1 //===- MergeFunctions.cpp - Merge identical functions ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass looks for equivalent functions that are mergable and folds them.
11 //
12 // Order relation is defined on set of functions. It was made through
13 // special function comparison procedure that returns
14 // 0 when functions are equal,
15 // -1 when Left function is less than right function, and
16 // 1 for opposite case. We need total-ordering, so we need to maintain
17 // four properties on the functions set:
18 // a <= a (reflexivity)
19 // if a <= b and b <= a then a = b (antisymmetry)
20 // if a <= b and b <= c then a <= c (transitivity).
21 // for all a and b: a <= b or b <= a (totality).
22 //
23 // Comparison iterates through each instruction in each basic block.
24 // Functions are kept on binary tree. For each new function F we perform
25 // lookup in binary tree.
26 // In practice it works the following way:
27 // -- We define Function* container class with custom "operator<" (FunctionPtr).
28 // -- "FunctionPtr" instances are stored in std::set collection, so every
29 //    std::set::insert operation will give you result in log(N) time.
30 //
31 // As an optimization, a hash of the function structure is calculated first, and
32 // two functions are only compared if they have the same hash. This hash is
33 // cheap to compute, and has the property that if function F == G according to
34 // the comparison function, then hash(F) == hash(G). This consistency property
35 // is critical to ensuring all possible merging opportunities are exploited.
36 // Collisions in the hash affect the speed of the pass but not the correctness
37 // or determinism of the resulting transformation.
38 //
39 // When a match is found the functions are folded. If both functions are
40 // overridable, we move the functionality into a new internal function and
41 // leave two overridable thunks to it.
42 //
43 //===----------------------------------------------------------------------===//
44 //
45 // Future work:
46 //
47 // * virtual functions.
48 //
49 // Many functions have their address taken by the virtual function table for
50 // the object they belong to. However, as long as it's only used for a lookup
51 // and call, this is irrelevant, and we'd like to fold such functions.
52 //
53 // * be smarter about bitcasts.
54 //
55 // In order to fold functions, we will sometimes add either bitcast instructions
56 // or bitcast constant expressions. Unfortunately, this can confound further
57 // analysis since the two functions differ where one has a bitcast and the
58 // other doesn't. We should learn to look through bitcasts.
59 //
60 // * Compare complex types with pointer types inside.
61 // * Compare cross-reference cases.
62 // * Compare complex expressions.
63 //
64 // All the three issues above could be described as ability to prove that
65 // fA == fB == fC == fE == fF == fG in example below:
66 //
67 //  void fA() {
68 //    fB();
69 //  }
70 //  void fB() {
71 //    fA();
72 //  }
73 //
74 //  void fE() {
75 //    fF();
76 //  }
77 //  void fF() {
78 //    fG();
79 //  }
80 //  void fG() {
81 //    fE();
82 //  }
83 //
84 // Simplest cross-reference case (fA <--> fB) was implemented in previous
85 // versions of MergeFunctions, though it presented only in two function pairs
86 // in test-suite (that counts >50k functions)
87 // Though possibility to detect complex cross-referencing (e.g.: A->B->C->D->A)
88 // could cover much more cases.
89 //
90 //===----------------------------------------------------------------------===//
91 
92 #include "llvm/ADT/Hashing.h"
93 #include "llvm/ADT/STLExtras.h"
94 #include "llvm/ADT/SmallSet.h"
95 #include "llvm/ADT/Statistic.h"
96 #include "llvm/IR/CallSite.h"
97 #include "llvm/IR/Constants.h"
98 #include "llvm/IR/DataLayout.h"
99 #include "llvm/IR/IRBuilder.h"
100 #include "llvm/IR/InlineAsm.h"
101 #include "llvm/IR/Instructions.h"
102 #include "llvm/IR/LLVMContext.h"
103 #include "llvm/IR/Module.h"
104 #include "llvm/IR/Operator.h"
105 #include "llvm/IR/ValueHandle.h"
106 #include "llvm/IR/ValueMap.h"
107 #include "llvm/Pass.h"
108 #include "llvm/Support/CommandLine.h"
109 #include "llvm/Support/Debug.h"
110 #include "llvm/Support/ErrorHandling.h"
111 #include "llvm/Support/raw_ostream.h"
112 #include "llvm/Transforms/IPO.h"
113 #include <vector>
114 
115 using namespace llvm;
116 
117 #define DEBUG_TYPE "mergefunc"
118 
119 STATISTIC(NumFunctionsMerged, "Number of functions merged");
120 STATISTIC(NumThunksWritten, "Number of thunks generated");
121 STATISTIC(NumAliasesWritten, "Number of aliases generated");
122 STATISTIC(NumDoubleWeak, "Number of new functions created");
123 
124 static cl::opt<unsigned> NumFunctionsForSanityCheck(
125     "mergefunc-sanity",
126     cl::desc("How many functions in module could be used for "
127              "MergeFunctions pass sanity check. "
128              "'0' disables this check. Works only with '-debug' key."),
129     cl::init(0), cl::Hidden);
130 
131 namespace {
132 
133 /// GlobalNumberState assigns an integer to each global value in the program,
134 /// which is used by the comparison routine to order references to globals. This
135 /// state must be preserved throughout the pass, because Functions and other
136 /// globals need to maintain their relative order. Globals are assigned a number
137 /// when they are first visited. This order is deterministic, and so the
138 /// assigned numbers are as well. When two functions are merged, neither number
139 /// is updated. If the symbols are weak, this would be incorrect. If they are
140 /// strong, then one will be replaced at all references to the other, and so
141 /// direct callsites will now see one or the other symbol, and no update is
142 /// necessary. Note that if we were guaranteed unique names, we could just
143 /// compare those, but this would not work for stripped bitcodes or for those
144 /// few symbols without a name.
145 class GlobalNumberState {
146   struct Config : ValueMapConfig<GlobalValue*> {
147     enum { FollowRAUW = false };
148   };
149   // Each GlobalValue is mapped to an identifier. The Config ensures when RAUW
150   // occurs, the mapping does not change. Tracking changes is unnecessary, and
151   // also problematic for weak symbols (which may be overwritten).
152   typedef ValueMap<GlobalValue *, uint64_t, Config> ValueNumberMap;
153   ValueNumberMap GlobalNumbers;
154   // The next unused serial number to assign to a global.
155   uint64_t NextNumber;
156   public:
157     GlobalNumberState() : GlobalNumbers(), NextNumber(0) {}
158     uint64_t getNumber(GlobalValue* Global) {
159       ValueNumberMap::iterator MapIter;
160       bool Inserted;
161       std::tie(MapIter, Inserted) = GlobalNumbers.insert({Global, NextNumber});
162       if (Inserted)
163         NextNumber++;
164       return MapIter->second;
165     }
166     void clear() {
167       GlobalNumbers.clear();
168     }
169 };
170 
171 /// FunctionComparator - Compares two functions to determine whether or not
172 /// they will generate machine code with the same behaviour. DataLayout is
173 /// used if available. The comparator always fails conservatively (erring on the
174 /// side of claiming that two functions are different).
175 class FunctionComparator {
176 public:
177   FunctionComparator(const Function *F1, const Function *F2,
178                      GlobalNumberState* GN)
179       : FnL(F1), FnR(F2), GlobalNumbers(GN) {}
180 
181   /// Test whether the two functions have equivalent behaviour.
182   int compare();
183   /// Hash a function. Equivalent functions will have the same hash, and unequal
184   /// functions will have different hashes with high probability.
185   typedef uint64_t FunctionHash;
186   static FunctionHash functionHash(Function &);
187 
188 private:
189   /// Test whether two basic blocks have equivalent behaviour.
190   int cmpBasicBlocks(const BasicBlock *BBL, const BasicBlock *BBR) const;
191 
192   /// Constants comparison.
193   /// Its analog to lexicographical comparison between hypothetical numbers
194   /// of next format:
195   /// <bitcastability-trait><raw-bit-contents>
196   ///
197   /// 1. Bitcastability.
198   /// Check whether L's type could be losslessly bitcasted to R's type.
199   /// On this stage method, in case when lossless bitcast is not possible
200   /// method returns -1 or 1, thus also defining which type is greater in
201   /// context of bitcastability.
202   /// Stage 0: If types are equal in terms of cmpTypes, then we can go straight
203   ///          to the contents comparison.
204   ///          If types differ, remember types comparison result and check
205   ///          whether we still can bitcast types.
206   /// Stage 1: Types that satisfies isFirstClassType conditions are always
207   ///          greater then others.
208   /// Stage 2: Vector is greater then non-vector.
209   ///          If both types are vectors, then vector with greater bitwidth is
210   ///          greater.
211   ///          If both types are vectors with the same bitwidth, then types
212   ///          are bitcastable, and we can skip other stages, and go to contents
213   ///          comparison.
214   /// Stage 3: Pointer types are greater than non-pointers. If both types are
215   ///          pointers of the same address space - go to contents comparison.
216   ///          Different address spaces: pointer with greater address space is
217   ///          greater.
218   /// Stage 4: Types are neither vectors, nor pointers. And they differ.
219   ///          We don't know how to bitcast them. So, we better don't do it,
220   ///          and return types comparison result (so it determines the
221   ///          relationship among constants we don't know how to bitcast).
222   ///
223   /// Just for clearance, let's see how the set of constants could look
224   /// on single dimension axis:
225   ///
226   /// [NFCT], [FCT, "others"], [FCT, pointers], [FCT, vectors]
227   /// Where: NFCT - Not a FirstClassType
228   ///        FCT - FirstClassTyp:
229   ///
230   /// 2. Compare raw contents.
231   /// It ignores types on this stage and only compares bits from L and R.
232   /// Returns 0, if L and R has equivalent contents.
233   /// -1 or 1 if values are different.
234   /// Pretty trivial:
235   /// 2.1. If contents are numbers, compare numbers.
236   ///    Ints with greater bitwidth are greater. Ints with same bitwidths
237   ///    compared by their contents.
238   /// 2.2. "And so on". Just to avoid discrepancies with comments
239   /// perhaps it would be better to read the implementation itself.
240   /// 3. And again about overall picture. Let's look back at how the ordered set
241   /// of constants will look like:
242   /// [NFCT], [FCT, "others"], [FCT, pointers], [FCT, vectors]
243   ///
244   /// Now look, what could be inside [FCT, "others"], for example:
245   /// [FCT, "others"] =
246   /// [
247   ///   [double 0.1], [double 1.23],
248   ///   [i32 1], [i32 2],
249   ///   { double 1.0 },       ; StructTyID, NumElements = 1
250   ///   { i32 1 },            ; StructTyID, NumElements = 1
251   ///   { double 1, i32 1 },  ; StructTyID, NumElements = 2
252   ///   { i32 1, double 1 }   ; StructTyID, NumElements = 2
253   /// ]
254   ///
255   /// Let's explain the order. Float numbers will be less than integers, just
256   /// because of cmpType terms: FloatTyID < IntegerTyID.
257   /// Floats (with same fltSemantics) are sorted according to their value.
258   /// Then you can see integers, and they are, like a floats,
259   /// could be easy sorted among each others.
260   /// The structures. Structures are grouped at the tail, again because of their
261   /// TypeID: StructTyID > IntegerTyID > FloatTyID.
262   /// Structures with greater number of elements are greater. Structures with
263   /// greater elements going first are greater.
264   /// The same logic with vectors, arrays and other possible complex types.
265   ///
266   /// Bitcastable constants.
267   /// Let's assume, that some constant, belongs to some group of
268   /// "so-called-equal" values with different types, and at the same time
269   /// belongs to another group of constants with equal types
270   /// and "really" equal values.
271   ///
272   /// Now, prove that this is impossible:
273   ///
274   /// If constant A with type TyA is bitcastable to B with type TyB, then:
275   /// 1. All constants with equal types to TyA, are bitcastable to B. Since
276   ///    those should be vectors (if TyA is vector), pointers
277   ///    (if TyA is pointer), or else (if TyA equal to TyB), those types should
278   ///    be equal to TyB.
279   /// 2. All constants with non-equal, but bitcastable types to TyA, are
280   ///    bitcastable to B.
281   ///    Once again, just because we allow it to vectors and pointers only.
282   ///    This statement could be expanded as below:
283   /// 2.1. All vectors with equal bitwidth to vector A, has equal bitwidth to
284   ///      vector B, and thus bitcastable to B as well.
285   /// 2.2. All pointers of the same address space, no matter what they point to,
286   ///      bitcastable. So if C is pointer, it could be bitcasted to A and to B.
287   /// So any constant equal or bitcastable to A is equal or bitcastable to B.
288   /// QED.
289   ///
290   /// In another words, for pointers and vectors, we ignore top-level type and
291   /// look at their particular properties (bit-width for vectors, and
292   /// address space for pointers).
293   /// If these properties are equal - compare their contents.
294   int cmpConstants(const Constant *L, const Constant *R) const;
295 
296   /// Compares two global values by number. Uses the GlobalNumbersState to
297   /// identify the same gobals across function calls.
298   int cmpGlobalValues(GlobalValue *L, GlobalValue *R) const;
299 
300   /// Assign or look up previously assigned numbers for the two values, and
301   /// return whether the numbers are equal. Numbers are assigned in the order
302   /// visited.
303   /// Comparison order:
304   /// Stage 0: Value that is function itself is always greater then others.
305   ///          If left and right values are references to their functions, then
306   ///          they are equal.
307   /// Stage 1: Constants are greater than non-constants.
308   ///          If both left and right are constants, then the result of
309   ///          cmpConstants is used as cmpValues result.
310   /// Stage 2: InlineAsm instances are greater than others. If both left and
311   ///          right are InlineAsm instances, InlineAsm* pointers casted to
312   ///          integers and compared as numbers.
313   /// Stage 3: For all other cases we compare order we meet these values in
314   ///          their functions. If right value was met first during scanning,
315   ///          then left value is greater.
316   ///          In another words, we compare serial numbers, for more details
317   ///          see comments for sn_mapL and sn_mapR.
318   int cmpValues(const Value *L, const Value *R) const;
319 
320   /// Compare two Instructions for equivalence, similar to
321   /// Instruction::isSameOperationAs.
322   ///
323   /// Stages are listed in "most significant stage first" order:
324   /// On each stage below, we do comparison between some left and right
325   /// operation parts. If parts are non-equal, we assign parts comparison
326   /// result to the operation comparison result and exit from method.
327   /// Otherwise we proceed to the next stage.
328   /// Stages:
329   /// 1. Operations opcodes. Compared as numbers.
330   /// 2. Number of operands.
331   /// 3. Operation types. Compared with cmpType method.
332   /// 4. Compare operation subclass optional data as stream of bytes:
333   /// just convert it to integers and call cmpNumbers.
334   /// 5. Compare in operation operand types with cmpType in
335   /// most significant operand first order.
336   /// 6. Last stage. Check operations for some specific attributes.
337   /// For example, for Load it would be:
338   /// 6.1.Load: volatile (as boolean flag)
339   /// 6.2.Load: alignment (as integer numbers)
340   /// 6.3.Load: ordering (as underlying enum class value)
341   /// 6.4.Load: synch-scope (as integer numbers)
342   /// 6.5.Load: range metadata (as integer ranges)
343   /// On this stage its better to see the code, since its not more than 10-15
344   /// strings for particular instruction, and could change sometimes.
345   int cmpOperations(const Instruction *L, const Instruction *R) const;
346 
347   /// Compare two GEPs for equivalent pointer arithmetic.
348   /// Parts to be compared for each comparison stage,
349   /// most significant stage first:
350   /// 1. Address space. As numbers.
351   /// 2. Constant offset, (using GEPOperator::accumulateConstantOffset method).
352   /// 3. Pointer operand type (using cmpType method).
353   /// 4. Number of operands.
354   /// 5. Compare operands, using cmpValues method.
355   int cmpGEPs(const GEPOperator *GEPL, const GEPOperator *GEPR) const;
356   int cmpGEPs(const GetElementPtrInst *GEPL,
357               const GetElementPtrInst *GEPR) const {
358     return cmpGEPs(cast<GEPOperator>(GEPL), cast<GEPOperator>(GEPR));
359   }
360 
361   /// cmpType - compares two types,
362   /// defines total ordering among the types set.
363   ///
364   /// Return values:
365   /// 0 if types are equal,
366   /// -1 if Left is less than Right,
367   /// +1 if Left is greater than Right.
368   ///
369   /// Description:
370   /// Comparison is broken onto stages. Like in lexicographical comparison
371   /// stage coming first has higher priority.
372   /// On each explanation stage keep in mind total ordering properties.
373   ///
374   /// 0. Before comparison we coerce pointer types of 0 address space to
375   /// integer.
376   /// We also don't bother with same type at left and right, so
377   /// just return 0 in this case.
378   ///
379   /// 1. If types are of different kind (different type IDs).
380   ///    Return result of type IDs comparison, treating them as numbers.
381   /// 2. If types are integers, check that they have the same width. If they
382   /// are vectors, check that they have the same count and subtype.
383   /// 3. Types have the same ID, so check whether they are one of:
384   /// * Void
385   /// * Float
386   /// * Double
387   /// * X86_FP80
388   /// * FP128
389   /// * PPC_FP128
390   /// * Label
391   /// * Metadata
392   /// We can treat these types as equal whenever their IDs are same.
393   /// 4. If Left and Right are pointers, return result of address space
394   /// comparison (numbers comparison). We can treat pointer types of same
395   /// address space as equal.
396   /// 5. If types are complex.
397   /// Then both Left and Right are to be expanded and their element types will
398   /// be checked with the same way. If we get Res != 0 on some stage, return it.
399   /// Otherwise return 0.
400   /// 6. For all other cases put llvm_unreachable.
401   int cmpTypes(Type *TyL, Type *TyR) const;
402 
403   int cmpNumbers(uint64_t L, uint64_t R) const;
404   int cmpOrderings(AtomicOrdering L, AtomicOrdering R) const;
405   int cmpAPInts(const APInt &L, const APInt &R) const;
406   int cmpAPFloats(const APFloat &L, const APFloat &R) const;
407   int cmpInlineAsm(const InlineAsm *L, const InlineAsm *R) const;
408   int cmpMem(StringRef L, StringRef R) const;
409   int cmpAttrs(const AttributeSet L, const AttributeSet R) const;
410   int cmpRangeMetadata(const MDNode *L, const MDNode *R) const;
411   int cmpOperandBundlesSchema(const Instruction *L, const Instruction *R) const;
412 
413   // The two functions undergoing comparison.
414   const Function *FnL, *FnR;
415 
416   /// Assign serial numbers to values from left function, and values from
417   /// right function.
418   /// Explanation:
419   /// Being comparing functions we need to compare values we meet at left and
420   /// right sides.
421   /// Its easy to sort things out for external values. It just should be
422   /// the same value at left and right.
423   /// But for local values (those were introduced inside function body)
424   /// we have to ensure they were introduced at exactly the same place,
425   /// and plays the same role.
426   /// Let's assign serial number to each value when we meet it first time.
427   /// Values that were met at same place will be with same serial numbers.
428   /// In this case it would be good to explain few points about values assigned
429   /// to BBs and other ways of implementation (see below).
430   ///
431   /// 1. Safety of BB reordering.
432   /// It's safe to change the order of BasicBlocks in function.
433   /// Relationship with other functions and serial numbering will not be
434   /// changed in this case.
435   /// As follows from FunctionComparator::compare(), we do CFG walk: we start
436   /// from the entry, and then take each terminator. So it doesn't matter how in
437   /// fact BBs are ordered in function. And since cmpValues are called during
438   /// this walk, the numbering depends only on how BBs located inside the CFG.
439   /// So the answer is - yes. We will get the same numbering.
440   ///
441   /// 2. Impossibility to use dominance properties of values.
442   /// If we compare two instruction operands: first is usage of local
443   /// variable AL from function FL, and second is usage of local variable AR
444   /// from FR, we could compare their origins and check whether they are
445   /// defined at the same place.
446   /// But, we are still not able to compare operands of PHI nodes, since those
447   /// could be operands from further BBs we didn't scan yet.
448   /// So it's impossible to use dominance properties in general.
449   mutable DenseMap<const Value*, int> sn_mapL, sn_mapR;
450 
451   // The global state we will use
452   GlobalNumberState* GlobalNumbers;
453 };
454 
455 class FunctionNode {
456   mutable AssertingVH<Function> F;
457   FunctionComparator::FunctionHash Hash;
458 public:
459   // Note the hash is recalculated potentially multiple times, but it is cheap.
460   FunctionNode(Function *F)
461     : F(F), Hash(FunctionComparator::functionHash(*F))  {}
462   Function *getFunc() const { return F; }
463   FunctionComparator::FunctionHash getHash() const { return Hash; }
464 
465   /// Replace the reference to the function F by the function G, assuming their
466   /// implementations are equal.
467   void replaceBy(Function *G) const {
468     F = G;
469   }
470 
471   void release() { F = nullptr; }
472 };
473 } // end anonymous namespace
474 
475 int FunctionComparator::cmpNumbers(uint64_t L, uint64_t R) const {
476   if (L < R) return -1;
477   if (L > R) return 1;
478   return 0;
479 }
480 
481 int FunctionComparator::cmpOrderings(AtomicOrdering L, AtomicOrdering R) const {
482   if ((int)L < (int)R) return -1;
483   if ((int)L > (int)R) return 1;
484   return 0;
485 }
486 
487 int FunctionComparator::cmpAPInts(const APInt &L, const APInt &R) const {
488   if (int Res = cmpNumbers(L.getBitWidth(), R.getBitWidth()))
489     return Res;
490   if (L.ugt(R)) return 1;
491   if (R.ugt(L)) return -1;
492   return 0;
493 }
494 
495 int FunctionComparator::cmpAPFloats(const APFloat &L, const APFloat &R) const {
496   // Floats are ordered first by semantics (i.e. float, double, half, etc.),
497   // then by value interpreted as a bitstring (aka APInt).
498   const fltSemantics &SL = L.getSemantics(), &SR = R.getSemantics();
499   if (int Res = cmpNumbers(APFloat::semanticsPrecision(SL),
500                            APFloat::semanticsPrecision(SR)))
501     return Res;
502   if (int Res = cmpNumbers(APFloat::semanticsMaxExponent(SL),
503                            APFloat::semanticsMaxExponent(SR)))
504     return Res;
505   if (int Res = cmpNumbers(APFloat::semanticsMinExponent(SL),
506                            APFloat::semanticsMinExponent(SR)))
507     return Res;
508   if (int Res = cmpNumbers(APFloat::semanticsSizeInBits(SL),
509                            APFloat::semanticsSizeInBits(SR)))
510     return Res;
511   return cmpAPInts(L.bitcastToAPInt(), R.bitcastToAPInt());
512 }
513 
514 int FunctionComparator::cmpMem(StringRef L, StringRef R) const {
515   // Prevent heavy comparison, compare sizes first.
516   if (int Res = cmpNumbers(L.size(), R.size()))
517     return Res;
518 
519   // Compare strings lexicographically only when it is necessary: only when
520   // strings are equal in size.
521   return L.compare(R);
522 }
523 
524 int FunctionComparator::cmpAttrs(const AttributeSet L,
525                                  const AttributeSet R) const {
526   if (int Res = cmpNumbers(L.getNumSlots(), R.getNumSlots()))
527     return Res;
528 
529   for (unsigned i = 0, e = L.getNumSlots(); i != e; ++i) {
530     AttributeSet::iterator LI = L.begin(i), LE = L.end(i), RI = R.begin(i),
531                            RE = R.end(i);
532     for (; LI != LE && RI != RE; ++LI, ++RI) {
533       Attribute LA = *LI;
534       Attribute RA = *RI;
535       if (LA < RA)
536         return -1;
537       if (RA < LA)
538         return 1;
539     }
540     if (LI != LE)
541       return 1;
542     if (RI != RE)
543       return -1;
544   }
545   return 0;
546 }
547 
548 int FunctionComparator::cmpRangeMetadata(const MDNode *L,
549                                          const MDNode *R) const {
550   if (L == R)
551     return 0;
552   if (!L)
553     return -1;
554   if (!R)
555     return 1;
556   // Range metadata is a sequence of numbers. Make sure they are the same
557   // sequence.
558   // TODO: Note that as this is metadata, it is possible to drop and/or merge
559   // this data when considering functions to merge. Thus this comparison would
560   // return 0 (i.e. equivalent), but merging would become more complicated
561   // because the ranges would need to be unioned. It is not likely that
562   // functions differ ONLY in this metadata if they are actually the same
563   // function semantically.
564   if (int Res = cmpNumbers(L->getNumOperands(), R->getNumOperands()))
565     return Res;
566   for (size_t I = 0; I < L->getNumOperands(); ++I) {
567     ConstantInt *LLow = mdconst::extract<ConstantInt>(L->getOperand(I));
568     ConstantInt *RLow = mdconst::extract<ConstantInt>(R->getOperand(I));
569     if (int Res = cmpAPInts(LLow->getValue(), RLow->getValue()))
570       return Res;
571   }
572   return 0;
573 }
574 
575 int FunctionComparator::cmpOperandBundlesSchema(const Instruction *L,
576                                                 const Instruction *R) const {
577   ImmutableCallSite LCS(L);
578   ImmutableCallSite RCS(R);
579 
580   assert(LCS && RCS && "Must be calls or invokes!");
581   assert(LCS.isCall() == RCS.isCall() && "Can't compare otherwise!");
582 
583   if (int Res =
584           cmpNumbers(LCS.getNumOperandBundles(), RCS.getNumOperandBundles()))
585     return Res;
586 
587   for (unsigned i = 0, e = LCS.getNumOperandBundles(); i != e; ++i) {
588     auto OBL = LCS.getOperandBundleAt(i);
589     auto OBR = RCS.getOperandBundleAt(i);
590 
591     if (int Res = OBL.getTagName().compare(OBR.getTagName()))
592       return Res;
593 
594     if (int Res = cmpNumbers(OBL.Inputs.size(), OBR.Inputs.size()))
595       return Res;
596   }
597 
598   return 0;
599 }
600 
601 /// Constants comparison:
602 /// 1. Check whether type of L constant could be losslessly bitcasted to R
603 /// type.
604 /// 2. Compare constant contents.
605 /// For more details see declaration comments.
606 int FunctionComparator::cmpConstants(const Constant *L,
607                                      const Constant *R) const {
608 
609   Type *TyL = L->getType();
610   Type *TyR = R->getType();
611 
612   // Check whether types are bitcastable. This part is just re-factored
613   // Type::canLosslesslyBitCastTo method, but instead of returning true/false,
614   // we also pack into result which type is "less" for us.
615   int TypesRes = cmpTypes(TyL, TyR);
616   if (TypesRes != 0) {
617     // Types are different, but check whether we can bitcast them.
618     if (!TyL->isFirstClassType()) {
619       if (TyR->isFirstClassType())
620         return -1;
621       // Neither TyL nor TyR are values of first class type. Return the result
622       // of comparing the types
623       return TypesRes;
624     }
625     if (!TyR->isFirstClassType()) {
626       if (TyL->isFirstClassType())
627         return 1;
628       return TypesRes;
629     }
630 
631     // Vector -> Vector conversions are always lossless if the two vector types
632     // have the same size, otherwise not.
633     unsigned TyLWidth = 0;
634     unsigned TyRWidth = 0;
635 
636     if (auto *VecTyL = dyn_cast<VectorType>(TyL))
637       TyLWidth = VecTyL->getBitWidth();
638     if (auto *VecTyR = dyn_cast<VectorType>(TyR))
639       TyRWidth = VecTyR->getBitWidth();
640 
641     if (TyLWidth != TyRWidth)
642       return cmpNumbers(TyLWidth, TyRWidth);
643 
644     // Zero bit-width means neither TyL nor TyR are vectors.
645     if (!TyLWidth) {
646       PointerType *PTyL = dyn_cast<PointerType>(TyL);
647       PointerType *PTyR = dyn_cast<PointerType>(TyR);
648       if (PTyL && PTyR) {
649         unsigned AddrSpaceL = PTyL->getAddressSpace();
650         unsigned AddrSpaceR = PTyR->getAddressSpace();
651         if (int Res = cmpNumbers(AddrSpaceL, AddrSpaceR))
652           return Res;
653       }
654       if (PTyL)
655         return 1;
656       if (PTyR)
657         return -1;
658 
659       // TyL and TyR aren't vectors, nor pointers. We don't know how to
660       // bitcast them.
661       return TypesRes;
662     }
663   }
664 
665   // OK, types are bitcastable, now check constant contents.
666 
667   if (L->isNullValue() && R->isNullValue())
668     return TypesRes;
669   if (L->isNullValue() && !R->isNullValue())
670     return 1;
671   if (!L->isNullValue() && R->isNullValue())
672     return -1;
673 
674   auto GlobalValueL = const_cast<GlobalValue*>(dyn_cast<GlobalValue>(L));
675   auto GlobalValueR = const_cast<GlobalValue*>(dyn_cast<GlobalValue>(R));
676   if (GlobalValueL && GlobalValueR) {
677     return cmpGlobalValues(GlobalValueL, GlobalValueR);
678   }
679 
680   if (int Res = cmpNumbers(L->getValueID(), R->getValueID()))
681     return Res;
682 
683   if (const auto *SeqL = dyn_cast<ConstantDataSequential>(L)) {
684     const auto *SeqR = cast<ConstantDataSequential>(R);
685     // This handles ConstantDataArray and ConstantDataVector. Note that we
686     // compare the two raw data arrays, which might differ depending on the host
687     // endianness. This isn't a problem though, because the endiness of a module
688     // will affect the order of the constants, but this order is the same
689     // for a given input module and host platform.
690     return cmpMem(SeqL->getRawDataValues(), SeqR->getRawDataValues());
691   }
692 
693   switch (L->getValueID()) {
694   case Value::UndefValueVal:
695   case Value::ConstantTokenNoneVal:
696     return TypesRes;
697   case Value::ConstantIntVal: {
698     const APInt &LInt = cast<ConstantInt>(L)->getValue();
699     const APInt &RInt = cast<ConstantInt>(R)->getValue();
700     return cmpAPInts(LInt, RInt);
701   }
702   case Value::ConstantFPVal: {
703     const APFloat &LAPF = cast<ConstantFP>(L)->getValueAPF();
704     const APFloat &RAPF = cast<ConstantFP>(R)->getValueAPF();
705     return cmpAPFloats(LAPF, RAPF);
706   }
707   case Value::ConstantArrayVal: {
708     const ConstantArray *LA = cast<ConstantArray>(L);
709     const ConstantArray *RA = cast<ConstantArray>(R);
710     uint64_t NumElementsL = cast<ArrayType>(TyL)->getNumElements();
711     uint64_t NumElementsR = cast<ArrayType>(TyR)->getNumElements();
712     if (int Res = cmpNumbers(NumElementsL, NumElementsR))
713       return Res;
714     for (uint64_t i = 0; i < NumElementsL; ++i) {
715       if (int Res = cmpConstants(cast<Constant>(LA->getOperand(i)),
716                                  cast<Constant>(RA->getOperand(i))))
717         return Res;
718     }
719     return 0;
720   }
721   case Value::ConstantStructVal: {
722     const ConstantStruct *LS = cast<ConstantStruct>(L);
723     const ConstantStruct *RS = cast<ConstantStruct>(R);
724     unsigned NumElementsL = cast<StructType>(TyL)->getNumElements();
725     unsigned NumElementsR = cast<StructType>(TyR)->getNumElements();
726     if (int Res = cmpNumbers(NumElementsL, NumElementsR))
727       return Res;
728     for (unsigned i = 0; i != NumElementsL; ++i) {
729       if (int Res = cmpConstants(cast<Constant>(LS->getOperand(i)),
730                                  cast<Constant>(RS->getOperand(i))))
731         return Res;
732     }
733     return 0;
734   }
735   case Value::ConstantVectorVal: {
736     const ConstantVector *LV = cast<ConstantVector>(L);
737     const ConstantVector *RV = cast<ConstantVector>(R);
738     unsigned NumElementsL = cast<VectorType>(TyL)->getNumElements();
739     unsigned NumElementsR = cast<VectorType>(TyR)->getNumElements();
740     if (int Res = cmpNumbers(NumElementsL, NumElementsR))
741       return Res;
742     for (uint64_t i = 0; i < NumElementsL; ++i) {
743       if (int Res = cmpConstants(cast<Constant>(LV->getOperand(i)),
744                                  cast<Constant>(RV->getOperand(i))))
745         return Res;
746     }
747     return 0;
748   }
749   case Value::ConstantExprVal: {
750     const ConstantExpr *LE = cast<ConstantExpr>(L);
751     const ConstantExpr *RE = cast<ConstantExpr>(R);
752     unsigned NumOperandsL = LE->getNumOperands();
753     unsigned NumOperandsR = RE->getNumOperands();
754     if (int Res = cmpNumbers(NumOperandsL, NumOperandsR))
755       return Res;
756     for (unsigned i = 0; i < NumOperandsL; ++i) {
757       if (int Res = cmpConstants(cast<Constant>(LE->getOperand(i)),
758                                  cast<Constant>(RE->getOperand(i))))
759         return Res;
760     }
761     return 0;
762   }
763   case Value::BlockAddressVal: {
764     const BlockAddress *LBA = cast<BlockAddress>(L);
765     const BlockAddress *RBA = cast<BlockAddress>(R);
766     if (int Res = cmpValues(LBA->getFunction(), RBA->getFunction()))
767       return Res;
768     if (LBA->getFunction() == RBA->getFunction()) {
769       // They are BBs in the same function. Order by which comes first in the
770       // BB order of the function. This order is deterministic.
771       Function* F = LBA->getFunction();
772       BasicBlock *LBB = LBA->getBasicBlock();
773       BasicBlock *RBB = RBA->getBasicBlock();
774       if (LBB == RBB)
775         return 0;
776       for(BasicBlock &BB : F->getBasicBlockList()) {
777         if (&BB == LBB) {
778           assert(&BB != RBB);
779           return -1;
780         }
781         if (&BB == RBB)
782           return 1;
783       }
784       llvm_unreachable("Basic Block Address does not point to a basic block in "
785                        "its function.");
786       return -1;
787     } else {
788       // cmpValues said the functions are the same. So because they aren't
789       // literally the same pointer, they must respectively be the left and
790       // right functions.
791       assert(LBA->getFunction() == FnL && RBA->getFunction() == FnR);
792       // cmpValues will tell us if these are equivalent BasicBlocks, in the
793       // context of their respective functions.
794       return cmpValues(LBA->getBasicBlock(), RBA->getBasicBlock());
795     }
796   }
797   default: // Unknown constant, abort.
798     DEBUG(dbgs() << "Looking at valueID " << L->getValueID() << "\n");
799     llvm_unreachable("Constant ValueID not recognized.");
800     return -1;
801   }
802 }
803 
804 int FunctionComparator::cmpGlobalValues(GlobalValue *L, GlobalValue *R) const {
805   return cmpNumbers(GlobalNumbers->getNumber(L), GlobalNumbers->getNumber(R));
806 }
807 
808 /// cmpType - compares two types,
809 /// defines total ordering among the types set.
810 /// See method declaration comments for more details.
811 int FunctionComparator::cmpTypes(Type *TyL, Type *TyR) const {
812   PointerType *PTyL = dyn_cast<PointerType>(TyL);
813   PointerType *PTyR = dyn_cast<PointerType>(TyR);
814 
815   const DataLayout &DL = FnL->getParent()->getDataLayout();
816   if (PTyL && PTyL->getAddressSpace() == 0)
817     TyL = DL.getIntPtrType(TyL);
818   if (PTyR && PTyR->getAddressSpace() == 0)
819     TyR = DL.getIntPtrType(TyR);
820 
821   if (TyL == TyR)
822     return 0;
823 
824   if (int Res = cmpNumbers(TyL->getTypeID(), TyR->getTypeID()))
825     return Res;
826 
827   switch (TyL->getTypeID()) {
828   default:
829     llvm_unreachable("Unknown type!");
830     // Fall through in Release mode.
831   case Type::IntegerTyID:
832     return cmpNumbers(cast<IntegerType>(TyL)->getBitWidth(),
833                       cast<IntegerType>(TyR)->getBitWidth());
834   case Type::VectorTyID: {
835     VectorType *VTyL = cast<VectorType>(TyL), *VTyR = cast<VectorType>(TyR);
836     if (int Res = cmpNumbers(VTyL->getNumElements(), VTyR->getNumElements()))
837       return Res;
838     return cmpTypes(VTyL->getElementType(), VTyR->getElementType());
839   }
840   // TyL == TyR would have returned true earlier, because types are uniqued.
841   case Type::VoidTyID:
842   case Type::FloatTyID:
843   case Type::DoubleTyID:
844   case Type::X86_FP80TyID:
845   case Type::FP128TyID:
846   case Type::PPC_FP128TyID:
847   case Type::LabelTyID:
848   case Type::MetadataTyID:
849   case Type::TokenTyID:
850     return 0;
851 
852   case Type::PointerTyID: {
853     assert(PTyL && PTyR && "Both types must be pointers here.");
854     return cmpNumbers(PTyL->getAddressSpace(), PTyR->getAddressSpace());
855   }
856 
857   case Type::StructTyID: {
858     StructType *STyL = cast<StructType>(TyL);
859     StructType *STyR = cast<StructType>(TyR);
860     if (STyL->getNumElements() != STyR->getNumElements())
861       return cmpNumbers(STyL->getNumElements(), STyR->getNumElements());
862 
863     if (STyL->isPacked() != STyR->isPacked())
864       return cmpNumbers(STyL->isPacked(), STyR->isPacked());
865 
866     for (unsigned i = 0, e = STyL->getNumElements(); i != e; ++i) {
867       if (int Res = cmpTypes(STyL->getElementType(i), STyR->getElementType(i)))
868         return Res;
869     }
870     return 0;
871   }
872 
873   case Type::FunctionTyID: {
874     FunctionType *FTyL = cast<FunctionType>(TyL);
875     FunctionType *FTyR = cast<FunctionType>(TyR);
876     if (FTyL->getNumParams() != FTyR->getNumParams())
877       return cmpNumbers(FTyL->getNumParams(), FTyR->getNumParams());
878 
879     if (FTyL->isVarArg() != FTyR->isVarArg())
880       return cmpNumbers(FTyL->isVarArg(), FTyR->isVarArg());
881 
882     if (int Res = cmpTypes(FTyL->getReturnType(), FTyR->getReturnType()))
883       return Res;
884 
885     for (unsigned i = 0, e = FTyL->getNumParams(); i != e; ++i) {
886       if (int Res = cmpTypes(FTyL->getParamType(i), FTyR->getParamType(i)))
887         return Res;
888     }
889     return 0;
890   }
891 
892   case Type::ArrayTyID: {
893     ArrayType *ATyL = cast<ArrayType>(TyL);
894     ArrayType *ATyR = cast<ArrayType>(TyR);
895     if (ATyL->getNumElements() != ATyR->getNumElements())
896       return cmpNumbers(ATyL->getNumElements(), ATyR->getNumElements());
897     return cmpTypes(ATyL->getElementType(), ATyR->getElementType());
898   }
899   }
900 }
901 
902 // Determine whether the two operations are the same except that pointer-to-A
903 // and pointer-to-B are equivalent. This should be kept in sync with
904 // Instruction::isSameOperationAs.
905 // Read method declaration comments for more details.
906 int FunctionComparator::cmpOperations(const Instruction *L,
907                                       const Instruction *R) const {
908   // Differences from Instruction::isSameOperationAs:
909   //  * replace type comparison with calls to cmpTypes.
910   //  * we test for I->getRawSubclassOptionalData (nuw/nsw/tail) at the top.
911   //  * because of the above, we don't test for the tail bit on calls later on.
912   if (int Res = cmpNumbers(L->getOpcode(), R->getOpcode()))
913     return Res;
914 
915   if (int Res = cmpNumbers(L->getNumOperands(), R->getNumOperands()))
916     return Res;
917 
918   if (int Res = cmpTypes(L->getType(), R->getType()))
919     return Res;
920 
921   if (int Res = cmpNumbers(L->getRawSubclassOptionalData(),
922                            R->getRawSubclassOptionalData()))
923     return Res;
924 
925   // We have two instructions of identical opcode and #operands.  Check to see
926   // if all operands are the same type
927   for (unsigned i = 0, e = L->getNumOperands(); i != e; ++i) {
928     if (int Res =
929             cmpTypes(L->getOperand(i)->getType(), R->getOperand(i)->getType()))
930       return Res;
931   }
932 
933   // Check special state that is a part of some instructions.
934   if (const AllocaInst *AI = dyn_cast<AllocaInst>(L)) {
935     if (int Res = cmpTypes(AI->getAllocatedType(),
936                            cast<AllocaInst>(R)->getAllocatedType()))
937       return Res;
938     return cmpNumbers(AI->getAlignment(), cast<AllocaInst>(R)->getAlignment());
939   }
940   if (const LoadInst *LI = dyn_cast<LoadInst>(L)) {
941     if (int Res = cmpNumbers(LI->isVolatile(), cast<LoadInst>(R)->isVolatile()))
942       return Res;
943     if (int Res =
944             cmpNumbers(LI->getAlignment(), cast<LoadInst>(R)->getAlignment()))
945       return Res;
946     if (int Res =
947             cmpOrderings(LI->getOrdering(), cast<LoadInst>(R)->getOrdering()))
948       return Res;
949     if (int Res =
950             cmpNumbers(LI->getSynchScope(), cast<LoadInst>(R)->getSynchScope()))
951       return Res;
952     return cmpRangeMetadata(LI->getMetadata(LLVMContext::MD_range),
953         cast<LoadInst>(R)->getMetadata(LLVMContext::MD_range));
954   }
955   if (const StoreInst *SI = dyn_cast<StoreInst>(L)) {
956     if (int Res =
957             cmpNumbers(SI->isVolatile(), cast<StoreInst>(R)->isVolatile()))
958       return Res;
959     if (int Res =
960             cmpNumbers(SI->getAlignment(), cast<StoreInst>(R)->getAlignment()))
961       return Res;
962     if (int Res =
963             cmpOrderings(SI->getOrdering(), cast<StoreInst>(R)->getOrdering()))
964       return Res;
965     return cmpNumbers(SI->getSynchScope(), cast<StoreInst>(R)->getSynchScope());
966   }
967   if (const CmpInst *CI = dyn_cast<CmpInst>(L))
968     return cmpNumbers(CI->getPredicate(), cast<CmpInst>(R)->getPredicate());
969   if (const CallInst *CI = dyn_cast<CallInst>(L)) {
970     if (int Res = cmpNumbers(CI->getCallingConv(),
971                              cast<CallInst>(R)->getCallingConv()))
972       return Res;
973     if (int Res =
974             cmpAttrs(CI->getAttributes(), cast<CallInst>(R)->getAttributes()))
975       return Res;
976     if (int Res = cmpOperandBundlesSchema(CI, R))
977       return Res;
978     return cmpRangeMetadata(
979         CI->getMetadata(LLVMContext::MD_range),
980         cast<CallInst>(R)->getMetadata(LLVMContext::MD_range));
981   }
982   if (const InvokeInst *II = dyn_cast<InvokeInst>(L)) {
983     if (int Res = cmpNumbers(II->getCallingConv(),
984                              cast<InvokeInst>(R)->getCallingConv()))
985       return Res;
986     if (int Res =
987             cmpAttrs(II->getAttributes(), cast<InvokeInst>(R)->getAttributes()))
988       return Res;
989     if (int Res = cmpOperandBundlesSchema(II, R))
990       return Res;
991     return cmpRangeMetadata(
992         II->getMetadata(LLVMContext::MD_range),
993         cast<InvokeInst>(R)->getMetadata(LLVMContext::MD_range));
994   }
995   if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(L)) {
996     ArrayRef<unsigned> LIndices = IVI->getIndices();
997     ArrayRef<unsigned> RIndices = cast<InsertValueInst>(R)->getIndices();
998     if (int Res = cmpNumbers(LIndices.size(), RIndices.size()))
999       return Res;
1000     for (size_t i = 0, e = LIndices.size(); i != e; ++i) {
1001       if (int Res = cmpNumbers(LIndices[i], RIndices[i]))
1002         return Res;
1003     }
1004     return 0;
1005   }
1006   if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(L)) {
1007     ArrayRef<unsigned> LIndices = EVI->getIndices();
1008     ArrayRef<unsigned> RIndices = cast<ExtractValueInst>(R)->getIndices();
1009     if (int Res = cmpNumbers(LIndices.size(), RIndices.size()))
1010       return Res;
1011     for (size_t i = 0, e = LIndices.size(); i != e; ++i) {
1012       if (int Res = cmpNumbers(LIndices[i], RIndices[i]))
1013         return Res;
1014     }
1015   }
1016   if (const FenceInst *FI = dyn_cast<FenceInst>(L)) {
1017     if (int Res =
1018             cmpOrderings(FI->getOrdering(), cast<FenceInst>(R)->getOrdering()))
1019       return Res;
1020     return cmpNumbers(FI->getSynchScope(), cast<FenceInst>(R)->getSynchScope());
1021   }
1022   if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(L)) {
1023     if (int Res = cmpNumbers(CXI->isVolatile(),
1024                              cast<AtomicCmpXchgInst>(R)->isVolatile()))
1025       return Res;
1026     if (int Res = cmpNumbers(CXI->isWeak(),
1027                              cast<AtomicCmpXchgInst>(R)->isWeak()))
1028       return Res;
1029     if (int Res =
1030             cmpOrderings(CXI->getSuccessOrdering(),
1031                          cast<AtomicCmpXchgInst>(R)->getSuccessOrdering()))
1032       return Res;
1033     if (int Res =
1034             cmpOrderings(CXI->getFailureOrdering(),
1035                          cast<AtomicCmpXchgInst>(R)->getFailureOrdering()))
1036       return Res;
1037     return cmpNumbers(CXI->getSynchScope(),
1038                       cast<AtomicCmpXchgInst>(R)->getSynchScope());
1039   }
1040   if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(L)) {
1041     if (int Res = cmpNumbers(RMWI->getOperation(),
1042                              cast<AtomicRMWInst>(R)->getOperation()))
1043       return Res;
1044     if (int Res = cmpNumbers(RMWI->isVolatile(),
1045                              cast<AtomicRMWInst>(R)->isVolatile()))
1046       return Res;
1047     if (int Res = cmpOrderings(RMWI->getOrdering(),
1048                              cast<AtomicRMWInst>(R)->getOrdering()))
1049       return Res;
1050     return cmpNumbers(RMWI->getSynchScope(),
1051                       cast<AtomicRMWInst>(R)->getSynchScope());
1052   }
1053   return 0;
1054 }
1055 
1056 // Determine whether two GEP operations perform the same underlying arithmetic.
1057 // Read method declaration comments for more details.
1058 int FunctionComparator::cmpGEPs(const GEPOperator *GEPL,
1059                                 const GEPOperator *GEPR) const {
1060 
1061   unsigned int ASL = GEPL->getPointerAddressSpace();
1062   unsigned int ASR = GEPR->getPointerAddressSpace();
1063 
1064   if (int Res = cmpNumbers(ASL, ASR))
1065     return Res;
1066 
1067   // When we have target data, we can reduce the GEP down to the value in bytes
1068   // added to the address.
1069   const DataLayout &DL = FnL->getParent()->getDataLayout();
1070   unsigned BitWidth = DL.getPointerSizeInBits(ASL);
1071   APInt OffsetL(BitWidth, 0), OffsetR(BitWidth, 0);
1072   if (GEPL->accumulateConstantOffset(DL, OffsetL) &&
1073       GEPR->accumulateConstantOffset(DL, OffsetR))
1074     return cmpAPInts(OffsetL, OffsetR);
1075   if (int Res = cmpTypes(GEPL->getSourceElementType(),
1076                          GEPR->getSourceElementType()))
1077     return Res;
1078 
1079   if (int Res = cmpNumbers(GEPL->getNumOperands(), GEPR->getNumOperands()))
1080     return Res;
1081 
1082   for (unsigned i = 0, e = GEPL->getNumOperands(); i != e; ++i) {
1083     if (int Res = cmpValues(GEPL->getOperand(i), GEPR->getOperand(i)))
1084       return Res;
1085   }
1086 
1087   return 0;
1088 }
1089 
1090 int FunctionComparator::cmpInlineAsm(const InlineAsm *L,
1091                                      const InlineAsm *R) const {
1092   // InlineAsm's are uniqued. If they are the same pointer, obviously they are
1093   // the same, otherwise compare the fields.
1094   if (L == R)
1095     return 0;
1096   if (int Res = cmpTypes(L->getFunctionType(), R->getFunctionType()))
1097     return Res;
1098   if (int Res = cmpMem(L->getAsmString(), R->getAsmString()))
1099     return Res;
1100   if (int Res = cmpMem(L->getConstraintString(), R->getConstraintString()))
1101     return Res;
1102   if (int Res = cmpNumbers(L->hasSideEffects(), R->hasSideEffects()))
1103     return Res;
1104   if (int Res = cmpNumbers(L->isAlignStack(), R->isAlignStack()))
1105     return Res;
1106   if (int Res = cmpNumbers(L->getDialect(), R->getDialect()))
1107     return Res;
1108   llvm_unreachable("InlineAsm blocks were not uniqued.");
1109   return 0;
1110 }
1111 
1112 /// Compare two values used by the two functions under pair-wise comparison. If
1113 /// this is the first time the values are seen, they're added to the mapping so
1114 /// that we will detect mismatches on next use.
1115 /// See comments in declaration for more details.
1116 int FunctionComparator::cmpValues(const Value *L, const Value *R) const {
1117   // Catch self-reference case.
1118   if (L == FnL) {
1119     if (R == FnR)
1120       return 0;
1121     return -1;
1122   }
1123   if (R == FnR) {
1124     if (L == FnL)
1125       return 0;
1126     return 1;
1127   }
1128 
1129   const Constant *ConstL = dyn_cast<Constant>(L);
1130   const Constant *ConstR = dyn_cast<Constant>(R);
1131   if (ConstL && ConstR) {
1132     if (L == R)
1133       return 0;
1134     return cmpConstants(ConstL, ConstR);
1135   }
1136 
1137   if (ConstL)
1138     return 1;
1139   if (ConstR)
1140     return -1;
1141 
1142   const InlineAsm *InlineAsmL = dyn_cast<InlineAsm>(L);
1143   const InlineAsm *InlineAsmR = dyn_cast<InlineAsm>(R);
1144 
1145   if (InlineAsmL && InlineAsmR)
1146     return cmpInlineAsm(InlineAsmL, InlineAsmR);
1147   if (InlineAsmL)
1148     return 1;
1149   if (InlineAsmR)
1150     return -1;
1151 
1152   auto LeftSN = sn_mapL.insert(std::make_pair(L, sn_mapL.size())),
1153        RightSN = sn_mapR.insert(std::make_pair(R, sn_mapR.size()));
1154 
1155   return cmpNumbers(LeftSN.first->second, RightSN.first->second);
1156 }
1157 // Test whether two basic blocks have equivalent behaviour.
1158 int FunctionComparator::cmpBasicBlocks(const BasicBlock *BBL,
1159                                        const BasicBlock *BBR) const {
1160   BasicBlock::const_iterator InstL = BBL->begin(), InstLE = BBL->end();
1161   BasicBlock::const_iterator InstR = BBR->begin(), InstRE = BBR->end();
1162 
1163   do {
1164     if (int Res = cmpValues(&*InstL, &*InstR))
1165       return Res;
1166 
1167     const GetElementPtrInst *GEPL = dyn_cast<GetElementPtrInst>(InstL);
1168     const GetElementPtrInst *GEPR = dyn_cast<GetElementPtrInst>(InstR);
1169 
1170     if (GEPL && !GEPR)
1171       return 1;
1172     if (GEPR && !GEPL)
1173       return -1;
1174 
1175     if (GEPL && GEPR) {
1176       if (int Res =
1177               cmpValues(GEPL->getPointerOperand(), GEPR->getPointerOperand()))
1178         return Res;
1179       if (int Res = cmpGEPs(GEPL, GEPR))
1180         return Res;
1181     } else {
1182       if (int Res = cmpOperations(&*InstL, &*InstR))
1183         return Res;
1184       assert(InstL->getNumOperands() == InstR->getNumOperands());
1185 
1186       for (unsigned i = 0, e = InstL->getNumOperands(); i != e; ++i) {
1187         Value *OpL = InstL->getOperand(i);
1188         Value *OpR = InstR->getOperand(i);
1189         if (int Res = cmpValues(OpL, OpR))
1190           return Res;
1191         // cmpValues should ensure this is true.
1192         assert(cmpTypes(OpL->getType(), OpR->getType()) == 0);
1193       }
1194     }
1195 
1196     ++InstL;
1197     ++InstR;
1198   } while (InstL != InstLE && InstR != InstRE);
1199 
1200   if (InstL != InstLE && InstR == InstRE)
1201     return 1;
1202   if (InstL == InstLE && InstR != InstRE)
1203     return -1;
1204   return 0;
1205 }
1206 
1207 // Test whether the two functions have equivalent behaviour.
1208 int FunctionComparator::compare() {
1209   sn_mapL.clear();
1210   sn_mapR.clear();
1211 
1212   if (int Res = cmpAttrs(FnL->getAttributes(), FnR->getAttributes()))
1213     return Res;
1214 
1215   if (int Res = cmpNumbers(FnL->hasGC(), FnR->hasGC()))
1216     return Res;
1217 
1218   if (FnL->hasGC()) {
1219     if (int Res = cmpMem(FnL->getGC(), FnR->getGC()))
1220       return Res;
1221   }
1222 
1223   if (int Res = cmpNumbers(FnL->hasSection(), FnR->hasSection()))
1224     return Res;
1225 
1226   if (FnL->hasSection()) {
1227     if (int Res = cmpMem(FnL->getSection(), FnR->getSection()))
1228       return Res;
1229   }
1230 
1231   if (int Res = cmpNumbers(FnL->isVarArg(), FnR->isVarArg()))
1232     return Res;
1233 
1234   // TODO: if it's internal and only used in direct calls, we could handle this
1235   // case too.
1236   if (int Res = cmpNumbers(FnL->getCallingConv(), FnR->getCallingConv()))
1237     return Res;
1238 
1239   if (int Res = cmpTypes(FnL->getFunctionType(), FnR->getFunctionType()))
1240     return Res;
1241 
1242   assert(FnL->arg_size() == FnR->arg_size() &&
1243          "Identically typed functions have different numbers of args!");
1244 
1245   // Visit the arguments so that they get enumerated in the order they're
1246   // passed in.
1247   for (Function::const_arg_iterator ArgLI = FnL->arg_begin(),
1248                                     ArgRI = FnR->arg_begin(),
1249                                     ArgLE = FnL->arg_end();
1250        ArgLI != ArgLE; ++ArgLI, ++ArgRI) {
1251     if (cmpValues(&*ArgLI, &*ArgRI) != 0)
1252       llvm_unreachable("Arguments repeat!");
1253   }
1254 
1255   // We do a CFG-ordered walk since the actual ordering of the blocks in the
1256   // linked list is immaterial. Our walk starts at the entry block for both
1257   // functions, then takes each block from each terminator in order. As an
1258   // artifact, this also means that unreachable blocks are ignored.
1259   SmallVector<const BasicBlock *, 8> FnLBBs, FnRBBs;
1260   SmallPtrSet<const BasicBlock *, 32> VisitedBBs; // in terms of F1.
1261 
1262   FnLBBs.push_back(&FnL->getEntryBlock());
1263   FnRBBs.push_back(&FnR->getEntryBlock());
1264 
1265   VisitedBBs.insert(FnLBBs[0]);
1266   while (!FnLBBs.empty()) {
1267     const BasicBlock *BBL = FnLBBs.pop_back_val();
1268     const BasicBlock *BBR = FnRBBs.pop_back_val();
1269 
1270     if (int Res = cmpValues(BBL, BBR))
1271       return Res;
1272 
1273     if (int Res = cmpBasicBlocks(BBL, BBR))
1274       return Res;
1275 
1276     const TerminatorInst *TermL = BBL->getTerminator();
1277     const TerminatorInst *TermR = BBR->getTerminator();
1278 
1279     assert(TermL->getNumSuccessors() == TermR->getNumSuccessors());
1280     for (unsigned i = 0, e = TermL->getNumSuccessors(); i != e; ++i) {
1281       if (!VisitedBBs.insert(TermL->getSuccessor(i)).second)
1282         continue;
1283 
1284       FnLBBs.push_back(TermL->getSuccessor(i));
1285       FnRBBs.push_back(TermR->getSuccessor(i));
1286     }
1287   }
1288   return 0;
1289 }
1290 
1291 namespace {
1292 // Accumulate the hash of a sequence of 64-bit integers. This is similar to a
1293 // hash of a sequence of 64bit ints, but the entire input does not need to be
1294 // available at once. This interface is necessary for functionHash because it
1295 // needs to accumulate the hash as the structure of the function is traversed
1296 // without saving these values to an intermediate buffer. This form of hashing
1297 // is not often needed, as usually the object to hash is just read from a
1298 // buffer.
1299 class HashAccumulator64 {
1300   uint64_t Hash;
1301 public:
1302   // Initialize to random constant, so the state isn't zero.
1303   HashAccumulator64() { Hash = 0x6acaa36bef8325c5ULL; }
1304   void add(uint64_t V) {
1305      Hash = llvm::hashing::detail::hash_16_bytes(Hash, V);
1306   }
1307   // No finishing is required, because the entire hash value is used.
1308   uint64_t getHash() { return Hash; }
1309 };
1310 } // end anonymous namespace
1311 
1312 // A function hash is calculated by considering only the number of arguments and
1313 // whether a function is varargs, the order of basic blocks (given by the
1314 // successors of each basic block in depth first order), and the order of
1315 // opcodes of each instruction within each of these basic blocks. This mirrors
1316 // the strategy compare() uses to compare functions by walking the BBs in depth
1317 // first order and comparing each instruction in sequence. Because this hash
1318 // does not look at the operands, it is insensitive to things such as the
1319 // target of calls and the constants used in the function, which makes it useful
1320 // when possibly merging functions which are the same modulo constants and call
1321 // targets.
1322 FunctionComparator::FunctionHash FunctionComparator::functionHash(Function &F) {
1323   HashAccumulator64 H;
1324   H.add(F.isVarArg());
1325   H.add(F.arg_size());
1326 
1327   SmallVector<const BasicBlock *, 8> BBs;
1328   SmallSet<const BasicBlock *, 16> VisitedBBs;
1329 
1330   // Walk the blocks in the same order as FunctionComparator::cmpBasicBlocks(),
1331   // accumulating the hash of the function "structure." (BB and opcode sequence)
1332   BBs.push_back(&F.getEntryBlock());
1333   VisitedBBs.insert(BBs[0]);
1334   while (!BBs.empty()) {
1335     const BasicBlock *BB = BBs.pop_back_val();
1336     // This random value acts as a block header, as otherwise the partition of
1337     // opcodes into BBs wouldn't affect the hash, only the order of the opcodes
1338     H.add(45798);
1339     for (auto &Inst : *BB) {
1340       H.add(Inst.getOpcode());
1341     }
1342     const TerminatorInst *Term = BB->getTerminator();
1343     for (unsigned i = 0, e = Term->getNumSuccessors(); i != e; ++i) {
1344       if (!VisitedBBs.insert(Term->getSuccessor(i)).second)
1345         continue;
1346       BBs.push_back(Term->getSuccessor(i));
1347     }
1348   }
1349   return H.getHash();
1350 }
1351 
1352 
1353 namespace {
1354 
1355 /// MergeFunctions finds functions which will generate identical machine code,
1356 /// by considering all pointer types to be equivalent. Once identified,
1357 /// MergeFunctions will fold them by replacing a call to one to a call to a
1358 /// bitcast of the other.
1359 ///
1360 class MergeFunctions : public ModulePass {
1361 public:
1362   static char ID;
1363   MergeFunctions()
1364     : ModulePass(ID), FnTree(FunctionNodeCmp(&GlobalNumbers)), FNodesInTree(),
1365       HasGlobalAliases(false) {
1366     initializeMergeFunctionsPass(*PassRegistry::getPassRegistry());
1367   }
1368 
1369   bool runOnModule(Module &M) override;
1370 
1371 private:
1372   // The function comparison operator is provided here so that FunctionNodes do
1373   // not need to become larger with another pointer.
1374   class FunctionNodeCmp {
1375     GlobalNumberState* GlobalNumbers;
1376   public:
1377     FunctionNodeCmp(GlobalNumberState* GN) : GlobalNumbers(GN) {}
1378     bool operator()(const FunctionNode &LHS, const FunctionNode &RHS) const {
1379       // Order first by hashes, then full function comparison.
1380       if (LHS.getHash() != RHS.getHash())
1381         return LHS.getHash() < RHS.getHash();
1382       FunctionComparator FCmp(LHS.getFunc(), RHS.getFunc(), GlobalNumbers);
1383       return FCmp.compare() == -1;
1384     }
1385   };
1386   typedef std::set<FunctionNode, FunctionNodeCmp> FnTreeType;
1387 
1388   GlobalNumberState GlobalNumbers;
1389 
1390   /// A work queue of functions that may have been modified and should be
1391   /// analyzed again.
1392   std::vector<WeakVH> Deferred;
1393 
1394   /// Checks the rules of order relation introduced among functions set.
1395   /// Returns true, if sanity check has been passed, and false if failed.
1396   bool doSanityCheck(std::vector<WeakVH> &Worklist);
1397 
1398   /// Insert a ComparableFunction into the FnTree, or merge it away if it's
1399   /// equal to one that's already present.
1400   bool insert(Function *NewFunction);
1401 
1402   /// Remove a Function from the FnTree and queue it up for a second sweep of
1403   /// analysis.
1404   void remove(Function *F);
1405 
1406   /// Find the functions that use this Value and remove them from FnTree and
1407   /// queue the functions.
1408   void removeUsers(Value *V);
1409 
1410   /// Replace all direct calls of Old with calls of New. Will bitcast New if
1411   /// necessary to make types match.
1412   void replaceDirectCallers(Function *Old, Function *New);
1413 
1414   /// Merge two equivalent functions. Upon completion, G may be deleted, or may
1415   /// be converted into a thunk. In either case, it should never be visited
1416   /// again.
1417   void mergeTwoFunctions(Function *F, Function *G);
1418 
1419   /// Replace G with a thunk or an alias to F. Deletes G.
1420   void writeThunkOrAlias(Function *F, Function *G);
1421 
1422   /// Replace G with a simple tail call to bitcast(F). Also replace direct uses
1423   /// of G with bitcast(F). Deletes G.
1424   void writeThunk(Function *F, Function *G);
1425 
1426   /// Replace G with an alias to F. Deletes G.
1427   void writeAlias(Function *F, Function *G);
1428 
1429   /// Replace function F with function G in the function tree.
1430   void replaceFunctionInTree(const FunctionNode &FN, Function *G);
1431 
1432   /// The set of all distinct functions. Use the insert() and remove() methods
1433   /// to modify it. The map allows efficient lookup and deferring of Functions.
1434   FnTreeType FnTree;
1435   // Map functions to the iterators of the FunctionNode which contains them
1436   // in the FnTree. This must be updated carefully whenever the FnTree is
1437   // modified, i.e. in insert(), remove(), and replaceFunctionInTree(), to avoid
1438   // dangling iterators into FnTree. The invariant that preserves this is that
1439   // there is exactly one mapping F -> FN for each FunctionNode FN in FnTree.
1440   ValueMap<Function*, FnTreeType::iterator> FNodesInTree;
1441 
1442   /// Whether or not the target supports global aliases.
1443   bool HasGlobalAliases;
1444 };
1445 
1446 } // end anonymous namespace
1447 
1448 char MergeFunctions::ID = 0;
1449 INITIALIZE_PASS(MergeFunctions, "mergefunc", "Merge Functions", false, false)
1450 
1451 ModulePass *llvm::createMergeFunctionsPass() {
1452   return new MergeFunctions();
1453 }
1454 
1455 bool MergeFunctions::doSanityCheck(std::vector<WeakVH> &Worklist) {
1456   if (const unsigned Max = NumFunctionsForSanityCheck) {
1457     unsigned TripleNumber = 0;
1458     bool Valid = true;
1459 
1460     dbgs() << "MERGEFUNC-SANITY: Started for first " << Max << " functions.\n";
1461 
1462     unsigned i = 0;
1463     for (std::vector<WeakVH>::iterator I = Worklist.begin(), E = Worklist.end();
1464          I != E && i < Max; ++I, ++i) {
1465       unsigned j = i;
1466       for (std::vector<WeakVH>::iterator J = I; J != E && j < Max; ++J, ++j) {
1467         Function *F1 = cast<Function>(*I);
1468         Function *F2 = cast<Function>(*J);
1469         int Res1 = FunctionComparator(F1, F2, &GlobalNumbers).compare();
1470         int Res2 = FunctionComparator(F2, F1, &GlobalNumbers).compare();
1471 
1472         // If F1 <= F2, then F2 >= F1, otherwise report failure.
1473         if (Res1 != -Res2) {
1474           dbgs() << "MERGEFUNC-SANITY: Non-symmetric; triple: " << TripleNumber
1475                  << "\n";
1476           F1->dump();
1477           F2->dump();
1478           Valid = false;
1479         }
1480 
1481         if (Res1 == 0)
1482           continue;
1483 
1484         unsigned k = j;
1485         for (std::vector<WeakVH>::iterator K = J; K != E && k < Max;
1486              ++k, ++K, ++TripleNumber) {
1487           if (K == J)
1488             continue;
1489 
1490           Function *F3 = cast<Function>(*K);
1491           int Res3 = FunctionComparator(F1, F3, &GlobalNumbers).compare();
1492           int Res4 = FunctionComparator(F2, F3, &GlobalNumbers).compare();
1493 
1494           bool Transitive = true;
1495 
1496           if (Res1 != 0 && Res1 == Res4) {
1497             // F1 > F2, F2 > F3 => F1 > F3
1498             Transitive = Res3 == Res1;
1499           } else if (Res3 != 0 && Res3 == -Res4) {
1500             // F1 > F3, F3 > F2 => F1 > F2
1501             Transitive = Res3 == Res1;
1502           } else if (Res4 != 0 && -Res3 == Res4) {
1503             // F2 > F3, F3 > F1 => F2 > F1
1504             Transitive = Res4 == -Res1;
1505           }
1506 
1507           if (!Transitive) {
1508             dbgs() << "MERGEFUNC-SANITY: Non-transitive; triple: "
1509                    << TripleNumber << "\n";
1510             dbgs() << "Res1, Res3, Res4: " << Res1 << ", " << Res3 << ", "
1511                    << Res4 << "\n";
1512             F1->dump();
1513             F2->dump();
1514             F3->dump();
1515             Valid = false;
1516           }
1517         }
1518       }
1519     }
1520 
1521     dbgs() << "MERGEFUNC-SANITY: " << (Valid ? "Passed." : "Failed.") << "\n";
1522     return Valid;
1523   }
1524   return true;
1525 }
1526 
1527 bool MergeFunctions::runOnModule(Module &M) {
1528   if (skipModule(M))
1529     return false;
1530 
1531   bool Changed = false;
1532 
1533   // All functions in the module, ordered by hash. Functions with a unique
1534   // hash value are easily eliminated.
1535   std::vector<std::pair<FunctionComparator::FunctionHash, Function *>>
1536     HashedFuncs;
1537   for (Function &Func : M) {
1538     if (!Func.isDeclaration() && !Func.hasAvailableExternallyLinkage()) {
1539       HashedFuncs.push_back({FunctionComparator::functionHash(Func), &Func});
1540     }
1541   }
1542 
1543   std::stable_sort(
1544       HashedFuncs.begin(), HashedFuncs.end(),
1545       [](const std::pair<FunctionComparator::FunctionHash, Function *> &a,
1546          const std::pair<FunctionComparator::FunctionHash, Function *> &b) {
1547         return a.first < b.first;
1548       });
1549 
1550   auto S = HashedFuncs.begin();
1551   for (auto I = HashedFuncs.begin(), IE = HashedFuncs.end(); I != IE; ++I) {
1552     // If the hash value matches the previous value or the next one, we must
1553     // consider merging it. Otherwise it is dropped and never considered again.
1554     if ((I != S && std::prev(I)->first == I->first) ||
1555         (std::next(I) != IE && std::next(I)->first == I->first) ) {
1556       Deferred.push_back(WeakVH(I->second));
1557     }
1558   }
1559 
1560   do {
1561     std::vector<WeakVH> Worklist;
1562     Deferred.swap(Worklist);
1563 
1564     DEBUG(doSanityCheck(Worklist));
1565 
1566     DEBUG(dbgs() << "size of module: " << M.size() << '\n');
1567     DEBUG(dbgs() << "size of worklist: " << Worklist.size() << '\n');
1568 
1569     // Insert only strong functions and merge them. Strong function merging
1570     // always deletes one of them.
1571     for (std::vector<WeakVH>::iterator I = Worklist.begin(),
1572            E = Worklist.end(); I != E; ++I) {
1573       if (!*I) continue;
1574       Function *F = cast<Function>(*I);
1575       if (!F->isDeclaration() && !F->hasAvailableExternallyLinkage() &&
1576           !F->isInterposable()) {
1577         Changed |= insert(F);
1578       }
1579     }
1580 
1581     // Insert only weak functions and merge them. By doing these second we
1582     // create thunks to the strong function when possible. When two weak
1583     // functions are identical, we create a new strong function with two weak
1584     // weak thunks to it which are identical but not mergable.
1585     for (std::vector<WeakVH>::iterator I = Worklist.begin(),
1586            E = Worklist.end(); I != E; ++I) {
1587       if (!*I) continue;
1588       Function *F = cast<Function>(*I);
1589       if (!F->isDeclaration() && !F->hasAvailableExternallyLinkage() &&
1590           F->isInterposable()) {
1591         Changed |= insert(F);
1592       }
1593     }
1594     DEBUG(dbgs() << "size of FnTree: " << FnTree.size() << '\n');
1595   } while (!Deferred.empty());
1596 
1597   FnTree.clear();
1598   GlobalNumbers.clear();
1599 
1600   return Changed;
1601 }
1602 
1603 // Replace direct callers of Old with New.
1604 void MergeFunctions::replaceDirectCallers(Function *Old, Function *New) {
1605   Constant *BitcastNew = ConstantExpr::getBitCast(New, Old->getType());
1606   for (auto UI = Old->use_begin(), UE = Old->use_end(); UI != UE;) {
1607     Use *U = &*UI;
1608     ++UI;
1609     CallSite CS(U->getUser());
1610     if (CS && CS.isCallee(U)) {
1611       // Transfer the called function's attributes to the call site. Due to the
1612       // bitcast we will 'lose' ABI changing attributes because the 'called
1613       // function' is no longer a Function* but the bitcast. Code that looks up
1614       // the attributes from the called function will fail.
1615 
1616       // FIXME: This is not actually true, at least not anymore. The callsite
1617       // will always have the same ABI affecting attributes as the callee,
1618       // because otherwise the original input has UB. Note that Old and New
1619       // always have matching ABI, so no attributes need to be changed.
1620       // Transferring other attributes may help other optimizations, but that
1621       // should be done uniformly and not in this ad-hoc way.
1622       auto &Context = New->getContext();
1623       auto NewFuncAttrs = New->getAttributes();
1624       auto CallSiteAttrs = CS.getAttributes();
1625 
1626       CallSiteAttrs = CallSiteAttrs.addAttributes(
1627           Context, AttributeSet::ReturnIndex, NewFuncAttrs.getRetAttributes());
1628 
1629       for (unsigned argIdx = 0; argIdx < CS.arg_size(); argIdx++) {
1630         AttributeSet Attrs = NewFuncAttrs.getParamAttributes(argIdx);
1631         if (Attrs.getNumSlots())
1632           CallSiteAttrs = CallSiteAttrs.addAttributes(Context, argIdx, Attrs);
1633       }
1634 
1635       CS.setAttributes(CallSiteAttrs);
1636 
1637       remove(CS.getInstruction()->getParent()->getParent());
1638       U->set(BitcastNew);
1639     }
1640   }
1641 }
1642 
1643 // Replace G with an alias to F if possible, or else a thunk to F. Deletes G.
1644 void MergeFunctions::writeThunkOrAlias(Function *F, Function *G) {
1645   if (HasGlobalAliases && G->hasUnnamedAddr()) {
1646     if (G->hasExternalLinkage() || G->hasLocalLinkage() ||
1647         G->hasWeakLinkage()) {
1648       writeAlias(F, G);
1649       return;
1650     }
1651   }
1652 
1653   writeThunk(F, G);
1654 }
1655 
1656 // Helper for writeThunk,
1657 // Selects proper bitcast operation,
1658 // but a bit simpler then CastInst::getCastOpcode.
1659 static Value *createCast(IRBuilder<> &Builder, Value *V, Type *DestTy) {
1660   Type *SrcTy = V->getType();
1661   if (SrcTy->isStructTy()) {
1662     assert(DestTy->isStructTy());
1663     assert(SrcTy->getStructNumElements() == DestTy->getStructNumElements());
1664     Value *Result = UndefValue::get(DestTy);
1665     for (unsigned int I = 0, E = SrcTy->getStructNumElements(); I < E; ++I) {
1666       Value *Element = createCast(
1667           Builder, Builder.CreateExtractValue(V, makeArrayRef(I)),
1668           DestTy->getStructElementType(I));
1669 
1670       Result =
1671           Builder.CreateInsertValue(Result, Element, makeArrayRef(I));
1672     }
1673     return Result;
1674   }
1675   assert(!DestTy->isStructTy());
1676   if (SrcTy->isIntegerTy() && DestTy->isPointerTy())
1677     return Builder.CreateIntToPtr(V, DestTy);
1678   else if (SrcTy->isPointerTy() && DestTy->isIntegerTy())
1679     return Builder.CreatePtrToInt(V, DestTy);
1680   else
1681     return Builder.CreateBitCast(V, DestTy);
1682 }
1683 
1684 // Replace G with a simple tail call to bitcast(F). Also replace direct uses
1685 // of G with bitcast(F). Deletes G.
1686 void MergeFunctions::writeThunk(Function *F, Function *G) {
1687   if (!G->isInterposable()) {
1688     // Redirect direct callers of G to F.
1689     replaceDirectCallers(G, F);
1690   }
1691 
1692   // If G was internal then we may have replaced all uses of G with F. If so,
1693   // stop here and delete G. There's no need for a thunk.
1694   if (G->hasLocalLinkage() && G->use_empty()) {
1695     G->eraseFromParent();
1696     return;
1697   }
1698 
1699   Function *NewG = Function::Create(G->getFunctionType(), G->getLinkage(), "",
1700                                     G->getParent());
1701   BasicBlock *BB = BasicBlock::Create(F->getContext(), "", NewG);
1702   IRBuilder<> Builder(BB);
1703 
1704   SmallVector<Value *, 16> Args;
1705   unsigned i = 0;
1706   FunctionType *FFTy = F->getFunctionType();
1707   for (Argument & AI : NewG->args()) {
1708     Args.push_back(createCast(Builder, &AI, FFTy->getParamType(i)));
1709     ++i;
1710   }
1711 
1712   CallInst *CI = Builder.CreateCall(F, Args);
1713   CI->setTailCall();
1714   CI->setCallingConv(F->getCallingConv());
1715   CI->setAttributes(F->getAttributes());
1716   if (NewG->getReturnType()->isVoidTy()) {
1717     Builder.CreateRetVoid();
1718   } else {
1719     Builder.CreateRet(createCast(Builder, CI, NewG->getReturnType()));
1720   }
1721 
1722   NewG->copyAttributesFrom(G);
1723   NewG->takeName(G);
1724   removeUsers(G);
1725   G->replaceAllUsesWith(NewG);
1726   G->eraseFromParent();
1727 
1728   DEBUG(dbgs() << "writeThunk: " << NewG->getName() << '\n');
1729   ++NumThunksWritten;
1730 }
1731 
1732 // Replace G with an alias to F and delete G.
1733 void MergeFunctions::writeAlias(Function *F, Function *G) {
1734   auto *GA = GlobalAlias::create(G->getLinkage(), "", F);
1735   F->setAlignment(std::max(F->getAlignment(), G->getAlignment()));
1736   GA->takeName(G);
1737   GA->setVisibility(G->getVisibility());
1738   removeUsers(G);
1739   G->replaceAllUsesWith(GA);
1740   G->eraseFromParent();
1741 
1742   DEBUG(dbgs() << "writeAlias: " << GA->getName() << '\n');
1743   ++NumAliasesWritten;
1744 }
1745 
1746 // Merge two equivalent functions. Upon completion, Function G is deleted.
1747 void MergeFunctions::mergeTwoFunctions(Function *F, Function *G) {
1748   if (F->isInterposable()) {
1749     assert(G->isInterposable());
1750 
1751     // Make them both thunks to the same internal function.
1752     Function *H = Function::Create(F->getFunctionType(), F->getLinkage(), "",
1753                                    F->getParent());
1754     H->copyAttributesFrom(F);
1755     H->takeName(F);
1756     removeUsers(F);
1757     F->replaceAllUsesWith(H);
1758 
1759     unsigned MaxAlignment = std::max(G->getAlignment(), H->getAlignment());
1760 
1761     if (HasGlobalAliases) {
1762       writeAlias(F, G);
1763       writeAlias(F, H);
1764     } else {
1765       writeThunk(F, G);
1766       writeThunk(F, H);
1767     }
1768 
1769     F->setAlignment(MaxAlignment);
1770     F->setLinkage(GlobalValue::PrivateLinkage);
1771     ++NumDoubleWeak;
1772   } else {
1773     writeThunkOrAlias(F, G);
1774   }
1775 
1776   ++NumFunctionsMerged;
1777 }
1778 
1779 /// Replace function F by function G.
1780 void MergeFunctions::replaceFunctionInTree(const FunctionNode &FN,
1781                                            Function *G) {
1782   Function *F = FN.getFunc();
1783   assert(FunctionComparator(F, G, &GlobalNumbers).compare() == 0 &&
1784          "The two functions must be equal");
1785 
1786   auto I = FNodesInTree.find(F);
1787   assert(I != FNodesInTree.end() && "F should be in FNodesInTree");
1788   assert(FNodesInTree.count(G) == 0 && "FNodesInTree should not contain G");
1789 
1790   FnTreeType::iterator IterToFNInFnTree = I->second;
1791   assert(&(*IterToFNInFnTree) == &FN && "F should map to FN in FNodesInTree.");
1792   // Remove F -> FN and insert G -> FN
1793   FNodesInTree.erase(I);
1794   FNodesInTree.insert({G, IterToFNInFnTree});
1795   // Replace F with G in FN, which is stored inside the FnTree.
1796   FN.replaceBy(G);
1797 }
1798 
1799 // Insert a ComparableFunction into the FnTree, or merge it away if equal to one
1800 // that was already inserted.
1801 bool MergeFunctions::insert(Function *NewFunction) {
1802   std::pair<FnTreeType::iterator, bool> Result =
1803       FnTree.insert(FunctionNode(NewFunction));
1804 
1805   if (Result.second) {
1806     assert(FNodesInTree.count(NewFunction) == 0);
1807     FNodesInTree.insert({NewFunction, Result.first});
1808     DEBUG(dbgs() << "Inserting as unique: " << NewFunction->getName() << '\n');
1809     return false;
1810   }
1811 
1812   const FunctionNode &OldF = *Result.first;
1813 
1814   // Don't merge tiny functions, since it can just end up making the function
1815   // larger.
1816   // FIXME: Should still merge them if they are unnamed_addr and produce an
1817   // alias.
1818   if (NewFunction->size() == 1) {
1819     if (NewFunction->front().size() <= 2) {
1820       DEBUG(dbgs() << NewFunction->getName()
1821                    << " is to small to bother merging\n");
1822       return false;
1823     }
1824   }
1825 
1826   // Impose a total order (by name) on the replacement of functions. This is
1827   // important when operating on more than one module independently to prevent
1828   // cycles of thunks calling each other when the modules are linked together.
1829   //
1830   // When one function is weak and the other is strong there is an order imposed
1831   // already. We process strong functions before weak functions.
1832   if ((OldF.getFunc()->isInterposable() && NewFunction->isInterposable()) ||
1833       (!OldF.getFunc()->isInterposable() && !NewFunction->isInterposable()))
1834     if (OldF.getFunc()->getName() > NewFunction->getName()) {
1835       // Swap the two functions.
1836       Function *F = OldF.getFunc();
1837       replaceFunctionInTree(*Result.first, NewFunction);
1838       NewFunction = F;
1839       assert(OldF.getFunc() != F && "Must have swapped the functions.");
1840     }
1841 
1842   // Never thunk a strong function to a weak function.
1843   assert(!OldF.getFunc()->isInterposable() || NewFunction->isInterposable());
1844 
1845   DEBUG(dbgs() << "  " << OldF.getFunc()->getName()
1846                << " == " << NewFunction->getName() << '\n');
1847 
1848   Function *DeleteF = NewFunction;
1849   mergeTwoFunctions(OldF.getFunc(), DeleteF);
1850   return true;
1851 }
1852 
1853 // Remove a function from FnTree. If it was already in FnTree, add
1854 // it to Deferred so that we'll look at it in the next round.
1855 void MergeFunctions::remove(Function *F) {
1856   auto I = FNodesInTree.find(F);
1857   if (I != FNodesInTree.end()) {
1858     DEBUG(dbgs() << "Deferred " << F->getName()<< ".\n");
1859     FnTree.erase(I->second);
1860     // I->second has been invalidated, remove it from the FNodesInTree map to
1861     // preserve the invariant.
1862     FNodesInTree.erase(I);
1863     Deferred.emplace_back(F);
1864   }
1865 }
1866 
1867 // For each instruction used by the value, remove() the function that contains
1868 // the instruction. This should happen right before a call to RAUW.
1869 void MergeFunctions::removeUsers(Value *V) {
1870   std::vector<Value *> Worklist;
1871   Worklist.push_back(V);
1872   SmallSet<Value*, 8> Visited;
1873   Visited.insert(V);
1874   while (!Worklist.empty()) {
1875     Value *V = Worklist.back();
1876     Worklist.pop_back();
1877 
1878     for (User *U : V->users()) {
1879       if (Instruction *I = dyn_cast<Instruction>(U)) {
1880         remove(I->getParent()->getParent());
1881       } else if (isa<GlobalValue>(U)) {
1882         // do nothing
1883       } else if (Constant *C = dyn_cast<Constant>(U)) {
1884         for (User *UU : C->users()) {
1885           if (!Visited.insert(UU).second)
1886             Worklist.push_back(UU);
1887         }
1888       }
1889     }
1890   }
1891 }
1892