1 //===- MergeFunctions.cpp - Merge identical functions ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass looks for equivalent functions that are mergable and folds them. 11 // 12 // A hash is computed from the function, based on its type and number of 13 // basic blocks. 14 // 15 // Once all hashes are computed, we perform an expensive equality comparison 16 // on each function pair. This takes n^2/2 comparisons per bucket, so it's 17 // important that the hash function be high quality. The equality comparison 18 // iterates through each instruction in each basic block. 19 // 20 // When a match is found the functions are folded. If both functions are 21 // overridable, we move the functionality into a new internal function and 22 // leave two overridable thunks to it. 23 // 24 //===----------------------------------------------------------------------===// 25 // 26 // Future work: 27 // 28 // * virtual functions. 29 // 30 // Many functions have their address taken by the virtual function table for 31 // the object they belong to. However, as long as it's only used for a lookup 32 // and call, this is irrelevant, and we'd like to fold such functions. 33 // 34 // * switch from n^2 pair-wise comparisons to an n-way comparison for each 35 // bucket. 36 // 37 // * be smarter about bitcasts. 38 // 39 // In order to fold functions, we will sometimes add either bitcast instructions 40 // or bitcast constant expressions. Unfortunately, this can confound further 41 // analysis since the two functions differ where one has a bitcast and the 42 // other doesn't. We should learn to look through bitcasts. 43 // 44 //===----------------------------------------------------------------------===// 45 46 #include "llvm/Transforms/IPO.h" 47 #include "llvm/ADT/DenseSet.h" 48 #include "llvm/ADT/FoldingSet.h" 49 #include "llvm/ADT/STLExtras.h" 50 #include "llvm/ADT/SmallSet.h" 51 #include "llvm/ADT/Statistic.h" 52 #include "llvm/IR/CallSite.h" 53 #include "llvm/IR/Constants.h" 54 #include "llvm/IR/DataLayout.h" 55 #include "llvm/IR/IRBuilder.h" 56 #include "llvm/IR/InlineAsm.h" 57 #include "llvm/IR/Instructions.h" 58 #include "llvm/IR/LLVMContext.h" 59 #include "llvm/IR/Module.h" 60 #include "llvm/IR/Operator.h" 61 #include "llvm/IR/ValueHandle.h" 62 #include "llvm/Pass.h" 63 #include "llvm/Support/Debug.h" 64 #include "llvm/Support/ErrorHandling.h" 65 #include "llvm/Support/raw_ostream.h" 66 #include <vector> 67 using namespace llvm; 68 69 #define DEBUG_TYPE "mergefunc" 70 71 STATISTIC(NumFunctionsMerged, "Number of functions merged"); 72 STATISTIC(NumThunksWritten, "Number of thunks generated"); 73 STATISTIC(NumAliasesWritten, "Number of aliases generated"); 74 STATISTIC(NumDoubleWeak, "Number of new functions created"); 75 76 /// Returns the type id for a type to be hashed. We turn pointer types into 77 /// integers here because the actual compare logic below considers pointers and 78 /// integers of the same size as equal. 79 static Type::TypeID getTypeIDForHash(Type *Ty) { 80 if (Ty->isPointerTy()) 81 return Type::IntegerTyID; 82 return Ty->getTypeID(); 83 } 84 85 /// Creates a hash-code for the function which is the same for any two 86 /// functions that will compare equal, without looking at the instructions 87 /// inside the function. 88 static unsigned profileFunction(const Function *F) { 89 FunctionType *FTy = F->getFunctionType(); 90 91 FoldingSetNodeID ID; 92 ID.AddInteger(F->size()); 93 ID.AddInteger(F->getCallingConv()); 94 ID.AddBoolean(F->hasGC()); 95 ID.AddBoolean(FTy->isVarArg()); 96 ID.AddInteger(getTypeIDForHash(FTy->getReturnType())); 97 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 98 ID.AddInteger(getTypeIDForHash(FTy->getParamType(i))); 99 return ID.ComputeHash(); 100 } 101 102 namespace { 103 104 /// ComparableFunction - A struct that pairs together functions with a 105 /// DataLayout so that we can keep them together as elements in the DenseSet. 106 class ComparableFunction { 107 public: 108 static const ComparableFunction EmptyKey; 109 static const ComparableFunction TombstoneKey; 110 static DataLayout * const LookupOnly; 111 112 ComparableFunction(Function *Func, const DataLayout *DL) 113 : Func(Func), Hash(profileFunction(Func)), DL(DL) {} 114 115 Function *getFunc() const { return Func; } 116 unsigned getHash() const { return Hash; } 117 const DataLayout *getDataLayout() const { return DL; } 118 119 // Drops AssertingVH reference to the function. Outside of debug mode, this 120 // does nothing. 121 void release() { 122 assert(Func && 123 "Attempted to release function twice, or release empty/tombstone!"); 124 Func = nullptr; 125 } 126 127 private: 128 explicit ComparableFunction(unsigned Hash) 129 : Func(nullptr), Hash(Hash), DL(nullptr) {} 130 131 AssertingVH<Function> Func; 132 unsigned Hash; 133 const DataLayout *DL; 134 }; 135 136 const ComparableFunction ComparableFunction::EmptyKey = ComparableFunction(0); 137 const ComparableFunction ComparableFunction::TombstoneKey = 138 ComparableFunction(1); 139 DataLayout *const ComparableFunction::LookupOnly = (DataLayout*)(-1); 140 141 } 142 143 namespace llvm { 144 template <> 145 struct DenseMapInfo<ComparableFunction> { 146 static ComparableFunction getEmptyKey() { 147 return ComparableFunction::EmptyKey; 148 } 149 static ComparableFunction getTombstoneKey() { 150 return ComparableFunction::TombstoneKey; 151 } 152 static unsigned getHashValue(const ComparableFunction &CF) { 153 return CF.getHash(); 154 } 155 static bool isEqual(const ComparableFunction &LHS, 156 const ComparableFunction &RHS); 157 }; 158 } 159 160 namespace { 161 162 /// FunctionComparator - Compares two functions to determine whether or not 163 /// they will generate machine code with the same behaviour. DataLayout is 164 /// used if available. The comparator always fails conservatively (erring on the 165 /// side of claiming that two functions are different). 166 class FunctionComparator { 167 public: 168 FunctionComparator(const DataLayout *DL, const Function *F1, 169 const Function *F2) 170 : F1(F1), F2(F2), DL(DL) {} 171 172 /// Test whether the two functions have equivalent behaviour. 173 bool compare(); 174 175 private: 176 /// Test whether two basic blocks have equivalent behaviour. 177 bool compare(const BasicBlock *BB1, const BasicBlock *BB2); 178 179 /// Assign or look up previously assigned numbers for the two values, and 180 /// return whether the numbers are equal. Numbers are assigned in the order 181 /// visited. 182 bool enumerate(const Value *V1, const Value *V2); 183 184 /// Compare two Instructions for equivalence, similar to 185 /// Instruction::isSameOperationAs but with modifications to the type 186 /// comparison. 187 bool isEquivalentOperation(const Instruction *I1, 188 const Instruction *I2) const; 189 190 /// Compare two GEPs for equivalent pointer arithmetic. 191 bool isEquivalentGEP(const GEPOperator *GEP1, const GEPOperator *GEP2); 192 bool isEquivalentGEP(const GetElementPtrInst *GEP1, 193 const GetElementPtrInst *GEP2) { 194 return isEquivalentGEP(cast<GEPOperator>(GEP1), cast<GEPOperator>(GEP2)); 195 } 196 197 /// cmpType - compares two types, 198 /// defines total ordering among the types set. 199 /// 200 /// Return values: 201 /// 0 if types are equal, 202 /// -1 if Left is less than Right, 203 /// +1 if Left is greater than Right. 204 /// 205 /// Description: 206 /// Comparison is broken onto stages. Like in lexicographical comparison 207 /// stage coming first has higher priority. 208 /// On each explanation stage keep in mind total ordering properties. 209 /// 210 /// 0. Before comparison we coerce pointer types of 0 address space to 211 /// integer. 212 /// We also don't bother with same type at left and right, so 213 /// just return 0 in this case. 214 /// 215 /// 1. If types are of different kind (different type IDs). 216 /// Return result of type IDs comparison, treating them as numbers. 217 /// 2. If types are vectors or integers, compare Type* values as numbers. 218 /// 3. Types has same ID, so check whether they belongs to the next group: 219 /// * Void 220 /// * Float 221 /// * Double 222 /// * X86_FP80 223 /// * FP128 224 /// * PPC_FP128 225 /// * Label 226 /// * Metadata 227 /// If so - return 0, yes - we can treat these types as equal only because 228 /// their IDs are same. 229 /// 4. If Left and Right are pointers, return result of address space 230 /// comparison (numbers comparison). We can treat pointer types of same 231 /// address space as equal. 232 /// 5. If types are complex. 233 /// Then both Left and Right are to be expanded and their element types will 234 /// be checked with the same way. If we get Res != 0 on some stage, return it. 235 /// Otherwise return 0. 236 /// 6. For all other cases put llvm_unreachable. 237 int cmpType(Type *TyL, Type *TyR) const; 238 239 bool isEquivalentType(Type *Ty1, Type *Ty2) const { 240 return cmpType(Ty1, Ty2) == 0; 241 } 242 243 int cmpNumbers(uint64_t L, uint64_t R) const; 244 245 // The two functions undergoing comparison. 246 const Function *F1, *F2; 247 248 const DataLayout *DL; 249 250 DenseMap<const Value *, const Value *> id_map; 251 DenseSet<const Value *> seen_values; 252 }; 253 254 } 255 256 int FunctionComparator::cmpNumbers(uint64_t L, uint64_t R) const { 257 if (L < R) return -1; 258 if (L > R) return 1; 259 return 0; 260 } 261 262 /// cmpType - compares two types, 263 /// defines total ordering among the types set. 264 /// See method declaration comments for more details. 265 int FunctionComparator::cmpType(Type *TyL, Type *TyR) const { 266 267 PointerType *PTyL = dyn_cast<PointerType>(TyL); 268 PointerType *PTyR = dyn_cast<PointerType>(TyR); 269 270 if (DL) { 271 if (PTyL && PTyL->getAddressSpace() == 0) TyL = DL->getIntPtrType(TyL); 272 if (PTyR && PTyR->getAddressSpace() == 0) TyR = DL->getIntPtrType(TyR); 273 } 274 275 if (TyL == TyR) 276 return 0; 277 278 if (int Res = cmpNumbers(TyL->getTypeID(), TyR->getTypeID())) 279 return Res; 280 281 switch (TyL->getTypeID()) { 282 default: 283 llvm_unreachable("Unknown type!"); 284 // Fall through in Release mode. 285 case Type::IntegerTyID: 286 case Type::VectorTyID: 287 // TyL == TyR would have returned true earlier. 288 return cmpNumbers((uint64_t)TyL, (uint64_t)TyR); 289 290 case Type::VoidTyID: 291 case Type::FloatTyID: 292 case Type::DoubleTyID: 293 case Type::X86_FP80TyID: 294 case Type::FP128TyID: 295 case Type::PPC_FP128TyID: 296 case Type::LabelTyID: 297 case Type::MetadataTyID: 298 return 0; 299 300 case Type::PointerTyID: { 301 assert(PTyL && PTyR && "Both types must be pointers here."); 302 return cmpNumbers(PTyL->getAddressSpace(), PTyR->getAddressSpace()); 303 } 304 305 case Type::StructTyID: { 306 StructType *STyL = cast<StructType>(TyL); 307 StructType *STyR = cast<StructType>(TyR); 308 if (STyL->getNumElements() != STyR->getNumElements()) 309 return cmpNumbers(STyL->getNumElements(), STyR->getNumElements()); 310 311 if (STyL->isPacked() != STyR->isPacked()) 312 return cmpNumbers(STyL->isPacked(), STyR->isPacked()); 313 314 for (unsigned i = 0, e = STyL->getNumElements(); i != e; ++i) { 315 if (int Res = cmpType(STyL->getElementType(i), 316 STyR->getElementType(i))) 317 return Res; 318 } 319 return 0; 320 } 321 322 case Type::FunctionTyID: { 323 FunctionType *FTyL = cast<FunctionType>(TyL); 324 FunctionType *FTyR = cast<FunctionType>(TyR); 325 if (FTyL->getNumParams() != FTyR->getNumParams()) 326 return cmpNumbers(FTyL->getNumParams(), FTyR->getNumParams()); 327 328 if (FTyL->isVarArg() != FTyR->isVarArg()) 329 return cmpNumbers(FTyL->isVarArg(), FTyR->isVarArg()); 330 331 if (int Res = cmpType(FTyL->getReturnType(), FTyR->getReturnType())) 332 return Res; 333 334 for (unsigned i = 0, e = FTyL->getNumParams(); i != e; ++i) { 335 if (int Res = cmpType(FTyL->getParamType(i), FTyR->getParamType(i))) 336 return Res; 337 } 338 return 0; 339 } 340 341 case Type::ArrayTyID: { 342 ArrayType *ATyL = cast<ArrayType>(TyL); 343 ArrayType *ATyR = cast<ArrayType>(TyR); 344 if (ATyL->getNumElements() != ATyR->getNumElements()) 345 return cmpNumbers(ATyL->getNumElements(), ATyR->getNumElements()); 346 return cmpType(ATyL->getElementType(), ATyR->getElementType()); 347 } 348 } 349 } 350 351 // Determine whether the two operations are the same except that pointer-to-A 352 // and pointer-to-B are equivalent. This should be kept in sync with 353 // Instruction::isSameOperationAs. 354 bool FunctionComparator::isEquivalentOperation(const Instruction *I1, 355 const Instruction *I2) const { 356 // Differences from Instruction::isSameOperationAs: 357 // * replace type comparison with calls to isEquivalentType. 358 // * we test for I->hasSameSubclassOptionalData (nuw/nsw/tail) at the top 359 // * because of the above, we don't test for the tail bit on calls later on 360 if (I1->getOpcode() != I2->getOpcode() || 361 I1->getNumOperands() != I2->getNumOperands() || 362 !isEquivalentType(I1->getType(), I2->getType()) || 363 !I1->hasSameSubclassOptionalData(I2)) 364 return false; 365 366 // We have two instructions of identical opcode and #operands. Check to see 367 // if all operands are the same type 368 for (unsigned i = 0, e = I1->getNumOperands(); i != e; ++i) 369 if (!isEquivalentType(I1->getOperand(i)->getType(), 370 I2->getOperand(i)->getType())) 371 return false; 372 373 // Check special state that is a part of some instructions. 374 if (const LoadInst *LI = dyn_cast<LoadInst>(I1)) 375 return LI->isVolatile() == cast<LoadInst>(I2)->isVolatile() && 376 LI->getAlignment() == cast<LoadInst>(I2)->getAlignment() && 377 LI->getOrdering() == cast<LoadInst>(I2)->getOrdering() && 378 LI->getSynchScope() == cast<LoadInst>(I2)->getSynchScope(); 379 if (const StoreInst *SI = dyn_cast<StoreInst>(I1)) 380 return SI->isVolatile() == cast<StoreInst>(I2)->isVolatile() && 381 SI->getAlignment() == cast<StoreInst>(I2)->getAlignment() && 382 SI->getOrdering() == cast<StoreInst>(I2)->getOrdering() && 383 SI->getSynchScope() == cast<StoreInst>(I2)->getSynchScope(); 384 if (const CmpInst *CI = dyn_cast<CmpInst>(I1)) 385 return CI->getPredicate() == cast<CmpInst>(I2)->getPredicate(); 386 if (const CallInst *CI = dyn_cast<CallInst>(I1)) 387 return CI->getCallingConv() == cast<CallInst>(I2)->getCallingConv() && 388 CI->getAttributes() == cast<CallInst>(I2)->getAttributes(); 389 if (const InvokeInst *CI = dyn_cast<InvokeInst>(I1)) 390 return CI->getCallingConv() == cast<InvokeInst>(I2)->getCallingConv() && 391 CI->getAttributes() == cast<InvokeInst>(I2)->getAttributes(); 392 if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(I1)) 393 return IVI->getIndices() == cast<InsertValueInst>(I2)->getIndices(); 394 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(I1)) 395 return EVI->getIndices() == cast<ExtractValueInst>(I2)->getIndices(); 396 if (const FenceInst *FI = dyn_cast<FenceInst>(I1)) 397 return FI->getOrdering() == cast<FenceInst>(I2)->getOrdering() && 398 FI->getSynchScope() == cast<FenceInst>(I2)->getSynchScope(); 399 if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I1)) 400 return CXI->isVolatile() == cast<AtomicCmpXchgInst>(I2)->isVolatile() && 401 CXI->getSuccessOrdering() == 402 cast<AtomicCmpXchgInst>(I2)->getSuccessOrdering() && 403 CXI->getFailureOrdering() == 404 cast<AtomicCmpXchgInst>(I2)->getFailureOrdering() && 405 CXI->getSynchScope() == cast<AtomicCmpXchgInst>(I2)->getSynchScope(); 406 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I1)) 407 return RMWI->getOperation() == cast<AtomicRMWInst>(I2)->getOperation() && 408 RMWI->isVolatile() == cast<AtomicRMWInst>(I2)->isVolatile() && 409 RMWI->getOrdering() == cast<AtomicRMWInst>(I2)->getOrdering() && 410 RMWI->getSynchScope() == cast<AtomicRMWInst>(I2)->getSynchScope(); 411 412 return true; 413 } 414 415 // Determine whether two GEP operations perform the same underlying arithmetic. 416 bool FunctionComparator::isEquivalentGEP(const GEPOperator *GEP1, 417 const GEPOperator *GEP2) { 418 unsigned AS = GEP1->getPointerAddressSpace(); 419 if (AS != GEP2->getPointerAddressSpace()) 420 return false; 421 422 if (DL) { 423 // When we have target data, we can reduce the GEP down to the value in bytes 424 // added to the address. 425 unsigned BitWidth = DL ? DL->getPointerSizeInBits(AS) : 1; 426 APInt Offset1(BitWidth, 0), Offset2(BitWidth, 0); 427 if (GEP1->accumulateConstantOffset(*DL, Offset1) && 428 GEP2->accumulateConstantOffset(*DL, Offset2)) { 429 return Offset1 == Offset2; 430 } 431 } 432 433 if (GEP1->getPointerOperand()->getType() != 434 GEP2->getPointerOperand()->getType()) 435 return false; 436 437 if (GEP1->getNumOperands() != GEP2->getNumOperands()) 438 return false; 439 440 for (unsigned i = 0, e = GEP1->getNumOperands(); i != e; ++i) { 441 if (!enumerate(GEP1->getOperand(i), GEP2->getOperand(i))) 442 return false; 443 } 444 445 return true; 446 } 447 448 // Compare two values used by the two functions under pair-wise comparison. If 449 // this is the first time the values are seen, they're added to the mapping so 450 // that we will detect mismatches on next use. 451 bool FunctionComparator::enumerate(const Value *V1, const Value *V2) { 452 // Check for function @f1 referring to itself and function @f2 referring to 453 // itself, or referring to each other, or both referring to either of them. 454 // They're all equivalent if the two functions are otherwise equivalent. 455 if (V1 == F1 && V2 == F2) 456 return true; 457 if (V1 == F2 && V2 == F1) 458 return true; 459 460 if (const Constant *C1 = dyn_cast<Constant>(V1)) { 461 if (V1 == V2) return true; 462 const Constant *C2 = dyn_cast<Constant>(V2); 463 if (!C2) return false; 464 // TODO: constant expressions with GEP or references to F1 or F2. 465 if (C1->isNullValue() && C2->isNullValue() && 466 isEquivalentType(C1->getType(), C2->getType())) 467 return true; 468 // Try bitcasting C2 to C1's type. If the bitcast is legal and returns C1 469 // then they must have equal bit patterns. 470 return C1->getType()->canLosslesslyBitCastTo(C2->getType()) && 471 C1 == ConstantExpr::getBitCast(const_cast<Constant*>(C2), C1->getType()); 472 } 473 474 if (isa<InlineAsm>(V1) || isa<InlineAsm>(V2)) 475 return V1 == V2; 476 477 // Check that V1 maps to V2. If we find a value that V1 maps to then we simply 478 // check whether it's equal to V2. When there is no mapping then we need to 479 // ensure that V2 isn't already equivalent to something else. For this 480 // purpose, we track the V2 values in a set. 481 482 const Value *&map_elem = id_map[V1]; 483 if (map_elem) 484 return map_elem == V2; 485 if (!seen_values.insert(V2).second) 486 return false; 487 map_elem = V2; 488 return true; 489 } 490 491 // Test whether two basic blocks have equivalent behaviour. 492 bool FunctionComparator::compare(const BasicBlock *BB1, const BasicBlock *BB2) { 493 BasicBlock::const_iterator F1I = BB1->begin(), F1E = BB1->end(); 494 BasicBlock::const_iterator F2I = BB2->begin(), F2E = BB2->end(); 495 496 do { 497 if (!enumerate(F1I, F2I)) 498 return false; 499 500 if (const GetElementPtrInst *GEP1 = dyn_cast<GetElementPtrInst>(F1I)) { 501 const GetElementPtrInst *GEP2 = dyn_cast<GetElementPtrInst>(F2I); 502 if (!GEP2) 503 return false; 504 505 if (!enumerate(GEP1->getPointerOperand(), GEP2->getPointerOperand())) 506 return false; 507 508 if (!isEquivalentGEP(GEP1, GEP2)) 509 return false; 510 } else { 511 if (!isEquivalentOperation(F1I, F2I)) 512 return false; 513 514 assert(F1I->getNumOperands() == F2I->getNumOperands()); 515 for (unsigned i = 0, e = F1I->getNumOperands(); i != e; ++i) { 516 Value *OpF1 = F1I->getOperand(i); 517 Value *OpF2 = F2I->getOperand(i); 518 519 if (!enumerate(OpF1, OpF2)) 520 return false; 521 522 if (OpF1->getValueID() != OpF2->getValueID() || 523 !isEquivalentType(OpF1->getType(), OpF2->getType())) 524 return false; 525 } 526 } 527 528 ++F1I, ++F2I; 529 } while (F1I != F1E && F2I != F2E); 530 531 return F1I == F1E && F2I == F2E; 532 } 533 534 // Test whether the two functions have equivalent behaviour. 535 bool FunctionComparator::compare() { 536 // We need to recheck everything, but check the things that weren't included 537 // in the hash first. 538 539 if (F1->getAttributes() != F2->getAttributes()) 540 return false; 541 542 if (F1->hasGC() != F2->hasGC()) 543 return false; 544 545 if (F1->hasGC() && F1->getGC() != F2->getGC()) 546 return false; 547 548 if (F1->hasSection() != F2->hasSection()) 549 return false; 550 551 if (F1->hasSection() && F1->getSection() != F2->getSection()) 552 return false; 553 554 if (F1->isVarArg() != F2->isVarArg()) 555 return false; 556 557 // TODO: if it's internal and only used in direct calls, we could handle this 558 // case too. 559 if (F1->getCallingConv() != F2->getCallingConv()) 560 return false; 561 562 if (!isEquivalentType(F1->getFunctionType(), F2->getFunctionType())) 563 return false; 564 565 assert(F1->arg_size() == F2->arg_size() && 566 "Identically typed functions have different numbers of args!"); 567 568 // Visit the arguments so that they get enumerated in the order they're 569 // passed in. 570 for (Function::const_arg_iterator f1i = F1->arg_begin(), 571 f2i = F2->arg_begin(), f1e = F1->arg_end(); f1i != f1e; ++f1i, ++f2i) { 572 if (!enumerate(f1i, f2i)) 573 llvm_unreachable("Arguments repeat!"); 574 } 575 576 // We do a CFG-ordered walk since the actual ordering of the blocks in the 577 // linked list is immaterial. Our walk starts at the entry block for both 578 // functions, then takes each block from each terminator in order. As an 579 // artifact, this also means that unreachable blocks are ignored. 580 SmallVector<const BasicBlock *, 8> F1BBs, F2BBs; 581 SmallSet<const BasicBlock *, 128> VisitedBBs; // in terms of F1. 582 583 F1BBs.push_back(&F1->getEntryBlock()); 584 F2BBs.push_back(&F2->getEntryBlock()); 585 586 VisitedBBs.insert(F1BBs[0]); 587 while (!F1BBs.empty()) { 588 const BasicBlock *F1BB = F1BBs.pop_back_val(); 589 const BasicBlock *F2BB = F2BBs.pop_back_val(); 590 591 if (!enumerate(F1BB, F2BB) || !compare(F1BB, F2BB)) 592 return false; 593 594 const TerminatorInst *F1TI = F1BB->getTerminator(); 595 const TerminatorInst *F2TI = F2BB->getTerminator(); 596 597 assert(F1TI->getNumSuccessors() == F2TI->getNumSuccessors()); 598 for (unsigned i = 0, e = F1TI->getNumSuccessors(); i != e; ++i) { 599 if (!VisitedBBs.insert(F1TI->getSuccessor(i))) 600 continue; 601 602 F1BBs.push_back(F1TI->getSuccessor(i)); 603 F2BBs.push_back(F2TI->getSuccessor(i)); 604 } 605 } 606 return true; 607 } 608 609 namespace { 610 611 /// MergeFunctions finds functions which will generate identical machine code, 612 /// by considering all pointer types to be equivalent. Once identified, 613 /// MergeFunctions will fold them by replacing a call to one to a call to a 614 /// bitcast of the other. 615 /// 616 class MergeFunctions : public ModulePass { 617 public: 618 static char ID; 619 MergeFunctions() 620 : ModulePass(ID), HasGlobalAliases(false) { 621 initializeMergeFunctionsPass(*PassRegistry::getPassRegistry()); 622 } 623 624 bool runOnModule(Module &M) override; 625 626 private: 627 typedef DenseSet<ComparableFunction> FnSetType; 628 629 /// A work queue of functions that may have been modified and should be 630 /// analyzed again. 631 std::vector<WeakVH> Deferred; 632 633 /// Insert a ComparableFunction into the FnSet, or merge it away if it's 634 /// equal to one that's already present. 635 bool insert(ComparableFunction &NewF); 636 637 /// Remove a Function from the FnSet and queue it up for a second sweep of 638 /// analysis. 639 void remove(Function *F); 640 641 /// Find the functions that use this Value and remove them from FnSet and 642 /// queue the functions. 643 void removeUsers(Value *V); 644 645 /// Replace all direct calls of Old with calls of New. Will bitcast New if 646 /// necessary to make types match. 647 void replaceDirectCallers(Function *Old, Function *New); 648 649 /// Merge two equivalent functions. Upon completion, G may be deleted, or may 650 /// be converted into a thunk. In either case, it should never be visited 651 /// again. 652 void mergeTwoFunctions(Function *F, Function *G); 653 654 /// Replace G with a thunk or an alias to F. Deletes G. 655 void writeThunkOrAlias(Function *F, Function *G); 656 657 /// Replace G with a simple tail call to bitcast(F). Also replace direct uses 658 /// of G with bitcast(F). Deletes G. 659 void writeThunk(Function *F, Function *G); 660 661 /// Replace G with an alias to F. Deletes G. 662 void writeAlias(Function *F, Function *G); 663 664 /// The set of all distinct functions. Use the insert() and remove() methods 665 /// to modify it. 666 FnSetType FnSet; 667 668 /// DataLayout for more accurate GEP comparisons. May be NULL. 669 const DataLayout *DL; 670 671 /// Whether or not the target supports global aliases. 672 bool HasGlobalAliases; 673 }; 674 675 } // end anonymous namespace 676 677 char MergeFunctions::ID = 0; 678 INITIALIZE_PASS(MergeFunctions, "mergefunc", "Merge Functions", false, false) 679 680 ModulePass *llvm::createMergeFunctionsPass() { 681 return new MergeFunctions(); 682 } 683 684 bool MergeFunctions::runOnModule(Module &M) { 685 bool Changed = false; 686 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>(); 687 DL = DLP ? &DLP->getDataLayout() : nullptr; 688 689 for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) { 690 if (!I->isDeclaration() && !I->hasAvailableExternallyLinkage()) 691 Deferred.push_back(WeakVH(I)); 692 } 693 FnSet.resize(Deferred.size()); 694 695 do { 696 std::vector<WeakVH> Worklist; 697 Deferred.swap(Worklist); 698 699 DEBUG(dbgs() << "size of module: " << M.size() << '\n'); 700 DEBUG(dbgs() << "size of worklist: " << Worklist.size() << '\n'); 701 702 // Insert only strong functions and merge them. Strong function merging 703 // always deletes one of them. 704 for (std::vector<WeakVH>::iterator I = Worklist.begin(), 705 E = Worklist.end(); I != E; ++I) { 706 if (!*I) continue; 707 Function *F = cast<Function>(*I); 708 if (!F->isDeclaration() && !F->hasAvailableExternallyLinkage() && 709 !F->mayBeOverridden()) { 710 ComparableFunction CF = ComparableFunction(F, DL); 711 Changed |= insert(CF); 712 } 713 } 714 715 // Insert only weak functions and merge them. By doing these second we 716 // create thunks to the strong function when possible. When two weak 717 // functions are identical, we create a new strong function with two weak 718 // weak thunks to it which are identical but not mergable. 719 for (std::vector<WeakVH>::iterator I = Worklist.begin(), 720 E = Worklist.end(); I != E; ++I) { 721 if (!*I) continue; 722 Function *F = cast<Function>(*I); 723 if (!F->isDeclaration() && !F->hasAvailableExternallyLinkage() && 724 F->mayBeOverridden()) { 725 ComparableFunction CF = ComparableFunction(F, DL); 726 Changed |= insert(CF); 727 } 728 } 729 DEBUG(dbgs() << "size of FnSet: " << FnSet.size() << '\n'); 730 } while (!Deferred.empty()); 731 732 FnSet.clear(); 733 734 return Changed; 735 } 736 737 bool DenseMapInfo<ComparableFunction>::isEqual(const ComparableFunction &LHS, 738 const ComparableFunction &RHS) { 739 if (LHS.getFunc() == RHS.getFunc() && 740 LHS.getHash() == RHS.getHash()) 741 return true; 742 if (!LHS.getFunc() || !RHS.getFunc()) 743 return false; 744 745 // One of these is a special "underlying pointer comparison only" object. 746 if (LHS.getDataLayout() == ComparableFunction::LookupOnly || 747 RHS.getDataLayout() == ComparableFunction::LookupOnly) 748 return false; 749 750 assert(LHS.getDataLayout() == RHS.getDataLayout() && 751 "Comparing functions for different targets"); 752 753 return FunctionComparator(LHS.getDataLayout(), LHS.getFunc(), 754 RHS.getFunc()).compare(); 755 } 756 757 // Replace direct callers of Old with New. 758 void MergeFunctions::replaceDirectCallers(Function *Old, Function *New) { 759 Constant *BitcastNew = ConstantExpr::getBitCast(New, Old->getType()); 760 for (auto UI = Old->use_begin(), UE = Old->use_end(); UI != UE;) { 761 Use *U = &*UI; 762 ++UI; 763 CallSite CS(U->getUser()); 764 if (CS && CS.isCallee(U)) { 765 remove(CS.getInstruction()->getParent()->getParent()); 766 U->set(BitcastNew); 767 } 768 } 769 } 770 771 // Replace G with an alias to F if possible, or else a thunk to F. Deletes G. 772 void MergeFunctions::writeThunkOrAlias(Function *F, Function *G) { 773 if (HasGlobalAliases && G->hasUnnamedAddr()) { 774 if (G->hasExternalLinkage() || G->hasLocalLinkage() || 775 G->hasWeakLinkage()) { 776 writeAlias(F, G); 777 return; 778 } 779 } 780 781 writeThunk(F, G); 782 } 783 784 // Helper for writeThunk, 785 // Selects proper bitcast operation, 786 // but a bit simpler then CastInst::getCastOpcode. 787 static Value *createCast(IRBuilder<false> &Builder, Value *V, Type *DestTy) { 788 Type *SrcTy = V->getType(); 789 if (SrcTy->isStructTy()) { 790 assert(DestTy->isStructTy()); 791 assert(SrcTy->getStructNumElements() == DestTy->getStructNumElements()); 792 Value *Result = UndefValue::get(DestTy); 793 for (unsigned int I = 0, E = SrcTy->getStructNumElements(); I < E; ++I) { 794 Value *Element = createCast( 795 Builder, Builder.CreateExtractValue(V, ArrayRef<unsigned int>(I)), 796 DestTy->getStructElementType(I)); 797 798 Result = 799 Builder.CreateInsertValue(Result, Element, ArrayRef<unsigned int>(I)); 800 } 801 return Result; 802 } 803 assert(!DestTy->isStructTy()); 804 if (SrcTy->isIntegerTy() && DestTy->isPointerTy()) 805 return Builder.CreateIntToPtr(V, DestTy); 806 else if (SrcTy->isPointerTy() && DestTy->isIntegerTy()) 807 return Builder.CreatePtrToInt(V, DestTy); 808 else 809 return Builder.CreateBitCast(V, DestTy); 810 } 811 812 // Replace G with a simple tail call to bitcast(F). Also replace direct uses 813 // of G with bitcast(F). Deletes G. 814 void MergeFunctions::writeThunk(Function *F, Function *G) { 815 if (!G->mayBeOverridden()) { 816 // Redirect direct callers of G to F. 817 replaceDirectCallers(G, F); 818 } 819 820 // If G was internal then we may have replaced all uses of G with F. If so, 821 // stop here and delete G. There's no need for a thunk. 822 if (G->hasLocalLinkage() && G->use_empty()) { 823 G->eraseFromParent(); 824 return; 825 } 826 827 Function *NewG = Function::Create(G->getFunctionType(), G->getLinkage(), "", 828 G->getParent()); 829 BasicBlock *BB = BasicBlock::Create(F->getContext(), "", NewG); 830 IRBuilder<false> Builder(BB); 831 832 SmallVector<Value *, 16> Args; 833 unsigned i = 0; 834 FunctionType *FFTy = F->getFunctionType(); 835 for (Function::arg_iterator AI = NewG->arg_begin(), AE = NewG->arg_end(); 836 AI != AE; ++AI) { 837 Args.push_back(createCast(Builder, (Value*)AI, FFTy->getParamType(i))); 838 ++i; 839 } 840 841 CallInst *CI = Builder.CreateCall(F, Args); 842 CI->setTailCall(); 843 CI->setCallingConv(F->getCallingConv()); 844 if (NewG->getReturnType()->isVoidTy()) { 845 Builder.CreateRetVoid(); 846 } else { 847 Builder.CreateRet(createCast(Builder, CI, NewG->getReturnType())); 848 } 849 850 NewG->copyAttributesFrom(G); 851 NewG->takeName(G); 852 removeUsers(G); 853 G->replaceAllUsesWith(NewG); 854 G->eraseFromParent(); 855 856 DEBUG(dbgs() << "writeThunk: " << NewG->getName() << '\n'); 857 ++NumThunksWritten; 858 } 859 860 // Replace G with an alias to F and delete G. 861 void MergeFunctions::writeAlias(Function *F, Function *G) { 862 Constant *BitcastF = ConstantExpr::getBitCast(F, G->getType()); 863 GlobalAlias *GA = new GlobalAlias(G->getType(), G->getLinkage(), "", 864 BitcastF, G->getParent()); 865 F->setAlignment(std::max(F->getAlignment(), G->getAlignment())); 866 GA->takeName(G); 867 GA->setVisibility(G->getVisibility()); 868 removeUsers(G); 869 G->replaceAllUsesWith(GA); 870 G->eraseFromParent(); 871 872 DEBUG(dbgs() << "writeAlias: " << GA->getName() << '\n'); 873 ++NumAliasesWritten; 874 } 875 876 // Merge two equivalent functions. Upon completion, Function G is deleted. 877 void MergeFunctions::mergeTwoFunctions(Function *F, Function *G) { 878 if (F->mayBeOverridden()) { 879 assert(G->mayBeOverridden()); 880 881 if (HasGlobalAliases) { 882 // Make them both thunks to the same internal function. 883 Function *H = Function::Create(F->getFunctionType(), F->getLinkage(), "", 884 F->getParent()); 885 H->copyAttributesFrom(F); 886 H->takeName(F); 887 removeUsers(F); 888 F->replaceAllUsesWith(H); 889 890 unsigned MaxAlignment = std::max(G->getAlignment(), H->getAlignment()); 891 892 writeAlias(F, G); 893 writeAlias(F, H); 894 895 F->setAlignment(MaxAlignment); 896 F->setLinkage(GlobalValue::PrivateLinkage); 897 } else { 898 // We can't merge them. Instead, pick one and update all direct callers 899 // to call it and hope that we improve the instruction cache hit rate. 900 replaceDirectCallers(G, F); 901 } 902 903 ++NumDoubleWeak; 904 } else { 905 writeThunkOrAlias(F, G); 906 } 907 908 ++NumFunctionsMerged; 909 } 910 911 // Insert a ComparableFunction into the FnSet, or merge it away if equal to one 912 // that was already inserted. 913 bool MergeFunctions::insert(ComparableFunction &NewF) { 914 std::pair<FnSetType::iterator, bool> Result = FnSet.insert(NewF); 915 if (Result.second) { 916 DEBUG(dbgs() << "Inserting as unique: " << NewF.getFunc()->getName() << '\n'); 917 return false; 918 } 919 920 const ComparableFunction &OldF = *Result.first; 921 922 // Don't merge tiny functions, since it can just end up making the function 923 // larger. 924 // FIXME: Should still merge them if they are unnamed_addr and produce an 925 // alias. 926 if (NewF.getFunc()->size() == 1) { 927 if (NewF.getFunc()->front().size() <= 2) { 928 DEBUG(dbgs() << NewF.getFunc()->getName() 929 << " is to small to bother merging\n"); 930 return false; 931 } 932 } 933 934 // Never thunk a strong function to a weak function. 935 assert(!OldF.getFunc()->mayBeOverridden() || 936 NewF.getFunc()->mayBeOverridden()); 937 938 DEBUG(dbgs() << " " << OldF.getFunc()->getName() << " == " 939 << NewF.getFunc()->getName() << '\n'); 940 941 Function *DeleteF = NewF.getFunc(); 942 NewF.release(); 943 mergeTwoFunctions(OldF.getFunc(), DeleteF); 944 return true; 945 } 946 947 // Remove a function from FnSet. If it was already in FnSet, add it to Deferred 948 // so that we'll look at it in the next round. 949 void MergeFunctions::remove(Function *F) { 950 // We need to make sure we remove F, not a function "equal" to F per the 951 // function equality comparator. 952 // 953 // The special "lookup only" ComparableFunction bypasses the expensive 954 // function comparison in favour of a pointer comparison on the underlying 955 // Function*'s. 956 ComparableFunction CF = ComparableFunction(F, ComparableFunction::LookupOnly); 957 if (FnSet.erase(CF)) { 958 DEBUG(dbgs() << "Removed " << F->getName() << " from set and deferred it.\n"); 959 Deferred.push_back(F); 960 } 961 } 962 963 // For each instruction used by the value, remove() the function that contains 964 // the instruction. This should happen right before a call to RAUW. 965 void MergeFunctions::removeUsers(Value *V) { 966 std::vector<Value *> Worklist; 967 Worklist.push_back(V); 968 while (!Worklist.empty()) { 969 Value *V = Worklist.back(); 970 Worklist.pop_back(); 971 972 for (User *U : V->users()) { 973 if (Instruction *I = dyn_cast<Instruction>(U)) { 974 remove(I->getParent()->getParent()); 975 } else if (isa<GlobalValue>(U)) { 976 // do nothing 977 } else if (Constant *C = dyn_cast<Constant>(U)) { 978 for (User *UU : C->users()) 979 Worklist.push_back(UU); 980 } 981 } 982 } 983 } 984