1 //===-- IPO/OpenMPOpt.cpp - Collection of OpenMP specific optimizations ---===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // OpenMP specific optimizations: 10 // 11 // - Deduplication of runtime calls, e.g., omp_get_thread_num. 12 // - Replacing globalized device memory with stack memory. 13 // - Replacing globalized device memory with shared memory. 14 // - Parallel region merging. 15 // - Transforming generic-mode device kernels to SPMD mode. 16 // - Specializing the state machine for generic-mode device kernels. 17 // 18 //===----------------------------------------------------------------------===// 19 20 #include "llvm/Transforms/IPO/OpenMPOpt.h" 21 22 #include "llvm/ADT/EnumeratedArray.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/Analysis/CallGraph.h" 26 #include "llvm/Analysis/CallGraphSCCPass.h" 27 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 28 #include "llvm/Analysis/ValueTracking.h" 29 #include "llvm/Frontend/OpenMP/OMPConstants.h" 30 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 31 #include "llvm/IR/Assumptions.h" 32 #include "llvm/IR/DiagnosticInfo.h" 33 #include "llvm/IR/GlobalValue.h" 34 #include "llvm/IR/Instruction.h" 35 #include "llvm/IR/IntrinsicInst.h" 36 #include "llvm/InitializePasses.h" 37 #include "llvm/Support/CommandLine.h" 38 #include "llvm/Transforms/IPO.h" 39 #include "llvm/Transforms/IPO/Attributor.h" 40 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 41 #include "llvm/Transforms/Utils/CallGraphUpdater.h" 42 #include "llvm/Transforms/Utils/CodeExtractor.h" 43 44 using namespace llvm; 45 using namespace omp; 46 47 #define DEBUG_TYPE "openmp-opt" 48 49 static cl::opt<bool> DisableOpenMPOptimizations( 50 "openmp-opt-disable", cl::ZeroOrMore, 51 cl::desc("Disable OpenMP specific optimizations."), cl::Hidden, 52 cl::init(false)); 53 54 static cl::opt<bool> EnableParallelRegionMerging( 55 "openmp-opt-enable-merging", cl::ZeroOrMore, 56 cl::desc("Enable the OpenMP region merging optimization."), cl::Hidden, 57 cl::init(false)); 58 59 static cl::opt<bool> PrintICVValues("openmp-print-icv-values", cl::init(false), 60 cl::Hidden); 61 static cl::opt<bool> PrintOpenMPKernels("openmp-print-gpu-kernels", 62 cl::init(false), cl::Hidden); 63 64 static cl::opt<bool> HideMemoryTransferLatency( 65 "openmp-hide-memory-transfer-latency", 66 cl::desc("[WIP] Tries to hide the latency of host to device memory" 67 " transfers"), 68 cl::Hidden, cl::init(false)); 69 70 STATISTIC(NumOpenMPRuntimeCallsDeduplicated, 71 "Number of OpenMP runtime calls deduplicated"); 72 STATISTIC(NumOpenMPParallelRegionsDeleted, 73 "Number of OpenMP parallel regions deleted"); 74 STATISTIC(NumOpenMPRuntimeFunctionsIdentified, 75 "Number of OpenMP runtime functions identified"); 76 STATISTIC(NumOpenMPRuntimeFunctionUsesIdentified, 77 "Number of OpenMP runtime function uses identified"); 78 STATISTIC(NumOpenMPTargetRegionKernels, 79 "Number of OpenMP target region entry points (=kernels) identified"); 80 STATISTIC(NumOpenMPTargetRegionKernelsSPMD, 81 "Number of OpenMP target region entry points (=kernels) executed in " 82 "SPMD-mode instead of generic-mode"); 83 STATISTIC(NumOpenMPTargetRegionKernelsWithoutStateMachine, 84 "Number of OpenMP target region entry points (=kernels) executed in " 85 "generic-mode without a state machines"); 86 STATISTIC(NumOpenMPTargetRegionKernelsCustomStateMachineWithFallback, 87 "Number of OpenMP target region entry points (=kernels) executed in " 88 "generic-mode with customized state machines with fallback"); 89 STATISTIC(NumOpenMPTargetRegionKernelsCustomStateMachineWithoutFallback, 90 "Number of OpenMP target region entry points (=kernels) executed in " 91 "generic-mode with customized state machines without fallback"); 92 STATISTIC( 93 NumOpenMPParallelRegionsReplacedInGPUStateMachine, 94 "Number of OpenMP parallel regions replaced with ID in GPU state machines"); 95 STATISTIC(NumOpenMPParallelRegionsMerged, 96 "Number of OpenMP parallel regions merged"); 97 STATISTIC(NumBytesMovedToSharedMemory, 98 "Amount of memory pushed to shared memory"); 99 100 #if !defined(NDEBUG) 101 static constexpr auto TAG = "[" DEBUG_TYPE "]"; 102 #endif 103 104 namespace { 105 106 enum class AddressSpace : unsigned { 107 Generic = 0, 108 Global = 1, 109 Shared = 3, 110 Constant = 4, 111 Local = 5, 112 }; 113 114 struct AAHeapToShared; 115 116 struct AAICVTracker; 117 118 /// OpenMP specific information. For now, stores RFIs and ICVs also needed for 119 /// Attributor runs. 120 struct OMPInformationCache : public InformationCache { 121 OMPInformationCache(Module &M, AnalysisGetter &AG, 122 BumpPtrAllocator &Allocator, SetVector<Function *> &CGSCC, 123 SmallPtrSetImpl<Kernel> &Kernels) 124 : InformationCache(M, AG, Allocator, &CGSCC), OMPBuilder(M), 125 Kernels(Kernels) { 126 127 OMPBuilder.initialize(); 128 initializeRuntimeFunctions(); 129 initializeInternalControlVars(); 130 } 131 132 /// Generic information that describes an internal control variable. 133 struct InternalControlVarInfo { 134 /// The kind, as described by InternalControlVar enum. 135 InternalControlVar Kind; 136 137 /// The name of the ICV. 138 StringRef Name; 139 140 /// Environment variable associated with this ICV. 141 StringRef EnvVarName; 142 143 /// Initial value kind. 144 ICVInitValue InitKind; 145 146 /// Initial value. 147 ConstantInt *InitValue; 148 149 /// Setter RTL function associated with this ICV. 150 RuntimeFunction Setter; 151 152 /// Getter RTL function associated with this ICV. 153 RuntimeFunction Getter; 154 155 /// RTL Function corresponding to the override clause of this ICV 156 RuntimeFunction Clause; 157 }; 158 159 /// Generic information that describes a runtime function 160 struct RuntimeFunctionInfo { 161 162 /// The kind, as described by the RuntimeFunction enum. 163 RuntimeFunction Kind; 164 165 /// The name of the function. 166 StringRef Name; 167 168 /// Flag to indicate a variadic function. 169 bool IsVarArg; 170 171 /// The return type of the function. 172 Type *ReturnType; 173 174 /// The argument types of the function. 175 SmallVector<Type *, 8> ArgumentTypes; 176 177 /// The declaration if available. 178 Function *Declaration = nullptr; 179 180 /// Uses of this runtime function per function containing the use. 181 using UseVector = SmallVector<Use *, 16>; 182 183 /// Clear UsesMap for runtime function. 184 void clearUsesMap() { UsesMap.clear(); } 185 186 /// Boolean conversion that is true if the runtime function was found. 187 operator bool() const { return Declaration; } 188 189 /// Return the vector of uses in function \p F. 190 UseVector &getOrCreateUseVector(Function *F) { 191 std::shared_ptr<UseVector> &UV = UsesMap[F]; 192 if (!UV) 193 UV = std::make_shared<UseVector>(); 194 return *UV; 195 } 196 197 /// Return the vector of uses in function \p F or `nullptr` if there are 198 /// none. 199 const UseVector *getUseVector(Function &F) const { 200 auto I = UsesMap.find(&F); 201 if (I != UsesMap.end()) 202 return I->second.get(); 203 return nullptr; 204 } 205 206 /// Return how many functions contain uses of this runtime function. 207 size_t getNumFunctionsWithUses() const { return UsesMap.size(); } 208 209 /// Return the number of arguments (or the minimal number for variadic 210 /// functions). 211 size_t getNumArgs() const { return ArgumentTypes.size(); } 212 213 /// Run the callback \p CB on each use and forget the use if the result is 214 /// true. The callback will be fed the function in which the use was 215 /// encountered as second argument. 216 void foreachUse(SmallVectorImpl<Function *> &SCC, 217 function_ref<bool(Use &, Function &)> CB) { 218 for (Function *F : SCC) 219 foreachUse(CB, F); 220 } 221 222 /// Run the callback \p CB on each use within the function \p F and forget 223 /// the use if the result is true. 224 void foreachUse(function_ref<bool(Use &, Function &)> CB, Function *F) { 225 SmallVector<unsigned, 8> ToBeDeleted; 226 ToBeDeleted.clear(); 227 228 unsigned Idx = 0; 229 UseVector &UV = getOrCreateUseVector(F); 230 231 for (Use *U : UV) { 232 if (CB(*U, *F)) 233 ToBeDeleted.push_back(Idx); 234 ++Idx; 235 } 236 237 // Remove the to-be-deleted indices in reverse order as prior 238 // modifications will not modify the smaller indices. 239 while (!ToBeDeleted.empty()) { 240 unsigned Idx = ToBeDeleted.pop_back_val(); 241 UV[Idx] = UV.back(); 242 UV.pop_back(); 243 } 244 } 245 246 private: 247 /// Map from functions to all uses of this runtime function contained in 248 /// them. 249 DenseMap<Function *, std::shared_ptr<UseVector>> UsesMap; 250 251 public: 252 /// Iterators for the uses of this runtime function. 253 decltype(UsesMap)::iterator begin() { return UsesMap.begin(); } 254 decltype(UsesMap)::iterator end() { return UsesMap.end(); } 255 }; 256 257 /// An OpenMP-IR-Builder instance 258 OpenMPIRBuilder OMPBuilder; 259 260 /// Map from runtime function kind to the runtime function description. 261 EnumeratedArray<RuntimeFunctionInfo, RuntimeFunction, 262 RuntimeFunction::OMPRTL___last> 263 RFIs; 264 265 /// Map from function declarations/definitions to their runtime enum type. 266 DenseMap<Function *, RuntimeFunction> RuntimeFunctionIDMap; 267 268 /// Map from ICV kind to the ICV description. 269 EnumeratedArray<InternalControlVarInfo, InternalControlVar, 270 InternalControlVar::ICV___last> 271 ICVs; 272 273 /// Helper to initialize all internal control variable information for those 274 /// defined in OMPKinds.def. 275 void initializeInternalControlVars() { 276 #define ICV_RT_SET(_Name, RTL) \ 277 { \ 278 auto &ICV = ICVs[_Name]; \ 279 ICV.Setter = RTL; \ 280 } 281 #define ICV_RT_GET(Name, RTL) \ 282 { \ 283 auto &ICV = ICVs[Name]; \ 284 ICV.Getter = RTL; \ 285 } 286 #define ICV_DATA_ENV(Enum, _Name, _EnvVarName, Init) \ 287 { \ 288 auto &ICV = ICVs[Enum]; \ 289 ICV.Name = _Name; \ 290 ICV.Kind = Enum; \ 291 ICV.InitKind = Init; \ 292 ICV.EnvVarName = _EnvVarName; \ 293 switch (ICV.InitKind) { \ 294 case ICV_IMPLEMENTATION_DEFINED: \ 295 ICV.InitValue = nullptr; \ 296 break; \ 297 case ICV_ZERO: \ 298 ICV.InitValue = ConstantInt::get( \ 299 Type::getInt32Ty(OMPBuilder.Int32->getContext()), 0); \ 300 break; \ 301 case ICV_FALSE: \ 302 ICV.InitValue = ConstantInt::getFalse(OMPBuilder.Int1->getContext()); \ 303 break; \ 304 case ICV_LAST: \ 305 break; \ 306 } \ 307 } 308 #include "llvm/Frontend/OpenMP/OMPKinds.def" 309 } 310 311 /// Returns true if the function declaration \p F matches the runtime 312 /// function types, that is, return type \p RTFRetType, and argument types 313 /// \p RTFArgTypes. 314 static bool declMatchesRTFTypes(Function *F, Type *RTFRetType, 315 SmallVector<Type *, 8> &RTFArgTypes) { 316 // TODO: We should output information to the user (under debug output 317 // and via remarks). 318 319 if (!F) 320 return false; 321 if (F->getReturnType() != RTFRetType) 322 return false; 323 if (F->arg_size() != RTFArgTypes.size()) 324 return false; 325 326 auto RTFTyIt = RTFArgTypes.begin(); 327 for (Argument &Arg : F->args()) { 328 if (Arg.getType() != *RTFTyIt) 329 return false; 330 331 ++RTFTyIt; 332 } 333 334 return true; 335 } 336 337 // Helper to collect all uses of the declaration in the UsesMap. 338 unsigned collectUses(RuntimeFunctionInfo &RFI, bool CollectStats = true) { 339 unsigned NumUses = 0; 340 if (!RFI.Declaration) 341 return NumUses; 342 OMPBuilder.addAttributes(RFI.Kind, *RFI.Declaration); 343 344 if (CollectStats) { 345 NumOpenMPRuntimeFunctionsIdentified += 1; 346 NumOpenMPRuntimeFunctionUsesIdentified += RFI.Declaration->getNumUses(); 347 } 348 349 // TODO: We directly convert uses into proper calls and unknown uses. 350 for (Use &U : RFI.Declaration->uses()) { 351 if (Instruction *UserI = dyn_cast<Instruction>(U.getUser())) { 352 if (ModuleSlice.count(UserI->getFunction())) { 353 RFI.getOrCreateUseVector(UserI->getFunction()).push_back(&U); 354 ++NumUses; 355 } 356 } else { 357 RFI.getOrCreateUseVector(nullptr).push_back(&U); 358 ++NumUses; 359 } 360 } 361 return NumUses; 362 } 363 364 // Helper function to recollect uses of a runtime function. 365 void recollectUsesForFunction(RuntimeFunction RTF) { 366 auto &RFI = RFIs[RTF]; 367 RFI.clearUsesMap(); 368 collectUses(RFI, /*CollectStats*/ false); 369 } 370 371 // Helper function to recollect uses of all runtime functions. 372 void recollectUses() { 373 for (int Idx = 0; Idx < RFIs.size(); ++Idx) 374 recollectUsesForFunction(static_cast<RuntimeFunction>(Idx)); 375 } 376 377 /// Helper to initialize all runtime function information for those defined 378 /// in OpenMPKinds.def. 379 void initializeRuntimeFunctions() { 380 Module &M = *((*ModuleSlice.begin())->getParent()); 381 382 // Helper macros for handling __VA_ARGS__ in OMP_RTL 383 #define OMP_TYPE(VarName, ...) \ 384 Type *VarName = OMPBuilder.VarName; \ 385 (void)VarName; 386 387 #define OMP_ARRAY_TYPE(VarName, ...) \ 388 ArrayType *VarName##Ty = OMPBuilder.VarName##Ty; \ 389 (void)VarName##Ty; \ 390 PointerType *VarName##PtrTy = OMPBuilder.VarName##PtrTy; \ 391 (void)VarName##PtrTy; 392 393 #define OMP_FUNCTION_TYPE(VarName, ...) \ 394 FunctionType *VarName = OMPBuilder.VarName; \ 395 (void)VarName; \ 396 PointerType *VarName##Ptr = OMPBuilder.VarName##Ptr; \ 397 (void)VarName##Ptr; 398 399 #define OMP_STRUCT_TYPE(VarName, ...) \ 400 StructType *VarName = OMPBuilder.VarName; \ 401 (void)VarName; \ 402 PointerType *VarName##Ptr = OMPBuilder.VarName##Ptr; \ 403 (void)VarName##Ptr; 404 405 #define OMP_RTL(_Enum, _Name, _IsVarArg, _ReturnType, ...) \ 406 { \ 407 SmallVector<Type *, 8> ArgsTypes({__VA_ARGS__}); \ 408 Function *F = M.getFunction(_Name); \ 409 RTLFunctions.insert(F); \ 410 if (declMatchesRTFTypes(F, OMPBuilder._ReturnType, ArgsTypes)) { \ 411 RuntimeFunctionIDMap[F] = _Enum; \ 412 auto &RFI = RFIs[_Enum]; \ 413 RFI.Kind = _Enum; \ 414 RFI.Name = _Name; \ 415 RFI.IsVarArg = _IsVarArg; \ 416 RFI.ReturnType = OMPBuilder._ReturnType; \ 417 RFI.ArgumentTypes = std::move(ArgsTypes); \ 418 RFI.Declaration = F; \ 419 unsigned NumUses = collectUses(RFI); \ 420 (void)NumUses; \ 421 LLVM_DEBUG({ \ 422 dbgs() << TAG << RFI.Name << (RFI.Declaration ? "" : " not") \ 423 << " found\n"; \ 424 if (RFI.Declaration) \ 425 dbgs() << TAG << "-> got " << NumUses << " uses in " \ 426 << RFI.getNumFunctionsWithUses() \ 427 << " different functions.\n"; \ 428 }); \ 429 } \ 430 } 431 #include "llvm/Frontend/OpenMP/OMPKinds.def" 432 433 // TODO: We should attach the attributes defined in OMPKinds.def. 434 } 435 436 /// Collection of known kernels (\see Kernel) in the module. 437 SmallPtrSetImpl<Kernel> &Kernels; 438 439 /// Collection of known OpenMP runtime functions.. 440 DenseSet<const Function *> RTLFunctions; 441 }; 442 443 template <typename Ty, bool InsertInvalidates = true> 444 struct BooleanStateWithPtrSetVector : public BooleanState { 445 446 bool contains(Ty *Elem) const { return Set.contains(Elem); } 447 bool insert(Ty *Elem) { 448 if (InsertInvalidates) 449 BooleanState::indicatePessimisticFixpoint(); 450 return Set.insert(Elem); 451 } 452 453 Ty *operator[](int Idx) const { return Set[Idx]; } 454 bool operator==(const BooleanStateWithPtrSetVector &RHS) const { 455 return BooleanState::operator==(RHS) && Set == RHS.Set; 456 } 457 bool operator!=(const BooleanStateWithPtrSetVector &RHS) const { 458 return !(*this == RHS); 459 } 460 461 bool empty() const { return Set.empty(); } 462 size_t size() const { return Set.size(); } 463 464 /// "Clamp" this state with \p RHS. 465 BooleanStateWithPtrSetVector & 466 operator^=(const BooleanStateWithPtrSetVector &RHS) { 467 BooleanState::operator^=(RHS); 468 Set.insert(RHS.Set.begin(), RHS.Set.end()); 469 return *this; 470 } 471 472 private: 473 /// A set to keep track of elements. 474 SetVector<Ty *> Set; 475 476 public: 477 typename decltype(Set)::iterator begin() { return Set.begin(); } 478 typename decltype(Set)::iterator end() { return Set.end(); } 479 typename decltype(Set)::const_iterator begin() const { return Set.begin(); } 480 typename decltype(Set)::const_iterator end() const { return Set.end(); } 481 }; 482 483 struct KernelInfoState : AbstractState { 484 /// Flag to track if we reached a fixpoint. 485 bool IsAtFixpoint = false; 486 487 /// The parallel regions (identified by the outlined parallel functions) that 488 /// can be reached from the associated function. 489 BooleanStateWithPtrSetVector<Function, /* InsertInvalidates */ false> 490 ReachedKnownParallelRegions; 491 492 /// State to track what parallel region we might reach. 493 BooleanStateWithPtrSetVector<CallBase> ReachedUnknownParallelRegions; 494 495 /// State to track if we are in SPMD-mode, assumed or know, and why we decided 496 /// we cannot be. If it is assumed, then RequiresFullRuntime should also be 497 /// false. 498 BooleanStateWithPtrSetVector<Instruction> SPMDCompatibilityTracker; 499 500 /// The __kmpc_target_init call in this kernel, if any. If we find more than 501 /// one we abort as the kernel is malformed. 502 CallBase *KernelInitCB = nullptr; 503 504 /// The __kmpc_target_deinit call in this kernel, if any. If we find more than 505 /// one we abort as the kernel is malformed. 506 CallBase *KernelDeinitCB = nullptr; 507 508 /// Flag to indicate if the associated function is a kernel entry. 509 bool IsKernelEntry = false; 510 511 /// State to track what kernel entries can reach the associated function. 512 BooleanStateWithPtrSetVector<Function, false> ReachingKernelEntries; 513 514 /// Abstract State interface 515 ///{ 516 517 KernelInfoState() {} 518 KernelInfoState(bool BestState) { 519 if (!BestState) 520 indicatePessimisticFixpoint(); 521 } 522 523 /// See AbstractState::isValidState(...) 524 bool isValidState() const override { return true; } 525 526 /// See AbstractState::isAtFixpoint(...) 527 bool isAtFixpoint() const override { return IsAtFixpoint; } 528 529 /// See AbstractState::indicatePessimisticFixpoint(...) 530 ChangeStatus indicatePessimisticFixpoint() override { 531 IsAtFixpoint = true; 532 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 533 ReachedUnknownParallelRegions.indicatePessimisticFixpoint(); 534 return ChangeStatus::CHANGED; 535 } 536 537 /// See AbstractState::indicateOptimisticFixpoint(...) 538 ChangeStatus indicateOptimisticFixpoint() override { 539 IsAtFixpoint = true; 540 return ChangeStatus::UNCHANGED; 541 } 542 543 /// Return the assumed state 544 KernelInfoState &getAssumed() { return *this; } 545 const KernelInfoState &getAssumed() const { return *this; } 546 547 bool operator==(const KernelInfoState &RHS) const { 548 if (SPMDCompatibilityTracker != RHS.SPMDCompatibilityTracker) 549 return false; 550 if (ReachedKnownParallelRegions != RHS.ReachedKnownParallelRegions) 551 return false; 552 if (ReachedUnknownParallelRegions != RHS.ReachedUnknownParallelRegions) 553 return false; 554 if (ReachingKernelEntries != RHS.ReachingKernelEntries) 555 return false; 556 return true; 557 } 558 559 /// Return empty set as the best state of potential values. 560 static KernelInfoState getBestState() { return KernelInfoState(true); } 561 562 static KernelInfoState getBestState(KernelInfoState &KIS) { 563 return getBestState(); 564 } 565 566 /// Return full set as the worst state of potential values. 567 static KernelInfoState getWorstState() { return KernelInfoState(false); } 568 569 /// "Clamp" this state with \p KIS. 570 KernelInfoState operator^=(const KernelInfoState &KIS) { 571 // Do not merge two different _init and _deinit call sites. 572 if (KIS.KernelInitCB) { 573 if (KernelInitCB && KernelInitCB != KIS.KernelInitCB) 574 indicatePessimisticFixpoint(); 575 KernelInitCB = KIS.KernelInitCB; 576 } 577 if (KIS.KernelDeinitCB) { 578 if (KernelDeinitCB && KernelDeinitCB != KIS.KernelDeinitCB) 579 indicatePessimisticFixpoint(); 580 KernelDeinitCB = KIS.KernelDeinitCB; 581 } 582 SPMDCompatibilityTracker ^= KIS.SPMDCompatibilityTracker; 583 ReachedKnownParallelRegions ^= KIS.ReachedKnownParallelRegions; 584 ReachedUnknownParallelRegions ^= KIS.ReachedUnknownParallelRegions; 585 return *this; 586 } 587 588 KernelInfoState operator&=(const KernelInfoState &KIS) { 589 return (*this ^= KIS); 590 } 591 592 ///} 593 }; 594 595 /// Used to map the values physically (in the IR) stored in an offload 596 /// array, to a vector in memory. 597 struct OffloadArray { 598 /// Physical array (in the IR). 599 AllocaInst *Array = nullptr; 600 /// Mapped values. 601 SmallVector<Value *, 8> StoredValues; 602 /// Last stores made in the offload array. 603 SmallVector<StoreInst *, 8> LastAccesses; 604 605 OffloadArray() = default; 606 607 /// Initializes the OffloadArray with the values stored in \p Array before 608 /// instruction \p Before is reached. Returns false if the initialization 609 /// fails. 610 /// This MUST be used immediately after the construction of the object. 611 bool initialize(AllocaInst &Array, Instruction &Before) { 612 if (!Array.getAllocatedType()->isArrayTy()) 613 return false; 614 615 if (!getValues(Array, Before)) 616 return false; 617 618 this->Array = &Array; 619 return true; 620 } 621 622 static const unsigned DeviceIDArgNum = 1; 623 static const unsigned BasePtrsArgNum = 3; 624 static const unsigned PtrsArgNum = 4; 625 static const unsigned SizesArgNum = 5; 626 627 private: 628 /// Traverses the BasicBlock where \p Array is, collecting the stores made to 629 /// \p Array, leaving StoredValues with the values stored before the 630 /// instruction \p Before is reached. 631 bool getValues(AllocaInst &Array, Instruction &Before) { 632 // Initialize container. 633 const uint64_t NumValues = Array.getAllocatedType()->getArrayNumElements(); 634 StoredValues.assign(NumValues, nullptr); 635 LastAccesses.assign(NumValues, nullptr); 636 637 // TODO: This assumes the instruction \p Before is in the same 638 // BasicBlock as Array. Make it general, for any control flow graph. 639 BasicBlock *BB = Array.getParent(); 640 if (BB != Before.getParent()) 641 return false; 642 643 const DataLayout &DL = Array.getModule()->getDataLayout(); 644 const unsigned int PointerSize = DL.getPointerSize(); 645 646 for (Instruction &I : *BB) { 647 if (&I == &Before) 648 break; 649 650 if (!isa<StoreInst>(&I)) 651 continue; 652 653 auto *S = cast<StoreInst>(&I); 654 int64_t Offset = -1; 655 auto *Dst = 656 GetPointerBaseWithConstantOffset(S->getPointerOperand(), Offset, DL); 657 if (Dst == &Array) { 658 int64_t Idx = Offset / PointerSize; 659 StoredValues[Idx] = getUnderlyingObject(S->getValueOperand()); 660 LastAccesses[Idx] = S; 661 } 662 } 663 664 return isFilled(); 665 } 666 667 /// Returns true if all values in StoredValues and 668 /// LastAccesses are not nullptrs. 669 bool isFilled() { 670 const unsigned NumValues = StoredValues.size(); 671 for (unsigned I = 0; I < NumValues; ++I) { 672 if (!StoredValues[I] || !LastAccesses[I]) 673 return false; 674 } 675 676 return true; 677 } 678 }; 679 680 struct OpenMPOpt { 681 682 using OptimizationRemarkGetter = 683 function_ref<OptimizationRemarkEmitter &(Function *)>; 684 685 OpenMPOpt(SmallVectorImpl<Function *> &SCC, CallGraphUpdater &CGUpdater, 686 OptimizationRemarkGetter OREGetter, 687 OMPInformationCache &OMPInfoCache, Attributor &A) 688 : M(*(*SCC.begin())->getParent()), SCC(SCC), CGUpdater(CGUpdater), 689 OREGetter(OREGetter), OMPInfoCache(OMPInfoCache), A(A) {} 690 691 /// Check if any remarks are enabled for openmp-opt 692 bool remarksEnabled() { 693 auto &Ctx = M.getContext(); 694 return Ctx.getDiagHandlerPtr()->isAnyRemarkEnabled(DEBUG_TYPE); 695 } 696 697 /// Run all OpenMP optimizations on the underlying SCC/ModuleSlice. 698 bool run(bool IsModulePass) { 699 if (SCC.empty()) 700 return false; 701 702 bool Changed = false; 703 704 LLVM_DEBUG(dbgs() << TAG << "Run on SCC with " << SCC.size() 705 << " functions in a slice with " 706 << OMPInfoCache.ModuleSlice.size() << " functions\n"); 707 708 if (IsModulePass) { 709 Changed |= runAttributor(IsModulePass); 710 711 // Recollect uses, in case Attributor deleted any. 712 OMPInfoCache.recollectUses(); 713 714 if (remarksEnabled()) 715 analysisGlobalization(); 716 } else { 717 if (PrintICVValues) 718 printICVs(); 719 if (PrintOpenMPKernels) 720 printKernels(); 721 722 Changed |= runAttributor(IsModulePass); 723 724 // Recollect uses, in case Attributor deleted any. 725 OMPInfoCache.recollectUses(); 726 727 Changed |= deleteParallelRegions(); 728 Changed |= rewriteDeviceCodeStateMachine(); 729 730 if (HideMemoryTransferLatency) 731 Changed |= hideMemTransfersLatency(); 732 Changed |= deduplicateRuntimeCalls(); 733 if (EnableParallelRegionMerging) { 734 if (mergeParallelRegions()) { 735 deduplicateRuntimeCalls(); 736 Changed = true; 737 } 738 } 739 } 740 741 return Changed; 742 } 743 744 /// Print initial ICV values for testing. 745 /// FIXME: This should be done from the Attributor once it is added. 746 void printICVs() const { 747 InternalControlVar ICVs[] = {ICV_nthreads, ICV_active_levels, ICV_cancel, 748 ICV_proc_bind}; 749 750 for (Function *F : OMPInfoCache.ModuleSlice) { 751 for (auto ICV : ICVs) { 752 auto ICVInfo = OMPInfoCache.ICVs[ICV]; 753 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 754 return ORA << "OpenMP ICV " << ore::NV("OpenMPICV", ICVInfo.Name) 755 << " Value: " 756 << (ICVInfo.InitValue 757 ? toString(ICVInfo.InitValue->getValue(), 10, true) 758 : "IMPLEMENTATION_DEFINED"); 759 }; 760 761 emitRemark<OptimizationRemarkAnalysis>(F, "OpenMPICVTracker", Remark); 762 } 763 } 764 } 765 766 /// Print OpenMP GPU kernels for testing. 767 void printKernels() const { 768 for (Function *F : SCC) { 769 if (!OMPInfoCache.Kernels.count(F)) 770 continue; 771 772 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 773 return ORA << "OpenMP GPU kernel " 774 << ore::NV("OpenMPGPUKernel", F->getName()) << "\n"; 775 }; 776 777 emitRemark<OptimizationRemarkAnalysis>(F, "OpenMPGPU", Remark); 778 } 779 } 780 781 /// Return the call if \p U is a callee use in a regular call. If \p RFI is 782 /// given it has to be the callee or a nullptr is returned. 783 static CallInst *getCallIfRegularCall( 784 Use &U, OMPInformationCache::RuntimeFunctionInfo *RFI = nullptr) { 785 CallInst *CI = dyn_cast<CallInst>(U.getUser()); 786 if (CI && CI->isCallee(&U) && !CI->hasOperandBundles() && 787 (!RFI || CI->getCalledFunction() == RFI->Declaration)) 788 return CI; 789 return nullptr; 790 } 791 792 /// Return the call if \p V is a regular call. If \p RFI is given it has to be 793 /// the callee or a nullptr is returned. 794 static CallInst *getCallIfRegularCall( 795 Value &V, OMPInformationCache::RuntimeFunctionInfo *RFI = nullptr) { 796 CallInst *CI = dyn_cast<CallInst>(&V); 797 if (CI && !CI->hasOperandBundles() && 798 (!RFI || CI->getCalledFunction() == RFI->Declaration)) 799 return CI; 800 return nullptr; 801 } 802 803 private: 804 /// Merge parallel regions when it is safe. 805 bool mergeParallelRegions() { 806 const unsigned CallbackCalleeOperand = 2; 807 const unsigned CallbackFirstArgOperand = 3; 808 using InsertPointTy = OpenMPIRBuilder::InsertPointTy; 809 810 // Check if there are any __kmpc_fork_call calls to merge. 811 OMPInformationCache::RuntimeFunctionInfo &RFI = 812 OMPInfoCache.RFIs[OMPRTL___kmpc_fork_call]; 813 814 if (!RFI.Declaration) 815 return false; 816 817 // Unmergable calls that prevent merging a parallel region. 818 OMPInformationCache::RuntimeFunctionInfo UnmergableCallsInfo[] = { 819 OMPInfoCache.RFIs[OMPRTL___kmpc_push_proc_bind], 820 OMPInfoCache.RFIs[OMPRTL___kmpc_push_num_threads], 821 }; 822 823 bool Changed = false; 824 LoopInfo *LI = nullptr; 825 DominatorTree *DT = nullptr; 826 827 SmallDenseMap<BasicBlock *, SmallPtrSet<Instruction *, 4>> BB2PRMap; 828 829 BasicBlock *StartBB = nullptr, *EndBB = nullptr; 830 auto BodyGenCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, 831 BasicBlock &ContinuationIP) { 832 BasicBlock *CGStartBB = CodeGenIP.getBlock(); 833 BasicBlock *CGEndBB = 834 SplitBlock(CGStartBB, &*CodeGenIP.getPoint(), DT, LI); 835 assert(StartBB != nullptr && "StartBB should not be null"); 836 CGStartBB->getTerminator()->setSuccessor(0, StartBB); 837 assert(EndBB != nullptr && "EndBB should not be null"); 838 EndBB->getTerminator()->setSuccessor(0, CGEndBB); 839 }; 840 841 auto PrivCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, Value &, 842 Value &Inner, Value *&ReplacementValue) -> InsertPointTy { 843 ReplacementValue = &Inner; 844 return CodeGenIP; 845 }; 846 847 auto FiniCB = [&](InsertPointTy CodeGenIP) {}; 848 849 /// Create a sequential execution region within a merged parallel region, 850 /// encapsulated in a master construct with a barrier for synchronization. 851 auto CreateSequentialRegion = [&](Function *OuterFn, 852 BasicBlock *OuterPredBB, 853 Instruction *SeqStartI, 854 Instruction *SeqEndI) { 855 // Isolate the instructions of the sequential region to a separate 856 // block. 857 BasicBlock *ParentBB = SeqStartI->getParent(); 858 BasicBlock *SeqEndBB = 859 SplitBlock(ParentBB, SeqEndI->getNextNode(), DT, LI); 860 BasicBlock *SeqAfterBB = 861 SplitBlock(SeqEndBB, &*SeqEndBB->getFirstInsertionPt(), DT, LI); 862 BasicBlock *SeqStartBB = 863 SplitBlock(ParentBB, SeqStartI, DT, LI, nullptr, "seq.par.merged"); 864 865 assert(ParentBB->getUniqueSuccessor() == SeqStartBB && 866 "Expected a different CFG"); 867 const DebugLoc DL = ParentBB->getTerminator()->getDebugLoc(); 868 ParentBB->getTerminator()->eraseFromParent(); 869 870 auto BodyGenCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, 871 BasicBlock &ContinuationIP) { 872 BasicBlock *CGStartBB = CodeGenIP.getBlock(); 873 BasicBlock *CGEndBB = 874 SplitBlock(CGStartBB, &*CodeGenIP.getPoint(), DT, LI); 875 assert(SeqStartBB != nullptr && "SeqStartBB should not be null"); 876 CGStartBB->getTerminator()->setSuccessor(0, SeqStartBB); 877 assert(SeqEndBB != nullptr && "SeqEndBB should not be null"); 878 SeqEndBB->getTerminator()->setSuccessor(0, CGEndBB); 879 }; 880 auto FiniCB = [&](InsertPointTy CodeGenIP) {}; 881 882 // Find outputs from the sequential region to outside users and 883 // broadcast their values to them. 884 for (Instruction &I : *SeqStartBB) { 885 SmallPtrSet<Instruction *, 4> OutsideUsers; 886 for (User *Usr : I.users()) { 887 Instruction &UsrI = *cast<Instruction>(Usr); 888 // Ignore outputs to LT intrinsics, code extraction for the merged 889 // parallel region will fix them. 890 if (UsrI.isLifetimeStartOrEnd()) 891 continue; 892 893 if (UsrI.getParent() != SeqStartBB) 894 OutsideUsers.insert(&UsrI); 895 } 896 897 if (OutsideUsers.empty()) 898 continue; 899 900 // Emit an alloca in the outer region to store the broadcasted 901 // value. 902 const DataLayout &DL = M.getDataLayout(); 903 AllocaInst *AllocaI = new AllocaInst( 904 I.getType(), DL.getAllocaAddrSpace(), nullptr, 905 I.getName() + ".seq.output.alloc", &OuterFn->front().front()); 906 907 // Emit a store instruction in the sequential BB to update the 908 // value. 909 new StoreInst(&I, AllocaI, SeqStartBB->getTerminator()); 910 911 // Emit a load instruction and replace the use of the output value 912 // with it. 913 for (Instruction *UsrI : OutsideUsers) { 914 LoadInst *LoadI = new LoadInst( 915 I.getType(), AllocaI, I.getName() + ".seq.output.load", UsrI); 916 UsrI->replaceUsesOfWith(&I, LoadI); 917 } 918 } 919 920 OpenMPIRBuilder::LocationDescription Loc( 921 InsertPointTy(ParentBB, ParentBB->end()), DL); 922 InsertPointTy SeqAfterIP = 923 OMPInfoCache.OMPBuilder.createMaster(Loc, BodyGenCB, FiniCB); 924 925 OMPInfoCache.OMPBuilder.createBarrier(SeqAfterIP, OMPD_parallel); 926 927 BranchInst::Create(SeqAfterBB, SeqAfterIP.getBlock()); 928 929 LLVM_DEBUG(dbgs() << TAG << "After sequential inlining " << *OuterFn 930 << "\n"); 931 }; 932 933 // Helper to merge the __kmpc_fork_call calls in MergableCIs. They are all 934 // contained in BB and only separated by instructions that can be 935 // redundantly executed in parallel. The block BB is split before the first 936 // call (in MergableCIs) and after the last so the entire region we merge 937 // into a single parallel region is contained in a single basic block 938 // without any other instructions. We use the OpenMPIRBuilder to outline 939 // that block and call the resulting function via __kmpc_fork_call. 940 auto Merge = [&](SmallVectorImpl<CallInst *> &MergableCIs, BasicBlock *BB) { 941 // TODO: Change the interface to allow single CIs expanded, e.g, to 942 // include an outer loop. 943 assert(MergableCIs.size() > 1 && "Assumed multiple mergable CIs"); 944 945 auto Remark = [&](OptimizationRemark OR) { 946 OR << "Parallel region merged with parallel region" 947 << (MergableCIs.size() > 2 ? "s" : "") << " at "; 948 for (auto *CI : llvm::drop_begin(MergableCIs)) { 949 OR << ore::NV("OpenMPParallelMerge", CI->getDebugLoc()); 950 if (CI != MergableCIs.back()) 951 OR << ", "; 952 } 953 return OR << "."; 954 }; 955 956 emitRemark<OptimizationRemark>(MergableCIs.front(), "OMP150", Remark); 957 958 Function *OriginalFn = BB->getParent(); 959 LLVM_DEBUG(dbgs() << TAG << "Merge " << MergableCIs.size() 960 << " parallel regions in " << OriginalFn->getName() 961 << "\n"); 962 963 // Isolate the calls to merge in a separate block. 964 EndBB = SplitBlock(BB, MergableCIs.back()->getNextNode(), DT, LI); 965 BasicBlock *AfterBB = 966 SplitBlock(EndBB, &*EndBB->getFirstInsertionPt(), DT, LI); 967 StartBB = SplitBlock(BB, MergableCIs.front(), DT, LI, nullptr, 968 "omp.par.merged"); 969 970 assert(BB->getUniqueSuccessor() == StartBB && "Expected a different CFG"); 971 const DebugLoc DL = BB->getTerminator()->getDebugLoc(); 972 BB->getTerminator()->eraseFromParent(); 973 974 // Create sequential regions for sequential instructions that are 975 // in-between mergable parallel regions. 976 for (auto *It = MergableCIs.begin(), *End = MergableCIs.end() - 1; 977 It != End; ++It) { 978 Instruction *ForkCI = *It; 979 Instruction *NextForkCI = *(It + 1); 980 981 // Continue if there are not in-between instructions. 982 if (ForkCI->getNextNode() == NextForkCI) 983 continue; 984 985 CreateSequentialRegion(OriginalFn, BB, ForkCI->getNextNode(), 986 NextForkCI->getPrevNode()); 987 } 988 989 OpenMPIRBuilder::LocationDescription Loc(InsertPointTy(BB, BB->end()), 990 DL); 991 IRBuilder<>::InsertPoint AllocaIP( 992 &OriginalFn->getEntryBlock(), 993 OriginalFn->getEntryBlock().getFirstInsertionPt()); 994 // Create the merged parallel region with default proc binding, to 995 // avoid overriding binding settings, and without explicit cancellation. 996 InsertPointTy AfterIP = OMPInfoCache.OMPBuilder.createParallel( 997 Loc, AllocaIP, BodyGenCB, PrivCB, FiniCB, nullptr, nullptr, 998 OMP_PROC_BIND_default, /* IsCancellable */ false); 999 BranchInst::Create(AfterBB, AfterIP.getBlock()); 1000 1001 // Perform the actual outlining. 1002 OMPInfoCache.OMPBuilder.finalize(OriginalFn, 1003 /* AllowExtractorSinking */ true); 1004 1005 Function *OutlinedFn = MergableCIs.front()->getCaller(); 1006 1007 // Replace the __kmpc_fork_call calls with direct calls to the outlined 1008 // callbacks. 1009 SmallVector<Value *, 8> Args; 1010 for (auto *CI : MergableCIs) { 1011 Value *Callee = 1012 CI->getArgOperand(CallbackCalleeOperand)->stripPointerCasts(); 1013 FunctionType *FT = 1014 cast<FunctionType>(Callee->getType()->getPointerElementType()); 1015 Args.clear(); 1016 Args.push_back(OutlinedFn->getArg(0)); 1017 Args.push_back(OutlinedFn->getArg(1)); 1018 for (unsigned U = CallbackFirstArgOperand, E = CI->getNumArgOperands(); 1019 U < E; ++U) 1020 Args.push_back(CI->getArgOperand(U)); 1021 1022 CallInst *NewCI = CallInst::Create(FT, Callee, Args, "", CI); 1023 if (CI->getDebugLoc()) 1024 NewCI->setDebugLoc(CI->getDebugLoc()); 1025 1026 // Forward parameter attributes from the callback to the callee. 1027 for (unsigned U = CallbackFirstArgOperand, E = CI->getNumArgOperands(); 1028 U < E; ++U) 1029 for (const Attribute &A : CI->getAttributes().getParamAttributes(U)) 1030 NewCI->addParamAttr( 1031 U - (CallbackFirstArgOperand - CallbackCalleeOperand), A); 1032 1033 // Emit an explicit barrier to replace the implicit fork-join barrier. 1034 if (CI != MergableCIs.back()) { 1035 // TODO: Remove barrier if the merged parallel region includes the 1036 // 'nowait' clause. 1037 OMPInfoCache.OMPBuilder.createBarrier( 1038 InsertPointTy(NewCI->getParent(), 1039 NewCI->getNextNode()->getIterator()), 1040 OMPD_parallel); 1041 } 1042 1043 CI->eraseFromParent(); 1044 } 1045 1046 assert(OutlinedFn != OriginalFn && "Outlining failed"); 1047 CGUpdater.registerOutlinedFunction(*OriginalFn, *OutlinedFn); 1048 CGUpdater.reanalyzeFunction(*OriginalFn); 1049 1050 NumOpenMPParallelRegionsMerged += MergableCIs.size(); 1051 1052 return true; 1053 }; 1054 1055 // Helper function that identifes sequences of 1056 // __kmpc_fork_call uses in a basic block. 1057 auto DetectPRsCB = [&](Use &U, Function &F) { 1058 CallInst *CI = getCallIfRegularCall(U, &RFI); 1059 BB2PRMap[CI->getParent()].insert(CI); 1060 1061 return false; 1062 }; 1063 1064 BB2PRMap.clear(); 1065 RFI.foreachUse(SCC, DetectPRsCB); 1066 SmallVector<SmallVector<CallInst *, 4>, 4> MergableCIsVector; 1067 // Find mergable parallel regions within a basic block that are 1068 // safe to merge, that is any in-between instructions can safely 1069 // execute in parallel after merging. 1070 // TODO: support merging across basic-blocks. 1071 for (auto &It : BB2PRMap) { 1072 auto &CIs = It.getSecond(); 1073 if (CIs.size() < 2) 1074 continue; 1075 1076 BasicBlock *BB = It.getFirst(); 1077 SmallVector<CallInst *, 4> MergableCIs; 1078 1079 /// Returns true if the instruction is mergable, false otherwise. 1080 /// A terminator instruction is unmergable by definition since merging 1081 /// works within a BB. Instructions before the mergable region are 1082 /// mergable if they are not calls to OpenMP runtime functions that may 1083 /// set different execution parameters for subsequent parallel regions. 1084 /// Instructions in-between parallel regions are mergable if they are not 1085 /// calls to any non-intrinsic function since that may call a non-mergable 1086 /// OpenMP runtime function. 1087 auto IsMergable = [&](Instruction &I, bool IsBeforeMergableRegion) { 1088 // We do not merge across BBs, hence return false (unmergable) if the 1089 // instruction is a terminator. 1090 if (I.isTerminator()) 1091 return false; 1092 1093 if (!isa<CallInst>(&I)) 1094 return true; 1095 1096 CallInst *CI = cast<CallInst>(&I); 1097 if (IsBeforeMergableRegion) { 1098 Function *CalledFunction = CI->getCalledFunction(); 1099 if (!CalledFunction) 1100 return false; 1101 // Return false (unmergable) if the call before the parallel 1102 // region calls an explicit affinity (proc_bind) or number of 1103 // threads (num_threads) compiler-generated function. Those settings 1104 // may be incompatible with following parallel regions. 1105 // TODO: ICV tracking to detect compatibility. 1106 for (const auto &RFI : UnmergableCallsInfo) { 1107 if (CalledFunction == RFI.Declaration) 1108 return false; 1109 } 1110 } else { 1111 // Return false (unmergable) if there is a call instruction 1112 // in-between parallel regions when it is not an intrinsic. It 1113 // may call an unmergable OpenMP runtime function in its callpath. 1114 // TODO: Keep track of possible OpenMP calls in the callpath. 1115 if (!isa<IntrinsicInst>(CI)) 1116 return false; 1117 } 1118 1119 return true; 1120 }; 1121 // Find maximal number of parallel region CIs that are safe to merge. 1122 for (auto It = BB->begin(), End = BB->end(); It != End;) { 1123 Instruction &I = *It; 1124 ++It; 1125 1126 if (CIs.count(&I)) { 1127 MergableCIs.push_back(cast<CallInst>(&I)); 1128 continue; 1129 } 1130 1131 // Continue expanding if the instruction is mergable. 1132 if (IsMergable(I, MergableCIs.empty())) 1133 continue; 1134 1135 // Forward the instruction iterator to skip the next parallel region 1136 // since there is an unmergable instruction which can affect it. 1137 for (; It != End; ++It) { 1138 Instruction &SkipI = *It; 1139 if (CIs.count(&SkipI)) { 1140 LLVM_DEBUG(dbgs() << TAG << "Skip parallel region " << SkipI 1141 << " due to " << I << "\n"); 1142 ++It; 1143 break; 1144 } 1145 } 1146 1147 // Store mergable regions found. 1148 if (MergableCIs.size() > 1) { 1149 MergableCIsVector.push_back(MergableCIs); 1150 LLVM_DEBUG(dbgs() << TAG << "Found " << MergableCIs.size() 1151 << " parallel regions in block " << BB->getName() 1152 << " of function " << BB->getParent()->getName() 1153 << "\n";); 1154 } 1155 1156 MergableCIs.clear(); 1157 } 1158 1159 if (!MergableCIsVector.empty()) { 1160 Changed = true; 1161 1162 for (auto &MergableCIs : MergableCIsVector) 1163 Merge(MergableCIs, BB); 1164 MergableCIsVector.clear(); 1165 } 1166 } 1167 1168 if (Changed) { 1169 /// Re-collect use for fork calls, emitted barrier calls, and 1170 /// any emitted master/end_master calls. 1171 OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_fork_call); 1172 OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_barrier); 1173 OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_master); 1174 OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_end_master); 1175 } 1176 1177 return Changed; 1178 } 1179 1180 /// Try to delete parallel regions if possible. 1181 bool deleteParallelRegions() { 1182 const unsigned CallbackCalleeOperand = 2; 1183 1184 OMPInformationCache::RuntimeFunctionInfo &RFI = 1185 OMPInfoCache.RFIs[OMPRTL___kmpc_fork_call]; 1186 1187 if (!RFI.Declaration) 1188 return false; 1189 1190 bool Changed = false; 1191 auto DeleteCallCB = [&](Use &U, Function &) { 1192 CallInst *CI = getCallIfRegularCall(U); 1193 if (!CI) 1194 return false; 1195 auto *Fn = dyn_cast<Function>( 1196 CI->getArgOperand(CallbackCalleeOperand)->stripPointerCasts()); 1197 if (!Fn) 1198 return false; 1199 if (!Fn->onlyReadsMemory()) 1200 return false; 1201 if (!Fn->hasFnAttribute(Attribute::WillReturn)) 1202 return false; 1203 1204 LLVM_DEBUG(dbgs() << TAG << "Delete read-only parallel region in " 1205 << CI->getCaller()->getName() << "\n"); 1206 1207 auto Remark = [&](OptimizationRemark OR) { 1208 return OR << "Removing parallel region with no side-effects."; 1209 }; 1210 emitRemark<OptimizationRemark>(CI, "OMP160", Remark); 1211 1212 CGUpdater.removeCallSite(*CI); 1213 CI->eraseFromParent(); 1214 Changed = true; 1215 ++NumOpenMPParallelRegionsDeleted; 1216 return true; 1217 }; 1218 1219 RFI.foreachUse(SCC, DeleteCallCB); 1220 1221 return Changed; 1222 } 1223 1224 /// Try to eliminate runtime calls by reusing existing ones. 1225 bool deduplicateRuntimeCalls() { 1226 bool Changed = false; 1227 1228 RuntimeFunction DeduplicableRuntimeCallIDs[] = { 1229 OMPRTL_omp_get_num_threads, 1230 OMPRTL_omp_in_parallel, 1231 OMPRTL_omp_get_cancellation, 1232 OMPRTL_omp_get_thread_limit, 1233 OMPRTL_omp_get_supported_active_levels, 1234 OMPRTL_omp_get_level, 1235 OMPRTL_omp_get_ancestor_thread_num, 1236 OMPRTL_omp_get_team_size, 1237 OMPRTL_omp_get_active_level, 1238 OMPRTL_omp_in_final, 1239 OMPRTL_omp_get_proc_bind, 1240 OMPRTL_omp_get_num_places, 1241 OMPRTL_omp_get_num_procs, 1242 OMPRTL_omp_get_place_num, 1243 OMPRTL_omp_get_partition_num_places, 1244 OMPRTL_omp_get_partition_place_nums}; 1245 1246 // Global-tid is handled separately. 1247 SmallSetVector<Value *, 16> GTIdArgs; 1248 collectGlobalThreadIdArguments(GTIdArgs); 1249 LLVM_DEBUG(dbgs() << TAG << "Found " << GTIdArgs.size() 1250 << " global thread ID arguments\n"); 1251 1252 for (Function *F : SCC) { 1253 for (auto DeduplicableRuntimeCallID : DeduplicableRuntimeCallIDs) 1254 Changed |= deduplicateRuntimeCalls( 1255 *F, OMPInfoCache.RFIs[DeduplicableRuntimeCallID]); 1256 1257 // __kmpc_global_thread_num is special as we can replace it with an 1258 // argument in enough cases to make it worth trying. 1259 Value *GTIdArg = nullptr; 1260 for (Argument &Arg : F->args()) 1261 if (GTIdArgs.count(&Arg)) { 1262 GTIdArg = &Arg; 1263 break; 1264 } 1265 Changed |= deduplicateRuntimeCalls( 1266 *F, OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num], GTIdArg); 1267 } 1268 1269 return Changed; 1270 } 1271 1272 /// Tries to hide the latency of runtime calls that involve host to 1273 /// device memory transfers by splitting them into their "issue" and "wait" 1274 /// versions. The "issue" is moved upwards as much as possible. The "wait" is 1275 /// moved downards as much as possible. The "issue" issues the memory transfer 1276 /// asynchronously, returning a handle. The "wait" waits in the returned 1277 /// handle for the memory transfer to finish. 1278 bool hideMemTransfersLatency() { 1279 auto &RFI = OMPInfoCache.RFIs[OMPRTL___tgt_target_data_begin_mapper]; 1280 bool Changed = false; 1281 auto SplitMemTransfers = [&](Use &U, Function &Decl) { 1282 auto *RTCall = getCallIfRegularCall(U, &RFI); 1283 if (!RTCall) 1284 return false; 1285 1286 OffloadArray OffloadArrays[3]; 1287 if (!getValuesInOffloadArrays(*RTCall, OffloadArrays)) 1288 return false; 1289 1290 LLVM_DEBUG(dumpValuesInOffloadArrays(OffloadArrays)); 1291 1292 // TODO: Check if can be moved upwards. 1293 bool WasSplit = false; 1294 Instruction *WaitMovementPoint = canBeMovedDownwards(*RTCall); 1295 if (WaitMovementPoint) 1296 WasSplit = splitTargetDataBeginRTC(*RTCall, *WaitMovementPoint); 1297 1298 Changed |= WasSplit; 1299 return WasSplit; 1300 }; 1301 RFI.foreachUse(SCC, SplitMemTransfers); 1302 1303 return Changed; 1304 } 1305 1306 void analysisGlobalization() { 1307 auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared]; 1308 1309 auto CheckGlobalization = [&](Use &U, Function &Decl) { 1310 if (CallInst *CI = getCallIfRegularCall(U, &RFI)) { 1311 auto Remark = [&](OptimizationRemarkMissed ORM) { 1312 return ORM 1313 << "Found thread data sharing on the GPU. " 1314 << "Expect degraded performance due to data globalization."; 1315 }; 1316 emitRemark<OptimizationRemarkMissed>(CI, "OMP112", Remark); 1317 } 1318 1319 return false; 1320 }; 1321 1322 RFI.foreachUse(SCC, CheckGlobalization); 1323 } 1324 1325 /// Maps the values stored in the offload arrays passed as arguments to 1326 /// \p RuntimeCall into the offload arrays in \p OAs. 1327 bool getValuesInOffloadArrays(CallInst &RuntimeCall, 1328 MutableArrayRef<OffloadArray> OAs) { 1329 assert(OAs.size() == 3 && "Need space for three offload arrays!"); 1330 1331 // A runtime call that involves memory offloading looks something like: 1332 // call void @__tgt_target_data_begin_mapper(arg0, arg1, 1333 // i8** %offload_baseptrs, i8** %offload_ptrs, i64* %offload_sizes, 1334 // ...) 1335 // So, the idea is to access the allocas that allocate space for these 1336 // offload arrays, offload_baseptrs, offload_ptrs, offload_sizes. 1337 // Therefore: 1338 // i8** %offload_baseptrs. 1339 Value *BasePtrsArg = 1340 RuntimeCall.getArgOperand(OffloadArray::BasePtrsArgNum); 1341 // i8** %offload_ptrs. 1342 Value *PtrsArg = RuntimeCall.getArgOperand(OffloadArray::PtrsArgNum); 1343 // i8** %offload_sizes. 1344 Value *SizesArg = RuntimeCall.getArgOperand(OffloadArray::SizesArgNum); 1345 1346 // Get values stored in **offload_baseptrs. 1347 auto *V = getUnderlyingObject(BasePtrsArg); 1348 if (!isa<AllocaInst>(V)) 1349 return false; 1350 auto *BasePtrsArray = cast<AllocaInst>(V); 1351 if (!OAs[0].initialize(*BasePtrsArray, RuntimeCall)) 1352 return false; 1353 1354 // Get values stored in **offload_baseptrs. 1355 V = getUnderlyingObject(PtrsArg); 1356 if (!isa<AllocaInst>(V)) 1357 return false; 1358 auto *PtrsArray = cast<AllocaInst>(V); 1359 if (!OAs[1].initialize(*PtrsArray, RuntimeCall)) 1360 return false; 1361 1362 // Get values stored in **offload_sizes. 1363 V = getUnderlyingObject(SizesArg); 1364 // If it's a [constant] global array don't analyze it. 1365 if (isa<GlobalValue>(V)) 1366 return isa<Constant>(V); 1367 if (!isa<AllocaInst>(V)) 1368 return false; 1369 1370 auto *SizesArray = cast<AllocaInst>(V); 1371 if (!OAs[2].initialize(*SizesArray, RuntimeCall)) 1372 return false; 1373 1374 return true; 1375 } 1376 1377 /// Prints the values in the OffloadArrays \p OAs using LLVM_DEBUG. 1378 /// For now this is a way to test that the function getValuesInOffloadArrays 1379 /// is working properly. 1380 /// TODO: Move this to a unittest when unittests are available for OpenMPOpt. 1381 void dumpValuesInOffloadArrays(ArrayRef<OffloadArray> OAs) { 1382 assert(OAs.size() == 3 && "There are three offload arrays to debug!"); 1383 1384 LLVM_DEBUG(dbgs() << TAG << " Successfully got offload values:\n"); 1385 std::string ValuesStr; 1386 raw_string_ostream Printer(ValuesStr); 1387 std::string Separator = " --- "; 1388 1389 for (auto *BP : OAs[0].StoredValues) { 1390 BP->print(Printer); 1391 Printer << Separator; 1392 } 1393 LLVM_DEBUG(dbgs() << "\t\toffload_baseptrs: " << Printer.str() << "\n"); 1394 ValuesStr.clear(); 1395 1396 for (auto *P : OAs[1].StoredValues) { 1397 P->print(Printer); 1398 Printer << Separator; 1399 } 1400 LLVM_DEBUG(dbgs() << "\t\toffload_ptrs: " << Printer.str() << "\n"); 1401 ValuesStr.clear(); 1402 1403 for (auto *S : OAs[2].StoredValues) { 1404 S->print(Printer); 1405 Printer << Separator; 1406 } 1407 LLVM_DEBUG(dbgs() << "\t\toffload_sizes: " << Printer.str() << "\n"); 1408 } 1409 1410 /// Returns the instruction where the "wait" counterpart \p RuntimeCall can be 1411 /// moved. Returns nullptr if the movement is not possible, or not worth it. 1412 Instruction *canBeMovedDownwards(CallInst &RuntimeCall) { 1413 // FIXME: This traverses only the BasicBlock where RuntimeCall is. 1414 // Make it traverse the CFG. 1415 1416 Instruction *CurrentI = &RuntimeCall; 1417 bool IsWorthIt = false; 1418 while ((CurrentI = CurrentI->getNextNode())) { 1419 1420 // TODO: Once we detect the regions to be offloaded we should use the 1421 // alias analysis manager to check if CurrentI may modify one of 1422 // the offloaded regions. 1423 if (CurrentI->mayHaveSideEffects() || CurrentI->mayReadFromMemory()) { 1424 if (IsWorthIt) 1425 return CurrentI; 1426 1427 return nullptr; 1428 } 1429 1430 // FIXME: For now if we move it over anything without side effect 1431 // is worth it. 1432 IsWorthIt = true; 1433 } 1434 1435 // Return end of BasicBlock. 1436 return RuntimeCall.getParent()->getTerminator(); 1437 } 1438 1439 /// Splits \p RuntimeCall into its "issue" and "wait" counterparts. 1440 bool splitTargetDataBeginRTC(CallInst &RuntimeCall, 1441 Instruction &WaitMovementPoint) { 1442 // Create stack allocated handle (__tgt_async_info) at the beginning of the 1443 // function. Used for storing information of the async transfer, allowing to 1444 // wait on it later. 1445 auto &IRBuilder = OMPInfoCache.OMPBuilder; 1446 auto *F = RuntimeCall.getCaller(); 1447 Instruction *FirstInst = &(F->getEntryBlock().front()); 1448 AllocaInst *Handle = new AllocaInst( 1449 IRBuilder.AsyncInfo, F->getAddressSpace(), "handle", FirstInst); 1450 1451 // Add "issue" runtime call declaration: 1452 // declare %struct.tgt_async_info @__tgt_target_data_begin_issue(i64, i32, 1453 // i8**, i8**, i64*, i64*) 1454 FunctionCallee IssueDecl = IRBuilder.getOrCreateRuntimeFunction( 1455 M, OMPRTL___tgt_target_data_begin_mapper_issue); 1456 1457 // Change RuntimeCall call site for its asynchronous version. 1458 SmallVector<Value *, 16> Args; 1459 for (auto &Arg : RuntimeCall.args()) 1460 Args.push_back(Arg.get()); 1461 Args.push_back(Handle); 1462 1463 CallInst *IssueCallsite = 1464 CallInst::Create(IssueDecl, Args, /*NameStr=*/"", &RuntimeCall); 1465 RuntimeCall.eraseFromParent(); 1466 1467 // Add "wait" runtime call declaration: 1468 // declare void @__tgt_target_data_begin_wait(i64, %struct.__tgt_async_info) 1469 FunctionCallee WaitDecl = IRBuilder.getOrCreateRuntimeFunction( 1470 M, OMPRTL___tgt_target_data_begin_mapper_wait); 1471 1472 Value *WaitParams[2] = { 1473 IssueCallsite->getArgOperand( 1474 OffloadArray::DeviceIDArgNum), // device_id. 1475 Handle // handle to wait on. 1476 }; 1477 CallInst::Create(WaitDecl, WaitParams, /*NameStr=*/"", &WaitMovementPoint); 1478 1479 return true; 1480 } 1481 1482 static Value *combinedIdentStruct(Value *CurrentIdent, Value *NextIdent, 1483 bool GlobalOnly, bool &SingleChoice) { 1484 if (CurrentIdent == NextIdent) 1485 return CurrentIdent; 1486 1487 // TODO: Figure out how to actually combine multiple debug locations. For 1488 // now we just keep an existing one if there is a single choice. 1489 if (!GlobalOnly || isa<GlobalValue>(NextIdent)) { 1490 SingleChoice = !CurrentIdent; 1491 return NextIdent; 1492 } 1493 return nullptr; 1494 } 1495 1496 /// Return an `struct ident_t*` value that represents the ones used in the 1497 /// calls of \p RFI inside of \p F. If \p GlobalOnly is true, we will not 1498 /// return a local `struct ident_t*`. For now, if we cannot find a suitable 1499 /// return value we create one from scratch. We also do not yet combine 1500 /// information, e.g., the source locations, see combinedIdentStruct. 1501 Value * 1502 getCombinedIdentFromCallUsesIn(OMPInformationCache::RuntimeFunctionInfo &RFI, 1503 Function &F, bool GlobalOnly) { 1504 bool SingleChoice = true; 1505 Value *Ident = nullptr; 1506 auto CombineIdentStruct = [&](Use &U, Function &Caller) { 1507 CallInst *CI = getCallIfRegularCall(U, &RFI); 1508 if (!CI || &F != &Caller) 1509 return false; 1510 Ident = combinedIdentStruct(Ident, CI->getArgOperand(0), 1511 /* GlobalOnly */ true, SingleChoice); 1512 return false; 1513 }; 1514 RFI.foreachUse(SCC, CombineIdentStruct); 1515 1516 if (!Ident || !SingleChoice) { 1517 // The IRBuilder uses the insertion block to get to the module, this is 1518 // unfortunate but we work around it for now. 1519 if (!OMPInfoCache.OMPBuilder.getInsertionPoint().getBlock()) 1520 OMPInfoCache.OMPBuilder.updateToLocation(OpenMPIRBuilder::InsertPointTy( 1521 &F.getEntryBlock(), F.getEntryBlock().begin())); 1522 // Create a fallback location if non was found. 1523 // TODO: Use the debug locations of the calls instead. 1524 Constant *Loc = OMPInfoCache.OMPBuilder.getOrCreateDefaultSrcLocStr(); 1525 Ident = OMPInfoCache.OMPBuilder.getOrCreateIdent(Loc); 1526 } 1527 return Ident; 1528 } 1529 1530 /// Try to eliminate calls of \p RFI in \p F by reusing an existing one or 1531 /// \p ReplVal if given. 1532 bool deduplicateRuntimeCalls(Function &F, 1533 OMPInformationCache::RuntimeFunctionInfo &RFI, 1534 Value *ReplVal = nullptr) { 1535 auto *UV = RFI.getUseVector(F); 1536 if (!UV || UV->size() + (ReplVal != nullptr) < 2) 1537 return false; 1538 1539 LLVM_DEBUG( 1540 dbgs() << TAG << "Deduplicate " << UV->size() << " uses of " << RFI.Name 1541 << (ReplVal ? " with an existing value\n" : "\n") << "\n"); 1542 1543 assert((!ReplVal || (isa<Argument>(ReplVal) && 1544 cast<Argument>(ReplVal)->getParent() == &F)) && 1545 "Unexpected replacement value!"); 1546 1547 // TODO: Use dominance to find a good position instead. 1548 auto CanBeMoved = [this](CallBase &CB) { 1549 unsigned NumArgs = CB.getNumArgOperands(); 1550 if (NumArgs == 0) 1551 return true; 1552 if (CB.getArgOperand(0)->getType() != OMPInfoCache.OMPBuilder.IdentPtr) 1553 return false; 1554 for (unsigned u = 1; u < NumArgs; ++u) 1555 if (isa<Instruction>(CB.getArgOperand(u))) 1556 return false; 1557 return true; 1558 }; 1559 1560 if (!ReplVal) { 1561 for (Use *U : *UV) 1562 if (CallInst *CI = getCallIfRegularCall(*U, &RFI)) { 1563 if (!CanBeMoved(*CI)) 1564 continue; 1565 1566 CI->moveBefore(&*F.getEntryBlock().getFirstInsertionPt()); 1567 ReplVal = CI; 1568 break; 1569 } 1570 if (!ReplVal) 1571 return false; 1572 } 1573 1574 // If we use a call as a replacement value we need to make sure the ident is 1575 // valid at the new location. For now we just pick a global one, either 1576 // existing and used by one of the calls, or created from scratch. 1577 if (CallBase *CI = dyn_cast<CallBase>(ReplVal)) { 1578 if (CI->getNumArgOperands() > 0 && 1579 CI->getArgOperand(0)->getType() == OMPInfoCache.OMPBuilder.IdentPtr) { 1580 Value *Ident = getCombinedIdentFromCallUsesIn(RFI, F, 1581 /* GlobalOnly */ true); 1582 CI->setArgOperand(0, Ident); 1583 } 1584 } 1585 1586 bool Changed = false; 1587 auto ReplaceAndDeleteCB = [&](Use &U, Function &Caller) { 1588 CallInst *CI = getCallIfRegularCall(U, &RFI); 1589 if (!CI || CI == ReplVal || &F != &Caller) 1590 return false; 1591 assert(CI->getCaller() == &F && "Unexpected call!"); 1592 1593 auto Remark = [&](OptimizationRemark OR) { 1594 return OR << "OpenMP runtime call " 1595 << ore::NV("OpenMPOptRuntime", RFI.Name) << " deduplicated."; 1596 }; 1597 if (CI->getDebugLoc()) 1598 emitRemark<OptimizationRemark>(CI, "OMP170", Remark); 1599 else 1600 emitRemark<OptimizationRemark>(&F, "OMP170", Remark); 1601 1602 CGUpdater.removeCallSite(*CI); 1603 CI->replaceAllUsesWith(ReplVal); 1604 CI->eraseFromParent(); 1605 ++NumOpenMPRuntimeCallsDeduplicated; 1606 Changed = true; 1607 return true; 1608 }; 1609 RFI.foreachUse(SCC, ReplaceAndDeleteCB); 1610 1611 return Changed; 1612 } 1613 1614 /// Collect arguments that represent the global thread id in \p GTIdArgs. 1615 void collectGlobalThreadIdArguments(SmallSetVector<Value *, 16> >IdArgs) { 1616 // TODO: Below we basically perform a fixpoint iteration with a pessimistic 1617 // initialization. We could define an AbstractAttribute instead and 1618 // run the Attributor here once it can be run as an SCC pass. 1619 1620 // Helper to check the argument \p ArgNo at all call sites of \p F for 1621 // a GTId. 1622 auto CallArgOpIsGTId = [&](Function &F, unsigned ArgNo, CallInst &RefCI) { 1623 if (!F.hasLocalLinkage()) 1624 return false; 1625 for (Use &U : F.uses()) { 1626 if (CallInst *CI = getCallIfRegularCall(U)) { 1627 Value *ArgOp = CI->getArgOperand(ArgNo); 1628 if (CI == &RefCI || GTIdArgs.count(ArgOp) || 1629 getCallIfRegularCall( 1630 *ArgOp, &OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num])) 1631 continue; 1632 } 1633 return false; 1634 } 1635 return true; 1636 }; 1637 1638 // Helper to identify uses of a GTId as GTId arguments. 1639 auto AddUserArgs = [&](Value >Id) { 1640 for (Use &U : GTId.uses()) 1641 if (CallInst *CI = dyn_cast<CallInst>(U.getUser())) 1642 if (CI->isArgOperand(&U)) 1643 if (Function *Callee = CI->getCalledFunction()) 1644 if (CallArgOpIsGTId(*Callee, U.getOperandNo(), *CI)) 1645 GTIdArgs.insert(Callee->getArg(U.getOperandNo())); 1646 }; 1647 1648 // The argument users of __kmpc_global_thread_num calls are GTIds. 1649 OMPInformationCache::RuntimeFunctionInfo &GlobThreadNumRFI = 1650 OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num]; 1651 1652 GlobThreadNumRFI.foreachUse(SCC, [&](Use &U, Function &F) { 1653 if (CallInst *CI = getCallIfRegularCall(U, &GlobThreadNumRFI)) 1654 AddUserArgs(*CI); 1655 return false; 1656 }); 1657 1658 // Transitively search for more arguments by looking at the users of the 1659 // ones we know already. During the search the GTIdArgs vector is extended 1660 // so we cannot cache the size nor can we use a range based for. 1661 for (unsigned u = 0; u < GTIdArgs.size(); ++u) 1662 AddUserArgs(*GTIdArgs[u]); 1663 } 1664 1665 /// Kernel (=GPU) optimizations and utility functions 1666 /// 1667 ///{{ 1668 1669 /// Check if \p F is a kernel, hence entry point for target offloading. 1670 bool isKernel(Function &F) { return OMPInfoCache.Kernels.count(&F); } 1671 1672 /// Cache to remember the unique kernel for a function. 1673 DenseMap<Function *, Optional<Kernel>> UniqueKernelMap; 1674 1675 /// Find the unique kernel that will execute \p F, if any. 1676 Kernel getUniqueKernelFor(Function &F); 1677 1678 /// Find the unique kernel that will execute \p I, if any. 1679 Kernel getUniqueKernelFor(Instruction &I) { 1680 return getUniqueKernelFor(*I.getFunction()); 1681 } 1682 1683 /// Rewrite the device (=GPU) code state machine create in non-SPMD mode in 1684 /// the cases we can avoid taking the address of a function. 1685 bool rewriteDeviceCodeStateMachine(); 1686 1687 /// 1688 ///}} 1689 1690 /// Emit a remark generically 1691 /// 1692 /// This template function can be used to generically emit a remark. The 1693 /// RemarkKind should be one of the following: 1694 /// - OptimizationRemark to indicate a successful optimization attempt 1695 /// - OptimizationRemarkMissed to report a failed optimization attempt 1696 /// - OptimizationRemarkAnalysis to provide additional information about an 1697 /// optimization attempt 1698 /// 1699 /// The remark is built using a callback function provided by the caller that 1700 /// takes a RemarkKind as input and returns a RemarkKind. 1701 template <typename RemarkKind, typename RemarkCallBack> 1702 void emitRemark(Instruction *I, StringRef RemarkName, 1703 RemarkCallBack &&RemarkCB) const { 1704 Function *F = I->getParent()->getParent(); 1705 auto &ORE = OREGetter(F); 1706 1707 if (RemarkName.startswith("OMP")) 1708 ORE.emit([&]() { 1709 return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, I)) 1710 << " [" << RemarkName << "]"; 1711 }); 1712 else 1713 ORE.emit( 1714 [&]() { return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, I)); }); 1715 } 1716 1717 /// Emit a remark on a function. 1718 template <typename RemarkKind, typename RemarkCallBack> 1719 void emitRemark(Function *F, StringRef RemarkName, 1720 RemarkCallBack &&RemarkCB) const { 1721 auto &ORE = OREGetter(F); 1722 1723 if (RemarkName.startswith("OMP")) 1724 ORE.emit([&]() { 1725 return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, F)) 1726 << " [" << RemarkName << "]"; 1727 }); 1728 else 1729 ORE.emit( 1730 [&]() { return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, F)); }); 1731 } 1732 1733 /// The underlying module. 1734 Module &M; 1735 1736 /// The SCC we are operating on. 1737 SmallVectorImpl<Function *> &SCC; 1738 1739 /// Callback to update the call graph, the first argument is a removed call, 1740 /// the second an optional replacement call. 1741 CallGraphUpdater &CGUpdater; 1742 1743 /// Callback to get an OptimizationRemarkEmitter from a Function * 1744 OptimizationRemarkGetter OREGetter; 1745 1746 /// OpenMP-specific information cache. Also Used for Attributor runs. 1747 OMPInformationCache &OMPInfoCache; 1748 1749 /// Attributor instance. 1750 Attributor &A; 1751 1752 /// Helper function to run Attributor on SCC. 1753 bool runAttributor(bool IsModulePass) { 1754 if (SCC.empty()) 1755 return false; 1756 1757 registerAAs(IsModulePass); 1758 1759 ChangeStatus Changed = A.run(); 1760 1761 LLVM_DEBUG(dbgs() << "[Attributor] Done with " << SCC.size() 1762 << " functions, result: " << Changed << ".\n"); 1763 1764 return Changed == ChangeStatus::CHANGED; 1765 } 1766 1767 /// Populate the Attributor with abstract attribute opportunities in the 1768 /// function. 1769 void registerAAs(bool IsModulePass); 1770 }; 1771 1772 Kernel OpenMPOpt::getUniqueKernelFor(Function &F) { 1773 if (!OMPInfoCache.ModuleSlice.count(&F)) 1774 return nullptr; 1775 1776 // Use a scope to keep the lifetime of the CachedKernel short. 1777 { 1778 Optional<Kernel> &CachedKernel = UniqueKernelMap[&F]; 1779 if (CachedKernel) 1780 return *CachedKernel; 1781 1782 // TODO: We should use an AA to create an (optimistic and callback 1783 // call-aware) call graph. For now we stick to simple patterns that 1784 // are less powerful, basically the worst fixpoint. 1785 if (isKernel(F)) { 1786 CachedKernel = Kernel(&F); 1787 return *CachedKernel; 1788 } 1789 1790 CachedKernel = nullptr; 1791 if (!F.hasLocalLinkage()) { 1792 1793 // See https://openmp.llvm.org/remarks/OptimizationRemarks.html 1794 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 1795 return ORA << "Potentially unknown OpenMP target region caller."; 1796 }; 1797 emitRemark<OptimizationRemarkAnalysis>(&F, "OMP100", Remark); 1798 1799 return nullptr; 1800 } 1801 } 1802 1803 auto GetUniqueKernelForUse = [&](const Use &U) -> Kernel { 1804 if (auto *Cmp = dyn_cast<ICmpInst>(U.getUser())) { 1805 // Allow use in equality comparisons. 1806 if (Cmp->isEquality()) 1807 return getUniqueKernelFor(*Cmp); 1808 return nullptr; 1809 } 1810 if (auto *CB = dyn_cast<CallBase>(U.getUser())) { 1811 // Allow direct calls. 1812 if (CB->isCallee(&U)) 1813 return getUniqueKernelFor(*CB); 1814 1815 OMPInformationCache::RuntimeFunctionInfo &KernelParallelRFI = 1816 OMPInfoCache.RFIs[OMPRTL___kmpc_parallel_51]; 1817 // Allow the use in __kmpc_parallel_51 calls. 1818 if (OpenMPOpt::getCallIfRegularCall(*U.getUser(), &KernelParallelRFI)) 1819 return getUniqueKernelFor(*CB); 1820 return nullptr; 1821 } 1822 // Disallow every other use. 1823 return nullptr; 1824 }; 1825 1826 // TODO: In the future we want to track more than just a unique kernel. 1827 SmallPtrSet<Kernel, 2> PotentialKernels; 1828 OMPInformationCache::foreachUse(F, [&](const Use &U) { 1829 PotentialKernels.insert(GetUniqueKernelForUse(U)); 1830 }); 1831 1832 Kernel K = nullptr; 1833 if (PotentialKernels.size() == 1) 1834 K = *PotentialKernels.begin(); 1835 1836 // Cache the result. 1837 UniqueKernelMap[&F] = K; 1838 1839 return K; 1840 } 1841 1842 bool OpenMPOpt::rewriteDeviceCodeStateMachine() { 1843 OMPInformationCache::RuntimeFunctionInfo &KernelParallelRFI = 1844 OMPInfoCache.RFIs[OMPRTL___kmpc_parallel_51]; 1845 1846 bool Changed = false; 1847 if (!KernelParallelRFI) 1848 return Changed; 1849 1850 for (Function *F : SCC) { 1851 1852 // Check if the function is a use in a __kmpc_parallel_51 call at 1853 // all. 1854 bool UnknownUse = false; 1855 bool KernelParallelUse = false; 1856 unsigned NumDirectCalls = 0; 1857 1858 SmallVector<Use *, 2> ToBeReplacedStateMachineUses; 1859 OMPInformationCache::foreachUse(*F, [&](Use &U) { 1860 if (auto *CB = dyn_cast<CallBase>(U.getUser())) 1861 if (CB->isCallee(&U)) { 1862 ++NumDirectCalls; 1863 return; 1864 } 1865 1866 if (isa<ICmpInst>(U.getUser())) { 1867 ToBeReplacedStateMachineUses.push_back(&U); 1868 return; 1869 } 1870 1871 // Find wrapper functions that represent parallel kernels. 1872 CallInst *CI = 1873 OpenMPOpt::getCallIfRegularCall(*U.getUser(), &KernelParallelRFI); 1874 const unsigned int WrapperFunctionArgNo = 6; 1875 if (!KernelParallelUse && CI && 1876 CI->getArgOperandNo(&U) == WrapperFunctionArgNo) { 1877 KernelParallelUse = true; 1878 ToBeReplacedStateMachineUses.push_back(&U); 1879 return; 1880 } 1881 UnknownUse = true; 1882 }); 1883 1884 // Do not emit a remark if we haven't seen a __kmpc_parallel_51 1885 // use. 1886 if (!KernelParallelUse) 1887 continue; 1888 1889 // If this ever hits, we should investigate. 1890 // TODO: Checking the number of uses is not a necessary restriction and 1891 // should be lifted. 1892 if (UnknownUse || NumDirectCalls != 1 || 1893 ToBeReplacedStateMachineUses.size() > 2) { 1894 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 1895 return ORA << "Parallel region is used in " 1896 << (UnknownUse ? "unknown" : "unexpected") 1897 << " ways. Will not attempt to rewrite the state machine."; 1898 }; 1899 emitRemark<OptimizationRemarkAnalysis>(F, "OMP101", Remark); 1900 continue; 1901 } 1902 1903 // Even if we have __kmpc_parallel_51 calls, we (for now) give 1904 // up if the function is not called from a unique kernel. 1905 Kernel K = getUniqueKernelFor(*F); 1906 if (!K) { 1907 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 1908 return ORA << "Parallel region is not called from a unique kernel. " 1909 "Will not attempt to rewrite the state machine."; 1910 }; 1911 emitRemark<OptimizationRemarkAnalysis>(F, "OMP102", Remark); 1912 continue; 1913 } 1914 1915 // We now know F is a parallel body function called only from the kernel K. 1916 // We also identified the state machine uses in which we replace the 1917 // function pointer by a new global symbol for identification purposes. This 1918 // ensures only direct calls to the function are left. 1919 1920 Module &M = *F->getParent(); 1921 Type *Int8Ty = Type::getInt8Ty(M.getContext()); 1922 1923 auto *ID = new GlobalVariable( 1924 M, Int8Ty, /* isConstant */ true, GlobalValue::PrivateLinkage, 1925 UndefValue::get(Int8Ty), F->getName() + ".ID"); 1926 1927 for (Use *U : ToBeReplacedStateMachineUses) 1928 U->set(ConstantExpr::getBitCast(ID, U->get()->getType())); 1929 1930 ++NumOpenMPParallelRegionsReplacedInGPUStateMachine; 1931 1932 Changed = true; 1933 } 1934 1935 return Changed; 1936 } 1937 1938 /// Abstract Attribute for tracking ICV values. 1939 struct AAICVTracker : public StateWrapper<BooleanState, AbstractAttribute> { 1940 using Base = StateWrapper<BooleanState, AbstractAttribute>; 1941 AAICVTracker(const IRPosition &IRP, Attributor &A) : Base(IRP) {} 1942 1943 void initialize(Attributor &A) override { 1944 Function *F = getAnchorScope(); 1945 if (!F || !A.isFunctionIPOAmendable(*F)) 1946 indicatePessimisticFixpoint(); 1947 } 1948 1949 /// Returns true if value is assumed to be tracked. 1950 bool isAssumedTracked() const { return getAssumed(); } 1951 1952 /// Returns true if value is known to be tracked. 1953 bool isKnownTracked() const { return getAssumed(); } 1954 1955 /// Create an abstract attribute biew for the position \p IRP. 1956 static AAICVTracker &createForPosition(const IRPosition &IRP, Attributor &A); 1957 1958 /// Return the value with which \p I can be replaced for specific \p ICV. 1959 virtual Optional<Value *> getReplacementValue(InternalControlVar ICV, 1960 const Instruction *I, 1961 Attributor &A) const { 1962 return None; 1963 } 1964 1965 /// Return an assumed unique ICV value if a single candidate is found. If 1966 /// there cannot be one, return a nullptr. If it is not clear yet, return the 1967 /// Optional::NoneType. 1968 virtual Optional<Value *> 1969 getUniqueReplacementValue(InternalControlVar ICV) const = 0; 1970 1971 // Currently only nthreads is being tracked. 1972 // this array will only grow with time. 1973 InternalControlVar TrackableICVs[1] = {ICV_nthreads}; 1974 1975 /// See AbstractAttribute::getName() 1976 const std::string getName() const override { return "AAICVTracker"; } 1977 1978 /// See AbstractAttribute::getIdAddr() 1979 const char *getIdAddr() const override { return &ID; } 1980 1981 /// This function should return true if the type of the \p AA is AAICVTracker 1982 static bool classof(const AbstractAttribute *AA) { 1983 return (AA->getIdAddr() == &ID); 1984 } 1985 1986 static const char ID; 1987 }; 1988 1989 struct AAICVTrackerFunction : public AAICVTracker { 1990 AAICVTrackerFunction(const IRPosition &IRP, Attributor &A) 1991 : AAICVTracker(IRP, A) {} 1992 1993 // FIXME: come up with better string. 1994 const std::string getAsStr() const override { return "ICVTrackerFunction"; } 1995 1996 // FIXME: come up with some stats. 1997 void trackStatistics() const override {} 1998 1999 /// We don't manifest anything for this AA. 2000 ChangeStatus manifest(Attributor &A) override { 2001 return ChangeStatus::UNCHANGED; 2002 } 2003 2004 // Map of ICV to their values at specific program point. 2005 EnumeratedArray<DenseMap<Instruction *, Value *>, InternalControlVar, 2006 InternalControlVar::ICV___last> 2007 ICVReplacementValuesMap; 2008 2009 ChangeStatus updateImpl(Attributor &A) override { 2010 ChangeStatus HasChanged = ChangeStatus::UNCHANGED; 2011 2012 Function *F = getAnchorScope(); 2013 2014 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2015 2016 for (InternalControlVar ICV : TrackableICVs) { 2017 auto &SetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Setter]; 2018 2019 auto &ValuesMap = ICVReplacementValuesMap[ICV]; 2020 auto TrackValues = [&](Use &U, Function &) { 2021 CallInst *CI = OpenMPOpt::getCallIfRegularCall(U); 2022 if (!CI) 2023 return false; 2024 2025 // FIXME: handle setters with more that 1 arguments. 2026 /// Track new value. 2027 if (ValuesMap.insert(std::make_pair(CI, CI->getArgOperand(0))).second) 2028 HasChanged = ChangeStatus::CHANGED; 2029 2030 return false; 2031 }; 2032 2033 auto CallCheck = [&](Instruction &I) { 2034 Optional<Value *> ReplVal = getValueForCall(A, &I, ICV); 2035 if (ReplVal.hasValue() && 2036 ValuesMap.insert(std::make_pair(&I, *ReplVal)).second) 2037 HasChanged = ChangeStatus::CHANGED; 2038 2039 return true; 2040 }; 2041 2042 // Track all changes of an ICV. 2043 SetterRFI.foreachUse(TrackValues, F); 2044 2045 bool UsedAssumedInformation = false; 2046 A.checkForAllInstructions(CallCheck, *this, {Instruction::Call}, 2047 UsedAssumedInformation, 2048 /* CheckBBLivenessOnly */ true); 2049 2050 /// TODO: Figure out a way to avoid adding entry in 2051 /// ICVReplacementValuesMap 2052 Instruction *Entry = &F->getEntryBlock().front(); 2053 if (HasChanged == ChangeStatus::CHANGED && !ValuesMap.count(Entry)) 2054 ValuesMap.insert(std::make_pair(Entry, nullptr)); 2055 } 2056 2057 return HasChanged; 2058 } 2059 2060 /// Hepler to check if \p I is a call and get the value for it if it is 2061 /// unique. 2062 Optional<Value *> getValueForCall(Attributor &A, const Instruction *I, 2063 InternalControlVar &ICV) const { 2064 2065 const auto *CB = dyn_cast<CallBase>(I); 2066 if (!CB || CB->hasFnAttr("no_openmp") || 2067 CB->hasFnAttr("no_openmp_routines")) 2068 return None; 2069 2070 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2071 auto &GetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Getter]; 2072 auto &SetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Setter]; 2073 Function *CalledFunction = CB->getCalledFunction(); 2074 2075 // Indirect call, assume ICV changes. 2076 if (CalledFunction == nullptr) 2077 return nullptr; 2078 if (CalledFunction == GetterRFI.Declaration) 2079 return None; 2080 if (CalledFunction == SetterRFI.Declaration) { 2081 if (ICVReplacementValuesMap[ICV].count(I)) 2082 return ICVReplacementValuesMap[ICV].lookup(I); 2083 2084 return nullptr; 2085 } 2086 2087 // Since we don't know, assume it changes the ICV. 2088 if (CalledFunction->isDeclaration()) 2089 return nullptr; 2090 2091 const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>( 2092 *this, IRPosition::callsite_returned(*CB), DepClassTy::REQUIRED); 2093 2094 if (ICVTrackingAA.isAssumedTracked()) 2095 return ICVTrackingAA.getUniqueReplacementValue(ICV); 2096 2097 // If we don't know, assume it changes. 2098 return nullptr; 2099 } 2100 2101 // We don't check unique value for a function, so return None. 2102 Optional<Value *> 2103 getUniqueReplacementValue(InternalControlVar ICV) const override { 2104 return None; 2105 } 2106 2107 /// Return the value with which \p I can be replaced for specific \p ICV. 2108 Optional<Value *> getReplacementValue(InternalControlVar ICV, 2109 const Instruction *I, 2110 Attributor &A) const override { 2111 const auto &ValuesMap = ICVReplacementValuesMap[ICV]; 2112 if (ValuesMap.count(I)) 2113 return ValuesMap.lookup(I); 2114 2115 SmallVector<const Instruction *, 16> Worklist; 2116 SmallPtrSet<const Instruction *, 16> Visited; 2117 Worklist.push_back(I); 2118 2119 Optional<Value *> ReplVal; 2120 2121 while (!Worklist.empty()) { 2122 const Instruction *CurrInst = Worklist.pop_back_val(); 2123 if (!Visited.insert(CurrInst).second) 2124 continue; 2125 2126 const BasicBlock *CurrBB = CurrInst->getParent(); 2127 2128 // Go up and look for all potential setters/calls that might change the 2129 // ICV. 2130 while ((CurrInst = CurrInst->getPrevNode())) { 2131 if (ValuesMap.count(CurrInst)) { 2132 Optional<Value *> NewReplVal = ValuesMap.lookup(CurrInst); 2133 // Unknown value, track new. 2134 if (!ReplVal.hasValue()) { 2135 ReplVal = NewReplVal; 2136 break; 2137 } 2138 2139 // If we found a new value, we can't know the icv value anymore. 2140 if (NewReplVal.hasValue()) 2141 if (ReplVal != NewReplVal) 2142 return nullptr; 2143 2144 break; 2145 } 2146 2147 Optional<Value *> NewReplVal = getValueForCall(A, CurrInst, ICV); 2148 if (!NewReplVal.hasValue()) 2149 continue; 2150 2151 // Unknown value, track new. 2152 if (!ReplVal.hasValue()) { 2153 ReplVal = NewReplVal; 2154 break; 2155 } 2156 2157 // if (NewReplVal.hasValue()) 2158 // We found a new value, we can't know the icv value anymore. 2159 if (ReplVal != NewReplVal) 2160 return nullptr; 2161 } 2162 2163 // If we are in the same BB and we have a value, we are done. 2164 if (CurrBB == I->getParent() && ReplVal.hasValue()) 2165 return ReplVal; 2166 2167 // Go through all predecessors and add terminators for analysis. 2168 for (const BasicBlock *Pred : predecessors(CurrBB)) 2169 if (const Instruction *Terminator = Pred->getTerminator()) 2170 Worklist.push_back(Terminator); 2171 } 2172 2173 return ReplVal; 2174 } 2175 }; 2176 2177 struct AAICVTrackerFunctionReturned : AAICVTracker { 2178 AAICVTrackerFunctionReturned(const IRPosition &IRP, Attributor &A) 2179 : AAICVTracker(IRP, A) {} 2180 2181 // FIXME: come up with better string. 2182 const std::string getAsStr() const override { 2183 return "ICVTrackerFunctionReturned"; 2184 } 2185 2186 // FIXME: come up with some stats. 2187 void trackStatistics() const override {} 2188 2189 /// We don't manifest anything for this AA. 2190 ChangeStatus manifest(Attributor &A) override { 2191 return ChangeStatus::UNCHANGED; 2192 } 2193 2194 // Map of ICV to their values at specific program point. 2195 EnumeratedArray<Optional<Value *>, InternalControlVar, 2196 InternalControlVar::ICV___last> 2197 ICVReplacementValuesMap; 2198 2199 /// Return the value with which \p I can be replaced for specific \p ICV. 2200 Optional<Value *> 2201 getUniqueReplacementValue(InternalControlVar ICV) const override { 2202 return ICVReplacementValuesMap[ICV]; 2203 } 2204 2205 ChangeStatus updateImpl(Attributor &A) override { 2206 ChangeStatus Changed = ChangeStatus::UNCHANGED; 2207 const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>( 2208 *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED); 2209 2210 if (!ICVTrackingAA.isAssumedTracked()) 2211 return indicatePessimisticFixpoint(); 2212 2213 for (InternalControlVar ICV : TrackableICVs) { 2214 Optional<Value *> &ReplVal = ICVReplacementValuesMap[ICV]; 2215 Optional<Value *> UniqueICVValue; 2216 2217 auto CheckReturnInst = [&](Instruction &I) { 2218 Optional<Value *> NewReplVal = 2219 ICVTrackingAA.getReplacementValue(ICV, &I, A); 2220 2221 // If we found a second ICV value there is no unique returned value. 2222 if (UniqueICVValue.hasValue() && UniqueICVValue != NewReplVal) 2223 return false; 2224 2225 UniqueICVValue = NewReplVal; 2226 2227 return true; 2228 }; 2229 2230 bool UsedAssumedInformation = false; 2231 if (!A.checkForAllInstructions(CheckReturnInst, *this, {Instruction::Ret}, 2232 UsedAssumedInformation, 2233 /* CheckBBLivenessOnly */ true)) 2234 UniqueICVValue = nullptr; 2235 2236 if (UniqueICVValue == ReplVal) 2237 continue; 2238 2239 ReplVal = UniqueICVValue; 2240 Changed = ChangeStatus::CHANGED; 2241 } 2242 2243 return Changed; 2244 } 2245 }; 2246 2247 struct AAICVTrackerCallSite : AAICVTracker { 2248 AAICVTrackerCallSite(const IRPosition &IRP, Attributor &A) 2249 : AAICVTracker(IRP, A) {} 2250 2251 void initialize(Attributor &A) override { 2252 Function *F = getAnchorScope(); 2253 if (!F || !A.isFunctionIPOAmendable(*F)) 2254 indicatePessimisticFixpoint(); 2255 2256 // We only initialize this AA for getters, so we need to know which ICV it 2257 // gets. 2258 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2259 for (InternalControlVar ICV : TrackableICVs) { 2260 auto ICVInfo = OMPInfoCache.ICVs[ICV]; 2261 auto &Getter = OMPInfoCache.RFIs[ICVInfo.Getter]; 2262 if (Getter.Declaration == getAssociatedFunction()) { 2263 AssociatedICV = ICVInfo.Kind; 2264 return; 2265 } 2266 } 2267 2268 /// Unknown ICV. 2269 indicatePessimisticFixpoint(); 2270 } 2271 2272 ChangeStatus manifest(Attributor &A) override { 2273 if (!ReplVal.hasValue() || !ReplVal.getValue()) 2274 return ChangeStatus::UNCHANGED; 2275 2276 A.changeValueAfterManifest(*getCtxI(), **ReplVal); 2277 A.deleteAfterManifest(*getCtxI()); 2278 2279 return ChangeStatus::CHANGED; 2280 } 2281 2282 // FIXME: come up with better string. 2283 const std::string getAsStr() const override { return "ICVTrackerCallSite"; } 2284 2285 // FIXME: come up with some stats. 2286 void trackStatistics() const override {} 2287 2288 InternalControlVar AssociatedICV; 2289 Optional<Value *> ReplVal; 2290 2291 ChangeStatus updateImpl(Attributor &A) override { 2292 const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>( 2293 *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED); 2294 2295 // We don't have any information, so we assume it changes the ICV. 2296 if (!ICVTrackingAA.isAssumedTracked()) 2297 return indicatePessimisticFixpoint(); 2298 2299 Optional<Value *> NewReplVal = 2300 ICVTrackingAA.getReplacementValue(AssociatedICV, getCtxI(), A); 2301 2302 if (ReplVal == NewReplVal) 2303 return ChangeStatus::UNCHANGED; 2304 2305 ReplVal = NewReplVal; 2306 return ChangeStatus::CHANGED; 2307 } 2308 2309 // Return the value with which associated value can be replaced for specific 2310 // \p ICV. 2311 Optional<Value *> 2312 getUniqueReplacementValue(InternalControlVar ICV) const override { 2313 return ReplVal; 2314 } 2315 }; 2316 2317 struct AAICVTrackerCallSiteReturned : AAICVTracker { 2318 AAICVTrackerCallSiteReturned(const IRPosition &IRP, Attributor &A) 2319 : AAICVTracker(IRP, A) {} 2320 2321 // FIXME: come up with better string. 2322 const std::string getAsStr() const override { 2323 return "ICVTrackerCallSiteReturned"; 2324 } 2325 2326 // FIXME: come up with some stats. 2327 void trackStatistics() const override {} 2328 2329 /// We don't manifest anything for this AA. 2330 ChangeStatus manifest(Attributor &A) override { 2331 return ChangeStatus::UNCHANGED; 2332 } 2333 2334 // Map of ICV to their values at specific program point. 2335 EnumeratedArray<Optional<Value *>, InternalControlVar, 2336 InternalControlVar::ICV___last> 2337 ICVReplacementValuesMap; 2338 2339 /// Return the value with which associated value can be replaced for specific 2340 /// \p ICV. 2341 Optional<Value *> 2342 getUniqueReplacementValue(InternalControlVar ICV) const override { 2343 return ICVReplacementValuesMap[ICV]; 2344 } 2345 2346 ChangeStatus updateImpl(Attributor &A) override { 2347 ChangeStatus Changed = ChangeStatus::UNCHANGED; 2348 const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>( 2349 *this, IRPosition::returned(*getAssociatedFunction()), 2350 DepClassTy::REQUIRED); 2351 2352 // We don't have any information, so we assume it changes the ICV. 2353 if (!ICVTrackingAA.isAssumedTracked()) 2354 return indicatePessimisticFixpoint(); 2355 2356 for (InternalControlVar ICV : TrackableICVs) { 2357 Optional<Value *> &ReplVal = ICVReplacementValuesMap[ICV]; 2358 Optional<Value *> NewReplVal = 2359 ICVTrackingAA.getUniqueReplacementValue(ICV); 2360 2361 if (ReplVal == NewReplVal) 2362 continue; 2363 2364 ReplVal = NewReplVal; 2365 Changed = ChangeStatus::CHANGED; 2366 } 2367 return Changed; 2368 } 2369 }; 2370 2371 struct AAExecutionDomainFunction : public AAExecutionDomain { 2372 AAExecutionDomainFunction(const IRPosition &IRP, Attributor &A) 2373 : AAExecutionDomain(IRP, A) {} 2374 2375 const std::string getAsStr() const override { 2376 return "[AAExecutionDomain] " + std::to_string(SingleThreadedBBs.size()) + 2377 "/" + std::to_string(NumBBs) + " BBs thread 0 only."; 2378 } 2379 2380 /// See AbstractAttribute::trackStatistics(). 2381 void trackStatistics() const override {} 2382 2383 void initialize(Attributor &A) override { 2384 Function *F = getAnchorScope(); 2385 for (const auto &BB : *F) 2386 SingleThreadedBBs.insert(&BB); 2387 NumBBs = SingleThreadedBBs.size(); 2388 } 2389 2390 ChangeStatus manifest(Attributor &A) override { 2391 LLVM_DEBUG({ 2392 for (const BasicBlock *BB : SingleThreadedBBs) 2393 dbgs() << TAG << " Basic block @" << getAnchorScope()->getName() << " " 2394 << BB->getName() << " is executed by a single thread.\n"; 2395 }); 2396 return ChangeStatus::UNCHANGED; 2397 } 2398 2399 ChangeStatus updateImpl(Attributor &A) override; 2400 2401 /// Check if an instruction is executed by a single thread. 2402 bool isExecutedByInitialThreadOnly(const Instruction &I) const override { 2403 return isExecutedByInitialThreadOnly(*I.getParent()); 2404 } 2405 2406 bool isExecutedByInitialThreadOnly(const BasicBlock &BB) const override { 2407 return isValidState() && SingleThreadedBBs.contains(&BB); 2408 } 2409 2410 /// Set of basic blocks that are executed by a single thread. 2411 DenseSet<const BasicBlock *> SingleThreadedBBs; 2412 2413 /// Total number of basic blocks in this function. 2414 long unsigned NumBBs; 2415 }; 2416 2417 ChangeStatus AAExecutionDomainFunction::updateImpl(Attributor &A) { 2418 Function *F = getAnchorScope(); 2419 ReversePostOrderTraversal<Function *> RPOT(F); 2420 auto NumSingleThreadedBBs = SingleThreadedBBs.size(); 2421 2422 bool AllCallSitesKnown; 2423 auto PredForCallSite = [&](AbstractCallSite ACS) { 2424 const auto &ExecutionDomainAA = A.getAAFor<AAExecutionDomain>( 2425 *this, IRPosition::function(*ACS.getInstruction()->getFunction()), 2426 DepClassTy::REQUIRED); 2427 return ACS.isDirectCall() && 2428 ExecutionDomainAA.isExecutedByInitialThreadOnly( 2429 *ACS.getInstruction()); 2430 }; 2431 2432 if (!A.checkForAllCallSites(PredForCallSite, *this, 2433 /* RequiresAllCallSites */ true, 2434 AllCallSitesKnown)) 2435 SingleThreadedBBs.erase(&F->getEntryBlock()); 2436 2437 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2438 auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_target_init]; 2439 2440 // Check if the edge into the successor block compares the __kmpc_target_init 2441 // result with -1. If we are in non-SPMD-mode that signals only the main 2442 // thread will execute the edge. 2443 auto IsInitialThreadOnly = [&](BranchInst *Edge, BasicBlock *SuccessorBB) { 2444 if (!Edge || !Edge->isConditional()) 2445 return false; 2446 if (Edge->getSuccessor(0) != SuccessorBB) 2447 return false; 2448 2449 auto *Cmp = dyn_cast<CmpInst>(Edge->getCondition()); 2450 if (!Cmp || !Cmp->isTrueWhenEqual() || !Cmp->isEquality()) 2451 return false; 2452 2453 ConstantInt *C = dyn_cast<ConstantInt>(Cmp->getOperand(1)); 2454 if (!C) 2455 return false; 2456 2457 // Match: -1 == __kmpc_target_init (for non-SPMD kernels only!) 2458 if (C->isAllOnesValue()) { 2459 auto *CB = dyn_cast<CallBase>(Cmp->getOperand(0)); 2460 if (!CB || CB->getCalledFunction() != RFI.Declaration) 2461 return false; 2462 const int InitIsSPMDArgNo = 1; 2463 auto *IsSPMDModeCI = 2464 dyn_cast<ConstantInt>(CB->getOperand(InitIsSPMDArgNo)); 2465 return IsSPMDModeCI && IsSPMDModeCI->isZero(); 2466 } 2467 2468 return false; 2469 }; 2470 2471 // Merge all the predecessor states into the current basic block. A basic 2472 // block is executed by a single thread if all of its predecessors are. 2473 auto MergePredecessorStates = [&](BasicBlock *BB) { 2474 if (pred_begin(BB) == pred_end(BB)) 2475 return SingleThreadedBBs.contains(BB); 2476 2477 bool IsInitialThread = true; 2478 for (auto PredBB = pred_begin(BB), PredEndBB = pred_end(BB); 2479 PredBB != PredEndBB; ++PredBB) { 2480 if (!IsInitialThreadOnly(dyn_cast<BranchInst>((*PredBB)->getTerminator()), 2481 BB)) 2482 IsInitialThread &= SingleThreadedBBs.contains(*PredBB); 2483 } 2484 2485 return IsInitialThread; 2486 }; 2487 2488 for (auto *BB : RPOT) { 2489 if (!MergePredecessorStates(BB)) 2490 SingleThreadedBBs.erase(BB); 2491 } 2492 2493 return (NumSingleThreadedBBs == SingleThreadedBBs.size()) 2494 ? ChangeStatus::UNCHANGED 2495 : ChangeStatus::CHANGED; 2496 } 2497 2498 /// Try to replace memory allocation calls called by a single thread with a 2499 /// static buffer of shared memory. 2500 struct AAHeapToShared : public StateWrapper<BooleanState, AbstractAttribute> { 2501 using Base = StateWrapper<BooleanState, AbstractAttribute>; 2502 AAHeapToShared(const IRPosition &IRP, Attributor &A) : Base(IRP) {} 2503 2504 /// Create an abstract attribute view for the position \p IRP. 2505 static AAHeapToShared &createForPosition(const IRPosition &IRP, 2506 Attributor &A); 2507 2508 /// See AbstractAttribute::getName(). 2509 const std::string getName() const override { return "AAHeapToShared"; } 2510 2511 /// See AbstractAttribute::getIdAddr(). 2512 const char *getIdAddr() const override { return &ID; } 2513 2514 /// This function should return true if the type of the \p AA is 2515 /// AAHeapToShared. 2516 static bool classof(const AbstractAttribute *AA) { 2517 return (AA->getIdAddr() == &ID); 2518 } 2519 2520 /// Unique ID (due to the unique address) 2521 static const char ID; 2522 }; 2523 2524 struct AAHeapToSharedFunction : public AAHeapToShared { 2525 AAHeapToSharedFunction(const IRPosition &IRP, Attributor &A) 2526 : AAHeapToShared(IRP, A) {} 2527 2528 const std::string getAsStr() const override { 2529 return "[AAHeapToShared] " + std::to_string(MallocCalls.size()) + 2530 " malloc calls eligible."; 2531 } 2532 2533 /// See AbstractAttribute::trackStatistics(). 2534 void trackStatistics() const override {} 2535 2536 void initialize(Attributor &A) override { 2537 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2538 auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared]; 2539 2540 for (User *U : RFI.Declaration->users()) 2541 if (CallBase *CB = dyn_cast<CallBase>(U)) 2542 MallocCalls.insert(CB); 2543 } 2544 2545 ChangeStatus manifest(Attributor &A) override { 2546 if (MallocCalls.empty()) 2547 return ChangeStatus::UNCHANGED; 2548 2549 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2550 auto &FreeCall = OMPInfoCache.RFIs[OMPRTL___kmpc_free_shared]; 2551 2552 Function *F = getAnchorScope(); 2553 auto *HS = A.lookupAAFor<AAHeapToStack>(IRPosition::function(*F), this, 2554 DepClassTy::OPTIONAL); 2555 2556 ChangeStatus Changed = ChangeStatus::UNCHANGED; 2557 for (CallBase *CB : MallocCalls) { 2558 // Skip replacing this if HeapToStack has already claimed it. 2559 if (HS && HS->isAssumedHeapToStack(*CB)) 2560 continue; 2561 2562 // Find the unique free call to remove it. 2563 SmallVector<CallBase *, 4> FreeCalls; 2564 for (auto *U : CB->users()) { 2565 CallBase *C = dyn_cast<CallBase>(U); 2566 if (C && C->getCalledFunction() == FreeCall.Declaration) 2567 FreeCalls.push_back(C); 2568 } 2569 if (FreeCalls.size() != 1) 2570 continue; 2571 2572 ConstantInt *AllocSize = dyn_cast<ConstantInt>(CB->getArgOperand(0)); 2573 2574 LLVM_DEBUG(dbgs() << TAG << "Replace globalization call in " 2575 << CB->getCaller()->getName() << " with " 2576 << AllocSize->getZExtValue() 2577 << " bytes of shared memory\n"); 2578 2579 // Create a new shared memory buffer of the same size as the allocation 2580 // and replace all the uses of the original allocation with it. 2581 Module *M = CB->getModule(); 2582 Type *Int8Ty = Type::getInt8Ty(M->getContext()); 2583 Type *Int8ArrTy = ArrayType::get(Int8Ty, AllocSize->getZExtValue()); 2584 auto *SharedMem = new GlobalVariable( 2585 *M, Int8ArrTy, /* IsConstant */ false, GlobalValue::InternalLinkage, 2586 UndefValue::get(Int8ArrTy), CB->getName(), nullptr, 2587 GlobalValue::NotThreadLocal, 2588 static_cast<unsigned>(AddressSpace::Shared)); 2589 auto *NewBuffer = 2590 ConstantExpr::getPointerCast(SharedMem, Int8Ty->getPointerTo()); 2591 2592 auto Remark = [&](OptimizationRemark OR) { 2593 return OR << "Replaced globalized variable with " 2594 << ore::NV("SharedMemory", AllocSize->getZExtValue()) 2595 << ((AllocSize->getZExtValue() != 1) ? " bytes " : " byte ") 2596 << "of shared memory."; 2597 }; 2598 A.emitRemark<OptimizationRemark>(CB, "OMP111", Remark); 2599 2600 SharedMem->setAlignment(MaybeAlign(32)); 2601 2602 A.changeValueAfterManifest(*CB, *NewBuffer); 2603 A.deleteAfterManifest(*CB); 2604 A.deleteAfterManifest(*FreeCalls.front()); 2605 2606 NumBytesMovedToSharedMemory += AllocSize->getZExtValue(); 2607 Changed = ChangeStatus::CHANGED; 2608 } 2609 2610 return Changed; 2611 } 2612 2613 ChangeStatus updateImpl(Attributor &A) override { 2614 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2615 auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared]; 2616 Function *F = getAnchorScope(); 2617 2618 auto NumMallocCalls = MallocCalls.size(); 2619 2620 // Only consider malloc calls executed by a single thread with a constant. 2621 for (User *U : RFI.Declaration->users()) { 2622 const auto &ED = A.getAAFor<AAExecutionDomain>( 2623 *this, IRPosition::function(*F), DepClassTy::REQUIRED); 2624 if (CallBase *CB = dyn_cast<CallBase>(U)) 2625 if (!dyn_cast<ConstantInt>(CB->getArgOperand(0)) || 2626 !ED.isExecutedByInitialThreadOnly(*CB)) 2627 MallocCalls.erase(CB); 2628 } 2629 2630 if (NumMallocCalls != MallocCalls.size()) 2631 return ChangeStatus::CHANGED; 2632 2633 return ChangeStatus::UNCHANGED; 2634 } 2635 2636 /// Collection of all malloc calls in a function. 2637 SmallPtrSet<CallBase *, 4> MallocCalls; 2638 }; 2639 2640 struct AAKernelInfo : public StateWrapper<KernelInfoState, AbstractAttribute> { 2641 using Base = StateWrapper<KernelInfoState, AbstractAttribute>; 2642 AAKernelInfo(const IRPosition &IRP, Attributor &A) : Base(IRP) {} 2643 2644 /// Statistics are tracked as part of manifest for now. 2645 void trackStatistics() const override {} 2646 2647 /// See AbstractAttribute::getAsStr() 2648 const std::string getAsStr() const override { 2649 if (!isValidState()) 2650 return "<invalid>"; 2651 return std::string(SPMDCompatibilityTracker.isAssumed() ? "SPMD" 2652 : "generic") + 2653 std::string(SPMDCompatibilityTracker.isAtFixpoint() ? " [FIX]" 2654 : "") + 2655 std::string(" #PRs: ") + 2656 std::to_string(ReachedKnownParallelRegions.size()) + 2657 ", #Unknown PRs: " + 2658 std::to_string(ReachedUnknownParallelRegions.size()); 2659 } 2660 2661 /// Create an abstract attribute biew for the position \p IRP. 2662 static AAKernelInfo &createForPosition(const IRPosition &IRP, Attributor &A); 2663 2664 /// See AbstractAttribute::getName() 2665 const std::string getName() const override { return "AAKernelInfo"; } 2666 2667 /// See AbstractAttribute::getIdAddr() 2668 const char *getIdAddr() const override { return &ID; } 2669 2670 /// This function should return true if the type of the \p AA is AAKernelInfo 2671 static bool classof(const AbstractAttribute *AA) { 2672 return (AA->getIdAddr() == &ID); 2673 } 2674 2675 static const char ID; 2676 }; 2677 2678 /// The function kernel info abstract attribute, basically, what can we say 2679 /// about a function with regards to the KernelInfoState. 2680 struct AAKernelInfoFunction : AAKernelInfo { 2681 AAKernelInfoFunction(const IRPosition &IRP, Attributor &A) 2682 : AAKernelInfo(IRP, A) {} 2683 2684 /// See AbstractAttribute::initialize(...). 2685 void initialize(Attributor &A) override { 2686 // This is a high-level transform that might change the constant arguments 2687 // of the init and dinit calls. We need to tell the Attributor about this 2688 // to avoid other parts using the current constant value for simpliication. 2689 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2690 2691 Function *Fn = getAnchorScope(); 2692 if (!OMPInfoCache.Kernels.count(Fn)) 2693 return; 2694 2695 // Add itself to the reaching kernel and set IsKernelEntry. 2696 ReachingKernelEntries.insert(Fn); 2697 IsKernelEntry = true; 2698 2699 OMPInformationCache::RuntimeFunctionInfo &InitRFI = 2700 OMPInfoCache.RFIs[OMPRTL___kmpc_target_init]; 2701 OMPInformationCache::RuntimeFunctionInfo &DeinitRFI = 2702 OMPInfoCache.RFIs[OMPRTL___kmpc_target_deinit]; 2703 2704 // For kernels we perform more initialization work, first we find the init 2705 // and deinit calls. 2706 auto StoreCallBase = [](Use &U, 2707 OMPInformationCache::RuntimeFunctionInfo &RFI, 2708 CallBase *&Storage) { 2709 CallBase *CB = OpenMPOpt::getCallIfRegularCall(U, &RFI); 2710 assert(CB && 2711 "Unexpected use of __kmpc_target_init or __kmpc_target_deinit!"); 2712 assert(!Storage && 2713 "Multiple uses of __kmpc_target_init or __kmpc_target_deinit!"); 2714 Storage = CB; 2715 return false; 2716 }; 2717 InitRFI.foreachUse( 2718 [&](Use &U, Function &) { 2719 StoreCallBase(U, InitRFI, KernelInitCB); 2720 return false; 2721 }, 2722 Fn); 2723 DeinitRFI.foreachUse( 2724 [&](Use &U, Function &) { 2725 StoreCallBase(U, DeinitRFI, KernelDeinitCB); 2726 return false; 2727 }, 2728 Fn); 2729 2730 assert((KernelInitCB && KernelDeinitCB) && 2731 "Kernel without __kmpc_target_init or __kmpc_target_deinit!"); 2732 2733 // For kernels we might need to initialize/finalize the IsSPMD state and 2734 // we need to register a simplification callback so that the Attributor 2735 // knows the constant arguments to __kmpc_target_init and 2736 // __kmpc_target_deinit might actually change. 2737 2738 Attributor::SimplifictionCallbackTy StateMachineSimplifyCB = 2739 [&](const IRPosition &IRP, const AbstractAttribute *AA, 2740 bool &UsedAssumedInformation) -> Optional<Value *> { 2741 // IRP represents the "use generic state machine" argument of an 2742 // __kmpc_target_init call. We will answer this one with the internal 2743 // state. As long as we are not in an invalid state, we will create a 2744 // custom state machine so the value should be a `i1 false`. If we are 2745 // in an invalid state, we won't change the value that is in the IR. 2746 if (!isValidState()) 2747 return nullptr; 2748 if (AA) 2749 A.recordDependence(*this, *AA, DepClassTy::OPTIONAL); 2750 UsedAssumedInformation = !isAtFixpoint(); 2751 auto *FalseVal = 2752 ConstantInt::getBool(IRP.getAnchorValue().getContext(), 0); 2753 return FalseVal; 2754 }; 2755 2756 Attributor::SimplifictionCallbackTy IsSPMDModeSimplifyCB = 2757 [&](const IRPosition &IRP, const AbstractAttribute *AA, 2758 bool &UsedAssumedInformation) -> Optional<Value *> { 2759 // IRP represents the "SPMDCompatibilityTracker" argument of an 2760 // __kmpc_target_init or 2761 // __kmpc_target_deinit call. We will answer this one with the internal 2762 // state. 2763 if (!SPMDCompatibilityTracker.isValidState()) 2764 return nullptr; 2765 if (!SPMDCompatibilityTracker.isAtFixpoint()) { 2766 if (AA) 2767 A.recordDependence(*this, *AA, DepClassTy::OPTIONAL); 2768 UsedAssumedInformation = true; 2769 } else { 2770 UsedAssumedInformation = false; 2771 } 2772 auto *Val = ConstantInt::getBool(IRP.getAnchorValue().getContext(), 2773 SPMDCompatibilityTracker.isAssumed()); 2774 return Val; 2775 }; 2776 2777 Attributor::SimplifictionCallbackTy IsGenericModeSimplifyCB = 2778 [&](const IRPosition &IRP, const AbstractAttribute *AA, 2779 bool &UsedAssumedInformation) -> Optional<Value *> { 2780 // IRP represents the "RequiresFullRuntime" argument of an 2781 // __kmpc_target_init or __kmpc_target_deinit call. We will answer this 2782 // one with the internal state of the SPMDCompatibilityTracker, so if 2783 // generic then true, if SPMD then false. 2784 if (!SPMDCompatibilityTracker.isValidState()) 2785 return nullptr; 2786 if (!SPMDCompatibilityTracker.isAtFixpoint()) { 2787 if (AA) 2788 A.recordDependence(*this, *AA, DepClassTy::OPTIONAL); 2789 UsedAssumedInformation = true; 2790 } else { 2791 UsedAssumedInformation = false; 2792 } 2793 auto *Val = ConstantInt::getBool(IRP.getAnchorValue().getContext(), 2794 !SPMDCompatibilityTracker.isAssumed()); 2795 return Val; 2796 }; 2797 2798 constexpr const int InitIsSPMDArgNo = 1; 2799 constexpr const int DeinitIsSPMDArgNo = 1; 2800 constexpr const int InitUseStateMachineArgNo = 2; 2801 constexpr const int InitRequiresFullRuntimeArgNo = 3; 2802 constexpr const int DeinitRequiresFullRuntimeArgNo = 2; 2803 A.registerSimplificationCallback( 2804 IRPosition::callsite_argument(*KernelInitCB, InitUseStateMachineArgNo), 2805 StateMachineSimplifyCB); 2806 A.registerSimplificationCallback( 2807 IRPosition::callsite_argument(*KernelInitCB, InitIsSPMDArgNo), 2808 IsSPMDModeSimplifyCB); 2809 A.registerSimplificationCallback( 2810 IRPosition::callsite_argument(*KernelDeinitCB, DeinitIsSPMDArgNo), 2811 IsSPMDModeSimplifyCB); 2812 A.registerSimplificationCallback( 2813 IRPosition::callsite_argument(*KernelInitCB, 2814 InitRequiresFullRuntimeArgNo), 2815 IsGenericModeSimplifyCB); 2816 A.registerSimplificationCallback( 2817 IRPosition::callsite_argument(*KernelDeinitCB, 2818 DeinitRequiresFullRuntimeArgNo), 2819 IsGenericModeSimplifyCB); 2820 2821 // Check if we know we are in SPMD-mode already. 2822 ConstantInt *IsSPMDArg = 2823 dyn_cast<ConstantInt>(KernelInitCB->getArgOperand(InitIsSPMDArgNo)); 2824 if (IsSPMDArg && !IsSPMDArg->isZero()) 2825 SPMDCompatibilityTracker.indicateOptimisticFixpoint(); 2826 } 2827 2828 /// Modify the IR based on the KernelInfoState as the fixpoint iteration is 2829 /// finished now. 2830 ChangeStatus manifest(Attributor &A) override { 2831 // If we are not looking at a kernel with __kmpc_target_init and 2832 // __kmpc_target_deinit call we cannot actually manifest the information. 2833 if (!KernelInitCB || !KernelDeinitCB) 2834 return ChangeStatus::UNCHANGED; 2835 2836 // Known SPMD-mode kernels need no manifest changes. 2837 if (SPMDCompatibilityTracker.isKnown()) 2838 return ChangeStatus::UNCHANGED; 2839 2840 // If we can we change the execution mode to SPMD-mode otherwise we build a 2841 // custom state machine. 2842 if (!changeToSPMDMode(A)) 2843 buildCustomStateMachine(A); 2844 2845 return ChangeStatus::CHANGED; 2846 } 2847 2848 bool changeToSPMDMode(Attributor &A) { 2849 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2850 2851 if (!SPMDCompatibilityTracker.isAssumed()) { 2852 for (Instruction *NonCompatibleI : SPMDCompatibilityTracker) { 2853 if (!NonCompatibleI) 2854 continue; 2855 2856 // Skip diagnostics on calls to known OpenMP runtime functions for now. 2857 if (auto *CB = dyn_cast<CallBase>(NonCompatibleI)) 2858 if (OMPInfoCache.RTLFunctions.contains(CB->getCalledFunction())) 2859 continue; 2860 2861 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 2862 ORA << "Value has potential side effects preventing SPMD-mode " 2863 "execution"; 2864 if (isa<CallBase>(NonCompatibleI)) { 2865 ORA << ". Add `__attribute__((assume(\"ompx_spmd_amenable\")))` to " 2866 "the called function to override"; 2867 } 2868 return ORA << "."; 2869 }; 2870 A.emitRemark<OptimizationRemarkAnalysis>(NonCompatibleI, "OMP121", 2871 Remark); 2872 2873 LLVM_DEBUG(dbgs() << TAG << "SPMD-incompatible side-effect: " 2874 << *NonCompatibleI << "\n"); 2875 } 2876 2877 return false; 2878 } 2879 2880 // Adjust the global exec mode flag that tells the runtime what mode this 2881 // kernel is executed in. 2882 Function *Kernel = getAnchorScope(); 2883 GlobalVariable *ExecMode = Kernel->getParent()->getGlobalVariable( 2884 (Kernel->getName() + "_exec_mode").str()); 2885 assert(ExecMode && "Kernel without exec mode?"); 2886 assert(ExecMode->getInitializer() && 2887 ExecMode->getInitializer()->isOneValue() && 2888 "Initially non-SPMD kernel has SPMD exec mode!"); 2889 ExecMode->setInitializer( 2890 ConstantInt::get(ExecMode->getInitializer()->getType(), 0)); 2891 2892 // Next rewrite the init and deinit calls to indicate we use SPMD-mode now. 2893 const int InitIsSPMDArgNo = 1; 2894 const int DeinitIsSPMDArgNo = 1; 2895 const int InitUseStateMachineArgNo = 2; 2896 const int InitRequiresFullRuntimeArgNo = 3; 2897 const int DeinitRequiresFullRuntimeArgNo = 2; 2898 2899 auto &Ctx = getAnchorValue().getContext(); 2900 A.changeUseAfterManifest(KernelInitCB->getArgOperandUse(InitIsSPMDArgNo), 2901 *ConstantInt::getBool(Ctx, 1)); 2902 A.changeUseAfterManifest( 2903 KernelInitCB->getArgOperandUse(InitUseStateMachineArgNo), 2904 *ConstantInt::getBool(Ctx, 0)); 2905 A.changeUseAfterManifest( 2906 KernelDeinitCB->getArgOperandUse(DeinitIsSPMDArgNo), 2907 *ConstantInt::getBool(Ctx, 1)); 2908 A.changeUseAfterManifest( 2909 KernelInitCB->getArgOperandUse(InitRequiresFullRuntimeArgNo), 2910 *ConstantInt::getBool(Ctx, 0)); 2911 A.changeUseAfterManifest( 2912 KernelDeinitCB->getArgOperandUse(DeinitRequiresFullRuntimeArgNo), 2913 *ConstantInt::getBool(Ctx, 0)); 2914 2915 ++NumOpenMPTargetRegionKernelsSPMD; 2916 2917 auto Remark = [&](OptimizationRemark OR) { 2918 return OR << "Transformed generic-mode kernel to SPMD-mode."; 2919 }; 2920 A.emitRemark<OptimizationRemark>(KernelInitCB, "OMP120", Remark); 2921 return true; 2922 }; 2923 2924 ChangeStatus buildCustomStateMachine(Attributor &A) { 2925 assert(ReachedKnownParallelRegions.isValidState() && 2926 "Custom state machine with invalid parallel region states?"); 2927 2928 const int InitIsSPMDArgNo = 1; 2929 const int InitUseStateMachineArgNo = 2; 2930 2931 // Check if the current configuration is non-SPMD and generic state machine. 2932 // If we already have SPMD mode or a custom state machine we do not need to 2933 // go any further. If it is anything but a constant something is weird and 2934 // we give up. 2935 ConstantInt *UseStateMachine = dyn_cast<ConstantInt>( 2936 KernelInitCB->getArgOperand(InitUseStateMachineArgNo)); 2937 ConstantInt *IsSPMD = 2938 dyn_cast<ConstantInt>(KernelInitCB->getArgOperand(InitIsSPMDArgNo)); 2939 2940 // If we are stuck with generic mode, try to create a custom device (=GPU) 2941 // state machine which is specialized for the parallel regions that are 2942 // reachable by the kernel. 2943 if (!UseStateMachine || UseStateMachine->isZero() || !IsSPMD || 2944 !IsSPMD->isZero()) 2945 return ChangeStatus::UNCHANGED; 2946 2947 // If not SPMD mode, indicate we use a custom state machine now. 2948 auto &Ctx = getAnchorValue().getContext(); 2949 auto *FalseVal = ConstantInt::getBool(Ctx, 0); 2950 A.changeUseAfterManifest( 2951 KernelInitCB->getArgOperandUse(InitUseStateMachineArgNo), *FalseVal); 2952 2953 // If we don't actually need a state machine we are done here. This can 2954 // happen if there simply are no parallel regions. In the resulting kernel 2955 // all worker threads will simply exit right away, leaving the main thread 2956 // to do the work alone. 2957 if (ReachedKnownParallelRegions.empty() && 2958 ReachedUnknownParallelRegions.empty()) { 2959 ++NumOpenMPTargetRegionKernelsWithoutStateMachine; 2960 2961 auto Remark = [&](OptimizationRemark OR) { 2962 return OR << "Removing unused state machine from generic-mode kernel."; 2963 }; 2964 A.emitRemark<OptimizationRemark>(KernelInitCB, "OMP130", Remark); 2965 2966 return ChangeStatus::CHANGED; 2967 } 2968 2969 // Keep track in the statistics of our new shiny custom state machine. 2970 if (ReachedUnknownParallelRegions.empty()) { 2971 ++NumOpenMPTargetRegionKernelsCustomStateMachineWithoutFallback; 2972 2973 auto Remark = [&](OptimizationRemark OR) { 2974 return OR << "Rewriting generic-mode kernel with a customized state " 2975 "machine."; 2976 }; 2977 A.emitRemark<OptimizationRemark>(KernelInitCB, "OMP131", Remark); 2978 } else { 2979 ++NumOpenMPTargetRegionKernelsCustomStateMachineWithFallback; 2980 2981 auto Remark = [&](OptimizationRemarkAnalysis OR) { 2982 return OR << "Generic-mode kernel is executed with a customized state " 2983 "machine that requires a fallback."; 2984 }; 2985 A.emitRemark<OptimizationRemarkAnalysis>(KernelInitCB, "OMP132", Remark); 2986 2987 // Tell the user why we ended up with a fallback. 2988 for (CallBase *UnknownParallelRegionCB : ReachedUnknownParallelRegions) { 2989 if (!UnknownParallelRegionCB) 2990 continue; 2991 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 2992 return ORA << "Call may contain unknown parallel regions. Use " 2993 << "`__attribute__((assume(\"omp_no_parallelism\")))` to " 2994 "override."; 2995 }; 2996 A.emitRemark<OptimizationRemarkAnalysis>(UnknownParallelRegionCB, 2997 "OMP133", Remark); 2998 } 2999 } 3000 3001 // Create all the blocks: 3002 // 3003 // InitCB = __kmpc_target_init(...) 3004 // bool IsWorker = InitCB >= 0; 3005 // if (IsWorker) { 3006 // SMBeginBB: __kmpc_barrier_simple_spmd(...); 3007 // void *WorkFn; 3008 // bool Active = __kmpc_kernel_parallel(&WorkFn); 3009 // if (!WorkFn) return; 3010 // SMIsActiveCheckBB: if (Active) { 3011 // SMIfCascadeCurrentBB: if (WorkFn == <ParFn0>) 3012 // ParFn0(...); 3013 // SMIfCascadeCurrentBB: else if (WorkFn == <ParFn1>) 3014 // ParFn1(...); 3015 // ... 3016 // SMIfCascadeCurrentBB: else 3017 // ((WorkFnTy*)WorkFn)(...); 3018 // SMEndParallelBB: __kmpc_kernel_end_parallel(...); 3019 // } 3020 // SMDoneBB: __kmpc_barrier_simple_spmd(...); 3021 // goto SMBeginBB; 3022 // } 3023 // UserCodeEntryBB: // user code 3024 // __kmpc_target_deinit(...) 3025 // 3026 Function *Kernel = getAssociatedFunction(); 3027 assert(Kernel && "Expected an associated function!"); 3028 3029 BasicBlock *InitBB = KernelInitCB->getParent(); 3030 BasicBlock *UserCodeEntryBB = InitBB->splitBasicBlock( 3031 KernelInitCB->getNextNode(), "thread.user_code.check"); 3032 BasicBlock *StateMachineBeginBB = BasicBlock::Create( 3033 Ctx, "worker_state_machine.begin", Kernel, UserCodeEntryBB); 3034 BasicBlock *StateMachineFinishedBB = BasicBlock::Create( 3035 Ctx, "worker_state_machine.finished", Kernel, UserCodeEntryBB); 3036 BasicBlock *StateMachineIsActiveCheckBB = BasicBlock::Create( 3037 Ctx, "worker_state_machine.is_active.check", Kernel, UserCodeEntryBB); 3038 BasicBlock *StateMachineIfCascadeCurrentBB = 3039 BasicBlock::Create(Ctx, "worker_state_machine.parallel_region.check", 3040 Kernel, UserCodeEntryBB); 3041 BasicBlock *StateMachineEndParallelBB = 3042 BasicBlock::Create(Ctx, "worker_state_machine.parallel_region.end", 3043 Kernel, UserCodeEntryBB); 3044 BasicBlock *StateMachineDoneBarrierBB = BasicBlock::Create( 3045 Ctx, "worker_state_machine.done.barrier", Kernel, UserCodeEntryBB); 3046 A.registerManifestAddedBasicBlock(*InitBB); 3047 A.registerManifestAddedBasicBlock(*UserCodeEntryBB); 3048 A.registerManifestAddedBasicBlock(*StateMachineBeginBB); 3049 A.registerManifestAddedBasicBlock(*StateMachineFinishedBB); 3050 A.registerManifestAddedBasicBlock(*StateMachineIsActiveCheckBB); 3051 A.registerManifestAddedBasicBlock(*StateMachineIfCascadeCurrentBB); 3052 A.registerManifestAddedBasicBlock(*StateMachineEndParallelBB); 3053 A.registerManifestAddedBasicBlock(*StateMachineDoneBarrierBB); 3054 3055 const DebugLoc &DLoc = KernelInitCB->getDebugLoc(); 3056 ReturnInst::Create(Ctx, StateMachineFinishedBB)->setDebugLoc(DLoc); 3057 3058 InitBB->getTerminator()->eraseFromParent(); 3059 Instruction *IsWorker = 3060 ICmpInst::Create(ICmpInst::ICmp, llvm::CmpInst::ICMP_NE, KernelInitCB, 3061 ConstantInt::get(KernelInitCB->getType(), -1), 3062 "thread.is_worker", InitBB); 3063 IsWorker->setDebugLoc(DLoc); 3064 BranchInst::Create(StateMachineBeginBB, UserCodeEntryBB, IsWorker, InitBB); 3065 3066 // Create local storage for the work function pointer. 3067 Type *VoidPtrTy = Type::getInt8PtrTy(Ctx); 3068 AllocaInst *WorkFnAI = new AllocaInst(VoidPtrTy, 0, "worker.work_fn.addr", 3069 &Kernel->getEntryBlock().front()); 3070 WorkFnAI->setDebugLoc(DLoc); 3071 3072 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 3073 OMPInfoCache.OMPBuilder.updateToLocation( 3074 OpenMPIRBuilder::LocationDescription( 3075 IRBuilder<>::InsertPoint(StateMachineBeginBB, 3076 StateMachineBeginBB->end()), 3077 DLoc)); 3078 3079 Value *Ident = KernelInitCB->getArgOperand(0); 3080 Value *GTid = KernelInitCB; 3081 3082 Module &M = *Kernel->getParent(); 3083 FunctionCallee BarrierFn = 3084 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( 3085 M, OMPRTL___kmpc_barrier_simple_spmd); 3086 CallInst::Create(BarrierFn, {Ident, GTid}, "", StateMachineBeginBB) 3087 ->setDebugLoc(DLoc); 3088 3089 FunctionCallee KernelParallelFn = 3090 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( 3091 M, OMPRTL___kmpc_kernel_parallel); 3092 Instruction *IsActiveWorker = CallInst::Create( 3093 KernelParallelFn, {WorkFnAI}, "worker.is_active", StateMachineBeginBB); 3094 IsActiveWorker->setDebugLoc(DLoc); 3095 Instruction *WorkFn = new LoadInst(VoidPtrTy, WorkFnAI, "worker.work_fn", 3096 StateMachineBeginBB); 3097 WorkFn->setDebugLoc(DLoc); 3098 3099 FunctionType *ParallelRegionFnTy = FunctionType::get( 3100 Type::getVoidTy(Ctx), {Type::getInt16Ty(Ctx), Type::getInt32Ty(Ctx)}, 3101 false); 3102 Value *WorkFnCast = BitCastInst::CreatePointerBitCastOrAddrSpaceCast( 3103 WorkFn, ParallelRegionFnTy->getPointerTo(), "worker.work_fn.addr_cast", 3104 StateMachineBeginBB); 3105 3106 Instruction *IsDone = 3107 ICmpInst::Create(ICmpInst::ICmp, llvm::CmpInst::ICMP_EQ, WorkFn, 3108 Constant::getNullValue(VoidPtrTy), "worker.is_done", 3109 StateMachineBeginBB); 3110 IsDone->setDebugLoc(DLoc); 3111 BranchInst::Create(StateMachineFinishedBB, StateMachineIsActiveCheckBB, 3112 IsDone, StateMachineBeginBB) 3113 ->setDebugLoc(DLoc); 3114 3115 BranchInst::Create(StateMachineIfCascadeCurrentBB, 3116 StateMachineDoneBarrierBB, IsActiveWorker, 3117 StateMachineIsActiveCheckBB) 3118 ->setDebugLoc(DLoc); 3119 3120 Value *ZeroArg = 3121 Constant::getNullValue(ParallelRegionFnTy->getParamType(0)); 3122 3123 // Now that we have most of the CFG skeleton it is time for the if-cascade 3124 // that checks the function pointer we got from the runtime against the 3125 // parallel regions we expect, if there are any. 3126 for (int i = 0, e = ReachedKnownParallelRegions.size(); i < e; ++i) { 3127 auto *ParallelRegion = ReachedKnownParallelRegions[i]; 3128 BasicBlock *PRExecuteBB = BasicBlock::Create( 3129 Ctx, "worker_state_machine.parallel_region.execute", Kernel, 3130 StateMachineEndParallelBB); 3131 CallInst::Create(ParallelRegion, {ZeroArg, GTid}, "", PRExecuteBB) 3132 ->setDebugLoc(DLoc); 3133 BranchInst::Create(StateMachineEndParallelBB, PRExecuteBB) 3134 ->setDebugLoc(DLoc); 3135 3136 BasicBlock *PRNextBB = 3137 BasicBlock::Create(Ctx, "worker_state_machine.parallel_region.check", 3138 Kernel, StateMachineEndParallelBB); 3139 3140 // Check if we need to compare the pointer at all or if we can just 3141 // call the parallel region function. 3142 Value *IsPR; 3143 if (i + 1 < e || !ReachedUnknownParallelRegions.empty()) { 3144 Instruction *CmpI = ICmpInst::Create( 3145 ICmpInst::ICmp, llvm::CmpInst::ICMP_EQ, WorkFnCast, ParallelRegion, 3146 "worker.check_parallel_region", StateMachineIfCascadeCurrentBB); 3147 CmpI->setDebugLoc(DLoc); 3148 IsPR = CmpI; 3149 } else { 3150 IsPR = ConstantInt::getTrue(Ctx); 3151 } 3152 3153 BranchInst::Create(PRExecuteBB, PRNextBB, IsPR, 3154 StateMachineIfCascadeCurrentBB) 3155 ->setDebugLoc(DLoc); 3156 StateMachineIfCascadeCurrentBB = PRNextBB; 3157 } 3158 3159 // At the end of the if-cascade we place the indirect function pointer call 3160 // in case we might need it, that is if there can be parallel regions we 3161 // have not handled in the if-cascade above. 3162 if (!ReachedUnknownParallelRegions.empty()) { 3163 StateMachineIfCascadeCurrentBB->setName( 3164 "worker_state_machine.parallel_region.fallback.execute"); 3165 CallInst::Create(ParallelRegionFnTy, WorkFnCast, {ZeroArg, GTid}, "", 3166 StateMachineIfCascadeCurrentBB) 3167 ->setDebugLoc(DLoc); 3168 } 3169 BranchInst::Create(StateMachineEndParallelBB, 3170 StateMachineIfCascadeCurrentBB) 3171 ->setDebugLoc(DLoc); 3172 3173 CallInst::Create(OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( 3174 M, OMPRTL___kmpc_kernel_end_parallel), 3175 {}, "", StateMachineEndParallelBB) 3176 ->setDebugLoc(DLoc); 3177 BranchInst::Create(StateMachineDoneBarrierBB, StateMachineEndParallelBB) 3178 ->setDebugLoc(DLoc); 3179 3180 CallInst::Create(BarrierFn, {Ident, GTid}, "", StateMachineDoneBarrierBB) 3181 ->setDebugLoc(DLoc); 3182 BranchInst::Create(StateMachineBeginBB, StateMachineDoneBarrierBB) 3183 ->setDebugLoc(DLoc); 3184 3185 return ChangeStatus::CHANGED; 3186 } 3187 3188 /// Fixpoint iteration update function. Will be called every time a dependence 3189 /// changed its state (and in the beginning). 3190 ChangeStatus updateImpl(Attributor &A) override { 3191 KernelInfoState StateBefore = getState(); 3192 3193 // Callback to check a read/write instruction. 3194 auto CheckRWInst = [&](Instruction &I) { 3195 // We handle calls later. 3196 if (isa<CallBase>(I)) 3197 return true; 3198 // We only care about write effects. 3199 if (!I.mayWriteToMemory()) 3200 return true; 3201 if (auto *SI = dyn_cast<StoreInst>(&I)) { 3202 SmallVector<const Value *> Objects; 3203 getUnderlyingObjects(SI->getPointerOperand(), Objects); 3204 if (llvm::all_of(Objects, 3205 [](const Value *Obj) { return isa<AllocaInst>(Obj); })) 3206 return true; 3207 } 3208 // For now we give up on everything but stores. 3209 SPMDCompatibilityTracker.insert(&I); 3210 return true; 3211 }; 3212 3213 bool UsedAssumedInformationInCheckRWInst = false; 3214 if (!SPMDCompatibilityTracker.isAtFixpoint()) 3215 if (!A.checkForAllReadWriteInstructions( 3216 CheckRWInst, *this, UsedAssumedInformationInCheckRWInst)) 3217 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 3218 3219 if (!IsKernelEntry) 3220 updateReachingKernelEntries(A); 3221 3222 // Callback to check a call instruction. 3223 bool AllSPMDStatesWereFixed = true; 3224 auto CheckCallInst = [&](Instruction &I) { 3225 auto &CB = cast<CallBase>(I); 3226 auto &CBAA = A.getAAFor<AAKernelInfo>( 3227 *this, IRPosition::callsite_function(CB), DepClassTy::OPTIONAL); 3228 getState() ^= CBAA.getState(); 3229 AllSPMDStatesWereFixed &= CBAA.SPMDCompatibilityTracker.isAtFixpoint(); 3230 return true; 3231 }; 3232 3233 bool UsedAssumedInformationInCheckCallInst = false; 3234 if (!A.checkForAllCallLikeInstructions( 3235 CheckCallInst, *this, UsedAssumedInformationInCheckCallInst)) 3236 return indicatePessimisticFixpoint(); 3237 3238 // If we haven't used any assumed information for the SPMD state we can fix 3239 // it. 3240 if (!UsedAssumedInformationInCheckRWInst && 3241 !UsedAssumedInformationInCheckCallInst && AllSPMDStatesWereFixed) 3242 SPMDCompatibilityTracker.indicateOptimisticFixpoint(); 3243 3244 return StateBefore == getState() ? ChangeStatus::UNCHANGED 3245 : ChangeStatus::CHANGED; 3246 } 3247 3248 private: 3249 /// Update info regarding reaching kernels. 3250 void updateReachingKernelEntries(Attributor &A) { 3251 auto PredCallSite = [&](AbstractCallSite ACS) { 3252 Function *Caller = ACS.getInstruction()->getFunction(); 3253 3254 assert(Caller && "Caller is nullptr"); 3255 3256 auto &CAA = A.getOrCreateAAFor<AAKernelInfo>( 3257 IRPosition::function(*Caller), this, DepClassTy::REQUIRED); 3258 if (CAA.ReachingKernelEntries.isValidState()) { 3259 ReachingKernelEntries ^= CAA.ReachingKernelEntries; 3260 return true; 3261 } 3262 3263 // We lost track of the caller of the associated function, any kernel 3264 // could reach now. 3265 ReachingKernelEntries.indicatePessimisticFixpoint(); 3266 3267 return true; 3268 }; 3269 3270 bool AllCallSitesKnown; 3271 if (!A.checkForAllCallSites(PredCallSite, *this, 3272 true /* RequireAllCallSites */, 3273 AllCallSitesKnown)) 3274 ReachingKernelEntries.indicatePessimisticFixpoint(); 3275 } 3276 }; 3277 3278 /// The call site kernel info abstract attribute, basically, what can we say 3279 /// about a call site with regards to the KernelInfoState. For now this simply 3280 /// forwards the information from the callee. 3281 struct AAKernelInfoCallSite : AAKernelInfo { 3282 AAKernelInfoCallSite(const IRPosition &IRP, Attributor &A) 3283 : AAKernelInfo(IRP, A) {} 3284 3285 /// See AbstractAttribute::initialize(...). 3286 void initialize(Attributor &A) override { 3287 AAKernelInfo::initialize(A); 3288 3289 CallBase &CB = cast<CallBase>(getAssociatedValue()); 3290 Function *Callee = getAssociatedFunction(); 3291 3292 // Helper to lookup an assumption string. 3293 auto HasAssumption = [](Function *Fn, StringRef AssumptionStr) { 3294 return Fn && hasAssumption(*Fn, AssumptionStr); 3295 }; 3296 3297 // Check for SPMD-mode assumptions. 3298 if (HasAssumption(Callee, "ompx_spmd_amenable")) 3299 SPMDCompatibilityTracker.indicateOptimisticFixpoint(); 3300 3301 // First weed out calls we do not care about, that is readonly/readnone 3302 // calls, intrinsics, and "no_openmp" calls. Neither of these can reach a 3303 // parallel region or anything else we are looking for. 3304 if (!CB.mayWriteToMemory() || isa<IntrinsicInst>(CB)) { 3305 indicateOptimisticFixpoint(); 3306 return; 3307 } 3308 3309 // Next we check if we know the callee. If it is a known OpenMP function 3310 // we will handle them explicitly in the switch below. If it is not, we 3311 // will use an AAKernelInfo object on the callee to gather information and 3312 // merge that into the current state. The latter happens in the updateImpl. 3313 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 3314 const auto &It = OMPInfoCache.RuntimeFunctionIDMap.find(Callee); 3315 if (It == OMPInfoCache.RuntimeFunctionIDMap.end()) { 3316 // Unknown caller or declarations are not analyzable, we give up. 3317 if (!Callee || !A.isFunctionIPOAmendable(*Callee)) { 3318 3319 // Unknown callees might contain parallel regions, except if they have 3320 // an appropriate assumption attached. 3321 if (!(HasAssumption(Callee, "omp_no_openmp") || 3322 HasAssumption(Callee, "omp_no_parallelism"))) 3323 ReachedUnknownParallelRegions.insert(&CB); 3324 3325 // If SPMDCompatibilityTracker is not fixed, we need to give up on the 3326 // idea we can run something unknown in SPMD-mode. 3327 if (!SPMDCompatibilityTracker.isAtFixpoint()) 3328 SPMDCompatibilityTracker.insert(&CB); 3329 3330 // We have updated the state for this unknown call properly, there won't 3331 // be any change so we indicate a fixpoint. 3332 indicateOptimisticFixpoint(); 3333 } 3334 // If the callee is known and can be used in IPO, we will update the state 3335 // based on the callee state in updateImpl. 3336 return; 3337 } 3338 3339 const unsigned int WrapperFunctionArgNo = 6; 3340 RuntimeFunction RF = It->getSecond(); 3341 switch (RF) { 3342 // All the functions we know are compatible with SPMD mode. 3343 case OMPRTL___kmpc_is_spmd_exec_mode: 3344 case OMPRTL___kmpc_for_static_fini: 3345 case OMPRTL___kmpc_global_thread_num: 3346 case OMPRTL___kmpc_single: 3347 case OMPRTL___kmpc_end_single: 3348 case OMPRTL___kmpc_master: 3349 case OMPRTL___kmpc_end_master: 3350 case OMPRTL___kmpc_barrier: 3351 break; 3352 case OMPRTL___kmpc_for_static_init_4: 3353 case OMPRTL___kmpc_for_static_init_4u: 3354 case OMPRTL___kmpc_for_static_init_8: 3355 case OMPRTL___kmpc_for_static_init_8u: { 3356 // Check the schedule and allow static schedule in SPMD mode. 3357 unsigned ScheduleArgOpNo = 2; 3358 auto *ScheduleTypeCI = 3359 dyn_cast<ConstantInt>(CB.getArgOperand(ScheduleArgOpNo)); 3360 unsigned ScheduleTypeVal = 3361 ScheduleTypeCI ? ScheduleTypeCI->getZExtValue() : 0; 3362 switch (OMPScheduleType(ScheduleTypeVal)) { 3363 case OMPScheduleType::Static: 3364 case OMPScheduleType::StaticChunked: 3365 case OMPScheduleType::Distribute: 3366 case OMPScheduleType::DistributeChunked: 3367 break; 3368 default: 3369 SPMDCompatibilityTracker.insert(&CB); 3370 break; 3371 }; 3372 } break; 3373 case OMPRTL___kmpc_target_init: 3374 KernelInitCB = &CB; 3375 break; 3376 case OMPRTL___kmpc_target_deinit: 3377 KernelDeinitCB = &CB; 3378 break; 3379 case OMPRTL___kmpc_parallel_51: 3380 if (auto *ParallelRegion = dyn_cast<Function>( 3381 CB.getArgOperand(WrapperFunctionArgNo)->stripPointerCasts())) { 3382 ReachedKnownParallelRegions.insert(ParallelRegion); 3383 break; 3384 } 3385 // The condition above should usually get the parallel region function 3386 // pointer and record it. In the off chance it doesn't we assume the 3387 // worst. 3388 ReachedUnknownParallelRegions.insert(&CB); 3389 break; 3390 case OMPRTL___kmpc_omp_task: 3391 // We do not look into tasks right now, just give up. 3392 SPMDCompatibilityTracker.insert(&CB); 3393 ReachedUnknownParallelRegions.insert(&CB); 3394 break; 3395 default: 3396 // Unknown OpenMP runtime calls cannot be executed in SPMD-mode, 3397 // generally. 3398 SPMDCompatibilityTracker.insert(&CB); 3399 break; 3400 } 3401 // All other OpenMP runtime calls will not reach parallel regions so they 3402 // can be safely ignored for now. Since it is a known OpenMP runtime call we 3403 // have now modeled all effects and there is no need for any update. 3404 indicateOptimisticFixpoint(); 3405 } 3406 3407 ChangeStatus updateImpl(Attributor &A) override { 3408 // TODO: Once we have call site specific value information we can provide 3409 // call site specific liveness information and then it makes 3410 // sense to specialize attributes for call sites arguments instead of 3411 // redirecting requests to the callee argument. 3412 Function *F = getAssociatedFunction(); 3413 const IRPosition &FnPos = IRPosition::function(*F); 3414 auto &FnAA = A.getAAFor<AAKernelInfo>(*this, FnPos, DepClassTy::REQUIRED); 3415 if (getState() == FnAA.getState()) 3416 return ChangeStatus::UNCHANGED; 3417 getState() = FnAA.getState(); 3418 return ChangeStatus::CHANGED; 3419 } 3420 }; 3421 3422 struct AAFoldRuntimeCall 3423 : public StateWrapper<BooleanState, AbstractAttribute> { 3424 using Base = StateWrapper<BooleanState, AbstractAttribute>; 3425 3426 AAFoldRuntimeCall(const IRPosition &IRP, Attributor &A) : Base(IRP) {} 3427 3428 /// Statistics are tracked as part of manifest for now. 3429 void trackStatistics() const override {} 3430 3431 /// Create an abstract attribute biew for the position \p IRP. 3432 static AAFoldRuntimeCall &createForPosition(const IRPosition &IRP, 3433 Attributor &A); 3434 3435 /// See AbstractAttribute::getName() 3436 const std::string getName() const override { return "AAFoldRuntimeCall"; } 3437 3438 /// See AbstractAttribute::getIdAddr() 3439 const char *getIdAddr() const override { return &ID; } 3440 3441 /// This function should return true if the type of the \p AA is 3442 /// AAFoldRuntimeCall 3443 static bool classof(const AbstractAttribute *AA) { 3444 return (AA->getIdAddr() == &ID); 3445 } 3446 3447 static const char ID; 3448 }; 3449 3450 struct AAFoldRuntimeCallCallSiteReturned : AAFoldRuntimeCall { 3451 AAFoldRuntimeCallCallSiteReturned(const IRPosition &IRP, Attributor &A) 3452 : AAFoldRuntimeCall(IRP, A) {} 3453 3454 /// See AbstractAttribute::getAsStr() 3455 const std::string getAsStr() const override { 3456 if (!isValidState()) 3457 return "<invalid>"; 3458 3459 std::string Str("simplified value: "); 3460 3461 if (!SimplifiedValue.hasValue()) 3462 return Str + std::string("none"); 3463 3464 if (!SimplifiedValue.getValue()) 3465 return Str + std::string("nullptr"); 3466 3467 if (ConstantInt *CI = dyn_cast<ConstantInt>(SimplifiedValue.getValue())) 3468 return Str + std::to_string(CI->getSExtValue()); 3469 3470 return Str + std::string("unknown"); 3471 } 3472 3473 void initialize(Attributor &A) override { 3474 Function *Callee = getAssociatedFunction(); 3475 3476 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 3477 const auto &It = OMPInfoCache.RuntimeFunctionIDMap.find(Callee); 3478 assert(It != OMPInfoCache.RuntimeFunctionIDMap.end() && 3479 "Expected a known OpenMP runtime function"); 3480 3481 RFKind = It->getSecond(); 3482 3483 CallBase &CB = cast<CallBase>(getAssociatedValue()); 3484 A.registerSimplificationCallback( 3485 IRPosition::callsite_returned(CB), 3486 [&](const IRPosition &IRP, const AbstractAttribute *AA, 3487 bool &UsedAssumedInformation) -> Optional<Value *> { 3488 assert((isValidState() || (SimplifiedValue.hasValue() && 3489 SimplifiedValue.getValue() == nullptr)) && 3490 "Unexpected invalid state!"); 3491 3492 if (!isAtFixpoint()) { 3493 UsedAssumedInformation = true; 3494 if (AA) 3495 A.recordDependence(*this, *AA, DepClassTy::OPTIONAL); 3496 } 3497 return SimplifiedValue; 3498 }); 3499 } 3500 3501 ChangeStatus updateImpl(Attributor &A) override { 3502 ChangeStatus Changed = ChangeStatus::UNCHANGED; 3503 3504 switch (RFKind) { 3505 case OMPRTL___kmpc_is_spmd_exec_mode: 3506 Changed |= foldIsSPMDExecMode(A); 3507 break; 3508 default: 3509 llvm_unreachable("Unhandled OpenMP runtime function!"); 3510 } 3511 3512 return Changed; 3513 } 3514 3515 ChangeStatus manifest(Attributor &A) override { 3516 ChangeStatus Changed = ChangeStatus::UNCHANGED; 3517 3518 if (SimplifiedValue.hasValue() && SimplifiedValue.getValue()) { 3519 Instruction &CB = *getCtxI(); 3520 A.changeValueAfterManifest(CB, **SimplifiedValue); 3521 A.deleteAfterManifest(CB); 3522 Changed = ChangeStatus::CHANGED; 3523 } 3524 3525 return Changed; 3526 } 3527 3528 ChangeStatus indicatePessimisticFixpoint() override { 3529 SimplifiedValue = nullptr; 3530 return AAFoldRuntimeCall::indicatePessimisticFixpoint(); 3531 } 3532 3533 private: 3534 /// Fold __kmpc_is_spmd_exec_mode into a constant if possible. 3535 ChangeStatus foldIsSPMDExecMode(Attributor &A) { 3536 Optional<Value *> SimplifiedValueBefore = SimplifiedValue; 3537 3538 unsigned AssumedSPMDCount = 0, KnownSPMDCount = 0; 3539 unsigned AssumedNonSPMDCount = 0, KnownNonSPMDCount = 0; 3540 auto &CallerKernelInfoAA = A.getAAFor<AAKernelInfo>( 3541 *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED); 3542 3543 if (!CallerKernelInfoAA.ReachingKernelEntries.isValidState()) 3544 return indicatePessimisticFixpoint(); 3545 3546 for (Kernel K : CallerKernelInfoAA.ReachingKernelEntries) { 3547 auto &AA = A.getAAFor<AAKernelInfo>(*this, IRPosition::function(*K), 3548 DepClassTy::REQUIRED); 3549 3550 if (!AA.isValidState()) { 3551 SimplifiedValue = nullptr; 3552 return indicatePessimisticFixpoint(); 3553 } 3554 3555 if (AA.SPMDCompatibilityTracker.isAssumed()) { 3556 if (AA.SPMDCompatibilityTracker.isAtFixpoint()) 3557 ++KnownSPMDCount; 3558 else 3559 ++AssumedSPMDCount; 3560 } else { 3561 if (AA.SPMDCompatibilityTracker.isAtFixpoint()) 3562 ++KnownNonSPMDCount; 3563 else 3564 ++AssumedNonSPMDCount; 3565 } 3566 } 3567 3568 if (KnownSPMDCount && KnownNonSPMDCount) 3569 return indicatePessimisticFixpoint(); 3570 3571 if (AssumedSPMDCount && AssumedNonSPMDCount) 3572 return indicatePessimisticFixpoint(); 3573 3574 auto &Ctx = getAnchorValue().getContext(); 3575 if (KnownSPMDCount || AssumedSPMDCount) { 3576 assert(KnownNonSPMDCount == 0 && AssumedNonSPMDCount == 0 && 3577 "Expected only SPMD kernels!"); 3578 // All reaching kernels are in SPMD mode. Update all function calls to 3579 // __kmpc_is_spmd_exec_mode to 1. 3580 SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), true); 3581 } else if (KnownNonSPMDCount || AssumedNonSPMDCount) { 3582 assert(KnownSPMDCount == 0 && AssumedSPMDCount == 0 && 3583 "Expected only non-SPMD kernels!"); 3584 // All reaching kernels are in non-SPMD mode. Update all function 3585 // calls to __kmpc_is_spmd_exec_mode to 0. 3586 SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), false); 3587 } else { 3588 // We have empty reaching kernels, therefore we cannot tell if the 3589 // associated call site can be folded. At this moment, SimplifiedValue 3590 // must be none. 3591 assert(!SimplifiedValue.hasValue() && "SimplifiedValue should be none"); 3592 } 3593 3594 return SimplifiedValue == SimplifiedValueBefore ? ChangeStatus::UNCHANGED 3595 : ChangeStatus::CHANGED; 3596 } 3597 3598 /// An optional value the associated value is assumed to fold to. That is, we 3599 /// assume the associated value (which is a call) can be replaced by this 3600 /// simplified value. 3601 Optional<Value *> SimplifiedValue; 3602 3603 /// The runtime function kind of the callee of the associated call site. 3604 RuntimeFunction RFKind; 3605 }; 3606 3607 } // namespace 3608 3609 void OpenMPOpt::registerAAs(bool IsModulePass) { 3610 if (SCC.empty()) 3611 3612 return; 3613 if (IsModulePass) { 3614 // Ensure we create the AAKernelInfo AAs first and without triggering an 3615 // update. This will make sure we register all value simplification 3616 // callbacks before any other AA has the chance to create an AAValueSimplify 3617 // or similar. 3618 for (Function *Kernel : OMPInfoCache.Kernels) 3619 A.getOrCreateAAFor<AAKernelInfo>( 3620 IRPosition::function(*Kernel), /* QueryingAA */ nullptr, 3621 DepClassTy::NONE, /* ForceUpdate */ false, 3622 /* UpdateAfterInit */ false); 3623 3624 auto &IsSPMDRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_is_spmd_exec_mode]; 3625 IsSPMDRFI.foreachUse(SCC, [&](Use &U, Function &) { 3626 CallInst *CI = OpenMPOpt::getCallIfRegularCall(U, &IsSPMDRFI); 3627 if (!CI) 3628 return false; 3629 A.getOrCreateAAFor<AAFoldRuntimeCall>( 3630 IRPosition::callsite_returned(*CI), /* QueryingAA */ nullptr, 3631 DepClassTy::NONE, /* ForceUpdate */ false, 3632 /* UpdateAfterInit */ false); 3633 return false; 3634 }); 3635 } 3636 3637 // Create CallSite AA for all Getters. 3638 for (int Idx = 0; Idx < OMPInfoCache.ICVs.size() - 1; ++Idx) { 3639 auto ICVInfo = OMPInfoCache.ICVs[static_cast<InternalControlVar>(Idx)]; 3640 3641 auto &GetterRFI = OMPInfoCache.RFIs[ICVInfo.Getter]; 3642 3643 auto CreateAA = [&](Use &U, Function &Caller) { 3644 CallInst *CI = OpenMPOpt::getCallIfRegularCall(U, &GetterRFI); 3645 if (!CI) 3646 return false; 3647 3648 auto &CB = cast<CallBase>(*CI); 3649 3650 IRPosition CBPos = IRPosition::callsite_function(CB); 3651 A.getOrCreateAAFor<AAICVTracker>(CBPos); 3652 return false; 3653 }; 3654 3655 GetterRFI.foreachUse(SCC, CreateAA); 3656 } 3657 auto &GlobalizationRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared]; 3658 auto CreateAA = [&](Use &U, Function &F) { 3659 A.getOrCreateAAFor<AAHeapToShared>(IRPosition::function(F)); 3660 return false; 3661 }; 3662 GlobalizationRFI.foreachUse(SCC, CreateAA); 3663 3664 // Create an ExecutionDomain AA for every function and a HeapToStack AA for 3665 // every function if there is a device kernel. 3666 for (auto *F : SCC) { 3667 if (!F->isDeclaration()) 3668 A.getOrCreateAAFor<AAExecutionDomain>(IRPosition::function(*F)); 3669 if (isOpenMPDevice(M)) 3670 A.getOrCreateAAFor<AAHeapToStack>(IRPosition::function(*F)); 3671 } 3672 } 3673 3674 const char AAICVTracker::ID = 0; 3675 const char AAKernelInfo::ID = 0; 3676 const char AAExecutionDomain::ID = 0; 3677 const char AAHeapToShared::ID = 0; 3678 const char AAFoldRuntimeCall::ID = 0; 3679 3680 AAICVTracker &AAICVTracker::createForPosition(const IRPosition &IRP, 3681 Attributor &A) { 3682 AAICVTracker *AA = nullptr; 3683 switch (IRP.getPositionKind()) { 3684 case IRPosition::IRP_INVALID: 3685 case IRPosition::IRP_FLOAT: 3686 case IRPosition::IRP_ARGUMENT: 3687 case IRPosition::IRP_CALL_SITE_ARGUMENT: 3688 llvm_unreachable("ICVTracker can only be created for function position!"); 3689 case IRPosition::IRP_RETURNED: 3690 AA = new (A.Allocator) AAICVTrackerFunctionReturned(IRP, A); 3691 break; 3692 case IRPosition::IRP_CALL_SITE_RETURNED: 3693 AA = new (A.Allocator) AAICVTrackerCallSiteReturned(IRP, A); 3694 break; 3695 case IRPosition::IRP_CALL_SITE: 3696 AA = new (A.Allocator) AAICVTrackerCallSite(IRP, A); 3697 break; 3698 case IRPosition::IRP_FUNCTION: 3699 AA = new (A.Allocator) AAICVTrackerFunction(IRP, A); 3700 break; 3701 } 3702 3703 return *AA; 3704 } 3705 3706 AAExecutionDomain &AAExecutionDomain::createForPosition(const IRPosition &IRP, 3707 Attributor &A) { 3708 AAExecutionDomainFunction *AA = nullptr; 3709 switch (IRP.getPositionKind()) { 3710 case IRPosition::IRP_INVALID: 3711 case IRPosition::IRP_FLOAT: 3712 case IRPosition::IRP_ARGUMENT: 3713 case IRPosition::IRP_CALL_SITE_ARGUMENT: 3714 case IRPosition::IRP_RETURNED: 3715 case IRPosition::IRP_CALL_SITE_RETURNED: 3716 case IRPosition::IRP_CALL_SITE: 3717 llvm_unreachable( 3718 "AAExecutionDomain can only be created for function position!"); 3719 case IRPosition::IRP_FUNCTION: 3720 AA = new (A.Allocator) AAExecutionDomainFunction(IRP, A); 3721 break; 3722 } 3723 3724 return *AA; 3725 } 3726 3727 AAHeapToShared &AAHeapToShared::createForPosition(const IRPosition &IRP, 3728 Attributor &A) { 3729 AAHeapToSharedFunction *AA = nullptr; 3730 switch (IRP.getPositionKind()) { 3731 case IRPosition::IRP_INVALID: 3732 case IRPosition::IRP_FLOAT: 3733 case IRPosition::IRP_ARGUMENT: 3734 case IRPosition::IRP_CALL_SITE_ARGUMENT: 3735 case IRPosition::IRP_RETURNED: 3736 case IRPosition::IRP_CALL_SITE_RETURNED: 3737 case IRPosition::IRP_CALL_SITE: 3738 llvm_unreachable( 3739 "AAHeapToShared can only be created for function position!"); 3740 case IRPosition::IRP_FUNCTION: 3741 AA = new (A.Allocator) AAHeapToSharedFunction(IRP, A); 3742 break; 3743 } 3744 3745 return *AA; 3746 } 3747 3748 AAKernelInfo &AAKernelInfo::createForPosition(const IRPosition &IRP, 3749 Attributor &A) { 3750 AAKernelInfo *AA = nullptr; 3751 switch (IRP.getPositionKind()) { 3752 case IRPosition::IRP_INVALID: 3753 case IRPosition::IRP_FLOAT: 3754 case IRPosition::IRP_ARGUMENT: 3755 case IRPosition::IRP_RETURNED: 3756 case IRPosition::IRP_CALL_SITE_RETURNED: 3757 case IRPosition::IRP_CALL_SITE_ARGUMENT: 3758 llvm_unreachable("KernelInfo can only be created for function position!"); 3759 case IRPosition::IRP_CALL_SITE: 3760 AA = new (A.Allocator) AAKernelInfoCallSite(IRP, A); 3761 break; 3762 case IRPosition::IRP_FUNCTION: 3763 AA = new (A.Allocator) AAKernelInfoFunction(IRP, A); 3764 break; 3765 } 3766 3767 return *AA; 3768 } 3769 3770 AAFoldRuntimeCall &AAFoldRuntimeCall::createForPosition(const IRPosition &IRP, 3771 Attributor &A) { 3772 AAFoldRuntimeCall *AA = nullptr; 3773 switch (IRP.getPositionKind()) { 3774 case IRPosition::IRP_INVALID: 3775 case IRPosition::IRP_FLOAT: 3776 case IRPosition::IRP_ARGUMENT: 3777 case IRPosition::IRP_RETURNED: 3778 case IRPosition::IRP_FUNCTION: 3779 case IRPosition::IRP_CALL_SITE: 3780 case IRPosition::IRP_CALL_SITE_ARGUMENT: 3781 llvm_unreachable("KernelInfo can only be created for call site position!"); 3782 case IRPosition::IRP_CALL_SITE_RETURNED: 3783 AA = new (A.Allocator) AAFoldRuntimeCallCallSiteReturned(IRP, A); 3784 break; 3785 } 3786 3787 return *AA; 3788 } 3789 3790 PreservedAnalyses OpenMPOptPass::run(Module &M, ModuleAnalysisManager &AM) { 3791 if (!containsOpenMP(M)) 3792 return PreservedAnalyses::all(); 3793 if (DisableOpenMPOptimizations) 3794 return PreservedAnalyses::all(); 3795 3796 FunctionAnalysisManager &FAM = 3797 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 3798 KernelSet Kernels = getDeviceKernels(M); 3799 3800 auto IsCalled = [&](Function &F) { 3801 if (Kernels.contains(&F)) 3802 return true; 3803 for (const User *U : F.users()) 3804 if (!isa<BlockAddress>(U)) 3805 return true; 3806 return false; 3807 }; 3808 3809 auto EmitRemark = [&](Function &F) { 3810 auto &ORE = FAM.getResult<OptimizationRemarkEmitterAnalysis>(F); 3811 ORE.emit([&]() { 3812 OptimizationRemarkAnalysis ORA(DEBUG_TYPE, "OMP140", &F); 3813 return ORA << "Could not internalize function. " 3814 << "Some optimizations may not be possible."; 3815 }); 3816 }; 3817 3818 // Create internal copies of each function if this is a kernel Module. This 3819 // allows iterprocedural passes to see every call edge. 3820 DenseSet<const Function *> InternalizedFuncs; 3821 if (isOpenMPDevice(M)) 3822 for (Function &F : M) 3823 if (!F.isDeclaration() && !Kernels.contains(&F) && IsCalled(F)) { 3824 if (Attributor::internalizeFunction(F, /* Force */ true)) { 3825 InternalizedFuncs.insert(&F); 3826 } else if (!F.hasLocalLinkage() && !F.hasFnAttribute(Attribute::Cold)) { 3827 EmitRemark(F); 3828 } 3829 } 3830 3831 // Look at every function in the Module unless it was internalized. 3832 SmallVector<Function *, 16> SCC; 3833 for (Function &F : M) 3834 if (!F.isDeclaration() && !InternalizedFuncs.contains(&F)) 3835 SCC.push_back(&F); 3836 3837 if (SCC.empty()) 3838 return PreservedAnalyses::all(); 3839 3840 AnalysisGetter AG(FAM); 3841 3842 auto OREGetter = [&FAM](Function *F) -> OptimizationRemarkEmitter & { 3843 return FAM.getResult<OptimizationRemarkEmitterAnalysis>(*F); 3844 }; 3845 3846 BumpPtrAllocator Allocator; 3847 CallGraphUpdater CGUpdater; 3848 3849 SetVector<Function *> Functions(SCC.begin(), SCC.end()); 3850 OMPInformationCache InfoCache(M, AG, Allocator, /*CGSCC*/ Functions, Kernels); 3851 3852 unsigned MaxFixpointIterations = (isOpenMPDevice(M)) ? 128 : 32; 3853 Attributor A(Functions, InfoCache, CGUpdater, nullptr, true, false, 3854 MaxFixpointIterations, OREGetter, DEBUG_TYPE); 3855 3856 OpenMPOpt OMPOpt(SCC, CGUpdater, OREGetter, InfoCache, A); 3857 bool Changed = OMPOpt.run(true); 3858 if (Changed) 3859 return PreservedAnalyses::none(); 3860 3861 return PreservedAnalyses::all(); 3862 } 3863 3864 PreservedAnalyses OpenMPOptCGSCCPass::run(LazyCallGraph::SCC &C, 3865 CGSCCAnalysisManager &AM, 3866 LazyCallGraph &CG, 3867 CGSCCUpdateResult &UR) { 3868 if (!containsOpenMP(*C.begin()->getFunction().getParent())) 3869 return PreservedAnalyses::all(); 3870 if (DisableOpenMPOptimizations) 3871 return PreservedAnalyses::all(); 3872 3873 SmallVector<Function *, 16> SCC; 3874 // If there are kernels in the module, we have to run on all SCC's. 3875 for (LazyCallGraph::Node &N : C) { 3876 Function *Fn = &N.getFunction(); 3877 SCC.push_back(Fn); 3878 } 3879 3880 if (SCC.empty()) 3881 return PreservedAnalyses::all(); 3882 3883 Module &M = *C.begin()->getFunction().getParent(); 3884 3885 KernelSet Kernels = getDeviceKernels(M); 3886 3887 FunctionAnalysisManager &FAM = 3888 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager(); 3889 3890 AnalysisGetter AG(FAM); 3891 3892 auto OREGetter = [&FAM](Function *F) -> OptimizationRemarkEmitter & { 3893 return FAM.getResult<OptimizationRemarkEmitterAnalysis>(*F); 3894 }; 3895 3896 BumpPtrAllocator Allocator; 3897 CallGraphUpdater CGUpdater; 3898 CGUpdater.initialize(CG, C, AM, UR); 3899 3900 SetVector<Function *> Functions(SCC.begin(), SCC.end()); 3901 OMPInformationCache InfoCache(*(Functions.back()->getParent()), AG, Allocator, 3902 /*CGSCC*/ Functions, Kernels); 3903 3904 unsigned MaxFixpointIterations = (isOpenMPDevice(M)) ? 128 : 32; 3905 Attributor A(Functions, InfoCache, CGUpdater, nullptr, false, true, 3906 MaxFixpointIterations, OREGetter, DEBUG_TYPE); 3907 3908 OpenMPOpt OMPOpt(SCC, CGUpdater, OREGetter, InfoCache, A); 3909 bool Changed = OMPOpt.run(false); 3910 if (Changed) 3911 return PreservedAnalyses::none(); 3912 3913 return PreservedAnalyses::all(); 3914 } 3915 3916 namespace { 3917 3918 struct OpenMPOptCGSCCLegacyPass : public CallGraphSCCPass { 3919 CallGraphUpdater CGUpdater; 3920 static char ID; 3921 3922 OpenMPOptCGSCCLegacyPass() : CallGraphSCCPass(ID) { 3923 initializeOpenMPOptCGSCCLegacyPassPass(*PassRegistry::getPassRegistry()); 3924 } 3925 3926 void getAnalysisUsage(AnalysisUsage &AU) const override { 3927 CallGraphSCCPass::getAnalysisUsage(AU); 3928 } 3929 3930 bool runOnSCC(CallGraphSCC &CGSCC) override { 3931 if (!containsOpenMP(CGSCC.getCallGraph().getModule())) 3932 return false; 3933 if (DisableOpenMPOptimizations || skipSCC(CGSCC)) 3934 return false; 3935 3936 SmallVector<Function *, 16> SCC; 3937 // If there are kernels in the module, we have to run on all SCC's. 3938 for (CallGraphNode *CGN : CGSCC) { 3939 Function *Fn = CGN->getFunction(); 3940 if (!Fn || Fn->isDeclaration()) 3941 continue; 3942 SCC.push_back(Fn); 3943 } 3944 3945 if (SCC.empty()) 3946 return false; 3947 3948 Module &M = CGSCC.getCallGraph().getModule(); 3949 KernelSet Kernels = getDeviceKernels(M); 3950 3951 CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph(); 3952 CGUpdater.initialize(CG, CGSCC); 3953 3954 // Maintain a map of functions to avoid rebuilding the ORE 3955 DenseMap<Function *, std::unique_ptr<OptimizationRemarkEmitter>> OREMap; 3956 auto OREGetter = [&OREMap](Function *F) -> OptimizationRemarkEmitter & { 3957 std::unique_ptr<OptimizationRemarkEmitter> &ORE = OREMap[F]; 3958 if (!ORE) 3959 ORE = std::make_unique<OptimizationRemarkEmitter>(F); 3960 return *ORE; 3961 }; 3962 3963 AnalysisGetter AG; 3964 SetVector<Function *> Functions(SCC.begin(), SCC.end()); 3965 BumpPtrAllocator Allocator; 3966 OMPInformationCache InfoCache(*(Functions.back()->getParent()), AG, 3967 Allocator, 3968 /*CGSCC*/ Functions, Kernels); 3969 3970 unsigned MaxFixpointIterations = (isOpenMPDevice(M)) ? 128 : 32; 3971 Attributor A(Functions, InfoCache, CGUpdater, nullptr, false, true, 3972 MaxFixpointIterations, OREGetter, DEBUG_TYPE); 3973 3974 OpenMPOpt OMPOpt(SCC, CGUpdater, OREGetter, InfoCache, A); 3975 return OMPOpt.run(false); 3976 } 3977 3978 bool doFinalization(CallGraph &CG) override { return CGUpdater.finalize(); } 3979 }; 3980 3981 } // end anonymous namespace 3982 3983 KernelSet llvm::omp::getDeviceKernels(Module &M) { 3984 // TODO: Create a more cross-platform way of determining device kernels. 3985 NamedMDNode *MD = M.getOrInsertNamedMetadata("nvvm.annotations"); 3986 KernelSet Kernels; 3987 3988 if (!MD) 3989 return Kernels; 3990 3991 for (auto *Op : MD->operands()) { 3992 if (Op->getNumOperands() < 2) 3993 continue; 3994 MDString *KindID = dyn_cast<MDString>(Op->getOperand(1)); 3995 if (!KindID || KindID->getString() != "kernel") 3996 continue; 3997 3998 Function *KernelFn = 3999 mdconst::dyn_extract_or_null<Function>(Op->getOperand(0)); 4000 if (!KernelFn) 4001 continue; 4002 4003 ++NumOpenMPTargetRegionKernels; 4004 4005 Kernels.insert(KernelFn); 4006 } 4007 4008 return Kernels; 4009 } 4010 4011 bool llvm::omp::containsOpenMP(Module &M) { 4012 Metadata *MD = M.getModuleFlag("openmp"); 4013 if (!MD) 4014 return false; 4015 4016 return true; 4017 } 4018 4019 bool llvm::omp::isOpenMPDevice(Module &M) { 4020 Metadata *MD = M.getModuleFlag("openmp-device"); 4021 if (!MD) 4022 return false; 4023 4024 return true; 4025 } 4026 4027 char OpenMPOptCGSCCLegacyPass::ID = 0; 4028 4029 INITIALIZE_PASS_BEGIN(OpenMPOptCGSCCLegacyPass, "openmp-opt-cgscc", 4030 "OpenMP specific optimizations", false, false) 4031 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass) 4032 INITIALIZE_PASS_END(OpenMPOptCGSCCLegacyPass, "openmp-opt-cgscc", 4033 "OpenMP specific optimizations", false, false) 4034 4035 Pass *llvm::createOpenMPOptCGSCCLegacyPass() { 4036 return new OpenMPOptCGSCCLegacyPass(); 4037 } 4038