1 //===- MergeFunctions.cpp - Merge identical functions ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass looks for equivalent functions that are mergable and folds them. 11 // 12 // Order relation is defined on set of functions. It was made through 13 // special function comparison procedure that returns 14 // 0 when functions are equal, 15 // -1 when Left function is less than right function, and 16 // 1 for opposite case. We need total-ordering, so we need to maintain 17 // four properties on the functions set: 18 // a <= a (reflexivity) 19 // if a <= b and b <= a then a = b (antisymmetry) 20 // if a <= b and b <= c then a <= c (transitivity). 21 // for all a and b: a <= b or b <= a (totality). 22 // 23 // Comparison iterates through each instruction in each basic block. 24 // Functions are kept on binary tree. For each new function F we perform 25 // lookup in binary tree. 26 // In practice it works the following way: 27 // -- We define Function* container class with custom "operator<" (FunctionPtr). 28 // -- "FunctionPtr" instances are stored in std::set collection, so every 29 // std::set::insert operation will give you result in log(N) time. 30 // 31 // When a match is found the functions are folded. If both functions are 32 // overridable, we move the functionality into a new internal function and 33 // leave two overridable thunks to it. 34 // 35 //===----------------------------------------------------------------------===// 36 // 37 // Future work: 38 // 39 // * virtual functions. 40 // 41 // Many functions have their address taken by the virtual function table for 42 // the object they belong to. However, as long as it's only used for a lookup 43 // and call, this is irrelevant, and we'd like to fold such functions. 44 // 45 // * be smarter about bitcasts. 46 // 47 // In order to fold functions, we will sometimes add either bitcast instructions 48 // or bitcast constant expressions. Unfortunately, this can confound further 49 // analysis since the two functions differ where one has a bitcast and the 50 // other doesn't. We should learn to look through bitcasts. 51 // 52 // * Compare complex types with pointer types inside. 53 // * Compare cross-reference cases. 54 // * Compare complex expressions. 55 // 56 // All the three issues above could be described as ability to prove that 57 // fA == fB == fC == fE == fF == fG in example below: 58 // 59 // void fA() { 60 // fB(); 61 // } 62 // void fB() { 63 // fA(); 64 // } 65 // 66 // void fE() { 67 // fF(); 68 // } 69 // void fF() { 70 // fG(); 71 // } 72 // void fG() { 73 // fE(); 74 // } 75 // 76 // Simplest cross-reference case (fA <--> fB) was implemented in previous 77 // versions of MergeFunctions, though it presented only in two function pairs 78 // in test-suite (that counts >50k functions) 79 // Though possibility to detect complex cross-referencing (e.g.: A->B->C->D->A) 80 // could cover much more cases. 81 // 82 //===----------------------------------------------------------------------===// 83 84 #include "llvm/Transforms/IPO.h" 85 #include "llvm/ADT/DenseSet.h" 86 #include "llvm/ADT/FoldingSet.h" 87 #include "llvm/ADT/STLExtras.h" 88 #include "llvm/ADT/SmallSet.h" 89 #include "llvm/ADT/Statistic.h" 90 #include "llvm/IR/CallSite.h" 91 #include "llvm/IR/Constants.h" 92 #include "llvm/IR/DataLayout.h" 93 #include "llvm/IR/IRBuilder.h" 94 #include "llvm/IR/InlineAsm.h" 95 #include "llvm/IR/Instructions.h" 96 #include "llvm/IR/LLVMContext.h" 97 #include "llvm/IR/Module.h" 98 #include "llvm/IR/Operator.h" 99 #include "llvm/IR/ValueHandle.h" 100 #include "llvm/Pass.h" 101 #include "llvm/Support/CommandLine.h" 102 #include "llvm/Support/Debug.h" 103 #include "llvm/Support/ErrorHandling.h" 104 #include "llvm/Support/raw_ostream.h" 105 #include <vector> 106 using namespace llvm; 107 108 #define DEBUG_TYPE "mergefunc" 109 110 STATISTIC(NumFunctionsMerged, "Number of functions merged"); 111 STATISTIC(NumThunksWritten, "Number of thunks generated"); 112 STATISTIC(NumAliasesWritten, "Number of aliases generated"); 113 STATISTIC(NumDoubleWeak, "Number of new functions created"); 114 115 static cl::opt<unsigned> NumFunctionsForSanityCheck( 116 "mergefunc-sanity", 117 cl::desc("How many functions in module could be used for " 118 "MergeFunctions pass sanity check. " 119 "'0' disables this check. Works only with '-debug' key."), 120 cl::init(0), cl::Hidden); 121 122 namespace { 123 124 /// FunctionComparator - Compares two functions to determine whether or not 125 /// they will generate machine code with the same behaviour. DataLayout is 126 /// used if available. The comparator always fails conservatively (erring on the 127 /// side of claiming that two functions are different). 128 class FunctionComparator { 129 public: 130 FunctionComparator(const Function *F1, const Function *F2) 131 : FnL(F1), FnR(F2) {} 132 133 /// Test whether the two functions have equivalent behaviour. 134 int compare(); 135 136 private: 137 /// Test whether two basic blocks have equivalent behaviour. 138 int compare(const BasicBlock *BBL, const BasicBlock *BBR); 139 140 /// Constants comparison. 141 /// Its analog to lexicographical comparison between hypothetical numbers 142 /// of next format: 143 /// <bitcastability-trait><raw-bit-contents> 144 /// 145 /// 1. Bitcastability. 146 /// Check whether L's type could be losslessly bitcasted to R's type. 147 /// On this stage method, in case when lossless bitcast is not possible 148 /// method returns -1 or 1, thus also defining which type is greater in 149 /// context of bitcastability. 150 /// Stage 0: If types are equal in terms of cmpTypes, then we can go straight 151 /// to the contents comparison. 152 /// If types differ, remember types comparison result and check 153 /// whether we still can bitcast types. 154 /// Stage 1: Types that satisfies isFirstClassType conditions are always 155 /// greater then others. 156 /// Stage 2: Vector is greater then non-vector. 157 /// If both types are vectors, then vector with greater bitwidth is 158 /// greater. 159 /// If both types are vectors with the same bitwidth, then types 160 /// are bitcastable, and we can skip other stages, and go to contents 161 /// comparison. 162 /// Stage 3: Pointer types are greater than non-pointers. If both types are 163 /// pointers of the same address space - go to contents comparison. 164 /// Different address spaces: pointer with greater address space is 165 /// greater. 166 /// Stage 4: Types are neither vectors, nor pointers. And they differ. 167 /// We don't know how to bitcast them. So, we better don't do it, 168 /// and return types comparison result (so it determines the 169 /// relationship among constants we don't know how to bitcast). 170 /// 171 /// Just for clearance, let's see how the set of constants could look 172 /// on single dimension axis: 173 /// 174 /// [NFCT], [FCT, "others"], [FCT, pointers], [FCT, vectors] 175 /// Where: NFCT - Not a FirstClassType 176 /// FCT - FirstClassTyp: 177 /// 178 /// 2. Compare raw contents. 179 /// It ignores types on this stage and only compares bits from L and R. 180 /// Returns 0, if L and R has equivalent contents. 181 /// -1 or 1 if values are different. 182 /// Pretty trivial: 183 /// 2.1. If contents are numbers, compare numbers. 184 /// Ints with greater bitwidth are greater. Ints with same bitwidths 185 /// compared by their contents. 186 /// 2.2. "And so on". Just to avoid discrepancies with comments 187 /// perhaps it would be better to read the implementation itself. 188 /// 3. And again about overall picture. Let's look back at how the ordered set 189 /// of constants will look like: 190 /// [NFCT], [FCT, "others"], [FCT, pointers], [FCT, vectors] 191 /// 192 /// Now look, what could be inside [FCT, "others"], for example: 193 /// [FCT, "others"] = 194 /// [ 195 /// [double 0.1], [double 1.23], 196 /// [i32 1], [i32 2], 197 /// { double 1.0 }, ; StructTyID, NumElements = 1 198 /// { i32 1 }, ; StructTyID, NumElements = 1 199 /// { double 1, i32 1 }, ; StructTyID, NumElements = 2 200 /// { i32 1, double 1 } ; StructTyID, NumElements = 2 201 /// ] 202 /// 203 /// Let's explain the order. Float numbers will be less than integers, just 204 /// because of cmpType terms: FloatTyID < IntegerTyID. 205 /// Floats (with same fltSemantics) are sorted according to their value. 206 /// Then you can see integers, and they are, like a floats, 207 /// could be easy sorted among each others. 208 /// The structures. Structures are grouped at the tail, again because of their 209 /// TypeID: StructTyID > IntegerTyID > FloatTyID. 210 /// Structures with greater number of elements are greater. Structures with 211 /// greater elements going first are greater. 212 /// The same logic with vectors, arrays and other possible complex types. 213 /// 214 /// Bitcastable constants. 215 /// Let's assume, that some constant, belongs to some group of 216 /// "so-called-equal" values with different types, and at the same time 217 /// belongs to another group of constants with equal types 218 /// and "really" equal values. 219 /// 220 /// Now, prove that this is impossible: 221 /// 222 /// If constant A with type TyA is bitcastable to B with type TyB, then: 223 /// 1. All constants with equal types to TyA, are bitcastable to B. Since 224 /// those should be vectors (if TyA is vector), pointers 225 /// (if TyA is pointer), or else (if TyA equal to TyB), those types should 226 /// be equal to TyB. 227 /// 2. All constants with non-equal, but bitcastable types to TyA, are 228 /// bitcastable to B. 229 /// Once again, just because we allow it to vectors and pointers only. 230 /// This statement could be expanded as below: 231 /// 2.1. All vectors with equal bitwidth to vector A, has equal bitwidth to 232 /// vector B, and thus bitcastable to B as well. 233 /// 2.2. All pointers of the same address space, no matter what they point to, 234 /// bitcastable. So if C is pointer, it could be bitcasted to A and to B. 235 /// So any constant equal or bitcastable to A is equal or bitcastable to B. 236 /// QED. 237 /// 238 /// In another words, for pointers and vectors, we ignore top-level type and 239 /// look at their particular properties (bit-width for vectors, and 240 /// address space for pointers). 241 /// If these properties are equal - compare their contents. 242 int cmpConstants(const Constant *L, const Constant *R); 243 244 /// Assign or look up previously assigned numbers for the two values, and 245 /// return whether the numbers are equal. Numbers are assigned in the order 246 /// visited. 247 /// Comparison order: 248 /// Stage 0: Value that is function itself is always greater then others. 249 /// If left and right values are references to their functions, then 250 /// they are equal. 251 /// Stage 1: Constants are greater than non-constants. 252 /// If both left and right are constants, then the result of 253 /// cmpConstants is used as cmpValues result. 254 /// Stage 2: InlineAsm instances are greater than others. If both left and 255 /// right are InlineAsm instances, InlineAsm* pointers casted to 256 /// integers and compared as numbers. 257 /// Stage 3: For all other cases we compare order we meet these values in 258 /// their functions. If right value was met first during scanning, 259 /// then left value is greater. 260 /// In another words, we compare serial numbers, for more details 261 /// see comments for sn_mapL and sn_mapR. 262 int cmpValues(const Value *L, const Value *R); 263 264 /// Compare two Instructions for equivalence, similar to 265 /// Instruction::isSameOperationAs but with modifications to the type 266 /// comparison. 267 /// Stages are listed in "most significant stage first" order: 268 /// On each stage below, we do comparison between some left and right 269 /// operation parts. If parts are non-equal, we assign parts comparison 270 /// result to the operation comparison result and exit from method. 271 /// Otherwise we proceed to the next stage. 272 /// Stages: 273 /// 1. Operations opcodes. Compared as numbers. 274 /// 2. Number of operands. 275 /// 3. Operation types. Compared with cmpType method. 276 /// 4. Compare operation subclass optional data as stream of bytes: 277 /// just convert it to integers and call cmpNumbers. 278 /// 5. Compare in operation operand types with cmpType in 279 /// most significant operand first order. 280 /// 6. Last stage. Check operations for some specific attributes. 281 /// For example, for Load it would be: 282 /// 6.1.Load: volatile (as boolean flag) 283 /// 6.2.Load: alignment (as integer numbers) 284 /// 6.3.Load: synch-scope (as integer numbers) 285 /// 6.4.Load: range metadata (as integer numbers) 286 /// On this stage its better to see the code, since its not more than 10-15 287 /// strings for particular instruction, and could change sometimes. 288 int cmpOperations(const Instruction *L, const Instruction *R) const; 289 290 /// Compare two GEPs for equivalent pointer arithmetic. 291 /// Parts to be compared for each comparison stage, 292 /// most significant stage first: 293 /// 1. Address space. As numbers. 294 /// 2. Constant offset, (using GEPOperator::accumulateConstantOffset method). 295 /// 3. Pointer operand type (using cmpType method). 296 /// 4. Number of operands. 297 /// 5. Compare operands, using cmpValues method. 298 int cmpGEPs(const GEPOperator *GEPL, const GEPOperator *GEPR); 299 int cmpGEPs(const GetElementPtrInst *GEPL, const GetElementPtrInst *GEPR) { 300 return cmpGEPs(cast<GEPOperator>(GEPL), cast<GEPOperator>(GEPR)); 301 } 302 303 /// cmpType - compares two types, 304 /// defines total ordering among the types set. 305 /// 306 /// Return values: 307 /// 0 if types are equal, 308 /// -1 if Left is less than Right, 309 /// +1 if Left is greater than Right. 310 /// 311 /// Description: 312 /// Comparison is broken onto stages. Like in lexicographical comparison 313 /// stage coming first has higher priority. 314 /// On each explanation stage keep in mind total ordering properties. 315 /// 316 /// 0. Before comparison we coerce pointer types of 0 address space to 317 /// integer. 318 /// We also don't bother with same type at left and right, so 319 /// just return 0 in this case. 320 /// 321 /// 1. If types are of different kind (different type IDs). 322 /// Return result of type IDs comparison, treating them as numbers. 323 /// 2. If types are vectors or integers, compare Type* values as numbers. 324 /// 3. Types has same ID, so check whether they belongs to the next group: 325 /// * Void 326 /// * Float 327 /// * Double 328 /// * X86_FP80 329 /// * FP128 330 /// * PPC_FP128 331 /// * Label 332 /// * Metadata 333 /// If so - return 0, yes - we can treat these types as equal only because 334 /// their IDs are same. 335 /// 4. If Left and Right are pointers, return result of address space 336 /// comparison (numbers comparison). We can treat pointer types of same 337 /// address space as equal. 338 /// 5. If types are complex. 339 /// Then both Left and Right are to be expanded and their element types will 340 /// be checked with the same way. If we get Res != 0 on some stage, return it. 341 /// Otherwise return 0. 342 /// 6. For all other cases put llvm_unreachable. 343 int cmpTypes(Type *TyL, Type *TyR) const; 344 345 int cmpNumbers(uint64_t L, uint64_t R) const; 346 347 int cmpAPInts(const APInt &L, const APInt &R) const; 348 int cmpAPFloats(const APFloat &L, const APFloat &R) const; 349 int cmpStrings(StringRef L, StringRef R) const; 350 int cmpAttrs(const AttributeSet L, const AttributeSet R) const; 351 352 // The two functions undergoing comparison. 353 const Function *FnL, *FnR; 354 355 /// Assign serial numbers to values from left function, and values from 356 /// right function. 357 /// Explanation: 358 /// Being comparing functions we need to compare values we meet at left and 359 /// right sides. 360 /// Its easy to sort things out for external values. It just should be 361 /// the same value at left and right. 362 /// But for local values (those were introduced inside function body) 363 /// we have to ensure they were introduced at exactly the same place, 364 /// and plays the same role. 365 /// Let's assign serial number to each value when we meet it first time. 366 /// Values that were met at same place will be with same serial numbers. 367 /// In this case it would be good to explain few points about values assigned 368 /// to BBs and other ways of implementation (see below). 369 /// 370 /// 1. Safety of BB reordering. 371 /// It's safe to change the order of BasicBlocks in function. 372 /// Relationship with other functions and serial numbering will not be 373 /// changed in this case. 374 /// As follows from FunctionComparator::compare(), we do CFG walk: we start 375 /// from the entry, and then take each terminator. So it doesn't matter how in 376 /// fact BBs are ordered in function. And since cmpValues are called during 377 /// this walk, the numbering depends only on how BBs located inside the CFG. 378 /// So the answer is - yes. We will get the same numbering. 379 /// 380 /// 2. Impossibility to use dominance properties of values. 381 /// If we compare two instruction operands: first is usage of local 382 /// variable AL from function FL, and second is usage of local variable AR 383 /// from FR, we could compare their origins and check whether they are 384 /// defined at the same place. 385 /// But, we are still not able to compare operands of PHI nodes, since those 386 /// could be operands from further BBs we didn't scan yet. 387 /// So it's impossible to use dominance properties in general. 388 DenseMap<const Value*, int> sn_mapL, sn_mapR; 389 }; 390 391 class FunctionNode { 392 AssertingVH<Function> F; 393 394 public: 395 FunctionNode(Function *F) : F(F) {} 396 Function *getFunc() const { return F; } 397 void release() { F = 0; } 398 bool operator<(const FunctionNode &RHS) const { 399 return (FunctionComparator(F, RHS.getFunc()).compare()) == -1; 400 } 401 }; 402 } 403 404 int FunctionComparator::cmpNumbers(uint64_t L, uint64_t R) const { 405 if (L < R) return -1; 406 if (L > R) return 1; 407 return 0; 408 } 409 410 int FunctionComparator::cmpAPInts(const APInt &L, const APInt &R) const { 411 if (int Res = cmpNumbers(L.getBitWidth(), R.getBitWidth())) 412 return Res; 413 if (L.ugt(R)) return 1; 414 if (R.ugt(L)) return -1; 415 return 0; 416 } 417 418 int FunctionComparator::cmpAPFloats(const APFloat &L, const APFloat &R) const { 419 if (int Res = cmpNumbers((uint64_t)&L.getSemantics(), 420 (uint64_t)&R.getSemantics())) 421 return Res; 422 return cmpAPInts(L.bitcastToAPInt(), R.bitcastToAPInt()); 423 } 424 425 int FunctionComparator::cmpStrings(StringRef L, StringRef R) const { 426 // Prevent heavy comparison, compare sizes first. 427 if (int Res = cmpNumbers(L.size(), R.size())) 428 return Res; 429 430 // Compare strings lexicographically only when it is necessary: only when 431 // strings are equal in size. 432 return L.compare(R); 433 } 434 435 int FunctionComparator::cmpAttrs(const AttributeSet L, 436 const AttributeSet R) const { 437 if (int Res = cmpNumbers(L.getNumSlots(), R.getNumSlots())) 438 return Res; 439 440 for (unsigned i = 0, e = L.getNumSlots(); i != e; ++i) { 441 AttributeSet::iterator LI = L.begin(i), LE = L.end(i), RI = R.begin(i), 442 RE = R.end(i); 443 for (; LI != LE && RI != RE; ++LI, ++RI) { 444 Attribute LA = *LI; 445 Attribute RA = *RI; 446 if (LA < RA) 447 return -1; 448 if (RA < LA) 449 return 1; 450 } 451 if (LI != LE) 452 return 1; 453 if (RI != RE) 454 return -1; 455 } 456 return 0; 457 } 458 459 /// Constants comparison: 460 /// 1. Check whether type of L constant could be losslessly bitcasted to R 461 /// type. 462 /// 2. Compare constant contents. 463 /// For more details see declaration comments. 464 int FunctionComparator::cmpConstants(const Constant *L, const Constant *R) { 465 466 Type *TyL = L->getType(); 467 Type *TyR = R->getType(); 468 469 // Check whether types are bitcastable. This part is just re-factored 470 // Type::canLosslesslyBitCastTo method, but instead of returning true/false, 471 // we also pack into result which type is "less" for us. 472 int TypesRes = cmpTypes(TyL, TyR); 473 if (TypesRes != 0) { 474 // Types are different, but check whether we can bitcast them. 475 if (!TyL->isFirstClassType()) { 476 if (TyR->isFirstClassType()) 477 return -1; 478 // Neither TyL nor TyR are values of first class type. Return the result 479 // of comparing the types 480 return TypesRes; 481 } 482 if (!TyR->isFirstClassType()) { 483 if (TyL->isFirstClassType()) 484 return 1; 485 return TypesRes; 486 } 487 488 // Vector -> Vector conversions are always lossless if the two vector types 489 // have the same size, otherwise not. 490 unsigned TyLWidth = 0; 491 unsigned TyRWidth = 0; 492 493 if (const VectorType *VecTyL = dyn_cast<VectorType>(TyL)) 494 TyLWidth = VecTyL->getBitWidth(); 495 if (const VectorType *VecTyR = dyn_cast<VectorType>(TyR)) 496 TyRWidth = VecTyR->getBitWidth(); 497 498 if (TyLWidth != TyRWidth) 499 return cmpNumbers(TyLWidth, TyRWidth); 500 501 // Zero bit-width means neither TyL nor TyR are vectors. 502 if (!TyLWidth) { 503 PointerType *PTyL = dyn_cast<PointerType>(TyL); 504 PointerType *PTyR = dyn_cast<PointerType>(TyR); 505 if (PTyL && PTyR) { 506 unsigned AddrSpaceL = PTyL->getAddressSpace(); 507 unsigned AddrSpaceR = PTyR->getAddressSpace(); 508 if (int Res = cmpNumbers(AddrSpaceL, AddrSpaceR)) 509 return Res; 510 } 511 if (PTyL) 512 return 1; 513 if (PTyR) 514 return -1; 515 516 // TyL and TyR aren't vectors, nor pointers. We don't know how to 517 // bitcast them. 518 return TypesRes; 519 } 520 } 521 522 // OK, types are bitcastable, now check constant contents. 523 524 if (L->isNullValue() && R->isNullValue()) 525 return TypesRes; 526 if (L->isNullValue() && !R->isNullValue()) 527 return 1; 528 if (!L->isNullValue() && R->isNullValue()) 529 return -1; 530 531 if (int Res = cmpNumbers(L->getValueID(), R->getValueID())) 532 return Res; 533 534 switch (L->getValueID()) { 535 case Value::UndefValueVal: return TypesRes; 536 case Value::ConstantIntVal: { 537 const APInt &LInt = cast<ConstantInt>(L)->getValue(); 538 const APInt &RInt = cast<ConstantInt>(R)->getValue(); 539 return cmpAPInts(LInt, RInt); 540 } 541 case Value::ConstantFPVal: { 542 const APFloat &LAPF = cast<ConstantFP>(L)->getValueAPF(); 543 const APFloat &RAPF = cast<ConstantFP>(R)->getValueAPF(); 544 return cmpAPFloats(LAPF, RAPF); 545 } 546 case Value::ConstantArrayVal: { 547 const ConstantArray *LA = cast<ConstantArray>(L); 548 const ConstantArray *RA = cast<ConstantArray>(R); 549 uint64_t NumElementsL = cast<ArrayType>(TyL)->getNumElements(); 550 uint64_t NumElementsR = cast<ArrayType>(TyR)->getNumElements(); 551 if (int Res = cmpNumbers(NumElementsL, NumElementsR)) 552 return Res; 553 for (uint64_t i = 0; i < NumElementsL; ++i) { 554 if (int Res = cmpConstants(cast<Constant>(LA->getOperand(i)), 555 cast<Constant>(RA->getOperand(i)))) 556 return Res; 557 } 558 return 0; 559 } 560 case Value::ConstantStructVal: { 561 const ConstantStruct *LS = cast<ConstantStruct>(L); 562 const ConstantStruct *RS = cast<ConstantStruct>(R); 563 unsigned NumElementsL = cast<StructType>(TyL)->getNumElements(); 564 unsigned NumElementsR = cast<StructType>(TyR)->getNumElements(); 565 if (int Res = cmpNumbers(NumElementsL, NumElementsR)) 566 return Res; 567 for (unsigned i = 0; i != NumElementsL; ++i) { 568 if (int Res = cmpConstants(cast<Constant>(LS->getOperand(i)), 569 cast<Constant>(RS->getOperand(i)))) 570 return Res; 571 } 572 return 0; 573 } 574 case Value::ConstantVectorVal: { 575 const ConstantVector *LV = cast<ConstantVector>(L); 576 const ConstantVector *RV = cast<ConstantVector>(R); 577 unsigned NumElementsL = cast<VectorType>(TyL)->getNumElements(); 578 unsigned NumElementsR = cast<VectorType>(TyR)->getNumElements(); 579 if (int Res = cmpNumbers(NumElementsL, NumElementsR)) 580 return Res; 581 for (uint64_t i = 0; i < NumElementsL; ++i) { 582 if (int Res = cmpConstants(cast<Constant>(LV->getOperand(i)), 583 cast<Constant>(RV->getOperand(i)))) 584 return Res; 585 } 586 return 0; 587 } 588 case Value::ConstantExprVal: { 589 const ConstantExpr *LE = cast<ConstantExpr>(L); 590 const ConstantExpr *RE = cast<ConstantExpr>(R); 591 unsigned NumOperandsL = LE->getNumOperands(); 592 unsigned NumOperandsR = RE->getNumOperands(); 593 if (int Res = cmpNumbers(NumOperandsL, NumOperandsR)) 594 return Res; 595 for (unsigned i = 0; i < NumOperandsL; ++i) { 596 if (int Res = cmpConstants(cast<Constant>(LE->getOperand(i)), 597 cast<Constant>(RE->getOperand(i)))) 598 return Res; 599 } 600 return 0; 601 } 602 case Value::FunctionVal: 603 case Value::GlobalVariableVal: 604 case Value::GlobalAliasVal: 605 default: // Unknown constant, cast L and R pointers to numbers and compare. 606 return cmpNumbers((uint64_t)L, (uint64_t)R); 607 } 608 } 609 610 /// cmpType - compares two types, 611 /// defines total ordering among the types set. 612 /// See method declaration comments for more details. 613 int FunctionComparator::cmpTypes(Type *TyL, Type *TyR) const { 614 615 PointerType *PTyL = dyn_cast<PointerType>(TyL); 616 PointerType *PTyR = dyn_cast<PointerType>(TyR); 617 618 const DataLayout &DL = FnL->getParent()->getDataLayout(); 619 if (PTyL && PTyL->getAddressSpace() == 0) 620 TyL = DL.getIntPtrType(TyL); 621 if (PTyR && PTyR->getAddressSpace() == 0) 622 TyR = DL.getIntPtrType(TyR); 623 624 if (TyL == TyR) 625 return 0; 626 627 if (int Res = cmpNumbers(TyL->getTypeID(), TyR->getTypeID())) 628 return Res; 629 630 switch (TyL->getTypeID()) { 631 default: 632 llvm_unreachable("Unknown type!"); 633 // Fall through in Release mode. 634 case Type::IntegerTyID: 635 case Type::VectorTyID: 636 // TyL == TyR would have returned true earlier. 637 return cmpNumbers((uint64_t)TyL, (uint64_t)TyR); 638 639 case Type::VoidTyID: 640 case Type::FloatTyID: 641 case Type::DoubleTyID: 642 case Type::X86_FP80TyID: 643 case Type::FP128TyID: 644 case Type::PPC_FP128TyID: 645 case Type::LabelTyID: 646 case Type::MetadataTyID: 647 return 0; 648 649 case Type::PointerTyID: { 650 assert(PTyL && PTyR && "Both types must be pointers here."); 651 return cmpNumbers(PTyL->getAddressSpace(), PTyR->getAddressSpace()); 652 } 653 654 case Type::StructTyID: { 655 StructType *STyL = cast<StructType>(TyL); 656 StructType *STyR = cast<StructType>(TyR); 657 if (STyL->getNumElements() != STyR->getNumElements()) 658 return cmpNumbers(STyL->getNumElements(), STyR->getNumElements()); 659 660 if (STyL->isPacked() != STyR->isPacked()) 661 return cmpNumbers(STyL->isPacked(), STyR->isPacked()); 662 663 for (unsigned i = 0, e = STyL->getNumElements(); i != e; ++i) { 664 if (int Res = cmpTypes(STyL->getElementType(i), STyR->getElementType(i))) 665 return Res; 666 } 667 return 0; 668 } 669 670 case Type::FunctionTyID: { 671 FunctionType *FTyL = cast<FunctionType>(TyL); 672 FunctionType *FTyR = cast<FunctionType>(TyR); 673 if (FTyL->getNumParams() != FTyR->getNumParams()) 674 return cmpNumbers(FTyL->getNumParams(), FTyR->getNumParams()); 675 676 if (FTyL->isVarArg() != FTyR->isVarArg()) 677 return cmpNumbers(FTyL->isVarArg(), FTyR->isVarArg()); 678 679 if (int Res = cmpTypes(FTyL->getReturnType(), FTyR->getReturnType())) 680 return Res; 681 682 for (unsigned i = 0, e = FTyL->getNumParams(); i != e; ++i) { 683 if (int Res = cmpTypes(FTyL->getParamType(i), FTyR->getParamType(i))) 684 return Res; 685 } 686 return 0; 687 } 688 689 case Type::ArrayTyID: { 690 ArrayType *ATyL = cast<ArrayType>(TyL); 691 ArrayType *ATyR = cast<ArrayType>(TyR); 692 if (ATyL->getNumElements() != ATyR->getNumElements()) 693 return cmpNumbers(ATyL->getNumElements(), ATyR->getNumElements()); 694 return cmpTypes(ATyL->getElementType(), ATyR->getElementType()); 695 } 696 } 697 } 698 699 // Determine whether the two operations are the same except that pointer-to-A 700 // and pointer-to-B are equivalent. This should be kept in sync with 701 // Instruction::isSameOperationAs. 702 // Read method declaration comments for more details. 703 int FunctionComparator::cmpOperations(const Instruction *L, 704 const Instruction *R) const { 705 // Differences from Instruction::isSameOperationAs: 706 // * replace type comparison with calls to isEquivalentType. 707 // * we test for I->hasSameSubclassOptionalData (nuw/nsw/tail) at the top 708 // * because of the above, we don't test for the tail bit on calls later on 709 if (int Res = cmpNumbers(L->getOpcode(), R->getOpcode())) 710 return Res; 711 712 if (int Res = cmpNumbers(L->getNumOperands(), R->getNumOperands())) 713 return Res; 714 715 if (int Res = cmpTypes(L->getType(), R->getType())) 716 return Res; 717 718 if (int Res = cmpNumbers(L->getRawSubclassOptionalData(), 719 R->getRawSubclassOptionalData())) 720 return Res; 721 722 if (const AllocaInst *AI = dyn_cast<AllocaInst>(L)) { 723 if (int Res = cmpTypes(AI->getAllocatedType(), 724 cast<AllocaInst>(R)->getAllocatedType())) 725 return Res; 726 if (int Res = 727 cmpNumbers(AI->getAlignment(), cast<AllocaInst>(R)->getAlignment())) 728 return Res; 729 } 730 731 // We have two instructions of identical opcode and #operands. Check to see 732 // if all operands are the same type 733 for (unsigned i = 0, e = L->getNumOperands(); i != e; ++i) { 734 if (int Res = 735 cmpTypes(L->getOperand(i)->getType(), R->getOperand(i)->getType())) 736 return Res; 737 } 738 739 // Check special state that is a part of some instructions. 740 if (const LoadInst *LI = dyn_cast<LoadInst>(L)) { 741 if (int Res = cmpNumbers(LI->isVolatile(), cast<LoadInst>(R)->isVolatile())) 742 return Res; 743 if (int Res = 744 cmpNumbers(LI->getAlignment(), cast<LoadInst>(R)->getAlignment())) 745 return Res; 746 if (int Res = 747 cmpNumbers(LI->getOrdering(), cast<LoadInst>(R)->getOrdering())) 748 return Res; 749 if (int Res = 750 cmpNumbers(LI->getSynchScope(), cast<LoadInst>(R)->getSynchScope())) 751 return Res; 752 return cmpNumbers((uint64_t)LI->getMetadata(LLVMContext::MD_range), 753 (uint64_t)cast<LoadInst>(R)->getMetadata(LLVMContext::MD_range)); 754 } 755 if (const StoreInst *SI = dyn_cast<StoreInst>(L)) { 756 if (int Res = 757 cmpNumbers(SI->isVolatile(), cast<StoreInst>(R)->isVolatile())) 758 return Res; 759 if (int Res = 760 cmpNumbers(SI->getAlignment(), cast<StoreInst>(R)->getAlignment())) 761 return Res; 762 if (int Res = 763 cmpNumbers(SI->getOrdering(), cast<StoreInst>(R)->getOrdering())) 764 return Res; 765 return cmpNumbers(SI->getSynchScope(), cast<StoreInst>(R)->getSynchScope()); 766 } 767 if (const CmpInst *CI = dyn_cast<CmpInst>(L)) 768 return cmpNumbers(CI->getPredicate(), cast<CmpInst>(R)->getPredicate()); 769 if (const CallInst *CI = dyn_cast<CallInst>(L)) { 770 if (int Res = cmpNumbers(CI->getCallingConv(), 771 cast<CallInst>(R)->getCallingConv())) 772 return Res; 773 if (int Res = 774 cmpAttrs(CI->getAttributes(), cast<CallInst>(R)->getAttributes())) 775 return Res; 776 return cmpNumbers( 777 (uint64_t)CI->getMetadata(LLVMContext::MD_range), 778 (uint64_t)cast<CallInst>(R)->getMetadata(LLVMContext::MD_range)); 779 } 780 if (const InvokeInst *CI = dyn_cast<InvokeInst>(L)) { 781 if (int Res = cmpNumbers(CI->getCallingConv(), 782 cast<InvokeInst>(R)->getCallingConv())) 783 return Res; 784 if (int Res = 785 cmpAttrs(CI->getAttributes(), cast<InvokeInst>(R)->getAttributes())) 786 return Res; 787 return cmpNumbers( 788 (uint64_t)CI->getMetadata(LLVMContext::MD_range), 789 (uint64_t)cast<InvokeInst>(R)->getMetadata(LLVMContext::MD_range)); 790 } 791 if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(L)) { 792 ArrayRef<unsigned> LIndices = IVI->getIndices(); 793 ArrayRef<unsigned> RIndices = cast<InsertValueInst>(R)->getIndices(); 794 if (int Res = cmpNumbers(LIndices.size(), RIndices.size())) 795 return Res; 796 for (size_t i = 0, e = LIndices.size(); i != e; ++i) { 797 if (int Res = cmpNumbers(LIndices[i], RIndices[i])) 798 return Res; 799 } 800 } 801 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(L)) { 802 ArrayRef<unsigned> LIndices = EVI->getIndices(); 803 ArrayRef<unsigned> RIndices = cast<ExtractValueInst>(R)->getIndices(); 804 if (int Res = cmpNumbers(LIndices.size(), RIndices.size())) 805 return Res; 806 for (size_t i = 0, e = LIndices.size(); i != e; ++i) { 807 if (int Res = cmpNumbers(LIndices[i], RIndices[i])) 808 return Res; 809 } 810 } 811 if (const FenceInst *FI = dyn_cast<FenceInst>(L)) { 812 if (int Res = 813 cmpNumbers(FI->getOrdering(), cast<FenceInst>(R)->getOrdering())) 814 return Res; 815 return cmpNumbers(FI->getSynchScope(), cast<FenceInst>(R)->getSynchScope()); 816 } 817 818 if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(L)) { 819 if (int Res = cmpNumbers(CXI->isVolatile(), 820 cast<AtomicCmpXchgInst>(R)->isVolatile())) 821 return Res; 822 if (int Res = cmpNumbers(CXI->isWeak(), 823 cast<AtomicCmpXchgInst>(R)->isWeak())) 824 return Res; 825 if (int Res = cmpNumbers(CXI->getSuccessOrdering(), 826 cast<AtomicCmpXchgInst>(R)->getSuccessOrdering())) 827 return Res; 828 if (int Res = cmpNumbers(CXI->getFailureOrdering(), 829 cast<AtomicCmpXchgInst>(R)->getFailureOrdering())) 830 return Res; 831 return cmpNumbers(CXI->getSynchScope(), 832 cast<AtomicCmpXchgInst>(R)->getSynchScope()); 833 } 834 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(L)) { 835 if (int Res = cmpNumbers(RMWI->getOperation(), 836 cast<AtomicRMWInst>(R)->getOperation())) 837 return Res; 838 if (int Res = cmpNumbers(RMWI->isVolatile(), 839 cast<AtomicRMWInst>(R)->isVolatile())) 840 return Res; 841 if (int Res = cmpNumbers(RMWI->getOrdering(), 842 cast<AtomicRMWInst>(R)->getOrdering())) 843 return Res; 844 return cmpNumbers(RMWI->getSynchScope(), 845 cast<AtomicRMWInst>(R)->getSynchScope()); 846 } 847 return 0; 848 } 849 850 // Determine whether two GEP operations perform the same underlying arithmetic. 851 // Read method declaration comments for more details. 852 int FunctionComparator::cmpGEPs(const GEPOperator *GEPL, 853 const GEPOperator *GEPR) { 854 855 unsigned int ASL = GEPL->getPointerAddressSpace(); 856 unsigned int ASR = GEPR->getPointerAddressSpace(); 857 858 if (int Res = cmpNumbers(ASL, ASR)) 859 return Res; 860 861 // When we have target data, we can reduce the GEP down to the value in bytes 862 // added to the address. 863 const DataLayout &DL = FnL->getParent()->getDataLayout(); 864 unsigned BitWidth = DL.getPointerSizeInBits(ASL); 865 APInt OffsetL(BitWidth, 0), OffsetR(BitWidth, 0); 866 if (GEPL->accumulateConstantOffset(DL, OffsetL) && 867 GEPR->accumulateConstantOffset(DL, OffsetR)) 868 return cmpAPInts(OffsetL, OffsetR); 869 870 if (int Res = cmpNumbers((uint64_t)GEPL->getPointerOperand()->getType(), 871 (uint64_t)GEPR->getPointerOperand()->getType())) 872 return Res; 873 874 if (int Res = cmpNumbers(GEPL->getNumOperands(), GEPR->getNumOperands())) 875 return Res; 876 877 for (unsigned i = 0, e = GEPL->getNumOperands(); i != e; ++i) { 878 if (int Res = cmpValues(GEPL->getOperand(i), GEPR->getOperand(i))) 879 return Res; 880 } 881 882 return 0; 883 } 884 885 /// Compare two values used by the two functions under pair-wise comparison. If 886 /// this is the first time the values are seen, they're added to the mapping so 887 /// that we will detect mismatches on next use. 888 /// See comments in declaration for more details. 889 int FunctionComparator::cmpValues(const Value *L, const Value *R) { 890 // Catch self-reference case. 891 if (L == FnL) { 892 if (R == FnR) 893 return 0; 894 return -1; 895 } 896 if (R == FnR) { 897 if (L == FnL) 898 return 0; 899 return 1; 900 } 901 902 const Constant *ConstL = dyn_cast<Constant>(L); 903 const Constant *ConstR = dyn_cast<Constant>(R); 904 if (ConstL && ConstR) { 905 if (L == R) 906 return 0; 907 return cmpConstants(ConstL, ConstR); 908 } 909 910 if (ConstL) 911 return 1; 912 if (ConstR) 913 return -1; 914 915 const InlineAsm *InlineAsmL = dyn_cast<InlineAsm>(L); 916 const InlineAsm *InlineAsmR = dyn_cast<InlineAsm>(R); 917 918 if (InlineAsmL && InlineAsmR) 919 return cmpNumbers((uint64_t)L, (uint64_t)R); 920 if (InlineAsmL) 921 return 1; 922 if (InlineAsmR) 923 return -1; 924 925 auto LeftSN = sn_mapL.insert(std::make_pair(L, sn_mapL.size())), 926 RightSN = sn_mapR.insert(std::make_pair(R, sn_mapR.size())); 927 928 return cmpNumbers(LeftSN.first->second, RightSN.first->second); 929 } 930 // Test whether two basic blocks have equivalent behaviour. 931 int FunctionComparator::compare(const BasicBlock *BBL, const BasicBlock *BBR) { 932 BasicBlock::const_iterator InstL = BBL->begin(), InstLE = BBL->end(); 933 BasicBlock::const_iterator InstR = BBR->begin(), InstRE = BBR->end(); 934 935 do { 936 if (int Res = cmpValues(InstL, InstR)) 937 return Res; 938 939 const GetElementPtrInst *GEPL = dyn_cast<GetElementPtrInst>(InstL); 940 const GetElementPtrInst *GEPR = dyn_cast<GetElementPtrInst>(InstR); 941 942 if (GEPL && !GEPR) 943 return 1; 944 if (GEPR && !GEPL) 945 return -1; 946 947 if (GEPL && GEPR) { 948 if (int Res = 949 cmpValues(GEPL->getPointerOperand(), GEPR->getPointerOperand())) 950 return Res; 951 if (int Res = cmpGEPs(GEPL, GEPR)) 952 return Res; 953 } else { 954 if (int Res = cmpOperations(InstL, InstR)) 955 return Res; 956 assert(InstL->getNumOperands() == InstR->getNumOperands()); 957 958 for (unsigned i = 0, e = InstL->getNumOperands(); i != e; ++i) { 959 Value *OpL = InstL->getOperand(i); 960 Value *OpR = InstR->getOperand(i); 961 if (int Res = cmpValues(OpL, OpR)) 962 return Res; 963 if (int Res = cmpNumbers(OpL->getValueID(), OpR->getValueID())) 964 return Res; 965 // TODO: Already checked in cmpOperation 966 if (int Res = cmpTypes(OpL->getType(), OpR->getType())) 967 return Res; 968 } 969 } 970 971 ++InstL, ++InstR; 972 } while (InstL != InstLE && InstR != InstRE); 973 974 if (InstL != InstLE && InstR == InstRE) 975 return 1; 976 if (InstL == InstLE && InstR != InstRE) 977 return -1; 978 return 0; 979 } 980 981 // Test whether the two functions have equivalent behaviour. 982 int FunctionComparator::compare() { 983 984 sn_mapL.clear(); 985 sn_mapR.clear(); 986 987 if (int Res = cmpAttrs(FnL->getAttributes(), FnR->getAttributes())) 988 return Res; 989 990 if (int Res = cmpNumbers(FnL->hasGC(), FnR->hasGC())) 991 return Res; 992 993 if (FnL->hasGC()) { 994 if (int Res = cmpNumbers((uint64_t)FnL->getGC(), (uint64_t)FnR->getGC())) 995 return Res; 996 } 997 998 if (int Res = cmpNumbers(FnL->hasSection(), FnR->hasSection())) 999 return Res; 1000 1001 if (FnL->hasSection()) { 1002 if (int Res = cmpStrings(FnL->getSection(), FnR->getSection())) 1003 return Res; 1004 } 1005 1006 if (int Res = cmpNumbers(FnL->isVarArg(), FnR->isVarArg())) 1007 return Res; 1008 1009 // TODO: if it's internal and only used in direct calls, we could handle this 1010 // case too. 1011 if (int Res = cmpNumbers(FnL->getCallingConv(), FnR->getCallingConv())) 1012 return Res; 1013 1014 if (int Res = cmpTypes(FnL->getFunctionType(), FnR->getFunctionType())) 1015 return Res; 1016 1017 assert(FnL->arg_size() == FnR->arg_size() && 1018 "Identically typed functions have different numbers of args!"); 1019 1020 // Visit the arguments so that they get enumerated in the order they're 1021 // passed in. 1022 for (Function::const_arg_iterator ArgLI = FnL->arg_begin(), 1023 ArgRI = FnR->arg_begin(), 1024 ArgLE = FnL->arg_end(); 1025 ArgLI != ArgLE; ++ArgLI, ++ArgRI) { 1026 if (cmpValues(ArgLI, ArgRI) != 0) 1027 llvm_unreachable("Arguments repeat!"); 1028 } 1029 1030 // We do a CFG-ordered walk since the actual ordering of the blocks in the 1031 // linked list is immaterial. Our walk starts at the entry block for both 1032 // functions, then takes each block from each terminator in order. As an 1033 // artifact, this also means that unreachable blocks are ignored. 1034 SmallVector<const BasicBlock *, 8> FnLBBs, FnRBBs; 1035 SmallSet<const BasicBlock *, 128> VisitedBBs; // in terms of F1. 1036 1037 FnLBBs.push_back(&FnL->getEntryBlock()); 1038 FnRBBs.push_back(&FnR->getEntryBlock()); 1039 1040 VisitedBBs.insert(FnLBBs[0]); 1041 while (!FnLBBs.empty()) { 1042 const BasicBlock *BBL = FnLBBs.pop_back_val(); 1043 const BasicBlock *BBR = FnRBBs.pop_back_val(); 1044 1045 if (int Res = cmpValues(BBL, BBR)) 1046 return Res; 1047 1048 if (int Res = compare(BBL, BBR)) 1049 return Res; 1050 1051 const TerminatorInst *TermL = BBL->getTerminator(); 1052 const TerminatorInst *TermR = BBR->getTerminator(); 1053 1054 assert(TermL->getNumSuccessors() == TermR->getNumSuccessors()); 1055 for (unsigned i = 0, e = TermL->getNumSuccessors(); i != e; ++i) { 1056 if (!VisitedBBs.insert(TermL->getSuccessor(i)).second) 1057 continue; 1058 1059 FnLBBs.push_back(TermL->getSuccessor(i)); 1060 FnRBBs.push_back(TermR->getSuccessor(i)); 1061 } 1062 } 1063 return 0; 1064 } 1065 1066 namespace { 1067 1068 /// MergeFunctions finds functions which will generate identical machine code, 1069 /// by considering all pointer types to be equivalent. Once identified, 1070 /// MergeFunctions will fold them by replacing a call to one to a call to a 1071 /// bitcast of the other. 1072 /// 1073 class MergeFunctions : public ModulePass { 1074 public: 1075 static char ID; 1076 MergeFunctions() 1077 : ModulePass(ID), HasGlobalAliases(false) { 1078 initializeMergeFunctionsPass(*PassRegistry::getPassRegistry()); 1079 } 1080 1081 bool runOnModule(Module &M) override; 1082 1083 private: 1084 typedef std::set<FunctionNode> FnTreeType; 1085 1086 /// A work queue of functions that may have been modified and should be 1087 /// analyzed again. 1088 std::vector<WeakVH> Deferred; 1089 1090 /// Checks the rules of order relation introduced among functions set. 1091 /// Returns true, if sanity check has been passed, and false if failed. 1092 bool doSanityCheck(std::vector<WeakVH> &Worklist); 1093 1094 /// Insert a ComparableFunction into the FnTree, or merge it away if it's 1095 /// equal to one that's already present. 1096 bool insert(Function *NewFunction); 1097 1098 /// Remove a Function from the FnTree and queue it up for a second sweep of 1099 /// analysis. 1100 void remove(Function *F); 1101 1102 /// Find the functions that use this Value and remove them from FnTree and 1103 /// queue the functions. 1104 void removeUsers(Value *V); 1105 1106 /// Replace all direct calls of Old with calls of New. Will bitcast New if 1107 /// necessary to make types match. 1108 void replaceDirectCallers(Function *Old, Function *New); 1109 1110 /// Merge two equivalent functions. Upon completion, G may be deleted, or may 1111 /// be converted into a thunk. In either case, it should never be visited 1112 /// again. 1113 void mergeTwoFunctions(Function *F, Function *G); 1114 1115 /// Replace G with a thunk or an alias to F. Deletes G. 1116 void writeThunkOrAlias(Function *F, Function *G); 1117 1118 /// Replace G with a simple tail call to bitcast(F). Also replace direct uses 1119 /// of G with bitcast(F). Deletes G. 1120 void writeThunk(Function *F, Function *G); 1121 1122 /// Replace G with an alias to F. Deletes G. 1123 void writeAlias(Function *F, Function *G); 1124 1125 /// The set of all distinct functions. Use the insert() and remove() methods 1126 /// to modify it. 1127 FnTreeType FnTree; 1128 1129 /// Whether or not the target supports global aliases. 1130 bool HasGlobalAliases; 1131 }; 1132 1133 } // end anonymous namespace 1134 1135 char MergeFunctions::ID = 0; 1136 INITIALIZE_PASS(MergeFunctions, "mergefunc", "Merge Functions", false, false) 1137 1138 ModulePass *llvm::createMergeFunctionsPass() { 1139 return new MergeFunctions(); 1140 } 1141 1142 bool MergeFunctions::doSanityCheck(std::vector<WeakVH> &Worklist) { 1143 if (const unsigned Max = NumFunctionsForSanityCheck) { 1144 unsigned TripleNumber = 0; 1145 bool Valid = true; 1146 1147 dbgs() << "MERGEFUNC-SANITY: Started for first " << Max << " functions.\n"; 1148 1149 unsigned i = 0; 1150 for (std::vector<WeakVH>::iterator I = Worklist.begin(), E = Worklist.end(); 1151 I != E && i < Max; ++I, ++i) { 1152 unsigned j = i; 1153 for (std::vector<WeakVH>::iterator J = I; J != E && j < Max; ++J, ++j) { 1154 Function *F1 = cast<Function>(*I); 1155 Function *F2 = cast<Function>(*J); 1156 int Res1 = FunctionComparator(F1, F2).compare(); 1157 int Res2 = FunctionComparator(F2, F1).compare(); 1158 1159 // If F1 <= F2, then F2 >= F1, otherwise report failure. 1160 if (Res1 != -Res2) { 1161 dbgs() << "MERGEFUNC-SANITY: Non-symmetric; triple: " << TripleNumber 1162 << "\n"; 1163 F1->dump(); 1164 F2->dump(); 1165 Valid = false; 1166 } 1167 1168 if (Res1 == 0) 1169 continue; 1170 1171 unsigned k = j; 1172 for (std::vector<WeakVH>::iterator K = J; K != E && k < Max; 1173 ++k, ++K, ++TripleNumber) { 1174 if (K == J) 1175 continue; 1176 1177 Function *F3 = cast<Function>(*K); 1178 int Res3 = FunctionComparator(F1, F3).compare(); 1179 int Res4 = FunctionComparator(F2, F3).compare(); 1180 1181 bool Transitive = true; 1182 1183 if (Res1 != 0 && Res1 == Res4) { 1184 // F1 > F2, F2 > F3 => F1 > F3 1185 Transitive = Res3 == Res1; 1186 } else if (Res3 != 0 && Res3 == -Res4) { 1187 // F1 > F3, F3 > F2 => F1 > F2 1188 Transitive = Res3 == Res1; 1189 } else if (Res4 != 0 && -Res3 == Res4) { 1190 // F2 > F3, F3 > F1 => F2 > F1 1191 Transitive = Res4 == -Res1; 1192 } 1193 1194 if (!Transitive) { 1195 dbgs() << "MERGEFUNC-SANITY: Non-transitive; triple: " 1196 << TripleNumber << "\n"; 1197 dbgs() << "Res1, Res3, Res4: " << Res1 << ", " << Res3 << ", " 1198 << Res4 << "\n"; 1199 F1->dump(); 1200 F2->dump(); 1201 F3->dump(); 1202 Valid = false; 1203 } 1204 } 1205 } 1206 } 1207 1208 dbgs() << "MERGEFUNC-SANITY: " << (Valid ? "Passed." : "Failed.") << "\n"; 1209 return Valid; 1210 } 1211 return true; 1212 } 1213 1214 bool MergeFunctions::runOnModule(Module &M) { 1215 bool Changed = false; 1216 1217 for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) { 1218 if (!I->isDeclaration() && !I->hasAvailableExternallyLinkage()) 1219 Deferred.push_back(WeakVH(I)); 1220 } 1221 1222 do { 1223 std::vector<WeakVH> Worklist; 1224 Deferred.swap(Worklist); 1225 1226 DEBUG(doSanityCheck(Worklist)); 1227 1228 DEBUG(dbgs() << "size of module: " << M.size() << '\n'); 1229 DEBUG(dbgs() << "size of worklist: " << Worklist.size() << '\n'); 1230 1231 // Insert only strong functions and merge them. Strong function merging 1232 // always deletes one of them. 1233 for (std::vector<WeakVH>::iterator I = Worklist.begin(), 1234 E = Worklist.end(); I != E; ++I) { 1235 if (!*I) continue; 1236 Function *F = cast<Function>(*I); 1237 if (!F->isDeclaration() && !F->hasAvailableExternallyLinkage() && 1238 !F->mayBeOverridden()) { 1239 Changed |= insert(F); 1240 } 1241 } 1242 1243 // Insert only weak functions and merge them. By doing these second we 1244 // create thunks to the strong function when possible. When two weak 1245 // functions are identical, we create a new strong function with two weak 1246 // weak thunks to it which are identical but not mergable. 1247 for (std::vector<WeakVH>::iterator I = Worklist.begin(), 1248 E = Worklist.end(); I != E; ++I) { 1249 if (!*I) continue; 1250 Function *F = cast<Function>(*I); 1251 if (!F->isDeclaration() && !F->hasAvailableExternallyLinkage() && 1252 F->mayBeOverridden()) { 1253 Changed |= insert(F); 1254 } 1255 } 1256 DEBUG(dbgs() << "size of FnTree: " << FnTree.size() << '\n'); 1257 } while (!Deferred.empty()); 1258 1259 FnTree.clear(); 1260 1261 return Changed; 1262 } 1263 1264 // Replace direct callers of Old with New. 1265 void MergeFunctions::replaceDirectCallers(Function *Old, Function *New) { 1266 Constant *BitcastNew = ConstantExpr::getBitCast(New, Old->getType()); 1267 for (auto UI = Old->use_begin(), UE = Old->use_end(); UI != UE;) { 1268 Use *U = &*UI; 1269 ++UI; 1270 CallSite CS(U->getUser()); 1271 if (CS && CS.isCallee(U)) { 1272 remove(CS.getInstruction()->getParent()->getParent()); 1273 U->set(BitcastNew); 1274 } 1275 } 1276 } 1277 1278 // Replace G with an alias to F if possible, or else a thunk to F. Deletes G. 1279 void MergeFunctions::writeThunkOrAlias(Function *F, Function *G) { 1280 if (HasGlobalAliases && G->hasUnnamedAddr()) { 1281 if (G->hasExternalLinkage() || G->hasLocalLinkage() || 1282 G->hasWeakLinkage()) { 1283 writeAlias(F, G); 1284 return; 1285 } 1286 } 1287 1288 writeThunk(F, G); 1289 } 1290 1291 // Helper for writeThunk, 1292 // Selects proper bitcast operation, 1293 // but a bit simpler then CastInst::getCastOpcode. 1294 static Value *createCast(IRBuilder<false> &Builder, Value *V, Type *DestTy) { 1295 Type *SrcTy = V->getType(); 1296 if (SrcTy->isStructTy()) { 1297 assert(DestTy->isStructTy()); 1298 assert(SrcTy->getStructNumElements() == DestTy->getStructNumElements()); 1299 Value *Result = UndefValue::get(DestTy); 1300 for (unsigned int I = 0, E = SrcTy->getStructNumElements(); I < E; ++I) { 1301 Value *Element = createCast( 1302 Builder, Builder.CreateExtractValue(V, makeArrayRef(I)), 1303 DestTy->getStructElementType(I)); 1304 1305 Result = 1306 Builder.CreateInsertValue(Result, Element, makeArrayRef(I)); 1307 } 1308 return Result; 1309 } 1310 assert(!DestTy->isStructTy()); 1311 if (SrcTy->isIntegerTy() && DestTy->isPointerTy()) 1312 return Builder.CreateIntToPtr(V, DestTy); 1313 else if (SrcTy->isPointerTy() && DestTy->isIntegerTy()) 1314 return Builder.CreatePtrToInt(V, DestTy); 1315 else 1316 return Builder.CreateBitCast(V, DestTy); 1317 } 1318 1319 // Replace G with a simple tail call to bitcast(F). Also replace direct uses 1320 // of G with bitcast(F). Deletes G. 1321 void MergeFunctions::writeThunk(Function *F, Function *G) { 1322 if (!G->mayBeOverridden()) { 1323 // Redirect direct callers of G to F. 1324 replaceDirectCallers(G, F); 1325 } 1326 1327 // If G was internal then we may have replaced all uses of G with F. If so, 1328 // stop here and delete G. There's no need for a thunk. 1329 if (G->hasLocalLinkage() && G->use_empty()) { 1330 G->eraseFromParent(); 1331 return; 1332 } 1333 1334 Function *NewG = Function::Create(G->getFunctionType(), G->getLinkage(), "", 1335 G->getParent()); 1336 BasicBlock *BB = BasicBlock::Create(F->getContext(), "", NewG); 1337 IRBuilder<false> Builder(BB); 1338 1339 SmallVector<Value *, 16> Args; 1340 unsigned i = 0; 1341 FunctionType *FFTy = F->getFunctionType(); 1342 for (Function::arg_iterator AI = NewG->arg_begin(), AE = NewG->arg_end(); 1343 AI != AE; ++AI) { 1344 Args.push_back(createCast(Builder, (Value*)AI, FFTy->getParamType(i))); 1345 ++i; 1346 } 1347 1348 CallInst *CI = Builder.CreateCall(F, Args); 1349 CI->setTailCall(); 1350 CI->setCallingConv(F->getCallingConv()); 1351 if (NewG->getReturnType()->isVoidTy()) { 1352 Builder.CreateRetVoid(); 1353 } else { 1354 Builder.CreateRet(createCast(Builder, CI, NewG->getReturnType())); 1355 } 1356 1357 NewG->copyAttributesFrom(G); 1358 NewG->takeName(G); 1359 removeUsers(G); 1360 G->replaceAllUsesWith(NewG); 1361 G->eraseFromParent(); 1362 1363 DEBUG(dbgs() << "writeThunk: " << NewG->getName() << '\n'); 1364 ++NumThunksWritten; 1365 } 1366 1367 // Replace G with an alias to F and delete G. 1368 void MergeFunctions::writeAlias(Function *F, Function *G) { 1369 PointerType *PTy = G->getType(); 1370 auto *GA = GlobalAlias::create(PTy, G->getLinkage(), "", F); 1371 F->setAlignment(std::max(F->getAlignment(), G->getAlignment())); 1372 GA->takeName(G); 1373 GA->setVisibility(G->getVisibility()); 1374 removeUsers(G); 1375 G->replaceAllUsesWith(GA); 1376 G->eraseFromParent(); 1377 1378 DEBUG(dbgs() << "writeAlias: " << GA->getName() << '\n'); 1379 ++NumAliasesWritten; 1380 } 1381 1382 // Merge two equivalent functions. Upon completion, Function G is deleted. 1383 void MergeFunctions::mergeTwoFunctions(Function *F, Function *G) { 1384 if (F->mayBeOverridden()) { 1385 assert(G->mayBeOverridden()); 1386 1387 if (HasGlobalAliases) { 1388 // Make them both thunks to the same internal function. 1389 Function *H = Function::Create(F->getFunctionType(), F->getLinkage(), "", 1390 F->getParent()); 1391 H->copyAttributesFrom(F); 1392 H->takeName(F); 1393 removeUsers(F); 1394 F->replaceAllUsesWith(H); 1395 1396 unsigned MaxAlignment = std::max(G->getAlignment(), H->getAlignment()); 1397 1398 writeAlias(F, G); 1399 writeAlias(F, H); 1400 1401 F->setAlignment(MaxAlignment); 1402 F->setLinkage(GlobalValue::PrivateLinkage); 1403 } else { 1404 // We can't merge them. Instead, pick one and update all direct callers 1405 // to call it and hope that we improve the instruction cache hit rate. 1406 replaceDirectCallers(G, F); 1407 } 1408 1409 ++NumDoubleWeak; 1410 } else { 1411 writeThunkOrAlias(F, G); 1412 } 1413 1414 ++NumFunctionsMerged; 1415 } 1416 1417 // Insert a ComparableFunction into the FnTree, or merge it away if equal to one 1418 // that was already inserted. 1419 bool MergeFunctions::insert(Function *NewFunction) { 1420 std::pair<FnTreeType::iterator, bool> Result = 1421 FnTree.insert(FunctionNode(NewFunction)); 1422 1423 if (Result.second) { 1424 DEBUG(dbgs() << "Inserting as unique: " << NewFunction->getName() << '\n'); 1425 return false; 1426 } 1427 1428 const FunctionNode &OldF = *Result.first; 1429 1430 // Don't merge tiny functions, since it can just end up making the function 1431 // larger. 1432 // FIXME: Should still merge them if they are unnamed_addr and produce an 1433 // alias. 1434 if (NewFunction->size() == 1) { 1435 if (NewFunction->front().size() <= 2) { 1436 DEBUG(dbgs() << NewFunction->getName() 1437 << " is to small to bother merging\n"); 1438 return false; 1439 } 1440 } 1441 1442 // Never thunk a strong function to a weak function. 1443 assert(!OldF.getFunc()->mayBeOverridden() || NewFunction->mayBeOverridden()); 1444 1445 DEBUG(dbgs() << " " << OldF.getFunc()->getName() 1446 << " == " << NewFunction->getName() << '\n'); 1447 1448 Function *DeleteF = NewFunction; 1449 mergeTwoFunctions(OldF.getFunc(), DeleteF); 1450 return true; 1451 } 1452 1453 // Remove a function from FnTree. If it was already in FnTree, add 1454 // it to Deferred so that we'll look at it in the next round. 1455 void MergeFunctions::remove(Function *F) { 1456 // We need to make sure we remove F, not a function "equal" to F per the 1457 // function equality comparator. 1458 FnTreeType::iterator found = FnTree.find(FunctionNode(F)); 1459 size_t Erased = 0; 1460 if (found != FnTree.end() && found->getFunc() == F) { 1461 Erased = 1; 1462 FnTree.erase(found); 1463 } 1464 1465 if (Erased) { 1466 DEBUG(dbgs() << "Removed " << F->getName() 1467 << " from set and deferred it.\n"); 1468 Deferred.push_back(F); 1469 } 1470 } 1471 1472 // For each instruction used by the value, remove() the function that contains 1473 // the instruction. This should happen right before a call to RAUW. 1474 void MergeFunctions::removeUsers(Value *V) { 1475 std::vector<Value *> Worklist; 1476 Worklist.push_back(V); 1477 while (!Worklist.empty()) { 1478 Value *V = Worklist.back(); 1479 Worklist.pop_back(); 1480 1481 for (User *U : V->users()) { 1482 if (Instruction *I = dyn_cast<Instruction>(U)) { 1483 remove(I->getParent()->getParent()); 1484 } else if (isa<GlobalValue>(U)) { 1485 // do nothing 1486 } else if (Constant *C = dyn_cast<Constant>(U)) { 1487 for (User *UU : C->users()) 1488 Worklist.push_back(UU); 1489 } 1490 } 1491 } 1492 } 1493