1 //===- MergeFunctions.cpp - Merge identical functions ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass looks for equivalent functions that are mergable and folds them. 11 // 12 // Order relation is defined on set of functions. It was made through 13 // special function comparison procedure that returns 14 // 0 when functions are equal, 15 // -1 when Left function is less than right function, and 16 // 1 for opposite case. We need total-ordering, so we need to maintain 17 // four properties on the functions set: 18 // a <= a (reflexivity) 19 // if a <= b and b <= a then a = b (antisymmetry) 20 // if a <= b and b <= c then a <= c (transitivity). 21 // for all a and b: a <= b or b <= a (totality). 22 // 23 // Comparison iterates through each instruction in each basic block. 24 // Functions are kept on binary tree. For each new function F we perform 25 // lookup in binary tree. 26 // In practice it works the following way: 27 // -- We define Function* container class with custom "operator<" (FunctionPtr). 28 // -- "FunctionPtr" instances are stored in std::set collection, so every 29 // std::set::insert operation will give you result in log(N) time. 30 // 31 // As an optimization, a hash of the function structure is calculated first, and 32 // two functions are only compared if they have the same hash. This hash is 33 // cheap to compute, and has the property that if function F == G according to 34 // the comparison function, then hash(F) == hash(G). This consistency property 35 // is critical to ensuring all possible merging opportunities are exploited. 36 // Collisions in the hash affect the speed of the pass but not the correctness 37 // or determinism of the resulting transformation. 38 // 39 // When a match is found the functions are folded. If both functions are 40 // overridable, we move the functionality into a new internal function and 41 // leave two overridable thunks to it. 42 // 43 //===----------------------------------------------------------------------===// 44 // 45 // Future work: 46 // 47 // * virtual functions. 48 // 49 // Many functions have their address taken by the virtual function table for 50 // the object they belong to. However, as long as it's only used for a lookup 51 // and call, this is irrelevant, and we'd like to fold such functions. 52 // 53 // * be smarter about bitcasts. 54 // 55 // In order to fold functions, we will sometimes add either bitcast instructions 56 // or bitcast constant expressions. Unfortunately, this can confound further 57 // analysis since the two functions differ where one has a bitcast and the 58 // other doesn't. We should learn to look through bitcasts. 59 // 60 // * Compare complex types with pointer types inside. 61 // * Compare cross-reference cases. 62 // * Compare complex expressions. 63 // 64 // All the three issues above could be described as ability to prove that 65 // fA == fB == fC == fE == fF == fG in example below: 66 // 67 // void fA() { 68 // fB(); 69 // } 70 // void fB() { 71 // fA(); 72 // } 73 // 74 // void fE() { 75 // fF(); 76 // } 77 // void fF() { 78 // fG(); 79 // } 80 // void fG() { 81 // fE(); 82 // } 83 // 84 // Simplest cross-reference case (fA <--> fB) was implemented in previous 85 // versions of MergeFunctions, though it presented only in two function pairs 86 // in test-suite (that counts >50k functions) 87 // Though possibility to detect complex cross-referencing (e.g.: A->B->C->D->A) 88 // could cover much more cases. 89 // 90 //===----------------------------------------------------------------------===// 91 92 #include "llvm/Transforms/IPO.h" 93 #include "llvm/ADT/DenseSet.h" 94 #include "llvm/ADT/FoldingSet.h" 95 #include "llvm/ADT/STLExtras.h" 96 #include "llvm/ADT/SmallSet.h" 97 #include "llvm/ADT/Statistic.h" 98 #include "llvm/ADT/Hashing.h" 99 #include "llvm/IR/CallSite.h" 100 #include "llvm/IR/Constants.h" 101 #include "llvm/IR/DataLayout.h" 102 #include "llvm/IR/IRBuilder.h" 103 #include "llvm/IR/InlineAsm.h" 104 #include "llvm/IR/Instructions.h" 105 #include "llvm/IR/LLVMContext.h" 106 #include "llvm/IR/Module.h" 107 #include "llvm/IR/Operator.h" 108 #include "llvm/IR/ValueHandle.h" 109 #include "llvm/IR/ValueMap.h" 110 #include "llvm/Pass.h" 111 #include "llvm/Support/CommandLine.h" 112 #include "llvm/Support/Debug.h" 113 #include "llvm/Support/ErrorHandling.h" 114 #include "llvm/Support/raw_ostream.h" 115 #include <vector> 116 using namespace llvm; 117 118 #define DEBUG_TYPE "mergefunc" 119 120 STATISTIC(NumFunctionsMerged, "Number of functions merged"); 121 STATISTIC(NumThunksWritten, "Number of thunks generated"); 122 STATISTIC(NumAliasesWritten, "Number of aliases generated"); 123 STATISTIC(NumDoubleWeak, "Number of new functions created"); 124 125 static cl::opt<unsigned> NumFunctionsForSanityCheck( 126 "mergefunc-sanity", 127 cl::desc("How many functions in module could be used for " 128 "MergeFunctions pass sanity check. " 129 "'0' disables this check. Works only with '-debug' key."), 130 cl::init(0), cl::Hidden); 131 132 namespace { 133 134 /// GlobalNumberState assigns an integer to each global value in the program, 135 /// which is used by the comparison routine to order references to globals. This 136 /// state must be preserved throughout the pass, because Functions and other 137 /// globals need to maintain their relative order. Globals are assigned a number 138 /// when they are first visited. This order is deterministic, and so the 139 /// assigned numbers are as well. When two functions are merged, neither number 140 /// is updated. If the symbols are weak, this would be incorrect. If they are 141 /// strong, then one will be replaced at all references to the other, and so 142 /// direct callsites will now see one or the other symbol, and no update is 143 /// necessary. Note that if we were guaranteed unique names, we could just 144 /// compare those, but this would not work for stripped bitcodes or for those 145 /// few symbols without a name. 146 class GlobalNumberState { 147 struct Config : ValueMapConfig<GlobalValue*> { 148 enum { FollowRAUW = false }; 149 }; 150 // Each GlobalValue is mapped to an identifier. The Config ensures when RAUW 151 // occurs, the mapping does not change. Tracking changes is unnecessary, and 152 // also problematic for weak symbols (which may be overwritten). 153 typedef ValueMap<GlobalValue *, uint64_t, Config> ValueNumberMap; 154 ValueNumberMap GlobalNumbers; 155 // The next unused serial number to assign to a global. 156 uint64_t NextNumber; 157 public: 158 GlobalNumberState() : GlobalNumbers(), NextNumber(0) {} 159 uint64_t getNumber(GlobalValue* Global) { 160 ValueNumberMap::iterator MapIter; 161 bool Inserted; 162 std::tie(MapIter, Inserted) = GlobalNumbers.insert({Global, NextNumber}); 163 if (Inserted) 164 NextNumber++; 165 return MapIter->second; 166 } 167 }; 168 169 /// FunctionComparator - Compares two functions to determine whether or not 170 /// they will generate machine code with the same behaviour. DataLayout is 171 /// used if available. The comparator always fails conservatively (erring on the 172 /// side of claiming that two functions are different). 173 class FunctionComparator { 174 public: 175 FunctionComparator(const Function *F1, const Function *F2, 176 GlobalNumberState* GN) 177 : FnL(F1), FnR(F2), GlobalNumbers(GN) {} 178 179 /// Test whether the two functions have equivalent behaviour. 180 int compare(); 181 /// Hash a function. Equivalent functions will have the same hash, and unequal 182 /// functions will have different hashes with high probability. 183 typedef uint64_t FunctionHash; 184 static FunctionHash functionHash(Function &); 185 186 private: 187 /// Test whether two basic blocks have equivalent behaviour. 188 int cmpBasicBlocks(const BasicBlock *BBL, const BasicBlock *BBR); 189 190 /// Constants comparison. 191 /// Its analog to lexicographical comparison between hypothetical numbers 192 /// of next format: 193 /// <bitcastability-trait><raw-bit-contents> 194 /// 195 /// 1. Bitcastability. 196 /// Check whether L's type could be losslessly bitcasted to R's type. 197 /// On this stage method, in case when lossless bitcast is not possible 198 /// method returns -1 or 1, thus also defining which type is greater in 199 /// context of bitcastability. 200 /// Stage 0: If types are equal in terms of cmpTypes, then we can go straight 201 /// to the contents comparison. 202 /// If types differ, remember types comparison result and check 203 /// whether we still can bitcast types. 204 /// Stage 1: Types that satisfies isFirstClassType conditions are always 205 /// greater then others. 206 /// Stage 2: Vector is greater then non-vector. 207 /// If both types are vectors, then vector with greater bitwidth is 208 /// greater. 209 /// If both types are vectors with the same bitwidth, then types 210 /// are bitcastable, and we can skip other stages, and go to contents 211 /// comparison. 212 /// Stage 3: Pointer types are greater than non-pointers. If both types are 213 /// pointers of the same address space - go to contents comparison. 214 /// Different address spaces: pointer with greater address space is 215 /// greater. 216 /// Stage 4: Types are neither vectors, nor pointers. And they differ. 217 /// We don't know how to bitcast them. So, we better don't do it, 218 /// and return types comparison result (so it determines the 219 /// relationship among constants we don't know how to bitcast). 220 /// 221 /// Just for clearance, let's see how the set of constants could look 222 /// on single dimension axis: 223 /// 224 /// [NFCT], [FCT, "others"], [FCT, pointers], [FCT, vectors] 225 /// Where: NFCT - Not a FirstClassType 226 /// FCT - FirstClassTyp: 227 /// 228 /// 2. Compare raw contents. 229 /// It ignores types on this stage and only compares bits from L and R. 230 /// Returns 0, if L and R has equivalent contents. 231 /// -1 or 1 if values are different. 232 /// Pretty trivial: 233 /// 2.1. If contents are numbers, compare numbers. 234 /// Ints with greater bitwidth are greater. Ints with same bitwidths 235 /// compared by their contents. 236 /// 2.2. "And so on". Just to avoid discrepancies with comments 237 /// perhaps it would be better to read the implementation itself. 238 /// 3. And again about overall picture. Let's look back at how the ordered set 239 /// of constants will look like: 240 /// [NFCT], [FCT, "others"], [FCT, pointers], [FCT, vectors] 241 /// 242 /// Now look, what could be inside [FCT, "others"], for example: 243 /// [FCT, "others"] = 244 /// [ 245 /// [double 0.1], [double 1.23], 246 /// [i32 1], [i32 2], 247 /// { double 1.0 }, ; StructTyID, NumElements = 1 248 /// { i32 1 }, ; StructTyID, NumElements = 1 249 /// { double 1, i32 1 }, ; StructTyID, NumElements = 2 250 /// { i32 1, double 1 } ; StructTyID, NumElements = 2 251 /// ] 252 /// 253 /// Let's explain the order. Float numbers will be less than integers, just 254 /// because of cmpType terms: FloatTyID < IntegerTyID. 255 /// Floats (with same fltSemantics) are sorted according to their value. 256 /// Then you can see integers, and they are, like a floats, 257 /// could be easy sorted among each others. 258 /// The structures. Structures are grouped at the tail, again because of their 259 /// TypeID: StructTyID > IntegerTyID > FloatTyID. 260 /// Structures with greater number of elements are greater. Structures with 261 /// greater elements going first are greater. 262 /// The same logic with vectors, arrays and other possible complex types. 263 /// 264 /// Bitcastable constants. 265 /// Let's assume, that some constant, belongs to some group of 266 /// "so-called-equal" values with different types, and at the same time 267 /// belongs to another group of constants with equal types 268 /// and "really" equal values. 269 /// 270 /// Now, prove that this is impossible: 271 /// 272 /// If constant A with type TyA is bitcastable to B with type TyB, then: 273 /// 1. All constants with equal types to TyA, are bitcastable to B. Since 274 /// those should be vectors (if TyA is vector), pointers 275 /// (if TyA is pointer), or else (if TyA equal to TyB), those types should 276 /// be equal to TyB. 277 /// 2. All constants with non-equal, but bitcastable types to TyA, are 278 /// bitcastable to B. 279 /// Once again, just because we allow it to vectors and pointers only. 280 /// This statement could be expanded as below: 281 /// 2.1. All vectors with equal bitwidth to vector A, has equal bitwidth to 282 /// vector B, and thus bitcastable to B as well. 283 /// 2.2. All pointers of the same address space, no matter what they point to, 284 /// bitcastable. So if C is pointer, it could be bitcasted to A and to B. 285 /// So any constant equal or bitcastable to A is equal or bitcastable to B. 286 /// QED. 287 /// 288 /// In another words, for pointers and vectors, we ignore top-level type and 289 /// look at their particular properties (bit-width for vectors, and 290 /// address space for pointers). 291 /// If these properties are equal - compare their contents. 292 int cmpConstants(const Constant *L, const Constant *R); 293 294 /// Compares two global values by number. Uses the GlobalNumbersState to 295 /// identify the same gobals across function calls. 296 int cmpGlobalValues(GlobalValue *L, GlobalValue *R); 297 298 /// Assign or look up previously assigned numbers for the two values, and 299 /// return whether the numbers are equal. Numbers are assigned in the order 300 /// visited. 301 /// Comparison order: 302 /// Stage 0: Value that is function itself is always greater then others. 303 /// If left and right values are references to their functions, then 304 /// they are equal. 305 /// Stage 1: Constants are greater than non-constants. 306 /// If both left and right are constants, then the result of 307 /// cmpConstants is used as cmpValues result. 308 /// Stage 2: InlineAsm instances are greater than others. If both left and 309 /// right are InlineAsm instances, InlineAsm* pointers casted to 310 /// integers and compared as numbers. 311 /// Stage 3: For all other cases we compare order we meet these values in 312 /// their functions. If right value was met first during scanning, 313 /// then left value is greater. 314 /// In another words, we compare serial numbers, for more details 315 /// see comments for sn_mapL and sn_mapR. 316 int cmpValues(const Value *L, const Value *R); 317 318 /// Compare two Instructions for equivalence, similar to 319 /// Instruction::isSameOperationAs but with modifications to the type 320 /// comparison. 321 /// Stages are listed in "most significant stage first" order: 322 /// On each stage below, we do comparison between some left and right 323 /// operation parts. If parts are non-equal, we assign parts comparison 324 /// result to the operation comparison result and exit from method. 325 /// Otherwise we proceed to the next stage. 326 /// Stages: 327 /// 1. Operations opcodes. Compared as numbers. 328 /// 2. Number of operands. 329 /// 3. Operation types. Compared with cmpType method. 330 /// 4. Compare operation subclass optional data as stream of bytes: 331 /// just convert it to integers and call cmpNumbers. 332 /// 5. Compare in operation operand types with cmpType in 333 /// most significant operand first order. 334 /// 6. Last stage. Check operations for some specific attributes. 335 /// For example, for Load it would be: 336 /// 6.1.Load: volatile (as boolean flag) 337 /// 6.2.Load: alignment (as integer numbers) 338 /// 6.3.Load: synch-scope (as integer numbers) 339 /// 6.4.Load: range metadata (as integer numbers) 340 /// On this stage its better to see the code, since its not more than 10-15 341 /// strings for particular instruction, and could change sometimes. 342 int cmpOperations(const Instruction *L, const Instruction *R) const; 343 344 /// Compare two GEPs for equivalent pointer arithmetic. 345 /// Parts to be compared for each comparison stage, 346 /// most significant stage first: 347 /// 1. Address space. As numbers. 348 /// 2. Constant offset, (using GEPOperator::accumulateConstantOffset method). 349 /// 3. Pointer operand type (using cmpType method). 350 /// 4. Number of operands. 351 /// 5. Compare operands, using cmpValues method. 352 int cmpGEPs(const GEPOperator *GEPL, const GEPOperator *GEPR); 353 int cmpGEPs(const GetElementPtrInst *GEPL, const GetElementPtrInst *GEPR) { 354 return cmpGEPs(cast<GEPOperator>(GEPL), cast<GEPOperator>(GEPR)); 355 } 356 357 /// cmpType - compares two types, 358 /// defines total ordering among the types set. 359 /// 360 /// Return values: 361 /// 0 if types are equal, 362 /// -1 if Left is less than Right, 363 /// +1 if Left is greater than Right. 364 /// 365 /// Description: 366 /// Comparison is broken onto stages. Like in lexicographical comparison 367 /// stage coming first has higher priority. 368 /// On each explanation stage keep in mind total ordering properties. 369 /// 370 /// 0. Before comparison we coerce pointer types of 0 address space to 371 /// integer. 372 /// We also don't bother with same type at left and right, so 373 /// just return 0 in this case. 374 /// 375 /// 1. If types are of different kind (different type IDs). 376 /// Return result of type IDs comparison, treating them as numbers. 377 /// 2. If types are integers, check that they have the same width. If they 378 /// are vectors, check that they have the same count and subtype. 379 /// 3. Types have the same ID, so check whether they are one of: 380 /// * Void 381 /// * Float 382 /// * Double 383 /// * X86_FP80 384 /// * FP128 385 /// * PPC_FP128 386 /// * Label 387 /// * Metadata 388 /// We can treat these types as equal whenever their IDs are same. 389 /// 4. If Left and Right are pointers, return result of address space 390 /// comparison (numbers comparison). We can treat pointer types of same 391 /// address space as equal. 392 /// 5. If types are complex. 393 /// Then both Left and Right are to be expanded and their element types will 394 /// be checked with the same way. If we get Res != 0 on some stage, return it. 395 /// Otherwise return 0. 396 /// 6. For all other cases put llvm_unreachable. 397 int cmpTypes(Type *TyL, Type *TyR) const; 398 399 int cmpNumbers(uint64_t L, uint64_t R) const; 400 401 int cmpAPInts(const APInt &L, const APInt &R) const; 402 int cmpAPFloats(const APFloat &L, const APFloat &R) const; 403 int cmpInlineAsm(const InlineAsm *L, const InlineAsm *R) const; 404 int cmpMem(StringRef L, StringRef R) const; 405 int cmpAttrs(const AttributeSet L, const AttributeSet R) const; 406 407 // The two functions undergoing comparison. 408 const Function *FnL, *FnR; 409 410 /// Assign serial numbers to values from left function, and values from 411 /// right function. 412 /// Explanation: 413 /// Being comparing functions we need to compare values we meet at left and 414 /// right sides. 415 /// Its easy to sort things out for external values. It just should be 416 /// the same value at left and right. 417 /// But for local values (those were introduced inside function body) 418 /// we have to ensure they were introduced at exactly the same place, 419 /// and plays the same role. 420 /// Let's assign serial number to each value when we meet it first time. 421 /// Values that were met at same place will be with same serial numbers. 422 /// In this case it would be good to explain few points about values assigned 423 /// to BBs and other ways of implementation (see below). 424 /// 425 /// 1. Safety of BB reordering. 426 /// It's safe to change the order of BasicBlocks in function. 427 /// Relationship with other functions and serial numbering will not be 428 /// changed in this case. 429 /// As follows from FunctionComparator::compare(), we do CFG walk: we start 430 /// from the entry, and then take each terminator. So it doesn't matter how in 431 /// fact BBs are ordered in function. And since cmpValues are called during 432 /// this walk, the numbering depends only on how BBs located inside the CFG. 433 /// So the answer is - yes. We will get the same numbering. 434 /// 435 /// 2. Impossibility to use dominance properties of values. 436 /// If we compare two instruction operands: first is usage of local 437 /// variable AL from function FL, and second is usage of local variable AR 438 /// from FR, we could compare their origins and check whether they are 439 /// defined at the same place. 440 /// But, we are still not able to compare operands of PHI nodes, since those 441 /// could be operands from further BBs we didn't scan yet. 442 /// So it's impossible to use dominance properties in general. 443 DenseMap<const Value*, int> sn_mapL, sn_mapR; 444 445 // The global state we will use 446 GlobalNumberState* GlobalNumbers; 447 }; 448 449 class FunctionNode { 450 mutable AssertingVH<Function> F; 451 FunctionComparator::FunctionHash Hash; 452 public: 453 // Note the hash is recalculated potentially multiple times, but it is cheap. 454 FunctionNode(Function *F) 455 : F(F), Hash(FunctionComparator::functionHash(*F)) {} 456 Function *getFunc() const { return F; } 457 FunctionComparator::FunctionHash getHash() const { return Hash; } 458 459 /// Replace the reference to the function F by the function G, assuming their 460 /// implementations are equal. 461 void replaceBy(Function *G) const { 462 F = G; 463 } 464 465 void release() { F = 0; } 466 }; 467 } 468 469 int FunctionComparator::cmpNumbers(uint64_t L, uint64_t R) const { 470 if (L < R) return -1; 471 if (L > R) return 1; 472 return 0; 473 } 474 475 int FunctionComparator::cmpAPInts(const APInt &L, const APInt &R) const { 476 if (int Res = cmpNumbers(L.getBitWidth(), R.getBitWidth())) 477 return Res; 478 if (L.ugt(R)) return 1; 479 if (R.ugt(L)) return -1; 480 return 0; 481 } 482 483 int FunctionComparator::cmpAPFloats(const APFloat &L, const APFloat &R) const { 484 // TODO: This correctly handles all existing fltSemantics, because they all 485 // have different precisions. This isn't very robust, however, if new types 486 // with different exponent ranges are introduced. 487 const fltSemantics &SL = L.getSemantics(), &SR = R.getSemantics(); 488 if (int Res = cmpNumbers(APFloat::semanticsPrecision(SL), 489 APFloat::semanticsPrecision(SR))) 490 return Res; 491 return cmpAPInts(L.bitcastToAPInt(), R.bitcastToAPInt()); 492 } 493 494 int FunctionComparator::cmpMem(StringRef L, StringRef R) const { 495 // Prevent heavy comparison, compare sizes first. 496 if (int Res = cmpNumbers(L.size(), R.size())) 497 return Res; 498 499 // Compare strings lexicographically only when it is necessary: only when 500 // strings are equal in size. 501 return L.compare(R); 502 } 503 504 int FunctionComparator::cmpAttrs(const AttributeSet L, 505 const AttributeSet R) const { 506 if (int Res = cmpNumbers(L.getNumSlots(), R.getNumSlots())) 507 return Res; 508 509 for (unsigned i = 0, e = L.getNumSlots(); i != e; ++i) { 510 AttributeSet::iterator LI = L.begin(i), LE = L.end(i), RI = R.begin(i), 511 RE = R.end(i); 512 for (; LI != LE && RI != RE; ++LI, ++RI) { 513 Attribute LA = *LI; 514 Attribute RA = *RI; 515 if (LA < RA) 516 return -1; 517 if (RA < LA) 518 return 1; 519 } 520 if (LI != LE) 521 return 1; 522 if (RI != RE) 523 return -1; 524 } 525 return 0; 526 } 527 528 /// Constants comparison: 529 /// 1. Check whether type of L constant could be losslessly bitcasted to R 530 /// type. 531 /// 2. Compare constant contents. 532 /// For more details see declaration comments. 533 int FunctionComparator::cmpConstants(const Constant *L, const Constant *R) { 534 535 Type *TyL = L->getType(); 536 Type *TyR = R->getType(); 537 538 // Check whether types are bitcastable. This part is just re-factored 539 // Type::canLosslesslyBitCastTo method, but instead of returning true/false, 540 // we also pack into result which type is "less" for us. 541 int TypesRes = cmpTypes(TyL, TyR); 542 if (TypesRes != 0) { 543 // Types are different, but check whether we can bitcast them. 544 if (!TyL->isFirstClassType()) { 545 if (TyR->isFirstClassType()) 546 return -1; 547 // Neither TyL nor TyR are values of first class type. Return the result 548 // of comparing the types 549 return TypesRes; 550 } 551 if (!TyR->isFirstClassType()) { 552 if (TyL->isFirstClassType()) 553 return 1; 554 return TypesRes; 555 } 556 557 // Vector -> Vector conversions are always lossless if the two vector types 558 // have the same size, otherwise not. 559 unsigned TyLWidth = 0; 560 unsigned TyRWidth = 0; 561 562 if (auto *VecTyL = dyn_cast<VectorType>(TyL)) 563 TyLWidth = VecTyL->getBitWidth(); 564 if (auto *VecTyR = dyn_cast<VectorType>(TyR)) 565 TyRWidth = VecTyR->getBitWidth(); 566 567 if (TyLWidth != TyRWidth) 568 return cmpNumbers(TyLWidth, TyRWidth); 569 570 // Zero bit-width means neither TyL nor TyR are vectors. 571 if (!TyLWidth) { 572 PointerType *PTyL = dyn_cast<PointerType>(TyL); 573 PointerType *PTyR = dyn_cast<PointerType>(TyR); 574 if (PTyL && PTyR) { 575 unsigned AddrSpaceL = PTyL->getAddressSpace(); 576 unsigned AddrSpaceR = PTyR->getAddressSpace(); 577 if (int Res = cmpNumbers(AddrSpaceL, AddrSpaceR)) 578 return Res; 579 } 580 if (PTyL) 581 return 1; 582 if (PTyR) 583 return -1; 584 585 // TyL and TyR aren't vectors, nor pointers. We don't know how to 586 // bitcast them. 587 return TypesRes; 588 } 589 } 590 591 // OK, types are bitcastable, now check constant contents. 592 593 if (L->isNullValue() && R->isNullValue()) 594 return TypesRes; 595 if (L->isNullValue() && !R->isNullValue()) 596 return 1; 597 if (!L->isNullValue() && R->isNullValue()) 598 return -1; 599 600 auto GlobalValueL = const_cast<GlobalValue*>(dyn_cast<GlobalValue>(L)); 601 auto GlobalValueR = const_cast<GlobalValue*>(dyn_cast<GlobalValue>(R)); 602 if (GlobalValueL && GlobalValueR) { 603 return cmpGlobalValues(GlobalValueL, GlobalValueR); 604 } 605 606 if (int Res = cmpNumbers(L->getValueID(), R->getValueID())) 607 return Res; 608 609 if (const auto *SeqL = dyn_cast<ConstantDataSequential>(L)) { 610 const auto *SeqR = dyn_cast<ConstantDataSequential>(R); 611 // This handles ConstantDataArray and ConstantDataVector. Note that we 612 // compare the two raw data arrays, which might differ depending on the host 613 // endianness. This isn't a problem though, because the endiness of a module 614 // will affect the order of the constants, but this order is the same 615 // for a given input module and host platform. 616 return cmpMem(SeqL->getRawDataValues(), SeqR->getRawDataValues()); 617 } 618 619 switch (L->getValueID()) { 620 case Value::UndefValueVal: return TypesRes; 621 case Value::ConstantIntVal: { 622 const APInt &LInt = cast<ConstantInt>(L)->getValue(); 623 const APInt &RInt = cast<ConstantInt>(R)->getValue(); 624 return cmpAPInts(LInt, RInt); 625 } 626 case Value::ConstantFPVal: { 627 const APFloat &LAPF = cast<ConstantFP>(L)->getValueAPF(); 628 const APFloat &RAPF = cast<ConstantFP>(R)->getValueAPF(); 629 return cmpAPFloats(LAPF, RAPF); 630 } 631 case Value::ConstantArrayVal: { 632 const ConstantArray *LA = cast<ConstantArray>(L); 633 const ConstantArray *RA = cast<ConstantArray>(R); 634 uint64_t NumElementsL = cast<ArrayType>(TyL)->getNumElements(); 635 uint64_t NumElementsR = cast<ArrayType>(TyR)->getNumElements(); 636 if (int Res = cmpNumbers(NumElementsL, NumElementsR)) 637 return Res; 638 for (uint64_t i = 0; i < NumElementsL; ++i) { 639 if (int Res = cmpConstants(cast<Constant>(LA->getOperand(i)), 640 cast<Constant>(RA->getOperand(i)))) 641 return Res; 642 } 643 return 0; 644 } 645 case Value::ConstantStructVal: { 646 const ConstantStruct *LS = cast<ConstantStruct>(L); 647 const ConstantStruct *RS = cast<ConstantStruct>(R); 648 unsigned NumElementsL = cast<StructType>(TyL)->getNumElements(); 649 unsigned NumElementsR = cast<StructType>(TyR)->getNumElements(); 650 if (int Res = cmpNumbers(NumElementsL, NumElementsR)) 651 return Res; 652 for (unsigned i = 0; i != NumElementsL; ++i) { 653 if (int Res = cmpConstants(cast<Constant>(LS->getOperand(i)), 654 cast<Constant>(RS->getOperand(i)))) 655 return Res; 656 } 657 return 0; 658 } 659 case Value::ConstantVectorVal: { 660 const ConstantVector *LV = cast<ConstantVector>(L); 661 const ConstantVector *RV = cast<ConstantVector>(R); 662 unsigned NumElementsL = cast<VectorType>(TyL)->getNumElements(); 663 unsigned NumElementsR = cast<VectorType>(TyR)->getNumElements(); 664 if (int Res = cmpNumbers(NumElementsL, NumElementsR)) 665 return Res; 666 for (uint64_t i = 0; i < NumElementsL; ++i) { 667 if (int Res = cmpConstants(cast<Constant>(LV->getOperand(i)), 668 cast<Constant>(RV->getOperand(i)))) 669 return Res; 670 } 671 return 0; 672 } 673 case Value::ConstantExprVal: { 674 const ConstantExpr *LE = cast<ConstantExpr>(L); 675 const ConstantExpr *RE = cast<ConstantExpr>(R); 676 unsigned NumOperandsL = LE->getNumOperands(); 677 unsigned NumOperandsR = RE->getNumOperands(); 678 if (int Res = cmpNumbers(NumOperandsL, NumOperandsR)) 679 return Res; 680 for (unsigned i = 0; i < NumOperandsL; ++i) { 681 if (int Res = cmpConstants(cast<Constant>(LE->getOperand(i)), 682 cast<Constant>(RE->getOperand(i)))) 683 return Res; 684 } 685 return 0; 686 } 687 case Value::BlockAddressVal: { 688 // FIXME: This still uses a pointer comparison. It isn't clear how to remove 689 // this. This only affects programs which take BlockAddresses and store them 690 // as constants, which is limited to interepreters, etc. 691 return cmpNumbers((uint64_t)L, (uint64_t)R); 692 } 693 default: // Unknown constant, abort. 694 DEBUG(dbgs() << "Looking at valueID " << L->getValueID() << "\n"); 695 llvm_unreachable("Constant ValueID not recognized."); 696 return -1; 697 } 698 } 699 700 int FunctionComparator::cmpGlobalValues(GlobalValue *L, GlobalValue* R) { 701 return cmpNumbers(GlobalNumbers->getNumber(L), GlobalNumbers->getNumber(R)); 702 } 703 704 /// cmpType - compares two types, 705 /// defines total ordering among the types set. 706 /// See method declaration comments for more details. 707 int FunctionComparator::cmpTypes(Type *TyL, Type *TyR) const { 708 709 PointerType *PTyL = dyn_cast<PointerType>(TyL); 710 PointerType *PTyR = dyn_cast<PointerType>(TyR); 711 712 const DataLayout &DL = FnL->getParent()->getDataLayout(); 713 if (PTyL && PTyL->getAddressSpace() == 0) 714 TyL = DL.getIntPtrType(TyL); 715 if (PTyR && PTyR->getAddressSpace() == 0) 716 TyR = DL.getIntPtrType(TyR); 717 718 if (TyL == TyR) 719 return 0; 720 721 if (int Res = cmpNumbers(TyL->getTypeID(), TyR->getTypeID())) 722 return Res; 723 724 switch (TyL->getTypeID()) { 725 default: 726 llvm_unreachable("Unknown type!"); 727 // Fall through in Release mode. 728 case Type::IntegerTyID: 729 return cmpNumbers(cast<IntegerType>(TyL)->getBitWidth(), 730 cast<IntegerType>(TyR)->getBitWidth()); 731 case Type::VectorTyID: { 732 VectorType *VTyL = cast<VectorType>(TyL), *VTyR = cast<VectorType>(TyR); 733 if (int Res = cmpNumbers(VTyL->getNumElements(), VTyR->getNumElements())) 734 return Res; 735 return cmpTypes(VTyL->getElementType(), VTyR->getElementType()); 736 } 737 // TyL == TyR would have returned true earlier, because types are uniqued. 738 case Type::VoidTyID: 739 case Type::FloatTyID: 740 case Type::DoubleTyID: 741 case Type::X86_FP80TyID: 742 case Type::FP128TyID: 743 case Type::PPC_FP128TyID: 744 case Type::LabelTyID: 745 case Type::MetadataTyID: 746 case Type::TokenTyID: 747 return 0; 748 749 case Type::PointerTyID: { 750 assert(PTyL && PTyR && "Both types must be pointers here."); 751 return cmpNumbers(PTyL->getAddressSpace(), PTyR->getAddressSpace()); 752 } 753 754 case Type::StructTyID: { 755 StructType *STyL = cast<StructType>(TyL); 756 StructType *STyR = cast<StructType>(TyR); 757 if (STyL->getNumElements() != STyR->getNumElements()) 758 return cmpNumbers(STyL->getNumElements(), STyR->getNumElements()); 759 760 if (STyL->isPacked() != STyR->isPacked()) 761 return cmpNumbers(STyL->isPacked(), STyR->isPacked()); 762 763 for (unsigned i = 0, e = STyL->getNumElements(); i != e; ++i) { 764 if (int Res = cmpTypes(STyL->getElementType(i), STyR->getElementType(i))) 765 return Res; 766 } 767 return 0; 768 } 769 770 case Type::FunctionTyID: { 771 FunctionType *FTyL = cast<FunctionType>(TyL); 772 FunctionType *FTyR = cast<FunctionType>(TyR); 773 if (FTyL->getNumParams() != FTyR->getNumParams()) 774 return cmpNumbers(FTyL->getNumParams(), FTyR->getNumParams()); 775 776 if (FTyL->isVarArg() != FTyR->isVarArg()) 777 return cmpNumbers(FTyL->isVarArg(), FTyR->isVarArg()); 778 779 if (int Res = cmpTypes(FTyL->getReturnType(), FTyR->getReturnType())) 780 return Res; 781 782 for (unsigned i = 0, e = FTyL->getNumParams(); i != e; ++i) { 783 if (int Res = cmpTypes(FTyL->getParamType(i), FTyR->getParamType(i))) 784 return Res; 785 } 786 return 0; 787 } 788 789 case Type::ArrayTyID: { 790 ArrayType *ATyL = cast<ArrayType>(TyL); 791 ArrayType *ATyR = cast<ArrayType>(TyR); 792 if (ATyL->getNumElements() != ATyR->getNumElements()) 793 return cmpNumbers(ATyL->getNumElements(), ATyR->getNumElements()); 794 return cmpTypes(ATyL->getElementType(), ATyR->getElementType()); 795 } 796 } 797 } 798 799 // Determine whether the two operations are the same except that pointer-to-A 800 // and pointer-to-B are equivalent. This should be kept in sync with 801 // Instruction::isSameOperationAs. 802 // Read method declaration comments for more details. 803 int FunctionComparator::cmpOperations(const Instruction *L, 804 const Instruction *R) const { 805 // Differences from Instruction::isSameOperationAs: 806 // * replace type comparison with calls to isEquivalentType. 807 // * we test for I->hasSameSubclassOptionalData (nuw/nsw/tail) at the top 808 // * because of the above, we don't test for the tail bit on calls later on 809 if (int Res = cmpNumbers(L->getOpcode(), R->getOpcode())) 810 return Res; 811 812 if (int Res = cmpNumbers(L->getNumOperands(), R->getNumOperands())) 813 return Res; 814 815 if (int Res = cmpTypes(L->getType(), R->getType())) 816 return Res; 817 818 if (int Res = cmpNumbers(L->getRawSubclassOptionalData(), 819 R->getRawSubclassOptionalData())) 820 return Res; 821 822 if (const AllocaInst *AI = dyn_cast<AllocaInst>(L)) { 823 if (int Res = cmpTypes(AI->getAllocatedType(), 824 cast<AllocaInst>(R)->getAllocatedType())) 825 return Res; 826 if (int Res = 827 cmpNumbers(AI->getAlignment(), cast<AllocaInst>(R)->getAlignment())) 828 return Res; 829 } 830 831 // We have two instructions of identical opcode and #operands. Check to see 832 // if all operands are the same type 833 for (unsigned i = 0, e = L->getNumOperands(); i != e; ++i) { 834 if (int Res = 835 cmpTypes(L->getOperand(i)->getType(), R->getOperand(i)->getType())) 836 return Res; 837 } 838 839 // Check special state that is a part of some instructions. 840 if (const LoadInst *LI = dyn_cast<LoadInst>(L)) { 841 if (int Res = cmpNumbers(LI->isVolatile(), cast<LoadInst>(R)->isVolatile())) 842 return Res; 843 if (int Res = 844 cmpNumbers(LI->getAlignment(), cast<LoadInst>(R)->getAlignment())) 845 return Res; 846 if (int Res = 847 cmpNumbers(LI->getOrdering(), cast<LoadInst>(R)->getOrdering())) 848 return Res; 849 if (int Res = 850 cmpNumbers(LI->getSynchScope(), cast<LoadInst>(R)->getSynchScope())) 851 return Res; 852 return cmpNumbers((uint64_t)LI->getMetadata(LLVMContext::MD_range), 853 (uint64_t)cast<LoadInst>(R)->getMetadata(LLVMContext::MD_range)); 854 } 855 if (const StoreInst *SI = dyn_cast<StoreInst>(L)) { 856 if (int Res = 857 cmpNumbers(SI->isVolatile(), cast<StoreInst>(R)->isVolatile())) 858 return Res; 859 if (int Res = 860 cmpNumbers(SI->getAlignment(), cast<StoreInst>(R)->getAlignment())) 861 return Res; 862 if (int Res = 863 cmpNumbers(SI->getOrdering(), cast<StoreInst>(R)->getOrdering())) 864 return Res; 865 return cmpNumbers(SI->getSynchScope(), cast<StoreInst>(R)->getSynchScope()); 866 } 867 if (const CmpInst *CI = dyn_cast<CmpInst>(L)) 868 return cmpNumbers(CI->getPredicate(), cast<CmpInst>(R)->getPredicate()); 869 if (const CallInst *CI = dyn_cast<CallInst>(L)) { 870 if (int Res = cmpNumbers(CI->getCallingConv(), 871 cast<CallInst>(R)->getCallingConv())) 872 return Res; 873 if (int Res = 874 cmpAttrs(CI->getAttributes(), cast<CallInst>(R)->getAttributes())) 875 return Res; 876 return cmpNumbers( 877 (uint64_t)CI->getMetadata(LLVMContext::MD_range), 878 (uint64_t)cast<CallInst>(R)->getMetadata(LLVMContext::MD_range)); 879 } 880 if (const InvokeInst *CI = dyn_cast<InvokeInst>(L)) { 881 if (int Res = cmpNumbers(CI->getCallingConv(), 882 cast<InvokeInst>(R)->getCallingConv())) 883 return Res; 884 if (int Res = 885 cmpAttrs(CI->getAttributes(), cast<InvokeInst>(R)->getAttributes())) 886 return Res; 887 return cmpNumbers( 888 (uint64_t)CI->getMetadata(LLVMContext::MD_range), 889 (uint64_t)cast<InvokeInst>(R)->getMetadata(LLVMContext::MD_range)); 890 } 891 if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(L)) { 892 ArrayRef<unsigned> LIndices = IVI->getIndices(); 893 ArrayRef<unsigned> RIndices = cast<InsertValueInst>(R)->getIndices(); 894 if (int Res = cmpNumbers(LIndices.size(), RIndices.size())) 895 return Res; 896 for (size_t i = 0, e = LIndices.size(); i != e; ++i) { 897 if (int Res = cmpNumbers(LIndices[i], RIndices[i])) 898 return Res; 899 } 900 } 901 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(L)) { 902 ArrayRef<unsigned> LIndices = EVI->getIndices(); 903 ArrayRef<unsigned> RIndices = cast<ExtractValueInst>(R)->getIndices(); 904 if (int Res = cmpNumbers(LIndices.size(), RIndices.size())) 905 return Res; 906 for (size_t i = 0, e = LIndices.size(); i != e; ++i) { 907 if (int Res = cmpNumbers(LIndices[i], RIndices[i])) 908 return Res; 909 } 910 } 911 if (const FenceInst *FI = dyn_cast<FenceInst>(L)) { 912 if (int Res = 913 cmpNumbers(FI->getOrdering(), cast<FenceInst>(R)->getOrdering())) 914 return Res; 915 return cmpNumbers(FI->getSynchScope(), cast<FenceInst>(R)->getSynchScope()); 916 } 917 918 if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(L)) { 919 if (int Res = cmpNumbers(CXI->isVolatile(), 920 cast<AtomicCmpXchgInst>(R)->isVolatile())) 921 return Res; 922 if (int Res = cmpNumbers(CXI->isWeak(), 923 cast<AtomicCmpXchgInst>(R)->isWeak())) 924 return Res; 925 if (int Res = cmpNumbers(CXI->getSuccessOrdering(), 926 cast<AtomicCmpXchgInst>(R)->getSuccessOrdering())) 927 return Res; 928 if (int Res = cmpNumbers(CXI->getFailureOrdering(), 929 cast<AtomicCmpXchgInst>(R)->getFailureOrdering())) 930 return Res; 931 return cmpNumbers(CXI->getSynchScope(), 932 cast<AtomicCmpXchgInst>(R)->getSynchScope()); 933 } 934 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(L)) { 935 if (int Res = cmpNumbers(RMWI->getOperation(), 936 cast<AtomicRMWInst>(R)->getOperation())) 937 return Res; 938 if (int Res = cmpNumbers(RMWI->isVolatile(), 939 cast<AtomicRMWInst>(R)->isVolatile())) 940 return Res; 941 if (int Res = cmpNumbers(RMWI->getOrdering(), 942 cast<AtomicRMWInst>(R)->getOrdering())) 943 return Res; 944 return cmpNumbers(RMWI->getSynchScope(), 945 cast<AtomicRMWInst>(R)->getSynchScope()); 946 } 947 return 0; 948 } 949 950 // Determine whether two GEP operations perform the same underlying arithmetic. 951 // Read method declaration comments for more details. 952 int FunctionComparator::cmpGEPs(const GEPOperator *GEPL, 953 const GEPOperator *GEPR) { 954 955 unsigned int ASL = GEPL->getPointerAddressSpace(); 956 unsigned int ASR = GEPR->getPointerAddressSpace(); 957 958 if (int Res = cmpNumbers(ASL, ASR)) 959 return Res; 960 961 // When we have target data, we can reduce the GEP down to the value in bytes 962 // added to the address. 963 const DataLayout &DL = FnL->getParent()->getDataLayout(); 964 unsigned BitWidth = DL.getPointerSizeInBits(ASL); 965 APInt OffsetL(BitWidth, 0), OffsetR(BitWidth, 0); 966 if (GEPL->accumulateConstantOffset(DL, OffsetL) && 967 GEPR->accumulateConstantOffset(DL, OffsetR)) 968 return cmpAPInts(OffsetL, OffsetR); 969 if (int Res = cmpTypes(GEPL->getPointerOperand()->getType(), 970 GEPR->getPointerOperand()->getType())) 971 return Res; 972 973 if (int Res = cmpNumbers(GEPL->getNumOperands(), GEPR->getNumOperands())) 974 return Res; 975 976 for (unsigned i = 0, e = GEPL->getNumOperands(); i != e; ++i) { 977 if (int Res = cmpValues(GEPL->getOperand(i), GEPR->getOperand(i))) 978 return Res; 979 } 980 981 return 0; 982 } 983 984 int FunctionComparator::cmpInlineAsm(const InlineAsm *L, 985 const InlineAsm *R) const { 986 // InlineAsm's are uniqued. If they are the same pointer, obviously they are 987 // the same, otherwise compare the fields. 988 if (L == R) 989 return 0; 990 if (int Res = cmpTypes(L->getFunctionType(), R->getFunctionType())) 991 return Res; 992 if (int Res = cmpMem(L->getAsmString(), R->getAsmString())) 993 return Res; 994 if (int Res = cmpMem(L->getConstraintString(), R->getConstraintString())) 995 return Res; 996 if (int Res = cmpNumbers(L->hasSideEffects(), R->hasSideEffects())) 997 return Res; 998 if (int Res = cmpNumbers(L->isAlignStack(), R->isAlignStack())) 999 return Res; 1000 if (int Res = cmpNumbers(L->getDialect(), R->getDialect())) 1001 return Res; 1002 llvm_unreachable("InlineAsm blocks were not uniqued."); 1003 return 0; 1004 } 1005 1006 /// Compare two values used by the two functions under pair-wise comparison. If 1007 /// this is the first time the values are seen, they're added to the mapping so 1008 /// that we will detect mismatches on next use. 1009 /// See comments in declaration for more details. 1010 int FunctionComparator::cmpValues(const Value *L, const Value *R) { 1011 // Catch self-reference case. 1012 if (L == FnL) { 1013 if (R == FnR) 1014 return 0; 1015 return -1; 1016 } 1017 if (R == FnR) { 1018 if (L == FnL) 1019 return 0; 1020 return 1; 1021 } 1022 1023 const Constant *ConstL = dyn_cast<Constant>(L); 1024 const Constant *ConstR = dyn_cast<Constant>(R); 1025 if (ConstL && ConstR) { 1026 if (L == R) 1027 return 0; 1028 return cmpConstants(ConstL, ConstR); 1029 } 1030 1031 if (ConstL) 1032 return 1; 1033 if (ConstR) 1034 return -1; 1035 1036 const InlineAsm *InlineAsmL = dyn_cast<InlineAsm>(L); 1037 const InlineAsm *InlineAsmR = dyn_cast<InlineAsm>(R); 1038 1039 if (InlineAsmL && InlineAsmR) 1040 return cmpInlineAsm(InlineAsmL, InlineAsmR); 1041 if (InlineAsmL) 1042 return 1; 1043 if (InlineAsmR) 1044 return -1; 1045 1046 auto LeftSN = sn_mapL.insert(std::make_pair(L, sn_mapL.size())), 1047 RightSN = sn_mapR.insert(std::make_pair(R, sn_mapR.size())); 1048 1049 return cmpNumbers(LeftSN.first->second, RightSN.first->second); 1050 } 1051 // Test whether two basic blocks have equivalent behaviour. 1052 int FunctionComparator::cmpBasicBlocks(const BasicBlock *BBL, 1053 const BasicBlock *BBR) { 1054 BasicBlock::const_iterator InstL = BBL->begin(), InstLE = BBL->end(); 1055 BasicBlock::const_iterator InstR = BBR->begin(), InstRE = BBR->end(); 1056 1057 do { 1058 if (int Res = cmpValues(InstL, InstR)) 1059 return Res; 1060 1061 const GetElementPtrInst *GEPL = dyn_cast<GetElementPtrInst>(InstL); 1062 const GetElementPtrInst *GEPR = dyn_cast<GetElementPtrInst>(InstR); 1063 1064 if (GEPL && !GEPR) 1065 return 1; 1066 if (GEPR && !GEPL) 1067 return -1; 1068 1069 if (GEPL && GEPR) { 1070 if (int Res = 1071 cmpValues(GEPL->getPointerOperand(), GEPR->getPointerOperand())) 1072 return Res; 1073 if (int Res = cmpGEPs(GEPL, GEPR)) 1074 return Res; 1075 } else { 1076 if (int Res = cmpOperations(InstL, InstR)) 1077 return Res; 1078 assert(InstL->getNumOperands() == InstR->getNumOperands()); 1079 1080 for (unsigned i = 0, e = InstL->getNumOperands(); i != e; ++i) { 1081 Value *OpL = InstL->getOperand(i); 1082 Value *OpR = InstR->getOperand(i); 1083 if (int Res = cmpValues(OpL, OpR)) 1084 return Res; 1085 if (int Res = cmpNumbers(OpL->getValueID(), OpR->getValueID())) 1086 return Res; 1087 // TODO: Already checked in cmpOperation 1088 if (int Res = cmpTypes(OpL->getType(), OpR->getType())) 1089 return Res; 1090 } 1091 } 1092 1093 ++InstL, ++InstR; 1094 } while (InstL != InstLE && InstR != InstRE); 1095 1096 if (InstL != InstLE && InstR == InstRE) 1097 return 1; 1098 if (InstL == InstLE && InstR != InstRE) 1099 return -1; 1100 return 0; 1101 } 1102 1103 // Test whether the two functions have equivalent behaviour. 1104 int FunctionComparator::compare() { 1105 1106 sn_mapL.clear(); 1107 sn_mapR.clear(); 1108 1109 if (int Res = cmpAttrs(FnL->getAttributes(), FnR->getAttributes())) 1110 return Res; 1111 1112 if (int Res = cmpNumbers(FnL->hasGC(), FnR->hasGC())) 1113 return Res; 1114 1115 if (FnL->hasGC()) { 1116 if (int Res = cmpMem(FnL->getGC(), FnR->getGC())) 1117 return Res; 1118 } 1119 1120 if (int Res = cmpNumbers(FnL->hasSection(), FnR->hasSection())) 1121 return Res; 1122 1123 if (FnL->hasSection()) { 1124 if (int Res = cmpMem(FnL->getSection(), FnR->getSection())) 1125 return Res; 1126 } 1127 1128 if (int Res = cmpNumbers(FnL->isVarArg(), FnR->isVarArg())) 1129 return Res; 1130 1131 // TODO: if it's internal and only used in direct calls, we could handle this 1132 // case too. 1133 if (int Res = cmpNumbers(FnL->getCallingConv(), FnR->getCallingConv())) 1134 return Res; 1135 1136 if (int Res = cmpTypes(FnL->getFunctionType(), FnR->getFunctionType())) 1137 return Res; 1138 1139 assert(FnL->arg_size() == FnR->arg_size() && 1140 "Identically typed functions have different numbers of args!"); 1141 1142 // Visit the arguments so that they get enumerated in the order they're 1143 // passed in. 1144 for (Function::const_arg_iterator ArgLI = FnL->arg_begin(), 1145 ArgRI = FnR->arg_begin(), 1146 ArgLE = FnL->arg_end(); 1147 ArgLI != ArgLE; ++ArgLI, ++ArgRI) { 1148 if (cmpValues(ArgLI, ArgRI) != 0) 1149 llvm_unreachable("Arguments repeat!"); 1150 } 1151 1152 // We do a CFG-ordered walk since the actual ordering of the blocks in the 1153 // linked list is immaterial. Our walk starts at the entry block for both 1154 // functions, then takes each block from each terminator in order. As an 1155 // artifact, this also means that unreachable blocks are ignored. 1156 SmallVector<const BasicBlock *, 8> FnLBBs, FnRBBs; 1157 SmallSet<const BasicBlock *, 128> VisitedBBs; // in terms of F1. 1158 1159 FnLBBs.push_back(&FnL->getEntryBlock()); 1160 FnRBBs.push_back(&FnR->getEntryBlock()); 1161 1162 VisitedBBs.insert(FnLBBs[0]); 1163 while (!FnLBBs.empty()) { 1164 const BasicBlock *BBL = FnLBBs.pop_back_val(); 1165 const BasicBlock *BBR = FnRBBs.pop_back_val(); 1166 1167 if (int Res = cmpValues(BBL, BBR)) 1168 return Res; 1169 1170 if (int Res = cmpBasicBlocks(BBL, BBR)) 1171 return Res; 1172 1173 const TerminatorInst *TermL = BBL->getTerminator(); 1174 const TerminatorInst *TermR = BBR->getTerminator(); 1175 1176 assert(TermL->getNumSuccessors() == TermR->getNumSuccessors()); 1177 for (unsigned i = 0, e = TermL->getNumSuccessors(); i != e; ++i) { 1178 if (!VisitedBBs.insert(TermL->getSuccessor(i)).second) 1179 continue; 1180 1181 FnLBBs.push_back(TermL->getSuccessor(i)); 1182 FnRBBs.push_back(TermR->getSuccessor(i)); 1183 } 1184 } 1185 return 0; 1186 } 1187 1188 // Accumulate the hash of a sequence of 64-bit integers. This is similar to a 1189 // hash of a sequence of 64bit ints, but the entire input does not need to be 1190 // available at once. This interface is necessary for functionHash because it 1191 // needs to accumulate the hash as the structure of the function is traversed 1192 // without saving these values to an intermediate buffer. This form of hashing 1193 // is not often needed, as usually the object to hash is just read from a 1194 // buffer. 1195 class HashAccumulator64 { 1196 uint64_t Hash; 1197 public: 1198 // Initialize to random constant, so the state isn't zero. 1199 HashAccumulator64() { Hash = 0x6acaa36bef8325c5ULL; } 1200 void add(uint64_t V) { 1201 Hash = llvm::hashing::detail::hash_16_bytes(Hash, V); 1202 } 1203 // No finishing is required, because the entire hash value is used. 1204 uint64_t getHash() { return Hash; } 1205 }; 1206 1207 // A function hash is calculated by considering only the number of arguments and 1208 // whether a function is varargs, the order of basic blocks (given by the 1209 // successors of each basic block in depth first order), and the order of 1210 // opcodes of each instruction within each of these basic blocks. This mirrors 1211 // the strategy compare() uses to compare functions by walking the BBs in depth 1212 // first order and comparing each instruction in sequence. Because this hash 1213 // does not look at the operands, it is insensitive to things such as the 1214 // target of calls and the constants used in the function, which makes it useful 1215 // when possibly merging functions which are the same modulo constants and call 1216 // targets. 1217 FunctionComparator::FunctionHash FunctionComparator::functionHash(Function &F) { 1218 HashAccumulator64 H; 1219 H.add(F.isVarArg()); 1220 H.add(F.arg_size()); 1221 1222 SmallVector<const BasicBlock *, 8> BBs; 1223 SmallSet<const BasicBlock *, 16> VisitedBBs; 1224 1225 // Walk the blocks in the same order as FunctionComparator::cmpBasicBlocks(), 1226 // accumulating the hash of the function "structure." (BB and opcode sequence) 1227 BBs.push_back(&F.getEntryBlock()); 1228 VisitedBBs.insert(BBs[0]); 1229 while (!BBs.empty()) { 1230 const BasicBlock *BB = BBs.pop_back_val(); 1231 // This random value acts as a block header, as otherwise the partition of 1232 // opcodes into BBs wouldn't affect the hash, only the order of the opcodes 1233 H.add(45798); 1234 for (auto &Inst : *BB) { 1235 H.add(Inst.getOpcode()); 1236 } 1237 const TerminatorInst *Term = BB->getTerminator(); 1238 for (unsigned i = 0, e = Term->getNumSuccessors(); i != e; ++i) { 1239 if (!VisitedBBs.insert(Term->getSuccessor(i)).second) 1240 continue; 1241 BBs.push_back(Term->getSuccessor(i)); 1242 } 1243 } 1244 return H.getHash(); 1245 } 1246 1247 1248 namespace { 1249 1250 /// MergeFunctions finds functions which will generate identical machine code, 1251 /// by considering all pointer types to be equivalent. Once identified, 1252 /// MergeFunctions will fold them by replacing a call to one to a call to a 1253 /// bitcast of the other. 1254 /// 1255 class MergeFunctions : public ModulePass { 1256 public: 1257 static char ID; 1258 MergeFunctions() 1259 : ModulePass(ID), FnTree(FunctionNodeCmp(&GlobalNumbers)), 1260 HasGlobalAliases(false) { 1261 initializeMergeFunctionsPass(*PassRegistry::getPassRegistry()); 1262 } 1263 1264 bool runOnModule(Module &M) override; 1265 1266 private: 1267 // The function comparison operator is provided here so that FunctionNodes do 1268 // not need to become larger with another pointer. 1269 class FunctionNodeCmp { 1270 GlobalNumberState* GlobalNumbers; 1271 public: 1272 FunctionNodeCmp(GlobalNumberState* GN) : GlobalNumbers(GN) {} 1273 bool operator()(const FunctionNode &LHS, const FunctionNode &RHS) const { 1274 // Order first by hashes, then full function comparison. 1275 if (LHS.getHash() != RHS.getHash()) 1276 return LHS.getHash() < RHS.getHash(); 1277 FunctionComparator FCmp(LHS.getFunc(), RHS.getFunc(), GlobalNumbers); 1278 return FCmp.compare() == -1; 1279 } 1280 }; 1281 typedef std::set<FunctionNode, FunctionNodeCmp> FnTreeType; 1282 1283 GlobalNumberState GlobalNumbers; 1284 1285 /// A work queue of functions that may have been modified and should be 1286 /// analyzed again. 1287 std::vector<WeakVH> Deferred; 1288 1289 /// Checks the rules of order relation introduced among functions set. 1290 /// Returns true, if sanity check has been passed, and false if failed. 1291 bool doSanityCheck(std::vector<WeakVH> &Worklist); 1292 1293 /// Insert a ComparableFunction into the FnTree, or merge it away if it's 1294 /// equal to one that's already present. 1295 bool insert(Function *NewFunction); 1296 1297 /// Remove a Function from the FnTree and queue it up for a second sweep of 1298 /// analysis. 1299 void remove(Function *F); 1300 1301 /// Find the functions that use this Value and remove them from FnTree and 1302 /// queue the functions. 1303 void removeUsers(Value *V); 1304 1305 /// Replace all direct calls of Old with calls of New. Will bitcast New if 1306 /// necessary to make types match. 1307 void replaceDirectCallers(Function *Old, Function *New); 1308 1309 /// Merge two equivalent functions. Upon completion, G may be deleted, or may 1310 /// be converted into a thunk. In either case, it should never be visited 1311 /// again. 1312 void mergeTwoFunctions(Function *F, Function *G); 1313 1314 /// Replace G with a thunk or an alias to F. Deletes G. 1315 void writeThunkOrAlias(Function *F, Function *G); 1316 1317 /// Replace G with a simple tail call to bitcast(F). Also replace direct uses 1318 /// of G with bitcast(F). Deletes G. 1319 void writeThunk(Function *F, Function *G); 1320 1321 /// Replace G with an alias to F. Deletes G. 1322 void writeAlias(Function *F, Function *G); 1323 1324 /// Replace function F with function G in the function tree. 1325 void replaceFunctionInTree(FnTreeType::iterator &IterToF, Function *G); 1326 1327 /// The set of all distinct functions. Use the insert() and remove() methods 1328 /// to modify it. 1329 FnTreeType FnTree; 1330 1331 /// Whether or not the target supports global aliases. 1332 bool HasGlobalAliases; 1333 }; 1334 1335 } // end anonymous namespace 1336 1337 char MergeFunctions::ID = 0; 1338 INITIALIZE_PASS(MergeFunctions, "mergefunc", "Merge Functions", false, false) 1339 1340 ModulePass *llvm::createMergeFunctionsPass() { 1341 return new MergeFunctions(); 1342 } 1343 1344 bool MergeFunctions::doSanityCheck(std::vector<WeakVH> &Worklist) { 1345 if (const unsigned Max = NumFunctionsForSanityCheck) { 1346 unsigned TripleNumber = 0; 1347 bool Valid = true; 1348 1349 dbgs() << "MERGEFUNC-SANITY: Started for first " << Max << " functions.\n"; 1350 1351 unsigned i = 0; 1352 for (std::vector<WeakVH>::iterator I = Worklist.begin(), E = Worklist.end(); 1353 I != E && i < Max; ++I, ++i) { 1354 unsigned j = i; 1355 for (std::vector<WeakVH>::iterator J = I; J != E && j < Max; ++J, ++j) { 1356 Function *F1 = cast<Function>(*I); 1357 Function *F2 = cast<Function>(*J); 1358 int Res1 = FunctionComparator(F1, F2, &GlobalNumbers).compare(); 1359 int Res2 = FunctionComparator(F2, F1, &GlobalNumbers).compare(); 1360 1361 // If F1 <= F2, then F2 >= F1, otherwise report failure. 1362 if (Res1 != -Res2) { 1363 dbgs() << "MERGEFUNC-SANITY: Non-symmetric; triple: " << TripleNumber 1364 << "\n"; 1365 F1->dump(); 1366 F2->dump(); 1367 Valid = false; 1368 } 1369 1370 if (Res1 == 0) 1371 continue; 1372 1373 unsigned k = j; 1374 for (std::vector<WeakVH>::iterator K = J; K != E && k < Max; 1375 ++k, ++K, ++TripleNumber) { 1376 if (K == J) 1377 continue; 1378 1379 Function *F3 = cast<Function>(*K); 1380 int Res3 = FunctionComparator(F1, F3, &GlobalNumbers).compare(); 1381 int Res4 = FunctionComparator(F2, F3, &GlobalNumbers).compare(); 1382 1383 bool Transitive = true; 1384 1385 if (Res1 != 0 && Res1 == Res4) { 1386 // F1 > F2, F2 > F3 => F1 > F3 1387 Transitive = Res3 == Res1; 1388 } else if (Res3 != 0 && Res3 == -Res4) { 1389 // F1 > F3, F3 > F2 => F1 > F2 1390 Transitive = Res3 == Res1; 1391 } else if (Res4 != 0 && -Res3 == Res4) { 1392 // F2 > F3, F3 > F1 => F2 > F1 1393 Transitive = Res4 == -Res1; 1394 } 1395 1396 if (!Transitive) { 1397 dbgs() << "MERGEFUNC-SANITY: Non-transitive; triple: " 1398 << TripleNumber << "\n"; 1399 dbgs() << "Res1, Res3, Res4: " << Res1 << ", " << Res3 << ", " 1400 << Res4 << "\n"; 1401 F1->dump(); 1402 F2->dump(); 1403 F3->dump(); 1404 Valid = false; 1405 } 1406 } 1407 } 1408 } 1409 1410 dbgs() << "MERGEFUNC-SANITY: " << (Valid ? "Passed." : "Failed.") << "\n"; 1411 return Valid; 1412 } 1413 return true; 1414 } 1415 1416 bool MergeFunctions::runOnModule(Module &M) { 1417 bool Changed = false; 1418 1419 // All functions in the module, ordered by hash. Functions with a unique 1420 // hash value are easily eliminated. 1421 std::vector<std::pair<FunctionComparator::FunctionHash, Function *>> 1422 HashedFuncs; 1423 for (Function &Func : M) { 1424 if (!Func.isDeclaration() && !Func.hasAvailableExternallyLinkage()) { 1425 HashedFuncs.push_back({FunctionComparator::functionHash(Func), &Func}); 1426 } 1427 } 1428 1429 std::stable_sort( 1430 HashedFuncs.begin(), HashedFuncs.end(), 1431 [](const std::pair<FunctionComparator::FunctionHash, Function *> &a, 1432 const std::pair<FunctionComparator::FunctionHash, Function *> &b) { 1433 return a.first < b.first; 1434 }); 1435 1436 auto S = HashedFuncs.begin(); 1437 for (auto I = HashedFuncs.begin(), IE = HashedFuncs.end(); I != IE; ++I) { 1438 // If the hash value matches the previous value or the next one, we must 1439 // consider merging it. Otherwise it is dropped and never considered again. 1440 if ((I != S && std::prev(I)->first == I->first) || 1441 (std::next(I) != IE && std::next(I)->first == I->first) ) { 1442 Deferred.push_back(WeakVH(I->second)); 1443 } 1444 } 1445 1446 do { 1447 std::vector<WeakVH> Worklist; 1448 Deferred.swap(Worklist); 1449 1450 DEBUG(doSanityCheck(Worklist)); 1451 1452 DEBUG(dbgs() << "size of module: " << M.size() << '\n'); 1453 DEBUG(dbgs() << "size of worklist: " << Worklist.size() << '\n'); 1454 1455 // Insert only strong functions and merge them. Strong function merging 1456 // always deletes one of them. 1457 for (std::vector<WeakVH>::iterator I = Worklist.begin(), 1458 E = Worklist.end(); I != E; ++I) { 1459 if (!*I) continue; 1460 Function *F = cast<Function>(*I); 1461 if (!F->isDeclaration() && !F->hasAvailableExternallyLinkage() && 1462 !F->mayBeOverridden()) { 1463 Changed |= insert(F); 1464 } 1465 } 1466 1467 // Insert only weak functions and merge them. By doing these second we 1468 // create thunks to the strong function when possible. When two weak 1469 // functions are identical, we create a new strong function with two weak 1470 // weak thunks to it which are identical but not mergable. 1471 for (std::vector<WeakVH>::iterator I = Worklist.begin(), 1472 E = Worklist.end(); I != E; ++I) { 1473 if (!*I) continue; 1474 Function *F = cast<Function>(*I); 1475 if (!F->isDeclaration() && !F->hasAvailableExternallyLinkage() && 1476 F->mayBeOverridden()) { 1477 Changed |= insert(F); 1478 } 1479 } 1480 DEBUG(dbgs() << "size of FnTree: " << FnTree.size() << '\n'); 1481 } while (!Deferred.empty()); 1482 1483 FnTree.clear(); 1484 1485 return Changed; 1486 } 1487 1488 // Replace direct callers of Old with New. 1489 void MergeFunctions::replaceDirectCallers(Function *Old, Function *New) { 1490 Constant *BitcastNew = ConstantExpr::getBitCast(New, Old->getType()); 1491 for (auto UI = Old->use_begin(), UE = Old->use_end(); UI != UE;) { 1492 Use *U = &*UI; 1493 ++UI; 1494 CallSite CS(U->getUser()); 1495 if (CS && CS.isCallee(U)) { 1496 // Transfer the called function's attributes to the call site. Due to the 1497 // bitcast we will 'loose' ABI changing attributes because the 'called 1498 // function' is no longer a Function* but the bitcast. Code that looks up 1499 // the attributes from the called function will fail. 1500 auto &Context = New->getContext(); 1501 auto NewFuncAttrs = New->getAttributes(); 1502 auto CallSiteAttrs = CS.getAttributes(); 1503 1504 CallSiteAttrs = CallSiteAttrs.addAttributes( 1505 Context, AttributeSet::ReturnIndex, NewFuncAttrs.getRetAttributes()); 1506 1507 for (unsigned argIdx = 0; argIdx < CS.arg_size(); argIdx++) { 1508 AttributeSet Attrs = NewFuncAttrs.getParamAttributes(argIdx); 1509 if (Attrs.getNumSlots()) 1510 CallSiteAttrs = CallSiteAttrs.addAttributes(Context, argIdx, Attrs); 1511 } 1512 1513 CS.setAttributes(CallSiteAttrs); 1514 1515 remove(CS.getInstruction()->getParent()->getParent()); 1516 U->set(BitcastNew); 1517 } 1518 } 1519 } 1520 1521 // Replace G with an alias to F if possible, or else a thunk to F. Deletes G. 1522 void MergeFunctions::writeThunkOrAlias(Function *F, Function *G) { 1523 if (HasGlobalAliases && G->hasUnnamedAddr()) { 1524 if (G->hasExternalLinkage() || G->hasLocalLinkage() || 1525 G->hasWeakLinkage()) { 1526 writeAlias(F, G); 1527 return; 1528 } 1529 } 1530 1531 writeThunk(F, G); 1532 } 1533 1534 // Helper for writeThunk, 1535 // Selects proper bitcast operation, 1536 // but a bit simpler then CastInst::getCastOpcode. 1537 static Value *createCast(IRBuilder<false> &Builder, Value *V, Type *DestTy) { 1538 Type *SrcTy = V->getType(); 1539 if (SrcTy->isStructTy()) { 1540 assert(DestTy->isStructTy()); 1541 assert(SrcTy->getStructNumElements() == DestTy->getStructNumElements()); 1542 Value *Result = UndefValue::get(DestTy); 1543 for (unsigned int I = 0, E = SrcTy->getStructNumElements(); I < E; ++I) { 1544 Value *Element = createCast( 1545 Builder, Builder.CreateExtractValue(V, makeArrayRef(I)), 1546 DestTy->getStructElementType(I)); 1547 1548 Result = 1549 Builder.CreateInsertValue(Result, Element, makeArrayRef(I)); 1550 } 1551 return Result; 1552 } 1553 assert(!DestTy->isStructTy()); 1554 if (SrcTy->isIntegerTy() && DestTy->isPointerTy()) 1555 return Builder.CreateIntToPtr(V, DestTy); 1556 else if (SrcTy->isPointerTy() && DestTy->isIntegerTy()) 1557 return Builder.CreatePtrToInt(V, DestTy); 1558 else 1559 return Builder.CreateBitCast(V, DestTy); 1560 } 1561 1562 // Replace G with a simple tail call to bitcast(F). Also replace direct uses 1563 // of G with bitcast(F). Deletes G. 1564 void MergeFunctions::writeThunk(Function *F, Function *G) { 1565 if (!G->mayBeOverridden()) { 1566 // Redirect direct callers of G to F. 1567 replaceDirectCallers(G, F); 1568 } 1569 1570 // If G was internal then we may have replaced all uses of G with F. If so, 1571 // stop here and delete G. There's no need for a thunk. 1572 if (G->hasLocalLinkage() && G->use_empty()) { 1573 G->eraseFromParent(); 1574 return; 1575 } 1576 1577 Function *NewG = Function::Create(G->getFunctionType(), G->getLinkage(), "", 1578 G->getParent()); 1579 BasicBlock *BB = BasicBlock::Create(F->getContext(), "", NewG); 1580 IRBuilder<false> Builder(BB); 1581 1582 SmallVector<Value *, 16> Args; 1583 unsigned i = 0; 1584 FunctionType *FFTy = F->getFunctionType(); 1585 for (Function::arg_iterator AI = NewG->arg_begin(), AE = NewG->arg_end(); 1586 AI != AE; ++AI) { 1587 Args.push_back(createCast(Builder, (Value*)AI, FFTy->getParamType(i))); 1588 ++i; 1589 } 1590 1591 CallInst *CI = Builder.CreateCall(F, Args); 1592 CI->setTailCall(); 1593 CI->setCallingConv(F->getCallingConv()); 1594 if (NewG->getReturnType()->isVoidTy()) { 1595 Builder.CreateRetVoid(); 1596 } else { 1597 Builder.CreateRet(createCast(Builder, CI, NewG->getReturnType())); 1598 } 1599 1600 NewG->copyAttributesFrom(G); 1601 NewG->takeName(G); 1602 removeUsers(G); 1603 G->replaceAllUsesWith(NewG); 1604 G->eraseFromParent(); 1605 1606 DEBUG(dbgs() << "writeThunk: " << NewG->getName() << '\n'); 1607 ++NumThunksWritten; 1608 } 1609 1610 // Replace G with an alias to F and delete G. 1611 void MergeFunctions::writeAlias(Function *F, Function *G) { 1612 PointerType *PTy = G->getType(); 1613 auto *GA = GlobalAlias::create(PTy, G->getLinkage(), "", F); 1614 F->setAlignment(std::max(F->getAlignment(), G->getAlignment())); 1615 GA->takeName(G); 1616 GA->setVisibility(G->getVisibility()); 1617 removeUsers(G); 1618 G->replaceAllUsesWith(GA); 1619 G->eraseFromParent(); 1620 1621 DEBUG(dbgs() << "writeAlias: " << GA->getName() << '\n'); 1622 ++NumAliasesWritten; 1623 } 1624 1625 // Merge two equivalent functions. Upon completion, Function G is deleted. 1626 void MergeFunctions::mergeTwoFunctions(Function *F, Function *G) { 1627 if (F->mayBeOverridden()) { 1628 assert(G->mayBeOverridden()); 1629 1630 // Make them both thunks to the same internal function. 1631 Function *H = Function::Create(F->getFunctionType(), F->getLinkage(), "", 1632 F->getParent()); 1633 H->copyAttributesFrom(F); 1634 H->takeName(F); 1635 removeUsers(F); 1636 F->replaceAllUsesWith(H); 1637 1638 unsigned MaxAlignment = std::max(G->getAlignment(), H->getAlignment()); 1639 1640 if (HasGlobalAliases) { 1641 writeAlias(F, G); 1642 writeAlias(F, H); 1643 } else { 1644 writeThunk(F, G); 1645 writeThunk(F, H); 1646 } 1647 1648 F->setAlignment(MaxAlignment); 1649 F->setLinkage(GlobalValue::PrivateLinkage); 1650 ++NumDoubleWeak; 1651 } else { 1652 writeThunkOrAlias(F, G); 1653 } 1654 1655 ++NumFunctionsMerged; 1656 } 1657 1658 /// Replace function F for function G in the map. 1659 void MergeFunctions::replaceFunctionInTree(FnTreeType::iterator &IterToF, 1660 Function *G) { 1661 Function *F = IterToF->getFunc(); 1662 1663 // A total order is already guaranteed otherwise because we process strong 1664 // functions before weak functions. 1665 assert(((F->mayBeOverridden() && G->mayBeOverridden()) || 1666 (!F->mayBeOverridden() && !G->mayBeOverridden())) && 1667 "Only change functions if both are strong or both are weak"); 1668 (void)F; 1669 assert(FunctionComparator(F, G, &GlobalNumbers).compare() == 0 && 1670 "The two functions must be equal"); 1671 1672 IterToF->replaceBy(G); 1673 } 1674 1675 // Insert a ComparableFunction into the FnTree, or merge it away if equal to one 1676 // that was already inserted. 1677 bool MergeFunctions::insert(Function *NewFunction) { 1678 std::pair<FnTreeType::iterator, bool> Result = 1679 FnTree.insert(FunctionNode(NewFunction)); 1680 1681 if (Result.second) { 1682 DEBUG(dbgs() << "Inserting as unique: " << NewFunction->getName() << '\n'); 1683 return false; 1684 } 1685 1686 const FunctionNode &OldF = *Result.first; 1687 1688 // Don't merge tiny functions, since it can just end up making the function 1689 // larger. 1690 // FIXME: Should still merge them if they are unnamed_addr and produce an 1691 // alias. 1692 if (NewFunction->size() == 1) { 1693 if (NewFunction->front().size() <= 2) { 1694 DEBUG(dbgs() << NewFunction->getName() 1695 << " is to small to bother merging\n"); 1696 return false; 1697 } 1698 } 1699 1700 // Impose a total order (by name) on the replacement of functions. This is 1701 // important when operating on more than one module independently to prevent 1702 // cycles of thunks calling each other when the modules are linked together. 1703 // 1704 // When one function is weak and the other is strong there is an order imposed 1705 // already. We process strong functions before weak functions. 1706 if ((OldF.getFunc()->mayBeOverridden() && NewFunction->mayBeOverridden()) || 1707 (!OldF.getFunc()->mayBeOverridden() && !NewFunction->mayBeOverridden())) 1708 if (OldF.getFunc()->getName() > NewFunction->getName()) { 1709 // Swap the two functions. 1710 Function *F = OldF.getFunc(); 1711 replaceFunctionInTree(Result.first, NewFunction); 1712 NewFunction = F; 1713 assert(OldF.getFunc() != F && "Must have swapped the functions."); 1714 } 1715 1716 // Never thunk a strong function to a weak function. 1717 assert(!OldF.getFunc()->mayBeOverridden() || NewFunction->mayBeOverridden()); 1718 1719 DEBUG(dbgs() << " " << OldF.getFunc()->getName() 1720 << " == " << NewFunction->getName() << '\n'); 1721 1722 Function *DeleteF = NewFunction; 1723 mergeTwoFunctions(OldF.getFunc(), DeleteF); 1724 return true; 1725 } 1726 1727 // Remove a function from FnTree. If it was already in FnTree, add 1728 // it to Deferred so that we'll look at it in the next round. 1729 void MergeFunctions::remove(Function *F) { 1730 // We need to make sure we remove F, not a function "equal" to F per the 1731 // function equality comparator. 1732 FnTreeType::iterator found = FnTree.find(FunctionNode(F)); 1733 size_t Erased = 0; 1734 if (found != FnTree.end() && found->getFunc() == F) { 1735 Erased = 1; 1736 FnTree.erase(found); 1737 } 1738 1739 if (Erased) { 1740 DEBUG(dbgs() << "Removed " << F->getName() 1741 << " from set and deferred it.\n"); 1742 Deferred.emplace_back(F); 1743 } 1744 } 1745 1746 // For each instruction used by the value, remove() the function that contains 1747 // the instruction. This should happen right before a call to RAUW. 1748 void MergeFunctions::removeUsers(Value *V) { 1749 std::vector<Value *> Worklist; 1750 Worklist.push_back(V); 1751 SmallSet<Value*, 8> Visited; 1752 Visited.insert(V); 1753 while (!Worklist.empty()) { 1754 Value *V = Worklist.back(); 1755 Worklist.pop_back(); 1756 1757 for (User *U : V->users()) { 1758 if (Instruction *I = dyn_cast<Instruction>(U)) { 1759 remove(I->getParent()->getParent()); 1760 } else if (isa<GlobalValue>(U)) { 1761 // do nothing 1762 } else if (Constant *C = dyn_cast<Constant>(U)) { 1763 for (User *UU : C->users()) { 1764 if (!Visited.insert(UU).second) 1765 Worklist.push_back(UU); 1766 } 1767 } 1768 } 1769 } 1770 } 1771