1 //===- MergeFunctions.cpp - Merge identical functions ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass looks for equivalent functions that are mergable and folds them.
11 //
12 // Order relation is defined on set of functions. It was made through
13 // special function comparison procedure that returns
14 // 0 when functions are equal,
15 // -1 when Left function is less than right function, and
16 // 1 for opposite case. We need total-ordering, so we need to maintain
17 // four properties on the functions set:
18 // a <= a (reflexivity)
19 // if a <= b and b <= a then a = b (antisymmetry)
20 // if a <= b and b <= c then a <= c (transitivity).
21 // for all a and b: a <= b or b <= a (totality).
22 //
23 // Comparison iterates through each instruction in each basic block.
24 // Functions are kept on binary tree. For each new function F we perform
25 // lookup in binary tree.
26 // In practice it works the following way:
27 // -- We define Function* container class with custom "operator<" (FunctionPtr).
28 // -- "FunctionPtr" instances are stored in std::set collection, so every
29 //    std::set::insert operation will give you result in log(N) time.
30 //
31 // As an optimization, a hash of the function structure is calculated first, and
32 // two functions are only compared if they have the same hash. This hash is
33 // cheap to compute, and has the property that if function F == G according to
34 // the comparison function, then hash(F) == hash(G). This consistency property
35 // is critical to ensuring all possible merging opportunities are exploited.
36 // Collisions in the hash affect the speed of the pass but not the correctness
37 // or determinism of the resulting transformation.
38 //
39 // When a match is found the functions are folded. If both functions are
40 // overridable, we move the functionality into a new internal function and
41 // leave two overridable thunks to it.
42 //
43 //===----------------------------------------------------------------------===//
44 //
45 // Future work:
46 //
47 // * virtual functions.
48 //
49 // Many functions have their address taken by the virtual function table for
50 // the object they belong to. However, as long as it's only used for a lookup
51 // and call, this is irrelevant, and we'd like to fold such functions.
52 //
53 // * be smarter about bitcasts.
54 //
55 // In order to fold functions, we will sometimes add either bitcast instructions
56 // or bitcast constant expressions. Unfortunately, this can confound further
57 // analysis since the two functions differ where one has a bitcast and the
58 // other doesn't. We should learn to look through bitcasts.
59 //
60 // * Compare complex types with pointer types inside.
61 // * Compare cross-reference cases.
62 // * Compare complex expressions.
63 //
64 // All the three issues above could be described as ability to prove that
65 // fA == fB == fC == fE == fF == fG in example below:
66 //
67 //  void fA() {
68 //    fB();
69 //  }
70 //  void fB() {
71 //    fA();
72 //  }
73 //
74 //  void fE() {
75 //    fF();
76 //  }
77 //  void fF() {
78 //    fG();
79 //  }
80 //  void fG() {
81 //    fE();
82 //  }
83 //
84 // Simplest cross-reference case (fA <--> fB) was implemented in previous
85 // versions of MergeFunctions, though it presented only in two function pairs
86 // in test-suite (that counts >50k functions)
87 // Though possibility to detect complex cross-referencing (e.g.: A->B->C->D->A)
88 // could cover much more cases.
89 //
90 //===----------------------------------------------------------------------===//
91 
92 #include "llvm/Transforms/IPO.h"
93 #include "llvm/ADT/DenseSet.h"
94 #include "llvm/ADT/FoldingSet.h"
95 #include "llvm/ADT/STLExtras.h"
96 #include "llvm/ADT/SmallSet.h"
97 #include "llvm/ADT/Statistic.h"
98 #include "llvm/ADT/Hashing.h"
99 #include "llvm/IR/CallSite.h"
100 #include "llvm/IR/Constants.h"
101 #include "llvm/IR/DataLayout.h"
102 #include "llvm/IR/IRBuilder.h"
103 #include "llvm/IR/InlineAsm.h"
104 #include "llvm/IR/Instructions.h"
105 #include "llvm/IR/LLVMContext.h"
106 #include "llvm/IR/Module.h"
107 #include "llvm/IR/Operator.h"
108 #include "llvm/IR/ValueHandle.h"
109 #include "llvm/IR/ValueMap.h"
110 #include "llvm/Pass.h"
111 #include "llvm/Support/CommandLine.h"
112 #include "llvm/Support/Debug.h"
113 #include "llvm/Support/ErrorHandling.h"
114 #include "llvm/Support/raw_ostream.h"
115 #include <vector>
116 
117 using namespace llvm;
118 
119 #define DEBUG_TYPE "mergefunc"
120 
121 STATISTIC(NumFunctionsMerged, "Number of functions merged");
122 STATISTIC(NumThunksWritten, "Number of thunks generated");
123 STATISTIC(NumAliasesWritten, "Number of aliases generated");
124 STATISTIC(NumDoubleWeak, "Number of new functions created");
125 
126 static cl::opt<unsigned> NumFunctionsForSanityCheck(
127     "mergefunc-sanity",
128     cl::desc("How many functions in module could be used for "
129              "MergeFunctions pass sanity check. "
130              "'0' disables this check. Works only with '-debug' key."),
131     cl::init(0), cl::Hidden);
132 
133 namespace {
134 
135 /// GlobalNumberState assigns an integer to each global value in the program,
136 /// which is used by the comparison routine to order references to globals. This
137 /// state must be preserved throughout the pass, because Functions and other
138 /// globals need to maintain their relative order. Globals are assigned a number
139 /// when they are first visited. This order is deterministic, and so the
140 /// assigned numbers are as well. When two functions are merged, neither number
141 /// is updated. If the symbols are weak, this would be incorrect. If they are
142 /// strong, then one will be replaced at all references to the other, and so
143 /// direct callsites will now see one or the other symbol, and no update is
144 /// necessary. Note that if we were guaranteed unique names, we could just
145 /// compare those, but this would not work for stripped bitcodes or for those
146 /// few symbols without a name.
147 class GlobalNumberState {
148   struct Config : ValueMapConfig<GlobalValue*> {
149     enum { FollowRAUW = false };
150   };
151   // Each GlobalValue is mapped to an identifier. The Config ensures when RAUW
152   // occurs, the mapping does not change. Tracking changes is unnecessary, and
153   // also problematic for weak symbols (which may be overwritten).
154   typedef ValueMap<GlobalValue *, uint64_t, Config> ValueNumberMap;
155   ValueNumberMap GlobalNumbers;
156   // The next unused serial number to assign to a global.
157   uint64_t NextNumber;
158   public:
159     GlobalNumberState() : GlobalNumbers(), NextNumber(0) {}
160     uint64_t getNumber(GlobalValue* Global) {
161       ValueNumberMap::iterator MapIter;
162       bool Inserted;
163       std::tie(MapIter, Inserted) = GlobalNumbers.insert({Global, NextNumber});
164       if (Inserted)
165         NextNumber++;
166       return MapIter->second;
167     }
168     void clear() {
169       GlobalNumbers.clear();
170     }
171 };
172 
173 /// FunctionComparator - Compares two functions to determine whether or not
174 /// they will generate machine code with the same behaviour. DataLayout is
175 /// used if available. The comparator always fails conservatively (erring on the
176 /// side of claiming that two functions are different).
177 class FunctionComparator {
178 public:
179   FunctionComparator(const Function *F1, const Function *F2,
180                      GlobalNumberState* GN)
181       : FnL(F1), FnR(F2), GlobalNumbers(GN) {}
182 
183   /// Test whether the two functions have equivalent behaviour.
184   int compare();
185   /// Hash a function. Equivalent functions will have the same hash, and unequal
186   /// functions will have different hashes with high probability.
187   typedef uint64_t FunctionHash;
188   static FunctionHash functionHash(Function &);
189 
190 private:
191   /// Test whether two basic blocks have equivalent behaviour.
192   int cmpBasicBlocks(const BasicBlock *BBL, const BasicBlock *BBR);
193 
194   /// Constants comparison.
195   /// Its analog to lexicographical comparison between hypothetical numbers
196   /// of next format:
197   /// <bitcastability-trait><raw-bit-contents>
198   ///
199   /// 1. Bitcastability.
200   /// Check whether L's type could be losslessly bitcasted to R's type.
201   /// On this stage method, in case when lossless bitcast is not possible
202   /// method returns -1 or 1, thus also defining which type is greater in
203   /// context of bitcastability.
204   /// Stage 0: If types are equal in terms of cmpTypes, then we can go straight
205   ///          to the contents comparison.
206   ///          If types differ, remember types comparison result and check
207   ///          whether we still can bitcast types.
208   /// Stage 1: Types that satisfies isFirstClassType conditions are always
209   ///          greater then others.
210   /// Stage 2: Vector is greater then non-vector.
211   ///          If both types are vectors, then vector with greater bitwidth is
212   ///          greater.
213   ///          If both types are vectors with the same bitwidth, then types
214   ///          are bitcastable, and we can skip other stages, and go to contents
215   ///          comparison.
216   /// Stage 3: Pointer types are greater than non-pointers. If both types are
217   ///          pointers of the same address space - go to contents comparison.
218   ///          Different address spaces: pointer with greater address space is
219   ///          greater.
220   /// Stage 4: Types are neither vectors, nor pointers. And they differ.
221   ///          We don't know how to bitcast them. So, we better don't do it,
222   ///          and return types comparison result (so it determines the
223   ///          relationship among constants we don't know how to bitcast).
224   ///
225   /// Just for clearance, let's see how the set of constants could look
226   /// on single dimension axis:
227   ///
228   /// [NFCT], [FCT, "others"], [FCT, pointers], [FCT, vectors]
229   /// Where: NFCT - Not a FirstClassType
230   ///        FCT - FirstClassTyp:
231   ///
232   /// 2. Compare raw contents.
233   /// It ignores types on this stage and only compares bits from L and R.
234   /// Returns 0, if L and R has equivalent contents.
235   /// -1 or 1 if values are different.
236   /// Pretty trivial:
237   /// 2.1. If contents are numbers, compare numbers.
238   ///    Ints with greater bitwidth are greater. Ints with same bitwidths
239   ///    compared by their contents.
240   /// 2.2. "And so on". Just to avoid discrepancies with comments
241   /// perhaps it would be better to read the implementation itself.
242   /// 3. And again about overall picture. Let's look back at how the ordered set
243   /// of constants will look like:
244   /// [NFCT], [FCT, "others"], [FCT, pointers], [FCT, vectors]
245   ///
246   /// Now look, what could be inside [FCT, "others"], for example:
247   /// [FCT, "others"] =
248   /// [
249   ///   [double 0.1], [double 1.23],
250   ///   [i32 1], [i32 2],
251   ///   { double 1.0 },       ; StructTyID, NumElements = 1
252   ///   { i32 1 },            ; StructTyID, NumElements = 1
253   ///   { double 1, i32 1 },  ; StructTyID, NumElements = 2
254   ///   { i32 1, double 1 }   ; StructTyID, NumElements = 2
255   /// ]
256   ///
257   /// Let's explain the order. Float numbers will be less than integers, just
258   /// because of cmpType terms: FloatTyID < IntegerTyID.
259   /// Floats (with same fltSemantics) are sorted according to their value.
260   /// Then you can see integers, and they are, like a floats,
261   /// could be easy sorted among each others.
262   /// The structures. Structures are grouped at the tail, again because of their
263   /// TypeID: StructTyID > IntegerTyID > FloatTyID.
264   /// Structures with greater number of elements are greater. Structures with
265   /// greater elements going first are greater.
266   /// The same logic with vectors, arrays and other possible complex types.
267   ///
268   /// Bitcastable constants.
269   /// Let's assume, that some constant, belongs to some group of
270   /// "so-called-equal" values with different types, and at the same time
271   /// belongs to another group of constants with equal types
272   /// and "really" equal values.
273   ///
274   /// Now, prove that this is impossible:
275   ///
276   /// If constant A with type TyA is bitcastable to B with type TyB, then:
277   /// 1. All constants with equal types to TyA, are bitcastable to B. Since
278   ///    those should be vectors (if TyA is vector), pointers
279   ///    (if TyA is pointer), or else (if TyA equal to TyB), those types should
280   ///    be equal to TyB.
281   /// 2. All constants with non-equal, but bitcastable types to TyA, are
282   ///    bitcastable to B.
283   ///    Once again, just because we allow it to vectors and pointers only.
284   ///    This statement could be expanded as below:
285   /// 2.1. All vectors with equal bitwidth to vector A, has equal bitwidth to
286   ///      vector B, and thus bitcastable to B as well.
287   /// 2.2. All pointers of the same address space, no matter what they point to,
288   ///      bitcastable. So if C is pointer, it could be bitcasted to A and to B.
289   /// So any constant equal or bitcastable to A is equal or bitcastable to B.
290   /// QED.
291   ///
292   /// In another words, for pointers and vectors, we ignore top-level type and
293   /// look at their particular properties (bit-width for vectors, and
294   /// address space for pointers).
295   /// If these properties are equal - compare their contents.
296   int cmpConstants(const Constant *L, const Constant *R);
297 
298   /// Compares two global values by number. Uses the GlobalNumbersState to
299   /// identify the same gobals across function calls.
300   int cmpGlobalValues(GlobalValue *L, GlobalValue *R);
301 
302   /// Assign or look up previously assigned numbers for the two values, and
303   /// return whether the numbers are equal. Numbers are assigned in the order
304   /// visited.
305   /// Comparison order:
306   /// Stage 0: Value that is function itself is always greater then others.
307   ///          If left and right values are references to their functions, then
308   ///          they are equal.
309   /// Stage 1: Constants are greater than non-constants.
310   ///          If both left and right are constants, then the result of
311   ///          cmpConstants is used as cmpValues result.
312   /// Stage 2: InlineAsm instances are greater than others. If both left and
313   ///          right are InlineAsm instances, InlineAsm* pointers casted to
314   ///          integers and compared as numbers.
315   /// Stage 3: For all other cases we compare order we meet these values in
316   ///          their functions. If right value was met first during scanning,
317   ///          then left value is greater.
318   ///          In another words, we compare serial numbers, for more details
319   ///          see comments for sn_mapL and sn_mapR.
320   int cmpValues(const Value *L, const Value *R);
321 
322   /// Compare two Instructions for equivalence, similar to
323   /// Instruction::isSameOperationAs but with modifications to the type
324   /// comparison.
325   /// Stages are listed in "most significant stage first" order:
326   /// On each stage below, we do comparison between some left and right
327   /// operation parts. If parts are non-equal, we assign parts comparison
328   /// result to the operation comparison result and exit from method.
329   /// Otherwise we proceed to the next stage.
330   /// Stages:
331   /// 1. Operations opcodes. Compared as numbers.
332   /// 2. Number of operands.
333   /// 3. Operation types. Compared with cmpType method.
334   /// 4. Compare operation subclass optional data as stream of bytes:
335   /// just convert it to integers and call cmpNumbers.
336   /// 5. Compare in operation operand types with cmpType in
337   /// most significant operand first order.
338   /// 6. Last stage. Check operations for some specific attributes.
339   /// For example, for Load it would be:
340   /// 6.1.Load: volatile (as boolean flag)
341   /// 6.2.Load: alignment (as integer numbers)
342   /// 6.3.Load: synch-scope (as integer numbers)
343   /// 6.4.Load: range metadata (as integer numbers)
344   /// On this stage its better to see the code, since its not more than 10-15
345   /// strings for particular instruction, and could change sometimes.
346   int cmpOperations(const Instruction *L, const Instruction *R) const;
347 
348   /// Compare two GEPs for equivalent pointer arithmetic.
349   /// Parts to be compared for each comparison stage,
350   /// most significant stage first:
351   /// 1. Address space. As numbers.
352   /// 2. Constant offset, (using GEPOperator::accumulateConstantOffset method).
353   /// 3. Pointer operand type (using cmpType method).
354   /// 4. Number of operands.
355   /// 5. Compare operands, using cmpValues method.
356   int cmpGEPs(const GEPOperator *GEPL, const GEPOperator *GEPR);
357   int cmpGEPs(const GetElementPtrInst *GEPL, const GetElementPtrInst *GEPR) {
358     return cmpGEPs(cast<GEPOperator>(GEPL), cast<GEPOperator>(GEPR));
359   }
360 
361   /// cmpType - compares two types,
362   /// defines total ordering among the types set.
363   ///
364   /// Return values:
365   /// 0 if types are equal,
366   /// -1 if Left is less than Right,
367   /// +1 if Left is greater than Right.
368   ///
369   /// Description:
370   /// Comparison is broken onto stages. Like in lexicographical comparison
371   /// stage coming first has higher priority.
372   /// On each explanation stage keep in mind total ordering properties.
373   ///
374   /// 0. Before comparison we coerce pointer types of 0 address space to
375   /// integer.
376   /// We also don't bother with same type at left and right, so
377   /// just return 0 in this case.
378   ///
379   /// 1. If types are of different kind (different type IDs).
380   ///    Return result of type IDs comparison, treating them as numbers.
381   /// 2. If types are integers, check that they have the same width. If they
382   /// are vectors, check that they have the same count and subtype.
383   /// 3. Types have the same ID, so check whether they are one of:
384   /// * Void
385   /// * Float
386   /// * Double
387   /// * X86_FP80
388   /// * FP128
389   /// * PPC_FP128
390   /// * Label
391   /// * Metadata
392   /// We can treat these types as equal whenever their IDs are same.
393   /// 4. If Left and Right are pointers, return result of address space
394   /// comparison (numbers comparison). We can treat pointer types of same
395   /// address space as equal.
396   /// 5. If types are complex.
397   /// Then both Left and Right are to be expanded and their element types will
398   /// be checked with the same way. If we get Res != 0 on some stage, return it.
399   /// Otherwise return 0.
400   /// 6. For all other cases put llvm_unreachable.
401   int cmpTypes(Type *TyL, Type *TyR) const;
402 
403   int cmpNumbers(uint64_t L, uint64_t R) const;
404   int cmpAPInts(const APInt &L, const APInt &R) const;
405   int cmpAPFloats(const APFloat &L, const APFloat &R) const;
406   int cmpInlineAsm(const InlineAsm *L, const InlineAsm *R) const;
407   int cmpMem(StringRef L, StringRef R) const;
408   int cmpAttrs(const AttributeSet L, const AttributeSet R) const;
409   int cmpRangeMetadata(const MDNode* L, const MDNode* R) const;
410   int cmpOperandBundlesSchema(const Instruction *L, const Instruction *R) const;
411 
412   // The two functions undergoing comparison.
413   const Function *FnL, *FnR;
414 
415   /// Assign serial numbers to values from left function, and values from
416   /// right function.
417   /// Explanation:
418   /// Being comparing functions we need to compare values we meet at left and
419   /// right sides.
420   /// Its easy to sort things out for external values. It just should be
421   /// the same value at left and right.
422   /// But for local values (those were introduced inside function body)
423   /// we have to ensure they were introduced at exactly the same place,
424   /// and plays the same role.
425   /// Let's assign serial number to each value when we meet it first time.
426   /// Values that were met at same place will be with same serial numbers.
427   /// In this case it would be good to explain few points about values assigned
428   /// to BBs and other ways of implementation (see below).
429   ///
430   /// 1. Safety of BB reordering.
431   /// It's safe to change the order of BasicBlocks in function.
432   /// Relationship with other functions and serial numbering will not be
433   /// changed in this case.
434   /// As follows from FunctionComparator::compare(), we do CFG walk: we start
435   /// from the entry, and then take each terminator. So it doesn't matter how in
436   /// fact BBs are ordered in function. And since cmpValues are called during
437   /// this walk, the numbering depends only on how BBs located inside the CFG.
438   /// So the answer is - yes. We will get the same numbering.
439   ///
440   /// 2. Impossibility to use dominance properties of values.
441   /// If we compare two instruction operands: first is usage of local
442   /// variable AL from function FL, and second is usage of local variable AR
443   /// from FR, we could compare their origins and check whether they are
444   /// defined at the same place.
445   /// But, we are still not able to compare operands of PHI nodes, since those
446   /// could be operands from further BBs we didn't scan yet.
447   /// So it's impossible to use dominance properties in general.
448   DenseMap<const Value*, int> sn_mapL, sn_mapR;
449 
450   // The global state we will use
451   GlobalNumberState* GlobalNumbers;
452 };
453 
454 class FunctionNode {
455   mutable AssertingVH<Function> F;
456   FunctionComparator::FunctionHash Hash;
457 public:
458   // Note the hash is recalculated potentially multiple times, but it is cheap.
459   FunctionNode(Function *F)
460     : F(F), Hash(FunctionComparator::functionHash(*F))  {}
461   Function *getFunc() const { return F; }
462   FunctionComparator::FunctionHash getHash() const { return Hash; }
463 
464   /// Replace the reference to the function F by the function G, assuming their
465   /// implementations are equal.
466   void replaceBy(Function *G) const {
467     F = G;
468   }
469 
470   void release() { F = nullptr; }
471 };
472 } // end anonymous namespace
473 
474 int FunctionComparator::cmpNumbers(uint64_t L, uint64_t R) const {
475   if (L < R) return -1;
476   if (L > R) return 1;
477   return 0;
478 }
479 
480 int FunctionComparator::cmpAPInts(const APInt &L, const APInt &R) const {
481   if (int Res = cmpNumbers(L.getBitWidth(), R.getBitWidth()))
482     return Res;
483   if (L.ugt(R)) return 1;
484   if (R.ugt(L)) return -1;
485   return 0;
486 }
487 
488 int FunctionComparator::cmpAPFloats(const APFloat &L, const APFloat &R) const {
489   // Floats are ordered first by semantics (i.e. float, double, half, etc.),
490   // then by value interpreted as a bitstring (aka APInt).
491   const fltSemantics &SL = L.getSemantics(), &SR = R.getSemantics();
492   if (int Res = cmpNumbers(APFloat::semanticsPrecision(SL),
493                            APFloat::semanticsPrecision(SR)))
494     return Res;
495   if (int Res = cmpNumbers(APFloat::semanticsMaxExponent(SL),
496                            APFloat::semanticsMaxExponent(SR)))
497     return Res;
498   if (int Res = cmpNumbers(APFloat::semanticsMinExponent(SL),
499                            APFloat::semanticsMinExponent(SR)))
500     return Res;
501   if (int Res = cmpNumbers(APFloat::semanticsSizeInBits(SL),
502                            APFloat::semanticsSizeInBits(SR)))
503     return Res;
504   return cmpAPInts(L.bitcastToAPInt(), R.bitcastToAPInt());
505 }
506 
507 int FunctionComparator::cmpMem(StringRef L, StringRef R) const {
508   // Prevent heavy comparison, compare sizes first.
509   if (int Res = cmpNumbers(L.size(), R.size()))
510     return Res;
511 
512   // Compare strings lexicographically only when it is necessary: only when
513   // strings are equal in size.
514   return L.compare(R);
515 }
516 
517 int FunctionComparator::cmpAttrs(const AttributeSet L,
518                                  const AttributeSet R) const {
519   if (int Res = cmpNumbers(L.getNumSlots(), R.getNumSlots()))
520     return Res;
521 
522   for (unsigned i = 0, e = L.getNumSlots(); i != e; ++i) {
523     AttributeSet::iterator LI = L.begin(i), LE = L.end(i), RI = R.begin(i),
524                            RE = R.end(i);
525     for (; LI != LE && RI != RE; ++LI, ++RI) {
526       Attribute LA = *LI;
527       Attribute RA = *RI;
528       if (LA < RA)
529         return -1;
530       if (RA < LA)
531         return 1;
532     }
533     if (LI != LE)
534       return 1;
535     if (RI != RE)
536       return -1;
537   }
538   return 0;
539 }
540 
541 int FunctionComparator::cmpRangeMetadata(const MDNode* L,
542                                          const MDNode* R) const {
543   if (L == R)
544     return 0;
545   if (!L)
546     return -1;
547   if (!R)
548     return 1;
549   // Range metadata is a sequence of numbers. Make sure they are the same
550   // sequence.
551   // TODO: Note that as this is metadata, it is possible to drop and/or merge
552   // this data when considering functions to merge. Thus this comparison would
553   // return 0 (i.e. equivalent), but merging would become more complicated
554   // because the ranges would need to be unioned. It is not likely that
555   // functions differ ONLY in this metadata if they are actually the same
556   // function semantically.
557   if (int Res = cmpNumbers(L->getNumOperands(), R->getNumOperands()))
558     return Res;
559   for (size_t I = 0; I < L->getNumOperands(); ++I) {
560     ConstantInt* LLow = mdconst::extract<ConstantInt>(L->getOperand(I));
561     ConstantInt* RLow = mdconst::extract<ConstantInt>(R->getOperand(I));
562     if (int Res = cmpAPInts(LLow->getValue(), RLow->getValue()))
563       return Res;
564   }
565   return 0;
566 }
567 
568 int FunctionComparator::cmpOperandBundlesSchema(const Instruction *L,
569                                                 const Instruction *R) const {
570   ImmutableCallSite LCS(L);
571   ImmutableCallSite RCS(R);
572 
573   assert(LCS && RCS && "Must be calls or invokes!");
574   assert(LCS.isCall() == RCS.isCall() && "Can't compare otherwise!");
575 
576   if (int Res =
577           cmpNumbers(LCS.getNumOperandBundles(), RCS.getNumOperandBundles()))
578     return Res;
579 
580   for (unsigned i = 0, e = LCS.getNumOperandBundles(); i != e; ++i) {
581     auto OBL = LCS.getOperandBundleAt(i);
582     auto OBR = RCS.getOperandBundleAt(i);
583 
584     if (int Res = OBL.getTagName().compare(OBR.getTagName()))
585       return Res;
586 
587     if (int Res = cmpNumbers(OBL.Inputs.size(), OBR.Inputs.size()))
588       return Res;
589   }
590 
591   return 0;
592 }
593 
594 /// Constants comparison:
595 /// 1. Check whether type of L constant could be losslessly bitcasted to R
596 /// type.
597 /// 2. Compare constant contents.
598 /// For more details see declaration comments.
599 int FunctionComparator::cmpConstants(const Constant *L, const Constant *R) {
600 
601   Type *TyL = L->getType();
602   Type *TyR = R->getType();
603 
604   // Check whether types are bitcastable. This part is just re-factored
605   // Type::canLosslesslyBitCastTo method, but instead of returning true/false,
606   // we also pack into result which type is "less" for us.
607   int TypesRes = cmpTypes(TyL, TyR);
608   if (TypesRes != 0) {
609     // Types are different, but check whether we can bitcast them.
610     if (!TyL->isFirstClassType()) {
611       if (TyR->isFirstClassType())
612         return -1;
613       // Neither TyL nor TyR are values of first class type. Return the result
614       // of comparing the types
615       return TypesRes;
616     }
617     if (!TyR->isFirstClassType()) {
618       if (TyL->isFirstClassType())
619         return 1;
620       return TypesRes;
621     }
622 
623     // Vector -> Vector conversions are always lossless if the two vector types
624     // have the same size, otherwise not.
625     unsigned TyLWidth = 0;
626     unsigned TyRWidth = 0;
627 
628     if (auto *VecTyL = dyn_cast<VectorType>(TyL))
629       TyLWidth = VecTyL->getBitWidth();
630     if (auto *VecTyR = dyn_cast<VectorType>(TyR))
631       TyRWidth = VecTyR->getBitWidth();
632 
633     if (TyLWidth != TyRWidth)
634       return cmpNumbers(TyLWidth, TyRWidth);
635 
636     // Zero bit-width means neither TyL nor TyR are vectors.
637     if (!TyLWidth) {
638       PointerType *PTyL = dyn_cast<PointerType>(TyL);
639       PointerType *PTyR = dyn_cast<PointerType>(TyR);
640       if (PTyL && PTyR) {
641         unsigned AddrSpaceL = PTyL->getAddressSpace();
642         unsigned AddrSpaceR = PTyR->getAddressSpace();
643         if (int Res = cmpNumbers(AddrSpaceL, AddrSpaceR))
644           return Res;
645       }
646       if (PTyL)
647         return 1;
648       if (PTyR)
649         return -1;
650 
651       // TyL and TyR aren't vectors, nor pointers. We don't know how to
652       // bitcast them.
653       return TypesRes;
654     }
655   }
656 
657   // OK, types are bitcastable, now check constant contents.
658 
659   if (L->isNullValue() && R->isNullValue())
660     return TypesRes;
661   if (L->isNullValue() && !R->isNullValue())
662     return 1;
663   if (!L->isNullValue() && R->isNullValue())
664     return -1;
665 
666   auto GlobalValueL = const_cast<GlobalValue*>(dyn_cast<GlobalValue>(L));
667   auto GlobalValueR = const_cast<GlobalValue*>(dyn_cast<GlobalValue>(R));
668   if (GlobalValueL && GlobalValueR) {
669     return cmpGlobalValues(GlobalValueL, GlobalValueR);
670   }
671 
672   if (int Res = cmpNumbers(L->getValueID(), R->getValueID()))
673     return Res;
674 
675   if (const auto *SeqL = dyn_cast<ConstantDataSequential>(L)) {
676     const auto *SeqR = cast<ConstantDataSequential>(R);
677     // This handles ConstantDataArray and ConstantDataVector. Note that we
678     // compare the two raw data arrays, which might differ depending on the host
679     // endianness. This isn't a problem though, because the endiness of a module
680     // will affect the order of the constants, but this order is the same
681     // for a given input module and host platform.
682     return cmpMem(SeqL->getRawDataValues(), SeqR->getRawDataValues());
683   }
684 
685   switch (L->getValueID()) {
686   case Value::UndefValueVal:
687   case Value::ConstantTokenNoneVal:
688     return TypesRes;
689   case Value::ConstantIntVal: {
690     const APInt &LInt = cast<ConstantInt>(L)->getValue();
691     const APInt &RInt = cast<ConstantInt>(R)->getValue();
692     return cmpAPInts(LInt, RInt);
693   }
694   case Value::ConstantFPVal: {
695     const APFloat &LAPF = cast<ConstantFP>(L)->getValueAPF();
696     const APFloat &RAPF = cast<ConstantFP>(R)->getValueAPF();
697     return cmpAPFloats(LAPF, RAPF);
698   }
699   case Value::ConstantArrayVal: {
700     const ConstantArray *LA = cast<ConstantArray>(L);
701     const ConstantArray *RA = cast<ConstantArray>(R);
702     uint64_t NumElementsL = cast<ArrayType>(TyL)->getNumElements();
703     uint64_t NumElementsR = cast<ArrayType>(TyR)->getNumElements();
704     if (int Res = cmpNumbers(NumElementsL, NumElementsR))
705       return Res;
706     for (uint64_t i = 0; i < NumElementsL; ++i) {
707       if (int Res = cmpConstants(cast<Constant>(LA->getOperand(i)),
708                                  cast<Constant>(RA->getOperand(i))))
709         return Res;
710     }
711     return 0;
712   }
713   case Value::ConstantStructVal: {
714     const ConstantStruct *LS = cast<ConstantStruct>(L);
715     const ConstantStruct *RS = cast<ConstantStruct>(R);
716     unsigned NumElementsL = cast<StructType>(TyL)->getNumElements();
717     unsigned NumElementsR = cast<StructType>(TyR)->getNumElements();
718     if (int Res = cmpNumbers(NumElementsL, NumElementsR))
719       return Res;
720     for (unsigned i = 0; i != NumElementsL; ++i) {
721       if (int Res = cmpConstants(cast<Constant>(LS->getOperand(i)),
722                                  cast<Constant>(RS->getOperand(i))))
723         return Res;
724     }
725     return 0;
726   }
727   case Value::ConstantVectorVal: {
728     const ConstantVector *LV = cast<ConstantVector>(L);
729     const ConstantVector *RV = cast<ConstantVector>(R);
730     unsigned NumElementsL = cast<VectorType>(TyL)->getNumElements();
731     unsigned NumElementsR = cast<VectorType>(TyR)->getNumElements();
732     if (int Res = cmpNumbers(NumElementsL, NumElementsR))
733       return Res;
734     for (uint64_t i = 0; i < NumElementsL; ++i) {
735       if (int Res = cmpConstants(cast<Constant>(LV->getOperand(i)),
736                                  cast<Constant>(RV->getOperand(i))))
737         return Res;
738     }
739     return 0;
740   }
741   case Value::ConstantExprVal: {
742     const ConstantExpr *LE = cast<ConstantExpr>(L);
743     const ConstantExpr *RE = cast<ConstantExpr>(R);
744     unsigned NumOperandsL = LE->getNumOperands();
745     unsigned NumOperandsR = RE->getNumOperands();
746     if (int Res = cmpNumbers(NumOperandsL, NumOperandsR))
747       return Res;
748     for (unsigned i = 0; i < NumOperandsL; ++i) {
749       if (int Res = cmpConstants(cast<Constant>(LE->getOperand(i)),
750                                  cast<Constant>(RE->getOperand(i))))
751         return Res;
752     }
753     return 0;
754   }
755   case Value::BlockAddressVal: {
756     const BlockAddress *LBA = cast<BlockAddress>(L);
757     const BlockAddress *RBA = cast<BlockAddress>(R);
758     if (int Res = cmpValues(LBA->getFunction(), RBA->getFunction()))
759       return Res;
760     if (LBA->getFunction() == RBA->getFunction()) {
761       // They are BBs in the same function. Order by which comes first in the
762       // BB order of the function. This order is deterministic.
763       Function* F = LBA->getFunction();
764       BasicBlock *LBB = LBA->getBasicBlock();
765       BasicBlock *RBB = RBA->getBasicBlock();
766       if (LBB == RBB)
767         return 0;
768       for(BasicBlock &BB : F->getBasicBlockList()) {
769         if (&BB == LBB) {
770           assert(&BB != RBB);
771           return -1;
772         }
773         if (&BB == RBB)
774           return 1;
775       }
776       llvm_unreachable("Basic Block Address does not point to a basic block in "
777                        "its function.");
778       return -1;
779     } else {
780       // cmpValues said the functions are the same. So because they aren't
781       // literally the same pointer, they must respectively be the left and
782       // right functions.
783       assert(LBA->getFunction() == FnL && RBA->getFunction() == FnR);
784       // cmpValues will tell us if these are equivalent BasicBlocks, in the
785       // context of their respective functions.
786       return cmpValues(LBA->getBasicBlock(), RBA->getBasicBlock());
787     }
788   }
789   default: // Unknown constant, abort.
790     DEBUG(dbgs() << "Looking at valueID " << L->getValueID() << "\n");
791     llvm_unreachable("Constant ValueID not recognized.");
792     return -1;
793   }
794 }
795 
796 int FunctionComparator::cmpGlobalValues(GlobalValue *L, GlobalValue* R) {
797   return cmpNumbers(GlobalNumbers->getNumber(L), GlobalNumbers->getNumber(R));
798 }
799 
800 /// cmpType - compares two types,
801 /// defines total ordering among the types set.
802 /// See method declaration comments for more details.
803 int FunctionComparator::cmpTypes(Type *TyL, Type *TyR) const {
804   PointerType *PTyL = dyn_cast<PointerType>(TyL);
805   PointerType *PTyR = dyn_cast<PointerType>(TyR);
806 
807   const DataLayout &DL = FnL->getParent()->getDataLayout();
808   if (PTyL && PTyL->getAddressSpace() == 0)
809     TyL = DL.getIntPtrType(TyL);
810   if (PTyR && PTyR->getAddressSpace() == 0)
811     TyR = DL.getIntPtrType(TyR);
812 
813   if (TyL == TyR)
814     return 0;
815 
816   if (int Res = cmpNumbers(TyL->getTypeID(), TyR->getTypeID()))
817     return Res;
818 
819   switch (TyL->getTypeID()) {
820   default:
821     llvm_unreachable("Unknown type!");
822     // Fall through in Release mode.
823   case Type::IntegerTyID:
824     return cmpNumbers(cast<IntegerType>(TyL)->getBitWidth(),
825                       cast<IntegerType>(TyR)->getBitWidth());
826   case Type::VectorTyID: {
827     VectorType *VTyL = cast<VectorType>(TyL), *VTyR = cast<VectorType>(TyR);
828     if (int Res = cmpNumbers(VTyL->getNumElements(), VTyR->getNumElements()))
829       return Res;
830     return cmpTypes(VTyL->getElementType(), VTyR->getElementType());
831   }
832   // TyL == TyR would have returned true earlier, because types are uniqued.
833   case Type::VoidTyID:
834   case Type::FloatTyID:
835   case Type::DoubleTyID:
836   case Type::X86_FP80TyID:
837   case Type::FP128TyID:
838   case Type::PPC_FP128TyID:
839   case Type::LabelTyID:
840   case Type::MetadataTyID:
841   case Type::TokenTyID:
842     return 0;
843 
844   case Type::PointerTyID: {
845     assert(PTyL && PTyR && "Both types must be pointers here.");
846     return cmpNumbers(PTyL->getAddressSpace(), PTyR->getAddressSpace());
847   }
848 
849   case Type::StructTyID: {
850     StructType *STyL = cast<StructType>(TyL);
851     StructType *STyR = cast<StructType>(TyR);
852     if (STyL->getNumElements() != STyR->getNumElements())
853       return cmpNumbers(STyL->getNumElements(), STyR->getNumElements());
854 
855     if (STyL->isPacked() != STyR->isPacked())
856       return cmpNumbers(STyL->isPacked(), STyR->isPacked());
857 
858     for (unsigned i = 0, e = STyL->getNumElements(); i != e; ++i) {
859       if (int Res = cmpTypes(STyL->getElementType(i), STyR->getElementType(i)))
860         return Res;
861     }
862     return 0;
863   }
864 
865   case Type::FunctionTyID: {
866     FunctionType *FTyL = cast<FunctionType>(TyL);
867     FunctionType *FTyR = cast<FunctionType>(TyR);
868     if (FTyL->getNumParams() != FTyR->getNumParams())
869       return cmpNumbers(FTyL->getNumParams(), FTyR->getNumParams());
870 
871     if (FTyL->isVarArg() != FTyR->isVarArg())
872       return cmpNumbers(FTyL->isVarArg(), FTyR->isVarArg());
873 
874     if (int Res = cmpTypes(FTyL->getReturnType(), FTyR->getReturnType()))
875       return Res;
876 
877     for (unsigned i = 0, e = FTyL->getNumParams(); i != e; ++i) {
878       if (int Res = cmpTypes(FTyL->getParamType(i), FTyR->getParamType(i)))
879         return Res;
880     }
881     return 0;
882   }
883 
884   case Type::ArrayTyID: {
885     ArrayType *ATyL = cast<ArrayType>(TyL);
886     ArrayType *ATyR = cast<ArrayType>(TyR);
887     if (ATyL->getNumElements() != ATyR->getNumElements())
888       return cmpNumbers(ATyL->getNumElements(), ATyR->getNumElements());
889     return cmpTypes(ATyL->getElementType(), ATyR->getElementType());
890   }
891   }
892 }
893 
894 // Determine whether the two operations are the same except that pointer-to-A
895 // and pointer-to-B are equivalent. This should be kept in sync with
896 // Instruction::isSameOperationAs.
897 // Read method declaration comments for more details.
898 int FunctionComparator::cmpOperations(const Instruction *L,
899                                       const Instruction *R) const {
900   // Differences from Instruction::isSameOperationAs:
901   //  * replace type comparison with calls to isEquivalentType.
902   //  * we test for I->hasSameSubclassOptionalData (nuw/nsw/tail) at the top
903   //  * because of the above, we don't test for the tail bit on calls later on
904   if (int Res = cmpNumbers(L->getOpcode(), R->getOpcode()))
905     return Res;
906 
907   if (int Res = cmpNumbers(L->getNumOperands(), R->getNumOperands()))
908     return Res;
909 
910   if (int Res = cmpTypes(L->getType(), R->getType()))
911     return Res;
912 
913   if (int Res = cmpNumbers(L->getRawSubclassOptionalData(),
914                            R->getRawSubclassOptionalData()))
915     return Res;
916 
917   if (const AllocaInst *AI = dyn_cast<AllocaInst>(L)) {
918     if (int Res = cmpTypes(AI->getAllocatedType(),
919                            cast<AllocaInst>(R)->getAllocatedType()))
920       return Res;
921     if (int Res =
922             cmpNumbers(AI->getAlignment(), cast<AllocaInst>(R)->getAlignment()))
923       return Res;
924   }
925 
926   // We have two instructions of identical opcode and #operands.  Check to see
927   // if all operands are the same type
928   for (unsigned i = 0, e = L->getNumOperands(); i != e; ++i) {
929     if (int Res =
930             cmpTypes(L->getOperand(i)->getType(), R->getOperand(i)->getType()))
931       return Res;
932   }
933 
934   // Check special state that is a part of some instructions.
935   if (const LoadInst *LI = dyn_cast<LoadInst>(L)) {
936     if (int Res = cmpNumbers(LI->isVolatile(), cast<LoadInst>(R)->isVolatile()))
937       return Res;
938     if (int Res =
939             cmpNumbers(LI->getAlignment(), cast<LoadInst>(R)->getAlignment()))
940       return Res;
941     if (int Res =
942             cmpNumbers(LI->getOrdering(), cast<LoadInst>(R)->getOrdering()))
943       return Res;
944     if (int Res =
945             cmpNumbers(LI->getSynchScope(), cast<LoadInst>(R)->getSynchScope()))
946       return Res;
947     return cmpRangeMetadata(LI->getMetadata(LLVMContext::MD_range),
948         cast<LoadInst>(R)->getMetadata(LLVMContext::MD_range));
949   }
950   if (const StoreInst *SI = dyn_cast<StoreInst>(L)) {
951     if (int Res =
952             cmpNumbers(SI->isVolatile(), cast<StoreInst>(R)->isVolatile()))
953       return Res;
954     if (int Res =
955             cmpNumbers(SI->getAlignment(), cast<StoreInst>(R)->getAlignment()))
956       return Res;
957     if (int Res =
958             cmpNumbers(SI->getOrdering(), cast<StoreInst>(R)->getOrdering()))
959       return Res;
960     return cmpNumbers(SI->getSynchScope(), cast<StoreInst>(R)->getSynchScope());
961   }
962   if (const CmpInst *CI = dyn_cast<CmpInst>(L))
963     return cmpNumbers(CI->getPredicate(), cast<CmpInst>(R)->getPredicate());
964   if (const CallInst *CI = dyn_cast<CallInst>(L)) {
965     if (int Res = cmpNumbers(CI->getCallingConv(),
966                              cast<CallInst>(R)->getCallingConv()))
967       return Res;
968     if (int Res =
969             cmpAttrs(CI->getAttributes(), cast<CallInst>(R)->getAttributes()))
970       return Res;
971     if (int Res = cmpOperandBundlesSchema(CI, R))
972       return Res;
973     return cmpRangeMetadata(
974         CI->getMetadata(LLVMContext::MD_range),
975         cast<CallInst>(R)->getMetadata(LLVMContext::MD_range));
976   }
977   if (const InvokeInst *II = dyn_cast<InvokeInst>(L)) {
978     if (int Res = cmpNumbers(II->getCallingConv(),
979                              cast<InvokeInst>(R)->getCallingConv()))
980       return Res;
981     if (int Res =
982             cmpAttrs(II->getAttributes(), cast<InvokeInst>(R)->getAttributes()))
983       return Res;
984     if (int Res = cmpOperandBundlesSchema(II, R))
985       return Res;
986     return cmpRangeMetadata(
987         II->getMetadata(LLVMContext::MD_range),
988         cast<InvokeInst>(R)->getMetadata(LLVMContext::MD_range));
989   }
990   if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(L)) {
991     ArrayRef<unsigned> LIndices = IVI->getIndices();
992     ArrayRef<unsigned> RIndices = cast<InsertValueInst>(R)->getIndices();
993     if (int Res = cmpNumbers(LIndices.size(), RIndices.size()))
994       return Res;
995     for (size_t i = 0, e = LIndices.size(); i != e; ++i) {
996       if (int Res = cmpNumbers(LIndices[i], RIndices[i]))
997         return Res;
998     }
999   }
1000   if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(L)) {
1001     ArrayRef<unsigned> LIndices = EVI->getIndices();
1002     ArrayRef<unsigned> RIndices = cast<ExtractValueInst>(R)->getIndices();
1003     if (int Res = cmpNumbers(LIndices.size(), RIndices.size()))
1004       return Res;
1005     for (size_t i = 0, e = LIndices.size(); i != e; ++i) {
1006       if (int Res = cmpNumbers(LIndices[i], RIndices[i]))
1007         return Res;
1008     }
1009   }
1010   if (const FenceInst *FI = dyn_cast<FenceInst>(L)) {
1011     if (int Res =
1012             cmpNumbers(FI->getOrdering(), cast<FenceInst>(R)->getOrdering()))
1013       return Res;
1014     return cmpNumbers(FI->getSynchScope(), cast<FenceInst>(R)->getSynchScope());
1015   }
1016 
1017   if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(L)) {
1018     if (int Res = cmpNumbers(CXI->isVolatile(),
1019                              cast<AtomicCmpXchgInst>(R)->isVolatile()))
1020       return Res;
1021     if (int Res = cmpNumbers(CXI->isWeak(),
1022                              cast<AtomicCmpXchgInst>(R)->isWeak()))
1023       return Res;
1024     if (int Res = cmpNumbers(CXI->getSuccessOrdering(),
1025                              cast<AtomicCmpXchgInst>(R)->getSuccessOrdering()))
1026       return Res;
1027     if (int Res = cmpNumbers(CXI->getFailureOrdering(),
1028                              cast<AtomicCmpXchgInst>(R)->getFailureOrdering()))
1029       return Res;
1030     return cmpNumbers(CXI->getSynchScope(),
1031                       cast<AtomicCmpXchgInst>(R)->getSynchScope());
1032   }
1033   if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(L)) {
1034     if (int Res = cmpNumbers(RMWI->getOperation(),
1035                              cast<AtomicRMWInst>(R)->getOperation()))
1036       return Res;
1037     if (int Res = cmpNumbers(RMWI->isVolatile(),
1038                              cast<AtomicRMWInst>(R)->isVolatile()))
1039       return Res;
1040     if (int Res = cmpNumbers(RMWI->getOrdering(),
1041                              cast<AtomicRMWInst>(R)->getOrdering()))
1042       return Res;
1043     return cmpNumbers(RMWI->getSynchScope(),
1044                       cast<AtomicRMWInst>(R)->getSynchScope());
1045   }
1046   return 0;
1047 }
1048 
1049 // Determine whether two GEP operations perform the same underlying arithmetic.
1050 // Read method declaration comments for more details.
1051 int FunctionComparator::cmpGEPs(const GEPOperator *GEPL,
1052                                const GEPOperator *GEPR) {
1053 
1054   unsigned int ASL = GEPL->getPointerAddressSpace();
1055   unsigned int ASR = GEPR->getPointerAddressSpace();
1056 
1057   if (int Res = cmpNumbers(ASL, ASR))
1058     return Res;
1059 
1060   // When we have target data, we can reduce the GEP down to the value in bytes
1061   // added to the address.
1062   const DataLayout &DL = FnL->getParent()->getDataLayout();
1063   unsigned BitWidth = DL.getPointerSizeInBits(ASL);
1064   APInt OffsetL(BitWidth, 0), OffsetR(BitWidth, 0);
1065   if (GEPL->accumulateConstantOffset(DL, OffsetL) &&
1066       GEPR->accumulateConstantOffset(DL, OffsetR))
1067     return cmpAPInts(OffsetL, OffsetR);
1068   if (int Res = cmpTypes(GEPL->getSourceElementType(),
1069                          GEPR->getSourceElementType()))
1070     return Res;
1071 
1072   if (int Res = cmpNumbers(GEPL->getNumOperands(), GEPR->getNumOperands()))
1073     return Res;
1074 
1075   for (unsigned i = 0, e = GEPL->getNumOperands(); i != e; ++i) {
1076     if (int Res = cmpValues(GEPL->getOperand(i), GEPR->getOperand(i)))
1077       return Res;
1078   }
1079 
1080   return 0;
1081 }
1082 
1083 int FunctionComparator::cmpInlineAsm(const InlineAsm *L,
1084                                      const InlineAsm *R) const {
1085   // InlineAsm's are uniqued. If they are the same pointer, obviously they are
1086   // the same, otherwise compare the fields.
1087   if (L == R)
1088     return 0;
1089   if (int Res = cmpTypes(L->getFunctionType(), R->getFunctionType()))
1090     return Res;
1091   if (int Res = cmpMem(L->getAsmString(), R->getAsmString()))
1092     return Res;
1093   if (int Res = cmpMem(L->getConstraintString(), R->getConstraintString()))
1094     return Res;
1095   if (int Res = cmpNumbers(L->hasSideEffects(), R->hasSideEffects()))
1096     return Res;
1097   if (int Res = cmpNumbers(L->isAlignStack(), R->isAlignStack()))
1098     return Res;
1099   if (int Res = cmpNumbers(L->getDialect(), R->getDialect()))
1100     return Res;
1101   llvm_unreachable("InlineAsm blocks were not uniqued.");
1102   return 0;
1103 }
1104 
1105 /// Compare two values used by the two functions under pair-wise comparison. If
1106 /// this is the first time the values are seen, they're added to the mapping so
1107 /// that we will detect mismatches on next use.
1108 /// See comments in declaration for more details.
1109 int FunctionComparator::cmpValues(const Value *L, const Value *R) {
1110   // Catch self-reference case.
1111   if (L == FnL) {
1112     if (R == FnR)
1113       return 0;
1114     return -1;
1115   }
1116   if (R == FnR) {
1117     if (L == FnL)
1118       return 0;
1119     return 1;
1120   }
1121 
1122   const Constant *ConstL = dyn_cast<Constant>(L);
1123   const Constant *ConstR = dyn_cast<Constant>(R);
1124   if (ConstL && ConstR) {
1125     if (L == R)
1126       return 0;
1127     return cmpConstants(ConstL, ConstR);
1128   }
1129 
1130   if (ConstL)
1131     return 1;
1132   if (ConstR)
1133     return -1;
1134 
1135   const InlineAsm *InlineAsmL = dyn_cast<InlineAsm>(L);
1136   const InlineAsm *InlineAsmR = dyn_cast<InlineAsm>(R);
1137 
1138   if (InlineAsmL && InlineAsmR)
1139     return cmpInlineAsm(InlineAsmL, InlineAsmR);
1140   if (InlineAsmL)
1141     return 1;
1142   if (InlineAsmR)
1143     return -1;
1144 
1145   auto LeftSN = sn_mapL.insert(std::make_pair(L, sn_mapL.size())),
1146        RightSN = sn_mapR.insert(std::make_pair(R, sn_mapR.size()));
1147 
1148   return cmpNumbers(LeftSN.first->second, RightSN.first->second);
1149 }
1150 // Test whether two basic blocks have equivalent behaviour.
1151 int FunctionComparator::cmpBasicBlocks(const BasicBlock *BBL,
1152                                        const BasicBlock *BBR) {
1153   BasicBlock::const_iterator InstL = BBL->begin(), InstLE = BBL->end();
1154   BasicBlock::const_iterator InstR = BBR->begin(), InstRE = BBR->end();
1155 
1156   do {
1157     if (int Res = cmpValues(&*InstL, &*InstR))
1158       return Res;
1159 
1160     const GetElementPtrInst *GEPL = dyn_cast<GetElementPtrInst>(InstL);
1161     const GetElementPtrInst *GEPR = dyn_cast<GetElementPtrInst>(InstR);
1162 
1163     if (GEPL && !GEPR)
1164       return 1;
1165     if (GEPR && !GEPL)
1166       return -1;
1167 
1168     if (GEPL && GEPR) {
1169       if (int Res =
1170               cmpValues(GEPL->getPointerOperand(), GEPR->getPointerOperand()))
1171         return Res;
1172       if (int Res = cmpGEPs(GEPL, GEPR))
1173         return Res;
1174     } else {
1175       if (int Res = cmpOperations(&*InstL, &*InstR))
1176         return Res;
1177       assert(InstL->getNumOperands() == InstR->getNumOperands());
1178 
1179       for (unsigned i = 0, e = InstL->getNumOperands(); i != e; ++i) {
1180         Value *OpL = InstL->getOperand(i);
1181         Value *OpR = InstR->getOperand(i);
1182         if (int Res = cmpValues(OpL, OpR))
1183           return Res;
1184         // cmpValues should ensure this is true.
1185         assert(cmpTypes(OpL->getType(), OpR->getType()) == 0);
1186       }
1187     }
1188 
1189     ++InstL;
1190     ++InstR;
1191   } while (InstL != InstLE && InstR != InstRE);
1192 
1193   if (InstL != InstLE && InstR == InstRE)
1194     return 1;
1195   if (InstL == InstLE && InstR != InstRE)
1196     return -1;
1197   return 0;
1198 }
1199 
1200 // Test whether the two functions have equivalent behaviour.
1201 int FunctionComparator::compare() {
1202   sn_mapL.clear();
1203   sn_mapR.clear();
1204 
1205   if (int Res = cmpAttrs(FnL->getAttributes(), FnR->getAttributes()))
1206     return Res;
1207 
1208   if (int Res = cmpNumbers(FnL->hasGC(), FnR->hasGC()))
1209     return Res;
1210 
1211   if (FnL->hasGC()) {
1212     if (int Res = cmpMem(FnL->getGC(), FnR->getGC()))
1213       return Res;
1214   }
1215 
1216   if (int Res = cmpNumbers(FnL->hasSection(), FnR->hasSection()))
1217     return Res;
1218 
1219   if (FnL->hasSection()) {
1220     if (int Res = cmpMem(FnL->getSection(), FnR->getSection()))
1221       return Res;
1222   }
1223 
1224   if (int Res = cmpNumbers(FnL->isVarArg(), FnR->isVarArg()))
1225     return Res;
1226 
1227   // TODO: if it's internal and only used in direct calls, we could handle this
1228   // case too.
1229   if (int Res = cmpNumbers(FnL->getCallingConv(), FnR->getCallingConv()))
1230     return Res;
1231 
1232   if (int Res = cmpTypes(FnL->getFunctionType(), FnR->getFunctionType()))
1233     return Res;
1234 
1235   assert(FnL->arg_size() == FnR->arg_size() &&
1236          "Identically typed functions have different numbers of args!");
1237 
1238   // Visit the arguments so that they get enumerated in the order they're
1239   // passed in.
1240   for (Function::const_arg_iterator ArgLI = FnL->arg_begin(),
1241                                     ArgRI = FnR->arg_begin(),
1242                                     ArgLE = FnL->arg_end();
1243        ArgLI != ArgLE; ++ArgLI, ++ArgRI) {
1244     if (cmpValues(&*ArgLI, &*ArgRI) != 0)
1245       llvm_unreachable("Arguments repeat!");
1246   }
1247 
1248   // We do a CFG-ordered walk since the actual ordering of the blocks in the
1249   // linked list is immaterial. Our walk starts at the entry block for both
1250   // functions, then takes each block from each terminator in order. As an
1251   // artifact, this also means that unreachable blocks are ignored.
1252   SmallVector<const BasicBlock *, 8> FnLBBs, FnRBBs;
1253   SmallPtrSet<const BasicBlock *, 32> VisitedBBs; // in terms of F1.
1254 
1255   FnLBBs.push_back(&FnL->getEntryBlock());
1256   FnRBBs.push_back(&FnR->getEntryBlock());
1257 
1258   VisitedBBs.insert(FnLBBs[0]);
1259   while (!FnLBBs.empty()) {
1260     const BasicBlock *BBL = FnLBBs.pop_back_val();
1261     const BasicBlock *BBR = FnRBBs.pop_back_val();
1262 
1263     if (int Res = cmpValues(BBL, BBR))
1264       return Res;
1265 
1266     if (int Res = cmpBasicBlocks(BBL, BBR))
1267       return Res;
1268 
1269     const TerminatorInst *TermL = BBL->getTerminator();
1270     const TerminatorInst *TermR = BBR->getTerminator();
1271 
1272     assert(TermL->getNumSuccessors() == TermR->getNumSuccessors());
1273     for (unsigned i = 0, e = TermL->getNumSuccessors(); i != e; ++i) {
1274       if (!VisitedBBs.insert(TermL->getSuccessor(i)).second)
1275         continue;
1276 
1277       FnLBBs.push_back(TermL->getSuccessor(i));
1278       FnRBBs.push_back(TermR->getSuccessor(i));
1279     }
1280   }
1281   return 0;
1282 }
1283 
1284 namespace {
1285 // Accumulate the hash of a sequence of 64-bit integers. This is similar to a
1286 // hash of a sequence of 64bit ints, but the entire input does not need to be
1287 // available at once. This interface is necessary for functionHash because it
1288 // needs to accumulate the hash as the structure of the function is traversed
1289 // without saving these values to an intermediate buffer. This form of hashing
1290 // is not often needed, as usually the object to hash is just read from a
1291 // buffer.
1292 class HashAccumulator64 {
1293   uint64_t Hash;
1294 public:
1295   // Initialize to random constant, so the state isn't zero.
1296   HashAccumulator64() { Hash = 0x6acaa36bef8325c5ULL; }
1297   void add(uint64_t V) {
1298      Hash = llvm::hashing::detail::hash_16_bytes(Hash, V);
1299   }
1300   // No finishing is required, because the entire hash value is used.
1301   uint64_t getHash() { return Hash; }
1302 };
1303 } // end anonymous namespace
1304 
1305 // A function hash is calculated by considering only the number of arguments and
1306 // whether a function is varargs, the order of basic blocks (given by the
1307 // successors of each basic block in depth first order), and the order of
1308 // opcodes of each instruction within each of these basic blocks. This mirrors
1309 // the strategy compare() uses to compare functions by walking the BBs in depth
1310 // first order and comparing each instruction in sequence. Because this hash
1311 // does not look at the operands, it is insensitive to things such as the
1312 // target of calls and the constants used in the function, which makes it useful
1313 // when possibly merging functions which are the same modulo constants and call
1314 // targets.
1315 FunctionComparator::FunctionHash FunctionComparator::functionHash(Function &F) {
1316   HashAccumulator64 H;
1317   H.add(F.isVarArg());
1318   H.add(F.arg_size());
1319 
1320   SmallVector<const BasicBlock *, 8> BBs;
1321   SmallSet<const BasicBlock *, 16> VisitedBBs;
1322 
1323   // Walk the blocks in the same order as FunctionComparator::cmpBasicBlocks(),
1324   // accumulating the hash of the function "structure." (BB and opcode sequence)
1325   BBs.push_back(&F.getEntryBlock());
1326   VisitedBBs.insert(BBs[0]);
1327   while (!BBs.empty()) {
1328     const BasicBlock *BB = BBs.pop_back_val();
1329     // This random value acts as a block header, as otherwise the partition of
1330     // opcodes into BBs wouldn't affect the hash, only the order of the opcodes
1331     H.add(45798);
1332     for (auto &Inst : *BB) {
1333       H.add(Inst.getOpcode());
1334     }
1335     const TerminatorInst *Term = BB->getTerminator();
1336     for (unsigned i = 0, e = Term->getNumSuccessors(); i != e; ++i) {
1337       if (!VisitedBBs.insert(Term->getSuccessor(i)).second)
1338         continue;
1339       BBs.push_back(Term->getSuccessor(i));
1340     }
1341   }
1342   return H.getHash();
1343 }
1344 
1345 
1346 namespace {
1347 
1348 /// MergeFunctions finds functions which will generate identical machine code,
1349 /// by considering all pointer types to be equivalent. Once identified,
1350 /// MergeFunctions will fold them by replacing a call to one to a call to a
1351 /// bitcast of the other.
1352 ///
1353 class MergeFunctions : public ModulePass {
1354 public:
1355   static char ID;
1356   MergeFunctions()
1357     : ModulePass(ID), FnTree(FunctionNodeCmp(&GlobalNumbers)), FNodesInTree(),
1358       HasGlobalAliases(false) {
1359     initializeMergeFunctionsPass(*PassRegistry::getPassRegistry());
1360   }
1361 
1362   bool runOnModule(Module &M) override;
1363 
1364 private:
1365   // The function comparison operator is provided here so that FunctionNodes do
1366   // not need to become larger with another pointer.
1367   class FunctionNodeCmp {
1368     GlobalNumberState* GlobalNumbers;
1369   public:
1370     FunctionNodeCmp(GlobalNumberState* GN) : GlobalNumbers(GN) {}
1371     bool operator()(const FunctionNode &LHS, const FunctionNode &RHS) const {
1372       // Order first by hashes, then full function comparison.
1373       if (LHS.getHash() != RHS.getHash())
1374         return LHS.getHash() < RHS.getHash();
1375       FunctionComparator FCmp(LHS.getFunc(), RHS.getFunc(), GlobalNumbers);
1376       return FCmp.compare() == -1;
1377     }
1378   };
1379   typedef std::set<FunctionNode, FunctionNodeCmp> FnTreeType;
1380 
1381   GlobalNumberState GlobalNumbers;
1382 
1383   /// A work queue of functions that may have been modified and should be
1384   /// analyzed again.
1385   std::vector<WeakVH> Deferred;
1386 
1387   /// Checks the rules of order relation introduced among functions set.
1388   /// Returns true, if sanity check has been passed, and false if failed.
1389   bool doSanityCheck(std::vector<WeakVH> &Worklist);
1390 
1391   /// Insert a ComparableFunction into the FnTree, or merge it away if it's
1392   /// equal to one that's already present.
1393   bool insert(Function *NewFunction);
1394 
1395   /// Remove a Function from the FnTree and queue it up for a second sweep of
1396   /// analysis.
1397   void remove(Function *F);
1398 
1399   /// Find the functions that use this Value and remove them from FnTree and
1400   /// queue the functions.
1401   void removeUsers(Value *V);
1402 
1403   /// Replace all direct calls of Old with calls of New. Will bitcast New if
1404   /// necessary to make types match.
1405   void replaceDirectCallers(Function *Old, Function *New);
1406 
1407   /// Merge two equivalent functions. Upon completion, G may be deleted, or may
1408   /// be converted into a thunk. In either case, it should never be visited
1409   /// again.
1410   void mergeTwoFunctions(Function *F, Function *G);
1411 
1412   /// Replace G with a thunk or an alias to F. Deletes G.
1413   void writeThunkOrAlias(Function *F, Function *G);
1414 
1415   /// Replace G with a simple tail call to bitcast(F). Also replace direct uses
1416   /// of G with bitcast(F). Deletes G.
1417   void writeThunk(Function *F, Function *G);
1418 
1419   /// Replace G with an alias to F. Deletes G.
1420   void writeAlias(Function *F, Function *G);
1421 
1422   /// Replace function F with function G in the function tree.
1423   void replaceFunctionInTree(const FunctionNode &FN, Function *G);
1424 
1425   /// The set of all distinct functions. Use the insert() and remove() methods
1426   /// to modify it. The map allows efficient lookup and deferring of Functions.
1427   FnTreeType FnTree;
1428   // Map functions to the iterators of the FunctionNode which contains them
1429   // in the FnTree. This must be updated carefully whenever the FnTree is
1430   // modified, i.e. in insert(), remove(), and replaceFunctionInTree(), to avoid
1431   // dangling iterators into FnTree. The invariant that preserves this is that
1432   // there is exactly one mapping F -> FN for each FunctionNode FN in FnTree.
1433   ValueMap<Function*, FnTreeType::iterator> FNodesInTree;
1434 
1435   /// Whether or not the target supports global aliases.
1436   bool HasGlobalAliases;
1437 };
1438 
1439 } // end anonymous namespace
1440 
1441 char MergeFunctions::ID = 0;
1442 INITIALIZE_PASS(MergeFunctions, "mergefunc", "Merge Functions", false, false)
1443 
1444 ModulePass *llvm::createMergeFunctionsPass() {
1445   return new MergeFunctions();
1446 }
1447 
1448 bool MergeFunctions::doSanityCheck(std::vector<WeakVH> &Worklist) {
1449   if (const unsigned Max = NumFunctionsForSanityCheck) {
1450     unsigned TripleNumber = 0;
1451     bool Valid = true;
1452 
1453     dbgs() << "MERGEFUNC-SANITY: Started for first " << Max << " functions.\n";
1454 
1455     unsigned i = 0;
1456     for (std::vector<WeakVH>::iterator I = Worklist.begin(), E = Worklist.end();
1457          I != E && i < Max; ++I, ++i) {
1458       unsigned j = i;
1459       for (std::vector<WeakVH>::iterator J = I; J != E && j < Max; ++J, ++j) {
1460         Function *F1 = cast<Function>(*I);
1461         Function *F2 = cast<Function>(*J);
1462         int Res1 = FunctionComparator(F1, F2, &GlobalNumbers).compare();
1463         int Res2 = FunctionComparator(F2, F1, &GlobalNumbers).compare();
1464 
1465         // If F1 <= F2, then F2 >= F1, otherwise report failure.
1466         if (Res1 != -Res2) {
1467           dbgs() << "MERGEFUNC-SANITY: Non-symmetric; triple: " << TripleNumber
1468                  << "\n";
1469           F1->dump();
1470           F2->dump();
1471           Valid = false;
1472         }
1473 
1474         if (Res1 == 0)
1475           continue;
1476 
1477         unsigned k = j;
1478         for (std::vector<WeakVH>::iterator K = J; K != E && k < Max;
1479              ++k, ++K, ++TripleNumber) {
1480           if (K == J)
1481             continue;
1482 
1483           Function *F3 = cast<Function>(*K);
1484           int Res3 = FunctionComparator(F1, F3, &GlobalNumbers).compare();
1485           int Res4 = FunctionComparator(F2, F3, &GlobalNumbers).compare();
1486 
1487           bool Transitive = true;
1488 
1489           if (Res1 != 0 && Res1 == Res4) {
1490             // F1 > F2, F2 > F3 => F1 > F3
1491             Transitive = Res3 == Res1;
1492           } else if (Res3 != 0 && Res3 == -Res4) {
1493             // F1 > F3, F3 > F2 => F1 > F2
1494             Transitive = Res3 == Res1;
1495           } else if (Res4 != 0 && -Res3 == Res4) {
1496             // F2 > F3, F3 > F1 => F2 > F1
1497             Transitive = Res4 == -Res1;
1498           }
1499 
1500           if (!Transitive) {
1501             dbgs() << "MERGEFUNC-SANITY: Non-transitive; triple: "
1502                    << TripleNumber << "\n";
1503             dbgs() << "Res1, Res3, Res4: " << Res1 << ", " << Res3 << ", "
1504                    << Res4 << "\n";
1505             F1->dump();
1506             F2->dump();
1507             F3->dump();
1508             Valid = false;
1509           }
1510         }
1511       }
1512     }
1513 
1514     dbgs() << "MERGEFUNC-SANITY: " << (Valid ? "Passed." : "Failed.") << "\n";
1515     return Valid;
1516   }
1517   return true;
1518 }
1519 
1520 bool MergeFunctions::runOnModule(Module &M) {
1521   bool Changed = false;
1522 
1523   // All functions in the module, ordered by hash. Functions with a unique
1524   // hash value are easily eliminated.
1525   std::vector<std::pair<FunctionComparator::FunctionHash, Function *>>
1526     HashedFuncs;
1527   for (Function &Func : M) {
1528     if (!Func.isDeclaration() && !Func.hasAvailableExternallyLinkage()) {
1529       HashedFuncs.push_back({FunctionComparator::functionHash(Func), &Func});
1530     }
1531   }
1532 
1533   std::stable_sort(
1534       HashedFuncs.begin(), HashedFuncs.end(),
1535       [](const std::pair<FunctionComparator::FunctionHash, Function *> &a,
1536          const std::pair<FunctionComparator::FunctionHash, Function *> &b) {
1537         return a.first < b.first;
1538       });
1539 
1540   auto S = HashedFuncs.begin();
1541   for (auto I = HashedFuncs.begin(), IE = HashedFuncs.end(); I != IE; ++I) {
1542     // If the hash value matches the previous value or the next one, we must
1543     // consider merging it. Otherwise it is dropped and never considered again.
1544     if ((I != S && std::prev(I)->first == I->first) ||
1545         (std::next(I) != IE && std::next(I)->first == I->first) ) {
1546       Deferred.push_back(WeakVH(I->second));
1547     }
1548   }
1549 
1550   do {
1551     std::vector<WeakVH> Worklist;
1552     Deferred.swap(Worklist);
1553 
1554     DEBUG(doSanityCheck(Worklist));
1555 
1556     DEBUG(dbgs() << "size of module: " << M.size() << '\n');
1557     DEBUG(dbgs() << "size of worklist: " << Worklist.size() << '\n');
1558 
1559     // Insert only strong functions and merge them. Strong function merging
1560     // always deletes one of them.
1561     for (std::vector<WeakVH>::iterator I = Worklist.begin(),
1562            E = Worklist.end(); I != E; ++I) {
1563       if (!*I) continue;
1564       Function *F = cast<Function>(*I);
1565       if (!F->isDeclaration() && !F->hasAvailableExternallyLinkage() &&
1566           !F->mayBeOverridden()) {
1567         Changed |= insert(F);
1568       }
1569     }
1570 
1571     // Insert only weak functions and merge them. By doing these second we
1572     // create thunks to the strong function when possible. When two weak
1573     // functions are identical, we create a new strong function with two weak
1574     // weak thunks to it which are identical but not mergable.
1575     for (std::vector<WeakVH>::iterator I = Worklist.begin(),
1576            E = Worklist.end(); I != E; ++I) {
1577       if (!*I) continue;
1578       Function *F = cast<Function>(*I);
1579       if (!F->isDeclaration() && !F->hasAvailableExternallyLinkage() &&
1580           F->mayBeOverridden()) {
1581         Changed |= insert(F);
1582       }
1583     }
1584     DEBUG(dbgs() << "size of FnTree: " << FnTree.size() << '\n');
1585   } while (!Deferred.empty());
1586 
1587   FnTree.clear();
1588   GlobalNumbers.clear();
1589 
1590   return Changed;
1591 }
1592 
1593 // Replace direct callers of Old with New.
1594 void MergeFunctions::replaceDirectCallers(Function *Old, Function *New) {
1595   Constant *BitcastNew = ConstantExpr::getBitCast(New, Old->getType());
1596   for (auto UI = Old->use_begin(), UE = Old->use_end(); UI != UE;) {
1597     Use *U = &*UI;
1598     ++UI;
1599     CallSite CS(U->getUser());
1600     if (CS && CS.isCallee(U)) {
1601       // Transfer the called function's attributes to the call site. Due to the
1602       // bitcast we will 'lose' ABI changing attributes because the 'called
1603       // function' is no longer a Function* but the bitcast. Code that looks up
1604       // the attributes from the called function will fail.
1605 
1606       // FIXME: This is not actually true, at least not anymore. The callsite
1607       // will always have the same ABI affecting attributes as the callee,
1608       // because otherwise the original input has UB. Note that Old and New
1609       // always have matching ABI, so no attributes need to be changed.
1610       // Transferring other attributes may help other optimizations, but that
1611       // should be done uniformly and not in this ad-hoc way.
1612       auto &Context = New->getContext();
1613       auto NewFuncAttrs = New->getAttributes();
1614       auto CallSiteAttrs = CS.getAttributes();
1615 
1616       CallSiteAttrs = CallSiteAttrs.addAttributes(
1617           Context, AttributeSet::ReturnIndex, NewFuncAttrs.getRetAttributes());
1618 
1619       for (unsigned argIdx = 0; argIdx < CS.arg_size(); argIdx++) {
1620         AttributeSet Attrs = NewFuncAttrs.getParamAttributes(argIdx);
1621         if (Attrs.getNumSlots())
1622           CallSiteAttrs = CallSiteAttrs.addAttributes(Context, argIdx, Attrs);
1623       }
1624 
1625       CS.setAttributes(CallSiteAttrs);
1626 
1627       remove(CS.getInstruction()->getParent()->getParent());
1628       U->set(BitcastNew);
1629     }
1630   }
1631 }
1632 
1633 // Replace G with an alias to F if possible, or else a thunk to F. Deletes G.
1634 void MergeFunctions::writeThunkOrAlias(Function *F, Function *G) {
1635   if (HasGlobalAliases && G->hasUnnamedAddr()) {
1636     if (G->hasExternalLinkage() || G->hasLocalLinkage() ||
1637         G->hasWeakLinkage()) {
1638       writeAlias(F, G);
1639       return;
1640     }
1641   }
1642 
1643   writeThunk(F, G);
1644 }
1645 
1646 // Helper for writeThunk,
1647 // Selects proper bitcast operation,
1648 // but a bit simpler then CastInst::getCastOpcode.
1649 static Value *createCast(IRBuilder<false> &Builder, Value *V, Type *DestTy) {
1650   Type *SrcTy = V->getType();
1651   if (SrcTy->isStructTy()) {
1652     assert(DestTy->isStructTy());
1653     assert(SrcTy->getStructNumElements() == DestTy->getStructNumElements());
1654     Value *Result = UndefValue::get(DestTy);
1655     for (unsigned int I = 0, E = SrcTy->getStructNumElements(); I < E; ++I) {
1656       Value *Element = createCast(
1657           Builder, Builder.CreateExtractValue(V, makeArrayRef(I)),
1658           DestTy->getStructElementType(I));
1659 
1660       Result =
1661           Builder.CreateInsertValue(Result, Element, makeArrayRef(I));
1662     }
1663     return Result;
1664   }
1665   assert(!DestTy->isStructTy());
1666   if (SrcTy->isIntegerTy() && DestTy->isPointerTy())
1667     return Builder.CreateIntToPtr(V, DestTy);
1668   else if (SrcTy->isPointerTy() && DestTy->isIntegerTy())
1669     return Builder.CreatePtrToInt(V, DestTy);
1670   else
1671     return Builder.CreateBitCast(V, DestTy);
1672 }
1673 
1674 // Replace G with a simple tail call to bitcast(F). Also replace direct uses
1675 // of G with bitcast(F). Deletes G.
1676 void MergeFunctions::writeThunk(Function *F, Function *G) {
1677   if (!G->mayBeOverridden()) {
1678     // Redirect direct callers of G to F.
1679     replaceDirectCallers(G, F);
1680   }
1681 
1682   // If G was internal then we may have replaced all uses of G with F. If so,
1683   // stop here and delete G. There's no need for a thunk.
1684   if (G->hasLocalLinkage() && G->use_empty()) {
1685     G->eraseFromParent();
1686     return;
1687   }
1688 
1689   Function *NewG = Function::Create(G->getFunctionType(), G->getLinkage(), "",
1690                                     G->getParent());
1691   BasicBlock *BB = BasicBlock::Create(F->getContext(), "", NewG);
1692   IRBuilder<false> Builder(BB);
1693 
1694   SmallVector<Value *, 16> Args;
1695   unsigned i = 0;
1696   FunctionType *FFTy = F->getFunctionType();
1697   for (Argument & AI : NewG->args()) {
1698     Args.push_back(createCast(Builder, &AI, FFTy->getParamType(i)));
1699     ++i;
1700   }
1701 
1702   CallInst *CI = Builder.CreateCall(F, Args);
1703   CI->setTailCall();
1704   CI->setCallingConv(F->getCallingConv());
1705   CI->setAttributes(F->getAttributes());
1706   if (NewG->getReturnType()->isVoidTy()) {
1707     Builder.CreateRetVoid();
1708   } else {
1709     Builder.CreateRet(createCast(Builder, CI, NewG->getReturnType()));
1710   }
1711 
1712   NewG->copyAttributesFrom(G);
1713   NewG->takeName(G);
1714   removeUsers(G);
1715   G->replaceAllUsesWith(NewG);
1716   G->eraseFromParent();
1717 
1718   DEBUG(dbgs() << "writeThunk: " << NewG->getName() << '\n');
1719   ++NumThunksWritten;
1720 }
1721 
1722 // Replace G with an alias to F and delete G.
1723 void MergeFunctions::writeAlias(Function *F, Function *G) {
1724   auto *GA = GlobalAlias::create(G->getLinkage(), "", F);
1725   F->setAlignment(std::max(F->getAlignment(), G->getAlignment()));
1726   GA->takeName(G);
1727   GA->setVisibility(G->getVisibility());
1728   removeUsers(G);
1729   G->replaceAllUsesWith(GA);
1730   G->eraseFromParent();
1731 
1732   DEBUG(dbgs() << "writeAlias: " << GA->getName() << '\n');
1733   ++NumAliasesWritten;
1734 }
1735 
1736 // Merge two equivalent functions. Upon completion, Function G is deleted.
1737 void MergeFunctions::mergeTwoFunctions(Function *F, Function *G) {
1738   if (F->mayBeOverridden()) {
1739     assert(G->mayBeOverridden());
1740 
1741     // Make them both thunks to the same internal function.
1742     Function *H = Function::Create(F->getFunctionType(), F->getLinkage(), "",
1743                                    F->getParent());
1744     H->copyAttributesFrom(F);
1745     H->takeName(F);
1746     removeUsers(F);
1747     F->replaceAllUsesWith(H);
1748 
1749     unsigned MaxAlignment = std::max(G->getAlignment(), H->getAlignment());
1750 
1751     if (HasGlobalAliases) {
1752       writeAlias(F, G);
1753       writeAlias(F, H);
1754     } else {
1755       writeThunk(F, G);
1756       writeThunk(F, H);
1757     }
1758 
1759     F->setAlignment(MaxAlignment);
1760     F->setLinkage(GlobalValue::PrivateLinkage);
1761     ++NumDoubleWeak;
1762   } else {
1763     writeThunkOrAlias(F, G);
1764   }
1765 
1766   ++NumFunctionsMerged;
1767 }
1768 
1769 /// Replace function F by function G.
1770 void MergeFunctions::replaceFunctionInTree(const FunctionNode &FN,
1771                                            Function *G) {
1772   Function *F = FN.getFunc();
1773   assert(FunctionComparator(F, G, &GlobalNumbers).compare() == 0 &&
1774          "The two functions must be equal");
1775 
1776   auto I = FNodesInTree.find(F);
1777   assert(I != FNodesInTree.end() && "F should be in FNodesInTree");
1778   assert(FNodesInTree.count(G) == 0 && "FNodesInTree should not contain G");
1779 
1780   FnTreeType::iterator IterToFNInFnTree = I->second;
1781   assert(&(*IterToFNInFnTree) == &FN && "F should map to FN in FNodesInTree.");
1782   // Remove F -> FN and insert G -> FN
1783   FNodesInTree.erase(I);
1784   FNodesInTree.insert({G, IterToFNInFnTree});
1785   // Replace F with G in FN, which is stored inside the FnTree.
1786   FN.replaceBy(G);
1787 }
1788 
1789 // Insert a ComparableFunction into the FnTree, or merge it away if equal to one
1790 // that was already inserted.
1791 bool MergeFunctions::insert(Function *NewFunction) {
1792   std::pair<FnTreeType::iterator, bool> Result =
1793       FnTree.insert(FunctionNode(NewFunction));
1794 
1795   if (Result.second) {
1796     assert(FNodesInTree.count(NewFunction) == 0);
1797     FNodesInTree.insert({NewFunction, Result.first});
1798     DEBUG(dbgs() << "Inserting as unique: " << NewFunction->getName() << '\n');
1799     return false;
1800   }
1801 
1802   const FunctionNode &OldF = *Result.first;
1803 
1804   // Don't merge tiny functions, since it can just end up making the function
1805   // larger.
1806   // FIXME: Should still merge them if they are unnamed_addr and produce an
1807   // alias.
1808   if (NewFunction->size() == 1) {
1809     if (NewFunction->front().size() <= 2) {
1810       DEBUG(dbgs() << NewFunction->getName()
1811                    << " is to small to bother merging\n");
1812       return false;
1813     }
1814   }
1815 
1816   // Impose a total order (by name) on the replacement of functions. This is
1817   // important when operating on more than one module independently to prevent
1818   // cycles of thunks calling each other when the modules are linked together.
1819   //
1820   // When one function is weak and the other is strong there is an order imposed
1821   // already. We process strong functions before weak functions.
1822   if ((OldF.getFunc()->mayBeOverridden() && NewFunction->mayBeOverridden()) ||
1823       (!OldF.getFunc()->mayBeOverridden() && !NewFunction->mayBeOverridden()))
1824     if (OldF.getFunc()->getName() > NewFunction->getName()) {
1825       // Swap the two functions.
1826       Function *F = OldF.getFunc();
1827       replaceFunctionInTree(*Result.first, NewFunction);
1828       NewFunction = F;
1829       assert(OldF.getFunc() != F && "Must have swapped the functions.");
1830     }
1831 
1832   // Never thunk a strong function to a weak function.
1833   assert(!OldF.getFunc()->mayBeOverridden() || NewFunction->mayBeOverridden());
1834 
1835   DEBUG(dbgs() << "  " << OldF.getFunc()->getName()
1836                << " == " << NewFunction->getName() << '\n');
1837 
1838   Function *DeleteF = NewFunction;
1839   mergeTwoFunctions(OldF.getFunc(), DeleteF);
1840   return true;
1841 }
1842 
1843 // Remove a function from FnTree. If it was already in FnTree, add
1844 // it to Deferred so that we'll look at it in the next round.
1845 void MergeFunctions::remove(Function *F) {
1846   auto I = FNodesInTree.find(F);
1847   if (I != FNodesInTree.end()) {
1848     DEBUG(dbgs() << "Deferred " << F->getName()<< ".\n");
1849     FnTree.erase(I->second);
1850     // I->second has been invalidated, remove it from the FNodesInTree map to
1851     // preserve the invariant.
1852     FNodesInTree.erase(I);
1853     Deferred.emplace_back(F);
1854   }
1855 }
1856 
1857 // For each instruction used by the value, remove() the function that contains
1858 // the instruction. This should happen right before a call to RAUW.
1859 void MergeFunctions::removeUsers(Value *V) {
1860   std::vector<Value *> Worklist;
1861   Worklist.push_back(V);
1862   SmallSet<Value*, 8> Visited;
1863   Visited.insert(V);
1864   while (!Worklist.empty()) {
1865     Value *V = Worklist.back();
1866     Worklist.pop_back();
1867 
1868     for (User *U : V->users()) {
1869       if (Instruction *I = dyn_cast<Instruction>(U)) {
1870         remove(I->getParent()->getParent());
1871       } else if (isa<GlobalValue>(U)) {
1872         // do nothing
1873       } else if (Constant *C = dyn_cast<Constant>(U)) {
1874         for (User *UU : C->users()) {
1875           if (!Visited.insert(UU).second)
1876             Worklist.push_back(UU);
1877         }
1878       }
1879     }
1880   }
1881 }
1882