*getCtxI()); 2378 2379 return ChangeStatus::CHANGED; 2380 } 2381 2382 // FIXME: come up with better string. 2383 const std::string getAsStr() const override { return "ICVTrackerCallSite"; } 2384 2385 // FIXME: come up with some stats. 2386 void trackStatistics() const override {} 2387 2388 InternalControlVar AssociatedICV; 2389 Optional<Value *> ReplVal; 2390 2391 ChangeStatus updateImpl(Attributor &A) override { 2392 const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>( 2393 *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED); 2394 2395 // We don't have any information, so we assume it changes the ICV. 2396 if (!ICVTrackingAA.isAssumedTracked()) 2397 return indicatePessimisticFixpoint(); 2398 2399 Optional<Value *> NewReplVal = 2400 ICVTrackingAA.getReplacementValue(AssociatedICV, getCtxI(), A); 2401 2402 if (ReplVal == NewReplVal) 2403 return ChangeStatus::UNCHANGED; 2404 2405 ReplVal = NewReplVal; 2406 return ChangeStatus::CHANGED; 2407 } 2408 2409 // Return the value with which associated value can be replaced for specific 2410 // \p ICV. 2411 Optional<Value *> 2412 getUniqueReplacementValue(InternalControlVar ICV) const override { 2413 return ReplVal; 2414 } 2415 }; 2416 2417 struct AAICVTrackerCallSiteReturned : AAICVTracker { 2418 AAICVTrackerCallSiteReturned(const IRPosition &IRP, Attributor &A) 2419 : AAICVTracker(IRP, A) {} 2420 2421 // FIXME: come up with better string. 2422 const std::string getAsStr() const override { 2423 return "ICVTrackerCallSiteReturned"; 2424 } 2425 2426 // FIXME: come up with some stats. 2427 void trackStatistics() const override {} 2428 2429 /// We don't manifest anything for this AA. 2430 ChangeStatus manifest(Attributor &A) override { 2431 return ChangeStatus::UNCHANGED; 2432 } 2433 2434 // Map of ICV to their values at specific program point. 2435 EnumeratedArray<Optional<Value *>, InternalControlVar, 2436 InternalControlVar::ICV___last> 2437 ICVReplacementValuesMap; 2438 2439 /// Return the value with which associated value can be replaced for specific 2440 /// \p ICV. 2441 Optional<Value *> 2442 getUniqueReplacementValue(InternalControlVar ICV) const override { 2443 return ICVReplacementValuesMap[ICV]; 2444 } 2445 2446 ChangeStatus updateImpl(Attributor &A) override { 2447 ChangeStatus Changed = ChangeStatus::UNCHANGED; 2448 const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>( 2449 *this, IRPosition::returned(*getAssociatedFunction()), 2450 DepClassTy::REQUIRED); 2451 2452 // We don't have any information, so we assume it changes the ICV. 2453 if (!ICVTrackingAA.isAssumedTracked()) 2454 return indicatePessimisticFixpoint(); 2455 2456 for (InternalControlVar ICV : TrackableICVs) { 2457 Optional<Value *> &ReplVal = ICVReplacementValuesMap[ICV]; 2458 Optional<Value *> NewReplVal = 2459 ICVTrackingAA.getUniqueReplacementValue(ICV); 2460 2461 if (ReplVal == NewReplVal) 2462 continue; 2463 2464 ReplVal = NewReplVal; 2465 Changed = ChangeStatus::CHANGED; 2466 } 2467 return Changed; 2468 } 2469 }; 2470 2471 struct AAExecutionDomainFunction : public AAExecutionDomain { 2472 AAExecutionDomainFunction(const IRPosition &IRP, Attributor &A) 2473 : AAExecutionDomain(IRP, A) {} 2474 2475 const std::string getAsStr() const override { 2476 return "[AAExecutionDomain] " + std::to_string(SingleThreadedBBs.size()) + 2477 "/" + std::to_string(NumBBs) + " BBs thread 0 only."; 2478 } 2479 2480 /// See AbstractAttribute::trackStatistics(). 2481 void trackStatistics() const override {} 2482 2483 void initialize(Attributor &A) override { 2484 Function *F = getAnchorScope(); 2485 for (const auto &BB : *F) 2486 SingleThreadedBBs.insert(&BB); 2487 NumBBs = SingleThreadedBBs.size(); 2488 } 2489 2490 ChangeStatus manifest(Attributor &A) override { 2491 LLVM_DEBUG({ 2492 for (const BasicBlock *BB : SingleThreadedBBs) 2493 dbgs() << TAG << " Basic block @" << getAnchorScope()->getName() << " " 2494 << BB->getName() << " is executed by a single thread.\n"; 2495 }); 2496 return ChangeStatus::UNCHANGED; 2497 } 2498 2499 ChangeStatus updateImpl(Attributor &A) override; 2500 2501 /// Check if an instruction is executed by a single thread. 2502 bool isExecutedByInitialThreadOnly(const Instruction &I) const override { 2503 return isExecutedByInitialThreadOnly(*I.getParent()); 2504 } 2505 2506 bool isExecutedByInitialThreadOnly(const BasicBlock &BB) const override { 2507 return isValidState() && SingleThreadedBBs.contains(&BB); 2508 } 2509 2510 /// Set of basic blocks that are executed by a single thread. 2511 DenseSet<const BasicBlock *> SingleThreadedBBs; 2512 2513 /// Total number of basic blocks in this function. 2514 long unsigned NumBBs; 2515 }; 2516 2517 ChangeStatus AAExecutionDomainFunction::updateImpl(Attributor &A) { 2518 Function *F = getAnchorScope(); 2519 ReversePostOrderTraversal<Function *> RPOT(F); 2520 auto NumSingleThreadedBBs = SingleThreadedBBs.size(); 2521 2522 bool AllCallSitesKnown; 2523 auto PredForCallSite = [&](AbstractCallSite ACS) { 2524 const auto &ExecutionDomainAA = A.getAAFor<AAExecutionDomain>( 2525 *this, IRPosition::function(*ACS.getInstruction()->getFunction()), 2526 DepClassTy::REQUIRED); 2527 return ACS.isDirectCall() && 2528 ExecutionDomainAA.isExecutedByInitialThreadOnly( 2529 *ACS.getInstruction()); 2530 }; 2531 2532 if (!A.checkForAllCallSites(PredForCallSite, *this, 2533 /* RequiresAllCallSites */ true, 2534 AllCallSitesKnown)) 2535 SingleThreadedBBs.erase(&F->getEntryBlock()); 2536 2537 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2538 auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_target_init]; 2539 2540 // Check if the edge into the successor block compares the __kmpc_target_init 2541 // result with -1. If we are in non-SPMD-mode that signals only the main 2542 // thread will execute the edge. 2543 auto IsInitialThreadOnly = [&](BranchInst *Edge, BasicBlock *SuccessorBB) { 2544 if (!Edge || !Edge->isConditional()) 2545 return false; 2546 if (Edge->getSuccessor(0) != SuccessorBB) 2547 return false; 2548 2549 auto *Cmp = dyn_cast<CmpInst>(Edge->getCondition()); 2550 if (!Cmp || !Cmp->isTrueWhenEqual() || !Cmp->isEquality()) 2551 return false; 2552 2553 ConstantInt *C = dyn_cast<ConstantInt>(Cmp->getOperand(1)); 2554 if (!C) 2555 return false; 2556 2557 // Match: -1 == __kmpc_target_init (for non-SPMD kernels only!) 2558 if (C->isAllOnesValue()) { 2559 auto *CB = dyn_cast<CallBase>(Cmp->getOperand(0)); 2560 CB = CB ? OpenMPOpt::getCallIfRegularCall(*CB, &RFI) : nullptr; 2561 if (!CB) 2562 return false; 2563 const int InitIsSPMDArgNo = 1; 2564 auto *IsSPMDModeCI = 2565 dyn_cast<ConstantInt>(CB->getOperand(InitIsSPMDArgNo)); 2566 return IsSPMDModeCI && IsSPMDModeCI->isZero(); 2567 } 2568 2569 return false; 2570 }; 2571 2572 // Merge all the predecessor states into the current basic block. A basic 2573 // block is executed by a single thread if all of its predecessors are. 2574 auto MergePredecessorStates = [&](BasicBlock *BB) { 2575 if (pred_begin(BB) == pred_end(BB)) 2576 return SingleThreadedBBs.contains(BB); 2577 2578 bool IsInitialThread = true; 2579 for (auto PredBB = pred_begin(BB), PredEndBB = pred_end(BB); 2580 PredBB != PredEndBB; ++PredBB) { 2581 if (!IsInitialThreadOnly(dyn_cast<BranchInst>((*PredBB)->getTerminator()), 2582 BB)) 2583 IsInitialThread &= SingleThreadedBBs.contains(*PredBB); 2584 } 2585 2586 return IsInitialThread; 2587 }; 2588 2589 for (auto *BB : RPOT) { 2590 if (!MergePredecessorStates(BB)) 2591 SingleThreadedBBs.erase(BB); 2592 } 2593 2594 return (NumSingleThreadedBBs == SingleThreadedBBs.size()) 2595 ? ChangeStatus::UNCHANGED 2596 : ChangeStatus::CHANGED; 2597 } 2598 2599 /// Try to replace memory allocation calls called by a single thread with a 2600 /// static buffer of shared memory. 2601 struct AAHeapToShared : public StateWrapper<BooleanState, AbstractAttribute> { 2602 using Base = StateWrapper<BooleanState, AbstractAttribute>; 2603 AAHeapToShared(const IRPosition &IRP, Attributor &A) : Base(IRP) {} 2604 2605 /// Create an abstract attribute view for the position \p IRP. 2606 static AAHeapToShared &createForPosition(const IRPosition &IRP, 2607 Attributor &A); 2608 2609 /// Returns true if HeapToShared conversion is assumed to be possible. 2610 virtual bool isAssumedHeapToShared(CallBase &CB) const = 0; 2611 2612 /// Returns true if HeapToShared conversion is assumed and the CB is a 2613 /// callsite to a free operation to be removed. 2614 virtual bool isAssumedHeapToSharedRemovedFree(CallBase &CB) const = 0; 2615 2616 /// See AbstractAttribute::getName(). 2617 const std::string getName() const override { return "AAHeapToShared"; } 2618 2619 /// See AbstractAttribute::getIdAddr(). 2620 const char *getIdAddr() const override { return &ID; } 2621 2622 /// This function should return true if the type of the \p AA is 2623 /// AAHeapToShared. 2624 static bool classof(const AbstractAttribute *AA) { 2625 return (AA->getIdAddr() == &ID); 2626 } 2627 2628 /// Unique ID (due to the unique address) 2629 static const char ID; 2630 }; 2631 2632 struct AAHeapToSharedFunction : public AAHeapToShared { 2633 AAHeapToSharedFunction(const IRPosition &IRP, Attributor &A) 2634 : AAHeapToShared(IRP, A) {} 2635 2636 const std::string getAsStr() const override { 2637 return "[AAHeapToShared] " + std::to_string(MallocCalls.size()) + 2638 " malloc calls eligible."; 2639 } 2640 2641 /// See AbstractAttribute::trackStatistics(). 2642 void trackStatistics() const override {} 2643 2644 /// This functions finds free calls that will be removed by the 2645 /// HeapToShared transformation. 2646 void findPotentialRemovedFreeCalls(Attributor &A) { 2647 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2648 auto &FreeRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_free_shared]; 2649 2650 PotentialRemovedFreeCalls.clear(); 2651 // Update free call users of found malloc calls. 2652 for (CallBase *CB : MallocCalls) { 2653 SmallVector<CallBase *, 4> FreeCalls; 2654 for (auto *U : CB->users()) { 2655 CallBase *C = dyn_cast<CallBase>(U); 2656 if (C && C->getCalledFunction() == FreeRFI.Declaration) 2657 FreeCalls.push_back(C); 2658 } 2659 2660 if (FreeCalls.size() != 1) 2661 continue; 2662 2663 PotentialRemovedFreeCalls.insert(FreeCalls.front()); 2664 } 2665 } 2666 2667 void initialize(Attributor &A) override { 2668 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2669 auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared]; 2670 2671 for (User *U : RFI.Declaration->users()) 2672 if (CallBase *CB = dyn_cast<CallBase>(U)) 2673 MallocCalls.insert(CB); 2674 2675 findPotentialRemovedFreeCalls(A); 2676 } 2677 2678 bool isAssumedHeapToShared(CallBase &CB) const override { 2679 return isValidState() && MallocCalls.count(&CB); 2680 } 2681 2682 bool isAssumedHeapToSharedRemovedFree(CallBase &CB) const override { 2683 return isValidState() && PotentialRemovedFreeCalls.count(&CB); 2684 } 2685 2686 ChangeStatus manifest(Attributor &A) override { 2687 if (MallocCalls.empty()) 2688 return ChangeStatus::UNCHANGED; 2689 2690 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2691 auto &FreeCall = OMPInfoCache.RFIs[OMPRTL___kmpc_free_shared]; 2692 2693 Function *F = getAnchorScope(); 2694 auto *HS = A.lookupAAFor<AAHeapToStack>(IRPosition::function(*F), this, 2695 DepClassTy::OPTIONAL); 2696 2697 ChangeStatus Changed = ChangeStatus::UNCHANGED; 2698 for (CallBase *CB : MallocCalls) { 2699 // Skip replacing this if HeapToStack has already claimed it. 2700 if (HS && HS->isAssumedHeapToStack(*CB)) 2701 continue; 2702 2703 // Find the unique free call to remove it. 2704 SmallVector<CallBase *, 4> FreeCalls; 2705 for (auto *U : CB->users()) { 2706 CallBase *C = dyn_cast<CallBase>(U); 2707 if (C && C->getCalledFunction() == FreeCall.Declaration) 2708 FreeCalls.push_back(C); 2709 } 2710 if (FreeCalls.size() != 1) 2711 continue; 2712 2713 ConstantInt *AllocSize = dyn_cast<ConstantInt>(CB->getArgOperand(0)); 2714 2715 LLVM_DEBUG(dbgs() << TAG << "Replace globalization call " << *CB 2716 << " with " << AllocSize->getZExtValue() 2717 << " bytes of shared memory\n"); 2718 2719 // Create a new shared memory buffer of the same size as the allocation 2720 // and replace all the uses of the original allocation with it. 2721 Module *M = CB->getModule(); 2722 Type *Int8Ty = Type::getInt8Ty(M->getContext()); 2723 Type *Int8ArrTy = ArrayType::get(Int8Ty, AllocSize->getZExtValue()); 2724 auto *SharedMem = new GlobalVariable( 2725 *M, Int8ArrTy, /* IsConstant */ false, GlobalValue::InternalLinkage, 2726 UndefValue::get(Int8ArrTy), CB->getName(), nullptr, 2727 GlobalValue::NotThreadLocal, 2728 static_cast<unsigned>(AddressSpace::Shared)); 2729 auto *NewBuffer = 2730 ConstantExpr::getPointerCast(SharedMem, Int8Ty->getPointerTo()); 2731 2732 auto Remark = [&](OptimizationRemark OR) { 2733 return OR << "Replaced globalized variable with " 2734 << ore::NV("SharedMemory", AllocSize->getZExtValue()) 2735 << ((AllocSize->getZExtValue() != 1) ? " bytes " : " byte ") 2736 << "of shared memory."; 2737 }; 2738 A.emitRemark<OptimizationRemark>(CB, "OMP111", Remark); 2739 2740 SharedMem->setAlignment(MaybeAlign(32)); 2741 2742 A.changeValueAfterManifest(*CB, *NewBuffer); 2743 A.deleteAfterManifest(*CB); 2744 A.deleteAfterManifest(*FreeCalls.front()); 2745 2746 NumBytesMovedToSharedMemory += AllocSize->getZExtValue(); 2747 Changed = ChangeStatus::CHANGED; 2748 } 2749 2750 return Changed; 2751 } 2752 2753 ChangeStatus updateImpl(Attributor &A) override { 2754 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2755 auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared]; 2756 Function *F = getAnchorScope(); 2757 2758 auto NumMallocCalls = MallocCalls.size(); 2759 2760 // Only consider malloc calls executed by a single thread with a constant. 2761 for (User *U : RFI.Declaration->users()) { 2762 const auto &ED = A.getAAFor<AAExecutionDomain>( 2763 *this, IRPosition::function(*F), DepClassTy::REQUIRED); 2764 if (CallBase *CB = dyn_cast<CallBase>(U)) 2765 if (!dyn_cast<ConstantInt>(CB->getArgOperand(0)) || 2766 !ED.isExecutedByInitialThreadOnly(*CB)) 2767 MallocCalls.erase(CB); 2768 } 2769 2770 findPotentialRemovedFreeCalls(A); 2771 2772 if (NumMallocCalls != MallocCalls.size()) 2773 return ChangeStatus::CHANGED; 2774 2775 return ChangeStatus::UNCHANGED; 2776 } 2777 2778 /// Collection of all malloc calls in a function. 2779 SmallPtrSet<CallBase *, 4> MallocCalls; 2780 /// Collection of potentially removed free calls in a function. 2781 SmallPtrSet<CallBase *, 4> PotentialRemovedFreeCalls; 2782 }; 2783 2784 struct AAKernelInfo : public StateWrapper<KernelInfoState, AbstractAttribute> { 2785 using Base = StateWrapper<KernelInfoState, AbstractAttribute>; 2786 AAKernelInfo(const IRPosition &IRP, Attributor &A) : Base(IRP) {} 2787 2788 /// Statistics are tracked as part of manifest for now. 2789 void trackStatistics() const override {} 2790 2791 /// See AbstractAttribute::getAsStr() 2792 const std::string getAsStr() const override { 2793 if (!isValidState()) 2794 return "<invalid>"; 2795 return std::string(SPMDCompatibilityTracker.isAssumed() ? "SPMD" 2796 : "generic") + 2797 std::string(SPMDCompatibilityTracker.isAtFixpoint() ? " [FIX]" 2798 : "") + 2799 std::string(" #PRs: ") + 2800 std::to_string(ReachedKnownParallelRegions.size()) + 2801 ", #Unknown PRs: " + 2802 std::to_string(ReachedUnknownParallelRegions.size()); 2803 } 2804 2805 /// Create an abstract attribute biew for the position \p IRP. 2806 static AAKernelInfo &createForPosition(const IRPosition &IRP, Attributor &A); 2807 2808 /// See AbstractAttribute::getName() 2809 const std::string getName() const override { return "AAKernelInfo"; } 2810 2811 /// See AbstractAttribute::getIdAddr() 2812 const char *getIdAddr() const override { return &ID; } 2813 2814 /// This function should return true if the type of the \p AA is AAKernelInfo 2815 static bool classof(const AbstractAttribute *AA) { 2816 return (AA->getIdAddr() == &ID); 2817 } 2818 2819 static const char ID; 2820 }; 2821 2822 /// The function kernel info abstract attribute, basically, what can we say 2823 /// about a function with regards to the KernelInfoState. 2824 struct AAKernelInfoFunction : AAKernelInfo { 2825 AAKernelInfoFunction(const IRPosition &IRP, Attributor &A) 2826 : AAKernelInfo(IRP, A) {} 2827 2828 SmallPtrSet<Instruction *, 4> GuardedInstructions; 2829 2830 SmallPtrSetImpl<Instruction *> &getGuardedInstructions() { 2831 return GuardedInstructions; 2832 } 2833 2834 /// See AbstractAttribute::initialize(...). 2835 void initialize(Attributor &A) override { 2836 // This is a high-level transform that might change the constant arguments 2837 // of the init and dinit calls. We need to tell the Attributor about this 2838 // to avoid other parts using the current constant value for simpliication. 2839 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2840 2841 Function *Fn = getAnchorScope(); 2842 if (!OMPInfoCache.Kernels.count(Fn)) 2843 return; 2844 2845 // Add itself to the reaching kernel and set IsKernelEntry. 2846 ReachingKernelEntries.insert(Fn); 2847 IsKernelEntry = true; 2848 2849 OMPInformationCache::RuntimeFunctionInfo &InitRFI = 2850 OMPInfoCache.RFIs[OMPRTL___kmpc_target_init]; 2851 OMPInformationCache::RuntimeFunctionInfo &DeinitRFI = 2852 OMPInfoCache.RFIs[OMPRTL___kmpc_target_deinit]; 2853 2854 // For kernels we perform more initialization work, first we find the init 2855 // and deinit calls. 2856 auto StoreCallBase = [](Use &U, 2857 OMPInformationCache::RuntimeFunctionInfo &RFI, 2858 CallBase *&Storage) { 2859 CallBase *CB = OpenMPOpt::getCallIfRegularCall(U, &RFI); 2860 assert(CB && 2861 "Unexpected use of __kmpc_target_init or __kmpc_target_deinit!"); 2862 assert(!Storage && 2863 "Multiple uses of __kmpc_target_init or __kmpc_target_deinit!"); 2864 Storage = CB; 2865 return false; 2866 }; 2867 InitRFI.foreachUse( 2868 [&](Use &U, Function &) { 2869 StoreCallBase(U, InitRFI, KernelInitCB); 2870 return false; 2871 }, 2872 Fn); 2873 DeinitRFI.foreachUse( 2874 [&](Use &U, Function &) { 2875 StoreCallBase(U, DeinitRFI, KernelDeinitCB); 2876 return false; 2877 }, 2878 Fn); 2879 2880 // Ignore kernels without initializers such as global constructors. 2881 if (!KernelInitCB || !KernelDeinitCB) { 2882 indicateOptimisticFixpoint(); 2883 return; 2884 } 2885 2886 // For kernels we might need to initialize/finalize the IsSPMD state and 2887 // we need to register a simplification callback so that the Attributor 2888 // knows the constant arguments to __kmpc_target_init and 2889 // __kmpc_target_deinit might actually change. 2890 2891 Attributor::SimplifictionCallbackTy StateMachineSimplifyCB = 2892 [&](const IRPosition &IRP, const AbstractAttribute *AA, 2893 bool &UsedAssumedInformation) -> Optional<Value *> { 2894 // IRP represents the "use generic state machine" argument of an 2895 // __kmpc_target_init call. We will answer this one with the internal 2896 // state. As long as we are not in an invalid state, we will create a 2897 // custom state machine so the value should be a `i1 false`. If we are 2898 // in an invalid state, we won't change the value that is in the IR. 2899 if (!isValidState()) 2900 return nullptr; 2901 // If we have disabled state machine rewrites, don't make a custom one. 2902 if (DisableOpenMPOptStateMachineRewrite) 2903 return nullptr; 2904 if (AA) 2905 A.recordDependence(*this, *AA, DepClassTy::OPTIONAL); 2906 UsedAssumedInformation = !isAtFixpoint(); 2907 auto *FalseVal = 2908 ConstantInt::getBool(IRP.getAnchorValue().getContext(), 0); 2909 return FalseVal; 2910 }; 2911 2912 Attributor::SimplifictionCallbackTy IsSPMDModeSimplifyCB = 2913 [&](const IRPosition &IRP, const AbstractAttribute *AA, 2914 bool &UsedAssumedInformation) -> Optional<Value *> { 2915 // IRP represents the "SPMDCompatibilityTracker" argument of an 2916 // __kmpc_target_init or 2917 // __kmpc_target_deinit call. We will answer this one with the internal 2918 // state. 2919 if (!SPMDCompatibilityTracker.isValidState()) 2920 return nullptr; 2921 if (!SPMDCompatibilityTracker.isAtFixpoint()) { 2922 if (AA) 2923 A.recordDependence(*this, *AA, DepClassTy::OPTIONAL); 2924 UsedAssumedInformation = true; 2925 } else { 2926 UsedAssumedInformation = false; 2927 } 2928 auto *Val = ConstantInt::getBool(IRP.getAnchorValue().getContext(), 2929 SPMDCompatibilityTracker.isAssumed()); 2930 return Val; 2931 }; 2932 2933 Attributor::SimplifictionCallbackTy IsGenericModeSimplifyCB = 2934 [&](const IRPosition &IRP, const AbstractAttribute *AA, 2935 bool &UsedAssumedInformation) -> Optional<Value *> { 2936 // IRP represents the "RequiresFullRuntime" argument of an 2937 // __kmpc_target_init or __kmpc_target_deinit call. We will answer this 2938 // one with the internal state of the SPMDCompatibilityTracker, so if 2939 // generic then true, if SPMD then false. 2940 if (!SPMDCompatibilityTracker.isValidState()) 2941 return nullptr; 2942 if (!SPMDCompatibilityTracker.isAtFixpoint()) { 2943 if (AA) 2944 A.recordDependence(*this, *AA, DepClassTy::OPTIONAL); 2945 UsedAssumedInformation = true; 2946 } else { 2947 UsedAssumedInformation = false; 2948 } 2949 auto *Val = ConstantInt::getBool(IRP.getAnchorValue().getContext(), 2950 !SPMDCompatibilityTracker.isAssumed()); 2951 return Val; 2952 }; 2953 2954 constexpr const int InitIsSPMDArgNo = 1; 2955 constexpr const int DeinitIsSPMDArgNo = 1; 2956 constexpr const int InitUseStateMachineArgNo = 2; 2957 constexpr const int InitRequiresFullRuntimeArgNo = 3; 2958 constexpr const int DeinitRequiresFullRuntimeArgNo = 2; 2959 A.registerSimplificationCallback( 2960 IRPosition::callsite_argument(*KernelInitCB, InitUseStateMachineArgNo), 2961 StateMachineSimplifyCB); 2962 A.registerSimplificationCallback( 2963 IRPosition::callsite_argument(*KernelInitCB, InitIsSPMDArgNo), 2964 IsSPMDModeSimplifyCB); 2965 A.registerSimplificationCallback( 2966 IRPosition::callsite_argument(*KernelDeinitCB, DeinitIsSPMDArgNo), 2967 IsSPMDModeSimplifyCB); 2968 A.registerSimplificationCallback( 2969 IRPosition::callsite_argument(*KernelInitCB, 2970 InitRequiresFullRuntimeArgNo), 2971 IsGenericModeSimplifyCB); 2972 A.registerSimplificationCallback( 2973 IRPosition::callsite_argument(*KernelDeinitCB, 2974 DeinitRequiresFullRuntimeArgNo), 2975 IsGenericModeSimplifyCB); 2976 2977 // Check if we know we are in SPMD-mode already. 2978 ConstantInt *IsSPMDArg = 2979 dyn_cast<ConstantInt>(KernelInitCB->getArgOperand(InitIsSPMDArgNo)); 2980 if (IsSPMDArg && !IsSPMDArg->isZero()) 2981 SPMDCompatibilityTracker.indicateOptimisticFixpoint(); 2982 // This is a generic region but SPMDization is disabled so stop tracking. 2983 else if (DisableOpenMPOptSPMDization) 2984 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 2985 } 2986 2987 /// Modify the IR based on the KernelInfoState as the fixpoint iteration is 2988 /// finished now. 2989 ChangeStatus manifest(Attributor &A) override { 2990 // If we are not looking at a kernel with __kmpc_target_init and 2991 // __kmpc_target_deinit call we cannot actually manifest the information. 2992 if (!KernelInitCB || !KernelDeinitCB) 2993 return ChangeStatus::UNCHANGED; 2994 2995 // Known SPMD-mode kernels need no manifest changes. 2996 if (SPMDCompatibilityTracker.isKnown()) 2997 return ChangeStatus::UNCHANGED; 2998 2999 // If we can we change the execution mode to SPMD-mode otherwise we build a 3000 // custom state machine. 3001 if (!changeToSPMDMode(A)) 3002 buildCustomStateMachine(A); 3003 3004 return ChangeStatus::CHANGED; 3005 } 3006 3007 bool changeToSPMDMode(Attributor &A) { 3008 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 3009 3010 if (!SPMDCompatibilityTracker.isAssumed()) { 3011 for (Instruction *NonCompatibleI : SPMDCompatibilityTracker) { 3012 if (!NonCompatibleI) 3013 continue; 3014 3015 // Skip diagnostics on calls to known OpenMP runtime functions for now. 3016 if (auto *CB = dyn_cast<CallBase>(NonCompatibleI)) 3017 if (OMPInfoCache.RTLFunctions.contains(CB->getCalledFunction())) 3018 continue; 3019 3020 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 3021 ORA << "Value has potential side effects preventing SPMD-mode " 3022 "execution"; 3023 if (isa<CallBase>(NonCompatibleI)) { 3024 ORA << ". Add `__attribute__((assume(\"ompx_spmd_amenable\")))` to " 3025 "the called function to override"; 3026 } 3027 return ORA << "."; 3028 }; 3029 A.emitRemark<OptimizationRemarkAnalysis>(NonCompatibleI, "OMP121", 3030 Remark); 3031 3032 LLVM_DEBUG(dbgs() << TAG << "SPMD-incompatible side-effect: " 3033 << *NonCompatibleI << "\n"); 3034 } 3035 3036 return false; 3037 } 3038 3039 auto CreateGuardedRegion = [&](Instruction *RegionStartI, 3040 Instruction *RegionEndI) { 3041 LoopInfo *LI = nullptr; 3042 DominatorTree *DT = nullptr; 3043 MemorySSAUpdater *MSU = nullptr; 3044 using InsertPointTy = OpenMPIRBuilder::InsertPointTy; 3045 3046 BasicBlock *ParentBB = RegionStartI->getParent(); 3047 Function *Fn = ParentBB->getParent(); 3048 Module &M = *Fn->getParent(); 3049 3050 // Create all the blocks and logic. 3051 // ParentBB: 3052 // goto RegionCheckTidBB 3053 // RegionCheckTidBB: 3054 // Tid = __kmpc_hardware_thread_id() 3055 // if (Tid != 0) 3056 // goto RegionBarrierBB 3057 // RegionStartBB: 3058 // <execute instructions guarded> 3059 // goto RegionEndBB 3060 // RegionEndBB: 3061 // <store escaping values to shared mem> 3062 // goto RegionBarrierBB 3063 // RegionBarrierBB: 3064 // __kmpc_simple_barrier_spmd() 3065 // // second barrier is omitted if lacking escaping values. 3066 // <load escaping values from shared mem> 3067 // __kmpc_simple_barrier_spmd() 3068 // goto RegionExitBB 3069 // RegionExitBB: 3070 // <execute rest of instructions> 3071 3072 BasicBlock *RegionEndBB = SplitBlock(ParentBB, RegionEndI->getNextNode(), 3073 DT, LI, MSU, "region.guarded.end"); 3074 BasicBlock *RegionBarrierBB = 3075 SplitBlock(RegionEndBB, &*RegionEndBB->getFirstInsertionPt(), DT, LI, 3076 MSU, "region.barrier"); 3077 BasicBlock *RegionExitBB = 3078 SplitBlock(RegionBarrierBB, &*RegionBarrierBB->getFirstInsertionPt(), 3079 DT, LI, MSU, "region.exit"); 3080 BasicBlock *RegionStartBB = 3081 SplitBlock(ParentBB, RegionStartI, DT, LI, MSU, "region.guarded"); 3082 3083 assert(ParentBB->getUniqueSuccessor() == RegionStartBB && 3084 "Expected a different CFG"); 3085 3086 BasicBlock *RegionCheckTidBB = SplitBlock( 3087 ParentBB, ParentBB->getTerminator(), DT, LI, MSU, "region.check.tid"); 3088 3089 // Register basic blocks with the Attributor. 3090 A.registerManifestAddedBasicBlock(*RegionEndBB); 3091 A.registerManifestAddedBasicBlock(*RegionBarrierBB); 3092 A.registerManifestAddedBasicBlock(*RegionExitBB); 3093 A.registerManifestAddedBasicBlock(*RegionStartBB); 3094 A.registerManifestAddedBasicBlock(*RegionCheckTidBB); 3095 3096 bool HasBroadcastValues = false; 3097 // Find escaping outputs from the guarded region to outside users and 3098 // broadcast their values to them. 3099 for (Instruction &I : *RegionStartBB) { 3100 SmallPtrSet<Instruction *, 4> OutsideUsers; 3101 for (User *Usr : I.users()) { 3102 Instruction &UsrI = *cast<Instruction>(Usr); 3103 if (UsrI.getParent() != RegionStartBB) 3104 OutsideUsers.insert(&UsrI); 3105 } 3106 3107 if (OutsideUsers.empty()) 3108 continue; 3109 3110 HasBroadcastValues = true; 3111 3112 // Emit a global variable in shared memory to store the broadcasted 3113 // value. 3114 auto *SharedMem = new GlobalVariable( 3115 M, I.getType(), /* IsConstant */ false, 3116 GlobalValue::InternalLinkage, UndefValue::get(I.getType()), 3117 I.getName() + ".guarded.output.alloc", nullptr, 3118 GlobalValue::NotThreadLocal, 3119 static_cast<unsigned>(AddressSpace::Shared)); 3120 3121 // Emit a store instruction to update the value. 3122 new StoreInst(&I, SharedMem, RegionEndBB->getTerminator()); 3123 3124 LoadInst *LoadI = new LoadInst(I.getType(), SharedMem, 3125 I.getName() + ".guarded.output.load", 3126 RegionBarrierBB->getTerminator()); 3127 3128 // Emit a load instruction and replace uses of the output value. 3129 for (Instruction *UsrI : OutsideUsers) { 3130 assert(UsrI->getParent() == RegionExitBB && 3131 "Expected escaping users in exit region"); 3132 UsrI->replaceUsesOfWith(&I, LoadI); 3133 } 3134 } 3135 3136 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 3137 3138 // Go to tid check BB in ParentBB. 3139 const DebugLoc DL = ParentBB->getTerminator()->getDebugLoc(); 3140 ParentBB->getTerminator()->eraseFromParent(); 3141 OpenMPIRBuilder::LocationDescription Loc( 3142 InsertPointTy(ParentBB, ParentBB->end()), DL); 3143 OMPInfoCache.OMPBuilder.updateToLocation(Loc); 3144 auto *SrcLocStr = OMPInfoCache.OMPBuilder.getOrCreateSrcLocStr(Loc); 3145 Value *Ident = OMPInfoCache.OMPBuilder.getOrCreateIdent(SrcLocStr); 3146 BranchInst::Create(RegionCheckTidBB, ParentBB)->setDebugLoc(DL); 3147 3148 // Add check for Tid in RegionCheckTidBB 3149 RegionCheckTidBB->getTerminator()->eraseFromParent(); 3150 OpenMPIRBuilder::LocationDescription LocRegionCheckTid( 3151 InsertPointTy(RegionCheckTidBB, RegionCheckTidBB->end()), DL); 3152 OMPInfoCache.OMPBuilder.updateToLocation(LocRegionCheckTid); 3153 FunctionCallee HardwareTidFn = 3154 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( 3155 M, OMPRTL___kmpc_get_hardware_thread_id_in_block); 3156 Value *Tid = 3157 OMPInfoCache.OMPBuilder.Builder.CreateCall(HardwareTidFn, {}); 3158 Value *TidCheck = OMPInfoCache.OMPBuilder.Builder.CreateIsNull(Tid); 3159 OMPInfoCache.OMPBuilder.Builder 3160 .CreateCondBr(TidCheck, RegionStartBB, RegionBarrierBB) 3161 ->setDebugLoc(DL); 3162 3163 // First barrier for synchronization, ensures main thread has updated 3164 // values. 3165 FunctionCallee BarrierFn = 3166 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( 3167 M, OMPRTL___kmpc_barrier_simple_spmd); 3168 OMPInfoCache.OMPBuilder.updateToLocation(InsertPointTy( 3169 RegionBarrierBB, RegionBarrierBB->getFirstInsertionPt())); 3170 OMPInfoCache.OMPBuilder.Builder.CreateCall(BarrierFn, {Ident, Tid}) 3171 ->setDebugLoc(DL); 3172 3173 // Second barrier ensures workers have read broadcast values. 3174 if (HasBroadcastValues) 3175 CallInst::Create(BarrierFn, {Ident, Tid}, "", 3176 RegionBarrierBB->getTerminator()) 3177 ->setDebugLoc(DL); 3178 }; 3179 3180 SmallVector<std::pair<Instruction *, Instruction *>, 4> GuardedRegions; 3181 3182 for (Instruction *GuardedI : SPMDCompatibilityTracker) { 3183 BasicBlock *BB = GuardedI->getParent(); 3184 auto *CalleeAA = A.lookupAAFor<AAKernelInfo>( 3185 IRPosition::function(*GuardedI->getFunction()), nullptr, 3186 DepClassTy::NONE); 3187 assert(CalleeAA != nullptr && "Expected Callee AAKernelInfo"); 3188 auto &CalleeAAFunction = *cast<AAKernelInfoFunction>(CalleeAA); 3189 // Continue if instruction is already guarded. 3190 if (CalleeAAFunction.getGuardedInstructions().contains(GuardedI)) 3191 continue; 3192 3193 Instruction *GuardedRegionStart = nullptr, *GuardedRegionEnd = nullptr; 3194 for (Instruction &I : *BB) { 3195 // If instruction I needs to be guarded update the guarded region 3196 // bounds. 3197 if (SPMDCompatibilityTracker.contains(&I)) { 3198 CalleeAAFunction.getGuardedInstructions().insert(&I); 3199 if (GuardedRegionStart) 3200 GuardedRegionEnd = &I; 3201 else 3202 GuardedRegionStart = GuardedRegionEnd = &I; 3203 3204 continue; 3205 } 3206 3207 // Instruction I does not need guarding, store 3208 // any region found and reset bounds. 3209 if (GuardedRegionStart) { 3210 GuardedRegions.push_back( 3211 std::make_pair(GuardedRegionStart, GuardedRegionEnd)); 3212 GuardedRegionStart = nullptr; 3213 GuardedRegionEnd = nullptr; 3214 } 3215 } 3216 } 3217 3218 for (auto &GR : GuardedRegions) 3219 CreateGuardedRegion(GR.first, GR.second); 3220 3221 // Adjust the global exec mode flag that tells the runtime what mode this 3222 // kernel is executed in. 3223 Function *Kernel = getAnchorScope(); 3224 GlobalVariable *ExecMode = Kernel->getParent()->getGlobalVariable( 3225 (Kernel->getName() + "_exec_mode").str()); 3226 assert(ExecMode && "Kernel without exec mode?"); 3227 assert(ExecMode->getInitializer() && 3228 ExecMode->getInitializer()->isOneValue() && 3229 "Initially non-SPMD kernel has SPMD exec mode!"); 3230 3231 // Set the global exec mode flag to indicate SPMD-Generic mode. 3232 constexpr int SPMDGeneric = 2; 3233 if (!ExecMode->getInitializer()->isZeroValue()) 3234 ExecMode->setInitializer( 3235 ConstantInt::get(ExecMode->getInitializer()->getType(), SPMDGeneric)); 3236 3237 // Next rewrite the init and deinit calls to indicate we use SPMD-mode now. 3238 const int InitIsSPMDArgNo = 1; 3239 const int DeinitIsSPMDArgNo = 1; 3240 const int InitUseStateMachineArgNo = 2; 3241 const int InitRequiresFullRuntimeArgNo = 3; 3242 const int DeinitRequiresFullRuntimeArgNo = 2; 3243 3244 auto &Ctx = getAnchorValue().getContext(); 3245 A.changeUseAfterManifest(KernelInitCB->getArgOperandUse(InitIsSPMDArgNo), 3246 *ConstantInt::getBool(Ctx, 1)); 3247 A.changeUseAfterManifest( 3248 KernelInitCB->getArgOperandUse(InitUseStateMachineArgNo), 3249 *ConstantInt::getBool(Ctx, 0)); 3250 A.changeUseAfterManifest( 3251 KernelDeinitCB->getArgOperandUse(DeinitIsSPMDArgNo), 3252 *ConstantInt::getBool(Ctx, 1)); 3253 A.changeUseAfterManifest( 3254 KernelInitCB->getArgOperandUse(InitRequiresFullRuntimeArgNo), 3255 *ConstantInt::getBool(Ctx, 0)); 3256 A.changeUseAfterManifest( 3257 KernelDeinitCB->getArgOperandUse(DeinitRequiresFullRuntimeArgNo), 3258 *ConstantInt::getBool(Ctx, 0)); 3259 3260 ++NumOpenMPTargetRegionKernelsSPMD; 3261 3262 auto Remark = [&](OptimizationRemark OR) { 3263 return OR << "Transformed generic-mode kernel to SPMD-mode."; 3264 }; 3265 A.emitRemark<OptimizationRemark>(KernelInitCB, "OMP120", Remark); 3266 return true; 3267 }; 3268 3269 ChangeStatus buildCustomStateMachine(Attributor &A) { 3270 // If we have disabled state machine rewrites, don't make a custom one 3271 if (DisableOpenMPOptStateMachineRewrite) 3272 return indicatePessimisticFixpoint(); 3273 3274 assert(ReachedKnownParallelRegions.isValidState() && 3275 "Custom state machine with invalid parallel region states?"); 3276 3277 const int InitIsSPMDArgNo = 1; 3278 const int InitUseStateMachineArgNo = 2; 3279 3280 // Check if the current configuration is non-SPMD and generic state machine. 3281 // If we already have SPMD mode or a custom state machine we do not need to 3282 // go any further. If it is anything but a constant something is weird and 3283 // we give up. 3284 ConstantInt *UseStateMachine = dyn_cast<ConstantInt>( 3285 KernelInitCB->getArgOperand(InitUseStateMachineArgNo)); 3286 ConstantInt *IsSPMD = 3287 dyn_cast<ConstantInt>(KernelInitCB->getArgOperand(InitIsSPMDArgNo)); 3288 3289 // If we are stuck with generic mode, try to create a custom device (=GPU) 3290 // state machine which is specialized for the parallel regions that are 3291 // reachable by the kernel. 3292 if (!UseStateMachine || UseStateMachine->isZero() || !IsSPMD || 3293 !IsSPMD->isZero()) 3294 return ChangeStatus::UNCHANGED; 3295 3296 // If not SPMD mode, indicate we use a custom state machine now. 3297 auto &Ctx = getAnchorValue().getContext(); 3298 auto *FalseVal = ConstantInt::getBool(Ctx, 0); 3299 A.changeUseAfterManifest( 3300 KernelInitCB->getArgOperandUse(InitUseStateMachineArgNo), *FalseVal); 3301 3302 // If we don't actually need a state machine we are done here. This can 3303 // happen if there simply are no parallel regions. In the resulting kernel 3304 // all worker threads will simply exit right away, leaving the main thread 3305 // to do the work alone. 3306 if (ReachedKnownParallelRegions.empty() && 3307 ReachedUnknownParallelRegions.empty()) { 3308 ++NumOpenMPTargetRegionKernelsWithoutStateMachine; 3309 3310 auto Remark = [&](OptimizationRemark OR) { 3311 return OR << "Removing unused state machine from generic-mode kernel."; 3312 }; 3313 A.emitRemark<OptimizationRemark>(KernelInitCB, "OMP130", Remark); 3314 3315 return ChangeStatus::CHANGED; 3316 } 3317 3318 // Keep track in the statistics of our new shiny custom state machine. 3319 if (ReachedUnknownParallelRegions.empty()) { 3320 ++NumOpenMPTargetRegionKernelsCustomStateMachineWithoutFallback; 3321 3322 auto Remark = [&](OptimizationRemark OR) { 3323 return OR << "Rewriting generic-mode kernel with a customized state " 3324 "machine."; 3325 }; 3326 A.emitRemark<OptimizationRemark>(KernelInitCB, "OMP131", Remark); 3327 } else { 3328 ++NumOpenMPTargetRegionKernelsCustomStateMachineWithFallback; 3329 3330 auto Remark = [&](OptimizationRemarkAnalysis OR) { 3331 return OR << "Generic-mode kernel is executed with a customized state " 3332 "machine that requires a fallback."; 3333 }; 3334 A.emitRemark<OptimizationRemarkAnalysis>(KernelInitCB, "OMP132", Remark); 3335 3336 // Tell the user why we ended up with a fallback. 3337 for (CallBase *UnknownParallelRegionCB : ReachedUnknownParallelRegions) { 3338 if (!UnknownParallelRegionCB) 3339 continue; 3340 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 3341 return ORA << "Call may contain unknown parallel regions. Use " 3342 << "`__attribute__((assume(\"omp_no_parallelism\")))` to " 3343 "override."; 3344 }; 3345 A.emitRemark<OptimizationRemarkAnalysis>(UnknownParallelRegionCB, 3346 "OMP133", Remark); 3347 } 3348 } 3349 3350 // Create all the blocks: 3351 // 3352 // InitCB = __kmpc_target_init(...) 3353 // bool IsWorker = InitCB >= 0; 3354 // if (IsWorker) { 3355 // SMBeginBB: __kmpc_barrier_simple_spmd(...); 3356 // void *WorkFn; 3357 // bool Active = __kmpc_kernel_parallel(&WorkFn); 3358 // if (!WorkFn) return; 3359 // SMIsActiveCheckBB: if (Active) { 3360 // SMIfCascadeCurrentBB: if (WorkFn == <ParFn0>) 3361 // ParFn0(...); 3362 // SMIfCascadeCurrentBB: else if (WorkFn == <ParFn1>) 3363 // ParFn1(...); 3364 // ... 3365 // SMIfCascadeCurrentBB: else 3366 // ((WorkFnTy*)WorkFn)(...); 3367 // SMEndParallelBB: __kmpc_kernel_end_parallel(...); 3368 // } 3369 // SMDoneBB: __kmpc_barrier_simple_spmd(...); 3370 // goto SMBeginBB; 3371 // } 3372 // UserCodeEntryBB: // user code 3373 // __kmpc_target_deinit(...) 3374 // 3375 Function *Kernel = getAssociatedFunction(); 3376 assert(Kernel && "Expected an associated function!"); 3377 3378 BasicBlock *InitBB = KernelInitCB->getParent(); 3379 BasicBlock *UserCodeEntryBB = InitBB->splitBasicBlock( 3380 KernelInitCB->getNextNode(), "thread.user_code.check"); 3381 BasicBlock *StateMachineBeginBB = BasicBlock::Create( 3382 Ctx, "worker_state_machine.begin", Kernel, UserCodeEntryBB); 3383 BasicBlock *StateMachineFinishedBB = BasicBlock::Create( 3384 Ctx, "worker_state_machine.finished", Kernel, UserCodeEntryBB); 3385 BasicBlock *StateMachineIsActiveCheckBB = BasicBlock::Create( 3386 Ctx, "worker_state_machine.is_active.check", Kernel, UserCodeEntryBB); 3387 BasicBlock *StateMachineIfCascadeCurrentBB = 3388 BasicBlock::Create(Ctx, "worker_state_machine.parallel_region.check", 3389 Kernel, UserCodeEntryBB); 3390 BasicBlock *StateMachineEndParallelBB = 3391 BasicBlock::Create(Ctx, "worker_state_machine.parallel_region.end", 3392 Kernel, UserCodeEntryBB); 3393 BasicBlock *StateMachineDoneBarrierBB = BasicBlock::Create( 3394 Ctx, "worker_state_machine.done.barrier", Kernel, UserCodeEntryBB); 3395 A.registerManifestAddedBasicBlock(*InitBB); 3396 A.registerManifestAddedBasicBlock(*UserCodeEntryBB); 3397 A.registerManifestAddedBasicBlock(*StateMachineBeginBB); 3398 A.registerManifestAddedBasicBlock(*StateMachineFinishedBB); 3399 A.registerManifestAddedBasicBlock(*StateMachineIsActiveCheckBB); 3400 A.registerManifestAddedBasicBlock(*StateMachineIfCascadeCurrentBB); 3401 A.registerManifestAddedBasicBlock(*StateMachineEndParallelBB); 3402 A.registerManifestAddedBasicBlock(*StateMachineDoneBarrierBB); 3403 3404 const DebugLoc &DLoc = KernelInitCB->getDebugLoc(); 3405 ReturnInst::Create(Ctx, StateMachineFinishedBB)->setDebugLoc(DLoc); 3406 3407 InitBB->getTerminator()->eraseFromParent(); 3408 Instruction *IsWorker = 3409 ICmpInst::Create(ICmpInst::ICmp, llvm::CmpInst::ICMP_NE, KernelInitCB, 3410 ConstantInt::get(KernelInitCB->getType(), -1), 3411 "thread.is_worker", InitBB); 3412 IsWorker->setDebugLoc(DLoc); 3413 BranchInst::Create(StateMachineBeginBB, UserCodeEntryBB, IsWorker, InitBB); 3414 3415 // Create local storage for the work function pointer. 3416 Type *VoidPtrTy = Type::getInt8PtrTy(Ctx); 3417 AllocaInst *WorkFnAI = new AllocaInst(VoidPtrTy, 0, "worker.work_fn.addr", 3418 &Kernel->getEntryBlock().front()); 3419 WorkFnAI->setDebugLoc(DLoc); 3420 3421 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 3422 OMPInfoCache.OMPBuilder.updateToLocation( 3423 OpenMPIRBuilder::LocationDescription( 3424 IRBuilder<>::InsertPoint(StateMachineBeginBB, 3425 StateMachineBeginBB->end()), 3426 DLoc)); 3427 3428 Value *Ident = KernelInitCB->getArgOperand(0); 3429 Value *GTid = KernelInitCB; 3430 3431 Module &M = *Kernel->getParent(); 3432 FunctionCallee BarrierFn = 3433 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( 3434 M, OMPRTL___kmpc_barrier_simple_spmd); 3435 CallInst::Create(BarrierFn, {Ident, GTid}, "", StateMachineBeginBB) 3436 ->setDebugLoc(DLoc); 3437 3438 FunctionCallee KernelParallelFn = 3439 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( 3440 M, OMPRTL___kmpc_kernel_parallel); 3441 Instruction *IsActiveWorker = CallInst::Create( 3442 KernelParallelFn, {WorkFnAI}, "worker.is_active", StateMachineBeginBB); 3443 IsActiveWorker->setDebugLoc(DLoc); 3444 Instruction *WorkFn = new LoadInst(VoidPtrTy, WorkFnAI, "worker.work_fn", 3445 StateMachineBeginBB); 3446 WorkFn->setDebugLoc(DLoc); 3447 3448 FunctionType *ParallelRegionFnTy = FunctionType::get( 3449 Type::getVoidTy(Ctx), {Type::getInt16Ty(Ctx), Type::getInt32Ty(Ctx)}, 3450 false); 3451 Value *WorkFnCast = BitCastInst::CreatePointerBitCastOrAddrSpaceCast( 3452 WorkFn, ParallelRegionFnTy->getPointerTo(), "worker.work_fn.addr_cast", 3453 StateMachineBeginBB); 3454 3455 Instruction *IsDone = 3456 ICmpInst::Create(ICmpInst::ICmp, llvm::CmpInst::ICMP_EQ, WorkFn, 3457 Constant::getNullValue(VoidPtrTy), "worker.is_done", 3458 StateMachineBeginBB); 3459 IsDone->setDebugLoc(DLoc); 3460 BranchInst::Create(StateMachineFinishedBB, StateMachineIsActiveCheckBB, 3461 IsDone, StateMachineBeginBB) 3462 ->setDebugLoc(DLoc); 3463 3464 BranchInst::Create(StateMachineIfCascadeCurrentBB, 3465 StateMachineDoneBarrierBB, IsActiveWorker, 3466 StateMachineIsActiveCheckBB) 3467 ->setDebugLoc(DLoc); 3468 3469 Value *ZeroArg = 3470 Constant::getNullValue(ParallelRegionFnTy->getParamType(0)); 3471 3472 // Now that we have most of the CFG skeleton it is time for the if-cascade 3473 // that checks the function pointer we got from the runtime against the 3474 // parallel regions we expect, if there are any. 3475 for (int i = 0, e = ReachedKnownParallelRegions.size(); i < e; ++i) { 3476 auto *ParallelRegion = ReachedKnownParallelRegions[i]; 3477 BasicBlock *PRExecuteBB = BasicBlock::Create( 3478 Ctx, "worker_state_machine.parallel_region.execute", Kernel, 3479 StateMachineEndParallelBB); 3480 CallInst::Create(ParallelRegion, {ZeroArg, GTid}, "", PRExecuteBB) 3481 ->setDebugLoc(DLoc); 3482 BranchInst::Create(StateMachineEndParallelBB, PRExecuteBB) 3483 ->setDebugLoc(DLoc); 3484 3485 BasicBlock *PRNextBB = 3486 BasicBlock::Create(Ctx, "worker_state_machine.parallel_region.check", 3487 Kernel, StateMachineEndParallelBB); 3488 3489 // Check if we need to compare the pointer at all or if we can just 3490 // call the parallel region function. 3491 Value *IsPR; 3492 if (i + 1 < e || !ReachedUnknownParallelRegions.empty()) { 3493 Instruction *CmpI = ICmpInst::Create( 3494 ICmpInst::ICmp, llvm::CmpInst::ICMP_EQ, WorkFnCast, ParallelRegion, 3495 "worker.check_parallel_region", StateMachineIfCascadeCurrentBB); 3496 CmpI->setDebugLoc(DLoc); 3497 IsPR = CmpI; 3498 } else { 3499 IsPR = ConstantInt::getTrue(Ctx); 3500 } 3501 3502 BranchInst::Create(PRExecuteBB, PRNextBB, IsPR, 3503 StateMachineIfCascadeCurrentBB) 3504 ->setDebugLoc(DLoc); 3505 StateMachineIfCascadeCurrentBB = PRNextBB; 3506 } 3507 3508 // At the end of the if-cascade we place the indirect function pointer call 3509 // in case we might need it, that is if there can be parallel regions we 3510 // have not handled in the if-cascade above. 3511 if (!ReachedUnknownParallelRegions.empty()) { 3512 StateMachineIfCascadeCurrentBB->setName( 3513 "worker_state_machine.parallel_region.fallback.execute"); 3514 CallInst::Create(ParallelRegionFnTy, WorkFnCast, {ZeroArg, GTid}, "", 3515 StateMachineIfCascadeCurrentBB) 3516 ->setDebugLoc(DLoc); 3517 } 3518 BranchInst::Create(StateMachineEndParallelBB, 3519 StateMachineIfCascadeCurrentBB) 3520 ->setDebugLoc(DLoc); 3521 3522 CallInst::Create(OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( 3523 M, OMPRTL___kmpc_kernel_end_parallel), 3524 {}, "", StateMachineEndParallelBB) 3525 ->setDebugLoc(DLoc); 3526 BranchInst::Create(StateMachineDoneBarrierBB, StateMachineEndParallelBB) 3527 ->setDebugLoc(DLoc); 3528 3529 CallInst::Create(BarrierFn, {Ident, GTid}, "", StateMachineDoneBarrierBB) 3530 ->setDebugLoc(DLoc); 3531 BranchInst::Create(StateMachineBeginBB, StateMachineDoneBarrierBB) 3532 ->setDebugLoc(DLoc); 3533 3534 return ChangeStatus::CHANGED; 3535 } 3536 3537 /// Fixpoint iteration update function. Will be called every time a dependence 3538 /// changed its state (and in the beginning). 3539 ChangeStatus updateImpl(Attributor &A) override { 3540 KernelInfoState StateBefore = getState(); 3541 3542 // Callback to check a read/write instruction. 3543 auto CheckRWInst = [&](Instruction &I) { 3544 // We handle calls later. 3545 if (isa<CallBase>(I)) 3546 return true; 3547 // We only care about write effects. 3548 if (!I.mayWriteToMemory()) 3549 return true; 3550 if (auto *SI = dyn_cast<StoreInst>(&I)) { 3551 SmallVector<const Value *> Objects; 3552 getUnderlyingObjects(SI->getPointerOperand(), Objects); 3553 if (llvm::all_of(Objects, 3554 [](const Value *Obj) { return isa<AllocaInst>(Obj); })) 3555 return true; 3556 // Check for AAHeapToStack moved objects which must not be guarded. 3557 auto &HS = A.getAAFor<AAHeapToStack>( 3558 *this, IRPosition::function(*I.getFunction()), 3559 DepClassTy::REQUIRED); 3560 if (llvm::all_of(Objects, [&HS](const Value *Obj) { 3561 auto *CB = dyn_cast<CallBase>(Obj); 3562 if (!CB) 3563 return false; 3564 return HS.isAssumedHeapToStack(*CB); 3565 })) { 3566 return true; 3567 } 3568 } 3569 3570 // Insert instruction that needs guarding. 3571 SPMDCompatibilityTracker.insert(&I); 3572 return true; 3573 }; 3574 3575 bool UsedAssumedInformationInCheckRWInst = false; 3576 if (!SPMDCompatibilityTracker.isAtFixpoint()) 3577 if (!A.checkForAllReadWriteInstructions( 3578 CheckRWInst, *this, UsedAssumedInformationInCheckRWInst)) 3579 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 3580 3581 if (!IsKernelEntry) { 3582 updateReachingKernelEntries(A); 3583 updateParallelLevels(A); 3584 3585 if (!ParallelLevels.isValidState()) 3586 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 3587 } 3588 3589 // Callback to check a call instruction. 3590 bool AllSPMDStatesWereFixed = true; 3591 auto CheckCallInst = [&](Instruction &I) { 3592 auto &CB = cast<CallBase>(I); 3593 auto &CBAA = A.getAAFor<AAKernelInfo>( 3594 *this, IRPosition::callsite_function(CB), DepClassTy::OPTIONAL); 3595 getState() ^= CBAA.getState(); 3596 AllSPMDStatesWereFixed &= CBAA.SPMDCompatibilityTracker.isAtFixpoint(); 3597 return true; 3598 }; 3599 3600 bool UsedAssumedInformationInCheckCallInst = false; 3601 if (!A.checkForAllCallLikeInstructions( 3602 CheckCallInst, *this, UsedAssumedInformationInCheckCallInst)) 3603 return indicatePessimisticFixpoint(); 3604 3605 // If we haven't used any assumed information for the SPMD state we can fix 3606 // it. 3607 if (!UsedAssumedInformationInCheckRWInst && 3608 !UsedAssumedInformationInCheckCallInst && AllSPMDStatesWereFixed) 3609 SPMDCompatibilityTracker.indicateOptimisticFixpoint(); 3610 3611 return StateBefore == getState() ? ChangeStatus::UNCHANGED 3612 : ChangeStatus::CHANGED; 3613 } 3614 3615 private: 3616 /// Update info regarding reaching kernels. 3617 void updateReachingKernelEntries(Attributor &A) { 3618 auto PredCallSite = [&](AbstractCallSite ACS) { 3619 Function *Caller = ACS.getInstruction()->getFunction(); 3620 3621 assert(Caller && "Caller is nullptr"); 3622 3623 auto &CAA = A.getOrCreateAAFor<AAKernelInfo>( 3624 IRPosition::function(*Caller), this, DepClassTy::REQUIRED); 3625 if (CAA.ReachingKernelEntries.isValidState()) { 3626 ReachingKernelEntries ^= CAA.ReachingKernelEntries; 3627 return true; 3628 } 3629 3630 // We lost track of the caller of the associated function, any kernel 3631 // could reach now. 3632 ReachingKernelEntries.indicatePessimisticFixpoint(); 3633 3634 return true; 3635 }; 3636 3637 bool AllCallSitesKnown; 3638 if (!A.checkForAllCallSites(PredCallSite, *this, 3639 true /* RequireAllCallSites */, 3640 AllCallSitesKnown)) 3641 ReachingKernelEntries.indicatePessimisticFixpoint(); 3642 } 3643 3644 /// Update info regarding parallel levels. 3645 void updateParallelLevels(Attributor &A) { 3646 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 3647 OMPInformationCache::RuntimeFunctionInfo &Parallel51RFI = 3648 OMPInfoCache.RFIs[OMPRTL___kmpc_parallel_51]; 3649 3650 auto PredCallSite = [&](AbstractCallSite ACS) { 3651 Function *Caller = ACS.getInstruction()->getFunction(); 3652 3653 assert(Caller && "Caller is nullptr"); 3654 3655 auto &CAA = 3656 A.getOrCreateAAFor<AAKernelInfo>(IRPosition::function(*Caller)); 3657 if (CAA.ParallelLevels.isValidState()) { 3658 // Any function that is called by `__kmpc_parallel_51` will not be 3659 // folded as the parallel level in the function is updated. In order to 3660 // get it right, all the analysis would depend on the implentation. That 3661 // said, if in the future any change to the implementation, the analysis 3662 // could be wrong. As a consequence, we are just conservative here. 3663 if (Caller == Parallel51RFI.Declaration) { 3664 ParallelLevels.indicatePessimisticFixpoint(); 3665 return true; 3666 } 3667 3668 ParallelLevels ^= CAA.ParallelLevels; 3669 3670 return true; 3671 } 3672 3673 // We lost track of the caller of the associated function, any kernel 3674 // could reach now. 3675 ParallelLevels.indicatePessimisticFixpoint(); 3676 3677 return true; 3678 }; 3679 3680 bool AllCallSitesKnown = true; 3681 if (!A.checkForAllCallSites(PredCallSite, *this, 3682 true /* RequireAllCallSites */, 3683 AllCallSitesKnown)) 3684 ParallelLevels.indicatePessimisticFixpoint(); 3685 } 3686 }; 3687 3688 /// The call site kernel info abstract attribute, basically, what can we say 3689 /// about a call site with regards to the KernelInfoState. For now this simply 3690 /// forwards the information from the callee. 3691 struct AAKernelInfoCallSite : AAKernelInfo { 3692 AAKernelInfoCallSite(const IRPosition &IRP, Attributor &A) 3693 : AAKernelInfo(IRP, A) {} 3694 3695 /// See AbstractAttribute::initialize(...). 3696 void initialize(Attributor &A) override { 3697 AAKernelInfo::initialize(A); 3698 3699 CallBase &CB = cast<CallBase>(getAssociatedValue()); 3700 Function *Callee = getAssociatedFunction(); 3701 3702 // Helper to lookup an assumption string. 3703 auto HasAssumption = [](Function *Fn, StringRef AssumptionStr) { 3704 return Fn && hasAssumption(*Fn, AssumptionStr); 3705 }; 3706 3707 // Check for SPMD-mode assumptions. 3708 if (HasAssumption(Callee, "ompx_spmd_amenable")) 3709 SPMDCompatibilityTracker.indicateOptimisticFixpoint(); 3710 3711 // First weed out calls we do not care about, that is readonly/readnone 3712 // calls, intrinsics, and "no_openmp" calls. Neither of these can reach a 3713 // parallel region or anything else we are looking for. 3714 if (!CB.mayWriteToMemory() || isa<IntrinsicInst>(CB)) { 3715 indicateOptimisticFixpoint(); 3716 return; 3717 } 3718 3719 // Next we check if we know the callee. If it is a known OpenMP function 3720 // we will handle them explicitly in the switch below. If it is not, we 3721 // will use an AAKernelInfo object on the callee to gather information and 3722 // merge that into the current state. The latter happens in the updateImpl. 3723 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 3724 const auto &It = OMPInfoCache.RuntimeFunctionIDMap.find(Callee); 3725 if (It == OMPInfoCache.RuntimeFunctionIDMap.end()) { 3726 // Unknown caller or declarations are not analyzable, we give up. 3727 if (!Callee || !A.isFunctionIPOAmendable(*Callee)) { 3728 3729 // Unknown callees might contain parallel regions, except if they have 3730 // an appropriate assumption attached. 3731 if (!(HasAssumption(Callee, "omp_no_openmp") || 3732 HasAssumption(Callee, "omp_no_parallelism"))) 3733 ReachedUnknownParallelRegions.insert(&CB); 3734 3735 // If SPMDCompatibilityTracker is not fixed, we need to give up on the 3736 // idea we can run something unknown in SPMD-mode. 3737 if (!SPMDCompatibilityTracker.isAtFixpoint()) { 3738 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 3739 SPMDCompatibilityTracker.insert(&CB); 3740 } 3741 3742 // We have updated the state for this unknown call properly, there won't 3743 // be any change so we indicate a fixpoint. 3744 indicateOptimisticFixpoint(); 3745 } 3746 // If the callee is known and can be used in IPO, we will update the state 3747 // based on the callee state in updateImpl. 3748 return; 3749 } 3750 3751 const unsigned int WrapperFunctionArgNo = 6; 3752 RuntimeFunction RF = It->getSecond(); 3753 switch (RF) { 3754 // All the functions we know are compatible with SPMD mode. 3755 case OMPRTL___kmpc_is_spmd_exec_mode: 3756 case OMPRTL___kmpc_for_static_fini: 3757 case OMPRTL___kmpc_global_thread_num: 3758 case OMPRTL___kmpc_get_hardware_num_threads_in_block: 3759 case OMPRTL___kmpc_get_hardware_num_blocks: 3760 case OMPRTL___kmpc_single: 3761 case OMPRTL___kmpc_end_single: 3762 case OMPRTL___kmpc_master: 3763 case OMPRTL___kmpc_end_master: 3764 case OMPRTL___kmpc_barrier: 3765 break; 3766 case OMPRTL___kmpc_for_static_init_4: 3767 case OMPRTL___kmpc_for_static_init_4u: 3768 case OMPRTL___kmpc_for_static_init_8: 3769 case OMPRTL___kmpc_for_static_init_8u: { 3770 // Check the schedule and allow static schedule in SPMD mode. 3771 unsigned ScheduleArgOpNo = 2; 3772 auto *ScheduleTypeCI = 3773 dyn_cast<ConstantInt>(CB.getArgOperand(ScheduleArgOpNo)); 3774 unsigned ScheduleTypeVal = 3775 ScheduleTypeCI ? ScheduleTypeCI->getZExtValue() : 0; 3776 switch (OMPScheduleType(ScheduleTypeVal)) { 3777 case OMPScheduleType::Static: 3778 case OMPScheduleType::StaticChunked: 3779 case OMPScheduleType::Distribute: 3780 case OMPScheduleType::DistributeChunked: 3781 break; 3782 default: 3783 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 3784 SPMDCompatibilityTracker.insert(&CB); 3785 break; 3786 }; 3787 } break; 3788 case OMPRTL___kmpc_target_init: 3789 KernelInitCB = &CB; 3790 break; 3791 case OMPRTL___kmpc_target_deinit: 3792 KernelDeinitCB = &CB; 3793 break; 3794 case OMPRTL___kmpc_parallel_51: 3795 if (auto *ParallelRegion = dyn_cast<Function>( 3796 CB.getArgOperand(WrapperFunctionArgNo)->stripPointerCasts())) { 3797 ReachedKnownParallelRegions.insert(ParallelRegion); 3798 break; 3799 } 3800 // The condition above should usually get the parallel region function 3801 // pointer and record it. In the off chance it doesn't we assume the 3802 // worst. 3803 ReachedUnknownParallelRegions.insert(&CB); 3804 break; 3805 case OMPRTL___kmpc_omp_task: 3806 // We do not look into tasks right now, just give up. 3807 SPMDCompatibilityTracker.insert(&CB); 3808 ReachedUnknownParallelRegions.insert(&CB); 3809 indicatePessimisticFixpoint(); 3810 return; 3811 case OMPRTL___kmpc_alloc_shared: 3812 case OMPRTL___kmpc_free_shared: 3813 // Return without setting a fixpoint, to be resolved in updateImpl. 3814 return; 3815 default: 3816 // Unknown OpenMP runtime calls cannot be executed in SPMD-mode, 3817 // generally. 3818 SPMDCompatibilityTracker.insert(&CB); 3819 indicatePessimisticFixpoint(); 3820 return; 3821 } 3822 // All other OpenMP runtime calls will not reach parallel regions so they 3823 // can be safely ignored for now. Since it is a known OpenMP runtime call we 3824 // have now modeled all effects and there is no need for any update. 3825 indicateOptimisticFixpoint(); 3826 } 3827 3828 ChangeStatus updateImpl(Attributor &A) override { 3829 // TODO: Once we have call site specific value information we can provide 3830 // call site specific liveness information and then it makes 3831 // sense to specialize attributes for call sites arguments instead of 3832 // redirecting requests to the callee argument. 3833 Function *F = getAssociatedFunction(); 3834 3835 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 3836 const auto &It = OMPInfoCache.RuntimeFunctionIDMap.find(F); 3837 3838 // If F is not a runtime function, propagate the AAKernelInfo of the callee. 3839 if (It == OMPInfoCache.RuntimeFunctionIDMap.end()) { 3840 const IRPosition &FnPos = IRPosition::function(*F); 3841 auto &FnAA = A.getAAFor<AAKernelInfo>(*this, FnPos, DepClassTy::REQUIRED); 3842 if (getState() == FnAA.getState()) 3843 return ChangeStatus::UNCHANGED; 3844 getState() = FnAA.getState(); 3845 return ChangeStatus::CHANGED; 3846 } 3847 3848 // F is a runtime function that allocates or frees memory, check 3849 // AAHeapToStack and AAHeapToShared. 3850 KernelInfoState StateBefore = getState(); 3851 assert((It->getSecond() == OMPRTL___kmpc_alloc_shared || 3852 It->getSecond() == OMPRTL___kmpc_free_shared) && 3853 "Expected a __kmpc_alloc_shared or __kmpc_free_shared runtime call"); 3854 3855 CallBase &CB = cast<CallBase>(getAssociatedValue()); 3856 3857 auto &HeapToStackAA = A.getAAFor<AAHeapToStack>( 3858 *this, IRPosition::function(*CB.getCaller()), DepClassTy::OPTIONAL); 3859 auto &HeapToSharedAA = A.getAAFor<AAHeapToShared>( 3860 *this, IRPosition::function(*CB.getCaller()), DepClassTy::OPTIONAL); 3861 3862 RuntimeFunction RF = It->getSecond(); 3863 3864 switch (RF) { 3865 // If neither HeapToStack nor HeapToShared assume the call is removed, 3866 // assume SPMD incompatibility. 3867 case OMPRTL___kmpc_alloc_shared: 3868 if (!HeapToStackAA.isAssumedHeapToStack(CB) && 3869 !HeapToSharedAA.isAssumedHeapToShared(CB)) 3870 SPMDCompatibilityTracker.insert(&CB); 3871 break; 3872 case OMPRTL___kmpc_free_shared: 3873 if (!HeapToStackAA.isAssumedHeapToStackRemovedFree(CB) && 3874 !HeapToSharedAA.isAssumedHeapToSharedRemovedFree(CB)) 3875 SPMDCompatibilityTracker.insert(&CB); 3876 break; 3877 default: 3878 SPMDCompatibilityTracker.insert(&CB); 3879 } 3880 3881 return StateBefore == getState() ? ChangeStatus::UNCHANGED 3882 : ChangeStatus::CHANGED; 3883 } 3884 }; 3885 3886 struct AAFoldRuntimeCall 3887 : public StateWrapper<BooleanState, AbstractAttribute> { 3888 using Base = StateWrapper<BooleanState, AbstractAttribute>; 3889 3890 AAFoldRuntimeCall(const IRPosition &IRP, Attributor &A) : Base(IRP) {} 3891 3892 /// Statistics are tracked as part of manifest for now. 3893 void trackStatistics() const override {} 3894 3895 /// Create an abstract attribute biew for the position \p IRP. 3896 static AAFoldRuntimeCall &createForPosition(const IRPosition &IRP, 3897 Attributor &A); 3898 3899 /// See AbstractAttribute::getName() 3900 const std::string getName() const override { return "AAFoldRuntimeCall"; } 3901 3902 /// See AbstractAttribute::getIdAddr() 3903 const char *getIdAddr() const override { return &ID; } 3904 3905 /// This function should return true if the type of the \p AA is 3906 /// AAFoldRuntimeCall 3907 static bool classof(const AbstractAttribute *AA) { 3908 return (AA->getIdAddr() == &ID); 3909 } 3910 3911 static const char ID; 3912 }; 3913 3914 struct AAFoldRuntimeCallCallSiteReturned : AAFoldRuntimeCall { 3915 AAFoldRuntimeCallCallSiteReturned(const IRPosition &IRP, Attributor &A) 3916 : AAFoldRuntimeCall(IRP, A) {} 3917 3918 /// See AbstractAttribute::getAsStr() 3919 const std::string getAsStr() const override { 3920 if (!isValidState()) 3921 return "<invalid>"; 3922 3923 std::string Str("simplified value: "); 3924 3925 if (!SimplifiedValue.hasValue()) 3926 return Str + std::string("none"); 3927 3928 if (!SimplifiedValue.getValue()) 3929 return Str + std::string("nullptr"); 3930 3931 if (ConstantInt *CI = dyn_cast<ConstantInt>(SimplifiedValue.getValue())) 3932 return Str + std::to_string(CI->getSExtValue()); 3933 3934 return Str + std::string("unknown"); 3935 } 3936 3937 void initialize(Attributor &A) override { 3938 if (DisableOpenMPOptFolding) 3939 indicatePessimisticFixpoint(); 3940 3941 Function *Callee = getAssociatedFunction(); 3942 3943 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 3944 const auto &It = OMPInfoCache.RuntimeFunctionIDMap.find(Callee); 3945 assert(It != OMPInfoCache.RuntimeFunctionIDMap.end() && 3946 "Expected a known OpenMP runtime function"); 3947 3948 RFKind = It->getSecond(); 3949 3950 CallBase &CB = cast<CallBase>(getAssociatedValue()); 3951 A.registerSimplificationCallback( 3952 IRPosition::callsite_returned(CB), 3953 [&](const IRPosition &IRP, const AbstractAttribute *AA, 3954 bool &UsedAssumedInformation) -> Optional<Value *> { 3955 assert((isValidState() || (SimplifiedValue.hasValue() && 3956 SimplifiedValue.getValue() == nullptr)) && 3957 "Unexpected invalid state!"); 3958 3959 if (!isAtFixpoint()) { 3960 UsedAssumedInformation = true; 3961 if (AA) 3962 A.recordDependence(*this, *AA, DepClassTy::OPTIONAL); 3963 } 3964 return SimplifiedValue; 3965 }); 3966 } 3967 3968 ChangeStatus updateImpl(Attributor &A) override { 3969 ChangeStatus Changed = ChangeStatus::UNCHANGED; 3970 switch (RFKind) { 3971 case OMPRTL___kmpc_is_spmd_exec_mode: 3972 Changed |= foldIsSPMDExecMode(A); 3973 break; 3974 case OMPRTL___kmpc_is_generic_main_thread_id: 3975 Changed |= foldIsGenericMainThread(A); 3976 break; 3977 case OMPRTL___kmpc_parallel_level: 3978 Changed |= foldParallelLevel(A); 3979 break; 3980 case OMPRTL___kmpc_get_hardware_num_threads_in_block: 3981 Changed = Changed | foldKernelFnAttribute(A, "omp_target_thread_limit"); 3982 break; 3983 case OMPRTL___kmpc_get_hardware_num_blocks: 3984 Changed = Changed | foldKernelFnAttribute(A, "omp_target_num_teams"); 3985 break; 3986 default: 3987 llvm_unreachable("Unhandled OpenMP runtime function!"); 3988 } 3989 3990 return Changed; 3991 } 3992 3993 ChangeStatus manifest(Attributor &A) override { 3994 ChangeStatus Changed = ChangeStatus::UNCHANGED; 3995 3996 if (SimplifiedValue.hasValue() && SimplifiedValue.getValue()) { 3997 Instruction &CB = *getCtxI(); 3998 A.changeValueAfterManifest(CB, **SimplifiedValue); 3999 A.deleteAfterManifest(CB); 4000 4001 LLVM_DEBUG(dbgs() << TAG << "Folding runtime call: " << CB << " with " 4002 << **SimplifiedValue << "\n"); 4003 4004 Changed = ChangeStatus::CHANGED; 4005 } 4006 4007 return Changed; 4008 } 4009 4010 ChangeStatus indicatePessimisticFixpoint() override { 4011 SimplifiedValue = nullptr; 4012 return AAFoldRuntimeCall::indicatePessimisticFixpoint(); 4013 } 4014 4015 private: 4016 /// Fold __kmpc_is_spmd_exec_mode into a constant if possible. 4017 ChangeStatus foldIsSPMDExecMode(Attributor &A) { 4018 Optional<Value *> SimplifiedValueBefore = SimplifiedValue; 4019 4020 unsigned AssumedSPMDCount = 0, KnownSPMDCount = 0; 4021 unsigned AssumedNonSPMDCount = 0, KnownNonSPMDCount = 0; 4022 auto &CallerKernelInfoAA = A.getAAFor<AAKernelInfo>( 4023 *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED); 4024 4025 if (!CallerKernelInfoAA.ReachingKernelEntries.isValidState()) 4026 return indicatePessimisticFixpoint(); 4027 4028 for (Kernel K : CallerKernelInfoAA.ReachingKernelEntries) { 4029 auto &AA = A.getAAFor<AAKernelInfo>(*this, IRPosition::function(*K), 4030 DepClassTy::REQUIRED); 4031 4032 if (!AA.isValidState()) { 4033 SimplifiedValue = nullptr; 4034 return indicatePessimisticFixpoint(); 4035 } 4036 4037 if (AA.SPMDCompatibilityTracker.isAssumed()) { 4038 if (AA.SPMDCompatibilityTracker.isAtFixpoint()) 4039 ++KnownSPMDCount; 4040 else 4041 ++AssumedSPMDCount; 4042 } else { 4043 if (AA.SPMDCompatibilityTracker.isAtFixpoint()) 4044 ++KnownNonSPMDCount; 4045 else 4046 ++AssumedNonSPMDCount; 4047 } 4048 } 4049 4050 if ((AssumedSPMDCount + KnownSPMDCount) && 4051 (AssumedNonSPMDCount + KnownNonSPMDCount)) 4052 return indicatePessimisticFixpoint(); 4053 4054 auto &Ctx = getAnchorValue().getContext(); 4055 if (KnownSPMDCount || AssumedSPMDCount) { 4056 assert(KnownNonSPMDCount == 0 && AssumedNonSPMDCount == 0 && 4057 "Expected only SPMD kernels!"); 4058 // All reaching kernels are in SPMD mode. Update all function calls to 4059 // __kmpc_is_spmd_exec_mode to 1. 4060 SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), true); 4061 } else if (KnownNonSPMDCount || AssumedNonSPMDCount) { 4062 assert(KnownSPMDCount == 0 && AssumedSPMDCount == 0 && 4063 "Expected only non-SPMD kernels!"); 4064 // All reaching kernels are in non-SPMD mode. Update all function 4065 // calls to __kmpc_is_spmd_exec_mode to 0. 4066 SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), false); 4067 } else { 4068 // We have empty reaching kernels, therefore we cannot tell if the 4069 // associated call site can be folded. At this moment, SimplifiedValue 4070 // must be none. 4071 assert(!SimplifiedValue.hasValue() && "SimplifiedValue should be none"); 4072 } 4073 4074 return SimplifiedValue == SimplifiedValueBefore ? ChangeStatus::UNCHANGED 4075 : ChangeStatus::CHANGED; 4076 } 4077 4078 /// Fold __kmpc_is_generic_main_thread_id into a constant if possible. 4079 ChangeStatus foldIsGenericMainThread(Attributor &A) { 4080 Optional<Value *> SimplifiedValueBefore = SimplifiedValue; 4081 4082 CallBase &CB = cast<CallBase>(getAssociatedValue()); 4083 Function *F = CB.getFunction(); 4084 const auto &ExecutionDomainAA = A.getAAFor<AAExecutionDomain>( 4085 *this, IRPosition::function(*F), DepClassTy::REQUIRED); 4086 4087 if (!ExecutionDomainAA.isValidState()) 4088 return indicatePessimisticFixpoint(); 4089 4090 auto &Ctx = getAnchorValue().getContext(); 4091 if (ExecutionDomainAA.isExecutedByInitialThreadOnly(CB)) 4092 SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), true); 4093 else 4094 return indicatePessimisticFixpoint(); 4095 4096 return SimplifiedValue == SimplifiedValueBefore ? ChangeStatus::UNCHANGED 4097 : ChangeStatus::CHANGED; 4098 } 4099 4100 /// Fold __kmpc_parallel_level into a constant if possible. 4101 ChangeStatus foldParallelLevel(Attributor &A) { 4102 Optional<Value *> SimplifiedValueBefore = SimplifiedValue; 4103 4104 auto &CallerKernelInfoAA = A.getAAFor<AAKernelInfo>( 4105 *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED); 4106 4107 if (!CallerKernelInfoAA.ParallelLevels.isValidState()) 4108 return indicatePessimisticFixpoint(); 4109 4110 if (!CallerKernelInfoAA.ReachingKernelEntries.isValidState()) 4111 return indicatePessimisticFixpoint(); 4112 4113 if (CallerKernelInfoAA.ReachingKernelEntries.empty()) { 4114 assert(!SimplifiedValue.hasValue() && 4115 "SimplifiedValue should keep none at this point"); 4116 return ChangeStatus::UNCHANGED; 4117 } 4118 4119 unsigned AssumedSPMDCount = 0, KnownSPMDCount = 0; 4120 unsigned AssumedNonSPMDCount = 0, KnownNonSPMDCount = 0; 4121 for (Kernel K : CallerKernelInfoAA.ReachingKernelEntries) { 4122 auto &AA = A.getAAFor<AAKernelInfo>(*this, IRPosition::function(*K), 4123 DepClassTy::REQUIRED); 4124 if (!AA.SPMDCompatibilityTracker.isValidState()) 4125 return indicatePessimisticFixpoint(); 4126 4127 if (AA.SPMDCompatibilityTracker.isAssumed()) { 4128 if (AA.SPMDCompatibilityTracker.isAtFixpoint()) 4129 ++KnownSPMDCount; 4130 else 4131 ++AssumedSPMDCount; 4132 } else { 4133 if (AA.SPMDCompatibilityTracker.isAtFixpoint()) 4134 ++KnownNonSPMDCount; 4135 else 4136 ++AssumedNonSPMDCount; 4137 } 4138 } 4139 4140 if ((AssumedSPMDCount + KnownSPMDCount) && 4141 (AssumedNonSPMDCount + KnownNonSPMDCount)) 4142 return indicatePessimisticFixpoint(); 4143 4144 auto &Ctx = getAnchorValue().getContext(); 4145 // If the caller can only be reached by SPMD kernel entries, the parallel 4146 // level is 1. Similarly, if the caller can only be reached by non-SPMD 4147 // kernel entries, it is 0. 4148 if (AssumedSPMDCount || KnownSPMDCount) { 4149 assert(KnownNonSPMDCount == 0 && AssumedNonSPMDCount == 0 && 4150 "Expected only SPMD kernels!"); 4151 SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), 1); 4152 } else { 4153 assert(KnownSPMDCount == 0 && AssumedSPMDCount == 0 && 4154 "Expected only non-SPMD kernels!"); 4155 SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), 0); 4156 } 4157 return SimplifiedValue == SimplifiedValueBefore ? ChangeStatus::UNCHANGED 4158 : ChangeStatus::CHANGED; 4159 } 4160 4161 ChangeStatus foldKernelFnAttribute(Attributor &A, llvm::StringRef Attr) { 4162 // Specialize only if all the calls agree with the attribute constant value 4163 int32_t CurrentAttrValue = -1; 4164 Optional<Value *> SimplifiedValueBefore = SimplifiedValue; 4165 4166 auto &CallerKernelInfoAA = A.getAAFor<AAKernelInfo>( 4167 *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED); 4168 4169 if (!CallerKernelInfoAA.ReachingKernelEntries.isValidState()) 4170 return indicatePessimisticFixpoint(); 4171 4172 // Iterate over the kernels that reach this function 4173 for (Kernel K : CallerKernelInfoAA.ReachingKernelEntries) { 4174 int32_t NextAttrVal = -1; 4175 if (K->hasFnAttribute(Attr)) 4176 NextAttrVal = 4177 std::stoi(K->getFnAttribute(Attr).getValueAsString().str()); 4178 4179 if (NextAttrVal == -1 || 4180 (CurrentAttrValue != -1 && CurrentAttrValue != NextAttrVal)) 4181 return indicatePessimisticFixpoint(); 4182 CurrentAttrValue = NextAttrVal; 4183 } 4184 4185 if (CurrentAttrValue != -1) { 4186 auto &Ctx = getAnchorValue().getContext(); 4187 SimplifiedValue = 4188 ConstantInt::get(Type::getInt32Ty(Ctx), CurrentAttrValue); 4189 } 4190 return SimplifiedValue == SimplifiedValueBefore ? ChangeStatus::UNCHANGED 4191 : ChangeStatus::CHANGED; 4192 } 4193 4194 /// An optional value the associated value is assumed to fold to. That is, we 4195 /// assume the associated value (which is a call) can be replaced by this 4196 /// simplified value. 4197 Optional<Value *> SimplifiedValue; 4198 4199 /// The runtime function kind of the callee of the associated call site. 4200 RuntimeFunction RFKind; 4201 }; 4202 4203 } // namespace 4204 4205 /// Register folding callsite 4206 void OpenMPOpt::registerFoldRuntimeCall(RuntimeFunction RF) { 4207 auto &RFI = OMPInfoCache.RFIs[RF]; 4208 RFI.foreachUse(SCC, [&](Use &U, Function &F) { 4209 CallInst *CI = OpenMPOpt::getCallIfRegularCall(U, &RFI); 4210 if (!CI) 4211 return false; 4212 A.getOrCreateAAFor<AAFoldRuntimeCall>( 4213 IRPosition::callsite_returned(*CI), /* QueryingAA */ nullptr, 4214 DepClassTy::NONE, /* ForceUpdate */ false, 4215 /* UpdateAfterInit */ false); 4216 return false; 4217 }); 4218 } 4219 4220 void OpenMPOpt::registerAAs(bool IsModulePass) { 4221 if (SCC.empty()) 4222 4223 return; 4224 if (IsModulePass) { 4225 // Ensure we create the AAKernelInfo AAs first and without triggering an 4226 // update. This will make sure we register all value simplification 4227 // callbacks before any other AA has the chance to create an AAValueSimplify 4228 // or similar. 4229 for (Function *Kernel : OMPInfoCache.Kernels) 4230 A.getOrCreateAAFor<AAKernelInfo>( 4231 IRPosition::function(*Kernel), /* QueryingAA */ nullptr, 4232 DepClassTy::NONE, /* ForceUpdate */ false, 4233 /* UpdateAfterInit */ false); 4234 4235 4236 registerFoldRuntimeCall(OMPRTL___kmpc_is_generic_main_thread_id); 4237 registerFoldRuntimeCall(OMPRTL___kmpc_is_spmd_exec_mode); 4238 registerFoldRuntimeCall(OMPRTL___kmpc_parallel_level); 4239 registerFoldRuntimeCall(OMPRTL___kmpc_get_hardware_num_threads_in_block); 4240 registerFoldRuntimeCall(OMPRTL___kmpc_get_hardware_num_blocks); 4241 } 4242 4243 // Create CallSite AA for all Getters. 4244 for (int Idx = 0; Idx < OMPInfoCache.ICVs.size() - 1; ++Idx) { 4245 auto ICVInfo = OMPInfoCache.ICVs[static_cast<InternalControlVar>(Idx)]; 4246 4247 auto &GetterRFI = OMPInfoCache.RFIs[ICVInfo.Getter]; 4248 4249 auto CreateAA = [&](Use &U, Function &Caller) { 4250 CallInst *CI = OpenMPOpt::getCallIfRegularCall(U, &GetterRFI); 4251 if (!CI) 4252 return false; 4253 4254 auto &CB = cast<CallBase>(*CI); 4255 4256 IRPosition CBPos = IRPosition::callsite_function(CB); 4257 A.getOrCreateAAFor<AAICVTracker>(CBPos); 4258 return false; 4259 }; 4260 4261 GetterRFI.foreachUse(SCC, CreateAA); 4262 } 4263 auto &GlobalizationRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared]; 4264 auto CreateAA = [&](Use &U, Function &F) { 4265 A.getOrCreateAAFor<AAHeapToShared>(IRPosition::function(F)); 4266 return false; 4267 }; 4268 if (!DisableOpenMPOptDeglobalization) 4269 GlobalizationRFI.foreachUse(SCC, CreateAA); 4270 4271 // Create an ExecutionDomain AA for every function and a HeapToStack AA for 4272 // every function if there is a device kernel. 4273 if (!isOpenMPDevice(M)) 4274 return; 4275 4276 for (auto *F : SCC) { 4277 if (F->isDeclaration()) 4278 continue; 4279 4280 A.getOrCreateAAFor<AAExecutionDomain>(IRPosition::function(*F)); 4281 if (!DisableOpenMPOptDeglobalization) 4282 A.getOrCreateAAFor<AAHeapToStack>(IRPosition::function(*F)); 4283 4284 for (auto &I : instructions(*F)) { 4285 if (auto *LI = dyn_cast<LoadInst>(&I)) { 4286 bool UsedAssumedInformation = false; 4287 A.getAssumedSimplified(IRPosition::value(*LI), /* AA */ nullptr, 4288 UsedAssumedInformation); 4289 } 4290 } 4291 } 4292 } 4293 4294 const char AAICVTracker::ID = 0; 4295 const char AAKernelInfo::ID = 0; 4296 const char AAExecutionDomain::ID = 0; 4297 const char AAHeapToShared::ID = 0; 4298 const char AAFoldRuntimeCall::ID = 0; 4299 4300 AAICVTracker &AAICVTracker::createForPosition(const IRPosition &IRP, 4301 Attributor &A) { 4302 AAICVTracker *AA = nullptr; 4303 switch (IRP.getPositionKind()) { 4304 case IRPosition::IRP_INVALID: 4305 case IRPosition::IRP_FLOAT: 4306 case IRPosition::IRP_ARGUMENT: 4307 case IRPosition::IRP_CALL_SITE_ARGUMENT: 4308 llvm_unreachable("ICVTracker can only be created for function position!"); 4309 case IRPosition::IRP_RETURNED: 4310 AA = new (A.Allocator) AAICVTrackerFunctionReturned(IRP, A); 4311 break; 4312 case IRPosition::IRP_CALL_SITE_RETURNED: 4313 AA = new (A.Allocator) AAICVTrackerCallSiteReturned(IRP, A); 4314 break; 4315 case IRPosition::IRP_CALL_SITE: 4316 AA = new (A.Allocator) AAICVTrackerCallSite(IRP, A); 4317 break; 4318 case IRPosition::IRP_FUNCTION: 4319 AA = new (A.Allocator) AAICVTrackerFunction(IRP, A); 4320 break; 4321 } 4322 4323 return *AA; 4324 } 4325 4326 AAExecutionDomain &AAExecutionDomain::createForPosition(const IRPosition &IRP, 4327 Attributor &A) { 4328 AAExecutionDomainFunction *AA = nullptr; 4329 switch (IRP.getPositionKind()) { 4330 case IRPosition::IRP_INVALID: 4331 case IRPosition::IRP_FLOAT: 4332 case IRPosition::IRP_ARGUMENT: 4333 case IRPosition::IRP_CALL_SITE_ARGUMENT: 4334 case IRPosition::IRP_RETURNED: 4335 case IRPosition::IRP_CALL_SITE_RETURNED: 4336 case IRPosition::IRP_CALL_SITE: 4337 llvm_unreachable( 4338 "AAExecutionDomain can only be created for function position!"); 4339 case IRPosition::IRP_FUNCTION: 4340 AA = new (A.Allocator) AAExecutionDomainFunction(IRP, A); 4341 break; 4342 } 4343 4344 return *AA; 4345 } 4346 4347 AAHeapToShared &AAHeapToShared::createForPosition(const IRPosition &IRP, 4348 Attributor &A) { 4349 AAHeapToSharedFunction *AA = nullptr; 4350 switch (IRP.getPositionKind()) { 4351 case IRPosition::IRP_INVALID: 4352 case IRPosition::IRP_FLOAT: 4353 case IRPosition::IRP_ARGUMENT: 4354 case IRPosition::IRP_CALL_SITE_ARGUMENT: 4355 case IRPosition::IRP_RETURNED: 4356 case IRPosition::IRP_CALL_SITE_RETURNED: 4357 case IRPosition::IRP_CALL_SITE: 4358 llvm_unreachable( 4359 "AAHeapToShared can only be created for function position!"); 4360 case IRPosition::IRP_FUNCTION: 4361 AA = new (A.Allocator) AAHeapToSharedFunction(IRP, A); 4362 break; 4363 } 4364 4365 return *AA; 4366 } 4367 4368 AAKernelInfo &AAKernelInfo::createForPosition(const IRPosition &IRP, 4369 Attributor &A) { 4370 AAKernelInfo *AA = nullptr; 4371 switch (IRP.getPositionKind()) { 4372 case IRPosition::IRP_INVALID: 4373 case IRPosition::IRP_FLOAT: 4374 case IRPosition::IRP_ARGUMENT: 4375 case IRPosition::IRP_RETURNED: 4376 case IRPosition::IRP_CALL_SITE_RETURNED: 4377 case IRPosition::IRP_CALL_SITE_ARGUMENT: 4378 llvm_unreachable("KernelInfo can only be created for function position!"); 4379 case IRPosition::IRP_CALL_SITE: 4380 AA = new (A.Allocator) AAKernelInfoCallSite(IRP, A); 4381 break; 4382 case IRPosition::IRP_FUNCTION: 4383 AA = new (A.Allocator) AAKernelInfoFunction(IRP, A); 4384 break; 4385 } 4386 4387 return *AA; 4388 } 4389 4390 AAFoldRuntimeCall &AAFoldRuntimeCall::createForPosition(const IRPosition &IRP, 4391 Attributor &A) { 4392 AAFoldRuntimeCall *AA = nullptr; 4393 switch (IRP.getPositionKind()) { 4394 case IRPosition::IRP_INVALID: 4395 case IRPosition::IRP_FLOAT: 4396 case IRPosition::IRP_ARGUMENT: 4397 case IRPosition::IRP_RETURNED: 4398 case IRPosition::IRP_FUNCTION: 4399 case IRPosition::IRP_CALL_SITE: 4400 case IRPosition::IRP_CALL_SITE_ARGUMENT: 4401 llvm_unreachable("KernelInfo can only be created for call site position!"); 4402 case IRPosition::IRP_CALL_SITE_RETURNED: 4403 AA = new (A.Allocator) AAFoldRuntimeCallCallSiteReturned(IRP, A); 4404 break; 4405 } 4406 4407 return *AA; 4408 } 4409 4410 PreservedAnalyses OpenMPOptPass::run(Module &M, ModuleAnalysisManager &AM) { 4411 if (!containsOpenMP(M)) 4412 return PreservedAnalyses::all(); 4413 if (DisableOpenMPOptimizations) 4414 return PreservedAnalyses::all(); 4415 4416 FunctionAnalysisManager &FAM = 4417 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 4418 KernelSet Kernels = getDeviceKernels(M); 4419 4420 auto IsCalled = [&](Function &F) { 4421 if (Kernels.contains(&F)) 4422 return true; 4423 for (const User *U : F.users()) 4424 if (!isa<BlockAddress>(U)) 4425 return true; 4426 return false; 4427 }; 4428 4429 auto EmitRemark = [&](Function &F) { 4430 auto &ORE = FAM.getResult<OptimizationRemarkEmitterAnalysis>(F); 4431 ORE.emit([&]() { 4432 OptimizationRemarkAnalysis ORA(DEBUG_TYPE, "OMP140", &F); 4433 return ORA << "Could not internalize function. " 4434 << "Some optimizations may not be possible. [OMP140]"; 4435 }); 4436 }; 4437 4438 // Create internal copies of each function if this is a kernel Module. This 4439 // allows iterprocedural passes to see every call edge. 4440 DenseMap<Function *, Function *> InternalizedMap; 4441 if (isOpenMPDevice(M)) { 4442 SmallPtrSet<Function *, 16> InternalizeFns; 4443 for (Function &F : M) 4444 if (!F.isDeclaration() && !Kernels.contains(&F) && IsCalled(F) && 4445 !DisableInternalization) { 4446 if (Attributor::isInternalizable(F)) { 4447 InternalizeFns.insert(&F); 4448 } else if (!F.hasLocalLinkage() && !F.hasFnAttribute(Attribute::Cold)) { 4449 EmitRemark(F); 4450 } 4451 } 4452 4453 Attributor::internalizeFunctions(InternalizeFns, InternalizedMap); 4454 } 4455 4456 // Look at every function in the Module unless it was internalized. 4457 SmallVector<Function *, 16> SCC; 4458 for (Function &F : M) 4459 if (!F.isDeclaration() && !InternalizedMap.lookup(&F)) 4460 SCC.push_back(&F); 4461 4462 if (SCC.empty()) 4463 return PreservedAnalyses::all(); 4464 4465 AnalysisGetter AG(FAM); 4466 4467 auto OREGetter = [&FAM](Function *F) -> OptimizationRemarkEmitter & { 4468 return FAM.getResult<OptimizationRemarkEmitterAnalysis>(*F); 4469 }; 4470 4471 BumpPtrAllocator Allocator; 4472 CallGraphUpdater CGUpdater; 4473 4474 SetVector<Function *> Functions(SCC.begin(), SCC.end()); 4475 OMPInformationCache InfoCache(M, AG, Allocator, /*CGSCC*/ Functions, Kernels); 4476 4477 unsigned MaxFixpointIterations = (isOpenMPDevice(M)) ? 128 : 32; 4478 Attributor A(Functions, InfoCache, CGUpdater, nullptr, true, false, 4479 MaxFixpointIterations, OREGetter, DEBUG_TYPE); 4480 4481 OpenMPOpt OMPOpt(SCC, CGUpdater, OREGetter, InfoCache, A); 4482 bool Changed = OMPOpt.run(true); 4483 4484 if (PrintModuleAfterOptimizations) 4485 LLVM_DEBUG(dbgs() << TAG << "Module after OpenMPOpt Module Pass:\n" << M); 4486 4487 if (Changed) 4488 return PreservedAnalyses::none(); 4489 4490 return PreservedAnalyses::all(); 4491 } 4492 4493 PreservedAnalyses OpenMPOptCGSCCPass::run(LazyCallGraph::SCC &C, 4494 CGSCCAnalysisManager &AM, 4495 LazyCallGraph &CG, 4496 CGSCCUpdateResult &UR) { 4497 if (!containsOpenMP(*C.begin()->getFunction().getParent())) 4498 return PreservedAnalyses::all(); 4499 if (DisableOpenMPOptimizations) 4500 return PreservedAnalyses::all(); 4501 4502 SmallVector<Function *, 16> SCC; 4503 // If there are kernels in the module, we have to run on all SCC's. 4504 for (LazyCallGraph::Node &N : C) { 4505 Function *Fn = &N.getFunction(); 4506 SCC.push_back(Fn); 4507 } 4508 4509 if (SCC.empty()) 4510 return PreservedAnalyses::all(); 4511 4512 Module &M = *C.begin()->getFunction().getParent(); 4513 4514 KernelSet Kernels = getDeviceKernels(M); 4515 4516 FunctionAnalysisManager &FAM = 4517 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager(); 4518 4519 AnalysisGetter AG(FAM); 4520 4521 auto OREGetter = [&FAM](Function *F) -> OptimizationRemarkEmitter & { 4522 return FAM.getResult<OptimizationRemarkEmitterAnalysis>(*F); 4523 }; 4524 4525 BumpPtrAllocator Allocator; 4526 CallGraphUpdater CGUpdater; 4527 CGUpdater.initialize(CG, C, AM, UR); 4528 4529 SetVector<Function *> Functions(SCC.begin(), SCC.end()); 4530 OMPInformationCache InfoCache(*(Functions.back()->getParent()), AG, Allocator, 4531 /*CGSCC*/ Functions, Kernels); 4532 4533 unsigned MaxFixpointIterations = (isOpenMPDevice(M)) ? 128 : 32; 4534 Attributor A(Functions, InfoCache, CGUpdater, nullptr, false, true, 4535 MaxFixpointIterations, OREGetter, DEBUG_TYPE); 4536 4537 OpenMPOpt OMPOpt(SCC, CGUpdater, OREGetter, InfoCache, A); 4538 bool Changed = OMPOpt.run(false); 4539 4540 if (PrintModuleAfterOptimizations) 4541 LLVM_DEBUG(dbgs() << TAG << "Module after OpenMPOpt CGSCC Pass:\n" << M); 4542 4543 if (Changed) 4544 return PreservedAnalyses::none(); 4545 4546 return PreservedAnalyses::all(); 4547 } 4548 4549 namespace { 4550 4551 struct OpenMPOptCGSCCLegacyPass : public CallGraphSCCPass { 4552 CallGraphUpdater CGUpdater; 4553 static char ID; 4554 4555 OpenMPOptCGSCCLegacyPass() : CallGraphSCCPass(ID) { 4556 initializeOpenMPOptCGSCCLegacyPassPass(*PassRegistry::getPassRegistry()); 4557 } 4558 4559 void getAnalysisUsage(AnalysisUsage &AU) const override { 4560 CallGraphSCCPass::getAnalysisUsage(AU); 4561 } 4562 4563 bool runOnSCC(CallGraphSCC &CGSCC) override { 4564 if (!containsOpenMP(CGSCC.getCallGraph().getModule())) 4565 return false; 4566 if (DisableOpenMPOptimizations || skipSCC(CGSCC)) 4567 return false; 4568 4569 SmallVector<Function *, 16> SCC; 4570 // If there are kernels in the module, we have to run on all SCC's. 4571 for (CallGraphNode *CGN : CGSCC) { 4572 Function *Fn = CGN->getFunction(); 4573 if (!Fn || Fn->isDeclaration()) 4574 continue; 4575 SCC.push_back(Fn); 4576 } 4577 4578 if (SCC.empty()) 4579 return false; 4580 4581 Module &M = CGSCC.getCallGraph().getModule(); 4582 KernelSet Kernels = getDeviceKernels(M); 4583 4584 CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph(); 4585 CGUpdater.initialize(CG, CGSCC); 4586 4587 // Maintain a map of functions to avoid rebuilding the ORE 4588 DenseMap<Function *, std::unique_ptr<OptimizationRemarkEmitter>> OREMap; 4589 auto OREGetter = [&OREMap](Function *F) -> OptimizationRemarkEmitter & { 4590 std::unique_ptr<OptimizationRemarkEmitter> &ORE = OREMap[F]; 4591 if (!ORE) 4592 ORE = std::make_unique<OptimizationRemarkEmitter>(F); 4593 return *ORE; 4594 }; 4595 4596 AnalysisGetter AG; 4597 SetVector<Function *> Functions(SCC.begin(), SCC.end()); 4598 BumpPtrAllocator Allocator; 4599 OMPInformationCache InfoCache(*(Functions.back()->getParent()), AG, 4600 Allocator, 4601 /*CGSCC*/ Functions, Kernels); 4602 4603 unsigned MaxFixpointIterations = (isOpenMPDevice(M)) ? 128 : 32; 4604 Attributor A(Functions, InfoCache, CGUpdater, nullptr, false, true, 4605 MaxFixpointIterations, OREGetter, DEBUG_TYPE); 4606 4607 OpenMPOpt OMPOpt(SCC, CGUpdater, OREGetter, InfoCache, A); 4608 bool Result = OMPOpt.run(false); 4609 4610 if (PrintModuleAfterOptimizations) 4611 LLVM_DEBUG(dbgs() << TAG << "Module after OpenMPOpt CGSCC Pass:\n" << M); 4612 4613 return Result; 4614 } 4615 4616 bool doFinalization(CallGraph &CG) override { return CGUpdater.finalize(); } 4617 }; 4618 4619 } // end anonymous namespace 4620 4621 KernelSet llvm::omp::getDeviceKernels(Module &M) { 4622 // TODO: Create a more cross-platform way of determining device kernels. 4623 NamedMDNode *MD = M.getOrInsertNamedMetadata("nvvm.annotations"); 4624 KernelSet Kernels; 4625 4626 if (!MD) 4627 return Kernels; 4628 4629 for (auto *Op : MD->operands()) { 4630 if (Op->getNumOperands() < 2) 4631 continue; 4632 MDString *KindID = dyn_cast<MDString>(Op->getOperand(1)); 4633 if (!KindID || KindID->getString() != "kernel") 4634 continue; 4635 4636 Function *KernelFn = 4637 mdconst::dyn_extract_or_null<Function>(Op->getOperand(0)); 4638 if (!KernelFn) 4639 continue; 4640 4641 ++NumOpenMPTargetRegionKernels; 4642 4643 Kernels.insert(KernelFn); 4644 } 4645 4646 return Kernels; 4647 } 4648 4649 bool llvm::omp::containsOpenMP(Module &M) { 4650 Metadata *MD = M.getModuleFlag("openmp"); 4651 if (!MD) 4652 return false; 4653 4654 return true; 4655 } 4656 4657 bool llvm::omp::isOpenMPDevice(Module &M) { 4658 Metadata *MD = M.getModuleFlag("openmp-device"); 4659 if (!MD) 4660 return false; 4661 4662 return true; 4663 } 4664 4665 char OpenMPOptCGSCCLegacyPass::ID = 0; 4666 4667 INITIALIZE_PASS_BEGIN(OpenMPOptCGSCCLegacyPass, "openmp-opt-cgscc", 4668 "OpenMP specific optimizations", false, false) 4669 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass) 4670 INITIALIZE_PASS_END(OpenMPOptCGSCCLegacyPass, "openmp-opt-cgscc", 4671 "OpenMP specific optimizations", false, false) 4672 4673 Pass *llvm::createOpenMPOptCGSCCLegacyPass() { 4674 return new OpenMPOptCGSCCLegacyPass(); 4675 } 4676