1 //===- MergeFunctions.cpp - Merge identical functions ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass looks for equivalent functions that are mergable and folds them. 11 // 12 // Order relation is defined on set of functions. It was made through 13 // special function comparison procedure that returns 14 // 0 when functions are equal, 15 // -1 when Left function is less than right function, and 16 // 1 for opposite case. We need total-ordering, so we need to maintain 17 // four properties on the functions set: 18 // a <= a (reflexivity) 19 // if a <= b and b <= a then a = b (antisymmetry) 20 // if a <= b and b <= c then a <= c (transitivity). 21 // for all a and b: a <= b or b <= a (totality). 22 // 23 // Comparison iterates through each instruction in each basic block. 24 // Functions are kept on binary tree. For each new function F we perform 25 // lookup in binary tree. 26 // In practice it works the following way: 27 // -- We define Function* container class with custom "operator<" (FunctionPtr). 28 // -- "FunctionPtr" instances are stored in std::set collection, so every 29 // std::set::insert operation will give you result in log(N) time. 30 // 31 // As an optimization, a hash of the function structure is calculated first, and 32 // two functions are only compared if they have the same hash. This hash is 33 // cheap to compute, and has the property that if function F == G according to 34 // the comparison function, then hash(F) == hash(G). This consistency property 35 // is critical to ensuring all possible merging opportunities are exploited. 36 // Collisions in the hash affect the speed of the pass but not the correctness 37 // or determinism of the resulting transformation. 38 // 39 // When a match is found the functions are folded. If both functions are 40 // overridable, we move the functionality into a new internal function and 41 // leave two overridable thunks to it. 42 // 43 //===----------------------------------------------------------------------===// 44 // 45 // Future work: 46 // 47 // * virtual functions. 48 // 49 // Many functions have their address taken by the virtual function table for 50 // the object they belong to. However, as long as it's only used for a lookup 51 // and call, this is irrelevant, and we'd like to fold such functions. 52 // 53 // * be smarter about bitcasts. 54 // 55 // In order to fold functions, we will sometimes add either bitcast instructions 56 // or bitcast constant expressions. Unfortunately, this can confound further 57 // analysis since the two functions differ where one has a bitcast and the 58 // other doesn't. We should learn to look through bitcasts. 59 // 60 // * Compare complex types with pointer types inside. 61 // * Compare cross-reference cases. 62 // * Compare complex expressions. 63 // 64 // All the three issues above could be described as ability to prove that 65 // fA == fB == fC == fE == fF == fG in example below: 66 // 67 // void fA() { 68 // fB(); 69 // } 70 // void fB() { 71 // fA(); 72 // } 73 // 74 // void fE() { 75 // fF(); 76 // } 77 // void fF() { 78 // fG(); 79 // } 80 // void fG() { 81 // fE(); 82 // } 83 // 84 // Simplest cross-reference case (fA <--> fB) was implemented in previous 85 // versions of MergeFunctions, though it presented only in two function pairs 86 // in test-suite (that counts >50k functions) 87 // Though possibility to detect complex cross-referencing (e.g.: A->B->C->D->A) 88 // could cover much more cases. 89 // 90 //===----------------------------------------------------------------------===// 91 92 #include "llvm/Transforms/IPO.h" 93 #include "llvm/ADT/DenseSet.h" 94 #include "llvm/ADT/FoldingSet.h" 95 #include "llvm/ADT/STLExtras.h" 96 #include "llvm/ADT/SmallSet.h" 97 #include "llvm/ADT/Statistic.h" 98 #include "llvm/ADT/Hashing.h" 99 #include "llvm/IR/CallSite.h" 100 #include "llvm/IR/Constants.h" 101 #include "llvm/IR/DataLayout.h" 102 #include "llvm/IR/IRBuilder.h" 103 #include "llvm/IR/InlineAsm.h" 104 #include "llvm/IR/Instructions.h" 105 #include "llvm/IR/LLVMContext.h" 106 #include "llvm/IR/Module.h" 107 #include "llvm/IR/Operator.h" 108 #include "llvm/IR/ValueHandle.h" 109 #include "llvm/IR/ValueMap.h" 110 #include "llvm/Pass.h" 111 #include "llvm/Support/CommandLine.h" 112 #include "llvm/Support/Debug.h" 113 #include "llvm/Support/ErrorHandling.h" 114 #include "llvm/Support/raw_ostream.h" 115 #include <vector> 116 using namespace llvm; 117 118 #define DEBUG_TYPE "mergefunc" 119 120 STATISTIC(NumFunctionsMerged, "Number of functions merged"); 121 STATISTIC(NumThunksWritten, "Number of thunks generated"); 122 STATISTIC(NumAliasesWritten, "Number of aliases generated"); 123 STATISTIC(NumDoubleWeak, "Number of new functions created"); 124 125 static cl::opt<unsigned> NumFunctionsForSanityCheck( 126 "mergefunc-sanity", 127 cl::desc("How many functions in module could be used for " 128 "MergeFunctions pass sanity check. " 129 "'0' disables this check. Works only with '-debug' key."), 130 cl::init(0), cl::Hidden); 131 132 namespace { 133 134 /// GlobalNumberState assigns an integer to each global value in the program, 135 /// which is used by the comparison routine to order references to globals. This 136 /// state must be preserved throughout the pass, because Functions and other 137 /// globals need to maintain their relative order. Globals are assigned a number 138 /// when they are first visited. This order is deterministic, and so the 139 /// assigned numbers are as well. When two functions are merged, neither number 140 /// is updated. If the symbols are weak, this would be incorrect. If they are 141 /// strong, then one will be replaced at all references to the other, and so 142 /// direct callsites will now see one or the other symbol, and no update is 143 /// necessary. Note that if we were guaranteed unique names, we could just 144 /// compare those, but this would not work for stripped bitcodes or for those 145 /// few symbols without a name. 146 class GlobalNumberState { 147 struct Config : ValueMapConfig<GlobalValue*> { 148 enum { FollowRAUW = false }; 149 }; 150 // Each GlobalValue is mapped to an identifier. The Config ensures when RAUW 151 // occurs, the mapping does not change. Tracking changes is unnecessary, and 152 // also problematic for weak symbols (which may be overwritten). 153 typedef ValueMap<GlobalValue *, uint64_t, Config> ValueNumberMap; 154 ValueNumberMap GlobalNumbers; 155 // The next unused serial number to assign to a global. 156 uint64_t NextNumber; 157 public: 158 GlobalNumberState() : GlobalNumbers(), NextNumber(0) {} 159 uint64_t getNumber(GlobalValue* Global) { 160 ValueNumberMap::iterator MapIter; 161 bool Inserted; 162 std::tie(MapIter, Inserted) = GlobalNumbers.insert({Global, NextNumber}); 163 if (Inserted) 164 NextNumber++; 165 return MapIter->second; 166 } 167 }; 168 169 /// FunctionComparator - Compares two functions to determine whether or not 170 /// they will generate machine code with the same behaviour. DataLayout is 171 /// used if available. The comparator always fails conservatively (erring on the 172 /// side of claiming that two functions are different). 173 class FunctionComparator { 174 public: 175 FunctionComparator(const Function *F1, const Function *F2, 176 GlobalNumberState* GN) 177 : FnL(F1), FnR(F2), GlobalNumbers(GN) {} 178 179 /// Test whether the two functions have equivalent behaviour. 180 int compare(); 181 /// Hash a function. Equivalent functions will have the same hash, and unequal 182 /// functions will have different hashes with high probability. 183 typedef uint64_t FunctionHash; 184 static FunctionHash functionHash(Function &); 185 186 private: 187 /// Test whether two basic blocks have equivalent behaviour. 188 int cmpBasicBlocks(const BasicBlock *BBL, const BasicBlock *BBR); 189 190 /// Constants comparison. 191 /// Its analog to lexicographical comparison between hypothetical numbers 192 /// of next format: 193 /// <bitcastability-trait><raw-bit-contents> 194 /// 195 /// 1. Bitcastability. 196 /// Check whether L's type could be losslessly bitcasted to R's type. 197 /// On this stage method, in case when lossless bitcast is not possible 198 /// method returns -1 or 1, thus also defining which type is greater in 199 /// context of bitcastability. 200 /// Stage 0: If types are equal in terms of cmpTypes, then we can go straight 201 /// to the contents comparison. 202 /// If types differ, remember types comparison result and check 203 /// whether we still can bitcast types. 204 /// Stage 1: Types that satisfies isFirstClassType conditions are always 205 /// greater then others. 206 /// Stage 2: Vector is greater then non-vector. 207 /// If both types are vectors, then vector with greater bitwidth is 208 /// greater. 209 /// If both types are vectors with the same bitwidth, then types 210 /// are bitcastable, and we can skip other stages, and go to contents 211 /// comparison. 212 /// Stage 3: Pointer types are greater than non-pointers. If both types are 213 /// pointers of the same address space - go to contents comparison. 214 /// Different address spaces: pointer with greater address space is 215 /// greater. 216 /// Stage 4: Types are neither vectors, nor pointers. And they differ. 217 /// We don't know how to bitcast them. So, we better don't do it, 218 /// and return types comparison result (so it determines the 219 /// relationship among constants we don't know how to bitcast). 220 /// 221 /// Just for clearance, let's see how the set of constants could look 222 /// on single dimension axis: 223 /// 224 /// [NFCT], [FCT, "others"], [FCT, pointers], [FCT, vectors] 225 /// Where: NFCT - Not a FirstClassType 226 /// FCT - FirstClassTyp: 227 /// 228 /// 2. Compare raw contents. 229 /// It ignores types on this stage and only compares bits from L and R. 230 /// Returns 0, if L and R has equivalent contents. 231 /// -1 or 1 if values are different. 232 /// Pretty trivial: 233 /// 2.1. If contents are numbers, compare numbers. 234 /// Ints with greater bitwidth are greater. Ints with same bitwidths 235 /// compared by their contents. 236 /// 2.2. "And so on". Just to avoid discrepancies with comments 237 /// perhaps it would be better to read the implementation itself. 238 /// 3. And again about overall picture. Let's look back at how the ordered set 239 /// of constants will look like: 240 /// [NFCT], [FCT, "others"], [FCT, pointers], [FCT, vectors] 241 /// 242 /// Now look, what could be inside [FCT, "others"], for example: 243 /// [FCT, "others"] = 244 /// [ 245 /// [double 0.1], [double 1.23], 246 /// [i32 1], [i32 2], 247 /// { double 1.0 }, ; StructTyID, NumElements = 1 248 /// { i32 1 }, ; StructTyID, NumElements = 1 249 /// { double 1, i32 1 }, ; StructTyID, NumElements = 2 250 /// { i32 1, double 1 } ; StructTyID, NumElements = 2 251 /// ] 252 /// 253 /// Let's explain the order. Float numbers will be less than integers, just 254 /// because of cmpType terms: FloatTyID < IntegerTyID. 255 /// Floats (with same fltSemantics) are sorted according to their value. 256 /// Then you can see integers, and they are, like a floats, 257 /// could be easy sorted among each others. 258 /// The structures. Structures are grouped at the tail, again because of their 259 /// TypeID: StructTyID > IntegerTyID > FloatTyID. 260 /// Structures with greater number of elements are greater. Structures with 261 /// greater elements going first are greater. 262 /// The same logic with vectors, arrays and other possible complex types. 263 /// 264 /// Bitcastable constants. 265 /// Let's assume, that some constant, belongs to some group of 266 /// "so-called-equal" values with different types, and at the same time 267 /// belongs to another group of constants with equal types 268 /// and "really" equal values. 269 /// 270 /// Now, prove that this is impossible: 271 /// 272 /// If constant A with type TyA is bitcastable to B with type TyB, then: 273 /// 1. All constants with equal types to TyA, are bitcastable to B. Since 274 /// those should be vectors (if TyA is vector), pointers 275 /// (if TyA is pointer), or else (if TyA equal to TyB), those types should 276 /// be equal to TyB. 277 /// 2. All constants with non-equal, but bitcastable types to TyA, are 278 /// bitcastable to B. 279 /// Once again, just because we allow it to vectors and pointers only. 280 /// This statement could be expanded as below: 281 /// 2.1. All vectors with equal bitwidth to vector A, has equal bitwidth to 282 /// vector B, and thus bitcastable to B as well. 283 /// 2.2. All pointers of the same address space, no matter what they point to, 284 /// bitcastable. So if C is pointer, it could be bitcasted to A and to B. 285 /// So any constant equal or bitcastable to A is equal or bitcastable to B. 286 /// QED. 287 /// 288 /// In another words, for pointers and vectors, we ignore top-level type and 289 /// look at their particular properties (bit-width for vectors, and 290 /// address space for pointers). 291 /// If these properties are equal - compare their contents. 292 int cmpConstants(const Constant *L, const Constant *R); 293 294 /// Compares two global values by number. Uses the GlobalNumbersState to 295 /// identify the same gobals across function calls. 296 int cmpGlobalValues(GlobalValue *L, GlobalValue *R); 297 298 /// Assign or look up previously assigned numbers for the two values, and 299 /// return whether the numbers are equal. Numbers are assigned in the order 300 /// visited. 301 /// Comparison order: 302 /// Stage 0: Value that is function itself is always greater then others. 303 /// If left and right values are references to their functions, then 304 /// they are equal. 305 /// Stage 1: Constants are greater than non-constants. 306 /// If both left and right are constants, then the result of 307 /// cmpConstants is used as cmpValues result. 308 /// Stage 2: InlineAsm instances are greater than others. If both left and 309 /// right are InlineAsm instances, InlineAsm* pointers casted to 310 /// integers and compared as numbers. 311 /// Stage 3: For all other cases we compare order we meet these values in 312 /// their functions. If right value was met first during scanning, 313 /// then left value is greater. 314 /// In another words, we compare serial numbers, for more details 315 /// see comments for sn_mapL and sn_mapR. 316 int cmpValues(const Value *L, const Value *R); 317 318 /// Compare two Instructions for equivalence, similar to 319 /// Instruction::isSameOperationAs but with modifications to the type 320 /// comparison. 321 /// Stages are listed in "most significant stage first" order: 322 /// On each stage below, we do comparison between some left and right 323 /// operation parts. If parts are non-equal, we assign parts comparison 324 /// result to the operation comparison result and exit from method. 325 /// Otherwise we proceed to the next stage. 326 /// Stages: 327 /// 1. Operations opcodes. Compared as numbers. 328 /// 2. Number of operands. 329 /// 3. Operation types. Compared with cmpType method. 330 /// 4. Compare operation subclass optional data as stream of bytes: 331 /// just convert it to integers and call cmpNumbers. 332 /// 5. Compare in operation operand types with cmpType in 333 /// most significant operand first order. 334 /// 6. Last stage. Check operations for some specific attributes. 335 /// For example, for Load it would be: 336 /// 6.1.Load: volatile (as boolean flag) 337 /// 6.2.Load: alignment (as integer numbers) 338 /// 6.3.Load: synch-scope (as integer numbers) 339 /// 6.4.Load: range metadata (as integer numbers) 340 /// On this stage its better to see the code, since its not more than 10-15 341 /// strings for particular instruction, and could change sometimes. 342 int cmpOperations(const Instruction *L, const Instruction *R) const; 343 344 /// Compare two GEPs for equivalent pointer arithmetic. 345 /// Parts to be compared for each comparison stage, 346 /// most significant stage first: 347 /// 1. Address space. As numbers. 348 /// 2. Constant offset, (using GEPOperator::accumulateConstantOffset method). 349 /// 3. Pointer operand type (using cmpType method). 350 /// 4. Number of operands. 351 /// 5. Compare operands, using cmpValues method. 352 int cmpGEPs(const GEPOperator *GEPL, const GEPOperator *GEPR); 353 int cmpGEPs(const GetElementPtrInst *GEPL, const GetElementPtrInst *GEPR) { 354 return cmpGEPs(cast<GEPOperator>(GEPL), cast<GEPOperator>(GEPR)); 355 } 356 357 /// cmpType - compares two types, 358 /// defines total ordering among the types set. 359 /// 360 /// Return values: 361 /// 0 if types are equal, 362 /// -1 if Left is less than Right, 363 /// +1 if Left is greater than Right. 364 /// 365 /// Description: 366 /// Comparison is broken onto stages. Like in lexicographical comparison 367 /// stage coming first has higher priority. 368 /// On each explanation stage keep in mind total ordering properties. 369 /// 370 /// 0. Before comparison we coerce pointer types of 0 address space to 371 /// integer. 372 /// We also don't bother with same type at left and right, so 373 /// just return 0 in this case. 374 /// 375 /// 1. If types are of different kind (different type IDs). 376 /// Return result of type IDs comparison, treating them as numbers. 377 /// 2. If types are integers, check that they have the same width. If they 378 /// are vectors, check that they have the same count and subtype. 379 /// 3. Types have the same ID, so check whether they are one of: 380 /// * Void 381 /// * Float 382 /// * Double 383 /// * X86_FP80 384 /// * FP128 385 /// * PPC_FP128 386 /// * Label 387 /// * Metadata 388 /// We can treat these types as equal whenever their IDs are same. 389 /// 4. If Left and Right are pointers, return result of address space 390 /// comparison (numbers comparison). We can treat pointer types of same 391 /// address space as equal. 392 /// 5. If types are complex. 393 /// Then both Left and Right are to be expanded and their element types will 394 /// be checked with the same way. If we get Res != 0 on some stage, return it. 395 /// Otherwise return 0. 396 /// 6. For all other cases put llvm_unreachable. 397 int cmpTypes(Type *TyL, Type *TyR) const; 398 399 int cmpNumbers(uint64_t L, uint64_t R) const; 400 int cmpAPInts(const APInt &L, const APInt &R) const; 401 int cmpAPFloats(const APFloat &L, const APFloat &R) const; 402 int cmpInlineAsm(const InlineAsm *L, const InlineAsm *R) const; 403 int cmpMem(StringRef L, StringRef R) const; 404 int cmpAttrs(const AttributeSet L, const AttributeSet R) const; 405 int cmpRangeMetadata(const MDNode* L, const MDNode* R) const; 406 407 // The two functions undergoing comparison. 408 const Function *FnL, *FnR; 409 410 /// Assign serial numbers to values from left function, and values from 411 /// right function. 412 /// Explanation: 413 /// Being comparing functions we need to compare values we meet at left and 414 /// right sides. 415 /// Its easy to sort things out for external values. It just should be 416 /// the same value at left and right. 417 /// But for local values (those were introduced inside function body) 418 /// we have to ensure they were introduced at exactly the same place, 419 /// and plays the same role. 420 /// Let's assign serial number to each value when we meet it first time. 421 /// Values that were met at same place will be with same serial numbers. 422 /// In this case it would be good to explain few points about values assigned 423 /// to BBs and other ways of implementation (see below). 424 /// 425 /// 1. Safety of BB reordering. 426 /// It's safe to change the order of BasicBlocks in function. 427 /// Relationship with other functions and serial numbering will not be 428 /// changed in this case. 429 /// As follows from FunctionComparator::compare(), we do CFG walk: we start 430 /// from the entry, and then take each terminator. So it doesn't matter how in 431 /// fact BBs are ordered in function. And since cmpValues are called during 432 /// this walk, the numbering depends only on how BBs located inside the CFG. 433 /// So the answer is - yes. We will get the same numbering. 434 /// 435 /// 2. Impossibility to use dominance properties of values. 436 /// If we compare two instruction operands: first is usage of local 437 /// variable AL from function FL, and second is usage of local variable AR 438 /// from FR, we could compare their origins and check whether they are 439 /// defined at the same place. 440 /// But, we are still not able to compare operands of PHI nodes, since those 441 /// could be operands from further BBs we didn't scan yet. 442 /// So it's impossible to use dominance properties in general. 443 DenseMap<const Value*, int> sn_mapL, sn_mapR; 444 445 // The global state we will use 446 GlobalNumberState* GlobalNumbers; 447 }; 448 449 class FunctionNode { 450 mutable AssertingVH<Function> F; 451 FunctionComparator::FunctionHash Hash; 452 public: 453 // Note the hash is recalculated potentially multiple times, but it is cheap. 454 FunctionNode(Function *F) 455 : F(F), Hash(FunctionComparator::functionHash(*F)) {} 456 Function *getFunc() const { return F; } 457 FunctionComparator::FunctionHash getHash() const { return Hash; } 458 459 /// Replace the reference to the function F by the function G, assuming their 460 /// implementations are equal. 461 void replaceBy(Function *G) const { 462 F = G; 463 } 464 465 void release() { F = 0; } 466 }; 467 } 468 469 int FunctionComparator::cmpNumbers(uint64_t L, uint64_t R) const { 470 if (L < R) return -1; 471 if (L > R) return 1; 472 return 0; 473 } 474 475 int FunctionComparator::cmpAPInts(const APInt &L, const APInt &R) const { 476 if (int Res = cmpNumbers(L.getBitWidth(), R.getBitWidth())) 477 return Res; 478 if (L.ugt(R)) return 1; 479 if (R.ugt(L)) return -1; 480 return 0; 481 } 482 483 int FunctionComparator::cmpAPFloats(const APFloat &L, const APFloat &R) const { 484 // Floats are ordered first by semantics (i.e. float, double, half, etc.), 485 // then by value interpreted as a bitstring (aka APInt). 486 const fltSemantics &SL = L.getSemantics(), &SR = R.getSemantics(); 487 if (int Res = cmpNumbers(APFloat::semanticsPrecision(SL), 488 APFloat::semanticsPrecision(SR))) 489 return Res; 490 if (int Res = cmpNumbers(APFloat::semanticsMaxExponent(SL), 491 APFloat::semanticsMaxExponent(SR))) 492 return Res; 493 if (int Res = cmpNumbers(APFloat::semanticsMinExponent(SL), 494 APFloat::semanticsMinExponent(SR))) 495 return Res; 496 if (int Res = cmpNumbers(APFloat::semanticsSizeInBits(SL), 497 APFloat::semanticsSizeInBits(SR))) 498 return Res; 499 return cmpAPInts(L.bitcastToAPInt(), R.bitcastToAPInt()); 500 } 501 502 int FunctionComparator::cmpMem(StringRef L, StringRef R) const { 503 // Prevent heavy comparison, compare sizes first. 504 if (int Res = cmpNumbers(L.size(), R.size())) 505 return Res; 506 507 // Compare strings lexicographically only when it is necessary: only when 508 // strings are equal in size. 509 return L.compare(R); 510 } 511 512 int FunctionComparator::cmpAttrs(const AttributeSet L, 513 const AttributeSet R) const { 514 if (int Res = cmpNumbers(L.getNumSlots(), R.getNumSlots())) 515 return Res; 516 517 for (unsigned i = 0, e = L.getNumSlots(); i != e; ++i) { 518 AttributeSet::iterator LI = L.begin(i), LE = L.end(i), RI = R.begin(i), 519 RE = R.end(i); 520 for (; LI != LE && RI != RE; ++LI, ++RI) { 521 Attribute LA = *LI; 522 Attribute RA = *RI; 523 if (LA < RA) 524 return -1; 525 if (RA < LA) 526 return 1; 527 } 528 if (LI != LE) 529 return 1; 530 if (RI != RE) 531 return -1; 532 } 533 return 0; 534 } 535 int FunctionComparator::cmpRangeMetadata(const MDNode* L, 536 const MDNode* R) const { 537 if (L == R) 538 return 0; 539 if (!L) 540 return -1; 541 if (!R) 542 return 1; 543 // Range metadata is a sequence of numbers. Make sure they are the same 544 // sequence. 545 // TODO: Note that as this is metadata, it is possible to drop and/or merge 546 // this data when considering functions to merge. Thus this comparison would 547 // return 0 (i.e. equivalent), but merging would become more complicated 548 // because the ranges would need to be unioned. It is not likely that 549 // functions differ ONLY in this metadata if they are actually the same 550 // function semantically. 551 if (int Res = cmpNumbers(L->getNumOperands(), R->getNumOperands())) 552 return Res; 553 for (size_t I = 0; I < L->getNumOperands(); ++I) { 554 ConstantInt* LLow = mdconst::extract<ConstantInt>(L->getOperand(I)); 555 ConstantInt* RLow = mdconst::extract<ConstantInt>(R->getOperand(I)); 556 if (int Res = cmpAPInts(LLow->getValue(), RLow->getValue())) 557 return Res; 558 } 559 return 0; 560 } 561 562 /// Constants comparison: 563 /// 1. Check whether type of L constant could be losslessly bitcasted to R 564 /// type. 565 /// 2. Compare constant contents. 566 /// For more details see declaration comments. 567 int FunctionComparator::cmpConstants(const Constant *L, const Constant *R) { 568 569 Type *TyL = L->getType(); 570 Type *TyR = R->getType(); 571 572 // Check whether types are bitcastable. This part is just re-factored 573 // Type::canLosslesslyBitCastTo method, but instead of returning true/false, 574 // we also pack into result which type is "less" for us. 575 int TypesRes = cmpTypes(TyL, TyR); 576 if (TypesRes != 0) { 577 // Types are different, but check whether we can bitcast them. 578 if (!TyL->isFirstClassType()) { 579 if (TyR->isFirstClassType()) 580 return -1; 581 // Neither TyL nor TyR are values of first class type. Return the result 582 // of comparing the types 583 return TypesRes; 584 } 585 if (!TyR->isFirstClassType()) { 586 if (TyL->isFirstClassType()) 587 return 1; 588 return TypesRes; 589 } 590 591 // Vector -> Vector conversions are always lossless if the two vector types 592 // have the same size, otherwise not. 593 unsigned TyLWidth = 0; 594 unsigned TyRWidth = 0; 595 596 if (auto *VecTyL = dyn_cast<VectorType>(TyL)) 597 TyLWidth = VecTyL->getBitWidth(); 598 if (auto *VecTyR = dyn_cast<VectorType>(TyR)) 599 TyRWidth = VecTyR->getBitWidth(); 600 601 if (TyLWidth != TyRWidth) 602 return cmpNumbers(TyLWidth, TyRWidth); 603 604 // Zero bit-width means neither TyL nor TyR are vectors. 605 if (!TyLWidth) { 606 PointerType *PTyL = dyn_cast<PointerType>(TyL); 607 PointerType *PTyR = dyn_cast<PointerType>(TyR); 608 if (PTyL && PTyR) { 609 unsigned AddrSpaceL = PTyL->getAddressSpace(); 610 unsigned AddrSpaceR = PTyR->getAddressSpace(); 611 if (int Res = cmpNumbers(AddrSpaceL, AddrSpaceR)) 612 return Res; 613 } 614 if (PTyL) 615 return 1; 616 if (PTyR) 617 return -1; 618 619 // TyL and TyR aren't vectors, nor pointers. We don't know how to 620 // bitcast them. 621 return TypesRes; 622 } 623 } 624 625 // OK, types are bitcastable, now check constant contents. 626 627 if (L->isNullValue() && R->isNullValue()) 628 return TypesRes; 629 if (L->isNullValue() && !R->isNullValue()) 630 return 1; 631 if (!L->isNullValue() && R->isNullValue()) 632 return -1; 633 634 auto GlobalValueL = const_cast<GlobalValue*>(dyn_cast<GlobalValue>(L)); 635 auto GlobalValueR = const_cast<GlobalValue*>(dyn_cast<GlobalValue>(R)); 636 if (GlobalValueL && GlobalValueR) { 637 return cmpGlobalValues(GlobalValueL, GlobalValueR); 638 } 639 640 if (int Res = cmpNumbers(L->getValueID(), R->getValueID())) 641 return Res; 642 643 if (const auto *SeqL = dyn_cast<ConstantDataSequential>(L)) { 644 const auto *SeqR = cast<ConstantDataSequential>(R); 645 // This handles ConstantDataArray and ConstantDataVector. Note that we 646 // compare the two raw data arrays, which might differ depending on the host 647 // endianness. This isn't a problem though, because the endiness of a module 648 // will affect the order of the constants, but this order is the same 649 // for a given input module and host platform. 650 return cmpMem(SeqL->getRawDataValues(), SeqR->getRawDataValues()); 651 } 652 653 switch (L->getValueID()) { 654 case Value::UndefValueVal: return TypesRes; 655 case Value::ConstantIntVal: { 656 const APInt &LInt = cast<ConstantInt>(L)->getValue(); 657 const APInt &RInt = cast<ConstantInt>(R)->getValue(); 658 return cmpAPInts(LInt, RInt); 659 } 660 case Value::ConstantFPVal: { 661 const APFloat &LAPF = cast<ConstantFP>(L)->getValueAPF(); 662 const APFloat &RAPF = cast<ConstantFP>(R)->getValueAPF(); 663 return cmpAPFloats(LAPF, RAPF); 664 } 665 case Value::ConstantArrayVal: { 666 const ConstantArray *LA = cast<ConstantArray>(L); 667 const ConstantArray *RA = cast<ConstantArray>(R); 668 uint64_t NumElementsL = cast<ArrayType>(TyL)->getNumElements(); 669 uint64_t NumElementsR = cast<ArrayType>(TyR)->getNumElements(); 670 if (int Res = cmpNumbers(NumElementsL, NumElementsR)) 671 return Res; 672 for (uint64_t i = 0; i < NumElementsL; ++i) { 673 if (int Res = cmpConstants(cast<Constant>(LA->getOperand(i)), 674 cast<Constant>(RA->getOperand(i)))) 675 return Res; 676 } 677 return 0; 678 } 679 case Value::ConstantStructVal: { 680 const ConstantStruct *LS = cast<ConstantStruct>(L); 681 const ConstantStruct *RS = cast<ConstantStruct>(R); 682 unsigned NumElementsL = cast<StructType>(TyL)->getNumElements(); 683 unsigned NumElementsR = cast<StructType>(TyR)->getNumElements(); 684 if (int Res = cmpNumbers(NumElementsL, NumElementsR)) 685 return Res; 686 for (unsigned i = 0; i != NumElementsL; ++i) { 687 if (int Res = cmpConstants(cast<Constant>(LS->getOperand(i)), 688 cast<Constant>(RS->getOperand(i)))) 689 return Res; 690 } 691 return 0; 692 } 693 case Value::ConstantVectorVal: { 694 const ConstantVector *LV = cast<ConstantVector>(L); 695 const ConstantVector *RV = cast<ConstantVector>(R); 696 unsigned NumElementsL = cast<VectorType>(TyL)->getNumElements(); 697 unsigned NumElementsR = cast<VectorType>(TyR)->getNumElements(); 698 if (int Res = cmpNumbers(NumElementsL, NumElementsR)) 699 return Res; 700 for (uint64_t i = 0; i < NumElementsL; ++i) { 701 if (int Res = cmpConstants(cast<Constant>(LV->getOperand(i)), 702 cast<Constant>(RV->getOperand(i)))) 703 return Res; 704 } 705 return 0; 706 } 707 case Value::ConstantExprVal: { 708 const ConstantExpr *LE = cast<ConstantExpr>(L); 709 const ConstantExpr *RE = cast<ConstantExpr>(R); 710 unsigned NumOperandsL = LE->getNumOperands(); 711 unsigned NumOperandsR = RE->getNumOperands(); 712 if (int Res = cmpNumbers(NumOperandsL, NumOperandsR)) 713 return Res; 714 for (unsigned i = 0; i < NumOperandsL; ++i) { 715 if (int Res = cmpConstants(cast<Constant>(LE->getOperand(i)), 716 cast<Constant>(RE->getOperand(i)))) 717 return Res; 718 } 719 return 0; 720 } 721 case Value::BlockAddressVal: { 722 const BlockAddress *LBA = cast<BlockAddress>(L); 723 const BlockAddress *RBA = cast<BlockAddress>(R); 724 if (int Res = cmpValues(LBA->getFunction(), RBA->getFunction())) 725 return Res; 726 if (LBA->getFunction() == RBA->getFunction()) { 727 // They are BBs in the same function. Order by which comes first in the 728 // BB order of the function. This order is deterministic. 729 Function* F = LBA->getFunction(); 730 BasicBlock *LBB = LBA->getBasicBlock(); 731 BasicBlock *RBB = RBA->getBasicBlock(); 732 if (LBB == RBB) 733 return 0; 734 for(BasicBlock &BB : F->getBasicBlockList()) { 735 if (&BB == LBB) { 736 assert(&BB != RBB); 737 return -1; 738 } 739 if (&BB == RBB) 740 return 1; 741 } 742 llvm_unreachable("Basic Block Address does not point to a basic block in " 743 "its function."); 744 return -1; 745 } else { 746 // cmpValues said the functions are the same. So because they aren't 747 // literally the same pointer, they must respectively be the left and 748 // right functions. 749 assert(LBA->getFunction() == FnL && RBA->getFunction() == FnR); 750 // cmpValues will tell us if these are equivalent BasicBlocks, in the 751 // context of their respective functions. 752 return cmpValues(LBA->getBasicBlock(), RBA->getBasicBlock()); 753 } 754 } 755 default: // Unknown constant, abort. 756 DEBUG(dbgs() << "Looking at valueID " << L->getValueID() << "\n"); 757 llvm_unreachable("Constant ValueID not recognized."); 758 return -1; 759 } 760 } 761 762 int FunctionComparator::cmpGlobalValues(GlobalValue *L, GlobalValue* R) { 763 return cmpNumbers(GlobalNumbers->getNumber(L), GlobalNumbers->getNumber(R)); 764 } 765 766 /// cmpType - compares two types, 767 /// defines total ordering among the types set. 768 /// See method declaration comments for more details. 769 int FunctionComparator::cmpTypes(Type *TyL, Type *TyR) const { 770 771 PointerType *PTyL = dyn_cast<PointerType>(TyL); 772 PointerType *PTyR = dyn_cast<PointerType>(TyR); 773 774 const DataLayout &DL = FnL->getParent()->getDataLayout(); 775 if (PTyL && PTyL->getAddressSpace() == 0) 776 TyL = DL.getIntPtrType(TyL); 777 if (PTyR && PTyR->getAddressSpace() == 0) 778 TyR = DL.getIntPtrType(TyR); 779 780 if (TyL == TyR) 781 return 0; 782 783 if (int Res = cmpNumbers(TyL->getTypeID(), TyR->getTypeID())) 784 return Res; 785 786 switch (TyL->getTypeID()) { 787 default: 788 llvm_unreachable("Unknown type!"); 789 // Fall through in Release mode. 790 case Type::IntegerTyID: 791 return cmpNumbers(cast<IntegerType>(TyL)->getBitWidth(), 792 cast<IntegerType>(TyR)->getBitWidth()); 793 case Type::VectorTyID: { 794 VectorType *VTyL = cast<VectorType>(TyL), *VTyR = cast<VectorType>(TyR); 795 if (int Res = cmpNumbers(VTyL->getNumElements(), VTyR->getNumElements())) 796 return Res; 797 return cmpTypes(VTyL->getElementType(), VTyR->getElementType()); 798 } 799 // TyL == TyR would have returned true earlier, because types are uniqued. 800 case Type::VoidTyID: 801 case Type::FloatTyID: 802 case Type::DoubleTyID: 803 case Type::X86_FP80TyID: 804 case Type::FP128TyID: 805 case Type::PPC_FP128TyID: 806 case Type::LabelTyID: 807 case Type::MetadataTyID: 808 case Type::TokenTyID: 809 return 0; 810 811 case Type::PointerTyID: { 812 assert(PTyL && PTyR && "Both types must be pointers here."); 813 return cmpNumbers(PTyL->getAddressSpace(), PTyR->getAddressSpace()); 814 } 815 816 case Type::StructTyID: { 817 StructType *STyL = cast<StructType>(TyL); 818 StructType *STyR = cast<StructType>(TyR); 819 if (STyL->getNumElements() != STyR->getNumElements()) 820 return cmpNumbers(STyL->getNumElements(), STyR->getNumElements()); 821 822 if (STyL->isPacked() != STyR->isPacked()) 823 return cmpNumbers(STyL->isPacked(), STyR->isPacked()); 824 825 for (unsigned i = 0, e = STyL->getNumElements(); i != e; ++i) { 826 if (int Res = cmpTypes(STyL->getElementType(i), STyR->getElementType(i))) 827 return Res; 828 } 829 return 0; 830 } 831 832 case Type::FunctionTyID: { 833 FunctionType *FTyL = cast<FunctionType>(TyL); 834 FunctionType *FTyR = cast<FunctionType>(TyR); 835 if (FTyL->getNumParams() != FTyR->getNumParams()) 836 return cmpNumbers(FTyL->getNumParams(), FTyR->getNumParams()); 837 838 if (FTyL->isVarArg() != FTyR->isVarArg()) 839 return cmpNumbers(FTyL->isVarArg(), FTyR->isVarArg()); 840 841 if (int Res = cmpTypes(FTyL->getReturnType(), FTyR->getReturnType())) 842 return Res; 843 844 for (unsigned i = 0, e = FTyL->getNumParams(); i != e; ++i) { 845 if (int Res = cmpTypes(FTyL->getParamType(i), FTyR->getParamType(i))) 846 return Res; 847 } 848 return 0; 849 } 850 851 case Type::ArrayTyID: { 852 ArrayType *ATyL = cast<ArrayType>(TyL); 853 ArrayType *ATyR = cast<ArrayType>(TyR); 854 if (ATyL->getNumElements() != ATyR->getNumElements()) 855 return cmpNumbers(ATyL->getNumElements(), ATyR->getNumElements()); 856 return cmpTypes(ATyL->getElementType(), ATyR->getElementType()); 857 } 858 } 859 } 860 861 // Determine whether the two operations are the same except that pointer-to-A 862 // and pointer-to-B are equivalent. This should be kept in sync with 863 // Instruction::isSameOperationAs. 864 // Read method declaration comments for more details. 865 int FunctionComparator::cmpOperations(const Instruction *L, 866 const Instruction *R) const { 867 // Differences from Instruction::isSameOperationAs: 868 // * replace type comparison with calls to isEquivalentType. 869 // * we test for I->hasSameSubclassOptionalData (nuw/nsw/tail) at the top 870 // * because of the above, we don't test for the tail bit on calls later on 871 if (int Res = cmpNumbers(L->getOpcode(), R->getOpcode())) 872 return Res; 873 874 if (int Res = cmpNumbers(L->getNumOperands(), R->getNumOperands())) 875 return Res; 876 877 if (int Res = cmpTypes(L->getType(), R->getType())) 878 return Res; 879 880 if (int Res = cmpNumbers(L->getRawSubclassOptionalData(), 881 R->getRawSubclassOptionalData())) 882 return Res; 883 884 if (const AllocaInst *AI = dyn_cast<AllocaInst>(L)) { 885 if (int Res = cmpTypes(AI->getAllocatedType(), 886 cast<AllocaInst>(R)->getAllocatedType())) 887 return Res; 888 if (int Res = 889 cmpNumbers(AI->getAlignment(), cast<AllocaInst>(R)->getAlignment())) 890 return Res; 891 } 892 893 // We have two instructions of identical opcode and #operands. Check to see 894 // if all operands are the same type 895 for (unsigned i = 0, e = L->getNumOperands(); i != e; ++i) { 896 if (int Res = 897 cmpTypes(L->getOperand(i)->getType(), R->getOperand(i)->getType())) 898 return Res; 899 } 900 901 // Check special state that is a part of some instructions. 902 if (const LoadInst *LI = dyn_cast<LoadInst>(L)) { 903 if (int Res = cmpNumbers(LI->isVolatile(), cast<LoadInst>(R)->isVolatile())) 904 return Res; 905 if (int Res = 906 cmpNumbers(LI->getAlignment(), cast<LoadInst>(R)->getAlignment())) 907 return Res; 908 if (int Res = 909 cmpNumbers(LI->getOrdering(), cast<LoadInst>(R)->getOrdering())) 910 return Res; 911 if (int Res = 912 cmpNumbers(LI->getSynchScope(), cast<LoadInst>(R)->getSynchScope())) 913 return Res; 914 return cmpRangeMetadata(LI->getMetadata(LLVMContext::MD_range), 915 cast<LoadInst>(R)->getMetadata(LLVMContext::MD_range)); 916 } 917 if (const StoreInst *SI = dyn_cast<StoreInst>(L)) { 918 if (int Res = 919 cmpNumbers(SI->isVolatile(), cast<StoreInst>(R)->isVolatile())) 920 return Res; 921 if (int Res = 922 cmpNumbers(SI->getAlignment(), cast<StoreInst>(R)->getAlignment())) 923 return Res; 924 if (int Res = 925 cmpNumbers(SI->getOrdering(), cast<StoreInst>(R)->getOrdering())) 926 return Res; 927 return cmpNumbers(SI->getSynchScope(), cast<StoreInst>(R)->getSynchScope()); 928 } 929 if (const CmpInst *CI = dyn_cast<CmpInst>(L)) 930 return cmpNumbers(CI->getPredicate(), cast<CmpInst>(R)->getPredicate()); 931 if (const CallInst *CI = dyn_cast<CallInst>(L)) { 932 if (int Res = cmpNumbers(CI->getCallingConv(), 933 cast<CallInst>(R)->getCallingConv())) 934 return Res; 935 if (int Res = 936 cmpAttrs(CI->getAttributes(), cast<CallInst>(R)->getAttributes())) 937 return Res; 938 return cmpRangeMetadata( 939 CI->getMetadata(LLVMContext::MD_range), 940 cast<CallInst>(R)->getMetadata(LLVMContext::MD_range)); 941 } 942 if (const InvokeInst *CI = dyn_cast<InvokeInst>(L)) { 943 if (int Res = cmpNumbers(CI->getCallingConv(), 944 cast<InvokeInst>(R)->getCallingConv())) 945 return Res; 946 if (int Res = 947 cmpAttrs(CI->getAttributes(), cast<InvokeInst>(R)->getAttributes())) 948 return Res; 949 return cmpRangeMetadata( 950 CI->getMetadata(LLVMContext::MD_range), 951 cast<InvokeInst>(R)->getMetadata(LLVMContext::MD_range)); 952 } 953 if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(L)) { 954 ArrayRef<unsigned> LIndices = IVI->getIndices(); 955 ArrayRef<unsigned> RIndices = cast<InsertValueInst>(R)->getIndices(); 956 if (int Res = cmpNumbers(LIndices.size(), RIndices.size())) 957 return Res; 958 for (size_t i = 0, e = LIndices.size(); i != e; ++i) { 959 if (int Res = cmpNumbers(LIndices[i], RIndices[i])) 960 return Res; 961 } 962 } 963 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(L)) { 964 ArrayRef<unsigned> LIndices = EVI->getIndices(); 965 ArrayRef<unsigned> RIndices = cast<ExtractValueInst>(R)->getIndices(); 966 if (int Res = cmpNumbers(LIndices.size(), RIndices.size())) 967 return Res; 968 for (size_t i = 0, e = LIndices.size(); i != e; ++i) { 969 if (int Res = cmpNumbers(LIndices[i], RIndices[i])) 970 return Res; 971 } 972 } 973 if (const FenceInst *FI = dyn_cast<FenceInst>(L)) { 974 if (int Res = 975 cmpNumbers(FI->getOrdering(), cast<FenceInst>(R)->getOrdering())) 976 return Res; 977 return cmpNumbers(FI->getSynchScope(), cast<FenceInst>(R)->getSynchScope()); 978 } 979 980 if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(L)) { 981 if (int Res = cmpNumbers(CXI->isVolatile(), 982 cast<AtomicCmpXchgInst>(R)->isVolatile())) 983 return Res; 984 if (int Res = cmpNumbers(CXI->isWeak(), 985 cast<AtomicCmpXchgInst>(R)->isWeak())) 986 return Res; 987 if (int Res = cmpNumbers(CXI->getSuccessOrdering(), 988 cast<AtomicCmpXchgInst>(R)->getSuccessOrdering())) 989 return Res; 990 if (int Res = cmpNumbers(CXI->getFailureOrdering(), 991 cast<AtomicCmpXchgInst>(R)->getFailureOrdering())) 992 return Res; 993 return cmpNumbers(CXI->getSynchScope(), 994 cast<AtomicCmpXchgInst>(R)->getSynchScope()); 995 } 996 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(L)) { 997 if (int Res = cmpNumbers(RMWI->getOperation(), 998 cast<AtomicRMWInst>(R)->getOperation())) 999 return Res; 1000 if (int Res = cmpNumbers(RMWI->isVolatile(), 1001 cast<AtomicRMWInst>(R)->isVolatile())) 1002 return Res; 1003 if (int Res = cmpNumbers(RMWI->getOrdering(), 1004 cast<AtomicRMWInst>(R)->getOrdering())) 1005 return Res; 1006 return cmpNumbers(RMWI->getSynchScope(), 1007 cast<AtomicRMWInst>(R)->getSynchScope()); 1008 } 1009 return 0; 1010 } 1011 1012 // Determine whether two GEP operations perform the same underlying arithmetic. 1013 // Read method declaration comments for more details. 1014 int FunctionComparator::cmpGEPs(const GEPOperator *GEPL, 1015 const GEPOperator *GEPR) { 1016 1017 unsigned int ASL = GEPL->getPointerAddressSpace(); 1018 unsigned int ASR = GEPR->getPointerAddressSpace(); 1019 1020 if (int Res = cmpNumbers(ASL, ASR)) 1021 return Res; 1022 1023 // When we have target data, we can reduce the GEP down to the value in bytes 1024 // added to the address. 1025 const DataLayout &DL = FnL->getParent()->getDataLayout(); 1026 unsigned BitWidth = DL.getPointerSizeInBits(ASL); 1027 APInt OffsetL(BitWidth, 0), OffsetR(BitWidth, 0); 1028 if (GEPL->accumulateConstantOffset(DL, OffsetL) && 1029 GEPR->accumulateConstantOffset(DL, OffsetR)) 1030 return cmpAPInts(OffsetL, OffsetR); 1031 if (int Res = cmpTypes(GEPL->getSourceElementType(), 1032 GEPR->getSourceElementType())) 1033 return Res; 1034 1035 if (int Res = cmpNumbers(GEPL->getNumOperands(), GEPR->getNumOperands())) 1036 return Res; 1037 1038 for (unsigned i = 0, e = GEPL->getNumOperands(); i != e; ++i) { 1039 if (int Res = cmpValues(GEPL->getOperand(i), GEPR->getOperand(i))) 1040 return Res; 1041 } 1042 1043 return 0; 1044 } 1045 1046 int FunctionComparator::cmpInlineAsm(const InlineAsm *L, 1047 const InlineAsm *R) const { 1048 // InlineAsm's are uniqued. If they are the same pointer, obviously they are 1049 // the same, otherwise compare the fields. 1050 if (L == R) 1051 return 0; 1052 if (int Res = cmpTypes(L->getFunctionType(), R->getFunctionType())) 1053 return Res; 1054 if (int Res = cmpMem(L->getAsmString(), R->getAsmString())) 1055 return Res; 1056 if (int Res = cmpMem(L->getConstraintString(), R->getConstraintString())) 1057 return Res; 1058 if (int Res = cmpNumbers(L->hasSideEffects(), R->hasSideEffects())) 1059 return Res; 1060 if (int Res = cmpNumbers(L->isAlignStack(), R->isAlignStack())) 1061 return Res; 1062 if (int Res = cmpNumbers(L->getDialect(), R->getDialect())) 1063 return Res; 1064 llvm_unreachable("InlineAsm blocks were not uniqued."); 1065 return 0; 1066 } 1067 1068 /// Compare two values used by the two functions under pair-wise comparison. If 1069 /// this is the first time the values are seen, they're added to the mapping so 1070 /// that we will detect mismatches on next use. 1071 /// See comments in declaration for more details. 1072 int FunctionComparator::cmpValues(const Value *L, const Value *R) { 1073 // Catch self-reference case. 1074 if (L == FnL) { 1075 if (R == FnR) 1076 return 0; 1077 return -1; 1078 } 1079 if (R == FnR) { 1080 if (L == FnL) 1081 return 0; 1082 return 1; 1083 } 1084 1085 const Constant *ConstL = dyn_cast<Constant>(L); 1086 const Constant *ConstR = dyn_cast<Constant>(R); 1087 if (ConstL && ConstR) { 1088 if (L == R) 1089 return 0; 1090 return cmpConstants(ConstL, ConstR); 1091 } 1092 1093 if (ConstL) 1094 return 1; 1095 if (ConstR) 1096 return -1; 1097 1098 const InlineAsm *InlineAsmL = dyn_cast<InlineAsm>(L); 1099 const InlineAsm *InlineAsmR = dyn_cast<InlineAsm>(R); 1100 1101 if (InlineAsmL && InlineAsmR) 1102 return cmpInlineAsm(InlineAsmL, InlineAsmR); 1103 if (InlineAsmL) 1104 return 1; 1105 if (InlineAsmR) 1106 return -1; 1107 1108 auto LeftSN = sn_mapL.insert(std::make_pair(L, sn_mapL.size())), 1109 RightSN = sn_mapR.insert(std::make_pair(R, sn_mapR.size())); 1110 1111 return cmpNumbers(LeftSN.first->second, RightSN.first->second); 1112 } 1113 // Test whether two basic blocks have equivalent behaviour. 1114 int FunctionComparator::cmpBasicBlocks(const BasicBlock *BBL, 1115 const BasicBlock *BBR) { 1116 BasicBlock::const_iterator InstL = BBL->begin(), InstLE = BBL->end(); 1117 BasicBlock::const_iterator InstR = BBR->begin(), InstRE = BBR->end(); 1118 1119 do { 1120 if (int Res = cmpValues(InstL, InstR)) 1121 return Res; 1122 1123 const GetElementPtrInst *GEPL = dyn_cast<GetElementPtrInst>(InstL); 1124 const GetElementPtrInst *GEPR = dyn_cast<GetElementPtrInst>(InstR); 1125 1126 if (GEPL && !GEPR) 1127 return 1; 1128 if (GEPR && !GEPL) 1129 return -1; 1130 1131 if (GEPL && GEPR) { 1132 if (int Res = 1133 cmpValues(GEPL->getPointerOperand(), GEPR->getPointerOperand())) 1134 return Res; 1135 if (int Res = cmpGEPs(GEPL, GEPR)) 1136 return Res; 1137 } else { 1138 if (int Res = cmpOperations(InstL, InstR)) 1139 return Res; 1140 assert(InstL->getNumOperands() == InstR->getNumOperands()); 1141 1142 for (unsigned i = 0, e = InstL->getNumOperands(); i != e; ++i) { 1143 Value *OpL = InstL->getOperand(i); 1144 Value *OpR = InstR->getOperand(i); 1145 if (int Res = cmpValues(OpL, OpR)) 1146 return Res; 1147 // cmpValues should ensure this is true. 1148 assert(cmpTypes(OpL->getType(), OpR->getType()) == 0); 1149 } 1150 } 1151 1152 ++InstL, ++InstR; 1153 } while (InstL != InstLE && InstR != InstRE); 1154 1155 if (InstL != InstLE && InstR == InstRE) 1156 return 1; 1157 if (InstL == InstLE && InstR != InstRE) 1158 return -1; 1159 return 0; 1160 } 1161 1162 // Test whether the two functions have equivalent behaviour. 1163 int FunctionComparator::compare() { 1164 1165 sn_mapL.clear(); 1166 sn_mapR.clear(); 1167 1168 if (int Res = cmpAttrs(FnL->getAttributes(), FnR->getAttributes())) 1169 return Res; 1170 1171 if (int Res = cmpNumbers(FnL->hasGC(), FnR->hasGC())) 1172 return Res; 1173 1174 if (FnL->hasGC()) { 1175 if (int Res = cmpMem(FnL->getGC(), FnR->getGC())) 1176 return Res; 1177 } 1178 1179 if (int Res = cmpNumbers(FnL->hasSection(), FnR->hasSection())) 1180 return Res; 1181 1182 if (FnL->hasSection()) { 1183 if (int Res = cmpMem(FnL->getSection(), FnR->getSection())) 1184 return Res; 1185 } 1186 1187 if (int Res = cmpNumbers(FnL->isVarArg(), FnR->isVarArg())) 1188 return Res; 1189 1190 // TODO: if it's internal and only used in direct calls, we could handle this 1191 // case too. 1192 if (int Res = cmpNumbers(FnL->getCallingConv(), FnR->getCallingConv())) 1193 return Res; 1194 1195 if (int Res = cmpTypes(FnL->getFunctionType(), FnR->getFunctionType())) 1196 return Res; 1197 1198 assert(FnL->arg_size() == FnR->arg_size() && 1199 "Identically typed functions have different numbers of args!"); 1200 1201 // Visit the arguments so that they get enumerated in the order they're 1202 // passed in. 1203 for (Function::const_arg_iterator ArgLI = FnL->arg_begin(), 1204 ArgRI = FnR->arg_begin(), 1205 ArgLE = FnL->arg_end(); 1206 ArgLI != ArgLE; ++ArgLI, ++ArgRI) { 1207 if (cmpValues(ArgLI, ArgRI) != 0) 1208 llvm_unreachable("Arguments repeat!"); 1209 } 1210 1211 // We do a CFG-ordered walk since the actual ordering of the blocks in the 1212 // linked list is immaterial. Our walk starts at the entry block for both 1213 // functions, then takes each block from each terminator in order. As an 1214 // artifact, this also means that unreachable blocks are ignored. 1215 SmallVector<const BasicBlock *, 8> FnLBBs, FnRBBs; 1216 SmallSet<const BasicBlock *, 128> VisitedBBs; // in terms of F1. 1217 1218 FnLBBs.push_back(&FnL->getEntryBlock()); 1219 FnRBBs.push_back(&FnR->getEntryBlock()); 1220 1221 VisitedBBs.insert(FnLBBs[0]); 1222 while (!FnLBBs.empty()) { 1223 const BasicBlock *BBL = FnLBBs.pop_back_val(); 1224 const BasicBlock *BBR = FnRBBs.pop_back_val(); 1225 1226 if (int Res = cmpValues(BBL, BBR)) 1227 return Res; 1228 1229 if (int Res = cmpBasicBlocks(BBL, BBR)) 1230 return Res; 1231 1232 const TerminatorInst *TermL = BBL->getTerminator(); 1233 const TerminatorInst *TermR = BBR->getTerminator(); 1234 1235 assert(TermL->getNumSuccessors() == TermR->getNumSuccessors()); 1236 for (unsigned i = 0, e = TermL->getNumSuccessors(); i != e; ++i) { 1237 if (!VisitedBBs.insert(TermL->getSuccessor(i)).second) 1238 continue; 1239 1240 FnLBBs.push_back(TermL->getSuccessor(i)); 1241 FnRBBs.push_back(TermR->getSuccessor(i)); 1242 } 1243 } 1244 return 0; 1245 } 1246 1247 // Accumulate the hash of a sequence of 64-bit integers. This is similar to a 1248 // hash of a sequence of 64bit ints, but the entire input does not need to be 1249 // available at once. This interface is necessary for functionHash because it 1250 // needs to accumulate the hash as the structure of the function is traversed 1251 // without saving these values to an intermediate buffer. This form of hashing 1252 // is not often needed, as usually the object to hash is just read from a 1253 // buffer. 1254 class HashAccumulator64 { 1255 uint64_t Hash; 1256 public: 1257 // Initialize to random constant, so the state isn't zero. 1258 HashAccumulator64() { Hash = 0x6acaa36bef8325c5ULL; } 1259 void add(uint64_t V) { 1260 Hash = llvm::hashing::detail::hash_16_bytes(Hash, V); 1261 } 1262 // No finishing is required, because the entire hash value is used. 1263 uint64_t getHash() { return Hash; } 1264 }; 1265 1266 // A function hash is calculated by considering only the number of arguments and 1267 // whether a function is varargs, the order of basic blocks (given by the 1268 // successors of each basic block in depth first order), and the order of 1269 // opcodes of each instruction within each of these basic blocks. This mirrors 1270 // the strategy compare() uses to compare functions by walking the BBs in depth 1271 // first order and comparing each instruction in sequence. Because this hash 1272 // does not look at the operands, it is insensitive to things such as the 1273 // target of calls and the constants used in the function, which makes it useful 1274 // when possibly merging functions which are the same modulo constants and call 1275 // targets. 1276 FunctionComparator::FunctionHash FunctionComparator::functionHash(Function &F) { 1277 HashAccumulator64 H; 1278 H.add(F.isVarArg()); 1279 H.add(F.arg_size()); 1280 1281 SmallVector<const BasicBlock *, 8> BBs; 1282 SmallSet<const BasicBlock *, 16> VisitedBBs; 1283 1284 // Walk the blocks in the same order as FunctionComparator::cmpBasicBlocks(), 1285 // accumulating the hash of the function "structure." (BB and opcode sequence) 1286 BBs.push_back(&F.getEntryBlock()); 1287 VisitedBBs.insert(BBs[0]); 1288 while (!BBs.empty()) { 1289 const BasicBlock *BB = BBs.pop_back_val(); 1290 // This random value acts as a block header, as otherwise the partition of 1291 // opcodes into BBs wouldn't affect the hash, only the order of the opcodes 1292 H.add(45798); 1293 for (auto &Inst : *BB) { 1294 H.add(Inst.getOpcode()); 1295 } 1296 const TerminatorInst *Term = BB->getTerminator(); 1297 for (unsigned i = 0, e = Term->getNumSuccessors(); i != e; ++i) { 1298 if (!VisitedBBs.insert(Term->getSuccessor(i)).second) 1299 continue; 1300 BBs.push_back(Term->getSuccessor(i)); 1301 } 1302 } 1303 return H.getHash(); 1304 } 1305 1306 1307 namespace { 1308 1309 /// MergeFunctions finds functions which will generate identical machine code, 1310 /// by considering all pointer types to be equivalent. Once identified, 1311 /// MergeFunctions will fold them by replacing a call to one to a call to a 1312 /// bitcast of the other. 1313 /// 1314 class MergeFunctions : public ModulePass { 1315 public: 1316 static char ID; 1317 MergeFunctions() 1318 : ModulePass(ID), FnTree(FunctionNodeCmp(&GlobalNumbers)), FNodesInTree(), 1319 HasGlobalAliases(false) { 1320 initializeMergeFunctionsPass(*PassRegistry::getPassRegistry()); 1321 } 1322 1323 bool runOnModule(Module &M) override; 1324 1325 private: 1326 // The function comparison operator is provided here so that FunctionNodes do 1327 // not need to become larger with another pointer. 1328 class FunctionNodeCmp { 1329 GlobalNumberState* GlobalNumbers; 1330 public: 1331 FunctionNodeCmp(GlobalNumberState* GN) : GlobalNumbers(GN) {} 1332 bool operator()(const FunctionNode &LHS, const FunctionNode &RHS) const { 1333 // Order first by hashes, then full function comparison. 1334 if (LHS.getHash() != RHS.getHash()) 1335 return LHS.getHash() < RHS.getHash(); 1336 FunctionComparator FCmp(LHS.getFunc(), RHS.getFunc(), GlobalNumbers); 1337 return FCmp.compare() == -1; 1338 } 1339 }; 1340 typedef std::set<FunctionNode, FunctionNodeCmp> FnTreeType; 1341 1342 GlobalNumberState GlobalNumbers; 1343 1344 /// A work queue of functions that may have been modified and should be 1345 /// analyzed again. 1346 std::vector<WeakVH> Deferred; 1347 1348 /// Checks the rules of order relation introduced among functions set. 1349 /// Returns true, if sanity check has been passed, and false if failed. 1350 bool doSanityCheck(std::vector<WeakVH> &Worklist); 1351 1352 /// Insert a ComparableFunction into the FnTree, or merge it away if it's 1353 /// equal to one that's already present. 1354 bool insert(Function *NewFunction); 1355 1356 /// Remove a Function from the FnTree and queue it up for a second sweep of 1357 /// analysis. 1358 void remove(Function *F); 1359 1360 /// Find the functions that use this Value and remove them from FnTree and 1361 /// queue the functions. 1362 void removeUsers(Value *V); 1363 1364 /// Replace all direct calls of Old with calls of New. Will bitcast New if 1365 /// necessary to make types match. 1366 void replaceDirectCallers(Function *Old, Function *New); 1367 1368 /// Merge two equivalent functions. Upon completion, G may be deleted, or may 1369 /// be converted into a thunk. In either case, it should never be visited 1370 /// again. 1371 void mergeTwoFunctions(Function *F, Function *G); 1372 1373 /// Replace G with a thunk or an alias to F. Deletes G. 1374 void writeThunkOrAlias(Function *F, Function *G); 1375 1376 /// Replace G with a simple tail call to bitcast(F). Also replace direct uses 1377 /// of G with bitcast(F). Deletes G. 1378 void writeThunk(Function *F, Function *G); 1379 1380 /// Replace G with an alias to F. Deletes G. 1381 void writeAlias(Function *F, Function *G); 1382 1383 /// Replace function F with function G in the function tree. 1384 void replaceFunctionInTree(const FunctionNode &FN, Function *G); 1385 1386 /// The set of all distinct functions. Use the insert() and remove() methods 1387 /// to modify it. The map allows efficient lookup and deferring of Functions. 1388 FnTreeType FnTree; 1389 // Map functions to the iterators of the FunctionNode which contains them 1390 // in the FnTree. This must be updated carefully whenever the FnTree is 1391 // modified, i.e. in insert(), remove(), and replaceFunctionInTree(), to avoid 1392 // dangling iterators into FnTree. The invariant that preserves this is that 1393 // there is exactly one mapping F -> FN for each FunctionNode FN in FnTree. 1394 ValueMap<Function*, FnTreeType::iterator> FNodesInTree; 1395 1396 /// Whether or not the target supports global aliases. 1397 bool HasGlobalAliases; 1398 }; 1399 1400 } // end anonymous namespace 1401 1402 char MergeFunctions::ID = 0; 1403 INITIALIZE_PASS(MergeFunctions, "mergefunc", "Merge Functions", false, false) 1404 1405 ModulePass *llvm::createMergeFunctionsPass() { 1406 return new MergeFunctions(); 1407 } 1408 1409 bool MergeFunctions::doSanityCheck(std::vector<WeakVH> &Worklist) { 1410 if (const unsigned Max = NumFunctionsForSanityCheck) { 1411 unsigned TripleNumber = 0; 1412 bool Valid = true; 1413 1414 dbgs() << "MERGEFUNC-SANITY: Started for first " << Max << " functions.\n"; 1415 1416 unsigned i = 0; 1417 for (std::vector<WeakVH>::iterator I = Worklist.begin(), E = Worklist.end(); 1418 I != E && i < Max; ++I, ++i) { 1419 unsigned j = i; 1420 for (std::vector<WeakVH>::iterator J = I; J != E && j < Max; ++J, ++j) { 1421 Function *F1 = cast<Function>(*I); 1422 Function *F2 = cast<Function>(*J); 1423 int Res1 = FunctionComparator(F1, F2, &GlobalNumbers).compare(); 1424 int Res2 = FunctionComparator(F2, F1, &GlobalNumbers).compare(); 1425 1426 // If F1 <= F2, then F2 >= F1, otherwise report failure. 1427 if (Res1 != -Res2) { 1428 dbgs() << "MERGEFUNC-SANITY: Non-symmetric; triple: " << TripleNumber 1429 << "\n"; 1430 F1->dump(); 1431 F2->dump(); 1432 Valid = false; 1433 } 1434 1435 if (Res1 == 0) 1436 continue; 1437 1438 unsigned k = j; 1439 for (std::vector<WeakVH>::iterator K = J; K != E && k < Max; 1440 ++k, ++K, ++TripleNumber) { 1441 if (K == J) 1442 continue; 1443 1444 Function *F3 = cast<Function>(*K); 1445 int Res3 = FunctionComparator(F1, F3, &GlobalNumbers).compare(); 1446 int Res4 = FunctionComparator(F2, F3, &GlobalNumbers).compare(); 1447 1448 bool Transitive = true; 1449 1450 if (Res1 != 0 && Res1 == Res4) { 1451 // F1 > F2, F2 > F3 => F1 > F3 1452 Transitive = Res3 == Res1; 1453 } else if (Res3 != 0 && Res3 == -Res4) { 1454 // F1 > F3, F3 > F2 => F1 > F2 1455 Transitive = Res3 == Res1; 1456 } else if (Res4 != 0 && -Res3 == Res4) { 1457 // F2 > F3, F3 > F1 => F2 > F1 1458 Transitive = Res4 == -Res1; 1459 } 1460 1461 if (!Transitive) { 1462 dbgs() << "MERGEFUNC-SANITY: Non-transitive; triple: " 1463 << TripleNumber << "\n"; 1464 dbgs() << "Res1, Res3, Res4: " << Res1 << ", " << Res3 << ", " 1465 << Res4 << "\n"; 1466 F1->dump(); 1467 F2->dump(); 1468 F3->dump(); 1469 Valid = false; 1470 } 1471 } 1472 } 1473 } 1474 1475 dbgs() << "MERGEFUNC-SANITY: " << (Valid ? "Passed." : "Failed.") << "\n"; 1476 return Valid; 1477 } 1478 return true; 1479 } 1480 1481 bool MergeFunctions::runOnModule(Module &M) { 1482 bool Changed = false; 1483 1484 // All functions in the module, ordered by hash. Functions with a unique 1485 // hash value are easily eliminated. 1486 std::vector<std::pair<FunctionComparator::FunctionHash, Function *>> 1487 HashedFuncs; 1488 for (Function &Func : M) { 1489 if (!Func.isDeclaration() && !Func.hasAvailableExternallyLinkage()) { 1490 HashedFuncs.push_back({FunctionComparator::functionHash(Func), &Func}); 1491 } 1492 } 1493 1494 std::stable_sort( 1495 HashedFuncs.begin(), HashedFuncs.end(), 1496 [](const std::pair<FunctionComparator::FunctionHash, Function *> &a, 1497 const std::pair<FunctionComparator::FunctionHash, Function *> &b) { 1498 return a.first < b.first; 1499 }); 1500 1501 auto S = HashedFuncs.begin(); 1502 for (auto I = HashedFuncs.begin(), IE = HashedFuncs.end(); I != IE; ++I) { 1503 // If the hash value matches the previous value or the next one, we must 1504 // consider merging it. Otherwise it is dropped and never considered again. 1505 if ((I != S && std::prev(I)->first == I->first) || 1506 (std::next(I) != IE && std::next(I)->first == I->first) ) { 1507 Deferred.push_back(WeakVH(I->second)); 1508 } 1509 } 1510 1511 do { 1512 std::vector<WeakVH> Worklist; 1513 Deferred.swap(Worklist); 1514 1515 DEBUG(doSanityCheck(Worklist)); 1516 1517 DEBUG(dbgs() << "size of module: " << M.size() << '\n'); 1518 DEBUG(dbgs() << "size of worklist: " << Worklist.size() << '\n'); 1519 1520 // Insert only strong functions and merge them. Strong function merging 1521 // always deletes one of them. 1522 for (std::vector<WeakVH>::iterator I = Worklist.begin(), 1523 E = Worklist.end(); I != E; ++I) { 1524 if (!*I) continue; 1525 Function *F = cast<Function>(*I); 1526 if (!F->isDeclaration() && !F->hasAvailableExternallyLinkage() && 1527 !F->mayBeOverridden()) { 1528 Changed |= insert(F); 1529 } 1530 } 1531 1532 // Insert only weak functions and merge them. By doing these second we 1533 // create thunks to the strong function when possible. When two weak 1534 // functions are identical, we create a new strong function with two weak 1535 // weak thunks to it which are identical but not mergable. 1536 for (std::vector<WeakVH>::iterator I = Worklist.begin(), 1537 E = Worklist.end(); I != E; ++I) { 1538 if (!*I) continue; 1539 Function *F = cast<Function>(*I); 1540 if (!F->isDeclaration() && !F->hasAvailableExternallyLinkage() && 1541 F->mayBeOverridden()) { 1542 Changed |= insert(F); 1543 } 1544 } 1545 DEBUG(dbgs() << "size of FnTree: " << FnTree.size() << '\n'); 1546 } while (!Deferred.empty()); 1547 1548 FnTree.clear(); 1549 1550 return Changed; 1551 } 1552 1553 // Replace direct callers of Old with New. 1554 void MergeFunctions::replaceDirectCallers(Function *Old, Function *New) { 1555 Constant *BitcastNew = ConstantExpr::getBitCast(New, Old->getType()); 1556 for (auto UI = Old->use_begin(), UE = Old->use_end(); UI != UE;) { 1557 Use *U = &*UI; 1558 ++UI; 1559 CallSite CS(U->getUser()); 1560 if (CS && CS.isCallee(U)) { 1561 // Transfer the called function's attributes to the call site. Due to the 1562 // bitcast we will 'lose' ABI changing attributes because the 'called 1563 // function' is no longer a Function* but the bitcast. Code that looks up 1564 // the attributes from the called function will fail. 1565 1566 // FIXME: This is not actually true, at least not anymore. The callsite 1567 // will always have the same ABI affecting attributes as the callee, 1568 // because otherwise the original input has UB. Note that Old and New 1569 // always have matching ABI, so no attributes need to be changed. 1570 // Transferring other attributes may help other optimizations, but that 1571 // should be done uniformly and not in this ad-hoc way. 1572 auto &Context = New->getContext(); 1573 auto NewFuncAttrs = New->getAttributes(); 1574 auto CallSiteAttrs = CS.getAttributes(); 1575 1576 CallSiteAttrs = CallSiteAttrs.addAttributes( 1577 Context, AttributeSet::ReturnIndex, NewFuncAttrs.getRetAttributes()); 1578 1579 for (unsigned argIdx = 0; argIdx < CS.arg_size(); argIdx++) { 1580 AttributeSet Attrs = NewFuncAttrs.getParamAttributes(argIdx); 1581 if (Attrs.getNumSlots()) 1582 CallSiteAttrs = CallSiteAttrs.addAttributes(Context, argIdx, Attrs); 1583 } 1584 1585 CS.setAttributes(CallSiteAttrs); 1586 1587 remove(CS.getInstruction()->getParent()->getParent()); 1588 U->set(BitcastNew); 1589 } 1590 } 1591 } 1592 1593 // Replace G with an alias to F if possible, or else a thunk to F. Deletes G. 1594 void MergeFunctions::writeThunkOrAlias(Function *F, Function *G) { 1595 if (HasGlobalAliases && G->hasUnnamedAddr()) { 1596 if (G->hasExternalLinkage() || G->hasLocalLinkage() || 1597 G->hasWeakLinkage()) { 1598 writeAlias(F, G); 1599 return; 1600 } 1601 } 1602 1603 writeThunk(F, G); 1604 } 1605 1606 // Helper for writeThunk, 1607 // Selects proper bitcast operation, 1608 // but a bit simpler then CastInst::getCastOpcode. 1609 static Value *createCast(IRBuilder<false> &Builder, Value *V, Type *DestTy) { 1610 Type *SrcTy = V->getType(); 1611 if (SrcTy->isStructTy()) { 1612 assert(DestTy->isStructTy()); 1613 assert(SrcTy->getStructNumElements() == DestTy->getStructNumElements()); 1614 Value *Result = UndefValue::get(DestTy); 1615 for (unsigned int I = 0, E = SrcTy->getStructNumElements(); I < E; ++I) { 1616 Value *Element = createCast( 1617 Builder, Builder.CreateExtractValue(V, makeArrayRef(I)), 1618 DestTy->getStructElementType(I)); 1619 1620 Result = 1621 Builder.CreateInsertValue(Result, Element, makeArrayRef(I)); 1622 } 1623 return Result; 1624 } 1625 assert(!DestTy->isStructTy()); 1626 if (SrcTy->isIntegerTy() && DestTy->isPointerTy()) 1627 return Builder.CreateIntToPtr(V, DestTy); 1628 else if (SrcTy->isPointerTy() && DestTy->isIntegerTy()) 1629 return Builder.CreatePtrToInt(V, DestTy); 1630 else 1631 return Builder.CreateBitCast(V, DestTy); 1632 } 1633 1634 // Replace G with a simple tail call to bitcast(F). Also replace direct uses 1635 // of G with bitcast(F). Deletes G. 1636 void MergeFunctions::writeThunk(Function *F, Function *G) { 1637 if (!G->mayBeOverridden()) { 1638 // Redirect direct callers of G to F. 1639 replaceDirectCallers(G, F); 1640 } 1641 1642 // If G was internal then we may have replaced all uses of G with F. If so, 1643 // stop here and delete G. There's no need for a thunk. 1644 if (G->hasLocalLinkage() && G->use_empty()) { 1645 G->eraseFromParent(); 1646 return; 1647 } 1648 1649 Function *NewG = Function::Create(G->getFunctionType(), G->getLinkage(), "", 1650 G->getParent()); 1651 BasicBlock *BB = BasicBlock::Create(F->getContext(), "", NewG); 1652 IRBuilder<false> Builder(BB); 1653 1654 SmallVector<Value *, 16> Args; 1655 unsigned i = 0; 1656 FunctionType *FFTy = F->getFunctionType(); 1657 for (Function::arg_iterator AI = NewG->arg_begin(), AE = NewG->arg_end(); 1658 AI != AE; ++AI) { 1659 Args.push_back(createCast(Builder, (Value*)AI, FFTy->getParamType(i))); 1660 ++i; 1661 } 1662 1663 CallInst *CI = Builder.CreateCall(F, Args); 1664 CI->setTailCall(); 1665 CI->setCallingConv(F->getCallingConv()); 1666 CI->setAttributes(F->getAttributes()); 1667 if (NewG->getReturnType()->isVoidTy()) { 1668 Builder.CreateRetVoid(); 1669 } else { 1670 Builder.CreateRet(createCast(Builder, CI, NewG->getReturnType())); 1671 } 1672 1673 NewG->copyAttributesFrom(G); 1674 NewG->takeName(G); 1675 removeUsers(G); 1676 G->replaceAllUsesWith(NewG); 1677 G->eraseFromParent(); 1678 1679 DEBUG(dbgs() << "writeThunk: " << NewG->getName() << '\n'); 1680 ++NumThunksWritten; 1681 } 1682 1683 // Replace G with an alias to F and delete G. 1684 void MergeFunctions::writeAlias(Function *F, Function *G) { 1685 auto *GA = GlobalAlias::create(G->getLinkage(), "", F); 1686 F->setAlignment(std::max(F->getAlignment(), G->getAlignment())); 1687 GA->takeName(G); 1688 GA->setVisibility(G->getVisibility()); 1689 removeUsers(G); 1690 G->replaceAllUsesWith(GA); 1691 G->eraseFromParent(); 1692 1693 DEBUG(dbgs() << "writeAlias: " << GA->getName() << '\n'); 1694 ++NumAliasesWritten; 1695 } 1696 1697 // Merge two equivalent functions. Upon completion, Function G is deleted. 1698 void MergeFunctions::mergeTwoFunctions(Function *F, Function *G) { 1699 if (F->mayBeOverridden()) { 1700 assert(G->mayBeOverridden()); 1701 1702 // Make them both thunks to the same internal function. 1703 Function *H = Function::Create(F->getFunctionType(), F->getLinkage(), "", 1704 F->getParent()); 1705 H->copyAttributesFrom(F); 1706 H->takeName(F); 1707 removeUsers(F); 1708 F->replaceAllUsesWith(H); 1709 1710 unsigned MaxAlignment = std::max(G->getAlignment(), H->getAlignment()); 1711 1712 if (HasGlobalAliases) { 1713 writeAlias(F, G); 1714 writeAlias(F, H); 1715 } else { 1716 writeThunk(F, G); 1717 writeThunk(F, H); 1718 } 1719 1720 F->setAlignment(MaxAlignment); 1721 F->setLinkage(GlobalValue::PrivateLinkage); 1722 ++NumDoubleWeak; 1723 } else { 1724 writeThunkOrAlias(F, G); 1725 } 1726 1727 ++NumFunctionsMerged; 1728 } 1729 1730 /// Replace function F by function G. 1731 void MergeFunctions::replaceFunctionInTree(const FunctionNode &FN, 1732 Function *G) { 1733 Function *F = FN.getFunc(); 1734 assert(FunctionComparator(F, G, &GlobalNumbers).compare() == 0 && 1735 "The two functions must be equal"); 1736 1737 auto I = FNodesInTree.find(F); 1738 assert(I != FNodesInTree.end() && "F should be in FNodesInTree"); 1739 assert(FNodesInTree.count(G) == 0 && "FNodesInTree should not contain G"); 1740 1741 FnTreeType::iterator IterToFNInFnTree = I->second; 1742 assert(&(*IterToFNInFnTree) == &FN && "F should map to FN in FNodesInTree."); 1743 // Remove F -> FN and insert G -> FN 1744 FNodesInTree.erase(I); 1745 FNodesInTree.insert({G, IterToFNInFnTree}); 1746 // Replace F with G in FN, which is stored inside the FnTree. 1747 FN.replaceBy(G); 1748 } 1749 1750 // Insert a ComparableFunction into the FnTree, or merge it away if equal to one 1751 // that was already inserted. 1752 bool MergeFunctions::insert(Function *NewFunction) { 1753 std::pair<FnTreeType::iterator, bool> Result = 1754 FnTree.insert(FunctionNode(NewFunction)); 1755 1756 if (Result.second) { 1757 assert(FNodesInTree.count(NewFunction) == 0); 1758 FNodesInTree.insert({NewFunction, Result.first}); 1759 DEBUG(dbgs() << "Inserting as unique: " << NewFunction->getName() << '\n'); 1760 return false; 1761 } 1762 1763 const FunctionNode &OldF = *Result.first; 1764 1765 // Don't merge tiny functions, since it can just end up making the function 1766 // larger. 1767 // FIXME: Should still merge them if they are unnamed_addr and produce an 1768 // alias. 1769 if (NewFunction->size() == 1) { 1770 if (NewFunction->front().size() <= 2) { 1771 DEBUG(dbgs() << NewFunction->getName() 1772 << " is to small to bother merging\n"); 1773 return false; 1774 } 1775 } 1776 1777 // Impose a total order (by name) on the replacement of functions. This is 1778 // important when operating on more than one module independently to prevent 1779 // cycles of thunks calling each other when the modules are linked together. 1780 // 1781 // When one function is weak and the other is strong there is an order imposed 1782 // already. We process strong functions before weak functions. 1783 if ((OldF.getFunc()->mayBeOverridden() && NewFunction->mayBeOverridden()) || 1784 (!OldF.getFunc()->mayBeOverridden() && !NewFunction->mayBeOverridden())) 1785 if (OldF.getFunc()->getName() > NewFunction->getName()) { 1786 // Swap the two functions. 1787 Function *F = OldF.getFunc(); 1788 replaceFunctionInTree(*Result.first, NewFunction); 1789 NewFunction = F; 1790 assert(OldF.getFunc() != F && "Must have swapped the functions."); 1791 } 1792 1793 // Never thunk a strong function to a weak function. 1794 assert(!OldF.getFunc()->mayBeOverridden() || NewFunction->mayBeOverridden()); 1795 1796 DEBUG(dbgs() << " " << OldF.getFunc()->getName() 1797 << " == " << NewFunction->getName() << '\n'); 1798 1799 Function *DeleteF = NewFunction; 1800 mergeTwoFunctions(OldF.getFunc(), DeleteF); 1801 return true; 1802 } 1803 1804 // Remove a function from FnTree. If it was already in FnTree, add 1805 // it to Deferred so that we'll look at it in the next round. 1806 void MergeFunctions::remove(Function *F) { 1807 auto I = FNodesInTree.find(F); 1808 if (I != FNodesInTree.end()) { 1809 DEBUG(dbgs() << "Deferred " << F->getName()<< ".\n"); 1810 FnTree.erase(I->second); 1811 // I->second has been invalidated, remove it from the FNodesInTree map to 1812 // preserve the invariant. 1813 FNodesInTree.erase(I); 1814 Deferred.emplace_back(F); 1815 } 1816 } 1817 1818 // For each instruction used by the value, remove() the function that contains 1819 // the instruction. This should happen right before a call to RAUW. 1820 void MergeFunctions::removeUsers(Value *V) { 1821 std::vector<Value *> Worklist; 1822 Worklist.push_back(V); 1823 SmallSet<Value*, 8> Visited; 1824 Visited.insert(V); 1825 while (!Worklist.empty()) { 1826 Value *V = Worklist.back(); 1827 Worklist.pop_back(); 1828 1829 for (User *U : V->users()) { 1830 if (Instruction *I = dyn_cast<Instruction>(U)) { 1831 remove(I->getParent()->getParent()); 1832 } else if (isa<GlobalValue>(U)) { 1833 // do nothing 1834 } else if (Constant *C = dyn_cast<Constant>(U)) { 1835 for (User *UU : C->users()) { 1836 if (!Visited.insert(UU).second) 1837 Worklist.push_back(UU); 1838 } 1839 } 1840 } 1841 } 1842 } 1843