1 //===-- IPO/OpenMPOpt.cpp - Collection of OpenMP specific optimizations ---===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // OpenMP specific optimizations: 10 // 11 // - Deduplication of runtime calls, e.g., omp_get_thread_num. 12 // - Replacing globalized device memory with stack memory. 13 // - Replacing globalized device memory with shared memory. 14 // - Parallel region merging. 15 // - Transforming generic-mode device kernels to SPMD mode. 16 // - Specializing the state machine for generic-mode device kernels. 17 // 18 //===----------------------------------------------------------------------===// 19 20 #include "llvm/Transforms/IPO/OpenMPOpt.h" 21 22 #include "llvm/ADT/EnumeratedArray.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/ADT/SetVector.h" 25 #include "llvm/ADT/Statistic.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/Analysis/CallGraph.h" 28 #include "llvm/Analysis/CallGraphSCCPass.h" 29 #include "llvm/Analysis/MemoryLocation.h" 30 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 31 #include "llvm/Analysis/ValueTracking.h" 32 #include "llvm/Frontend/OpenMP/OMPConstants.h" 33 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 34 #include "llvm/IR/Assumptions.h" 35 #include "llvm/IR/Constants.h" 36 #include "llvm/IR/DiagnosticInfo.h" 37 #include "llvm/IR/GlobalValue.h" 38 #include "llvm/IR/GlobalVariable.h" 39 #include "llvm/IR/Instruction.h" 40 #include "llvm/IR/Instructions.h" 41 #include "llvm/IR/IntrinsicInst.h" 42 #include "llvm/IR/IntrinsicsAMDGPU.h" 43 #include "llvm/IR/IntrinsicsNVPTX.h" 44 #include "llvm/IR/LLVMContext.h" 45 #include "llvm/InitializePasses.h" 46 #include "llvm/Support/CommandLine.h" 47 #include "llvm/Support/Debug.h" 48 #include "llvm/Transforms/IPO.h" 49 #include "llvm/Transforms/IPO/Attributor.h" 50 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 51 #include "llvm/Transforms/Utils/CallGraphUpdater.h" 52 53 #include <algorithm> 54 55 using namespace llvm; 56 using namespace omp; 57 58 #define DEBUG_TYPE "openmp-opt" 59 60 static cl::opt<bool> DisableOpenMPOptimizations( 61 "openmp-opt-disable", cl::desc("Disable OpenMP specific optimizations."), 62 cl::Hidden, cl::init(false)); 63 64 static cl::opt<bool> EnableParallelRegionMerging( 65 "openmp-opt-enable-merging", 66 cl::desc("Enable the OpenMP region merging optimization."), cl::Hidden, 67 cl::init(false)); 68 69 static cl::opt<bool> 70 DisableInternalization("openmp-opt-disable-internalization", 71 cl::desc("Disable function internalization."), 72 cl::Hidden, cl::init(false)); 73 74 static cl::opt<bool> PrintICVValues("openmp-print-icv-values", cl::init(false), 75 cl::Hidden); 76 static cl::opt<bool> PrintOpenMPKernels("openmp-print-gpu-kernels", 77 cl::init(false), cl::Hidden); 78 79 static cl::opt<bool> HideMemoryTransferLatency( 80 "openmp-hide-memory-transfer-latency", 81 cl::desc("[WIP] Tries to hide the latency of host to device memory" 82 " transfers"), 83 cl::Hidden, cl::init(false)); 84 85 static cl::opt<bool> DisableOpenMPOptDeglobalization( 86 "openmp-opt-disable-deglobalization", 87 cl::desc("Disable OpenMP optimizations involving deglobalization."), 88 cl::Hidden, cl::init(false)); 89 90 static cl::opt<bool> DisableOpenMPOptSPMDization( 91 "openmp-opt-disable-spmdization", 92 cl::desc("Disable OpenMP optimizations involving SPMD-ization."), 93 cl::Hidden, cl::init(false)); 94 95 static cl::opt<bool> DisableOpenMPOptFolding( 96 "openmp-opt-disable-folding", 97 cl::desc("Disable OpenMP optimizations involving folding."), cl::Hidden, 98 cl::init(false)); 99 100 static cl::opt<bool> DisableOpenMPOptStateMachineRewrite( 101 "openmp-opt-disable-state-machine-rewrite", 102 cl::desc("Disable OpenMP optimizations that replace the state machine."), 103 cl::Hidden, cl::init(false)); 104 105 static cl::opt<bool> DisableOpenMPOptBarrierElimination( 106 "openmp-opt-disable-barrier-elimination", 107 cl::desc("Disable OpenMP optimizations that eliminate barriers."), 108 cl::Hidden, cl::init(false)); 109 110 static cl::opt<bool> PrintModuleAfterOptimizations( 111 "openmp-opt-print-module-after", 112 cl::desc("Print the current module after OpenMP optimizations."), 113 cl::Hidden, cl::init(false)); 114 115 static cl::opt<bool> PrintModuleBeforeOptimizations( 116 "openmp-opt-print-module-before", 117 cl::desc("Print the current module before OpenMP optimizations."), 118 cl::Hidden, cl::init(false)); 119 120 static cl::opt<bool> AlwaysInlineDeviceFunctions( 121 "openmp-opt-inline-device", 122 cl::desc("Inline all applicible functions on the device."), cl::Hidden, 123 cl::init(false)); 124 125 static cl::opt<bool> 126 EnableVerboseRemarks("openmp-opt-verbose-remarks", 127 cl::desc("Enables more verbose remarks."), cl::Hidden, 128 cl::init(false)); 129 130 static cl::opt<unsigned> 131 SetFixpointIterations("openmp-opt-max-iterations", cl::Hidden, 132 cl::desc("Maximal number of attributor iterations."), 133 cl::init(256)); 134 135 static cl::opt<unsigned> 136 SharedMemoryLimit("openmp-opt-shared-limit", cl::Hidden, 137 cl::desc("Maximum amount of shared memory to use."), 138 cl::init(std::numeric_limits<unsigned>::max())); 139 140 STATISTIC(NumOpenMPRuntimeCallsDeduplicated, 141 "Number of OpenMP runtime calls deduplicated"); 142 STATISTIC(NumOpenMPParallelRegionsDeleted, 143 "Number of OpenMP parallel regions deleted"); 144 STATISTIC(NumOpenMPRuntimeFunctionsIdentified, 145 "Number of OpenMP runtime functions identified"); 146 STATISTIC(NumOpenMPRuntimeFunctionUsesIdentified, 147 "Number of OpenMP runtime function uses identified"); 148 STATISTIC(NumOpenMPTargetRegionKernels, 149 "Number of OpenMP target region entry points (=kernels) identified"); 150 STATISTIC(NumOpenMPTargetRegionKernelsSPMD, 151 "Number of OpenMP target region entry points (=kernels) executed in " 152 "SPMD-mode instead of generic-mode"); 153 STATISTIC(NumOpenMPTargetRegionKernelsWithoutStateMachine, 154 "Number of OpenMP target region entry points (=kernels) executed in " 155 "generic-mode without a state machines"); 156 STATISTIC(NumOpenMPTargetRegionKernelsCustomStateMachineWithFallback, 157 "Number of OpenMP target region entry points (=kernels) executed in " 158 "generic-mode with customized state machines with fallback"); 159 STATISTIC(NumOpenMPTargetRegionKernelsCustomStateMachineWithoutFallback, 160 "Number of OpenMP target region entry points (=kernels) executed in " 161 "generic-mode with customized state machines without fallback"); 162 STATISTIC( 163 NumOpenMPParallelRegionsReplacedInGPUStateMachine, 164 "Number of OpenMP parallel regions replaced with ID in GPU state machines"); 165 STATISTIC(NumOpenMPParallelRegionsMerged, 166 "Number of OpenMP parallel regions merged"); 167 STATISTIC(NumBytesMovedToSharedMemory, 168 "Amount of memory pushed to shared memory"); 169 STATISTIC(NumBarriersEliminated, "Number of redundant barriers eliminated"); 170 171 #if !defined(NDEBUG) 172 static constexpr auto TAG = "[" DEBUG_TYPE "]"; 173 #endif 174 175 namespace { 176 177 struct AAHeapToShared; 178 179 struct AAICVTracker; 180 181 /// OpenMP specific information. For now, stores RFIs and ICVs also needed for 182 /// Attributor runs. 183 struct OMPInformationCache : public InformationCache { 184 OMPInformationCache(Module &M, AnalysisGetter &AG, 185 BumpPtrAllocator &Allocator, SetVector<Function *> &CGSCC, 186 KernelSet &Kernels) 187 : InformationCache(M, AG, Allocator, &CGSCC), OMPBuilder(M), 188 Kernels(Kernels) { 189 190 OMPBuilder.initialize(); 191 initializeRuntimeFunctions(); 192 initializeInternalControlVars(); 193 } 194 195 /// Generic information that describes an internal control variable. 196 struct InternalControlVarInfo { 197 /// The kind, as described by InternalControlVar enum. 198 InternalControlVar Kind; 199 200 /// The name of the ICV. 201 StringRef Name; 202 203 /// Environment variable associated with this ICV. 204 StringRef EnvVarName; 205 206 /// Initial value kind. 207 ICVInitValue InitKind; 208 209 /// Initial value. 210 ConstantInt *InitValue; 211 212 /// Setter RTL function associated with this ICV. 213 RuntimeFunction Setter; 214 215 /// Getter RTL function associated with this ICV. 216 RuntimeFunction Getter; 217 218 /// RTL Function corresponding to the override clause of this ICV 219 RuntimeFunction Clause; 220 }; 221 222 /// Generic information that describes a runtime function 223 struct RuntimeFunctionInfo { 224 225 /// The kind, as described by the RuntimeFunction enum. 226 RuntimeFunction Kind; 227 228 /// The name of the function. 229 StringRef Name; 230 231 /// Flag to indicate a variadic function. 232 bool IsVarArg; 233 234 /// The return type of the function. 235 Type *ReturnType; 236 237 /// The argument types of the function. 238 SmallVector<Type *, 8> ArgumentTypes; 239 240 /// The declaration if available. 241 Function *Declaration = nullptr; 242 243 /// Uses of this runtime function per function containing the use. 244 using UseVector = SmallVector<Use *, 16>; 245 246 /// Clear UsesMap for runtime function. 247 void clearUsesMap() { UsesMap.clear(); } 248 249 /// Boolean conversion that is true if the runtime function was found. 250 operator bool() const { return Declaration; } 251 252 /// Return the vector of uses in function \p F. 253 UseVector &getOrCreateUseVector(Function *F) { 254 std::shared_ptr<UseVector> &UV = UsesMap[F]; 255 if (!UV) 256 UV = std::make_shared<UseVector>(); 257 return *UV; 258 } 259 260 /// Return the vector of uses in function \p F or `nullptr` if there are 261 /// none. 262 const UseVector *getUseVector(Function &F) const { 263 auto I = UsesMap.find(&F); 264 if (I != UsesMap.end()) 265 return I->second.get(); 266 return nullptr; 267 } 268 269 /// Return how many functions contain uses of this runtime function. 270 size_t getNumFunctionsWithUses() const { return UsesMap.size(); } 271 272 /// Return the number of arguments (or the minimal number for variadic 273 /// functions). 274 size_t getNumArgs() const { return ArgumentTypes.size(); } 275 276 /// Run the callback \p CB on each use and forget the use if the result is 277 /// true. The callback will be fed the function in which the use was 278 /// encountered as second argument. 279 void foreachUse(SmallVectorImpl<Function *> &SCC, 280 function_ref<bool(Use &, Function &)> CB) { 281 for (Function *F : SCC) 282 foreachUse(CB, F); 283 } 284 285 /// Run the callback \p CB on each use within the function \p F and forget 286 /// the use if the result is true. 287 void foreachUse(function_ref<bool(Use &, Function &)> CB, Function *F) { 288 SmallVector<unsigned, 8> ToBeDeleted; 289 ToBeDeleted.clear(); 290 291 unsigned Idx = 0; 292 UseVector &UV = getOrCreateUseVector(F); 293 294 for (Use *U : UV) { 295 if (CB(*U, *F)) 296 ToBeDeleted.push_back(Idx); 297 ++Idx; 298 } 299 300 // Remove the to-be-deleted indices in reverse order as prior 301 // modifications will not modify the smaller indices. 302 while (!ToBeDeleted.empty()) { 303 unsigned Idx = ToBeDeleted.pop_back_val(); 304 UV[Idx] = UV.back(); 305 UV.pop_back(); 306 } 307 } 308 309 private: 310 /// Map from functions to all uses of this runtime function contained in 311 /// them. 312 DenseMap<Function *, std::shared_ptr<UseVector>> UsesMap; 313 314 public: 315 /// Iterators for the uses of this runtime function. 316 decltype(UsesMap)::iterator begin() { return UsesMap.begin(); } 317 decltype(UsesMap)::iterator end() { return UsesMap.end(); } 318 }; 319 320 /// An OpenMP-IR-Builder instance 321 OpenMPIRBuilder OMPBuilder; 322 323 /// Map from runtime function kind to the runtime function description. 324 EnumeratedArray<RuntimeFunctionInfo, RuntimeFunction, 325 RuntimeFunction::OMPRTL___last> 326 RFIs; 327 328 /// Map from function declarations/definitions to their runtime enum type. 329 DenseMap<Function *, RuntimeFunction> RuntimeFunctionIDMap; 330 331 /// Map from ICV kind to the ICV description. 332 EnumeratedArray<InternalControlVarInfo, InternalControlVar, 333 InternalControlVar::ICV___last> 334 ICVs; 335 336 /// Helper to initialize all internal control variable information for those 337 /// defined in OMPKinds.def. 338 void initializeInternalControlVars() { 339 #define ICV_RT_SET(_Name, RTL) \ 340 { \ 341 auto &ICV = ICVs[_Name]; \ 342 ICV.Setter = RTL; \ 343 } 344 #define ICV_RT_GET(Name, RTL) \ 345 { \ 346 auto &ICV = ICVs[Name]; \ 347 ICV.Getter = RTL; \ 348 } 349 #define ICV_DATA_ENV(Enum, _Name, _EnvVarName, Init) \ 350 { \ 351 auto &ICV = ICVs[Enum]; \ 352 ICV.Name = _Name; \ 353 ICV.Kind = Enum; \ 354 ICV.InitKind = Init; \ 355 ICV.EnvVarName = _EnvVarName; \ 356 switch (ICV.InitKind) { \ 357 case ICV_IMPLEMENTATION_DEFINED: \ 358 ICV.InitValue = nullptr; \ 359 break; \ 360 case ICV_ZERO: \ 361 ICV.InitValue = ConstantInt::get( \ 362 Type::getInt32Ty(OMPBuilder.Int32->getContext()), 0); \ 363 break; \ 364 case ICV_FALSE: \ 365 ICV.InitValue = ConstantInt::getFalse(OMPBuilder.Int1->getContext()); \ 366 break; \ 367 case ICV_LAST: \ 368 break; \ 369 } \ 370 } 371 #include "llvm/Frontend/OpenMP/OMPKinds.def" 372 } 373 374 /// Returns true if the function declaration \p F matches the runtime 375 /// function types, that is, return type \p RTFRetType, and argument types 376 /// \p RTFArgTypes. 377 static bool declMatchesRTFTypes(Function *F, Type *RTFRetType, 378 SmallVector<Type *, 8> &RTFArgTypes) { 379 // TODO: We should output information to the user (under debug output 380 // and via remarks). 381 382 if (!F) 383 return false; 384 if (F->getReturnType() != RTFRetType) 385 return false; 386 if (F->arg_size() != RTFArgTypes.size()) 387 return false; 388 389 auto *RTFTyIt = RTFArgTypes.begin(); 390 for (Argument &Arg : F->args()) { 391 if (Arg.getType() != *RTFTyIt) 392 return false; 393 394 ++RTFTyIt; 395 } 396 397 return true; 398 } 399 400 // Helper to collect all uses of the declaration in the UsesMap. 401 unsigned collectUses(RuntimeFunctionInfo &RFI, bool CollectStats = true) { 402 unsigned NumUses = 0; 403 if (!RFI.Declaration) 404 return NumUses; 405 OMPBuilder.addAttributes(RFI.Kind, *RFI.Declaration); 406 407 if (CollectStats) { 408 NumOpenMPRuntimeFunctionsIdentified += 1; 409 NumOpenMPRuntimeFunctionUsesIdentified += RFI.Declaration->getNumUses(); 410 } 411 412 // TODO: We directly convert uses into proper calls and unknown uses. 413 for (Use &U : RFI.Declaration->uses()) { 414 if (Instruction *UserI = dyn_cast<Instruction>(U.getUser())) { 415 if (ModuleSlice.count(UserI->getFunction())) { 416 RFI.getOrCreateUseVector(UserI->getFunction()).push_back(&U); 417 ++NumUses; 418 } 419 } else { 420 RFI.getOrCreateUseVector(nullptr).push_back(&U); 421 ++NumUses; 422 } 423 } 424 return NumUses; 425 } 426 427 // Helper function to recollect uses of a runtime function. 428 void recollectUsesForFunction(RuntimeFunction RTF) { 429 auto &RFI = RFIs[RTF]; 430 RFI.clearUsesMap(); 431 collectUses(RFI, /*CollectStats*/ false); 432 } 433 434 // Helper function to recollect uses of all runtime functions. 435 void recollectUses() { 436 for (int Idx = 0; Idx < RFIs.size(); ++Idx) 437 recollectUsesForFunction(static_cast<RuntimeFunction>(Idx)); 438 } 439 440 // Helper function to inherit the calling convention of the function callee. 441 void setCallingConvention(FunctionCallee Callee, CallInst *CI) { 442 if (Function *Fn = dyn_cast<Function>(Callee.getCallee())) 443 CI->setCallingConv(Fn->getCallingConv()); 444 } 445 446 /// Helper to initialize all runtime function information for those defined 447 /// in OpenMPKinds.def. 448 void initializeRuntimeFunctions() { 449 Module &M = *((*ModuleSlice.begin())->getParent()); 450 451 // Helper macros for handling __VA_ARGS__ in OMP_RTL 452 #define OMP_TYPE(VarName, ...) \ 453 Type *VarName = OMPBuilder.VarName; \ 454 (void)VarName; 455 456 #define OMP_ARRAY_TYPE(VarName, ...) \ 457 ArrayType *VarName##Ty = OMPBuilder.VarName##Ty; \ 458 (void)VarName##Ty; \ 459 PointerType *VarName##PtrTy = OMPBuilder.VarName##PtrTy; \ 460 (void)VarName##PtrTy; 461 462 #define OMP_FUNCTION_TYPE(VarName, ...) \ 463 FunctionType *VarName = OMPBuilder.VarName; \ 464 (void)VarName; \ 465 PointerType *VarName##Ptr = OMPBuilder.VarName##Ptr; \ 466 (void)VarName##Ptr; 467 468 #define OMP_STRUCT_TYPE(VarName, ...) \ 469 StructType *VarName = OMPBuilder.VarName; \ 470 (void)VarName; \ 471 PointerType *VarName##Ptr = OMPBuilder.VarName##Ptr; \ 472 (void)VarName##Ptr; 473 474 #define OMP_RTL(_Enum, _Name, _IsVarArg, _ReturnType, ...) \ 475 { \ 476 SmallVector<Type *, 8> ArgsTypes({__VA_ARGS__}); \ 477 Function *F = M.getFunction(_Name); \ 478 RTLFunctions.insert(F); \ 479 if (declMatchesRTFTypes(F, OMPBuilder._ReturnType, ArgsTypes)) { \ 480 RuntimeFunctionIDMap[F] = _Enum; \ 481 auto &RFI = RFIs[_Enum]; \ 482 RFI.Kind = _Enum; \ 483 RFI.Name = _Name; \ 484 RFI.IsVarArg = _IsVarArg; \ 485 RFI.ReturnType = OMPBuilder._ReturnType; \ 486 RFI.ArgumentTypes = std::move(ArgsTypes); \ 487 RFI.Declaration = F; \ 488 unsigned NumUses = collectUses(RFI); \ 489 (void)NumUses; \ 490 LLVM_DEBUG({ \ 491 dbgs() << TAG << RFI.Name << (RFI.Declaration ? "" : " not") \ 492 << " found\n"; \ 493 if (RFI.Declaration) \ 494 dbgs() << TAG << "-> got " << NumUses << " uses in " \ 495 << RFI.getNumFunctionsWithUses() \ 496 << " different functions.\n"; \ 497 }); \ 498 } \ 499 } 500 #include "llvm/Frontend/OpenMP/OMPKinds.def" 501 502 // Remove the `noinline` attribute from `__kmpc`, `_OMP::` and `omp_` 503 // functions, except if `optnone` is present. 504 for (Function &F : M) { 505 for (StringRef Prefix : {"__kmpc", "_ZN4_OMP", "omp_"}) 506 if (F.getName().startswith(Prefix) && 507 !F.hasFnAttribute(Attribute::OptimizeNone)) 508 F.removeFnAttr(Attribute::NoInline); 509 } 510 511 // TODO: We should attach the attributes defined in OMPKinds.def. 512 } 513 514 /// Collection of known kernels (\see Kernel) in the module. 515 KernelSet &Kernels; 516 517 /// Collection of known OpenMP runtime functions.. 518 DenseSet<const Function *> RTLFunctions; 519 }; 520 521 template <typename Ty, bool InsertInvalidates = true> 522 struct BooleanStateWithSetVector : public BooleanState { 523 bool contains(const Ty &Elem) const { return Set.contains(Elem); } 524 bool insert(const Ty &Elem) { 525 if (InsertInvalidates) 526 BooleanState::indicatePessimisticFixpoint(); 527 return Set.insert(Elem); 528 } 529 530 const Ty &operator[](int Idx) const { return Set[Idx]; } 531 bool operator==(const BooleanStateWithSetVector &RHS) const { 532 return BooleanState::operator==(RHS) && Set == RHS.Set; 533 } 534 bool operator!=(const BooleanStateWithSetVector &RHS) const { 535 return !(*this == RHS); 536 } 537 538 bool empty() const { return Set.empty(); } 539 size_t size() const { return Set.size(); } 540 541 /// "Clamp" this state with \p RHS. 542 BooleanStateWithSetVector &operator^=(const BooleanStateWithSetVector &RHS) { 543 BooleanState::operator^=(RHS); 544 Set.insert(RHS.Set.begin(), RHS.Set.end()); 545 return *this; 546 } 547 548 private: 549 /// A set to keep track of elements. 550 SetVector<Ty> Set; 551 552 public: 553 typename decltype(Set)::iterator begin() { return Set.begin(); } 554 typename decltype(Set)::iterator end() { return Set.end(); } 555 typename decltype(Set)::const_iterator begin() const { return Set.begin(); } 556 typename decltype(Set)::const_iterator end() const { return Set.end(); } 557 }; 558 559 template <typename Ty, bool InsertInvalidates = true> 560 using BooleanStateWithPtrSetVector = 561 BooleanStateWithSetVector<Ty *, InsertInvalidates>; 562 563 struct KernelInfoState : AbstractState { 564 /// Flag to track if we reached a fixpoint. 565 bool IsAtFixpoint = false; 566 567 /// The parallel regions (identified by the outlined parallel functions) that 568 /// can be reached from the associated function. 569 BooleanStateWithPtrSetVector<Function, /* InsertInvalidates */ false> 570 ReachedKnownParallelRegions; 571 572 /// State to track what parallel region we might reach. 573 BooleanStateWithPtrSetVector<CallBase> ReachedUnknownParallelRegions; 574 575 /// State to track if we are in SPMD-mode, assumed or know, and why we decided 576 /// we cannot be. If it is assumed, then RequiresFullRuntime should also be 577 /// false. 578 BooleanStateWithPtrSetVector<Instruction, false> SPMDCompatibilityTracker; 579 580 /// The __kmpc_target_init call in this kernel, if any. If we find more than 581 /// one we abort as the kernel is malformed. 582 CallBase *KernelInitCB = nullptr; 583 584 /// The __kmpc_target_deinit call in this kernel, if any. If we find more than 585 /// one we abort as the kernel is malformed. 586 CallBase *KernelDeinitCB = nullptr; 587 588 /// Flag to indicate if the associated function is a kernel entry. 589 bool IsKernelEntry = false; 590 591 /// State to track what kernel entries can reach the associated function. 592 BooleanStateWithPtrSetVector<Function, false> ReachingKernelEntries; 593 594 /// State to indicate if we can track parallel level of the associated 595 /// function. We will give up tracking if we encounter unknown caller or the 596 /// caller is __kmpc_parallel_51. 597 BooleanStateWithSetVector<uint8_t> ParallelLevels; 598 599 /// Abstract State interface 600 ///{ 601 602 KernelInfoState() = default; 603 KernelInfoState(bool BestState) { 604 if (!BestState) 605 indicatePessimisticFixpoint(); 606 } 607 608 /// See AbstractState::isValidState(...) 609 bool isValidState() const override { return true; } 610 611 /// See AbstractState::isAtFixpoint(...) 612 bool isAtFixpoint() const override { return IsAtFixpoint; } 613 614 /// See AbstractState::indicatePessimisticFixpoint(...) 615 ChangeStatus indicatePessimisticFixpoint() override { 616 IsAtFixpoint = true; 617 ReachingKernelEntries.indicatePessimisticFixpoint(); 618 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 619 ReachedKnownParallelRegions.indicatePessimisticFixpoint(); 620 ReachedUnknownParallelRegions.indicatePessimisticFixpoint(); 621 return ChangeStatus::CHANGED; 622 } 623 624 /// See AbstractState::indicateOptimisticFixpoint(...) 625 ChangeStatus indicateOptimisticFixpoint() override { 626 IsAtFixpoint = true; 627 ReachingKernelEntries.indicateOptimisticFixpoint(); 628 SPMDCompatibilityTracker.indicateOptimisticFixpoint(); 629 ReachedKnownParallelRegions.indicateOptimisticFixpoint(); 630 ReachedUnknownParallelRegions.indicateOptimisticFixpoint(); 631 return ChangeStatus::UNCHANGED; 632 } 633 634 /// Return the assumed state 635 KernelInfoState &getAssumed() { return *this; } 636 const KernelInfoState &getAssumed() const { return *this; } 637 638 bool operator==(const KernelInfoState &RHS) const { 639 if (SPMDCompatibilityTracker != RHS.SPMDCompatibilityTracker) 640 return false; 641 if (ReachedKnownParallelRegions != RHS.ReachedKnownParallelRegions) 642 return false; 643 if (ReachedUnknownParallelRegions != RHS.ReachedUnknownParallelRegions) 644 return false; 645 if (ReachingKernelEntries != RHS.ReachingKernelEntries) 646 return false; 647 return true; 648 } 649 650 /// Returns true if this kernel contains any OpenMP parallel regions. 651 bool mayContainParallelRegion() { 652 return !ReachedKnownParallelRegions.empty() || 653 !ReachedUnknownParallelRegions.empty(); 654 } 655 656 /// Return empty set as the best state of potential values. 657 static KernelInfoState getBestState() { return KernelInfoState(true); } 658 659 static KernelInfoState getBestState(KernelInfoState &KIS) { 660 return getBestState(); 661 } 662 663 /// Return full set as the worst state of potential values. 664 static KernelInfoState getWorstState() { return KernelInfoState(false); } 665 666 /// "Clamp" this state with \p KIS. 667 KernelInfoState operator^=(const KernelInfoState &KIS) { 668 // Do not merge two different _init and _deinit call sites. 669 if (KIS.KernelInitCB) { 670 if (KernelInitCB && KernelInitCB != KIS.KernelInitCB) 671 llvm_unreachable("Kernel that calls another kernel violates OpenMP-Opt " 672 "assumptions."); 673 KernelInitCB = KIS.KernelInitCB; 674 } 675 if (KIS.KernelDeinitCB) { 676 if (KernelDeinitCB && KernelDeinitCB != KIS.KernelDeinitCB) 677 llvm_unreachable("Kernel that calls another kernel violates OpenMP-Opt " 678 "assumptions."); 679 KernelDeinitCB = KIS.KernelDeinitCB; 680 } 681 SPMDCompatibilityTracker ^= KIS.SPMDCompatibilityTracker; 682 ReachedKnownParallelRegions ^= KIS.ReachedKnownParallelRegions; 683 ReachedUnknownParallelRegions ^= KIS.ReachedUnknownParallelRegions; 684 return *this; 685 } 686 687 KernelInfoState operator&=(const KernelInfoState &KIS) { 688 return (*this ^= KIS); 689 } 690 691 ///} 692 }; 693 694 /// Used to map the values physically (in the IR) stored in an offload 695 /// array, to a vector in memory. 696 struct OffloadArray { 697 /// Physical array (in the IR). 698 AllocaInst *Array = nullptr; 699 /// Mapped values. 700 SmallVector<Value *, 8> StoredValues; 701 /// Last stores made in the offload array. 702 SmallVector<StoreInst *, 8> LastAccesses; 703 704 OffloadArray() = default; 705 706 /// Initializes the OffloadArray with the values stored in \p Array before 707 /// instruction \p Before is reached. Returns false if the initialization 708 /// fails. 709 /// This MUST be used immediately after the construction of the object. 710 bool initialize(AllocaInst &Array, Instruction &Before) { 711 if (!Array.getAllocatedType()->isArrayTy()) 712 return false; 713 714 if (!getValues(Array, Before)) 715 return false; 716 717 this->Array = &Array; 718 return true; 719 } 720 721 static const unsigned DeviceIDArgNum = 1; 722 static const unsigned BasePtrsArgNum = 3; 723 static const unsigned PtrsArgNum = 4; 724 static const unsigned SizesArgNum = 5; 725 726 private: 727 /// Traverses the BasicBlock where \p Array is, collecting the stores made to 728 /// \p Array, leaving StoredValues with the values stored before the 729 /// instruction \p Before is reached. 730 bool getValues(AllocaInst &Array, Instruction &Before) { 731 // Initialize container. 732 const uint64_t NumValues = Array.getAllocatedType()->getArrayNumElements(); 733 StoredValues.assign(NumValues, nullptr); 734 LastAccesses.assign(NumValues, nullptr); 735 736 // TODO: This assumes the instruction \p Before is in the same 737 // BasicBlock as Array. Make it general, for any control flow graph. 738 BasicBlock *BB = Array.getParent(); 739 if (BB != Before.getParent()) 740 return false; 741 742 const DataLayout &DL = Array.getModule()->getDataLayout(); 743 const unsigned int PointerSize = DL.getPointerSize(); 744 745 for (Instruction &I : *BB) { 746 if (&I == &Before) 747 break; 748 749 if (!isa<StoreInst>(&I)) 750 continue; 751 752 auto *S = cast<StoreInst>(&I); 753 int64_t Offset = -1; 754 auto *Dst = 755 GetPointerBaseWithConstantOffset(S->getPointerOperand(), Offset, DL); 756 if (Dst == &Array) { 757 int64_t Idx = Offset / PointerSize; 758 StoredValues[Idx] = getUnderlyingObject(S->getValueOperand()); 759 LastAccesses[Idx] = S; 760 } 761 } 762 763 return isFilled(); 764 } 765 766 /// Returns true if all values in StoredValues and 767 /// LastAccesses are not nullptrs. 768 bool isFilled() { 769 const unsigned NumValues = StoredValues.size(); 770 for (unsigned I = 0; I < NumValues; ++I) { 771 if (!StoredValues[I] || !LastAccesses[I]) 772 return false; 773 } 774 775 return true; 776 } 777 }; 778 779 struct OpenMPOpt { 780 781 using OptimizationRemarkGetter = 782 function_ref<OptimizationRemarkEmitter &(Function *)>; 783 784 OpenMPOpt(SmallVectorImpl<Function *> &SCC, CallGraphUpdater &CGUpdater, 785 OptimizationRemarkGetter OREGetter, 786 OMPInformationCache &OMPInfoCache, Attributor &A) 787 : M(*(*SCC.begin())->getParent()), SCC(SCC), CGUpdater(CGUpdater), 788 OREGetter(OREGetter), OMPInfoCache(OMPInfoCache), A(A) {} 789 790 /// Check if any remarks are enabled for openmp-opt 791 bool remarksEnabled() { 792 auto &Ctx = M.getContext(); 793 return Ctx.getDiagHandlerPtr()->isAnyRemarkEnabled(DEBUG_TYPE); 794 } 795 796 /// Run all OpenMP optimizations on the underlying SCC/ModuleSlice. 797 bool run(bool IsModulePass) { 798 if (SCC.empty()) 799 return false; 800 801 bool Changed = false; 802 803 LLVM_DEBUG(dbgs() << TAG << "Run on SCC with " << SCC.size() 804 << " functions in a slice with " 805 << OMPInfoCache.ModuleSlice.size() << " functions\n"); 806 807 if (IsModulePass) { 808 Changed |= runAttributor(IsModulePass); 809 810 // Recollect uses, in case Attributor deleted any. 811 OMPInfoCache.recollectUses(); 812 813 // TODO: This should be folded into buildCustomStateMachine. 814 Changed |= rewriteDeviceCodeStateMachine(); 815 816 if (remarksEnabled()) 817 analysisGlobalization(); 818 819 Changed |= eliminateBarriers(); 820 } else { 821 if (PrintICVValues) 822 printICVs(); 823 if (PrintOpenMPKernels) 824 printKernels(); 825 826 Changed |= runAttributor(IsModulePass); 827 828 // Recollect uses, in case Attributor deleted any. 829 OMPInfoCache.recollectUses(); 830 831 Changed |= deleteParallelRegions(); 832 833 if (HideMemoryTransferLatency) 834 Changed |= hideMemTransfersLatency(); 835 Changed |= deduplicateRuntimeCalls(); 836 if (EnableParallelRegionMerging) { 837 if (mergeParallelRegions()) { 838 deduplicateRuntimeCalls(); 839 Changed = true; 840 } 841 } 842 843 Changed |= eliminateBarriers(); 844 } 845 846 return Changed; 847 } 848 849 /// Print initial ICV values for testing. 850 /// FIXME: This should be done from the Attributor once it is added. 851 void printICVs() const { 852 InternalControlVar ICVs[] = {ICV_nthreads, ICV_active_levels, ICV_cancel, 853 ICV_proc_bind}; 854 855 for (Function *F : OMPInfoCache.ModuleSlice) { 856 for (auto ICV : ICVs) { 857 auto ICVInfo = OMPInfoCache.ICVs[ICV]; 858 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 859 return ORA << "OpenMP ICV " << ore::NV("OpenMPICV", ICVInfo.Name) 860 << " Value: " 861 << (ICVInfo.InitValue 862 ? toString(ICVInfo.InitValue->getValue(), 10, true) 863 : "IMPLEMENTATION_DEFINED"); 864 }; 865 866 emitRemark<OptimizationRemarkAnalysis>(F, "OpenMPICVTracker", Remark); 867 } 868 } 869 } 870 871 /// Print OpenMP GPU kernels for testing. 872 void printKernels() const { 873 for (Function *F : SCC) { 874 if (!OMPInfoCache.Kernels.count(F)) 875 continue; 876 877 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 878 return ORA << "OpenMP GPU kernel " 879 << ore::NV("OpenMPGPUKernel", F->getName()) << "\n"; 880 }; 881 882 emitRemark<OptimizationRemarkAnalysis>(F, "OpenMPGPU", Remark); 883 } 884 } 885 886 /// Return the call if \p U is a callee use in a regular call. If \p RFI is 887 /// given it has to be the callee or a nullptr is returned. 888 static CallInst *getCallIfRegularCall( 889 Use &U, OMPInformationCache::RuntimeFunctionInfo *RFI = nullptr) { 890 CallInst *CI = dyn_cast<CallInst>(U.getUser()); 891 if (CI && CI->isCallee(&U) && !CI->hasOperandBundles() && 892 (!RFI || 893 (RFI->Declaration && CI->getCalledFunction() == RFI->Declaration))) 894 return CI; 895 return nullptr; 896 } 897 898 /// Return the call if \p V is a regular call. If \p RFI is given it has to be 899 /// the callee or a nullptr is returned. 900 static CallInst *getCallIfRegularCall( 901 Value &V, OMPInformationCache::RuntimeFunctionInfo *RFI = nullptr) { 902 CallInst *CI = dyn_cast<CallInst>(&V); 903 if (CI && !CI->hasOperandBundles() && 904 (!RFI || 905 (RFI->Declaration && CI->getCalledFunction() == RFI->Declaration))) 906 return CI; 907 return nullptr; 908 } 909 910 private: 911 /// Merge parallel regions when it is safe. 912 bool mergeParallelRegions() { 913 const unsigned CallbackCalleeOperand = 2; 914 const unsigned CallbackFirstArgOperand = 3; 915 using InsertPointTy = OpenMPIRBuilder::InsertPointTy; 916 917 // Check if there are any __kmpc_fork_call calls to merge. 918 OMPInformationCache::RuntimeFunctionInfo &RFI = 919 OMPInfoCache.RFIs[OMPRTL___kmpc_fork_call]; 920 921 if (!RFI.Declaration) 922 return false; 923 924 // Unmergable calls that prevent merging a parallel region. 925 OMPInformationCache::RuntimeFunctionInfo UnmergableCallsInfo[] = { 926 OMPInfoCache.RFIs[OMPRTL___kmpc_push_proc_bind], 927 OMPInfoCache.RFIs[OMPRTL___kmpc_push_num_threads], 928 }; 929 930 bool Changed = false; 931 LoopInfo *LI = nullptr; 932 DominatorTree *DT = nullptr; 933 934 SmallDenseMap<BasicBlock *, SmallPtrSet<Instruction *, 4>> BB2PRMap; 935 936 BasicBlock *StartBB = nullptr, *EndBB = nullptr; 937 auto BodyGenCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP) { 938 BasicBlock *CGStartBB = CodeGenIP.getBlock(); 939 BasicBlock *CGEndBB = 940 SplitBlock(CGStartBB, &*CodeGenIP.getPoint(), DT, LI); 941 assert(StartBB != nullptr && "StartBB should not be null"); 942 CGStartBB->getTerminator()->setSuccessor(0, StartBB); 943 assert(EndBB != nullptr && "EndBB should not be null"); 944 EndBB->getTerminator()->setSuccessor(0, CGEndBB); 945 }; 946 947 auto PrivCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, Value &, 948 Value &Inner, Value *&ReplacementValue) -> InsertPointTy { 949 ReplacementValue = &Inner; 950 return CodeGenIP; 951 }; 952 953 auto FiniCB = [&](InsertPointTy CodeGenIP) {}; 954 955 /// Create a sequential execution region within a merged parallel region, 956 /// encapsulated in a master construct with a barrier for synchronization. 957 auto CreateSequentialRegion = [&](Function *OuterFn, 958 BasicBlock *OuterPredBB, 959 Instruction *SeqStartI, 960 Instruction *SeqEndI) { 961 // Isolate the instructions of the sequential region to a separate 962 // block. 963 BasicBlock *ParentBB = SeqStartI->getParent(); 964 BasicBlock *SeqEndBB = 965 SplitBlock(ParentBB, SeqEndI->getNextNode(), DT, LI); 966 BasicBlock *SeqAfterBB = 967 SplitBlock(SeqEndBB, &*SeqEndBB->getFirstInsertionPt(), DT, LI); 968 BasicBlock *SeqStartBB = 969 SplitBlock(ParentBB, SeqStartI, DT, LI, nullptr, "seq.par.merged"); 970 971 assert(ParentBB->getUniqueSuccessor() == SeqStartBB && 972 "Expected a different CFG"); 973 const DebugLoc DL = ParentBB->getTerminator()->getDebugLoc(); 974 ParentBB->getTerminator()->eraseFromParent(); 975 976 auto BodyGenCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP) { 977 BasicBlock *CGStartBB = CodeGenIP.getBlock(); 978 BasicBlock *CGEndBB = 979 SplitBlock(CGStartBB, &*CodeGenIP.getPoint(), DT, LI); 980 assert(SeqStartBB != nullptr && "SeqStartBB should not be null"); 981 CGStartBB->getTerminator()->setSuccessor(0, SeqStartBB); 982 assert(SeqEndBB != nullptr && "SeqEndBB should not be null"); 983 SeqEndBB->getTerminator()->setSuccessor(0, CGEndBB); 984 }; 985 auto FiniCB = [&](InsertPointTy CodeGenIP) {}; 986 987 // Find outputs from the sequential region to outside users and 988 // broadcast their values to them. 989 for (Instruction &I : *SeqStartBB) { 990 SmallPtrSet<Instruction *, 4> OutsideUsers; 991 for (User *Usr : I.users()) { 992 Instruction &UsrI = *cast<Instruction>(Usr); 993 // Ignore outputs to LT intrinsics, code extraction for the merged 994 // parallel region will fix them. 995 if (UsrI.isLifetimeStartOrEnd()) 996 continue; 997 998 if (UsrI.getParent() != SeqStartBB) 999 OutsideUsers.insert(&UsrI); 1000 } 1001 1002 if (OutsideUsers.empty()) 1003 continue; 1004 1005 // Emit an alloca in the outer region to store the broadcasted 1006 // value. 1007 const DataLayout &DL = M.getDataLayout(); 1008 AllocaInst *AllocaI = new AllocaInst( 1009 I.getType(), DL.getAllocaAddrSpace(), nullptr, 1010 I.getName() + ".seq.output.alloc", &OuterFn->front().front()); 1011 1012 // Emit a store instruction in the sequential BB to update the 1013 // value. 1014 new StoreInst(&I, AllocaI, SeqStartBB->getTerminator()); 1015 1016 // Emit a load instruction and replace the use of the output value 1017 // with it. 1018 for (Instruction *UsrI : OutsideUsers) { 1019 LoadInst *LoadI = new LoadInst( 1020 I.getType(), AllocaI, I.getName() + ".seq.output.load", UsrI); 1021 UsrI->replaceUsesOfWith(&I, LoadI); 1022 } 1023 } 1024 1025 OpenMPIRBuilder::LocationDescription Loc( 1026 InsertPointTy(ParentBB, ParentBB->end()), DL); 1027 InsertPointTy SeqAfterIP = 1028 OMPInfoCache.OMPBuilder.createMaster(Loc, BodyGenCB, FiniCB); 1029 1030 OMPInfoCache.OMPBuilder.createBarrier(SeqAfterIP, OMPD_parallel); 1031 1032 BranchInst::Create(SeqAfterBB, SeqAfterIP.getBlock()); 1033 1034 LLVM_DEBUG(dbgs() << TAG << "After sequential inlining " << *OuterFn 1035 << "\n"); 1036 }; 1037 1038 // Helper to merge the __kmpc_fork_call calls in MergableCIs. They are all 1039 // contained in BB and only separated by instructions that can be 1040 // redundantly executed in parallel. The block BB is split before the first 1041 // call (in MergableCIs) and after the last so the entire region we merge 1042 // into a single parallel region is contained in a single basic block 1043 // without any other instructions. We use the OpenMPIRBuilder to outline 1044 // that block and call the resulting function via __kmpc_fork_call. 1045 auto Merge = [&](const SmallVectorImpl<CallInst *> &MergableCIs, 1046 BasicBlock *BB) { 1047 // TODO: Change the interface to allow single CIs expanded, e.g, to 1048 // include an outer loop. 1049 assert(MergableCIs.size() > 1 && "Assumed multiple mergable CIs"); 1050 1051 auto Remark = [&](OptimizationRemark OR) { 1052 OR << "Parallel region merged with parallel region" 1053 << (MergableCIs.size() > 2 ? "s" : "") << " at "; 1054 for (auto *CI : llvm::drop_begin(MergableCIs)) { 1055 OR << ore::NV("OpenMPParallelMerge", CI->getDebugLoc()); 1056 if (CI != MergableCIs.back()) 1057 OR << ", "; 1058 } 1059 return OR << "."; 1060 }; 1061 1062 emitRemark<OptimizationRemark>(MergableCIs.front(), "OMP150", Remark); 1063 1064 Function *OriginalFn = BB->getParent(); 1065 LLVM_DEBUG(dbgs() << TAG << "Merge " << MergableCIs.size() 1066 << " parallel regions in " << OriginalFn->getName() 1067 << "\n"); 1068 1069 // Isolate the calls to merge in a separate block. 1070 EndBB = SplitBlock(BB, MergableCIs.back()->getNextNode(), DT, LI); 1071 BasicBlock *AfterBB = 1072 SplitBlock(EndBB, &*EndBB->getFirstInsertionPt(), DT, LI); 1073 StartBB = SplitBlock(BB, MergableCIs.front(), DT, LI, nullptr, 1074 "omp.par.merged"); 1075 1076 assert(BB->getUniqueSuccessor() == StartBB && "Expected a different CFG"); 1077 const DebugLoc DL = BB->getTerminator()->getDebugLoc(); 1078 BB->getTerminator()->eraseFromParent(); 1079 1080 // Create sequential regions for sequential instructions that are 1081 // in-between mergable parallel regions. 1082 for (auto *It = MergableCIs.begin(), *End = MergableCIs.end() - 1; 1083 It != End; ++It) { 1084 Instruction *ForkCI = *It; 1085 Instruction *NextForkCI = *(It + 1); 1086 1087 // Continue if there are not in-between instructions. 1088 if (ForkCI->getNextNode() == NextForkCI) 1089 continue; 1090 1091 CreateSequentialRegion(OriginalFn, BB, ForkCI->getNextNode(), 1092 NextForkCI->getPrevNode()); 1093 } 1094 1095 OpenMPIRBuilder::LocationDescription Loc(InsertPointTy(BB, BB->end()), 1096 DL); 1097 IRBuilder<>::InsertPoint AllocaIP( 1098 &OriginalFn->getEntryBlock(), 1099 OriginalFn->getEntryBlock().getFirstInsertionPt()); 1100 // Create the merged parallel region with default proc binding, to 1101 // avoid overriding binding settings, and without explicit cancellation. 1102 InsertPointTy AfterIP = OMPInfoCache.OMPBuilder.createParallel( 1103 Loc, AllocaIP, BodyGenCB, PrivCB, FiniCB, nullptr, nullptr, 1104 OMP_PROC_BIND_default, /* IsCancellable */ false); 1105 BranchInst::Create(AfterBB, AfterIP.getBlock()); 1106 1107 // Perform the actual outlining. 1108 OMPInfoCache.OMPBuilder.finalize(OriginalFn); 1109 1110 Function *OutlinedFn = MergableCIs.front()->getCaller(); 1111 1112 // Replace the __kmpc_fork_call calls with direct calls to the outlined 1113 // callbacks. 1114 SmallVector<Value *, 8> Args; 1115 for (auto *CI : MergableCIs) { 1116 Value *Callee = CI->getArgOperand(CallbackCalleeOperand); 1117 FunctionType *FT = OMPInfoCache.OMPBuilder.ParallelTask; 1118 Args.clear(); 1119 Args.push_back(OutlinedFn->getArg(0)); 1120 Args.push_back(OutlinedFn->getArg(1)); 1121 for (unsigned U = CallbackFirstArgOperand, E = CI->arg_size(); U < E; 1122 ++U) 1123 Args.push_back(CI->getArgOperand(U)); 1124 1125 CallInst *NewCI = CallInst::Create(FT, Callee, Args, "", CI); 1126 if (CI->getDebugLoc()) 1127 NewCI->setDebugLoc(CI->getDebugLoc()); 1128 1129 // Forward parameter attributes from the callback to the callee. 1130 for (unsigned U = CallbackFirstArgOperand, E = CI->arg_size(); U < E; 1131 ++U) 1132 for (const Attribute &A : CI->getAttributes().getParamAttrs(U)) 1133 NewCI->addParamAttr( 1134 U - (CallbackFirstArgOperand - CallbackCalleeOperand), A); 1135 1136 // Emit an explicit barrier to replace the implicit fork-join barrier. 1137 if (CI != MergableCIs.back()) { 1138 // TODO: Remove barrier if the merged parallel region includes the 1139 // 'nowait' clause. 1140 OMPInfoCache.OMPBuilder.createBarrier( 1141 InsertPointTy(NewCI->getParent(), 1142 NewCI->getNextNode()->getIterator()), 1143 OMPD_parallel); 1144 } 1145 1146 CI->eraseFromParent(); 1147 } 1148 1149 assert(OutlinedFn != OriginalFn && "Outlining failed"); 1150 CGUpdater.registerOutlinedFunction(*OriginalFn, *OutlinedFn); 1151 CGUpdater.reanalyzeFunction(*OriginalFn); 1152 1153 NumOpenMPParallelRegionsMerged += MergableCIs.size(); 1154 1155 return true; 1156 }; 1157 1158 // Helper function that identifes sequences of 1159 // __kmpc_fork_call uses in a basic block. 1160 auto DetectPRsCB = [&](Use &U, Function &F) { 1161 CallInst *CI = getCallIfRegularCall(U, &RFI); 1162 BB2PRMap[CI->getParent()].insert(CI); 1163 1164 return false; 1165 }; 1166 1167 BB2PRMap.clear(); 1168 RFI.foreachUse(SCC, DetectPRsCB); 1169 SmallVector<SmallVector<CallInst *, 4>, 4> MergableCIsVector; 1170 // Find mergable parallel regions within a basic block that are 1171 // safe to merge, that is any in-between instructions can safely 1172 // execute in parallel after merging. 1173 // TODO: support merging across basic-blocks. 1174 for (auto &It : BB2PRMap) { 1175 auto &CIs = It.getSecond(); 1176 if (CIs.size() < 2) 1177 continue; 1178 1179 BasicBlock *BB = It.getFirst(); 1180 SmallVector<CallInst *, 4> MergableCIs; 1181 1182 /// Returns true if the instruction is mergable, false otherwise. 1183 /// A terminator instruction is unmergable by definition since merging 1184 /// works within a BB. Instructions before the mergable region are 1185 /// mergable if they are not calls to OpenMP runtime functions that may 1186 /// set different execution parameters for subsequent parallel regions. 1187 /// Instructions in-between parallel regions are mergable if they are not 1188 /// calls to any non-intrinsic function since that may call a non-mergable 1189 /// OpenMP runtime function. 1190 auto IsMergable = [&](Instruction &I, bool IsBeforeMergableRegion) { 1191 // We do not merge across BBs, hence return false (unmergable) if the 1192 // instruction is a terminator. 1193 if (I.isTerminator()) 1194 return false; 1195 1196 if (!isa<CallInst>(&I)) 1197 return true; 1198 1199 CallInst *CI = cast<CallInst>(&I); 1200 if (IsBeforeMergableRegion) { 1201 Function *CalledFunction = CI->getCalledFunction(); 1202 if (!CalledFunction) 1203 return false; 1204 // Return false (unmergable) if the call before the parallel 1205 // region calls an explicit affinity (proc_bind) or number of 1206 // threads (num_threads) compiler-generated function. Those settings 1207 // may be incompatible with following parallel regions. 1208 // TODO: ICV tracking to detect compatibility. 1209 for (const auto &RFI : UnmergableCallsInfo) { 1210 if (CalledFunction == RFI.Declaration) 1211 return false; 1212 } 1213 } else { 1214 // Return false (unmergable) if there is a call instruction 1215 // in-between parallel regions when it is not an intrinsic. It 1216 // may call an unmergable OpenMP runtime function in its callpath. 1217 // TODO: Keep track of possible OpenMP calls in the callpath. 1218 if (!isa<IntrinsicInst>(CI)) 1219 return false; 1220 } 1221 1222 return true; 1223 }; 1224 // Find maximal number of parallel region CIs that are safe to merge. 1225 for (auto It = BB->begin(), End = BB->end(); It != End;) { 1226 Instruction &I = *It; 1227 ++It; 1228 1229 if (CIs.count(&I)) { 1230 MergableCIs.push_back(cast<CallInst>(&I)); 1231 continue; 1232 } 1233 1234 // Continue expanding if the instruction is mergable. 1235 if (IsMergable(I, MergableCIs.empty())) 1236 continue; 1237 1238 // Forward the instruction iterator to skip the next parallel region 1239 // since there is an unmergable instruction which can affect it. 1240 for (; It != End; ++It) { 1241 Instruction &SkipI = *It; 1242 if (CIs.count(&SkipI)) { 1243 LLVM_DEBUG(dbgs() << TAG << "Skip parallel region " << SkipI 1244 << " due to " << I << "\n"); 1245 ++It; 1246 break; 1247 } 1248 } 1249 1250 // Store mergable regions found. 1251 if (MergableCIs.size() > 1) { 1252 MergableCIsVector.push_back(MergableCIs); 1253 LLVM_DEBUG(dbgs() << TAG << "Found " << MergableCIs.size() 1254 << " parallel regions in block " << BB->getName() 1255 << " of function " << BB->getParent()->getName() 1256 << "\n";); 1257 } 1258 1259 MergableCIs.clear(); 1260 } 1261 1262 if (!MergableCIsVector.empty()) { 1263 Changed = true; 1264 1265 for (auto &MergableCIs : MergableCIsVector) 1266 Merge(MergableCIs, BB); 1267 MergableCIsVector.clear(); 1268 } 1269 } 1270 1271 if (Changed) { 1272 /// Re-collect use for fork calls, emitted barrier calls, and 1273 /// any emitted master/end_master calls. 1274 OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_fork_call); 1275 OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_barrier); 1276 OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_master); 1277 OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_end_master); 1278 } 1279 1280 return Changed; 1281 } 1282 1283 /// Try to delete parallel regions if possible. 1284 bool deleteParallelRegions() { 1285 const unsigned CallbackCalleeOperand = 2; 1286 1287 OMPInformationCache::RuntimeFunctionInfo &RFI = 1288 OMPInfoCache.RFIs[OMPRTL___kmpc_fork_call]; 1289 1290 if (!RFI.Declaration) 1291 return false; 1292 1293 bool Changed = false; 1294 auto DeleteCallCB = [&](Use &U, Function &) { 1295 CallInst *CI = getCallIfRegularCall(U); 1296 if (!CI) 1297 return false; 1298 auto *Fn = dyn_cast<Function>( 1299 CI->getArgOperand(CallbackCalleeOperand)->stripPointerCasts()); 1300 if (!Fn) 1301 return false; 1302 if (!Fn->onlyReadsMemory()) 1303 return false; 1304 if (!Fn->hasFnAttribute(Attribute::WillReturn)) 1305 return false; 1306 1307 LLVM_DEBUG(dbgs() << TAG << "Delete read-only parallel region in " 1308 << CI->getCaller()->getName() << "\n"); 1309 1310 auto Remark = [&](OptimizationRemark OR) { 1311 return OR << "Removing parallel region with no side-effects."; 1312 }; 1313 emitRemark<OptimizationRemark>(CI, "OMP160", Remark); 1314 1315 CGUpdater.removeCallSite(*CI); 1316 CI->eraseFromParent(); 1317 Changed = true; 1318 ++NumOpenMPParallelRegionsDeleted; 1319 return true; 1320 }; 1321 1322 RFI.foreachUse(SCC, DeleteCallCB); 1323 1324 return Changed; 1325 } 1326 1327 /// Try to eliminate runtime calls by reusing existing ones. 1328 bool deduplicateRuntimeCalls() { 1329 bool Changed = false; 1330 1331 RuntimeFunction DeduplicableRuntimeCallIDs[] = { 1332 OMPRTL_omp_get_num_threads, 1333 OMPRTL_omp_in_parallel, 1334 OMPRTL_omp_get_cancellation, 1335 OMPRTL_omp_get_thread_limit, 1336 OMPRTL_omp_get_supported_active_levels, 1337 OMPRTL_omp_get_level, 1338 OMPRTL_omp_get_ancestor_thread_num, 1339 OMPRTL_omp_get_team_size, 1340 OMPRTL_omp_get_active_level, 1341 OMPRTL_omp_in_final, 1342 OMPRTL_omp_get_proc_bind, 1343 OMPRTL_omp_get_num_places, 1344 OMPRTL_omp_get_num_procs, 1345 OMPRTL_omp_get_place_num, 1346 OMPRTL_omp_get_partition_num_places, 1347 OMPRTL_omp_get_partition_place_nums}; 1348 1349 // Global-tid is handled separately. 1350 SmallSetVector<Value *, 16> GTIdArgs; 1351 collectGlobalThreadIdArguments(GTIdArgs); 1352 LLVM_DEBUG(dbgs() << TAG << "Found " << GTIdArgs.size() 1353 << " global thread ID arguments\n"); 1354 1355 for (Function *F : SCC) { 1356 for (auto DeduplicableRuntimeCallID : DeduplicableRuntimeCallIDs) 1357 Changed |= deduplicateRuntimeCalls( 1358 *F, OMPInfoCache.RFIs[DeduplicableRuntimeCallID]); 1359 1360 // __kmpc_global_thread_num is special as we can replace it with an 1361 // argument in enough cases to make it worth trying. 1362 Value *GTIdArg = nullptr; 1363 for (Argument &Arg : F->args()) 1364 if (GTIdArgs.count(&Arg)) { 1365 GTIdArg = &Arg; 1366 break; 1367 } 1368 Changed |= deduplicateRuntimeCalls( 1369 *F, OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num], GTIdArg); 1370 } 1371 1372 return Changed; 1373 } 1374 1375 /// Tries to hide the latency of runtime calls that involve host to 1376 /// device memory transfers by splitting them into their "issue" and "wait" 1377 /// versions. The "issue" is moved upwards as much as possible. The "wait" is 1378 /// moved downards as much as possible. The "issue" issues the memory transfer 1379 /// asynchronously, returning a handle. The "wait" waits in the returned 1380 /// handle for the memory transfer to finish. 1381 bool hideMemTransfersLatency() { 1382 auto &RFI = OMPInfoCache.RFIs[OMPRTL___tgt_target_data_begin_mapper]; 1383 bool Changed = false; 1384 auto SplitMemTransfers = [&](Use &U, Function &Decl) { 1385 auto *RTCall = getCallIfRegularCall(U, &RFI); 1386 if (!RTCall) 1387 return false; 1388 1389 OffloadArray OffloadArrays[3]; 1390 if (!getValuesInOffloadArrays(*RTCall, OffloadArrays)) 1391 return false; 1392 1393 LLVM_DEBUG(dumpValuesInOffloadArrays(OffloadArrays)); 1394 1395 // TODO: Check if can be moved upwards. 1396 bool WasSplit = false; 1397 Instruction *WaitMovementPoint = canBeMovedDownwards(*RTCall); 1398 if (WaitMovementPoint) 1399 WasSplit = splitTargetDataBeginRTC(*RTCall, *WaitMovementPoint); 1400 1401 Changed |= WasSplit; 1402 return WasSplit; 1403 }; 1404 RFI.foreachUse(SCC, SplitMemTransfers); 1405 1406 return Changed; 1407 } 1408 1409 /// Eliminates redundant, aligned barriers in OpenMP offloaded kernels. 1410 /// TODO: Make this an AA and expand it to work across blocks and functions. 1411 bool eliminateBarriers() { 1412 bool Changed = false; 1413 1414 if (DisableOpenMPOptBarrierElimination) 1415 return /*Changed=*/false; 1416 1417 if (OMPInfoCache.Kernels.empty()) 1418 return /*Changed=*/false; 1419 1420 enum ImplicitBarrierType { IBT_ENTRY, IBT_EXIT }; 1421 1422 class BarrierInfo { 1423 Instruction *I; 1424 enum ImplicitBarrierType Type; 1425 1426 public: 1427 BarrierInfo(enum ImplicitBarrierType Type) : I(nullptr), Type(Type) {} 1428 BarrierInfo(Instruction &I) : I(&I) {} 1429 1430 bool isImplicit() { return !I; } 1431 1432 bool isImplicitEntry() { return isImplicit() && Type == IBT_ENTRY; } 1433 1434 bool isImplicitExit() { return isImplicit() && Type == IBT_EXIT; } 1435 1436 Instruction *getInstruction() { return I; } 1437 }; 1438 1439 for (Function *Kernel : OMPInfoCache.Kernels) { 1440 for (BasicBlock &BB : *Kernel) { 1441 SmallVector<BarrierInfo, 8> BarriersInBlock; 1442 SmallPtrSet<Instruction *, 8> BarriersToBeDeleted; 1443 1444 // Add the kernel entry implicit barrier. 1445 if (&Kernel->getEntryBlock() == &BB) 1446 BarriersInBlock.push_back(IBT_ENTRY); 1447 1448 // Find implicit and explicit aligned barriers in the same basic block. 1449 for (Instruction &I : BB) { 1450 if (isa<ReturnInst>(I)) { 1451 // Add the implicit barrier when exiting the kernel. 1452 BarriersInBlock.push_back(IBT_EXIT); 1453 continue; 1454 } 1455 CallBase *CB = dyn_cast<CallBase>(&I); 1456 if (!CB) 1457 continue; 1458 1459 auto IsAlignBarrierCB = [&](CallBase &CB) { 1460 switch (CB.getIntrinsicID()) { 1461 case Intrinsic::nvvm_barrier0: 1462 case Intrinsic::nvvm_barrier0_and: 1463 case Intrinsic::nvvm_barrier0_or: 1464 case Intrinsic::nvvm_barrier0_popc: 1465 return true; 1466 default: 1467 break; 1468 } 1469 return hasAssumption(CB, 1470 KnownAssumptionString("ompx_aligned_barrier")); 1471 }; 1472 1473 if (IsAlignBarrierCB(*CB)) { 1474 // Add an explicit aligned barrier. 1475 BarriersInBlock.push_back(I); 1476 } 1477 } 1478 1479 if (BarriersInBlock.size() <= 1) 1480 continue; 1481 1482 // A barrier in a barrier pair is removeable if all instructions 1483 // between the barriers in the pair are side-effect free modulo the 1484 // barrier operation. 1485 auto IsBarrierRemoveable = [&Kernel](BarrierInfo *StartBI, 1486 BarrierInfo *EndBI) { 1487 assert( 1488 !StartBI->isImplicitExit() && 1489 "Expected start barrier to be other than a kernel exit barrier"); 1490 assert( 1491 !EndBI->isImplicitEntry() && 1492 "Expected end barrier to be other than a kernel entry barrier"); 1493 // If StarBI instructions is null then this the implicit 1494 // kernel entry barrier, so iterate from the first instruction in the 1495 // entry block. 1496 Instruction *I = (StartBI->isImplicitEntry()) 1497 ? &Kernel->getEntryBlock().front() 1498 : StartBI->getInstruction()->getNextNode(); 1499 assert(I && "Expected non-null start instruction"); 1500 Instruction *E = (EndBI->isImplicitExit()) 1501 ? I->getParent()->getTerminator() 1502 : EndBI->getInstruction(); 1503 assert(E && "Expected non-null end instruction"); 1504 1505 for (; I != E; I = I->getNextNode()) { 1506 if (!I->mayHaveSideEffects() && !I->mayReadFromMemory()) 1507 continue; 1508 1509 auto IsPotentiallyAffectedByBarrier = 1510 [](Optional<MemoryLocation> Loc) { 1511 const Value *Obj = (Loc && Loc->Ptr) 1512 ? getUnderlyingObject(Loc->Ptr) 1513 : nullptr; 1514 if (!Obj) { 1515 LLVM_DEBUG( 1516 dbgs() 1517 << "Access to unknown location requires barriers\n"); 1518 return true; 1519 } 1520 if (isa<UndefValue>(Obj)) 1521 return false; 1522 if (isa<AllocaInst>(Obj)) 1523 return false; 1524 if (auto *GV = dyn_cast<GlobalVariable>(Obj)) { 1525 if (GV->isConstant()) 1526 return false; 1527 if (GV->isThreadLocal()) 1528 return false; 1529 if (GV->getAddressSpace() == (int)AddressSpace::Local) 1530 return false; 1531 if (GV->getAddressSpace() == (int)AddressSpace::Constant) 1532 return false; 1533 } 1534 LLVM_DEBUG(dbgs() << "Access to '" << *Obj 1535 << "' requires barriers\n"); 1536 return true; 1537 }; 1538 1539 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) { 1540 Optional<MemoryLocation> Loc = MemoryLocation::getForDest(MI); 1541 if (IsPotentiallyAffectedByBarrier(Loc)) 1542 return false; 1543 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(I)) { 1544 Optional<MemoryLocation> Loc = 1545 MemoryLocation::getForSource(MTI); 1546 if (IsPotentiallyAffectedByBarrier(Loc)) 1547 return false; 1548 } 1549 continue; 1550 } 1551 1552 if (auto *LI = dyn_cast<LoadInst>(I)) 1553 if (LI->hasMetadata(LLVMContext::MD_invariant_load)) 1554 continue; 1555 1556 Optional<MemoryLocation> Loc = MemoryLocation::getOrNone(I); 1557 if (IsPotentiallyAffectedByBarrier(Loc)) 1558 return false; 1559 } 1560 1561 return true; 1562 }; 1563 1564 // Iterate barrier pairs and remove an explicit barrier if analysis 1565 // deems it removeable. 1566 for (auto *It = BarriersInBlock.begin(), 1567 *End = BarriersInBlock.end() - 1; 1568 It != End; ++It) { 1569 1570 BarrierInfo *StartBI = It; 1571 BarrierInfo *EndBI = (It + 1); 1572 1573 // Cannot remove when both are implicit barriers, continue. 1574 if (StartBI->isImplicit() && EndBI->isImplicit()) 1575 continue; 1576 1577 if (!IsBarrierRemoveable(StartBI, EndBI)) 1578 continue; 1579 1580 assert(!(StartBI->isImplicit() && EndBI->isImplicit()) && 1581 "Expected at least one explicit barrier to remove."); 1582 1583 // Remove an explicit barrier, check first, then second. 1584 if (!StartBI->isImplicit()) { 1585 LLVM_DEBUG(dbgs() << "Remove start barrier " 1586 << *StartBI->getInstruction() << "\n"); 1587 BarriersToBeDeleted.insert(StartBI->getInstruction()); 1588 } else { 1589 LLVM_DEBUG(dbgs() << "Remove end barrier " 1590 << *EndBI->getInstruction() << "\n"); 1591 BarriersToBeDeleted.insert(EndBI->getInstruction()); 1592 } 1593 } 1594 1595 if (BarriersToBeDeleted.empty()) 1596 continue; 1597 1598 Changed = true; 1599 for (Instruction *I : BarriersToBeDeleted) { 1600 ++NumBarriersEliminated; 1601 auto Remark = [&](OptimizationRemark OR) { 1602 return OR << "Redundant barrier eliminated."; 1603 }; 1604 1605 if (EnableVerboseRemarks) 1606 emitRemark<OptimizationRemark>(I, "OMP190", Remark); 1607 I->eraseFromParent(); 1608 } 1609 } 1610 } 1611 1612 return Changed; 1613 } 1614 1615 void analysisGlobalization() { 1616 auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared]; 1617 1618 auto CheckGlobalization = [&](Use &U, Function &Decl) { 1619 if (CallInst *CI = getCallIfRegularCall(U, &RFI)) { 1620 auto Remark = [&](OptimizationRemarkMissed ORM) { 1621 return ORM 1622 << "Found thread data sharing on the GPU. " 1623 << "Expect degraded performance due to data globalization."; 1624 }; 1625 emitRemark<OptimizationRemarkMissed>(CI, "OMP112", Remark); 1626 } 1627 1628 return false; 1629 }; 1630 1631 RFI.foreachUse(SCC, CheckGlobalization); 1632 } 1633 1634 /// Maps the values stored in the offload arrays passed as arguments to 1635 /// \p RuntimeCall into the offload arrays in \p OAs. 1636 bool getValuesInOffloadArrays(CallInst &RuntimeCall, 1637 MutableArrayRef<OffloadArray> OAs) { 1638 assert(OAs.size() == 3 && "Need space for three offload arrays!"); 1639 1640 // A runtime call that involves memory offloading looks something like: 1641 // call void @__tgt_target_data_begin_mapper(arg0, arg1, 1642 // i8** %offload_baseptrs, i8** %offload_ptrs, i64* %offload_sizes, 1643 // ...) 1644 // So, the idea is to access the allocas that allocate space for these 1645 // offload arrays, offload_baseptrs, offload_ptrs, offload_sizes. 1646 // Therefore: 1647 // i8** %offload_baseptrs. 1648 Value *BasePtrsArg = 1649 RuntimeCall.getArgOperand(OffloadArray::BasePtrsArgNum); 1650 // i8** %offload_ptrs. 1651 Value *PtrsArg = RuntimeCall.getArgOperand(OffloadArray::PtrsArgNum); 1652 // i8** %offload_sizes. 1653 Value *SizesArg = RuntimeCall.getArgOperand(OffloadArray::SizesArgNum); 1654 1655 // Get values stored in **offload_baseptrs. 1656 auto *V = getUnderlyingObject(BasePtrsArg); 1657 if (!isa<AllocaInst>(V)) 1658 return false; 1659 auto *BasePtrsArray = cast<AllocaInst>(V); 1660 if (!OAs[0].initialize(*BasePtrsArray, RuntimeCall)) 1661 return false; 1662 1663 // Get values stored in **offload_baseptrs. 1664 V = getUnderlyingObject(PtrsArg); 1665 if (!isa<AllocaInst>(V)) 1666 return false; 1667 auto *PtrsArray = cast<AllocaInst>(V); 1668 if (!OAs[1].initialize(*PtrsArray, RuntimeCall)) 1669 return false; 1670 1671 // Get values stored in **offload_sizes. 1672 V = getUnderlyingObject(SizesArg); 1673 // If it's a [constant] global array don't analyze it. 1674 if (isa<GlobalValue>(V)) 1675 return isa<Constant>(V); 1676 if (!isa<AllocaInst>(V)) 1677 return false; 1678 1679 auto *SizesArray = cast<AllocaInst>(V); 1680 if (!OAs[2].initialize(*SizesArray, RuntimeCall)) 1681 return false; 1682 1683 return true; 1684 } 1685 1686 /// Prints the values in the OffloadArrays \p OAs using LLVM_DEBUG. 1687 /// For now this is a way to test that the function getValuesInOffloadArrays 1688 /// is working properly. 1689 /// TODO: Move this to a unittest when unittests are available for OpenMPOpt. 1690 void dumpValuesInOffloadArrays(ArrayRef<OffloadArray> OAs) { 1691 assert(OAs.size() == 3 && "There are three offload arrays to debug!"); 1692 1693 LLVM_DEBUG(dbgs() << TAG << " Successfully got offload values:\n"); 1694 std::string ValuesStr; 1695 raw_string_ostream Printer(ValuesStr); 1696 std::string Separator = " --- "; 1697 1698 for (auto *BP : OAs[0].StoredValues) { 1699 BP->print(Printer); 1700 Printer << Separator; 1701 } 1702 LLVM_DEBUG(dbgs() << "\t\toffload_baseptrs: " << Printer.str() << "\n"); 1703 ValuesStr.clear(); 1704 1705 for (auto *P : OAs[1].StoredValues) { 1706 P->print(Printer); 1707 Printer << Separator; 1708 } 1709 LLVM_DEBUG(dbgs() << "\t\toffload_ptrs: " << Printer.str() << "\n"); 1710 ValuesStr.clear(); 1711 1712 for (auto *S : OAs[2].StoredValues) { 1713 S->print(Printer); 1714 Printer << Separator; 1715 } 1716 LLVM_DEBUG(dbgs() << "\t\toffload_sizes: " << Printer.str() << "\n"); 1717 } 1718 1719 /// Returns the instruction where the "wait" counterpart \p RuntimeCall can be 1720 /// moved. Returns nullptr if the movement is not possible, or not worth it. 1721 Instruction *canBeMovedDownwards(CallInst &RuntimeCall) { 1722 // FIXME: This traverses only the BasicBlock where RuntimeCall is. 1723 // Make it traverse the CFG. 1724 1725 Instruction *CurrentI = &RuntimeCall; 1726 bool IsWorthIt = false; 1727 while ((CurrentI = CurrentI->getNextNode())) { 1728 1729 // TODO: Once we detect the regions to be offloaded we should use the 1730 // alias analysis manager to check if CurrentI may modify one of 1731 // the offloaded regions. 1732 if (CurrentI->mayHaveSideEffects() || CurrentI->mayReadFromMemory()) { 1733 if (IsWorthIt) 1734 return CurrentI; 1735 1736 return nullptr; 1737 } 1738 1739 // FIXME: For now if we move it over anything without side effect 1740 // is worth it. 1741 IsWorthIt = true; 1742 } 1743 1744 // Return end of BasicBlock. 1745 return RuntimeCall.getParent()->getTerminator(); 1746 } 1747 1748 /// Splits \p RuntimeCall into its "issue" and "wait" counterparts. 1749 bool splitTargetDataBeginRTC(CallInst &RuntimeCall, 1750 Instruction &WaitMovementPoint) { 1751 // Create stack allocated handle (__tgt_async_info) at the beginning of the 1752 // function. Used for storing information of the async transfer, allowing to 1753 // wait on it later. 1754 auto &IRBuilder = OMPInfoCache.OMPBuilder; 1755 auto *F = RuntimeCall.getCaller(); 1756 Instruction *FirstInst = &(F->getEntryBlock().front()); 1757 AllocaInst *Handle = new AllocaInst( 1758 IRBuilder.AsyncInfo, F->getAddressSpace(), "handle", FirstInst); 1759 1760 // Add "issue" runtime call declaration: 1761 // declare %struct.tgt_async_info @__tgt_target_data_begin_issue(i64, i32, 1762 // i8**, i8**, i64*, i64*) 1763 FunctionCallee IssueDecl = IRBuilder.getOrCreateRuntimeFunction( 1764 M, OMPRTL___tgt_target_data_begin_mapper_issue); 1765 1766 // Change RuntimeCall call site for its asynchronous version. 1767 SmallVector<Value *, 16> Args; 1768 for (auto &Arg : RuntimeCall.args()) 1769 Args.push_back(Arg.get()); 1770 Args.push_back(Handle); 1771 1772 CallInst *IssueCallsite = 1773 CallInst::Create(IssueDecl, Args, /*NameStr=*/"", &RuntimeCall); 1774 OMPInfoCache.setCallingConvention(IssueDecl, IssueCallsite); 1775 RuntimeCall.eraseFromParent(); 1776 1777 // Add "wait" runtime call declaration: 1778 // declare void @__tgt_target_data_begin_wait(i64, %struct.__tgt_async_info) 1779 FunctionCallee WaitDecl = IRBuilder.getOrCreateRuntimeFunction( 1780 M, OMPRTL___tgt_target_data_begin_mapper_wait); 1781 1782 Value *WaitParams[2] = { 1783 IssueCallsite->getArgOperand( 1784 OffloadArray::DeviceIDArgNum), // device_id. 1785 Handle // handle to wait on. 1786 }; 1787 CallInst *WaitCallsite = CallInst::Create( 1788 WaitDecl, WaitParams, /*NameStr=*/"", &WaitMovementPoint); 1789 OMPInfoCache.setCallingConvention(WaitDecl, WaitCallsite); 1790 1791 return true; 1792 } 1793 1794 static Value *combinedIdentStruct(Value *CurrentIdent, Value *NextIdent, 1795 bool GlobalOnly, bool &SingleChoice) { 1796 if (CurrentIdent == NextIdent) 1797 return CurrentIdent; 1798 1799 // TODO: Figure out how to actually combine multiple debug locations. For 1800 // now we just keep an existing one if there is a single choice. 1801 if (!GlobalOnly || isa<GlobalValue>(NextIdent)) { 1802 SingleChoice = !CurrentIdent; 1803 return NextIdent; 1804 } 1805 return nullptr; 1806 } 1807 1808 /// Return an `struct ident_t*` value that represents the ones used in the 1809 /// calls of \p RFI inside of \p F. If \p GlobalOnly is true, we will not 1810 /// return a local `struct ident_t*`. For now, if we cannot find a suitable 1811 /// return value we create one from scratch. We also do not yet combine 1812 /// information, e.g., the source locations, see combinedIdentStruct. 1813 Value * 1814 getCombinedIdentFromCallUsesIn(OMPInformationCache::RuntimeFunctionInfo &RFI, 1815 Function &F, bool GlobalOnly) { 1816 bool SingleChoice = true; 1817 Value *Ident = nullptr; 1818 auto CombineIdentStruct = [&](Use &U, Function &Caller) { 1819 CallInst *CI = getCallIfRegularCall(U, &RFI); 1820 if (!CI || &F != &Caller) 1821 return false; 1822 Ident = combinedIdentStruct(Ident, CI->getArgOperand(0), 1823 /* GlobalOnly */ true, SingleChoice); 1824 return false; 1825 }; 1826 RFI.foreachUse(SCC, CombineIdentStruct); 1827 1828 if (!Ident || !SingleChoice) { 1829 // The IRBuilder uses the insertion block to get to the module, this is 1830 // unfortunate but we work around it for now. 1831 if (!OMPInfoCache.OMPBuilder.getInsertionPoint().getBlock()) 1832 OMPInfoCache.OMPBuilder.updateToLocation(OpenMPIRBuilder::InsertPointTy( 1833 &F.getEntryBlock(), F.getEntryBlock().begin())); 1834 // Create a fallback location if non was found. 1835 // TODO: Use the debug locations of the calls instead. 1836 uint32_t SrcLocStrSize; 1837 Constant *Loc = 1838 OMPInfoCache.OMPBuilder.getOrCreateDefaultSrcLocStr(SrcLocStrSize); 1839 Ident = OMPInfoCache.OMPBuilder.getOrCreateIdent(Loc, SrcLocStrSize); 1840 } 1841 return Ident; 1842 } 1843 1844 /// Try to eliminate calls of \p RFI in \p F by reusing an existing one or 1845 /// \p ReplVal if given. 1846 bool deduplicateRuntimeCalls(Function &F, 1847 OMPInformationCache::RuntimeFunctionInfo &RFI, 1848 Value *ReplVal = nullptr) { 1849 auto *UV = RFI.getUseVector(F); 1850 if (!UV || UV->size() + (ReplVal != nullptr) < 2) 1851 return false; 1852 1853 LLVM_DEBUG( 1854 dbgs() << TAG << "Deduplicate " << UV->size() << " uses of " << RFI.Name 1855 << (ReplVal ? " with an existing value\n" : "\n") << "\n"); 1856 1857 assert((!ReplVal || (isa<Argument>(ReplVal) && 1858 cast<Argument>(ReplVal)->getParent() == &F)) && 1859 "Unexpected replacement value!"); 1860 1861 // TODO: Use dominance to find a good position instead. 1862 auto CanBeMoved = [this](CallBase &CB) { 1863 unsigned NumArgs = CB.arg_size(); 1864 if (NumArgs == 0) 1865 return true; 1866 if (CB.getArgOperand(0)->getType() != OMPInfoCache.OMPBuilder.IdentPtr) 1867 return false; 1868 for (unsigned U = 1; U < NumArgs; ++U) 1869 if (isa<Instruction>(CB.getArgOperand(U))) 1870 return false; 1871 return true; 1872 }; 1873 1874 if (!ReplVal) { 1875 for (Use *U : *UV) 1876 if (CallInst *CI = getCallIfRegularCall(*U, &RFI)) { 1877 if (!CanBeMoved(*CI)) 1878 continue; 1879 1880 // If the function is a kernel, dedup will move 1881 // the runtime call right after the kernel init callsite. Otherwise, 1882 // it will move it to the beginning of the caller function. 1883 if (isKernel(F)) { 1884 auto &KernelInitRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_target_init]; 1885 auto *KernelInitUV = KernelInitRFI.getUseVector(F); 1886 1887 if (KernelInitUV->empty()) 1888 continue; 1889 1890 assert(KernelInitUV->size() == 1 && 1891 "Expected a single __kmpc_target_init in kernel\n"); 1892 1893 CallInst *KernelInitCI = 1894 getCallIfRegularCall(*KernelInitUV->front(), &KernelInitRFI); 1895 assert(KernelInitCI && 1896 "Expected a call to __kmpc_target_init in kernel\n"); 1897 1898 CI->moveAfter(KernelInitCI); 1899 } else 1900 CI->moveBefore(&*F.getEntryBlock().getFirstInsertionPt()); 1901 ReplVal = CI; 1902 break; 1903 } 1904 if (!ReplVal) 1905 return false; 1906 } 1907 1908 // If we use a call as a replacement value we need to make sure the ident is 1909 // valid at the new location. For now we just pick a global one, either 1910 // existing and used by one of the calls, or created from scratch. 1911 if (CallBase *CI = dyn_cast<CallBase>(ReplVal)) { 1912 if (!CI->arg_empty() && 1913 CI->getArgOperand(0)->getType() == OMPInfoCache.OMPBuilder.IdentPtr) { 1914 Value *Ident = getCombinedIdentFromCallUsesIn(RFI, F, 1915 /* GlobalOnly */ true); 1916 CI->setArgOperand(0, Ident); 1917 } 1918 } 1919 1920 bool Changed = false; 1921 auto ReplaceAndDeleteCB = [&](Use &U, Function &Caller) { 1922 CallInst *CI = getCallIfRegularCall(U, &RFI); 1923 if (!CI || CI == ReplVal || &F != &Caller) 1924 return false; 1925 assert(CI->getCaller() == &F && "Unexpected call!"); 1926 1927 auto Remark = [&](OptimizationRemark OR) { 1928 return OR << "OpenMP runtime call " 1929 << ore::NV("OpenMPOptRuntime", RFI.Name) << " deduplicated."; 1930 }; 1931 if (CI->getDebugLoc()) 1932 emitRemark<OptimizationRemark>(CI, "OMP170", Remark); 1933 else 1934 emitRemark<OptimizationRemark>(&F, "OMP170", Remark); 1935 1936 CGUpdater.removeCallSite(*CI); 1937 CI->replaceAllUsesWith(ReplVal); 1938 CI->eraseFromParent(); 1939 ++NumOpenMPRuntimeCallsDeduplicated; 1940 Changed = true; 1941 return true; 1942 }; 1943 RFI.foreachUse(SCC, ReplaceAndDeleteCB); 1944 1945 return Changed; 1946 } 1947 1948 /// Collect arguments that represent the global thread id in \p GTIdArgs. 1949 void collectGlobalThreadIdArguments(SmallSetVector<Value *, 16> >IdArgs) { 1950 // TODO: Below we basically perform a fixpoint iteration with a pessimistic 1951 // initialization. We could define an AbstractAttribute instead and 1952 // run the Attributor here once it can be run as an SCC pass. 1953 1954 // Helper to check the argument \p ArgNo at all call sites of \p F for 1955 // a GTId. 1956 auto CallArgOpIsGTId = [&](Function &F, unsigned ArgNo, CallInst &RefCI) { 1957 if (!F.hasLocalLinkage()) 1958 return false; 1959 for (Use &U : F.uses()) { 1960 if (CallInst *CI = getCallIfRegularCall(U)) { 1961 Value *ArgOp = CI->getArgOperand(ArgNo); 1962 if (CI == &RefCI || GTIdArgs.count(ArgOp) || 1963 getCallIfRegularCall( 1964 *ArgOp, &OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num])) 1965 continue; 1966 } 1967 return false; 1968 } 1969 return true; 1970 }; 1971 1972 // Helper to identify uses of a GTId as GTId arguments. 1973 auto AddUserArgs = [&](Value >Id) { 1974 for (Use &U : GTId.uses()) 1975 if (CallInst *CI = dyn_cast<CallInst>(U.getUser())) 1976 if (CI->isArgOperand(&U)) 1977 if (Function *Callee = CI->getCalledFunction()) 1978 if (CallArgOpIsGTId(*Callee, U.getOperandNo(), *CI)) 1979 GTIdArgs.insert(Callee->getArg(U.getOperandNo())); 1980 }; 1981 1982 // The argument users of __kmpc_global_thread_num calls are GTIds. 1983 OMPInformationCache::RuntimeFunctionInfo &GlobThreadNumRFI = 1984 OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num]; 1985 1986 GlobThreadNumRFI.foreachUse(SCC, [&](Use &U, Function &F) { 1987 if (CallInst *CI = getCallIfRegularCall(U, &GlobThreadNumRFI)) 1988 AddUserArgs(*CI); 1989 return false; 1990 }); 1991 1992 // Transitively search for more arguments by looking at the users of the 1993 // ones we know already. During the search the GTIdArgs vector is extended 1994 // so we cannot cache the size nor can we use a range based for. 1995 for (unsigned U = 0; U < GTIdArgs.size(); ++U) 1996 AddUserArgs(*GTIdArgs[U]); 1997 } 1998 1999 /// Kernel (=GPU) optimizations and utility functions 2000 /// 2001 ///{{ 2002 2003 /// Check if \p F is a kernel, hence entry point for target offloading. 2004 bool isKernel(Function &F) { return OMPInfoCache.Kernels.count(&F); } 2005 2006 /// Cache to remember the unique kernel for a function. 2007 DenseMap<Function *, Optional<Kernel>> UniqueKernelMap; 2008 2009 /// Find the unique kernel that will execute \p F, if any. 2010 Kernel getUniqueKernelFor(Function &F); 2011 2012 /// Find the unique kernel that will execute \p I, if any. 2013 Kernel getUniqueKernelFor(Instruction &I) { 2014 return getUniqueKernelFor(*I.getFunction()); 2015 } 2016 2017 /// Rewrite the device (=GPU) code state machine create in non-SPMD mode in 2018 /// the cases we can avoid taking the address of a function. 2019 bool rewriteDeviceCodeStateMachine(); 2020 2021 /// 2022 ///}} 2023 2024 /// Emit a remark generically 2025 /// 2026 /// This template function can be used to generically emit a remark. The 2027 /// RemarkKind should be one of the following: 2028 /// - OptimizationRemark to indicate a successful optimization attempt 2029 /// - OptimizationRemarkMissed to report a failed optimization attempt 2030 /// - OptimizationRemarkAnalysis to provide additional information about an 2031 /// optimization attempt 2032 /// 2033 /// The remark is built using a callback function provided by the caller that 2034 /// takes a RemarkKind as input and returns a RemarkKind. 2035 template <typename RemarkKind, typename RemarkCallBack> 2036 void emitRemark(Instruction *I, StringRef RemarkName, 2037 RemarkCallBack &&RemarkCB) const { 2038 Function *F = I->getParent()->getParent(); 2039 auto &ORE = OREGetter(F); 2040 2041 if (RemarkName.startswith("OMP")) 2042 ORE.emit([&]() { 2043 return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, I)) 2044 << " [" << RemarkName << "]"; 2045 }); 2046 else 2047 ORE.emit( 2048 [&]() { return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, I)); }); 2049 } 2050 2051 /// Emit a remark on a function. 2052 template <typename RemarkKind, typename RemarkCallBack> 2053 void emitRemark(Function *F, StringRef RemarkName, 2054 RemarkCallBack &&RemarkCB) const { 2055 auto &ORE = OREGetter(F); 2056 2057 if (RemarkName.startswith("OMP")) 2058 ORE.emit([&]() { 2059 return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, F)) 2060 << " [" << RemarkName << "]"; 2061 }); 2062 else 2063 ORE.emit( 2064 [&]() { return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, F)); }); 2065 } 2066 2067 /// RAII struct to temporarily change an RTL function's linkage to external. 2068 /// This prevents it from being mistakenly removed by other optimizations. 2069 struct ExternalizationRAII { 2070 ExternalizationRAII(OMPInformationCache &OMPInfoCache, 2071 RuntimeFunction RFKind) 2072 : Declaration(OMPInfoCache.RFIs[RFKind].Declaration) { 2073 if (!Declaration) 2074 return; 2075 2076 LinkageType = Declaration->getLinkage(); 2077 Declaration->setLinkage(GlobalValue::ExternalLinkage); 2078 } 2079 2080 ~ExternalizationRAII() { 2081 if (!Declaration) 2082 return; 2083 2084 Declaration->setLinkage(LinkageType); 2085 } 2086 2087 Function *Declaration; 2088 GlobalValue::LinkageTypes LinkageType; 2089 }; 2090 2091 /// The underlying module. 2092 Module &M; 2093 2094 /// The SCC we are operating on. 2095 SmallVectorImpl<Function *> &SCC; 2096 2097 /// Callback to update the call graph, the first argument is a removed call, 2098 /// the second an optional replacement call. 2099 CallGraphUpdater &CGUpdater; 2100 2101 /// Callback to get an OptimizationRemarkEmitter from a Function * 2102 OptimizationRemarkGetter OREGetter; 2103 2104 /// OpenMP-specific information cache. Also Used for Attributor runs. 2105 OMPInformationCache &OMPInfoCache; 2106 2107 /// Attributor instance. 2108 Attributor &A; 2109 2110 /// Helper function to run Attributor on SCC. 2111 bool runAttributor(bool IsModulePass) { 2112 if (SCC.empty()) 2113 return false; 2114 2115 // Temporarily make these function have external linkage so the Attributor 2116 // doesn't remove them when we try to look them up later. 2117 ExternalizationRAII Parallel(OMPInfoCache, OMPRTL___kmpc_kernel_parallel); 2118 ExternalizationRAII EndParallel(OMPInfoCache, 2119 OMPRTL___kmpc_kernel_end_parallel); 2120 ExternalizationRAII BarrierSPMD(OMPInfoCache, 2121 OMPRTL___kmpc_barrier_simple_spmd); 2122 ExternalizationRAII BarrierGeneric(OMPInfoCache, 2123 OMPRTL___kmpc_barrier_simple_generic); 2124 ExternalizationRAII ThreadId(OMPInfoCache, 2125 OMPRTL___kmpc_get_hardware_thread_id_in_block); 2126 ExternalizationRAII NumThreads( 2127 OMPInfoCache, OMPRTL___kmpc_get_hardware_num_threads_in_block); 2128 ExternalizationRAII WarpSize(OMPInfoCache, OMPRTL___kmpc_get_warp_size); 2129 2130 registerAAs(IsModulePass); 2131 2132 ChangeStatus Changed = A.run(); 2133 2134 LLVM_DEBUG(dbgs() << "[Attributor] Done with " << SCC.size() 2135 << " functions, result: " << Changed << ".\n"); 2136 2137 return Changed == ChangeStatus::CHANGED; 2138 } 2139 2140 void registerFoldRuntimeCall(RuntimeFunction RF); 2141 2142 /// Populate the Attributor with abstract attribute opportunities in the 2143 /// function. 2144 void registerAAs(bool IsModulePass); 2145 }; 2146 2147 Kernel OpenMPOpt::getUniqueKernelFor(Function &F) { 2148 if (!OMPInfoCache.ModuleSlice.count(&F)) 2149 return nullptr; 2150 2151 // Use a scope to keep the lifetime of the CachedKernel short. 2152 { 2153 Optional<Kernel> &CachedKernel = UniqueKernelMap[&F]; 2154 if (CachedKernel) 2155 return *CachedKernel; 2156 2157 // TODO: We should use an AA to create an (optimistic and callback 2158 // call-aware) call graph. For now we stick to simple patterns that 2159 // are less powerful, basically the worst fixpoint. 2160 if (isKernel(F)) { 2161 CachedKernel = Kernel(&F); 2162 return *CachedKernel; 2163 } 2164 2165 CachedKernel = nullptr; 2166 if (!F.hasLocalLinkage()) { 2167 2168 // See https://openmp.llvm.org/remarks/OptimizationRemarks.html 2169 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 2170 return ORA << "Potentially unknown OpenMP target region caller."; 2171 }; 2172 emitRemark<OptimizationRemarkAnalysis>(&F, "OMP100", Remark); 2173 2174 return nullptr; 2175 } 2176 } 2177 2178 auto GetUniqueKernelForUse = [&](const Use &U) -> Kernel { 2179 if (auto *Cmp = dyn_cast<ICmpInst>(U.getUser())) { 2180 // Allow use in equality comparisons. 2181 if (Cmp->isEquality()) 2182 return getUniqueKernelFor(*Cmp); 2183 return nullptr; 2184 } 2185 if (auto *CB = dyn_cast<CallBase>(U.getUser())) { 2186 // Allow direct calls. 2187 if (CB->isCallee(&U)) 2188 return getUniqueKernelFor(*CB); 2189 2190 OMPInformationCache::RuntimeFunctionInfo &KernelParallelRFI = 2191 OMPInfoCache.RFIs[OMPRTL___kmpc_parallel_51]; 2192 // Allow the use in __kmpc_parallel_51 calls. 2193 if (OpenMPOpt::getCallIfRegularCall(*U.getUser(), &KernelParallelRFI)) 2194 return getUniqueKernelFor(*CB); 2195 return nullptr; 2196 } 2197 // Disallow every other use. 2198 return nullptr; 2199 }; 2200 2201 // TODO: In the future we want to track more than just a unique kernel. 2202 SmallPtrSet<Kernel, 2> PotentialKernels; 2203 OMPInformationCache::foreachUse(F, [&](const Use &U) { 2204 PotentialKernels.insert(GetUniqueKernelForUse(U)); 2205 }); 2206 2207 Kernel K = nullptr; 2208 if (PotentialKernels.size() == 1) 2209 K = *PotentialKernels.begin(); 2210 2211 // Cache the result. 2212 UniqueKernelMap[&F] = K; 2213 2214 return K; 2215 } 2216 2217 bool OpenMPOpt::rewriteDeviceCodeStateMachine() { 2218 OMPInformationCache::RuntimeFunctionInfo &KernelParallelRFI = 2219 OMPInfoCache.RFIs[OMPRTL___kmpc_parallel_51]; 2220 2221 bool Changed = false; 2222 if (!KernelParallelRFI) 2223 return Changed; 2224 2225 // If we have disabled state machine changes, exit 2226 if (DisableOpenMPOptStateMachineRewrite) 2227 return Changed; 2228 2229 for (Function *F : SCC) { 2230 2231 // Check if the function is a use in a __kmpc_parallel_51 call at 2232 // all. 2233 bool UnknownUse = false; 2234 bool KernelParallelUse = false; 2235 unsigned NumDirectCalls = 0; 2236 2237 SmallVector<Use *, 2> ToBeReplacedStateMachineUses; 2238 OMPInformationCache::foreachUse(*F, [&](Use &U) { 2239 if (auto *CB = dyn_cast<CallBase>(U.getUser())) 2240 if (CB->isCallee(&U)) { 2241 ++NumDirectCalls; 2242 return; 2243 } 2244 2245 if (isa<ICmpInst>(U.getUser())) { 2246 ToBeReplacedStateMachineUses.push_back(&U); 2247 return; 2248 } 2249 2250 // Find wrapper functions that represent parallel kernels. 2251 CallInst *CI = 2252 OpenMPOpt::getCallIfRegularCall(*U.getUser(), &KernelParallelRFI); 2253 const unsigned int WrapperFunctionArgNo = 6; 2254 if (!KernelParallelUse && CI && 2255 CI->getArgOperandNo(&U) == WrapperFunctionArgNo) { 2256 KernelParallelUse = true; 2257 ToBeReplacedStateMachineUses.push_back(&U); 2258 return; 2259 } 2260 UnknownUse = true; 2261 }); 2262 2263 // Do not emit a remark if we haven't seen a __kmpc_parallel_51 2264 // use. 2265 if (!KernelParallelUse) 2266 continue; 2267 2268 // If this ever hits, we should investigate. 2269 // TODO: Checking the number of uses is not a necessary restriction and 2270 // should be lifted. 2271 if (UnknownUse || NumDirectCalls != 1 || 2272 ToBeReplacedStateMachineUses.size() > 2) { 2273 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 2274 return ORA << "Parallel region is used in " 2275 << (UnknownUse ? "unknown" : "unexpected") 2276 << " ways. Will not attempt to rewrite the state machine."; 2277 }; 2278 emitRemark<OptimizationRemarkAnalysis>(F, "OMP101", Remark); 2279 continue; 2280 } 2281 2282 // Even if we have __kmpc_parallel_51 calls, we (for now) give 2283 // up if the function is not called from a unique kernel. 2284 Kernel K = getUniqueKernelFor(*F); 2285 if (!K) { 2286 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 2287 return ORA << "Parallel region is not called from a unique kernel. " 2288 "Will not attempt to rewrite the state machine."; 2289 }; 2290 emitRemark<OptimizationRemarkAnalysis>(F, "OMP102", Remark); 2291 continue; 2292 } 2293 2294 // We now know F is a parallel body function called only from the kernel K. 2295 // We also identified the state machine uses in which we replace the 2296 // function pointer by a new global symbol for identification purposes. This 2297 // ensures only direct calls to the function are left. 2298 2299 Module &M = *F->getParent(); 2300 Type *Int8Ty = Type::getInt8Ty(M.getContext()); 2301 2302 auto *ID = new GlobalVariable( 2303 M, Int8Ty, /* isConstant */ true, GlobalValue::PrivateLinkage, 2304 UndefValue::get(Int8Ty), F->getName() + ".ID"); 2305 2306 for (Use *U : ToBeReplacedStateMachineUses) 2307 U->set(ConstantExpr::getPointerBitCastOrAddrSpaceCast( 2308 ID, U->get()->getType())); 2309 2310 ++NumOpenMPParallelRegionsReplacedInGPUStateMachine; 2311 2312 Changed = true; 2313 } 2314 2315 return Changed; 2316 } 2317 2318 /// Abstract Attribute for tracking ICV values. 2319 struct AAICVTracker : public StateWrapper<BooleanState, AbstractAttribute> { 2320 using Base = StateWrapper<BooleanState, AbstractAttribute>; 2321 AAICVTracker(const IRPosition &IRP, Attributor &A) : Base(IRP) {} 2322 2323 void initialize(Attributor &A) override { 2324 Function *F = getAnchorScope(); 2325 if (!F || !A.isFunctionIPOAmendable(*F)) 2326 indicatePessimisticFixpoint(); 2327 } 2328 2329 /// Returns true if value is assumed to be tracked. 2330 bool isAssumedTracked() const { return getAssumed(); } 2331 2332 /// Returns true if value is known to be tracked. 2333 bool isKnownTracked() const { return getAssumed(); } 2334 2335 /// Create an abstract attribute biew for the position \p IRP. 2336 static AAICVTracker &createForPosition(const IRPosition &IRP, Attributor &A); 2337 2338 /// Return the value with which \p I can be replaced for specific \p ICV. 2339 virtual Optional<Value *> getReplacementValue(InternalControlVar ICV, 2340 const Instruction *I, 2341 Attributor &A) const { 2342 return None; 2343 } 2344 2345 /// Return an assumed unique ICV value if a single candidate is found. If 2346 /// there cannot be one, return a nullptr. If it is not clear yet, return the 2347 /// Optional::NoneType. 2348 virtual Optional<Value *> 2349 getUniqueReplacementValue(InternalControlVar ICV) const = 0; 2350 2351 // Currently only nthreads is being tracked. 2352 // this array will only grow with time. 2353 InternalControlVar TrackableICVs[1] = {ICV_nthreads}; 2354 2355 /// See AbstractAttribute::getName() 2356 const std::string getName() const override { return "AAICVTracker"; } 2357 2358 /// See AbstractAttribute::getIdAddr() 2359 const char *getIdAddr() const override { return &ID; } 2360 2361 /// This function should return true if the type of the \p AA is AAICVTracker 2362 static bool classof(const AbstractAttribute *AA) { 2363 return (AA->getIdAddr() == &ID); 2364 } 2365 2366 static const char ID; 2367 }; 2368 2369 struct AAICVTrackerFunction : public AAICVTracker { 2370 AAICVTrackerFunction(const IRPosition &IRP, Attributor &A) 2371 : AAICVTracker(IRP, A) {} 2372 2373 // FIXME: come up with better string. 2374 const std::string getAsStr() const override { return "ICVTrackerFunction"; } 2375 2376 // FIXME: come up with some stats. 2377 void trackStatistics() const override {} 2378 2379 /// We don't manifest anything for this AA. 2380 ChangeStatus manifest(Attributor &A) override { 2381 return ChangeStatus::UNCHANGED; 2382 } 2383 2384 // Map of ICV to their values at specific program point. 2385 EnumeratedArray<DenseMap<Instruction *, Value *>, InternalControlVar, 2386 InternalControlVar::ICV___last> 2387 ICVReplacementValuesMap; 2388 2389 ChangeStatus updateImpl(Attributor &A) override { 2390 ChangeStatus HasChanged = ChangeStatus::UNCHANGED; 2391 2392 Function *F = getAnchorScope(); 2393 2394 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2395 2396 for (InternalControlVar ICV : TrackableICVs) { 2397 auto &SetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Setter]; 2398 2399 auto &ValuesMap = ICVReplacementValuesMap[ICV]; 2400 auto TrackValues = [&](Use &U, Function &) { 2401 CallInst *CI = OpenMPOpt::getCallIfRegularCall(U); 2402 if (!CI) 2403 return false; 2404 2405 // FIXME: handle setters with more that 1 arguments. 2406 /// Track new value. 2407 if (ValuesMap.insert(std::make_pair(CI, CI->getArgOperand(0))).second) 2408 HasChanged = ChangeStatus::CHANGED; 2409 2410 return false; 2411 }; 2412 2413 auto CallCheck = [&](Instruction &I) { 2414 Optional<Value *> ReplVal = getValueForCall(A, I, ICV); 2415 if (ReplVal.hasValue() && 2416 ValuesMap.insert(std::make_pair(&I, *ReplVal)).second) 2417 HasChanged = ChangeStatus::CHANGED; 2418 2419 return true; 2420 }; 2421 2422 // Track all changes of an ICV. 2423 SetterRFI.foreachUse(TrackValues, F); 2424 2425 bool UsedAssumedInformation = false; 2426 A.checkForAllInstructions(CallCheck, *this, {Instruction::Call}, 2427 UsedAssumedInformation, 2428 /* CheckBBLivenessOnly */ true); 2429 2430 /// TODO: Figure out a way to avoid adding entry in 2431 /// ICVReplacementValuesMap 2432 Instruction *Entry = &F->getEntryBlock().front(); 2433 if (HasChanged == ChangeStatus::CHANGED && !ValuesMap.count(Entry)) 2434 ValuesMap.insert(std::make_pair(Entry, nullptr)); 2435 } 2436 2437 return HasChanged; 2438 } 2439 2440 /// Helper to check if \p I is a call and get the value for it if it is 2441 /// unique. 2442 Optional<Value *> getValueForCall(Attributor &A, const Instruction &I, 2443 InternalControlVar &ICV) const { 2444 2445 const auto *CB = dyn_cast<CallBase>(&I); 2446 if (!CB || CB->hasFnAttr("no_openmp") || 2447 CB->hasFnAttr("no_openmp_routines")) 2448 return None; 2449 2450 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2451 auto &GetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Getter]; 2452 auto &SetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Setter]; 2453 Function *CalledFunction = CB->getCalledFunction(); 2454 2455 // Indirect call, assume ICV changes. 2456 if (CalledFunction == nullptr) 2457 return nullptr; 2458 if (CalledFunction == GetterRFI.Declaration) 2459 return None; 2460 if (CalledFunction == SetterRFI.Declaration) { 2461 if (ICVReplacementValuesMap[ICV].count(&I)) 2462 return ICVReplacementValuesMap[ICV].lookup(&I); 2463 2464 return nullptr; 2465 } 2466 2467 // Since we don't know, assume it changes the ICV. 2468 if (CalledFunction->isDeclaration()) 2469 return nullptr; 2470 2471 const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>( 2472 *this, IRPosition::callsite_returned(*CB), DepClassTy::REQUIRED); 2473 2474 if (ICVTrackingAA.isAssumedTracked()) { 2475 Optional<Value *> URV = ICVTrackingAA.getUniqueReplacementValue(ICV); 2476 if (!URV || (*URV && AA::isValidAtPosition(AA::ValueAndContext(**URV, I), 2477 OMPInfoCache))) 2478 return URV; 2479 } 2480 2481 // If we don't know, assume it changes. 2482 return nullptr; 2483 } 2484 2485 // We don't check unique value for a function, so return None. 2486 Optional<Value *> 2487 getUniqueReplacementValue(InternalControlVar ICV) const override { 2488 return None; 2489 } 2490 2491 /// Return the value with which \p I can be replaced for specific \p ICV. 2492 Optional<Value *> getReplacementValue(InternalControlVar ICV, 2493 const Instruction *I, 2494 Attributor &A) const override { 2495 const auto &ValuesMap = ICVReplacementValuesMap[ICV]; 2496 if (ValuesMap.count(I)) 2497 return ValuesMap.lookup(I); 2498 2499 SmallVector<const Instruction *, 16> Worklist; 2500 SmallPtrSet<const Instruction *, 16> Visited; 2501 Worklist.push_back(I); 2502 2503 Optional<Value *> ReplVal; 2504 2505 while (!Worklist.empty()) { 2506 const Instruction *CurrInst = Worklist.pop_back_val(); 2507 if (!Visited.insert(CurrInst).second) 2508 continue; 2509 2510 const BasicBlock *CurrBB = CurrInst->getParent(); 2511 2512 // Go up and look for all potential setters/calls that might change the 2513 // ICV. 2514 while ((CurrInst = CurrInst->getPrevNode())) { 2515 if (ValuesMap.count(CurrInst)) { 2516 Optional<Value *> NewReplVal = ValuesMap.lookup(CurrInst); 2517 // Unknown value, track new. 2518 if (!ReplVal.hasValue()) { 2519 ReplVal = NewReplVal; 2520 break; 2521 } 2522 2523 // If we found a new value, we can't know the icv value anymore. 2524 if (NewReplVal.hasValue()) 2525 if (ReplVal != NewReplVal) 2526 return nullptr; 2527 2528 break; 2529 } 2530 2531 Optional<Value *> NewReplVal = getValueForCall(A, *CurrInst, ICV); 2532 if (!NewReplVal.hasValue()) 2533 continue; 2534 2535 // Unknown value, track new. 2536 if (!ReplVal.hasValue()) { 2537 ReplVal = NewReplVal; 2538 break; 2539 } 2540 2541 // if (NewReplVal.hasValue()) 2542 // We found a new value, we can't know the icv value anymore. 2543 if (ReplVal != NewReplVal) 2544 return nullptr; 2545 } 2546 2547 // If we are in the same BB and we have a value, we are done. 2548 if (CurrBB == I->getParent() && ReplVal.hasValue()) 2549 return ReplVal; 2550 2551 // Go through all predecessors and add terminators for analysis. 2552 for (const BasicBlock *Pred : predecessors(CurrBB)) 2553 if (const Instruction *Terminator = Pred->getTerminator()) 2554 Worklist.push_back(Terminator); 2555 } 2556 2557 return ReplVal; 2558 } 2559 }; 2560 2561 struct AAICVTrackerFunctionReturned : AAICVTracker { 2562 AAICVTrackerFunctionReturned(const IRPosition &IRP, Attributor &A) 2563 : AAICVTracker(IRP, A) {} 2564 2565 // FIXME: come up with better string. 2566 const std::string getAsStr() const override { 2567 return "ICVTrackerFunctionReturned"; 2568 } 2569 2570 // FIXME: come up with some stats. 2571 void trackStatistics() const override {} 2572 2573 /// We don't manifest anything for this AA. 2574 ChangeStatus manifest(Attributor &A) override { 2575 return ChangeStatus::UNCHANGED; 2576 } 2577 2578 // Map of ICV to their values at specific program point. 2579 EnumeratedArray<Optional<Value *>, InternalControlVar, 2580 InternalControlVar::ICV___last> 2581 ICVReplacementValuesMap; 2582 2583 /// Return the value with which \p I can be replaced for specific \p ICV. 2584 Optional<Value *> 2585 getUniqueReplacementValue(InternalControlVar ICV) const override { 2586 return ICVReplacementValuesMap[ICV]; 2587 } 2588 2589 ChangeStatus updateImpl(Attributor &A) override { 2590 ChangeStatus Changed = ChangeStatus::UNCHANGED; 2591 const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>( 2592 *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED); 2593 2594 if (!ICVTrackingAA.isAssumedTracked()) 2595 return indicatePessimisticFixpoint(); 2596 2597 for (InternalControlVar ICV : TrackableICVs) { 2598 Optional<Value *> &ReplVal = ICVReplacementValuesMap[ICV]; 2599 Optional<Value *> UniqueICVValue; 2600 2601 auto CheckReturnInst = [&](Instruction &I) { 2602 Optional<Value *> NewReplVal = 2603 ICVTrackingAA.getReplacementValue(ICV, &I, A); 2604 2605 // If we found a second ICV value there is no unique returned value. 2606 if (UniqueICVValue.hasValue() && UniqueICVValue != NewReplVal) 2607 return false; 2608 2609 UniqueICVValue = NewReplVal; 2610 2611 return true; 2612 }; 2613 2614 bool UsedAssumedInformation = false; 2615 if (!A.checkForAllInstructions(CheckReturnInst, *this, {Instruction::Ret}, 2616 UsedAssumedInformation, 2617 /* CheckBBLivenessOnly */ true)) 2618 UniqueICVValue = nullptr; 2619 2620 if (UniqueICVValue == ReplVal) 2621 continue; 2622 2623 ReplVal = UniqueICVValue; 2624 Changed = ChangeStatus::CHANGED; 2625 } 2626 2627 return Changed; 2628 } 2629 }; 2630 2631 struct AAICVTrackerCallSite : AAICVTracker { 2632 AAICVTrackerCallSite(const IRPosition &IRP, Attributor &A) 2633 : AAICVTracker(IRP, A) {} 2634 2635 void initialize(Attributor &A) override { 2636 Function *F = getAnchorScope(); 2637 if (!F || !A.isFunctionIPOAmendable(*F)) 2638 indicatePessimisticFixpoint(); 2639 2640 // We only initialize this AA for getters, so we need to know which ICV it 2641 // gets. 2642 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2643 for (InternalControlVar ICV : TrackableICVs) { 2644 auto ICVInfo = OMPInfoCache.ICVs[ICV]; 2645 auto &Getter = OMPInfoCache.RFIs[ICVInfo.Getter]; 2646 if (Getter.Declaration == getAssociatedFunction()) { 2647 AssociatedICV = ICVInfo.Kind; 2648 return; 2649 } 2650 } 2651 2652 /// Unknown ICV. 2653 indicatePessimisticFixpoint(); 2654 } 2655 2656 ChangeStatus manifest(Attributor &A) override { 2657 if (!ReplVal.hasValue() || !ReplVal.getValue()) 2658 return ChangeStatus::UNCHANGED; 2659 2660 A.changeAfterManifest(IRPosition::inst(*getCtxI()), **ReplVal); 2661 A.deleteAfterManifest(*getCtxI()); 2662 2663 return ChangeStatus::CHANGED; 2664 } 2665 2666 // FIXME: come up with better string. 2667 const std::string getAsStr() const override { return "ICVTrackerCallSite"; } 2668 2669 // FIXME: come up with some stats. 2670 void trackStatistics() const override {} 2671 2672 InternalControlVar AssociatedICV; 2673 Optional<Value *> ReplVal; 2674 2675 ChangeStatus updateImpl(Attributor &A) override { 2676 const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>( 2677 *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED); 2678 2679 // We don't have any information, so we assume it changes the ICV. 2680 if (!ICVTrackingAA.isAssumedTracked()) 2681 return indicatePessimisticFixpoint(); 2682 2683 Optional<Value *> NewReplVal = 2684 ICVTrackingAA.getReplacementValue(AssociatedICV, getCtxI(), A); 2685 2686 if (ReplVal == NewReplVal) 2687 return ChangeStatus::UNCHANGED; 2688 2689 ReplVal = NewReplVal; 2690 return ChangeStatus::CHANGED; 2691 } 2692 2693 // Return the value with which associated value can be replaced for specific 2694 // \p ICV. 2695 Optional<Value *> 2696 getUniqueReplacementValue(InternalControlVar ICV) const override { 2697 return ReplVal; 2698 } 2699 }; 2700 2701 struct AAICVTrackerCallSiteReturned : AAICVTracker { 2702 AAICVTrackerCallSiteReturned(const IRPosition &IRP, Attributor &A) 2703 : AAICVTracker(IRP, A) {} 2704 2705 // FIXME: come up with better string. 2706 const std::string getAsStr() const override { 2707 return "ICVTrackerCallSiteReturned"; 2708 } 2709 2710 // FIXME: come up with some stats. 2711 void trackStatistics() const override {} 2712 2713 /// We don't manifest anything for this AA. 2714 ChangeStatus manifest(Attributor &A) override { 2715 return ChangeStatus::UNCHANGED; 2716 } 2717 2718 // Map of ICV to their values at specific program point. 2719 EnumeratedArray<Optional<Value *>, InternalControlVar, 2720 InternalControlVar::ICV___last> 2721 ICVReplacementValuesMap; 2722 2723 /// Return the value with which associated value can be replaced for specific 2724 /// \p ICV. 2725 Optional<Value *> 2726 getUniqueReplacementValue(InternalControlVar ICV) const override { 2727 return ICVReplacementValuesMap[ICV]; 2728 } 2729 2730 ChangeStatus updateImpl(Attributor &A) override { 2731 ChangeStatus Changed = ChangeStatus::UNCHANGED; 2732 const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>( 2733 *this, IRPosition::returned(*getAssociatedFunction()), 2734 DepClassTy::REQUIRED); 2735 2736 // We don't have any information, so we assume it changes the ICV. 2737 if (!ICVTrackingAA.isAssumedTracked()) 2738 return indicatePessimisticFixpoint(); 2739 2740 for (InternalControlVar ICV : TrackableICVs) { 2741 Optional<Value *> &ReplVal = ICVReplacementValuesMap[ICV]; 2742 Optional<Value *> NewReplVal = 2743 ICVTrackingAA.getUniqueReplacementValue(ICV); 2744 2745 if (ReplVal == NewReplVal) 2746 continue; 2747 2748 ReplVal = NewReplVal; 2749 Changed = ChangeStatus::CHANGED; 2750 } 2751 return Changed; 2752 } 2753 }; 2754 2755 struct AAExecutionDomainFunction : public AAExecutionDomain { 2756 AAExecutionDomainFunction(const IRPosition &IRP, Attributor &A) 2757 : AAExecutionDomain(IRP, A) {} 2758 2759 const std::string getAsStr() const override { 2760 return "[AAExecutionDomain] " + std::to_string(SingleThreadedBBs.size()) + 2761 "/" + std::to_string(NumBBs) + " BBs thread 0 only."; 2762 } 2763 2764 /// See AbstractAttribute::trackStatistics(). 2765 void trackStatistics() const override {} 2766 2767 void initialize(Attributor &A) override { 2768 Function *F = getAnchorScope(); 2769 for (const auto &BB : *F) 2770 SingleThreadedBBs.insert(&BB); 2771 NumBBs = SingleThreadedBBs.size(); 2772 } 2773 2774 ChangeStatus manifest(Attributor &A) override { 2775 LLVM_DEBUG({ 2776 for (const BasicBlock *BB : SingleThreadedBBs) 2777 dbgs() << TAG << " Basic block @" << getAnchorScope()->getName() << " " 2778 << BB->getName() << " is executed by a single thread.\n"; 2779 }); 2780 return ChangeStatus::UNCHANGED; 2781 } 2782 2783 ChangeStatus updateImpl(Attributor &A) override; 2784 2785 /// Check if an instruction is executed by a single thread. 2786 bool isExecutedByInitialThreadOnly(const Instruction &I) const override { 2787 return isExecutedByInitialThreadOnly(*I.getParent()); 2788 } 2789 2790 bool isExecutedByInitialThreadOnly(const BasicBlock &BB) const override { 2791 return isValidState() && SingleThreadedBBs.contains(&BB); 2792 } 2793 2794 /// Set of basic blocks that are executed by a single thread. 2795 SmallSetVector<const BasicBlock *, 16> SingleThreadedBBs; 2796 2797 /// Total number of basic blocks in this function. 2798 long unsigned NumBBs = 0; 2799 }; 2800 2801 ChangeStatus AAExecutionDomainFunction::updateImpl(Attributor &A) { 2802 Function *F = getAnchorScope(); 2803 ReversePostOrderTraversal<Function *> RPOT(F); 2804 auto NumSingleThreadedBBs = SingleThreadedBBs.size(); 2805 2806 bool AllCallSitesKnown; 2807 auto PredForCallSite = [&](AbstractCallSite ACS) { 2808 const auto &ExecutionDomainAA = A.getAAFor<AAExecutionDomain>( 2809 *this, IRPosition::function(*ACS.getInstruction()->getFunction()), 2810 DepClassTy::REQUIRED); 2811 return ACS.isDirectCall() && 2812 ExecutionDomainAA.isExecutedByInitialThreadOnly( 2813 *ACS.getInstruction()); 2814 }; 2815 2816 if (!A.checkForAllCallSites(PredForCallSite, *this, 2817 /* RequiresAllCallSites */ true, 2818 AllCallSitesKnown)) 2819 SingleThreadedBBs.remove(&F->getEntryBlock()); 2820 2821 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2822 auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_target_init]; 2823 2824 // Check if the edge into the successor block contains a condition that only 2825 // lets the main thread execute it. 2826 auto IsInitialThreadOnly = [&](BranchInst *Edge, BasicBlock *SuccessorBB) { 2827 if (!Edge || !Edge->isConditional()) 2828 return false; 2829 if (Edge->getSuccessor(0) != SuccessorBB) 2830 return false; 2831 2832 auto *Cmp = dyn_cast<CmpInst>(Edge->getCondition()); 2833 if (!Cmp || !Cmp->isTrueWhenEqual() || !Cmp->isEquality()) 2834 return false; 2835 2836 ConstantInt *C = dyn_cast<ConstantInt>(Cmp->getOperand(1)); 2837 if (!C) 2838 return false; 2839 2840 // Match: -1 == __kmpc_target_init (for non-SPMD kernels only!) 2841 if (C->isAllOnesValue()) { 2842 auto *CB = dyn_cast<CallBase>(Cmp->getOperand(0)); 2843 CB = CB ? OpenMPOpt::getCallIfRegularCall(*CB, &RFI) : nullptr; 2844 if (!CB) 2845 return false; 2846 const int InitModeArgNo = 1; 2847 auto *ModeCI = dyn_cast<ConstantInt>(CB->getOperand(InitModeArgNo)); 2848 return ModeCI && (ModeCI->getSExtValue() & OMP_TGT_EXEC_MODE_GENERIC); 2849 } 2850 2851 if (C->isZero()) { 2852 // Match: 0 == llvm.nvvm.read.ptx.sreg.tid.x() 2853 if (auto *II = dyn_cast<IntrinsicInst>(Cmp->getOperand(0))) 2854 if (II->getIntrinsicID() == Intrinsic::nvvm_read_ptx_sreg_tid_x) 2855 return true; 2856 2857 // Match: 0 == llvm.amdgcn.workitem.id.x() 2858 if (auto *II = dyn_cast<IntrinsicInst>(Cmp->getOperand(0))) 2859 if (II->getIntrinsicID() == Intrinsic::amdgcn_workitem_id_x) 2860 return true; 2861 } 2862 2863 return false; 2864 }; 2865 2866 // Merge all the predecessor states into the current basic block. A basic 2867 // block is executed by a single thread if all of its predecessors are. 2868 auto MergePredecessorStates = [&](BasicBlock *BB) { 2869 if (pred_empty(BB)) 2870 return SingleThreadedBBs.contains(BB); 2871 2872 bool IsInitialThread = true; 2873 for (BasicBlock *PredBB : predecessors(BB)) { 2874 if (!IsInitialThreadOnly(dyn_cast<BranchInst>(PredBB->getTerminator()), 2875 BB)) 2876 IsInitialThread &= SingleThreadedBBs.contains(PredBB); 2877 } 2878 2879 return IsInitialThread; 2880 }; 2881 2882 for (auto *BB : RPOT) { 2883 if (!MergePredecessorStates(BB)) 2884 SingleThreadedBBs.remove(BB); 2885 } 2886 2887 return (NumSingleThreadedBBs == SingleThreadedBBs.size()) 2888 ? ChangeStatus::UNCHANGED 2889 : ChangeStatus::CHANGED; 2890 } 2891 2892 /// Try to replace memory allocation calls called by a single thread with a 2893 /// static buffer of shared memory. 2894 struct AAHeapToShared : public StateWrapper<BooleanState, AbstractAttribute> { 2895 using Base = StateWrapper<BooleanState, AbstractAttribute>; 2896 AAHeapToShared(const IRPosition &IRP, Attributor &A) : Base(IRP) {} 2897 2898 /// Create an abstract attribute view for the position \p IRP. 2899 static AAHeapToShared &createForPosition(const IRPosition &IRP, 2900 Attributor &A); 2901 2902 /// Returns true if HeapToShared conversion is assumed to be possible. 2903 virtual bool isAssumedHeapToShared(CallBase &CB) const = 0; 2904 2905 /// Returns true if HeapToShared conversion is assumed and the CB is a 2906 /// callsite to a free operation to be removed. 2907 virtual bool isAssumedHeapToSharedRemovedFree(CallBase &CB) const = 0; 2908 2909 /// See AbstractAttribute::getName(). 2910 const std::string getName() const override { return "AAHeapToShared"; } 2911 2912 /// See AbstractAttribute::getIdAddr(). 2913 const char *getIdAddr() const override { return &ID; } 2914 2915 /// This function should return true if the type of the \p AA is 2916 /// AAHeapToShared. 2917 static bool classof(const AbstractAttribute *AA) { 2918 return (AA->getIdAddr() == &ID); 2919 } 2920 2921 /// Unique ID (due to the unique address) 2922 static const char ID; 2923 }; 2924 2925 struct AAHeapToSharedFunction : public AAHeapToShared { 2926 AAHeapToSharedFunction(const IRPosition &IRP, Attributor &A) 2927 : AAHeapToShared(IRP, A) {} 2928 2929 const std::string getAsStr() const override { 2930 return "[AAHeapToShared] " + std::to_string(MallocCalls.size()) + 2931 " malloc calls eligible."; 2932 } 2933 2934 /// See AbstractAttribute::trackStatistics(). 2935 void trackStatistics() const override {} 2936 2937 /// This functions finds free calls that will be removed by the 2938 /// HeapToShared transformation. 2939 void findPotentialRemovedFreeCalls(Attributor &A) { 2940 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2941 auto &FreeRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_free_shared]; 2942 2943 PotentialRemovedFreeCalls.clear(); 2944 // Update free call users of found malloc calls. 2945 for (CallBase *CB : MallocCalls) { 2946 SmallVector<CallBase *, 4> FreeCalls; 2947 for (auto *U : CB->users()) { 2948 CallBase *C = dyn_cast<CallBase>(U); 2949 if (C && C->getCalledFunction() == FreeRFI.Declaration) 2950 FreeCalls.push_back(C); 2951 } 2952 2953 if (FreeCalls.size() != 1) 2954 continue; 2955 2956 PotentialRemovedFreeCalls.insert(FreeCalls.front()); 2957 } 2958 } 2959 2960 void initialize(Attributor &A) override { 2961 if (DisableOpenMPOptDeglobalization) { 2962 indicatePessimisticFixpoint(); 2963 return; 2964 } 2965 2966 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2967 auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared]; 2968 2969 Attributor::SimplifictionCallbackTy SCB = 2970 [](const IRPosition &, const AbstractAttribute *, 2971 bool &) -> Optional<Value *> { return nullptr; }; 2972 for (User *U : RFI.Declaration->users()) 2973 if (CallBase *CB = dyn_cast<CallBase>(U)) { 2974 MallocCalls.insert(CB); 2975 A.registerSimplificationCallback(IRPosition::callsite_returned(*CB), 2976 SCB); 2977 } 2978 2979 findPotentialRemovedFreeCalls(A); 2980 } 2981 2982 bool isAssumedHeapToShared(CallBase &CB) const override { 2983 return isValidState() && MallocCalls.count(&CB); 2984 } 2985 2986 bool isAssumedHeapToSharedRemovedFree(CallBase &CB) const override { 2987 return isValidState() && PotentialRemovedFreeCalls.count(&CB); 2988 } 2989 2990 ChangeStatus manifest(Attributor &A) override { 2991 if (MallocCalls.empty()) 2992 return ChangeStatus::UNCHANGED; 2993 2994 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2995 auto &FreeCall = OMPInfoCache.RFIs[OMPRTL___kmpc_free_shared]; 2996 2997 Function *F = getAnchorScope(); 2998 auto *HS = A.lookupAAFor<AAHeapToStack>(IRPosition::function(*F), this, 2999 DepClassTy::OPTIONAL); 3000 3001 ChangeStatus Changed = ChangeStatus::UNCHANGED; 3002 for (CallBase *CB : MallocCalls) { 3003 // Skip replacing this if HeapToStack has already claimed it. 3004 if (HS && HS->isAssumedHeapToStack(*CB)) 3005 continue; 3006 3007 // Find the unique free call to remove it. 3008 SmallVector<CallBase *, 4> FreeCalls; 3009 for (auto *U : CB->users()) { 3010 CallBase *C = dyn_cast<CallBase>(U); 3011 if (C && C->getCalledFunction() == FreeCall.Declaration) 3012 FreeCalls.push_back(C); 3013 } 3014 if (FreeCalls.size() != 1) 3015 continue; 3016 3017 auto *AllocSize = cast<ConstantInt>(CB->getArgOperand(0)); 3018 3019 if (AllocSize->getZExtValue() + SharedMemoryUsed > SharedMemoryLimit) { 3020 LLVM_DEBUG(dbgs() << TAG << "Cannot replace call " << *CB 3021 << " with shared memory." 3022 << " Shared memory usage is limited to " 3023 << SharedMemoryLimit << " bytes\n"); 3024 continue; 3025 } 3026 3027 LLVM_DEBUG(dbgs() << TAG << "Replace globalization call " << *CB 3028 << " with " << AllocSize->getZExtValue() 3029 << " bytes of shared memory\n"); 3030 3031 // Create a new shared memory buffer of the same size as the allocation 3032 // and replace all the uses of the original allocation with it. 3033 Module *M = CB->getModule(); 3034 Type *Int8Ty = Type::getInt8Ty(M->getContext()); 3035 Type *Int8ArrTy = ArrayType::get(Int8Ty, AllocSize->getZExtValue()); 3036 auto *SharedMem = new GlobalVariable( 3037 *M, Int8ArrTy, /* IsConstant */ false, GlobalValue::InternalLinkage, 3038 UndefValue::get(Int8ArrTy), CB->getName() + "_shared", nullptr, 3039 GlobalValue::NotThreadLocal, 3040 static_cast<unsigned>(AddressSpace::Shared)); 3041 auto *NewBuffer = 3042 ConstantExpr::getPointerCast(SharedMem, Int8Ty->getPointerTo()); 3043 3044 auto Remark = [&](OptimizationRemark OR) { 3045 return OR << "Replaced globalized variable with " 3046 << ore::NV("SharedMemory", AllocSize->getZExtValue()) 3047 << ((AllocSize->getZExtValue() != 1) ? " bytes " : " byte ") 3048 << "of shared memory."; 3049 }; 3050 A.emitRemark<OptimizationRemark>(CB, "OMP111", Remark); 3051 3052 MaybeAlign Alignment = CB->getRetAlign(); 3053 assert(Alignment && 3054 "HeapToShared on allocation without alignment attribute"); 3055 SharedMem->setAlignment(MaybeAlign(Alignment)); 3056 3057 A.changeAfterManifest(IRPosition::callsite_returned(*CB), *NewBuffer); 3058 A.deleteAfterManifest(*CB); 3059 A.deleteAfterManifest(*FreeCalls.front()); 3060 3061 SharedMemoryUsed += AllocSize->getZExtValue(); 3062 NumBytesMovedToSharedMemory = SharedMemoryUsed; 3063 Changed = ChangeStatus::CHANGED; 3064 } 3065 3066 return Changed; 3067 } 3068 3069 ChangeStatus updateImpl(Attributor &A) override { 3070 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 3071 auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared]; 3072 Function *F = getAnchorScope(); 3073 3074 auto NumMallocCalls = MallocCalls.size(); 3075 3076 // Only consider malloc calls executed by a single thread with a constant. 3077 for (User *U : RFI.Declaration->users()) { 3078 const auto &ED = A.getAAFor<AAExecutionDomain>( 3079 *this, IRPosition::function(*F), DepClassTy::REQUIRED); 3080 if (CallBase *CB = dyn_cast<CallBase>(U)) 3081 if (!isa<ConstantInt>(CB->getArgOperand(0)) || 3082 !ED.isExecutedByInitialThreadOnly(*CB)) 3083 MallocCalls.remove(CB); 3084 } 3085 3086 findPotentialRemovedFreeCalls(A); 3087 3088 if (NumMallocCalls != MallocCalls.size()) 3089 return ChangeStatus::CHANGED; 3090 3091 return ChangeStatus::UNCHANGED; 3092 } 3093 3094 /// Collection of all malloc calls in a function. 3095 SmallSetVector<CallBase *, 4> MallocCalls; 3096 /// Collection of potentially removed free calls in a function. 3097 SmallPtrSet<CallBase *, 4> PotentialRemovedFreeCalls; 3098 /// The total amount of shared memory that has been used for HeapToShared. 3099 unsigned SharedMemoryUsed = 0; 3100 }; 3101 3102 struct AAKernelInfo : public StateWrapper<KernelInfoState, AbstractAttribute> { 3103 using Base = StateWrapper<KernelInfoState, AbstractAttribute>; 3104 AAKernelInfo(const IRPosition &IRP, Attributor &A) : Base(IRP) {} 3105 3106 /// Statistics are tracked as part of manifest for now. 3107 void trackStatistics() const override {} 3108 3109 /// See AbstractAttribute::getAsStr() 3110 const std::string getAsStr() const override { 3111 if (!isValidState()) 3112 return "<invalid>"; 3113 return std::string(SPMDCompatibilityTracker.isAssumed() ? "SPMD" 3114 : "generic") + 3115 std::string(SPMDCompatibilityTracker.isAtFixpoint() ? " [FIX]" 3116 : "") + 3117 std::string(" #PRs: ") + 3118 (ReachedKnownParallelRegions.isValidState() 3119 ? std::to_string(ReachedKnownParallelRegions.size()) 3120 : "<invalid>") + 3121 ", #Unknown PRs: " + 3122 (ReachedUnknownParallelRegions.isValidState() 3123 ? std::to_string(ReachedUnknownParallelRegions.size()) 3124 : "<invalid>") + 3125 ", #Reaching Kernels: " + 3126 (ReachingKernelEntries.isValidState() 3127 ? std::to_string(ReachingKernelEntries.size()) 3128 : "<invalid>"); 3129 } 3130 3131 /// Create an abstract attribute biew for the position \p IRP. 3132 static AAKernelInfo &createForPosition(const IRPosition &IRP, Attributor &A); 3133 3134 /// See AbstractAttribute::getName() 3135 const std::string getName() const override { return "AAKernelInfo"; } 3136 3137 /// See AbstractAttribute::getIdAddr() 3138 const char *getIdAddr() const override { return &ID; } 3139 3140 /// This function should return true if the type of the \p AA is AAKernelInfo 3141 static bool classof(const AbstractAttribute *AA) { 3142 return (AA->getIdAddr() == &ID); 3143 } 3144 3145 static const char ID; 3146 }; 3147 3148 /// The function kernel info abstract attribute, basically, what can we say 3149 /// about a function with regards to the KernelInfoState. 3150 struct AAKernelInfoFunction : AAKernelInfo { 3151 AAKernelInfoFunction(const IRPosition &IRP, Attributor &A) 3152 : AAKernelInfo(IRP, A) {} 3153 3154 SmallPtrSet<Instruction *, 4> GuardedInstructions; 3155 3156 SmallPtrSetImpl<Instruction *> &getGuardedInstructions() { 3157 return GuardedInstructions; 3158 } 3159 3160 /// See AbstractAttribute::initialize(...). 3161 void initialize(Attributor &A) override { 3162 // This is a high-level transform that might change the constant arguments 3163 // of the init and dinit calls. We need to tell the Attributor about this 3164 // to avoid other parts using the current constant value for simpliication. 3165 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 3166 3167 Function *Fn = getAnchorScope(); 3168 3169 OMPInformationCache::RuntimeFunctionInfo &InitRFI = 3170 OMPInfoCache.RFIs[OMPRTL___kmpc_target_init]; 3171 OMPInformationCache::RuntimeFunctionInfo &DeinitRFI = 3172 OMPInfoCache.RFIs[OMPRTL___kmpc_target_deinit]; 3173 3174 // For kernels we perform more initialization work, first we find the init 3175 // and deinit calls. 3176 auto StoreCallBase = [](Use &U, 3177 OMPInformationCache::RuntimeFunctionInfo &RFI, 3178 CallBase *&Storage) { 3179 CallBase *CB = OpenMPOpt::getCallIfRegularCall(U, &RFI); 3180 assert(CB && 3181 "Unexpected use of __kmpc_target_init or __kmpc_target_deinit!"); 3182 assert(!Storage && 3183 "Multiple uses of __kmpc_target_init or __kmpc_target_deinit!"); 3184 Storage = CB; 3185 return false; 3186 }; 3187 InitRFI.foreachUse( 3188 [&](Use &U, Function &) { 3189 StoreCallBase(U, InitRFI, KernelInitCB); 3190 return false; 3191 }, 3192 Fn); 3193 DeinitRFI.foreachUse( 3194 [&](Use &U, Function &) { 3195 StoreCallBase(U, DeinitRFI, KernelDeinitCB); 3196 return false; 3197 }, 3198 Fn); 3199 3200 // Ignore kernels without initializers such as global constructors. 3201 if (!KernelInitCB || !KernelDeinitCB) 3202 return; 3203 3204 // Add itself to the reaching kernel and set IsKernelEntry. 3205 ReachingKernelEntries.insert(Fn); 3206 IsKernelEntry = true; 3207 3208 // For kernels we might need to initialize/finalize the IsSPMD state and 3209 // we need to register a simplification callback so that the Attributor 3210 // knows the constant arguments to __kmpc_target_init and 3211 // __kmpc_target_deinit might actually change. 3212 3213 Attributor::SimplifictionCallbackTy StateMachineSimplifyCB = 3214 [&](const IRPosition &IRP, const AbstractAttribute *AA, 3215 bool &UsedAssumedInformation) -> Optional<Value *> { 3216 // IRP represents the "use generic state machine" argument of an 3217 // __kmpc_target_init call. We will answer this one with the internal 3218 // state. As long as we are not in an invalid state, we will create a 3219 // custom state machine so the value should be a `i1 false`. If we are 3220 // in an invalid state, we won't change the value that is in the IR. 3221 if (!ReachedKnownParallelRegions.isValidState()) 3222 return nullptr; 3223 // If we have disabled state machine rewrites, don't make a custom one. 3224 if (DisableOpenMPOptStateMachineRewrite) 3225 return nullptr; 3226 if (AA) 3227 A.recordDependence(*this, *AA, DepClassTy::OPTIONAL); 3228 UsedAssumedInformation = !isAtFixpoint(); 3229 auto *FalseVal = 3230 ConstantInt::getBool(IRP.getAnchorValue().getContext(), false); 3231 return FalseVal; 3232 }; 3233 3234 Attributor::SimplifictionCallbackTy ModeSimplifyCB = 3235 [&](const IRPosition &IRP, const AbstractAttribute *AA, 3236 bool &UsedAssumedInformation) -> Optional<Value *> { 3237 // IRP represents the "SPMDCompatibilityTracker" argument of an 3238 // __kmpc_target_init or 3239 // __kmpc_target_deinit call. We will answer this one with the internal 3240 // state. 3241 if (!SPMDCompatibilityTracker.isValidState()) 3242 return nullptr; 3243 if (!SPMDCompatibilityTracker.isAtFixpoint()) { 3244 if (AA) 3245 A.recordDependence(*this, *AA, DepClassTy::OPTIONAL); 3246 UsedAssumedInformation = true; 3247 } else { 3248 UsedAssumedInformation = false; 3249 } 3250 auto *Val = ConstantInt::getSigned( 3251 IntegerType::getInt8Ty(IRP.getAnchorValue().getContext()), 3252 SPMDCompatibilityTracker.isAssumed() ? OMP_TGT_EXEC_MODE_SPMD 3253 : OMP_TGT_EXEC_MODE_GENERIC); 3254 return Val; 3255 }; 3256 3257 Attributor::SimplifictionCallbackTy IsGenericModeSimplifyCB = 3258 [&](const IRPosition &IRP, const AbstractAttribute *AA, 3259 bool &UsedAssumedInformation) -> Optional<Value *> { 3260 // IRP represents the "RequiresFullRuntime" argument of an 3261 // __kmpc_target_init or __kmpc_target_deinit call. We will answer this 3262 // one with the internal state of the SPMDCompatibilityTracker, so if 3263 // generic then true, if SPMD then false. 3264 if (!SPMDCompatibilityTracker.isValidState()) 3265 return nullptr; 3266 if (!SPMDCompatibilityTracker.isAtFixpoint()) { 3267 if (AA) 3268 A.recordDependence(*this, *AA, DepClassTy::OPTIONAL); 3269 UsedAssumedInformation = true; 3270 } else { 3271 UsedAssumedInformation = false; 3272 } 3273 auto *Val = ConstantInt::getBool(IRP.getAnchorValue().getContext(), 3274 !SPMDCompatibilityTracker.isAssumed()); 3275 return Val; 3276 }; 3277 3278 constexpr const int InitModeArgNo = 1; 3279 constexpr const int DeinitModeArgNo = 1; 3280 constexpr const int InitUseStateMachineArgNo = 2; 3281 constexpr const int InitRequiresFullRuntimeArgNo = 3; 3282 constexpr const int DeinitRequiresFullRuntimeArgNo = 2; 3283 A.registerSimplificationCallback( 3284 IRPosition::callsite_argument(*KernelInitCB, InitUseStateMachineArgNo), 3285 StateMachineSimplifyCB); 3286 A.registerSimplificationCallback( 3287 IRPosition::callsite_argument(*KernelInitCB, InitModeArgNo), 3288 ModeSimplifyCB); 3289 A.registerSimplificationCallback( 3290 IRPosition::callsite_argument(*KernelDeinitCB, DeinitModeArgNo), 3291 ModeSimplifyCB); 3292 A.registerSimplificationCallback( 3293 IRPosition::callsite_argument(*KernelInitCB, 3294 InitRequiresFullRuntimeArgNo), 3295 IsGenericModeSimplifyCB); 3296 A.registerSimplificationCallback( 3297 IRPosition::callsite_argument(*KernelDeinitCB, 3298 DeinitRequiresFullRuntimeArgNo), 3299 IsGenericModeSimplifyCB); 3300 3301 // Check if we know we are in SPMD-mode already. 3302 ConstantInt *ModeArg = 3303 dyn_cast<ConstantInt>(KernelInitCB->getArgOperand(InitModeArgNo)); 3304 if (ModeArg && (ModeArg->getSExtValue() & OMP_TGT_EXEC_MODE_SPMD)) 3305 SPMDCompatibilityTracker.indicateOptimisticFixpoint(); 3306 // This is a generic region but SPMDization is disabled so stop tracking. 3307 else if (DisableOpenMPOptSPMDization) 3308 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 3309 } 3310 3311 /// Sanitize the string \p S such that it is a suitable global symbol name. 3312 static std::string sanitizeForGlobalName(std::string S) { 3313 std::replace_if( 3314 S.begin(), S.end(), 3315 [](const char C) { 3316 return !((C >= 'a' && C <= 'z') || (C >= 'A' && C <= 'Z') || 3317 (C >= '0' && C <= '9') || C == '_'); 3318 }, 3319 '.'); 3320 return S; 3321 } 3322 3323 /// Modify the IR based on the KernelInfoState as the fixpoint iteration is 3324 /// finished now. 3325 ChangeStatus manifest(Attributor &A) override { 3326 // If we are not looking at a kernel with __kmpc_target_init and 3327 // __kmpc_target_deinit call we cannot actually manifest the information. 3328 if (!KernelInitCB || !KernelDeinitCB) 3329 return ChangeStatus::UNCHANGED; 3330 3331 // If we can we change the execution mode to SPMD-mode otherwise we build a 3332 // custom state machine. 3333 ChangeStatus Changed = ChangeStatus::UNCHANGED; 3334 if (!changeToSPMDMode(A, Changed)) 3335 return buildCustomStateMachine(A); 3336 3337 return Changed; 3338 } 3339 3340 bool changeToSPMDMode(Attributor &A, ChangeStatus &Changed) { 3341 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 3342 3343 if (!SPMDCompatibilityTracker.isAssumed()) { 3344 for (Instruction *NonCompatibleI : SPMDCompatibilityTracker) { 3345 if (!NonCompatibleI) 3346 continue; 3347 3348 // Skip diagnostics on calls to known OpenMP runtime functions for now. 3349 if (auto *CB = dyn_cast<CallBase>(NonCompatibleI)) 3350 if (OMPInfoCache.RTLFunctions.contains(CB->getCalledFunction())) 3351 continue; 3352 3353 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 3354 ORA << "Value has potential side effects preventing SPMD-mode " 3355 "execution"; 3356 if (isa<CallBase>(NonCompatibleI)) { 3357 ORA << ". Add `__attribute__((assume(\"ompx_spmd_amenable\")))` to " 3358 "the called function to override"; 3359 } 3360 return ORA << "."; 3361 }; 3362 A.emitRemark<OptimizationRemarkAnalysis>(NonCompatibleI, "OMP121", 3363 Remark); 3364 3365 LLVM_DEBUG(dbgs() << TAG << "SPMD-incompatible side-effect: " 3366 << *NonCompatibleI << "\n"); 3367 } 3368 3369 return false; 3370 } 3371 3372 // Get the actual kernel, could be the caller of the anchor scope if we have 3373 // a debug wrapper. 3374 Function *Kernel = getAnchorScope(); 3375 if (Kernel->hasLocalLinkage()) { 3376 assert(Kernel->hasOneUse() && "Unexpected use of debug kernel wrapper."); 3377 auto *CB = cast<CallBase>(Kernel->user_back()); 3378 Kernel = CB->getCaller(); 3379 } 3380 assert(OMPInfoCache.Kernels.count(Kernel) && "Expected kernel function!"); 3381 3382 // Check if the kernel is already in SPMD mode, if so, return success. 3383 GlobalVariable *ExecMode = Kernel->getParent()->getGlobalVariable( 3384 (Kernel->getName() + "_exec_mode").str()); 3385 assert(ExecMode && "Kernel without exec mode?"); 3386 assert(ExecMode->getInitializer() && "ExecMode doesn't have initializer!"); 3387 3388 // Set the global exec mode flag to indicate SPMD-Generic mode. 3389 assert(isa<ConstantInt>(ExecMode->getInitializer()) && 3390 "ExecMode is not an integer!"); 3391 const int8_t ExecModeVal = 3392 cast<ConstantInt>(ExecMode->getInitializer())->getSExtValue(); 3393 if (ExecModeVal != OMP_TGT_EXEC_MODE_GENERIC) 3394 return true; 3395 3396 // We will now unconditionally modify the IR, indicate a change. 3397 Changed = ChangeStatus::CHANGED; 3398 3399 auto CreateGuardedRegion = [&](Instruction *RegionStartI, 3400 Instruction *RegionEndI) { 3401 LoopInfo *LI = nullptr; 3402 DominatorTree *DT = nullptr; 3403 MemorySSAUpdater *MSU = nullptr; 3404 using InsertPointTy = OpenMPIRBuilder::InsertPointTy; 3405 3406 BasicBlock *ParentBB = RegionStartI->getParent(); 3407 Function *Fn = ParentBB->getParent(); 3408 Module &M = *Fn->getParent(); 3409 3410 // Create all the blocks and logic. 3411 // ParentBB: 3412 // goto RegionCheckTidBB 3413 // RegionCheckTidBB: 3414 // Tid = __kmpc_hardware_thread_id() 3415 // if (Tid != 0) 3416 // goto RegionBarrierBB 3417 // RegionStartBB: 3418 // <execute instructions guarded> 3419 // goto RegionEndBB 3420 // RegionEndBB: 3421 // <store escaping values to shared mem> 3422 // goto RegionBarrierBB 3423 // RegionBarrierBB: 3424 // __kmpc_simple_barrier_spmd() 3425 // // second barrier is omitted if lacking escaping values. 3426 // <load escaping values from shared mem> 3427 // __kmpc_simple_barrier_spmd() 3428 // goto RegionExitBB 3429 // RegionExitBB: 3430 // <execute rest of instructions> 3431 3432 BasicBlock *RegionEndBB = SplitBlock(ParentBB, RegionEndI->getNextNode(), 3433 DT, LI, MSU, "region.guarded.end"); 3434 BasicBlock *RegionBarrierBB = 3435 SplitBlock(RegionEndBB, &*RegionEndBB->getFirstInsertionPt(), DT, LI, 3436 MSU, "region.barrier"); 3437 BasicBlock *RegionExitBB = 3438 SplitBlock(RegionBarrierBB, &*RegionBarrierBB->getFirstInsertionPt(), 3439 DT, LI, MSU, "region.exit"); 3440 BasicBlock *RegionStartBB = 3441 SplitBlock(ParentBB, RegionStartI, DT, LI, MSU, "region.guarded"); 3442 3443 assert(ParentBB->getUniqueSuccessor() == RegionStartBB && 3444 "Expected a different CFG"); 3445 3446 BasicBlock *RegionCheckTidBB = SplitBlock( 3447 ParentBB, ParentBB->getTerminator(), DT, LI, MSU, "region.check.tid"); 3448 3449 // Register basic blocks with the Attributor. 3450 A.registerManifestAddedBasicBlock(*RegionEndBB); 3451 A.registerManifestAddedBasicBlock(*RegionBarrierBB); 3452 A.registerManifestAddedBasicBlock(*RegionExitBB); 3453 A.registerManifestAddedBasicBlock(*RegionStartBB); 3454 A.registerManifestAddedBasicBlock(*RegionCheckTidBB); 3455 3456 bool HasBroadcastValues = false; 3457 // Find escaping outputs from the guarded region to outside users and 3458 // broadcast their values to them. 3459 for (Instruction &I : *RegionStartBB) { 3460 SmallPtrSet<Instruction *, 4> OutsideUsers; 3461 for (User *Usr : I.users()) { 3462 Instruction &UsrI = *cast<Instruction>(Usr); 3463 if (UsrI.getParent() != RegionStartBB) 3464 OutsideUsers.insert(&UsrI); 3465 } 3466 3467 if (OutsideUsers.empty()) 3468 continue; 3469 3470 HasBroadcastValues = true; 3471 3472 // Emit a global variable in shared memory to store the broadcasted 3473 // value. 3474 auto *SharedMem = new GlobalVariable( 3475 M, I.getType(), /* IsConstant */ false, 3476 GlobalValue::InternalLinkage, UndefValue::get(I.getType()), 3477 sanitizeForGlobalName( 3478 (I.getName() + ".guarded.output.alloc").str()), 3479 nullptr, GlobalValue::NotThreadLocal, 3480 static_cast<unsigned>(AddressSpace::Shared)); 3481 3482 // Emit a store instruction to update the value. 3483 new StoreInst(&I, SharedMem, RegionEndBB->getTerminator()); 3484 3485 LoadInst *LoadI = new LoadInst(I.getType(), SharedMem, 3486 I.getName() + ".guarded.output.load", 3487 RegionBarrierBB->getTerminator()); 3488 3489 // Emit a load instruction and replace uses of the output value. 3490 for (Instruction *UsrI : OutsideUsers) 3491 UsrI->replaceUsesOfWith(&I, LoadI); 3492 } 3493 3494 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 3495 3496 // Go to tid check BB in ParentBB. 3497 const DebugLoc DL = ParentBB->getTerminator()->getDebugLoc(); 3498 ParentBB->getTerminator()->eraseFromParent(); 3499 OpenMPIRBuilder::LocationDescription Loc( 3500 InsertPointTy(ParentBB, ParentBB->end()), DL); 3501 OMPInfoCache.OMPBuilder.updateToLocation(Loc); 3502 uint32_t SrcLocStrSize; 3503 auto *SrcLocStr = 3504 OMPInfoCache.OMPBuilder.getOrCreateSrcLocStr(Loc, SrcLocStrSize); 3505 Value *Ident = 3506 OMPInfoCache.OMPBuilder.getOrCreateIdent(SrcLocStr, SrcLocStrSize); 3507 BranchInst::Create(RegionCheckTidBB, ParentBB)->setDebugLoc(DL); 3508 3509 // Add check for Tid in RegionCheckTidBB 3510 RegionCheckTidBB->getTerminator()->eraseFromParent(); 3511 OpenMPIRBuilder::LocationDescription LocRegionCheckTid( 3512 InsertPointTy(RegionCheckTidBB, RegionCheckTidBB->end()), DL); 3513 OMPInfoCache.OMPBuilder.updateToLocation(LocRegionCheckTid); 3514 FunctionCallee HardwareTidFn = 3515 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( 3516 M, OMPRTL___kmpc_get_hardware_thread_id_in_block); 3517 CallInst *Tid = 3518 OMPInfoCache.OMPBuilder.Builder.CreateCall(HardwareTidFn, {}); 3519 Tid->setDebugLoc(DL); 3520 OMPInfoCache.setCallingConvention(HardwareTidFn, Tid); 3521 Value *TidCheck = OMPInfoCache.OMPBuilder.Builder.CreateIsNull(Tid); 3522 OMPInfoCache.OMPBuilder.Builder 3523 .CreateCondBr(TidCheck, RegionStartBB, RegionBarrierBB) 3524 ->setDebugLoc(DL); 3525 3526 // First barrier for synchronization, ensures main thread has updated 3527 // values. 3528 FunctionCallee BarrierFn = 3529 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( 3530 M, OMPRTL___kmpc_barrier_simple_spmd); 3531 OMPInfoCache.OMPBuilder.updateToLocation(InsertPointTy( 3532 RegionBarrierBB, RegionBarrierBB->getFirstInsertionPt())); 3533 CallInst *Barrier = 3534 OMPInfoCache.OMPBuilder.Builder.CreateCall(BarrierFn, {Ident, Tid}); 3535 Barrier->setDebugLoc(DL); 3536 OMPInfoCache.setCallingConvention(BarrierFn, Barrier); 3537 3538 // Second barrier ensures workers have read broadcast values. 3539 if (HasBroadcastValues) { 3540 CallInst *Barrier = CallInst::Create(BarrierFn, {Ident, Tid}, "", 3541 RegionBarrierBB->getTerminator()); 3542 Barrier->setDebugLoc(DL); 3543 OMPInfoCache.setCallingConvention(BarrierFn, Barrier); 3544 } 3545 }; 3546 3547 auto &AllocSharedRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared]; 3548 SmallPtrSet<BasicBlock *, 8> Visited; 3549 for (Instruction *GuardedI : SPMDCompatibilityTracker) { 3550 BasicBlock *BB = GuardedI->getParent(); 3551 if (!Visited.insert(BB).second) 3552 continue; 3553 3554 SmallVector<std::pair<Instruction *, Instruction *>> Reorders; 3555 Instruction *LastEffect = nullptr; 3556 BasicBlock::reverse_iterator IP = BB->rbegin(), IPEnd = BB->rend(); 3557 while (++IP != IPEnd) { 3558 if (!IP->mayHaveSideEffects() && !IP->mayReadFromMemory()) 3559 continue; 3560 Instruction *I = &*IP; 3561 if (OpenMPOpt::getCallIfRegularCall(*I, &AllocSharedRFI)) 3562 continue; 3563 if (!I->user_empty() || !SPMDCompatibilityTracker.contains(I)) { 3564 LastEffect = nullptr; 3565 continue; 3566 } 3567 if (LastEffect) 3568 Reorders.push_back({I, LastEffect}); 3569 LastEffect = &*IP; 3570 } 3571 for (auto &Reorder : Reorders) 3572 Reorder.first->moveBefore(Reorder.second); 3573 } 3574 3575 SmallVector<std::pair<Instruction *, Instruction *>, 4> GuardedRegions; 3576 3577 for (Instruction *GuardedI : SPMDCompatibilityTracker) { 3578 BasicBlock *BB = GuardedI->getParent(); 3579 auto *CalleeAA = A.lookupAAFor<AAKernelInfo>( 3580 IRPosition::function(*GuardedI->getFunction()), nullptr, 3581 DepClassTy::NONE); 3582 assert(CalleeAA != nullptr && "Expected Callee AAKernelInfo"); 3583 auto &CalleeAAFunction = *cast<AAKernelInfoFunction>(CalleeAA); 3584 // Continue if instruction is already guarded. 3585 if (CalleeAAFunction.getGuardedInstructions().contains(GuardedI)) 3586 continue; 3587 3588 Instruction *GuardedRegionStart = nullptr, *GuardedRegionEnd = nullptr; 3589 for (Instruction &I : *BB) { 3590 // If instruction I needs to be guarded update the guarded region 3591 // bounds. 3592 if (SPMDCompatibilityTracker.contains(&I)) { 3593 CalleeAAFunction.getGuardedInstructions().insert(&I); 3594 if (GuardedRegionStart) 3595 GuardedRegionEnd = &I; 3596 else 3597 GuardedRegionStart = GuardedRegionEnd = &I; 3598 3599 continue; 3600 } 3601 3602 // Instruction I does not need guarding, store 3603 // any region found and reset bounds. 3604 if (GuardedRegionStart) { 3605 GuardedRegions.push_back( 3606 std::make_pair(GuardedRegionStart, GuardedRegionEnd)); 3607 GuardedRegionStart = nullptr; 3608 GuardedRegionEnd = nullptr; 3609 } 3610 } 3611 } 3612 3613 for (auto &GR : GuardedRegions) 3614 CreateGuardedRegion(GR.first, GR.second); 3615 3616 // Adjust the global exec mode flag that tells the runtime what mode this 3617 // kernel is executed in. 3618 assert(ExecModeVal == OMP_TGT_EXEC_MODE_GENERIC && 3619 "Initially non-SPMD kernel has SPMD exec mode!"); 3620 ExecMode->setInitializer( 3621 ConstantInt::get(ExecMode->getInitializer()->getType(), 3622 ExecModeVal | OMP_TGT_EXEC_MODE_GENERIC_SPMD)); 3623 3624 // Next rewrite the init and deinit calls to indicate we use SPMD-mode now. 3625 const int InitModeArgNo = 1; 3626 const int DeinitModeArgNo = 1; 3627 const int InitUseStateMachineArgNo = 2; 3628 const int InitRequiresFullRuntimeArgNo = 3; 3629 const int DeinitRequiresFullRuntimeArgNo = 2; 3630 3631 auto &Ctx = getAnchorValue().getContext(); 3632 A.changeUseAfterManifest( 3633 KernelInitCB->getArgOperandUse(InitModeArgNo), 3634 *ConstantInt::getSigned(IntegerType::getInt8Ty(Ctx), 3635 OMP_TGT_EXEC_MODE_SPMD)); 3636 A.changeUseAfterManifest( 3637 KernelInitCB->getArgOperandUse(InitUseStateMachineArgNo), 3638 *ConstantInt::getBool(Ctx, false)); 3639 A.changeUseAfterManifest( 3640 KernelDeinitCB->getArgOperandUse(DeinitModeArgNo), 3641 *ConstantInt::getSigned(IntegerType::getInt8Ty(Ctx), 3642 OMP_TGT_EXEC_MODE_SPMD)); 3643 A.changeUseAfterManifest( 3644 KernelInitCB->getArgOperandUse(InitRequiresFullRuntimeArgNo), 3645 *ConstantInt::getBool(Ctx, false)); 3646 A.changeUseAfterManifest( 3647 KernelDeinitCB->getArgOperandUse(DeinitRequiresFullRuntimeArgNo), 3648 *ConstantInt::getBool(Ctx, false)); 3649 3650 ++NumOpenMPTargetRegionKernelsSPMD; 3651 3652 auto Remark = [&](OptimizationRemark OR) { 3653 return OR << "Transformed generic-mode kernel to SPMD-mode."; 3654 }; 3655 A.emitRemark<OptimizationRemark>(KernelInitCB, "OMP120", Remark); 3656 return true; 3657 }; 3658 3659 ChangeStatus buildCustomStateMachine(Attributor &A) { 3660 // If we have disabled state machine rewrites, don't make a custom one 3661 if (DisableOpenMPOptStateMachineRewrite) 3662 return ChangeStatus::UNCHANGED; 3663 3664 // Don't rewrite the state machine if we are not in a valid state. 3665 if (!ReachedKnownParallelRegions.isValidState()) 3666 return ChangeStatus::UNCHANGED; 3667 3668 const int InitModeArgNo = 1; 3669 const int InitUseStateMachineArgNo = 2; 3670 3671 // Check if the current configuration is non-SPMD and generic state machine. 3672 // If we already have SPMD mode or a custom state machine we do not need to 3673 // go any further. If it is anything but a constant something is weird and 3674 // we give up. 3675 ConstantInt *UseStateMachine = dyn_cast<ConstantInt>( 3676 KernelInitCB->getArgOperand(InitUseStateMachineArgNo)); 3677 ConstantInt *Mode = 3678 dyn_cast<ConstantInt>(KernelInitCB->getArgOperand(InitModeArgNo)); 3679 3680 // If we are stuck with generic mode, try to create a custom device (=GPU) 3681 // state machine which is specialized for the parallel regions that are 3682 // reachable by the kernel. 3683 if (!UseStateMachine || UseStateMachine->isZero() || !Mode || 3684 (Mode->getSExtValue() & OMP_TGT_EXEC_MODE_SPMD)) 3685 return ChangeStatus::UNCHANGED; 3686 3687 // If not SPMD mode, indicate we use a custom state machine now. 3688 auto &Ctx = getAnchorValue().getContext(); 3689 auto *FalseVal = ConstantInt::getBool(Ctx, false); 3690 A.changeUseAfterManifest( 3691 KernelInitCB->getArgOperandUse(InitUseStateMachineArgNo), *FalseVal); 3692 3693 // If we don't actually need a state machine we are done here. This can 3694 // happen if there simply are no parallel regions. In the resulting kernel 3695 // all worker threads will simply exit right away, leaving the main thread 3696 // to do the work alone. 3697 if (!mayContainParallelRegion()) { 3698 ++NumOpenMPTargetRegionKernelsWithoutStateMachine; 3699 3700 auto Remark = [&](OptimizationRemark OR) { 3701 return OR << "Removing unused state machine from generic-mode kernel."; 3702 }; 3703 A.emitRemark<OptimizationRemark>(KernelInitCB, "OMP130", Remark); 3704 3705 return ChangeStatus::CHANGED; 3706 } 3707 3708 // Keep track in the statistics of our new shiny custom state machine. 3709 if (ReachedUnknownParallelRegions.empty()) { 3710 ++NumOpenMPTargetRegionKernelsCustomStateMachineWithoutFallback; 3711 3712 auto Remark = [&](OptimizationRemark OR) { 3713 return OR << "Rewriting generic-mode kernel with a customized state " 3714 "machine."; 3715 }; 3716 A.emitRemark<OptimizationRemark>(KernelInitCB, "OMP131", Remark); 3717 } else { 3718 ++NumOpenMPTargetRegionKernelsCustomStateMachineWithFallback; 3719 3720 auto Remark = [&](OptimizationRemarkAnalysis OR) { 3721 return OR << "Generic-mode kernel is executed with a customized state " 3722 "machine that requires a fallback."; 3723 }; 3724 A.emitRemark<OptimizationRemarkAnalysis>(KernelInitCB, "OMP132", Remark); 3725 3726 // Tell the user why we ended up with a fallback. 3727 for (CallBase *UnknownParallelRegionCB : ReachedUnknownParallelRegions) { 3728 if (!UnknownParallelRegionCB) 3729 continue; 3730 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 3731 return ORA << "Call may contain unknown parallel regions. Use " 3732 << "`__attribute__((assume(\"omp_no_parallelism\")))` to " 3733 "override."; 3734 }; 3735 A.emitRemark<OptimizationRemarkAnalysis>(UnknownParallelRegionCB, 3736 "OMP133", Remark); 3737 } 3738 } 3739 3740 // Create all the blocks: 3741 // 3742 // InitCB = __kmpc_target_init(...) 3743 // BlockHwSize = 3744 // __kmpc_get_hardware_num_threads_in_block(); 3745 // WarpSize = __kmpc_get_warp_size(); 3746 // BlockSize = BlockHwSize - WarpSize; 3747 // IsWorkerCheckBB: bool IsWorker = InitCB != -1; 3748 // if (IsWorker) { 3749 // if (InitCB >= BlockSize) return; 3750 // SMBeginBB: __kmpc_barrier_simple_generic(...); 3751 // void *WorkFn; 3752 // bool Active = __kmpc_kernel_parallel(&WorkFn); 3753 // if (!WorkFn) return; 3754 // SMIsActiveCheckBB: if (Active) { 3755 // SMIfCascadeCurrentBB: if (WorkFn == <ParFn0>) 3756 // ParFn0(...); 3757 // SMIfCascadeCurrentBB: else if (WorkFn == <ParFn1>) 3758 // ParFn1(...); 3759 // ... 3760 // SMIfCascadeCurrentBB: else 3761 // ((WorkFnTy*)WorkFn)(...); 3762 // SMEndParallelBB: __kmpc_kernel_end_parallel(...); 3763 // } 3764 // SMDoneBB: __kmpc_barrier_simple_generic(...); 3765 // goto SMBeginBB; 3766 // } 3767 // UserCodeEntryBB: // user code 3768 // __kmpc_target_deinit(...) 3769 // 3770 Function *Kernel = getAssociatedFunction(); 3771 assert(Kernel && "Expected an associated function!"); 3772 3773 BasicBlock *InitBB = KernelInitCB->getParent(); 3774 BasicBlock *UserCodeEntryBB = InitBB->splitBasicBlock( 3775 KernelInitCB->getNextNode(), "thread.user_code.check"); 3776 BasicBlock *IsWorkerCheckBB = 3777 BasicBlock::Create(Ctx, "is_worker_check", Kernel, UserCodeEntryBB); 3778 BasicBlock *StateMachineBeginBB = BasicBlock::Create( 3779 Ctx, "worker_state_machine.begin", Kernel, UserCodeEntryBB); 3780 BasicBlock *StateMachineFinishedBB = BasicBlock::Create( 3781 Ctx, "worker_state_machine.finished", Kernel, UserCodeEntryBB); 3782 BasicBlock *StateMachineIsActiveCheckBB = BasicBlock::Create( 3783 Ctx, "worker_state_machine.is_active.check", Kernel, UserCodeEntryBB); 3784 BasicBlock *StateMachineIfCascadeCurrentBB = 3785 BasicBlock::Create(Ctx, "worker_state_machine.parallel_region.check", 3786 Kernel, UserCodeEntryBB); 3787 BasicBlock *StateMachineEndParallelBB = 3788 BasicBlock::Create(Ctx, "worker_state_machine.parallel_region.end", 3789 Kernel, UserCodeEntryBB); 3790 BasicBlock *StateMachineDoneBarrierBB = BasicBlock::Create( 3791 Ctx, "worker_state_machine.done.barrier", Kernel, UserCodeEntryBB); 3792 A.registerManifestAddedBasicBlock(*InitBB); 3793 A.registerManifestAddedBasicBlock(*UserCodeEntryBB); 3794 A.registerManifestAddedBasicBlock(*IsWorkerCheckBB); 3795 A.registerManifestAddedBasicBlock(*StateMachineBeginBB); 3796 A.registerManifestAddedBasicBlock(*StateMachineFinishedBB); 3797 A.registerManifestAddedBasicBlock(*StateMachineIsActiveCheckBB); 3798 A.registerManifestAddedBasicBlock(*StateMachineIfCascadeCurrentBB); 3799 A.registerManifestAddedBasicBlock(*StateMachineEndParallelBB); 3800 A.registerManifestAddedBasicBlock(*StateMachineDoneBarrierBB); 3801 3802 const DebugLoc &DLoc = KernelInitCB->getDebugLoc(); 3803 ReturnInst::Create(Ctx, StateMachineFinishedBB)->setDebugLoc(DLoc); 3804 InitBB->getTerminator()->eraseFromParent(); 3805 3806 Instruction *IsWorker = 3807 ICmpInst::Create(ICmpInst::ICmp, llvm::CmpInst::ICMP_NE, KernelInitCB, 3808 ConstantInt::get(KernelInitCB->getType(), -1), 3809 "thread.is_worker", InitBB); 3810 IsWorker->setDebugLoc(DLoc); 3811 BranchInst::Create(IsWorkerCheckBB, UserCodeEntryBB, IsWorker, InitBB); 3812 3813 Module &M = *Kernel->getParent(); 3814 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 3815 FunctionCallee BlockHwSizeFn = 3816 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( 3817 M, OMPRTL___kmpc_get_hardware_num_threads_in_block); 3818 FunctionCallee WarpSizeFn = 3819 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( 3820 M, OMPRTL___kmpc_get_warp_size); 3821 CallInst *BlockHwSize = 3822 CallInst::Create(BlockHwSizeFn, "block.hw_size", IsWorkerCheckBB); 3823 OMPInfoCache.setCallingConvention(BlockHwSizeFn, BlockHwSize); 3824 BlockHwSize->setDebugLoc(DLoc); 3825 CallInst *WarpSize = 3826 CallInst::Create(WarpSizeFn, "warp.size", IsWorkerCheckBB); 3827 OMPInfoCache.setCallingConvention(WarpSizeFn, WarpSize); 3828 WarpSize->setDebugLoc(DLoc); 3829 Instruction *BlockSize = BinaryOperator::CreateSub( 3830 BlockHwSize, WarpSize, "block.size", IsWorkerCheckBB); 3831 BlockSize->setDebugLoc(DLoc); 3832 Instruction *IsMainOrWorker = ICmpInst::Create( 3833 ICmpInst::ICmp, llvm::CmpInst::ICMP_SLT, KernelInitCB, BlockSize, 3834 "thread.is_main_or_worker", IsWorkerCheckBB); 3835 IsMainOrWorker->setDebugLoc(DLoc); 3836 BranchInst::Create(StateMachineBeginBB, StateMachineFinishedBB, 3837 IsMainOrWorker, IsWorkerCheckBB); 3838 3839 // Create local storage for the work function pointer. 3840 const DataLayout &DL = M.getDataLayout(); 3841 Type *VoidPtrTy = Type::getInt8PtrTy(Ctx); 3842 Instruction *WorkFnAI = 3843 new AllocaInst(VoidPtrTy, DL.getAllocaAddrSpace(), nullptr, 3844 "worker.work_fn.addr", &Kernel->getEntryBlock().front()); 3845 WorkFnAI->setDebugLoc(DLoc); 3846 3847 OMPInfoCache.OMPBuilder.updateToLocation( 3848 OpenMPIRBuilder::LocationDescription( 3849 IRBuilder<>::InsertPoint(StateMachineBeginBB, 3850 StateMachineBeginBB->end()), 3851 DLoc)); 3852 3853 Value *Ident = KernelInitCB->getArgOperand(0); 3854 Value *GTid = KernelInitCB; 3855 3856 FunctionCallee BarrierFn = 3857 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( 3858 M, OMPRTL___kmpc_barrier_simple_generic); 3859 CallInst *Barrier = 3860 CallInst::Create(BarrierFn, {Ident, GTid}, "", StateMachineBeginBB); 3861 OMPInfoCache.setCallingConvention(BarrierFn, Barrier); 3862 Barrier->setDebugLoc(DLoc); 3863 3864 if (WorkFnAI->getType()->getPointerAddressSpace() != 3865 (unsigned int)AddressSpace::Generic) { 3866 WorkFnAI = new AddrSpaceCastInst( 3867 WorkFnAI, 3868 PointerType::getWithSamePointeeType( 3869 cast<PointerType>(WorkFnAI->getType()), 3870 (unsigned int)AddressSpace::Generic), 3871 WorkFnAI->getName() + ".generic", StateMachineBeginBB); 3872 WorkFnAI->setDebugLoc(DLoc); 3873 } 3874 3875 FunctionCallee KernelParallelFn = 3876 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( 3877 M, OMPRTL___kmpc_kernel_parallel); 3878 CallInst *IsActiveWorker = CallInst::Create( 3879 KernelParallelFn, {WorkFnAI}, "worker.is_active", StateMachineBeginBB); 3880 OMPInfoCache.setCallingConvention(KernelParallelFn, IsActiveWorker); 3881 IsActiveWorker->setDebugLoc(DLoc); 3882 Instruction *WorkFn = new LoadInst(VoidPtrTy, WorkFnAI, "worker.work_fn", 3883 StateMachineBeginBB); 3884 WorkFn->setDebugLoc(DLoc); 3885 3886 FunctionType *ParallelRegionFnTy = FunctionType::get( 3887 Type::getVoidTy(Ctx), {Type::getInt16Ty(Ctx), Type::getInt32Ty(Ctx)}, 3888 false); 3889 Value *WorkFnCast = BitCastInst::CreatePointerBitCastOrAddrSpaceCast( 3890 WorkFn, ParallelRegionFnTy->getPointerTo(), "worker.work_fn.addr_cast", 3891 StateMachineBeginBB); 3892 3893 Instruction *IsDone = 3894 ICmpInst::Create(ICmpInst::ICmp, llvm::CmpInst::ICMP_EQ, WorkFn, 3895 Constant::getNullValue(VoidPtrTy), "worker.is_done", 3896 StateMachineBeginBB); 3897 IsDone->setDebugLoc(DLoc); 3898 BranchInst::Create(StateMachineFinishedBB, StateMachineIsActiveCheckBB, 3899 IsDone, StateMachineBeginBB) 3900 ->setDebugLoc(DLoc); 3901 3902 BranchInst::Create(StateMachineIfCascadeCurrentBB, 3903 StateMachineDoneBarrierBB, IsActiveWorker, 3904 StateMachineIsActiveCheckBB) 3905 ->setDebugLoc(DLoc); 3906 3907 Value *ZeroArg = 3908 Constant::getNullValue(ParallelRegionFnTy->getParamType(0)); 3909 3910 // Now that we have most of the CFG skeleton it is time for the if-cascade 3911 // that checks the function pointer we got from the runtime against the 3912 // parallel regions we expect, if there are any. 3913 for (int I = 0, E = ReachedKnownParallelRegions.size(); I < E; ++I) { 3914 auto *ParallelRegion = ReachedKnownParallelRegions[I]; 3915 BasicBlock *PRExecuteBB = BasicBlock::Create( 3916 Ctx, "worker_state_machine.parallel_region.execute", Kernel, 3917 StateMachineEndParallelBB); 3918 CallInst::Create(ParallelRegion, {ZeroArg, GTid}, "", PRExecuteBB) 3919 ->setDebugLoc(DLoc); 3920 BranchInst::Create(StateMachineEndParallelBB, PRExecuteBB) 3921 ->setDebugLoc(DLoc); 3922 3923 BasicBlock *PRNextBB = 3924 BasicBlock::Create(Ctx, "worker_state_machine.parallel_region.check", 3925 Kernel, StateMachineEndParallelBB); 3926 3927 // Check if we need to compare the pointer at all or if we can just 3928 // call the parallel region function. 3929 Value *IsPR; 3930 if (I + 1 < E || !ReachedUnknownParallelRegions.empty()) { 3931 Instruction *CmpI = ICmpInst::Create( 3932 ICmpInst::ICmp, llvm::CmpInst::ICMP_EQ, WorkFnCast, ParallelRegion, 3933 "worker.check_parallel_region", StateMachineIfCascadeCurrentBB); 3934 CmpI->setDebugLoc(DLoc); 3935 IsPR = CmpI; 3936 } else { 3937 IsPR = ConstantInt::getTrue(Ctx); 3938 } 3939 3940 BranchInst::Create(PRExecuteBB, PRNextBB, IsPR, 3941 StateMachineIfCascadeCurrentBB) 3942 ->setDebugLoc(DLoc); 3943 StateMachineIfCascadeCurrentBB = PRNextBB; 3944 } 3945 3946 // At the end of the if-cascade we place the indirect function pointer call 3947 // in case we might need it, that is if there can be parallel regions we 3948 // have not handled in the if-cascade above. 3949 if (!ReachedUnknownParallelRegions.empty()) { 3950 StateMachineIfCascadeCurrentBB->setName( 3951 "worker_state_machine.parallel_region.fallback.execute"); 3952 CallInst::Create(ParallelRegionFnTy, WorkFnCast, {ZeroArg, GTid}, "", 3953 StateMachineIfCascadeCurrentBB) 3954 ->setDebugLoc(DLoc); 3955 } 3956 BranchInst::Create(StateMachineEndParallelBB, 3957 StateMachineIfCascadeCurrentBB) 3958 ->setDebugLoc(DLoc); 3959 3960 FunctionCallee EndParallelFn = 3961 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( 3962 M, OMPRTL___kmpc_kernel_end_parallel); 3963 CallInst *EndParallel = 3964 CallInst::Create(EndParallelFn, {}, "", StateMachineEndParallelBB); 3965 OMPInfoCache.setCallingConvention(EndParallelFn, EndParallel); 3966 EndParallel->setDebugLoc(DLoc); 3967 BranchInst::Create(StateMachineDoneBarrierBB, StateMachineEndParallelBB) 3968 ->setDebugLoc(DLoc); 3969 3970 CallInst::Create(BarrierFn, {Ident, GTid}, "", StateMachineDoneBarrierBB) 3971 ->setDebugLoc(DLoc); 3972 BranchInst::Create(StateMachineBeginBB, StateMachineDoneBarrierBB) 3973 ->setDebugLoc(DLoc); 3974 3975 return ChangeStatus::CHANGED; 3976 } 3977 3978 /// Fixpoint iteration update function. Will be called every time a dependence 3979 /// changed its state (and in the beginning). 3980 ChangeStatus updateImpl(Attributor &A) override { 3981 KernelInfoState StateBefore = getState(); 3982 3983 // Callback to check a read/write instruction. 3984 auto CheckRWInst = [&](Instruction &I) { 3985 // We handle calls later. 3986 if (isa<CallBase>(I)) 3987 return true; 3988 // We only care about write effects. 3989 if (!I.mayWriteToMemory()) 3990 return true; 3991 if (auto *SI = dyn_cast<StoreInst>(&I)) { 3992 SmallVector<const Value *> Objects; 3993 getUnderlyingObjects(SI->getPointerOperand(), Objects); 3994 if (llvm::all_of(Objects, 3995 [](const Value *Obj) { return isa<AllocaInst>(Obj); })) 3996 return true; 3997 // Check for AAHeapToStack moved objects which must not be guarded. 3998 auto &HS = A.getAAFor<AAHeapToStack>( 3999 *this, IRPosition::function(*I.getFunction()), 4000 DepClassTy::OPTIONAL); 4001 if (llvm::all_of(Objects, [&HS](const Value *Obj) { 4002 auto *CB = dyn_cast<CallBase>(Obj); 4003 if (!CB) 4004 return false; 4005 return HS.isAssumedHeapToStack(*CB); 4006 })) { 4007 return true; 4008 } 4009 } 4010 4011 // Insert instruction that needs guarding. 4012 SPMDCompatibilityTracker.insert(&I); 4013 return true; 4014 }; 4015 4016 bool UsedAssumedInformationInCheckRWInst = false; 4017 if (!SPMDCompatibilityTracker.isAtFixpoint()) 4018 if (!A.checkForAllReadWriteInstructions( 4019 CheckRWInst, *this, UsedAssumedInformationInCheckRWInst)) 4020 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 4021 4022 bool UsedAssumedInformationFromReachingKernels = false; 4023 if (!IsKernelEntry) { 4024 updateParallelLevels(A); 4025 4026 bool AllReachingKernelsKnown = true; 4027 updateReachingKernelEntries(A, AllReachingKernelsKnown); 4028 UsedAssumedInformationFromReachingKernels = !AllReachingKernelsKnown; 4029 4030 if (!ParallelLevels.isValidState()) 4031 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 4032 else if (!ReachingKernelEntries.isValidState()) 4033 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 4034 else if (!SPMDCompatibilityTracker.empty()) { 4035 // Check if all reaching kernels agree on the mode as we can otherwise 4036 // not guard instructions. We might not be sure about the mode so we 4037 // we cannot fix the internal spmd-zation state either. 4038 int SPMD = 0, Generic = 0; 4039 for (auto *Kernel : ReachingKernelEntries) { 4040 auto &CBAA = A.getAAFor<AAKernelInfo>( 4041 *this, IRPosition::function(*Kernel), DepClassTy::OPTIONAL); 4042 if (CBAA.SPMDCompatibilityTracker.isValidState() && 4043 CBAA.SPMDCompatibilityTracker.isAssumed()) 4044 ++SPMD; 4045 else 4046 ++Generic; 4047 if (!CBAA.SPMDCompatibilityTracker.isAtFixpoint()) 4048 UsedAssumedInformationFromReachingKernels = true; 4049 } 4050 if (SPMD != 0 && Generic != 0) 4051 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 4052 } 4053 } 4054 4055 // Callback to check a call instruction. 4056 bool AllParallelRegionStatesWereFixed = true; 4057 bool AllSPMDStatesWereFixed = true; 4058 auto CheckCallInst = [&](Instruction &I) { 4059 auto &CB = cast<CallBase>(I); 4060 auto &CBAA = A.getAAFor<AAKernelInfo>( 4061 *this, IRPosition::callsite_function(CB), DepClassTy::OPTIONAL); 4062 getState() ^= CBAA.getState(); 4063 AllSPMDStatesWereFixed &= CBAA.SPMDCompatibilityTracker.isAtFixpoint(); 4064 AllParallelRegionStatesWereFixed &= 4065 CBAA.ReachedKnownParallelRegions.isAtFixpoint(); 4066 AllParallelRegionStatesWereFixed &= 4067 CBAA.ReachedUnknownParallelRegions.isAtFixpoint(); 4068 return true; 4069 }; 4070 4071 bool UsedAssumedInformationInCheckCallInst = false; 4072 if (!A.checkForAllCallLikeInstructions( 4073 CheckCallInst, *this, UsedAssumedInformationInCheckCallInst)) { 4074 LLVM_DEBUG(dbgs() << TAG 4075 << "Failed to visit all call-like instructions!\n";); 4076 return indicatePessimisticFixpoint(); 4077 } 4078 4079 // If we haven't used any assumed information for the reached parallel 4080 // region states we can fix it. 4081 if (!UsedAssumedInformationInCheckCallInst && 4082 AllParallelRegionStatesWereFixed) { 4083 ReachedKnownParallelRegions.indicateOptimisticFixpoint(); 4084 ReachedUnknownParallelRegions.indicateOptimisticFixpoint(); 4085 } 4086 4087 // If we are sure there are no parallel regions in the kernel we do not 4088 // want SPMD mode. 4089 if (IsKernelEntry && ReachedUnknownParallelRegions.isAtFixpoint() && 4090 ReachedKnownParallelRegions.isAtFixpoint() && 4091 ReachedUnknownParallelRegions.isValidState() && 4092 ReachedKnownParallelRegions.isValidState() && 4093 !mayContainParallelRegion()) 4094 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 4095 4096 // If we haven't used any assumed information for the SPMD state we can fix 4097 // it. 4098 if (!UsedAssumedInformationInCheckRWInst && 4099 !UsedAssumedInformationInCheckCallInst && 4100 !UsedAssumedInformationFromReachingKernels && AllSPMDStatesWereFixed) 4101 SPMDCompatibilityTracker.indicateOptimisticFixpoint(); 4102 4103 return StateBefore == getState() ? ChangeStatus::UNCHANGED 4104 : ChangeStatus::CHANGED; 4105 } 4106 4107 private: 4108 /// Update info regarding reaching kernels. 4109 void updateReachingKernelEntries(Attributor &A, 4110 bool &AllReachingKernelsKnown) { 4111 auto PredCallSite = [&](AbstractCallSite ACS) { 4112 Function *Caller = ACS.getInstruction()->getFunction(); 4113 4114 assert(Caller && "Caller is nullptr"); 4115 4116 auto &CAA = A.getOrCreateAAFor<AAKernelInfo>( 4117 IRPosition::function(*Caller), this, DepClassTy::REQUIRED); 4118 if (CAA.ReachingKernelEntries.isValidState()) { 4119 ReachingKernelEntries ^= CAA.ReachingKernelEntries; 4120 return true; 4121 } 4122 4123 // We lost track of the caller of the associated function, any kernel 4124 // could reach now. 4125 ReachingKernelEntries.indicatePessimisticFixpoint(); 4126 4127 return true; 4128 }; 4129 4130 if (!A.checkForAllCallSites(PredCallSite, *this, 4131 true /* RequireAllCallSites */, 4132 AllReachingKernelsKnown)) 4133 ReachingKernelEntries.indicatePessimisticFixpoint(); 4134 } 4135 4136 /// Update info regarding parallel levels. 4137 void updateParallelLevels(Attributor &A) { 4138 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 4139 OMPInformationCache::RuntimeFunctionInfo &Parallel51RFI = 4140 OMPInfoCache.RFIs[OMPRTL___kmpc_parallel_51]; 4141 4142 auto PredCallSite = [&](AbstractCallSite ACS) { 4143 Function *Caller = ACS.getInstruction()->getFunction(); 4144 4145 assert(Caller && "Caller is nullptr"); 4146 4147 auto &CAA = 4148 A.getOrCreateAAFor<AAKernelInfo>(IRPosition::function(*Caller)); 4149 if (CAA.ParallelLevels.isValidState()) { 4150 // Any function that is called by `__kmpc_parallel_51` will not be 4151 // folded as the parallel level in the function is updated. In order to 4152 // get it right, all the analysis would depend on the implentation. That 4153 // said, if in the future any change to the implementation, the analysis 4154 // could be wrong. As a consequence, we are just conservative here. 4155 if (Caller == Parallel51RFI.Declaration) { 4156 ParallelLevels.indicatePessimisticFixpoint(); 4157 return true; 4158 } 4159 4160 ParallelLevels ^= CAA.ParallelLevels; 4161 4162 return true; 4163 } 4164 4165 // We lost track of the caller of the associated function, any kernel 4166 // could reach now. 4167 ParallelLevels.indicatePessimisticFixpoint(); 4168 4169 return true; 4170 }; 4171 4172 bool AllCallSitesKnown = true; 4173 if (!A.checkForAllCallSites(PredCallSite, *this, 4174 true /* RequireAllCallSites */, 4175 AllCallSitesKnown)) 4176 ParallelLevels.indicatePessimisticFixpoint(); 4177 } 4178 }; 4179 4180 /// The call site kernel info abstract attribute, basically, what can we say 4181 /// about a call site with regards to the KernelInfoState. For now this simply 4182 /// forwards the information from the callee. 4183 struct AAKernelInfoCallSite : AAKernelInfo { 4184 AAKernelInfoCallSite(const IRPosition &IRP, Attributor &A) 4185 : AAKernelInfo(IRP, A) {} 4186 4187 /// See AbstractAttribute::initialize(...). 4188 void initialize(Attributor &A) override { 4189 AAKernelInfo::initialize(A); 4190 4191 CallBase &CB = cast<CallBase>(getAssociatedValue()); 4192 Function *Callee = getAssociatedFunction(); 4193 4194 auto &AssumptionAA = A.getAAFor<AAAssumptionInfo>( 4195 *this, IRPosition::callsite_function(CB), DepClassTy::OPTIONAL); 4196 4197 // Check for SPMD-mode assumptions. 4198 if (AssumptionAA.hasAssumption("ompx_spmd_amenable")) { 4199 SPMDCompatibilityTracker.indicateOptimisticFixpoint(); 4200 indicateOptimisticFixpoint(); 4201 } 4202 4203 // First weed out calls we do not care about, that is readonly/readnone 4204 // calls, intrinsics, and "no_openmp" calls. Neither of these can reach a 4205 // parallel region or anything else we are looking for. 4206 if (!CB.mayWriteToMemory() || isa<IntrinsicInst>(CB)) { 4207 indicateOptimisticFixpoint(); 4208 return; 4209 } 4210 4211 // Next we check if we know the callee. If it is a known OpenMP function 4212 // we will handle them explicitly in the switch below. If it is not, we 4213 // will use an AAKernelInfo object on the callee to gather information and 4214 // merge that into the current state. The latter happens in the updateImpl. 4215 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 4216 const auto &It = OMPInfoCache.RuntimeFunctionIDMap.find(Callee); 4217 if (It == OMPInfoCache.RuntimeFunctionIDMap.end()) { 4218 // Unknown caller or declarations are not analyzable, we give up. 4219 if (!Callee || !A.isFunctionIPOAmendable(*Callee)) { 4220 4221 // Unknown callees might contain parallel regions, except if they have 4222 // an appropriate assumption attached. 4223 if (!(AssumptionAA.hasAssumption("omp_no_openmp") || 4224 AssumptionAA.hasAssumption("omp_no_parallelism"))) 4225 ReachedUnknownParallelRegions.insert(&CB); 4226 4227 // If SPMDCompatibilityTracker is not fixed, we need to give up on the 4228 // idea we can run something unknown in SPMD-mode. 4229 if (!SPMDCompatibilityTracker.isAtFixpoint()) { 4230 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 4231 SPMDCompatibilityTracker.insert(&CB); 4232 } 4233 4234 // We have updated the state for this unknown call properly, there won't 4235 // be any change so we indicate a fixpoint. 4236 indicateOptimisticFixpoint(); 4237 } 4238 // If the callee is known and can be used in IPO, we will update the state 4239 // based on the callee state in updateImpl. 4240 return; 4241 } 4242 4243 const unsigned int WrapperFunctionArgNo = 6; 4244 RuntimeFunction RF = It->getSecond(); 4245 switch (RF) { 4246 // All the functions we know are compatible with SPMD mode. 4247 case OMPRTL___kmpc_is_spmd_exec_mode: 4248 case OMPRTL___kmpc_distribute_static_fini: 4249 case OMPRTL___kmpc_for_static_fini: 4250 case OMPRTL___kmpc_global_thread_num: 4251 case OMPRTL___kmpc_get_hardware_num_threads_in_block: 4252 case OMPRTL___kmpc_get_hardware_num_blocks: 4253 case OMPRTL___kmpc_single: 4254 case OMPRTL___kmpc_end_single: 4255 case OMPRTL___kmpc_master: 4256 case OMPRTL___kmpc_end_master: 4257 case OMPRTL___kmpc_barrier: 4258 case OMPRTL___kmpc_nvptx_parallel_reduce_nowait_v2: 4259 case OMPRTL___kmpc_nvptx_teams_reduce_nowait_v2: 4260 case OMPRTL___kmpc_nvptx_end_reduce_nowait: 4261 break; 4262 case OMPRTL___kmpc_distribute_static_init_4: 4263 case OMPRTL___kmpc_distribute_static_init_4u: 4264 case OMPRTL___kmpc_distribute_static_init_8: 4265 case OMPRTL___kmpc_distribute_static_init_8u: 4266 case OMPRTL___kmpc_for_static_init_4: 4267 case OMPRTL___kmpc_for_static_init_4u: 4268 case OMPRTL___kmpc_for_static_init_8: 4269 case OMPRTL___kmpc_for_static_init_8u: { 4270 // Check the schedule and allow static schedule in SPMD mode. 4271 unsigned ScheduleArgOpNo = 2; 4272 auto *ScheduleTypeCI = 4273 dyn_cast<ConstantInt>(CB.getArgOperand(ScheduleArgOpNo)); 4274 unsigned ScheduleTypeVal = 4275 ScheduleTypeCI ? ScheduleTypeCI->getZExtValue() : 0; 4276 switch (OMPScheduleType(ScheduleTypeVal)) { 4277 case OMPScheduleType::UnorderedStatic: 4278 case OMPScheduleType::UnorderedStaticChunked: 4279 case OMPScheduleType::OrderedDistribute: 4280 case OMPScheduleType::OrderedDistributeChunked: 4281 break; 4282 default: 4283 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 4284 SPMDCompatibilityTracker.insert(&CB); 4285 break; 4286 }; 4287 } break; 4288 case OMPRTL___kmpc_target_init: 4289 KernelInitCB = &CB; 4290 break; 4291 case OMPRTL___kmpc_target_deinit: 4292 KernelDeinitCB = &CB; 4293 break; 4294 case OMPRTL___kmpc_parallel_51: 4295 if (auto *ParallelRegion = dyn_cast<Function>( 4296 CB.getArgOperand(WrapperFunctionArgNo)->stripPointerCasts())) { 4297 ReachedKnownParallelRegions.insert(ParallelRegion); 4298 break; 4299 } 4300 // The condition above should usually get the parallel region function 4301 // pointer and record it. In the off chance it doesn't we assume the 4302 // worst. 4303 ReachedUnknownParallelRegions.insert(&CB); 4304 break; 4305 case OMPRTL___kmpc_omp_task: 4306 // We do not look into tasks right now, just give up. 4307 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 4308 SPMDCompatibilityTracker.insert(&CB); 4309 ReachedUnknownParallelRegions.insert(&CB); 4310 break; 4311 case OMPRTL___kmpc_alloc_shared: 4312 case OMPRTL___kmpc_free_shared: 4313 // Return without setting a fixpoint, to be resolved in updateImpl. 4314 return; 4315 default: 4316 // Unknown OpenMP runtime calls cannot be executed in SPMD-mode, 4317 // generally. However, they do not hide parallel regions. 4318 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 4319 SPMDCompatibilityTracker.insert(&CB); 4320 break; 4321 } 4322 // All other OpenMP runtime calls will not reach parallel regions so they 4323 // can be safely ignored for now. Since it is a known OpenMP runtime call we 4324 // have now modeled all effects and there is no need for any update. 4325 indicateOptimisticFixpoint(); 4326 } 4327 4328 ChangeStatus updateImpl(Attributor &A) override { 4329 // TODO: Once we have call site specific value information we can provide 4330 // call site specific liveness information and then it makes 4331 // sense to specialize attributes for call sites arguments instead of 4332 // redirecting requests to the callee argument. 4333 Function *F = getAssociatedFunction(); 4334 4335 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 4336 const auto &It = OMPInfoCache.RuntimeFunctionIDMap.find(F); 4337 4338 // If F is not a runtime function, propagate the AAKernelInfo of the callee. 4339 if (It == OMPInfoCache.RuntimeFunctionIDMap.end()) { 4340 const IRPosition &FnPos = IRPosition::function(*F); 4341 auto &FnAA = A.getAAFor<AAKernelInfo>(*this, FnPos, DepClassTy::REQUIRED); 4342 if (getState() == FnAA.getState()) 4343 return ChangeStatus::UNCHANGED; 4344 getState() = FnAA.getState(); 4345 return ChangeStatus::CHANGED; 4346 } 4347 4348 // F is a runtime function that allocates or frees memory, check 4349 // AAHeapToStack and AAHeapToShared. 4350 KernelInfoState StateBefore = getState(); 4351 assert((It->getSecond() == OMPRTL___kmpc_alloc_shared || 4352 It->getSecond() == OMPRTL___kmpc_free_shared) && 4353 "Expected a __kmpc_alloc_shared or __kmpc_free_shared runtime call"); 4354 4355 CallBase &CB = cast<CallBase>(getAssociatedValue()); 4356 4357 auto &HeapToStackAA = A.getAAFor<AAHeapToStack>( 4358 *this, IRPosition::function(*CB.getCaller()), DepClassTy::OPTIONAL); 4359 auto &HeapToSharedAA = A.getAAFor<AAHeapToShared>( 4360 *this, IRPosition::function(*CB.getCaller()), DepClassTy::OPTIONAL); 4361 4362 RuntimeFunction RF = It->getSecond(); 4363 4364 switch (RF) { 4365 // If neither HeapToStack nor HeapToShared assume the call is removed, 4366 // assume SPMD incompatibility. 4367 case OMPRTL___kmpc_alloc_shared: 4368 if (!HeapToStackAA.isAssumedHeapToStack(CB) && 4369 !HeapToSharedAA.isAssumedHeapToShared(CB)) 4370 SPMDCompatibilityTracker.insert(&CB); 4371 break; 4372 case OMPRTL___kmpc_free_shared: 4373 if (!HeapToStackAA.isAssumedHeapToStackRemovedFree(CB) && 4374 !HeapToSharedAA.isAssumedHeapToSharedRemovedFree(CB)) 4375 SPMDCompatibilityTracker.insert(&CB); 4376 break; 4377 default: 4378 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 4379 SPMDCompatibilityTracker.insert(&CB); 4380 } 4381 4382 return StateBefore == getState() ? ChangeStatus::UNCHANGED 4383 : ChangeStatus::CHANGED; 4384 } 4385 }; 4386 4387 struct AAFoldRuntimeCall 4388 : public StateWrapper<BooleanState, AbstractAttribute> { 4389 using Base = StateWrapper<BooleanState, AbstractAttribute>; 4390 4391 AAFoldRuntimeCall(const IRPosition &IRP, Attributor &A) : Base(IRP) {} 4392 4393 /// Statistics are tracked as part of manifest for now. 4394 void trackStatistics() const override {} 4395 4396 /// Create an abstract attribute biew for the position \p IRP. 4397 static AAFoldRuntimeCall &createForPosition(const IRPosition &IRP, 4398 Attributor &A); 4399 4400 /// See AbstractAttribute::getName() 4401 const std::string getName() const override { return "AAFoldRuntimeCall"; } 4402 4403 /// See AbstractAttribute::getIdAddr() 4404 const char *getIdAddr() const override { return &ID; } 4405 4406 /// This function should return true if the type of the \p AA is 4407 /// AAFoldRuntimeCall 4408 static bool classof(const AbstractAttribute *AA) { 4409 return (AA->getIdAddr() == &ID); 4410 } 4411 4412 static const char ID; 4413 }; 4414 4415 struct AAFoldRuntimeCallCallSiteReturned : AAFoldRuntimeCall { 4416 AAFoldRuntimeCallCallSiteReturned(const IRPosition &IRP, Attributor &A) 4417 : AAFoldRuntimeCall(IRP, A) {} 4418 4419 /// See AbstractAttribute::getAsStr() 4420 const std::string getAsStr() const override { 4421 if (!isValidState()) 4422 return "<invalid>"; 4423 4424 std::string Str("simplified value: "); 4425 4426 if (!SimplifiedValue.hasValue()) 4427 return Str + std::string("none"); 4428 4429 if (!SimplifiedValue.getValue()) 4430 return Str + std::string("nullptr"); 4431 4432 if (ConstantInt *CI = dyn_cast<ConstantInt>(SimplifiedValue.getValue())) 4433 return Str + std::to_string(CI->getSExtValue()); 4434 4435 return Str + std::string("unknown"); 4436 } 4437 4438 void initialize(Attributor &A) override { 4439 if (DisableOpenMPOptFolding) 4440 indicatePessimisticFixpoint(); 4441 4442 Function *Callee = getAssociatedFunction(); 4443 4444 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 4445 const auto &It = OMPInfoCache.RuntimeFunctionIDMap.find(Callee); 4446 assert(It != OMPInfoCache.RuntimeFunctionIDMap.end() && 4447 "Expected a known OpenMP runtime function"); 4448 4449 RFKind = It->getSecond(); 4450 4451 CallBase &CB = cast<CallBase>(getAssociatedValue()); 4452 A.registerSimplificationCallback( 4453 IRPosition::callsite_returned(CB), 4454 [&](const IRPosition &IRP, const AbstractAttribute *AA, 4455 bool &UsedAssumedInformation) -> Optional<Value *> { 4456 assert((isValidState() || (SimplifiedValue.hasValue() && 4457 SimplifiedValue.getValue() == nullptr)) && 4458 "Unexpected invalid state!"); 4459 4460 if (!isAtFixpoint()) { 4461 UsedAssumedInformation = true; 4462 if (AA) 4463 A.recordDependence(*this, *AA, DepClassTy::OPTIONAL); 4464 } 4465 return SimplifiedValue; 4466 }); 4467 } 4468 4469 ChangeStatus updateImpl(Attributor &A) override { 4470 ChangeStatus Changed = ChangeStatus::UNCHANGED; 4471 switch (RFKind) { 4472 case OMPRTL___kmpc_is_spmd_exec_mode: 4473 Changed |= foldIsSPMDExecMode(A); 4474 break; 4475 case OMPRTL___kmpc_is_generic_main_thread_id: 4476 Changed |= foldIsGenericMainThread(A); 4477 break; 4478 case OMPRTL___kmpc_parallel_level: 4479 Changed |= foldParallelLevel(A); 4480 break; 4481 case OMPRTL___kmpc_get_hardware_num_threads_in_block: 4482 Changed = Changed | foldKernelFnAttribute(A, "omp_target_thread_limit"); 4483 break; 4484 case OMPRTL___kmpc_get_hardware_num_blocks: 4485 Changed = Changed | foldKernelFnAttribute(A, "omp_target_num_teams"); 4486 break; 4487 default: 4488 llvm_unreachable("Unhandled OpenMP runtime function!"); 4489 } 4490 4491 return Changed; 4492 } 4493 4494 ChangeStatus manifest(Attributor &A) override { 4495 ChangeStatus Changed = ChangeStatus::UNCHANGED; 4496 4497 if (SimplifiedValue.hasValue() && SimplifiedValue.getValue()) { 4498 Instruction &I = *getCtxI(); 4499 A.changeAfterManifest(IRPosition::inst(I), **SimplifiedValue); 4500 A.deleteAfterManifest(I); 4501 4502 CallBase *CB = dyn_cast<CallBase>(&I); 4503 auto Remark = [&](OptimizationRemark OR) { 4504 if (auto *C = dyn_cast<ConstantInt>(*SimplifiedValue)) 4505 return OR << "Replacing OpenMP runtime call " 4506 << CB->getCalledFunction()->getName() << " with " 4507 << ore::NV("FoldedValue", C->getZExtValue()) << "."; 4508 return OR << "Replacing OpenMP runtime call " 4509 << CB->getCalledFunction()->getName() << "."; 4510 }; 4511 4512 if (CB && EnableVerboseRemarks) 4513 A.emitRemark<OptimizationRemark>(CB, "OMP180", Remark); 4514 4515 LLVM_DEBUG(dbgs() << TAG << "Replacing runtime call: " << I << " with " 4516 << **SimplifiedValue << "\n"); 4517 4518 Changed = ChangeStatus::CHANGED; 4519 } 4520 4521 return Changed; 4522 } 4523 4524 ChangeStatus indicatePessimisticFixpoint() override { 4525 SimplifiedValue = nullptr; 4526 return AAFoldRuntimeCall::indicatePessimisticFixpoint(); 4527 } 4528 4529 private: 4530 /// Fold __kmpc_is_spmd_exec_mode into a constant if possible. 4531 ChangeStatus foldIsSPMDExecMode(Attributor &A) { 4532 Optional<Value *> SimplifiedValueBefore = SimplifiedValue; 4533 4534 unsigned AssumedSPMDCount = 0, KnownSPMDCount = 0; 4535 unsigned AssumedNonSPMDCount = 0, KnownNonSPMDCount = 0; 4536 auto &CallerKernelInfoAA = A.getAAFor<AAKernelInfo>( 4537 *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED); 4538 4539 if (!CallerKernelInfoAA.ReachingKernelEntries.isValidState()) 4540 return indicatePessimisticFixpoint(); 4541 4542 for (Kernel K : CallerKernelInfoAA.ReachingKernelEntries) { 4543 auto &AA = A.getAAFor<AAKernelInfo>(*this, IRPosition::function(*K), 4544 DepClassTy::REQUIRED); 4545 4546 if (!AA.isValidState()) { 4547 SimplifiedValue = nullptr; 4548 return indicatePessimisticFixpoint(); 4549 } 4550 4551 if (AA.SPMDCompatibilityTracker.isAssumed()) { 4552 if (AA.SPMDCompatibilityTracker.isAtFixpoint()) 4553 ++KnownSPMDCount; 4554 else 4555 ++AssumedSPMDCount; 4556 } else { 4557 if (AA.SPMDCompatibilityTracker.isAtFixpoint()) 4558 ++KnownNonSPMDCount; 4559 else 4560 ++AssumedNonSPMDCount; 4561 } 4562 } 4563 4564 if ((AssumedSPMDCount + KnownSPMDCount) && 4565 (AssumedNonSPMDCount + KnownNonSPMDCount)) 4566 return indicatePessimisticFixpoint(); 4567 4568 auto &Ctx = getAnchorValue().getContext(); 4569 if (KnownSPMDCount || AssumedSPMDCount) { 4570 assert(KnownNonSPMDCount == 0 && AssumedNonSPMDCount == 0 && 4571 "Expected only SPMD kernels!"); 4572 // All reaching kernels are in SPMD mode. Update all function calls to 4573 // __kmpc_is_spmd_exec_mode to 1. 4574 SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), true); 4575 } else if (KnownNonSPMDCount || AssumedNonSPMDCount) { 4576 assert(KnownSPMDCount == 0 && AssumedSPMDCount == 0 && 4577 "Expected only non-SPMD kernels!"); 4578 // All reaching kernels are in non-SPMD mode. Update all function 4579 // calls to __kmpc_is_spmd_exec_mode to 0. 4580 SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), false); 4581 } else { 4582 // We have empty reaching kernels, therefore we cannot tell if the 4583 // associated call site can be folded. At this moment, SimplifiedValue 4584 // must be none. 4585 assert(!SimplifiedValue.hasValue() && "SimplifiedValue should be none"); 4586 } 4587 4588 return SimplifiedValue == SimplifiedValueBefore ? ChangeStatus::UNCHANGED 4589 : ChangeStatus::CHANGED; 4590 } 4591 4592 /// Fold __kmpc_is_generic_main_thread_id into a constant if possible. 4593 ChangeStatus foldIsGenericMainThread(Attributor &A) { 4594 Optional<Value *> SimplifiedValueBefore = SimplifiedValue; 4595 4596 CallBase &CB = cast<CallBase>(getAssociatedValue()); 4597 Function *F = CB.getFunction(); 4598 const auto &ExecutionDomainAA = A.getAAFor<AAExecutionDomain>( 4599 *this, IRPosition::function(*F), DepClassTy::REQUIRED); 4600 4601 if (!ExecutionDomainAA.isValidState()) 4602 return indicatePessimisticFixpoint(); 4603 4604 auto &Ctx = getAnchorValue().getContext(); 4605 if (ExecutionDomainAA.isExecutedByInitialThreadOnly(CB)) 4606 SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), true); 4607 else 4608 return indicatePessimisticFixpoint(); 4609 4610 return SimplifiedValue == SimplifiedValueBefore ? ChangeStatus::UNCHANGED 4611 : ChangeStatus::CHANGED; 4612 } 4613 4614 /// Fold __kmpc_parallel_level into a constant if possible. 4615 ChangeStatus foldParallelLevel(Attributor &A) { 4616 Optional<Value *> SimplifiedValueBefore = SimplifiedValue; 4617 4618 auto &CallerKernelInfoAA = A.getAAFor<AAKernelInfo>( 4619 *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED); 4620 4621 if (!CallerKernelInfoAA.ParallelLevels.isValidState()) 4622 return indicatePessimisticFixpoint(); 4623 4624 if (!CallerKernelInfoAA.ReachingKernelEntries.isValidState()) 4625 return indicatePessimisticFixpoint(); 4626 4627 if (CallerKernelInfoAA.ReachingKernelEntries.empty()) { 4628 assert(!SimplifiedValue.hasValue() && 4629 "SimplifiedValue should keep none at this point"); 4630 return ChangeStatus::UNCHANGED; 4631 } 4632 4633 unsigned AssumedSPMDCount = 0, KnownSPMDCount = 0; 4634 unsigned AssumedNonSPMDCount = 0, KnownNonSPMDCount = 0; 4635 for (Kernel K : CallerKernelInfoAA.ReachingKernelEntries) { 4636 auto &AA = A.getAAFor<AAKernelInfo>(*this, IRPosition::function(*K), 4637 DepClassTy::REQUIRED); 4638 if (!AA.SPMDCompatibilityTracker.isValidState()) 4639 return indicatePessimisticFixpoint(); 4640 4641 if (AA.SPMDCompatibilityTracker.isAssumed()) { 4642 if (AA.SPMDCompatibilityTracker.isAtFixpoint()) 4643 ++KnownSPMDCount; 4644 else 4645 ++AssumedSPMDCount; 4646 } else { 4647 if (AA.SPMDCompatibilityTracker.isAtFixpoint()) 4648 ++KnownNonSPMDCount; 4649 else 4650 ++AssumedNonSPMDCount; 4651 } 4652 } 4653 4654 if ((AssumedSPMDCount + KnownSPMDCount) && 4655 (AssumedNonSPMDCount + KnownNonSPMDCount)) 4656 return indicatePessimisticFixpoint(); 4657 4658 auto &Ctx = getAnchorValue().getContext(); 4659 // If the caller can only be reached by SPMD kernel entries, the parallel 4660 // level is 1. Similarly, if the caller can only be reached by non-SPMD 4661 // kernel entries, it is 0. 4662 if (AssumedSPMDCount || KnownSPMDCount) { 4663 assert(KnownNonSPMDCount == 0 && AssumedNonSPMDCount == 0 && 4664 "Expected only SPMD kernels!"); 4665 SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), 1); 4666 } else { 4667 assert(KnownSPMDCount == 0 && AssumedSPMDCount == 0 && 4668 "Expected only non-SPMD kernels!"); 4669 SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), 0); 4670 } 4671 return SimplifiedValue == SimplifiedValueBefore ? ChangeStatus::UNCHANGED 4672 : ChangeStatus::CHANGED; 4673 } 4674 4675 ChangeStatus foldKernelFnAttribute(Attributor &A, llvm::StringRef Attr) { 4676 // Specialize only if all the calls agree with the attribute constant value 4677 int32_t CurrentAttrValue = -1; 4678 Optional<Value *> SimplifiedValueBefore = SimplifiedValue; 4679 4680 auto &CallerKernelInfoAA = A.getAAFor<AAKernelInfo>( 4681 *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED); 4682 4683 if (!CallerKernelInfoAA.ReachingKernelEntries.isValidState()) 4684 return indicatePessimisticFixpoint(); 4685 4686 // Iterate over the kernels that reach this function 4687 for (Kernel K : CallerKernelInfoAA.ReachingKernelEntries) { 4688 int32_t NextAttrVal = -1; 4689 if (K->hasFnAttribute(Attr)) 4690 NextAttrVal = 4691 std::stoi(K->getFnAttribute(Attr).getValueAsString().str()); 4692 4693 if (NextAttrVal == -1 || 4694 (CurrentAttrValue != -1 && CurrentAttrValue != NextAttrVal)) 4695 return indicatePessimisticFixpoint(); 4696 CurrentAttrValue = NextAttrVal; 4697 } 4698 4699 if (CurrentAttrValue != -1) { 4700 auto &Ctx = getAnchorValue().getContext(); 4701 SimplifiedValue = 4702 ConstantInt::get(Type::getInt32Ty(Ctx), CurrentAttrValue); 4703 } 4704 return SimplifiedValue == SimplifiedValueBefore ? ChangeStatus::UNCHANGED 4705 : ChangeStatus::CHANGED; 4706 } 4707 4708 /// An optional value the associated value is assumed to fold to. That is, we 4709 /// assume the associated value (which is a call) can be replaced by this 4710 /// simplified value. 4711 Optional<Value *> SimplifiedValue; 4712 4713 /// The runtime function kind of the callee of the associated call site. 4714 RuntimeFunction RFKind; 4715 }; 4716 4717 } // namespace 4718 4719 /// Register folding callsite 4720 void OpenMPOpt::registerFoldRuntimeCall(RuntimeFunction RF) { 4721 auto &RFI = OMPInfoCache.RFIs[RF]; 4722 RFI.foreachUse(SCC, [&](Use &U, Function &F) { 4723 CallInst *CI = OpenMPOpt::getCallIfRegularCall(U, &RFI); 4724 if (!CI) 4725 return false; 4726 A.getOrCreateAAFor<AAFoldRuntimeCall>( 4727 IRPosition::callsite_returned(*CI), /* QueryingAA */ nullptr, 4728 DepClassTy::NONE, /* ForceUpdate */ false, 4729 /* UpdateAfterInit */ false); 4730 return false; 4731 }); 4732 } 4733 4734 void OpenMPOpt::registerAAs(bool IsModulePass) { 4735 if (SCC.empty()) 4736 return; 4737 4738 if (IsModulePass) { 4739 // Ensure we create the AAKernelInfo AAs first and without triggering an 4740 // update. This will make sure we register all value simplification 4741 // callbacks before any other AA has the chance to create an AAValueSimplify 4742 // or similar. 4743 auto CreateKernelInfoCB = [&](Use &, Function &Kernel) { 4744 A.getOrCreateAAFor<AAKernelInfo>( 4745 IRPosition::function(Kernel), /* QueryingAA */ nullptr, 4746 DepClassTy::NONE, /* ForceUpdate */ false, 4747 /* UpdateAfterInit */ false); 4748 return false; 4749 }; 4750 OMPInformationCache::RuntimeFunctionInfo &InitRFI = 4751 OMPInfoCache.RFIs[OMPRTL___kmpc_target_init]; 4752 InitRFI.foreachUse(SCC, CreateKernelInfoCB); 4753 4754 registerFoldRuntimeCall(OMPRTL___kmpc_is_generic_main_thread_id); 4755 registerFoldRuntimeCall(OMPRTL___kmpc_is_spmd_exec_mode); 4756 registerFoldRuntimeCall(OMPRTL___kmpc_parallel_level); 4757 registerFoldRuntimeCall(OMPRTL___kmpc_get_hardware_num_threads_in_block); 4758 registerFoldRuntimeCall(OMPRTL___kmpc_get_hardware_num_blocks); 4759 } 4760 4761 // Create CallSite AA for all Getters. 4762 for (int Idx = 0; Idx < OMPInfoCache.ICVs.size() - 1; ++Idx) { 4763 auto ICVInfo = OMPInfoCache.ICVs[static_cast<InternalControlVar>(Idx)]; 4764 4765 auto &GetterRFI = OMPInfoCache.RFIs[ICVInfo.Getter]; 4766 4767 auto CreateAA = [&](Use &U, Function &Caller) { 4768 CallInst *CI = OpenMPOpt::getCallIfRegularCall(U, &GetterRFI); 4769 if (!CI) 4770 return false; 4771 4772 auto &CB = cast<CallBase>(*CI); 4773 4774 IRPosition CBPos = IRPosition::callsite_function(CB); 4775 A.getOrCreateAAFor<AAICVTracker>(CBPos); 4776 return false; 4777 }; 4778 4779 GetterRFI.foreachUse(SCC, CreateAA); 4780 } 4781 auto &GlobalizationRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared]; 4782 auto CreateAA = [&](Use &U, Function &F) { 4783 A.getOrCreateAAFor<AAHeapToShared>(IRPosition::function(F)); 4784 return false; 4785 }; 4786 if (!DisableOpenMPOptDeglobalization) 4787 GlobalizationRFI.foreachUse(SCC, CreateAA); 4788 4789 // Create an ExecutionDomain AA for every function and a HeapToStack AA for 4790 // every function if there is a device kernel. 4791 if (!isOpenMPDevice(M)) 4792 return; 4793 4794 for (auto *F : SCC) { 4795 if (F->isDeclaration()) 4796 continue; 4797 4798 A.getOrCreateAAFor<AAExecutionDomain>(IRPosition::function(*F)); 4799 if (!DisableOpenMPOptDeglobalization) 4800 A.getOrCreateAAFor<AAHeapToStack>(IRPosition::function(*F)); 4801 4802 for (auto &I : instructions(*F)) { 4803 if (auto *LI = dyn_cast<LoadInst>(&I)) { 4804 bool UsedAssumedInformation = false; 4805 A.getAssumedSimplified(IRPosition::value(*LI), /* AA */ nullptr, 4806 UsedAssumedInformation); 4807 } else if (auto *SI = dyn_cast<StoreInst>(&I)) { 4808 A.getOrCreateAAFor<AAIsDead>(IRPosition::value(*SI)); 4809 } 4810 } 4811 } 4812 } 4813 4814 const char AAICVTracker::ID = 0; 4815 const char AAKernelInfo::ID = 0; 4816 const char AAExecutionDomain::ID = 0; 4817 const char AAHeapToShared::ID = 0; 4818 const char AAFoldRuntimeCall::ID = 0; 4819 4820 AAICVTracker &AAICVTracker::createForPosition(const IRPosition &IRP, 4821 Attributor &A) { 4822 AAICVTracker *AA = nullptr; 4823 switch (IRP.getPositionKind()) { 4824 case IRPosition::IRP_INVALID: 4825 case IRPosition::IRP_FLOAT: 4826 case IRPosition::IRP_ARGUMENT: 4827 case IRPosition::IRP_CALL_SITE_ARGUMENT: 4828 llvm_unreachable("ICVTracker can only be created for function position!"); 4829 case IRPosition::IRP_RETURNED: 4830 AA = new (A.Allocator) AAICVTrackerFunctionReturned(IRP, A); 4831 break; 4832 case IRPosition::IRP_CALL_SITE_RETURNED: 4833 AA = new (A.Allocator) AAICVTrackerCallSiteReturned(IRP, A); 4834 break; 4835 case IRPosition::IRP_CALL_SITE: 4836 AA = new (A.Allocator) AAICVTrackerCallSite(IRP, A); 4837 break; 4838 case IRPosition::IRP_FUNCTION: 4839 AA = new (A.Allocator) AAICVTrackerFunction(IRP, A); 4840 break; 4841 } 4842 4843 return *AA; 4844 } 4845 4846 AAExecutionDomain &AAExecutionDomain::createForPosition(const IRPosition &IRP, 4847 Attributor &A) { 4848 AAExecutionDomainFunction *AA = nullptr; 4849 switch (IRP.getPositionKind()) { 4850 case IRPosition::IRP_INVALID: 4851 case IRPosition::IRP_FLOAT: 4852 case IRPosition::IRP_ARGUMENT: 4853 case IRPosition::IRP_CALL_SITE_ARGUMENT: 4854 case IRPosition::IRP_RETURNED: 4855 case IRPosition::IRP_CALL_SITE_RETURNED: 4856 case IRPosition::IRP_CALL_SITE: 4857 llvm_unreachable( 4858 "AAExecutionDomain can only be created for function position!"); 4859 case IRPosition::IRP_FUNCTION: 4860 AA = new (A.Allocator) AAExecutionDomainFunction(IRP, A); 4861 break; 4862 } 4863 4864 return *AA; 4865 } 4866 4867 AAHeapToShared &AAHeapToShared::createForPosition(const IRPosition &IRP, 4868 Attributor &A) { 4869 AAHeapToSharedFunction *AA = nullptr; 4870 switch (IRP.getPositionKind()) { 4871 case IRPosition::IRP_INVALID: 4872 case IRPosition::IRP_FLOAT: 4873 case IRPosition::IRP_ARGUMENT: 4874 case IRPosition::IRP_CALL_SITE_ARGUMENT: 4875 case IRPosition::IRP_RETURNED: 4876 case IRPosition::IRP_CALL_SITE_RETURNED: 4877 case IRPosition::IRP_CALL_SITE: 4878 llvm_unreachable( 4879 "AAHeapToShared can only be created for function position!"); 4880 case IRPosition::IRP_FUNCTION: 4881 AA = new (A.Allocator) AAHeapToSharedFunction(IRP, A); 4882 break; 4883 } 4884 4885 return *AA; 4886 } 4887 4888 AAKernelInfo &AAKernelInfo::createForPosition(const IRPosition &IRP, 4889 Attributor &A) { 4890 AAKernelInfo *AA = nullptr; 4891 switch (IRP.getPositionKind()) { 4892 case IRPosition::IRP_INVALID: 4893 case IRPosition::IRP_FLOAT: 4894 case IRPosition::IRP_ARGUMENT: 4895 case IRPosition::IRP_RETURNED: 4896 case IRPosition::IRP_CALL_SITE_RETURNED: 4897 case IRPosition::IRP_CALL_SITE_ARGUMENT: 4898 llvm_unreachable("KernelInfo can only be created for function position!"); 4899 case IRPosition::IRP_CALL_SITE: 4900 AA = new (A.Allocator) AAKernelInfoCallSite(IRP, A); 4901 break; 4902 case IRPosition::IRP_FUNCTION: 4903 AA = new (A.Allocator) AAKernelInfoFunction(IRP, A); 4904 break; 4905 } 4906 4907 return *AA; 4908 } 4909 4910 AAFoldRuntimeCall &AAFoldRuntimeCall::createForPosition(const IRPosition &IRP, 4911 Attributor &A) { 4912 AAFoldRuntimeCall *AA = nullptr; 4913 switch (IRP.getPositionKind()) { 4914 case IRPosition::IRP_INVALID: 4915 case IRPosition::IRP_FLOAT: 4916 case IRPosition::IRP_ARGUMENT: 4917 case IRPosition::IRP_RETURNED: 4918 case IRPosition::IRP_FUNCTION: 4919 case IRPosition::IRP_CALL_SITE: 4920 case IRPosition::IRP_CALL_SITE_ARGUMENT: 4921 llvm_unreachable("KernelInfo can only be created for call site position!"); 4922 case IRPosition::IRP_CALL_SITE_RETURNED: 4923 AA = new (A.Allocator) AAFoldRuntimeCallCallSiteReturned(IRP, A); 4924 break; 4925 } 4926 4927 return *AA; 4928 } 4929 4930 PreservedAnalyses OpenMPOptPass::run(Module &M, ModuleAnalysisManager &AM) { 4931 if (!containsOpenMP(M)) 4932 return PreservedAnalyses::all(); 4933 if (DisableOpenMPOptimizations) 4934 return PreservedAnalyses::all(); 4935 4936 FunctionAnalysisManager &FAM = 4937 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 4938 KernelSet Kernels = getDeviceKernels(M); 4939 4940 if (PrintModuleBeforeOptimizations) 4941 LLVM_DEBUG(dbgs() << TAG << "Module before OpenMPOpt Module Pass:\n" << M); 4942 4943 auto IsCalled = [&](Function &F) { 4944 if (Kernels.contains(&F)) 4945 return true; 4946 for (const User *U : F.users()) 4947 if (!isa<BlockAddress>(U)) 4948 return true; 4949 return false; 4950 }; 4951 4952 auto EmitRemark = [&](Function &F) { 4953 auto &ORE = FAM.getResult<OptimizationRemarkEmitterAnalysis>(F); 4954 ORE.emit([&]() { 4955 OptimizationRemarkAnalysis ORA(DEBUG_TYPE, "OMP140", &F); 4956 return ORA << "Could not internalize function. " 4957 << "Some optimizations may not be possible. [OMP140]"; 4958 }); 4959 }; 4960 4961 // Create internal copies of each function if this is a kernel Module. This 4962 // allows iterprocedural passes to see every call edge. 4963 DenseMap<Function *, Function *> InternalizedMap; 4964 if (isOpenMPDevice(M)) { 4965 SmallPtrSet<Function *, 16> InternalizeFns; 4966 for (Function &F : M) 4967 if (!F.isDeclaration() && !Kernels.contains(&F) && IsCalled(F) && 4968 !DisableInternalization) { 4969 if (Attributor::isInternalizable(F)) { 4970 InternalizeFns.insert(&F); 4971 } else if (!F.hasLocalLinkage() && !F.hasFnAttribute(Attribute::Cold)) { 4972 EmitRemark(F); 4973 } 4974 } 4975 4976 Attributor::internalizeFunctions(InternalizeFns, InternalizedMap); 4977 } 4978 4979 // Look at every function in the Module unless it was internalized. 4980 SmallVector<Function *, 16> SCC; 4981 for (Function &F : M) 4982 if (!F.isDeclaration() && !InternalizedMap.lookup(&F)) 4983 SCC.push_back(&F); 4984 4985 if (SCC.empty()) 4986 return PreservedAnalyses::all(); 4987 4988 AnalysisGetter AG(FAM); 4989 4990 auto OREGetter = [&FAM](Function *F) -> OptimizationRemarkEmitter & { 4991 return FAM.getResult<OptimizationRemarkEmitterAnalysis>(*F); 4992 }; 4993 4994 BumpPtrAllocator Allocator; 4995 CallGraphUpdater CGUpdater; 4996 4997 SetVector<Function *> Functions(SCC.begin(), SCC.end()); 4998 OMPInformationCache InfoCache(M, AG, Allocator, /*CGSCC*/ Functions, Kernels); 4999 5000 unsigned MaxFixpointIterations = 5001 (isOpenMPDevice(M)) ? SetFixpointIterations : 32; 5002 5003 AttributorConfig AC(CGUpdater); 5004 AC.DefaultInitializeLiveInternals = false; 5005 AC.RewriteSignatures = false; 5006 AC.MaxFixpointIterations = MaxFixpointIterations; 5007 AC.OREGetter = OREGetter; 5008 AC.PassName = DEBUG_TYPE; 5009 5010 Attributor A(Functions, InfoCache, AC); 5011 5012 OpenMPOpt OMPOpt(SCC, CGUpdater, OREGetter, InfoCache, A); 5013 bool Changed = OMPOpt.run(true); 5014 5015 // Optionally inline device functions for potentially better performance. 5016 if (AlwaysInlineDeviceFunctions && isOpenMPDevice(M)) 5017 for (Function &F : M) 5018 if (!F.isDeclaration() && !Kernels.contains(&F) && 5019 !F.hasFnAttribute(Attribute::NoInline)) 5020 F.addFnAttr(Attribute::AlwaysInline); 5021 5022 if (PrintModuleAfterOptimizations) 5023 LLVM_DEBUG(dbgs() << TAG << "Module after OpenMPOpt Module Pass:\n" << M); 5024 5025 if (Changed) 5026 return PreservedAnalyses::none(); 5027 5028 return PreservedAnalyses::all(); 5029 } 5030 5031 PreservedAnalyses OpenMPOptCGSCCPass::run(LazyCallGraph::SCC &C, 5032 CGSCCAnalysisManager &AM, 5033 LazyCallGraph &CG, 5034 CGSCCUpdateResult &UR) { 5035 if (!containsOpenMP(*C.begin()->getFunction().getParent())) 5036 return PreservedAnalyses::all(); 5037 if (DisableOpenMPOptimizations) 5038 return PreservedAnalyses::all(); 5039 5040 SmallVector<Function *, 16> SCC; 5041 // If there are kernels in the module, we have to run on all SCC's. 5042 for (LazyCallGraph::Node &N : C) { 5043 Function *Fn = &N.getFunction(); 5044 SCC.push_back(Fn); 5045 } 5046 5047 if (SCC.empty()) 5048 return PreservedAnalyses::all(); 5049 5050 Module &M = *C.begin()->getFunction().getParent(); 5051 5052 if (PrintModuleBeforeOptimizations) 5053 LLVM_DEBUG(dbgs() << TAG << "Module before OpenMPOpt CGSCC Pass:\n" << M); 5054 5055 KernelSet Kernels = getDeviceKernels(M); 5056 5057 FunctionAnalysisManager &FAM = 5058 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager(); 5059 5060 AnalysisGetter AG(FAM); 5061 5062 auto OREGetter = [&FAM](Function *F) -> OptimizationRemarkEmitter & { 5063 return FAM.getResult<OptimizationRemarkEmitterAnalysis>(*F); 5064 }; 5065 5066 BumpPtrAllocator Allocator; 5067 CallGraphUpdater CGUpdater; 5068 CGUpdater.initialize(CG, C, AM, UR); 5069 5070 SetVector<Function *> Functions(SCC.begin(), SCC.end()); 5071 OMPInformationCache InfoCache(*(Functions.back()->getParent()), AG, Allocator, 5072 /*CGSCC*/ Functions, Kernels); 5073 5074 unsigned MaxFixpointIterations = 5075 (isOpenMPDevice(M)) ? SetFixpointIterations : 32; 5076 5077 AttributorConfig AC(CGUpdater); 5078 AC.DefaultInitializeLiveInternals = false; 5079 AC.IsModulePass = false; 5080 AC.RewriteSignatures = false; 5081 AC.MaxFixpointIterations = MaxFixpointIterations; 5082 AC.OREGetter = OREGetter; 5083 AC.PassName = DEBUG_TYPE; 5084 5085 Attributor A(Functions, InfoCache, AC); 5086 5087 OpenMPOpt OMPOpt(SCC, CGUpdater, OREGetter, InfoCache, A); 5088 bool Changed = OMPOpt.run(false); 5089 5090 if (PrintModuleAfterOptimizations) 5091 LLVM_DEBUG(dbgs() << TAG << "Module after OpenMPOpt CGSCC Pass:\n" << M); 5092 5093 if (Changed) 5094 return PreservedAnalyses::none(); 5095 5096 return PreservedAnalyses::all(); 5097 } 5098 5099 namespace { 5100 5101 struct OpenMPOptCGSCCLegacyPass : public CallGraphSCCPass { 5102 CallGraphUpdater CGUpdater; 5103 static char ID; 5104 5105 OpenMPOptCGSCCLegacyPass() : CallGraphSCCPass(ID) { 5106 initializeOpenMPOptCGSCCLegacyPassPass(*PassRegistry::getPassRegistry()); 5107 } 5108 5109 void getAnalysisUsage(AnalysisUsage &AU) const override { 5110 CallGraphSCCPass::getAnalysisUsage(AU); 5111 } 5112 5113 bool runOnSCC(CallGraphSCC &CGSCC) override { 5114 if (!containsOpenMP(CGSCC.getCallGraph().getModule())) 5115 return false; 5116 if (DisableOpenMPOptimizations || skipSCC(CGSCC)) 5117 return false; 5118 5119 SmallVector<Function *, 16> SCC; 5120 // If there are kernels in the module, we have to run on all SCC's. 5121 for (CallGraphNode *CGN : CGSCC) { 5122 Function *Fn = CGN->getFunction(); 5123 if (!Fn || Fn->isDeclaration()) 5124 continue; 5125 SCC.push_back(Fn); 5126 } 5127 5128 if (SCC.empty()) 5129 return false; 5130 5131 Module &M = CGSCC.getCallGraph().getModule(); 5132 KernelSet Kernels = getDeviceKernels(M); 5133 5134 CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph(); 5135 CGUpdater.initialize(CG, CGSCC); 5136 5137 // Maintain a map of functions to avoid rebuilding the ORE 5138 DenseMap<Function *, std::unique_ptr<OptimizationRemarkEmitter>> OREMap; 5139 auto OREGetter = [&OREMap](Function *F) -> OptimizationRemarkEmitter & { 5140 std::unique_ptr<OptimizationRemarkEmitter> &ORE = OREMap[F]; 5141 if (!ORE) 5142 ORE = std::make_unique<OptimizationRemarkEmitter>(F); 5143 return *ORE; 5144 }; 5145 5146 AnalysisGetter AG; 5147 SetVector<Function *> Functions(SCC.begin(), SCC.end()); 5148 BumpPtrAllocator Allocator; 5149 OMPInformationCache InfoCache(*(Functions.back()->getParent()), AG, 5150 Allocator, 5151 /*CGSCC*/ Functions, Kernels); 5152 5153 unsigned MaxFixpointIterations = 5154 (isOpenMPDevice(M)) ? SetFixpointIterations : 32; 5155 5156 AttributorConfig AC(CGUpdater); 5157 AC.DefaultInitializeLiveInternals = false; 5158 AC.IsModulePass = false; 5159 AC.RewriteSignatures = false; 5160 AC.MaxFixpointIterations = MaxFixpointIterations; 5161 AC.OREGetter = OREGetter; 5162 AC.PassName = DEBUG_TYPE; 5163 5164 Attributor A(Functions, InfoCache, AC); 5165 5166 OpenMPOpt OMPOpt(SCC, CGUpdater, OREGetter, InfoCache, A); 5167 bool Result = OMPOpt.run(false); 5168 5169 if (PrintModuleAfterOptimizations) 5170 LLVM_DEBUG(dbgs() << TAG << "Module after OpenMPOpt CGSCC Pass:\n" << M); 5171 5172 return Result; 5173 } 5174 5175 bool doFinalization(CallGraph &CG) override { return CGUpdater.finalize(); } 5176 }; 5177 5178 } // end anonymous namespace 5179 5180 KernelSet llvm::omp::getDeviceKernels(Module &M) { 5181 // TODO: Create a more cross-platform way of determining device kernels. 5182 NamedMDNode *MD = M.getOrInsertNamedMetadata("nvvm.annotations"); 5183 KernelSet Kernels; 5184 5185 if (!MD) 5186 return Kernels; 5187 5188 for (auto *Op : MD->operands()) { 5189 if (Op->getNumOperands() < 2) 5190 continue; 5191 MDString *KindID = dyn_cast<MDString>(Op->getOperand(1)); 5192 if (!KindID || KindID->getString() != "kernel") 5193 continue; 5194 5195 Function *KernelFn = 5196 mdconst::dyn_extract_or_null<Function>(Op->getOperand(0)); 5197 if (!KernelFn) 5198 continue; 5199 5200 ++NumOpenMPTargetRegionKernels; 5201 5202 Kernels.insert(KernelFn); 5203 } 5204 5205 return Kernels; 5206 } 5207 5208 bool llvm::omp::containsOpenMP(Module &M) { 5209 Metadata *MD = M.getModuleFlag("openmp"); 5210 if (!MD) 5211 return false; 5212 5213 return true; 5214 } 5215 5216 bool llvm::omp::isOpenMPDevice(Module &M) { 5217 Metadata *MD = M.getModuleFlag("openmp-device"); 5218 if (!MD) 5219 return false; 5220 5221 return true; 5222 } 5223 5224 char OpenMPOptCGSCCLegacyPass::ID = 0; 5225 5226 INITIALIZE_PASS_BEGIN(OpenMPOptCGSCCLegacyPass, "openmp-opt-cgscc", 5227 "OpenMP specific optimizations", false, false) 5228 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass) 5229 INITIALIZE_PASS_END(OpenMPOptCGSCCLegacyPass, "openmp-opt-cgscc", 5230 "OpenMP specific optimizations", false, false) 5231 5232 Pass *llvm::createOpenMPOptCGSCCLegacyPass() { 5233 return new OpenMPOptCGSCCLegacyPass(); 5234 } 5235