1 //===- MergeFunctions.cpp - Merge identical functions ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass looks for equivalent functions that are mergable and folds them. 11 // 12 // Order relation is defined on set of functions. It was made through 13 // special function comparison procedure that returns 14 // 0 when functions are equal, 15 // -1 when Left function is less than right function, and 16 // 1 for opposite case. We need total-ordering, so we need to maintain 17 // four properties on the functions set: 18 // a <= a (reflexivity) 19 // if a <= b and b <= a then a = b (antisymmetry) 20 // if a <= b and b <= c then a <= c (transitivity). 21 // for all a and b: a <= b or b <= a (totality). 22 // 23 // Comparison iterates through each instruction in each basic block. 24 // Functions are kept on binary tree. For each new function F we perform 25 // lookup in binary tree. 26 // In practice it works the following way: 27 // -- We define Function* container class with custom "operator<" (FunctionPtr). 28 // -- "FunctionPtr" instances are stored in std::set collection, so every 29 // std::set::insert operation will give you result in log(N) time. 30 // 31 // As an optimization, a hash of the function structure is calculated first, and 32 // two functions are only compared if they have the same hash. This hash is 33 // cheap to compute, and has the property that if function F == G according to 34 // the comparison function, then hash(F) == hash(G). This consistency property 35 // is critical to ensuring all possible merging opportunities are exploited. 36 // Collisions in the hash affect the speed of the pass but not the correctness 37 // or determinism of the resulting transformation. 38 // 39 // When a match is found the functions are folded. If both functions are 40 // overridable, we move the functionality into a new internal function and 41 // leave two overridable thunks to it. 42 // 43 //===----------------------------------------------------------------------===// 44 // 45 // Future work: 46 // 47 // * virtual functions. 48 // 49 // Many functions have their address taken by the virtual function table for 50 // the object they belong to. However, as long as it's only used for a lookup 51 // and call, this is irrelevant, and we'd like to fold such functions. 52 // 53 // * be smarter about bitcasts. 54 // 55 // In order to fold functions, we will sometimes add either bitcast instructions 56 // or bitcast constant expressions. Unfortunately, this can confound further 57 // analysis since the two functions differ where one has a bitcast and the 58 // other doesn't. We should learn to look through bitcasts. 59 // 60 // * Compare complex types with pointer types inside. 61 // * Compare cross-reference cases. 62 // * Compare complex expressions. 63 // 64 // All the three issues above could be described as ability to prove that 65 // fA == fB == fC == fE == fF == fG in example below: 66 // 67 // void fA() { 68 // fB(); 69 // } 70 // void fB() { 71 // fA(); 72 // } 73 // 74 // void fE() { 75 // fF(); 76 // } 77 // void fF() { 78 // fG(); 79 // } 80 // void fG() { 81 // fE(); 82 // } 83 // 84 // Simplest cross-reference case (fA <--> fB) was implemented in previous 85 // versions of MergeFunctions, though it presented only in two function pairs 86 // in test-suite (that counts >50k functions) 87 // Though possibility to detect complex cross-referencing (e.g.: A->B->C->D->A) 88 // could cover much more cases. 89 // 90 //===----------------------------------------------------------------------===// 91 92 #include "llvm/ADT/Hashing.h" 93 #include "llvm/ADT/STLExtras.h" 94 #include "llvm/ADT/SmallSet.h" 95 #include "llvm/ADT/Statistic.h" 96 #include "llvm/IR/CallSite.h" 97 #include "llvm/IR/Constants.h" 98 #include "llvm/IR/DataLayout.h" 99 #include "llvm/IR/IRBuilder.h" 100 #include "llvm/IR/InlineAsm.h" 101 #include "llvm/IR/Instructions.h" 102 #include "llvm/IR/LLVMContext.h" 103 #include "llvm/IR/Module.h" 104 #include "llvm/IR/Operator.h" 105 #include "llvm/IR/ValueHandle.h" 106 #include "llvm/IR/ValueMap.h" 107 #include "llvm/Pass.h" 108 #include "llvm/Support/CommandLine.h" 109 #include "llvm/Support/Debug.h" 110 #include "llvm/Support/ErrorHandling.h" 111 #include "llvm/Support/raw_ostream.h" 112 #include "llvm/Transforms/IPO.h" 113 #include <vector> 114 115 using namespace llvm; 116 117 #define DEBUG_TYPE "mergefunc" 118 119 STATISTIC(NumFunctionsMerged, "Number of functions merged"); 120 STATISTIC(NumThunksWritten, "Number of thunks generated"); 121 STATISTIC(NumAliasesWritten, "Number of aliases generated"); 122 STATISTIC(NumDoubleWeak, "Number of new functions created"); 123 124 static cl::opt<unsigned> NumFunctionsForSanityCheck( 125 "mergefunc-sanity", 126 cl::desc("How many functions in module could be used for " 127 "MergeFunctions pass sanity check. " 128 "'0' disables this check. Works only with '-debug' key."), 129 cl::init(0), cl::Hidden); 130 131 namespace { 132 133 /// GlobalNumberState assigns an integer to each global value in the program, 134 /// which is used by the comparison routine to order references to globals. This 135 /// state must be preserved throughout the pass, because Functions and other 136 /// globals need to maintain their relative order. Globals are assigned a number 137 /// when they are first visited. This order is deterministic, and so the 138 /// assigned numbers are as well. When two functions are merged, neither number 139 /// is updated. If the symbols are weak, this would be incorrect. If they are 140 /// strong, then one will be replaced at all references to the other, and so 141 /// direct callsites will now see one or the other symbol, and no update is 142 /// necessary. Note that if we were guaranteed unique names, we could just 143 /// compare those, but this would not work for stripped bitcodes or for those 144 /// few symbols without a name. 145 class GlobalNumberState { 146 struct Config : ValueMapConfig<GlobalValue*> { 147 enum { FollowRAUW = false }; 148 }; 149 // Each GlobalValue is mapped to an identifier. The Config ensures when RAUW 150 // occurs, the mapping does not change. Tracking changes is unnecessary, and 151 // also problematic for weak symbols (which may be overwritten). 152 typedef ValueMap<GlobalValue *, uint64_t, Config> ValueNumberMap; 153 ValueNumberMap GlobalNumbers; 154 // The next unused serial number to assign to a global. 155 uint64_t NextNumber; 156 public: 157 GlobalNumberState() : GlobalNumbers(), NextNumber(0) {} 158 uint64_t getNumber(GlobalValue* Global) { 159 ValueNumberMap::iterator MapIter; 160 bool Inserted; 161 std::tie(MapIter, Inserted) = GlobalNumbers.insert({Global, NextNumber}); 162 if (Inserted) 163 NextNumber++; 164 return MapIter->second; 165 } 166 void clear() { 167 GlobalNumbers.clear(); 168 } 169 }; 170 171 /// FunctionComparator - Compares two functions to determine whether or not 172 /// they will generate machine code with the same behaviour. DataLayout is 173 /// used if available. The comparator always fails conservatively (erring on the 174 /// side of claiming that two functions are different). 175 class FunctionComparator { 176 public: 177 FunctionComparator(const Function *F1, const Function *F2, 178 GlobalNumberState* GN) 179 : FnL(F1), FnR(F2), GlobalNumbers(GN) {} 180 181 /// Test whether the two functions have equivalent behaviour. 182 int compare(); 183 /// Hash a function. Equivalent functions will have the same hash, and unequal 184 /// functions will have different hashes with high probability. 185 typedef uint64_t FunctionHash; 186 static FunctionHash functionHash(Function &); 187 188 private: 189 /// Test whether two basic blocks have equivalent behaviour. 190 int cmpBasicBlocks(const BasicBlock *BBL, const BasicBlock *BBR) const; 191 192 /// Constants comparison. 193 /// Its analog to lexicographical comparison between hypothetical numbers 194 /// of next format: 195 /// <bitcastability-trait><raw-bit-contents> 196 /// 197 /// 1. Bitcastability. 198 /// Check whether L's type could be losslessly bitcasted to R's type. 199 /// On this stage method, in case when lossless bitcast is not possible 200 /// method returns -1 or 1, thus also defining which type is greater in 201 /// context of bitcastability. 202 /// Stage 0: If types are equal in terms of cmpTypes, then we can go straight 203 /// to the contents comparison. 204 /// If types differ, remember types comparison result and check 205 /// whether we still can bitcast types. 206 /// Stage 1: Types that satisfies isFirstClassType conditions are always 207 /// greater then others. 208 /// Stage 2: Vector is greater then non-vector. 209 /// If both types are vectors, then vector with greater bitwidth is 210 /// greater. 211 /// If both types are vectors with the same bitwidth, then types 212 /// are bitcastable, and we can skip other stages, and go to contents 213 /// comparison. 214 /// Stage 3: Pointer types are greater than non-pointers. If both types are 215 /// pointers of the same address space - go to contents comparison. 216 /// Different address spaces: pointer with greater address space is 217 /// greater. 218 /// Stage 4: Types are neither vectors, nor pointers. And they differ. 219 /// We don't know how to bitcast them. So, we better don't do it, 220 /// and return types comparison result (so it determines the 221 /// relationship among constants we don't know how to bitcast). 222 /// 223 /// Just for clearance, let's see how the set of constants could look 224 /// on single dimension axis: 225 /// 226 /// [NFCT], [FCT, "others"], [FCT, pointers], [FCT, vectors] 227 /// Where: NFCT - Not a FirstClassType 228 /// FCT - FirstClassTyp: 229 /// 230 /// 2. Compare raw contents. 231 /// It ignores types on this stage and only compares bits from L and R. 232 /// Returns 0, if L and R has equivalent contents. 233 /// -1 or 1 if values are different. 234 /// Pretty trivial: 235 /// 2.1. If contents are numbers, compare numbers. 236 /// Ints with greater bitwidth are greater. Ints with same bitwidths 237 /// compared by their contents. 238 /// 2.2. "And so on". Just to avoid discrepancies with comments 239 /// perhaps it would be better to read the implementation itself. 240 /// 3. And again about overall picture. Let's look back at how the ordered set 241 /// of constants will look like: 242 /// [NFCT], [FCT, "others"], [FCT, pointers], [FCT, vectors] 243 /// 244 /// Now look, what could be inside [FCT, "others"], for example: 245 /// [FCT, "others"] = 246 /// [ 247 /// [double 0.1], [double 1.23], 248 /// [i32 1], [i32 2], 249 /// { double 1.0 }, ; StructTyID, NumElements = 1 250 /// { i32 1 }, ; StructTyID, NumElements = 1 251 /// { double 1, i32 1 }, ; StructTyID, NumElements = 2 252 /// { i32 1, double 1 } ; StructTyID, NumElements = 2 253 /// ] 254 /// 255 /// Let's explain the order. Float numbers will be less than integers, just 256 /// because of cmpType terms: FloatTyID < IntegerTyID. 257 /// Floats (with same fltSemantics) are sorted according to their value. 258 /// Then you can see integers, and they are, like a floats, 259 /// could be easy sorted among each others. 260 /// The structures. Structures are grouped at the tail, again because of their 261 /// TypeID: StructTyID > IntegerTyID > FloatTyID. 262 /// Structures with greater number of elements are greater. Structures with 263 /// greater elements going first are greater. 264 /// The same logic with vectors, arrays and other possible complex types. 265 /// 266 /// Bitcastable constants. 267 /// Let's assume, that some constant, belongs to some group of 268 /// "so-called-equal" values with different types, and at the same time 269 /// belongs to another group of constants with equal types 270 /// and "really" equal values. 271 /// 272 /// Now, prove that this is impossible: 273 /// 274 /// If constant A with type TyA is bitcastable to B with type TyB, then: 275 /// 1. All constants with equal types to TyA, are bitcastable to B. Since 276 /// those should be vectors (if TyA is vector), pointers 277 /// (if TyA is pointer), or else (if TyA equal to TyB), those types should 278 /// be equal to TyB. 279 /// 2. All constants with non-equal, but bitcastable types to TyA, are 280 /// bitcastable to B. 281 /// Once again, just because we allow it to vectors and pointers only. 282 /// This statement could be expanded as below: 283 /// 2.1. All vectors with equal bitwidth to vector A, has equal bitwidth to 284 /// vector B, and thus bitcastable to B as well. 285 /// 2.2. All pointers of the same address space, no matter what they point to, 286 /// bitcastable. So if C is pointer, it could be bitcasted to A and to B. 287 /// So any constant equal or bitcastable to A is equal or bitcastable to B. 288 /// QED. 289 /// 290 /// In another words, for pointers and vectors, we ignore top-level type and 291 /// look at their particular properties (bit-width for vectors, and 292 /// address space for pointers). 293 /// If these properties are equal - compare their contents. 294 int cmpConstants(const Constant *L, const Constant *R) const; 295 296 /// Compares two global values by number. Uses the GlobalNumbersState to 297 /// identify the same gobals across function calls. 298 int cmpGlobalValues(GlobalValue *L, GlobalValue *R) const; 299 300 /// Assign or look up previously assigned numbers for the two values, and 301 /// return whether the numbers are equal. Numbers are assigned in the order 302 /// visited. 303 /// Comparison order: 304 /// Stage 0: Value that is function itself is always greater then others. 305 /// If left and right values are references to their functions, then 306 /// they are equal. 307 /// Stage 1: Constants are greater than non-constants. 308 /// If both left and right are constants, then the result of 309 /// cmpConstants is used as cmpValues result. 310 /// Stage 2: InlineAsm instances are greater than others. If both left and 311 /// right are InlineAsm instances, InlineAsm* pointers casted to 312 /// integers and compared as numbers. 313 /// Stage 3: For all other cases we compare order we meet these values in 314 /// their functions. If right value was met first during scanning, 315 /// then left value is greater. 316 /// In another words, we compare serial numbers, for more details 317 /// see comments for sn_mapL and sn_mapR. 318 int cmpValues(const Value *L, const Value *R) const; 319 320 /// Compare two Instructions for equivalence, similar to 321 /// Instruction::isSameOperationAs. 322 /// 323 /// Stages are listed in "most significant stage first" order: 324 /// On each stage below, we do comparison between some left and right 325 /// operation parts. If parts are non-equal, we assign parts comparison 326 /// result to the operation comparison result and exit from method. 327 /// Otherwise we proceed to the next stage. 328 /// Stages: 329 /// 1. Operations opcodes. Compared as numbers. 330 /// 2. Number of operands. 331 /// 3. Operation types. Compared with cmpType method. 332 /// 4. Compare operation subclass optional data as stream of bytes: 333 /// just convert it to integers and call cmpNumbers. 334 /// 5. Compare in operation operand types with cmpType in 335 /// most significant operand first order. 336 /// 6. Last stage. Check operations for some specific attributes. 337 /// For example, for Load it would be: 338 /// 6.1.Load: volatile (as boolean flag) 339 /// 6.2.Load: alignment (as integer numbers) 340 /// 6.3.Load: ordering (as underlying enum class value) 341 /// 6.4.Load: synch-scope (as integer numbers) 342 /// 6.5.Load: range metadata (as integer ranges) 343 /// On this stage its better to see the code, since its not more than 10-15 344 /// strings for particular instruction, and could change sometimes. 345 int cmpOperations(const Instruction *L, const Instruction *R) const; 346 347 /// Compare two GEPs for equivalent pointer arithmetic. 348 /// Parts to be compared for each comparison stage, 349 /// most significant stage first: 350 /// 1. Address space. As numbers. 351 /// 2. Constant offset, (using GEPOperator::accumulateConstantOffset method). 352 /// 3. Pointer operand type (using cmpType method). 353 /// 4. Number of operands. 354 /// 5. Compare operands, using cmpValues method. 355 int cmpGEPs(const GEPOperator *GEPL, const GEPOperator *GEPR) const; 356 int cmpGEPs(const GetElementPtrInst *GEPL, 357 const GetElementPtrInst *GEPR) const { 358 return cmpGEPs(cast<GEPOperator>(GEPL), cast<GEPOperator>(GEPR)); 359 } 360 361 /// cmpType - compares two types, 362 /// defines total ordering among the types set. 363 /// 364 /// Return values: 365 /// 0 if types are equal, 366 /// -1 if Left is less than Right, 367 /// +1 if Left is greater than Right. 368 /// 369 /// Description: 370 /// Comparison is broken onto stages. Like in lexicographical comparison 371 /// stage coming first has higher priority. 372 /// On each explanation stage keep in mind total ordering properties. 373 /// 374 /// 0. Before comparison we coerce pointer types of 0 address space to 375 /// integer. 376 /// We also don't bother with same type at left and right, so 377 /// just return 0 in this case. 378 /// 379 /// 1. If types are of different kind (different type IDs). 380 /// Return result of type IDs comparison, treating them as numbers. 381 /// 2. If types are integers, check that they have the same width. If they 382 /// are vectors, check that they have the same count and subtype. 383 /// 3. Types have the same ID, so check whether they are one of: 384 /// * Void 385 /// * Float 386 /// * Double 387 /// * X86_FP80 388 /// * FP128 389 /// * PPC_FP128 390 /// * Label 391 /// * Metadata 392 /// We can treat these types as equal whenever their IDs are same. 393 /// 4. If Left and Right are pointers, return result of address space 394 /// comparison (numbers comparison). We can treat pointer types of same 395 /// address space as equal. 396 /// 5. If types are complex. 397 /// Then both Left and Right are to be expanded and their element types will 398 /// be checked with the same way. If we get Res != 0 on some stage, return it. 399 /// Otherwise return 0. 400 /// 6. For all other cases put llvm_unreachable. 401 int cmpTypes(Type *TyL, Type *TyR) const; 402 403 int cmpNumbers(uint64_t L, uint64_t R) const; 404 int cmpOrderings(AtomicOrdering L, AtomicOrdering R) const; 405 int cmpAPInts(const APInt &L, const APInt &R) const; 406 int cmpAPFloats(const APFloat &L, const APFloat &R) const; 407 int cmpInlineAsm(const InlineAsm *L, const InlineAsm *R) const; 408 int cmpMem(StringRef L, StringRef R) const; 409 int cmpAttrs(const AttributeSet L, const AttributeSet R) const; 410 int cmpRangeMetadata(const MDNode *L, const MDNode *R) const; 411 int cmpOperandBundlesSchema(const Instruction *L, const Instruction *R) const; 412 413 // The two functions undergoing comparison. 414 const Function *FnL, *FnR; 415 416 /// Assign serial numbers to values from left function, and values from 417 /// right function. 418 /// Explanation: 419 /// Being comparing functions we need to compare values we meet at left and 420 /// right sides. 421 /// Its easy to sort things out for external values. It just should be 422 /// the same value at left and right. 423 /// But for local values (those were introduced inside function body) 424 /// we have to ensure they were introduced at exactly the same place, 425 /// and plays the same role. 426 /// Let's assign serial number to each value when we meet it first time. 427 /// Values that were met at same place will be with same serial numbers. 428 /// In this case it would be good to explain few points about values assigned 429 /// to BBs and other ways of implementation (see below). 430 /// 431 /// 1. Safety of BB reordering. 432 /// It's safe to change the order of BasicBlocks in function. 433 /// Relationship with other functions and serial numbering will not be 434 /// changed in this case. 435 /// As follows from FunctionComparator::compare(), we do CFG walk: we start 436 /// from the entry, and then take each terminator. So it doesn't matter how in 437 /// fact BBs are ordered in function. And since cmpValues are called during 438 /// this walk, the numbering depends only on how BBs located inside the CFG. 439 /// So the answer is - yes. We will get the same numbering. 440 /// 441 /// 2. Impossibility to use dominance properties of values. 442 /// If we compare two instruction operands: first is usage of local 443 /// variable AL from function FL, and second is usage of local variable AR 444 /// from FR, we could compare their origins and check whether they are 445 /// defined at the same place. 446 /// But, we are still not able to compare operands of PHI nodes, since those 447 /// could be operands from further BBs we didn't scan yet. 448 /// So it's impossible to use dominance properties in general. 449 mutable DenseMap<const Value*, int> sn_mapL, sn_mapR; 450 451 // The global state we will use 452 GlobalNumberState* GlobalNumbers; 453 }; 454 455 class FunctionNode { 456 mutable AssertingVH<Function> F; 457 FunctionComparator::FunctionHash Hash; 458 public: 459 // Note the hash is recalculated potentially multiple times, but it is cheap. 460 FunctionNode(Function *F) 461 : F(F), Hash(FunctionComparator::functionHash(*F)) {} 462 Function *getFunc() const { return F; } 463 FunctionComparator::FunctionHash getHash() const { return Hash; } 464 465 /// Replace the reference to the function F by the function G, assuming their 466 /// implementations are equal. 467 void replaceBy(Function *G) const { 468 F = G; 469 } 470 471 void release() { F = nullptr; } 472 }; 473 } // end anonymous namespace 474 475 int FunctionComparator::cmpNumbers(uint64_t L, uint64_t R) const { 476 if (L < R) return -1; 477 if (L > R) return 1; 478 return 0; 479 } 480 481 int FunctionComparator::cmpOrderings(AtomicOrdering L, AtomicOrdering R) const { 482 if ((int)L < (int)R) return -1; 483 if ((int)L > (int)R) return 1; 484 return 0; 485 } 486 487 int FunctionComparator::cmpAPInts(const APInt &L, const APInt &R) const { 488 if (int Res = cmpNumbers(L.getBitWidth(), R.getBitWidth())) 489 return Res; 490 if (L.ugt(R)) return 1; 491 if (R.ugt(L)) return -1; 492 return 0; 493 } 494 495 int FunctionComparator::cmpAPFloats(const APFloat &L, const APFloat &R) const { 496 // Floats are ordered first by semantics (i.e. float, double, half, etc.), 497 // then by value interpreted as a bitstring (aka APInt). 498 const fltSemantics &SL = L.getSemantics(), &SR = R.getSemantics(); 499 if (int Res = cmpNumbers(APFloat::semanticsPrecision(SL), 500 APFloat::semanticsPrecision(SR))) 501 return Res; 502 if (int Res = cmpNumbers(APFloat::semanticsMaxExponent(SL), 503 APFloat::semanticsMaxExponent(SR))) 504 return Res; 505 if (int Res = cmpNumbers(APFloat::semanticsMinExponent(SL), 506 APFloat::semanticsMinExponent(SR))) 507 return Res; 508 if (int Res = cmpNumbers(APFloat::semanticsSizeInBits(SL), 509 APFloat::semanticsSizeInBits(SR))) 510 return Res; 511 return cmpAPInts(L.bitcastToAPInt(), R.bitcastToAPInt()); 512 } 513 514 int FunctionComparator::cmpMem(StringRef L, StringRef R) const { 515 // Prevent heavy comparison, compare sizes first. 516 if (int Res = cmpNumbers(L.size(), R.size())) 517 return Res; 518 519 // Compare strings lexicographically only when it is necessary: only when 520 // strings are equal in size. 521 return L.compare(R); 522 } 523 524 int FunctionComparator::cmpAttrs(const AttributeSet L, 525 const AttributeSet R) const { 526 if (int Res = cmpNumbers(L.getNumSlots(), R.getNumSlots())) 527 return Res; 528 529 for (unsigned i = 0, e = L.getNumSlots(); i != e; ++i) { 530 AttributeSet::iterator LI = L.begin(i), LE = L.end(i), RI = R.begin(i), 531 RE = R.end(i); 532 for (; LI != LE && RI != RE; ++LI, ++RI) { 533 Attribute LA = *LI; 534 Attribute RA = *RI; 535 if (LA < RA) 536 return -1; 537 if (RA < LA) 538 return 1; 539 } 540 if (LI != LE) 541 return 1; 542 if (RI != RE) 543 return -1; 544 } 545 return 0; 546 } 547 548 int FunctionComparator::cmpRangeMetadata(const MDNode *L, 549 const MDNode *R) const { 550 if (L == R) 551 return 0; 552 if (!L) 553 return -1; 554 if (!R) 555 return 1; 556 // Range metadata is a sequence of numbers. Make sure they are the same 557 // sequence. 558 // TODO: Note that as this is metadata, it is possible to drop and/or merge 559 // this data when considering functions to merge. Thus this comparison would 560 // return 0 (i.e. equivalent), but merging would become more complicated 561 // because the ranges would need to be unioned. It is not likely that 562 // functions differ ONLY in this metadata if they are actually the same 563 // function semantically. 564 if (int Res = cmpNumbers(L->getNumOperands(), R->getNumOperands())) 565 return Res; 566 for (size_t I = 0; I < L->getNumOperands(); ++I) { 567 ConstantInt *LLow = mdconst::extract<ConstantInt>(L->getOperand(I)); 568 ConstantInt *RLow = mdconst::extract<ConstantInt>(R->getOperand(I)); 569 if (int Res = cmpAPInts(LLow->getValue(), RLow->getValue())) 570 return Res; 571 } 572 return 0; 573 } 574 575 int FunctionComparator::cmpOperandBundlesSchema(const Instruction *L, 576 const Instruction *R) const { 577 ImmutableCallSite LCS(L); 578 ImmutableCallSite RCS(R); 579 580 assert(LCS && RCS && "Must be calls or invokes!"); 581 assert(LCS.isCall() == RCS.isCall() && "Can't compare otherwise!"); 582 583 if (int Res = 584 cmpNumbers(LCS.getNumOperandBundles(), RCS.getNumOperandBundles())) 585 return Res; 586 587 for (unsigned i = 0, e = LCS.getNumOperandBundles(); i != e; ++i) { 588 auto OBL = LCS.getOperandBundleAt(i); 589 auto OBR = RCS.getOperandBundleAt(i); 590 591 if (int Res = OBL.getTagName().compare(OBR.getTagName())) 592 return Res; 593 594 if (int Res = cmpNumbers(OBL.Inputs.size(), OBR.Inputs.size())) 595 return Res; 596 } 597 598 return 0; 599 } 600 601 /// Constants comparison: 602 /// 1. Check whether type of L constant could be losslessly bitcasted to R 603 /// type. 604 /// 2. Compare constant contents. 605 /// For more details see declaration comments. 606 int FunctionComparator::cmpConstants(const Constant *L, 607 const Constant *R) const { 608 609 Type *TyL = L->getType(); 610 Type *TyR = R->getType(); 611 612 // Check whether types are bitcastable. This part is just re-factored 613 // Type::canLosslesslyBitCastTo method, but instead of returning true/false, 614 // we also pack into result which type is "less" for us. 615 int TypesRes = cmpTypes(TyL, TyR); 616 if (TypesRes != 0) { 617 // Types are different, but check whether we can bitcast them. 618 if (!TyL->isFirstClassType()) { 619 if (TyR->isFirstClassType()) 620 return -1; 621 // Neither TyL nor TyR are values of first class type. Return the result 622 // of comparing the types 623 return TypesRes; 624 } 625 if (!TyR->isFirstClassType()) { 626 if (TyL->isFirstClassType()) 627 return 1; 628 return TypesRes; 629 } 630 631 // Vector -> Vector conversions are always lossless if the two vector types 632 // have the same size, otherwise not. 633 unsigned TyLWidth = 0; 634 unsigned TyRWidth = 0; 635 636 if (auto *VecTyL = dyn_cast<VectorType>(TyL)) 637 TyLWidth = VecTyL->getBitWidth(); 638 if (auto *VecTyR = dyn_cast<VectorType>(TyR)) 639 TyRWidth = VecTyR->getBitWidth(); 640 641 if (TyLWidth != TyRWidth) 642 return cmpNumbers(TyLWidth, TyRWidth); 643 644 // Zero bit-width means neither TyL nor TyR are vectors. 645 if (!TyLWidth) { 646 PointerType *PTyL = dyn_cast<PointerType>(TyL); 647 PointerType *PTyR = dyn_cast<PointerType>(TyR); 648 if (PTyL && PTyR) { 649 unsigned AddrSpaceL = PTyL->getAddressSpace(); 650 unsigned AddrSpaceR = PTyR->getAddressSpace(); 651 if (int Res = cmpNumbers(AddrSpaceL, AddrSpaceR)) 652 return Res; 653 } 654 if (PTyL) 655 return 1; 656 if (PTyR) 657 return -1; 658 659 // TyL and TyR aren't vectors, nor pointers. We don't know how to 660 // bitcast them. 661 return TypesRes; 662 } 663 } 664 665 // OK, types are bitcastable, now check constant contents. 666 667 if (L->isNullValue() && R->isNullValue()) 668 return TypesRes; 669 if (L->isNullValue() && !R->isNullValue()) 670 return 1; 671 if (!L->isNullValue() && R->isNullValue()) 672 return -1; 673 674 auto GlobalValueL = const_cast<GlobalValue*>(dyn_cast<GlobalValue>(L)); 675 auto GlobalValueR = const_cast<GlobalValue*>(dyn_cast<GlobalValue>(R)); 676 if (GlobalValueL && GlobalValueR) { 677 return cmpGlobalValues(GlobalValueL, GlobalValueR); 678 } 679 680 if (int Res = cmpNumbers(L->getValueID(), R->getValueID())) 681 return Res; 682 683 if (const auto *SeqL = dyn_cast<ConstantDataSequential>(L)) { 684 const auto *SeqR = cast<ConstantDataSequential>(R); 685 // This handles ConstantDataArray and ConstantDataVector. Note that we 686 // compare the two raw data arrays, which might differ depending on the host 687 // endianness. This isn't a problem though, because the endiness of a module 688 // will affect the order of the constants, but this order is the same 689 // for a given input module and host platform. 690 return cmpMem(SeqL->getRawDataValues(), SeqR->getRawDataValues()); 691 } 692 693 switch (L->getValueID()) { 694 case Value::UndefValueVal: 695 case Value::ConstantTokenNoneVal: 696 return TypesRes; 697 case Value::ConstantIntVal: { 698 const APInt &LInt = cast<ConstantInt>(L)->getValue(); 699 const APInt &RInt = cast<ConstantInt>(R)->getValue(); 700 return cmpAPInts(LInt, RInt); 701 } 702 case Value::ConstantFPVal: { 703 const APFloat &LAPF = cast<ConstantFP>(L)->getValueAPF(); 704 const APFloat &RAPF = cast<ConstantFP>(R)->getValueAPF(); 705 return cmpAPFloats(LAPF, RAPF); 706 } 707 case Value::ConstantArrayVal: { 708 const ConstantArray *LA = cast<ConstantArray>(L); 709 const ConstantArray *RA = cast<ConstantArray>(R); 710 uint64_t NumElementsL = cast<ArrayType>(TyL)->getNumElements(); 711 uint64_t NumElementsR = cast<ArrayType>(TyR)->getNumElements(); 712 if (int Res = cmpNumbers(NumElementsL, NumElementsR)) 713 return Res; 714 for (uint64_t i = 0; i < NumElementsL; ++i) { 715 if (int Res = cmpConstants(cast<Constant>(LA->getOperand(i)), 716 cast<Constant>(RA->getOperand(i)))) 717 return Res; 718 } 719 return 0; 720 } 721 case Value::ConstantStructVal: { 722 const ConstantStruct *LS = cast<ConstantStruct>(L); 723 const ConstantStruct *RS = cast<ConstantStruct>(R); 724 unsigned NumElementsL = cast<StructType>(TyL)->getNumElements(); 725 unsigned NumElementsR = cast<StructType>(TyR)->getNumElements(); 726 if (int Res = cmpNumbers(NumElementsL, NumElementsR)) 727 return Res; 728 for (unsigned i = 0; i != NumElementsL; ++i) { 729 if (int Res = cmpConstants(cast<Constant>(LS->getOperand(i)), 730 cast<Constant>(RS->getOperand(i)))) 731 return Res; 732 } 733 return 0; 734 } 735 case Value::ConstantVectorVal: { 736 const ConstantVector *LV = cast<ConstantVector>(L); 737 const ConstantVector *RV = cast<ConstantVector>(R); 738 unsigned NumElementsL = cast<VectorType>(TyL)->getNumElements(); 739 unsigned NumElementsR = cast<VectorType>(TyR)->getNumElements(); 740 if (int Res = cmpNumbers(NumElementsL, NumElementsR)) 741 return Res; 742 for (uint64_t i = 0; i < NumElementsL; ++i) { 743 if (int Res = cmpConstants(cast<Constant>(LV->getOperand(i)), 744 cast<Constant>(RV->getOperand(i)))) 745 return Res; 746 } 747 return 0; 748 } 749 case Value::ConstantExprVal: { 750 const ConstantExpr *LE = cast<ConstantExpr>(L); 751 const ConstantExpr *RE = cast<ConstantExpr>(R); 752 unsigned NumOperandsL = LE->getNumOperands(); 753 unsigned NumOperandsR = RE->getNumOperands(); 754 if (int Res = cmpNumbers(NumOperandsL, NumOperandsR)) 755 return Res; 756 for (unsigned i = 0; i < NumOperandsL; ++i) { 757 if (int Res = cmpConstants(cast<Constant>(LE->getOperand(i)), 758 cast<Constant>(RE->getOperand(i)))) 759 return Res; 760 } 761 return 0; 762 } 763 case Value::BlockAddressVal: { 764 const BlockAddress *LBA = cast<BlockAddress>(L); 765 const BlockAddress *RBA = cast<BlockAddress>(R); 766 if (int Res = cmpValues(LBA->getFunction(), RBA->getFunction())) 767 return Res; 768 if (LBA->getFunction() == RBA->getFunction()) { 769 // They are BBs in the same function. Order by which comes first in the 770 // BB order of the function. This order is deterministic. 771 Function* F = LBA->getFunction(); 772 BasicBlock *LBB = LBA->getBasicBlock(); 773 BasicBlock *RBB = RBA->getBasicBlock(); 774 if (LBB == RBB) 775 return 0; 776 for(BasicBlock &BB : F->getBasicBlockList()) { 777 if (&BB == LBB) { 778 assert(&BB != RBB); 779 return -1; 780 } 781 if (&BB == RBB) 782 return 1; 783 } 784 llvm_unreachable("Basic Block Address does not point to a basic block in " 785 "its function."); 786 return -1; 787 } else { 788 // cmpValues said the functions are the same. So because they aren't 789 // literally the same pointer, they must respectively be the left and 790 // right functions. 791 assert(LBA->getFunction() == FnL && RBA->getFunction() == FnR); 792 // cmpValues will tell us if these are equivalent BasicBlocks, in the 793 // context of their respective functions. 794 return cmpValues(LBA->getBasicBlock(), RBA->getBasicBlock()); 795 } 796 } 797 default: // Unknown constant, abort. 798 DEBUG(dbgs() << "Looking at valueID " << L->getValueID() << "\n"); 799 llvm_unreachable("Constant ValueID not recognized."); 800 return -1; 801 } 802 } 803 804 int FunctionComparator::cmpGlobalValues(GlobalValue *L, GlobalValue *R) const { 805 return cmpNumbers(GlobalNumbers->getNumber(L), GlobalNumbers->getNumber(R)); 806 } 807 808 /// cmpType - compares two types, 809 /// defines total ordering among the types set. 810 /// See method declaration comments for more details. 811 int FunctionComparator::cmpTypes(Type *TyL, Type *TyR) const { 812 PointerType *PTyL = dyn_cast<PointerType>(TyL); 813 PointerType *PTyR = dyn_cast<PointerType>(TyR); 814 815 const DataLayout &DL = FnL->getParent()->getDataLayout(); 816 if (PTyL && PTyL->getAddressSpace() == 0) 817 TyL = DL.getIntPtrType(TyL); 818 if (PTyR && PTyR->getAddressSpace() == 0) 819 TyR = DL.getIntPtrType(TyR); 820 821 if (TyL == TyR) 822 return 0; 823 824 if (int Res = cmpNumbers(TyL->getTypeID(), TyR->getTypeID())) 825 return Res; 826 827 switch (TyL->getTypeID()) { 828 default: 829 llvm_unreachable("Unknown type!"); 830 // Fall through in Release mode. 831 LLVM_FALLTHROUGH; 832 case Type::IntegerTyID: 833 return cmpNumbers(cast<IntegerType>(TyL)->getBitWidth(), 834 cast<IntegerType>(TyR)->getBitWidth()); 835 case Type::VectorTyID: { 836 VectorType *VTyL = cast<VectorType>(TyL), *VTyR = cast<VectorType>(TyR); 837 if (int Res = cmpNumbers(VTyL->getNumElements(), VTyR->getNumElements())) 838 return Res; 839 return cmpTypes(VTyL->getElementType(), VTyR->getElementType()); 840 } 841 // TyL == TyR would have returned true earlier, because types are uniqued. 842 case Type::VoidTyID: 843 case Type::FloatTyID: 844 case Type::DoubleTyID: 845 case Type::X86_FP80TyID: 846 case Type::FP128TyID: 847 case Type::PPC_FP128TyID: 848 case Type::LabelTyID: 849 case Type::MetadataTyID: 850 case Type::TokenTyID: 851 return 0; 852 853 case Type::PointerTyID: { 854 assert(PTyL && PTyR && "Both types must be pointers here."); 855 return cmpNumbers(PTyL->getAddressSpace(), PTyR->getAddressSpace()); 856 } 857 858 case Type::StructTyID: { 859 StructType *STyL = cast<StructType>(TyL); 860 StructType *STyR = cast<StructType>(TyR); 861 if (STyL->getNumElements() != STyR->getNumElements()) 862 return cmpNumbers(STyL->getNumElements(), STyR->getNumElements()); 863 864 if (STyL->isPacked() != STyR->isPacked()) 865 return cmpNumbers(STyL->isPacked(), STyR->isPacked()); 866 867 for (unsigned i = 0, e = STyL->getNumElements(); i != e; ++i) { 868 if (int Res = cmpTypes(STyL->getElementType(i), STyR->getElementType(i))) 869 return Res; 870 } 871 return 0; 872 } 873 874 case Type::FunctionTyID: { 875 FunctionType *FTyL = cast<FunctionType>(TyL); 876 FunctionType *FTyR = cast<FunctionType>(TyR); 877 if (FTyL->getNumParams() != FTyR->getNumParams()) 878 return cmpNumbers(FTyL->getNumParams(), FTyR->getNumParams()); 879 880 if (FTyL->isVarArg() != FTyR->isVarArg()) 881 return cmpNumbers(FTyL->isVarArg(), FTyR->isVarArg()); 882 883 if (int Res = cmpTypes(FTyL->getReturnType(), FTyR->getReturnType())) 884 return Res; 885 886 for (unsigned i = 0, e = FTyL->getNumParams(); i != e; ++i) { 887 if (int Res = cmpTypes(FTyL->getParamType(i), FTyR->getParamType(i))) 888 return Res; 889 } 890 return 0; 891 } 892 893 case Type::ArrayTyID: { 894 ArrayType *ATyL = cast<ArrayType>(TyL); 895 ArrayType *ATyR = cast<ArrayType>(TyR); 896 if (ATyL->getNumElements() != ATyR->getNumElements()) 897 return cmpNumbers(ATyL->getNumElements(), ATyR->getNumElements()); 898 return cmpTypes(ATyL->getElementType(), ATyR->getElementType()); 899 } 900 } 901 } 902 903 // Determine whether the two operations are the same except that pointer-to-A 904 // and pointer-to-B are equivalent. This should be kept in sync with 905 // Instruction::isSameOperationAs. 906 // Read method declaration comments for more details. 907 int FunctionComparator::cmpOperations(const Instruction *L, 908 const Instruction *R) const { 909 // Differences from Instruction::isSameOperationAs: 910 // * replace type comparison with calls to cmpTypes. 911 // * we test for I->getRawSubclassOptionalData (nuw/nsw/tail) at the top. 912 // * because of the above, we don't test for the tail bit on calls later on. 913 if (int Res = cmpNumbers(L->getOpcode(), R->getOpcode())) 914 return Res; 915 916 if (int Res = cmpNumbers(L->getNumOperands(), R->getNumOperands())) 917 return Res; 918 919 if (int Res = cmpTypes(L->getType(), R->getType())) 920 return Res; 921 922 if (int Res = cmpNumbers(L->getRawSubclassOptionalData(), 923 R->getRawSubclassOptionalData())) 924 return Res; 925 926 // We have two instructions of identical opcode and #operands. Check to see 927 // if all operands are the same type 928 for (unsigned i = 0, e = L->getNumOperands(); i != e; ++i) { 929 if (int Res = 930 cmpTypes(L->getOperand(i)->getType(), R->getOperand(i)->getType())) 931 return Res; 932 } 933 934 // Check special state that is a part of some instructions. 935 if (const AllocaInst *AI = dyn_cast<AllocaInst>(L)) { 936 if (int Res = cmpTypes(AI->getAllocatedType(), 937 cast<AllocaInst>(R)->getAllocatedType())) 938 return Res; 939 return cmpNumbers(AI->getAlignment(), cast<AllocaInst>(R)->getAlignment()); 940 } 941 if (const LoadInst *LI = dyn_cast<LoadInst>(L)) { 942 if (int Res = cmpNumbers(LI->isVolatile(), cast<LoadInst>(R)->isVolatile())) 943 return Res; 944 if (int Res = 945 cmpNumbers(LI->getAlignment(), cast<LoadInst>(R)->getAlignment())) 946 return Res; 947 if (int Res = 948 cmpOrderings(LI->getOrdering(), cast<LoadInst>(R)->getOrdering())) 949 return Res; 950 if (int Res = 951 cmpNumbers(LI->getSynchScope(), cast<LoadInst>(R)->getSynchScope())) 952 return Res; 953 return cmpRangeMetadata(LI->getMetadata(LLVMContext::MD_range), 954 cast<LoadInst>(R)->getMetadata(LLVMContext::MD_range)); 955 } 956 if (const StoreInst *SI = dyn_cast<StoreInst>(L)) { 957 if (int Res = 958 cmpNumbers(SI->isVolatile(), cast<StoreInst>(R)->isVolatile())) 959 return Res; 960 if (int Res = 961 cmpNumbers(SI->getAlignment(), cast<StoreInst>(R)->getAlignment())) 962 return Res; 963 if (int Res = 964 cmpOrderings(SI->getOrdering(), cast<StoreInst>(R)->getOrdering())) 965 return Res; 966 return cmpNumbers(SI->getSynchScope(), cast<StoreInst>(R)->getSynchScope()); 967 } 968 if (const CmpInst *CI = dyn_cast<CmpInst>(L)) 969 return cmpNumbers(CI->getPredicate(), cast<CmpInst>(R)->getPredicate()); 970 if (const CallInst *CI = dyn_cast<CallInst>(L)) { 971 if (int Res = cmpNumbers(CI->getCallingConv(), 972 cast<CallInst>(R)->getCallingConv())) 973 return Res; 974 if (int Res = 975 cmpAttrs(CI->getAttributes(), cast<CallInst>(R)->getAttributes())) 976 return Res; 977 if (int Res = cmpOperandBundlesSchema(CI, R)) 978 return Res; 979 return cmpRangeMetadata( 980 CI->getMetadata(LLVMContext::MD_range), 981 cast<CallInst>(R)->getMetadata(LLVMContext::MD_range)); 982 } 983 if (const InvokeInst *II = dyn_cast<InvokeInst>(L)) { 984 if (int Res = cmpNumbers(II->getCallingConv(), 985 cast<InvokeInst>(R)->getCallingConv())) 986 return Res; 987 if (int Res = 988 cmpAttrs(II->getAttributes(), cast<InvokeInst>(R)->getAttributes())) 989 return Res; 990 if (int Res = cmpOperandBundlesSchema(II, R)) 991 return Res; 992 return cmpRangeMetadata( 993 II->getMetadata(LLVMContext::MD_range), 994 cast<InvokeInst>(R)->getMetadata(LLVMContext::MD_range)); 995 } 996 if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(L)) { 997 ArrayRef<unsigned> LIndices = IVI->getIndices(); 998 ArrayRef<unsigned> RIndices = cast<InsertValueInst>(R)->getIndices(); 999 if (int Res = cmpNumbers(LIndices.size(), RIndices.size())) 1000 return Res; 1001 for (size_t i = 0, e = LIndices.size(); i != e; ++i) { 1002 if (int Res = cmpNumbers(LIndices[i], RIndices[i])) 1003 return Res; 1004 } 1005 return 0; 1006 } 1007 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(L)) { 1008 ArrayRef<unsigned> LIndices = EVI->getIndices(); 1009 ArrayRef<unsigned> RIndices = cast<ExtractValueInst>(R)->getIndices(); 1010 if (int Res = cmpNumbers(LIndices.size(), RIndices.size())) 1011 return Res; 1012 for (size_t i = 0, e = LIndices.size(); i != e; ++i) { 1013 if (int Res = cmpNumbers(LIndices[i], RIndices[i])) 1014 return Res; 1015 } 1016 } 1017 if (const FenceInst *FI = dyn_cast<FenceInst>(L)) { 1018 if (int Res = 1019 cmpOrderings(FI->getOrdering(), cast<FenceInst>(R)->getOrdering())) 1020 return Res; 1021 return cmpNumbers(FI->getSynchScope(), cast<FenceInst>(R)->getSynchScope()); 1022 } 1023 if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(L)) { 1024 if (int Res = cmpNumbers(CXI->isVolatile(), 1025 cast<AtomicCmpXchgInst>(R)->isVolatile())) 1026 return Res; 1027 if (int Res = cmpNumbers(CXI->isWeak(), 1028 cast<AtomicCmpXchgInst>(R)->isWeak())) 1029 return Res; 1030 if (int Res = 1031 cmpOrderings(CXI->getSuccessOrdering(), 1032 cast<AtomicCmpXchgInst>(R)->getSuccessOrdering())) 1033 return Res; 1034 if (int Res = 1035 cmpOrderings(CXI->getFailureOrdering(), 1036 cast<AtomicCmpXchgInst>(R)->getFailureOrdering())) 1037 return Res; 1038 return cmpNumbers(CXI->getSynchScope(), 1039 cast<AtomicCmpXchgInst>(R)->getSynchScope()); 1040 } 1041 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(L)) { 1042 if (int Res = cmpNumbers(RMWI->getOperation(), 1043 cast<AtomicRMWInst>(R)->getOperation())) 1044 return Res; 1045 if (int Res = cmpNumbers(RMWI->isVolatile(), 1046 cast<AtomicRMWInst>(R)->isVolatile())) 1047 return Res; 1048 if (int Res = cmpOrderings(RMWI->getOrdering(), 1049 cast<AtomicRMWInst>(R)->getOrdering())) 1050 return Res; 1051 return cmpNumbers(RMWI->getSynchScope(), 1052 cast<AtomicRMWInst>(R)->getSynchScope()); 1053 } 1054 if (const PHINode *PNL = dyn_cast<PHINode>(L)) { 1055 const PHINode *PNR = cast<PHINode>(R); 1056 // Ensure that in addition to the incoming values being identical 1057 // (checked by the caller of this function), the incoming blocks 1058 // are also identical. 1059 for (unsigned i = 0, e = PNL->getNumIncomingValues(); i != e; ++i) { 1060 if (int Res = 1061 cmpValues(PNL->getIncomingBlock(i), PNR->getIncomingBlock(i))) 1062 return Res; 1063 } 1064 } 1065 return 0; 1066 } 1067 1068 // Determine whether two GEP operations perform the same underlying arithmetic. 1069 // Read method declaration comments for more details. 1070 int FunctionComparator::cmpGEPs(const GEPOperator *GEPL, 1071 const GEPOperator *GEPR) const { 1072 1073 unsigned int ASL = GEPL->getPointerAddressSpace(); 1074 unsigned int ASR = GEPR->getPointerAddressSpace(); 1075 1076 if (int Res = cmpNumbers(ASL, ASR)) 1077 return Res; 1078 1079 // When we have target data, we can reduce the GEP down to the value in bytes 1080 // added to the address. 1081 const DataLayout &DL = FnL->getParent()->getDataLayout(); 1082 unsigned BitWidth = DL.getPointerSizeInBits(ASL); 1083 APInt OffsetL(BitWidth, 0), OffsetR(BitWidth, 0); 1084 if (GEPL->accumulateConstantOffset(DL, OffsetL) && 1085 GEPR->accumulateConstantOffset(DL, OffsetR)) 1086 return cmpAPInts(OffsetL, OffsetR); 1087 if (int Res = cmpTypes(GEPL->getSourceElementType(), 1088 GEPR->getSourceElementType())) 1089 return Res; 1090 1091 if (int Res = cmpNumbers(GEPL->getNumOperands(), GEPR->getNumOperands())) 1092 return Res; 1093 1094 for (unsigned i = 0, e = GEPL->getNumOperands(); i != e; ++i) { 1095 if (int Res = cmpValues(GEPL->getOperand(i), GEPR->getOperand(i))) 1096 return Res; 1097 } 1098 1099 return 0; 1100 } 1101 1102 int FunctionComparator::cmpInlineAsm(const InlineAsm *L, 1103 const InlineAsm *R) const { 1104 // InlineAsm's are uniqued. If they are the same pointer, obviously they are 1105 // the same, otherwise compare the fields. 1106 if (L == R) 1107 return 0; 1108 if (int Res = cmpTypes(L->getFunctionType(), R->getFunctionType())) 1109 return Res; 1110 if (int Res = cmpMem(L->getAsmString(), R->getAsmString())) 1111 return Res; 1112 if (int Res = cmpMem(L->getConstraintString(), R->getConstraintString())) 1113 return Res; 1114 if (int Res = cmpNumbers(L->hasSideEffects(), R->hasSideEffects())) 1115 return Res; 1116 if (int Res = cmpNumbers(L->isAlignStack(), R->isAlignStack())) 1117 return Res; 1118 if (int Res = cmpNumbers(L->getDialect(), R->getDialect())) 1119 return Res; 1120 llvm_unreachable("InlineAsm blocks were not uniqued."); 1121 return 0; 1122 } 1123 1124 /// Compare two values used by the two functions under pair-wise comparison. If 1125 /// this is the first time the values are seen, they're added to the mapping so 1126 /// that we will detect mismatches on next use. 1127 /// See comments in declaration for more details. 1128 int FunctionComparator::cmpValues(const Value *L, const Value *R) const { 1129 // Catch self-reference case. 1130 if (L == FnL) { 1131 if (R == FnR) 1132 return 0; 1133 return -1; 1134 } 1135 if (R == FnR) { 1136 if (L == FnL) 1137 return 0; 1138 return 1; 1139 } 1140 1141 const Constant *ConstL = dyn_cast<Constant>(L); 1142 const Constant *ConstR = dyn_cast<Constant>(R); 1143 if (ConstL && ConstR) { 1144 if (L == R) 1145 return 0; 1146 return cmpConstants(ConstL, ConstR); 1147 } 1148 1149 if (ConstL) 1150 return 1; 1151 if (ConstR) 1152 return -1; 1153 1154 const InlineAsm *InlineAsmL = dyn_cast<InlineAsm>(L); 1155 const InlineAsm *InlineAsmR = dyn_cast<InlineAsm>(R); 1156 1157 if (InlineAsmL && InlineAsmR) 1158 return cmpInlineAsm(InlineAsmL, InlineAsmR); 1159 if (InlineAsmL) 1160 return 1; 1161 if (InlineAsmR) 1162 return -1; 1163 1164 auto LeftSN = sn_mapL.insert(std::make_pair(L, sn_mapL.size())), 1165 RightSN = sn_mapR.insert(std::make_pair(R, sn_mapR.size())); 1166 1167 return cmpNumbers(LeftSN.first->second, RightSN.first->second); 1168 } 1169 // Test whether two basic blocks have equivalent behaviour. 1170 int FunctionComparator::cmpBasicBlocks(const BasicBlock *BBL, 1171 const BasicBlock *BBR) const { 1172 BasicBlock::const_iterator InstL = BBL->begin(), InstLE = BBL->end(); 1173 BasicBlock::const_iterator InstR = BBR->begin(), InstRE = BBR->end(); 1174 1175 do { 1176 if (int Res = cmpValues(&*InstL, &*InstR)) 1177 return Res; 1178 1179 const GetElementPtrInst *GEPL = dyn_cast<GetElementPtrInst>(InstL); 1180 const GetElementPtrInst *GEPR = dyn_cast<GetElementPtrInst>(InstR); 1181 1182 if (GEPL && !GEPR) 1183 return 1; 1184 if (GEPR && !GEPL) 1185 return -1; 1186 1187 if (GEPL && GEPR) { 1188 if (int Res = 1189 cmpValues(GEPL->getPointerOperand(), GEPR->getPointerOperand())) 1190 return Res; 1191 if (int Res = cmpGEPs(GEPL, GEPR)) 1192 return Res; 1193 } else { 1194 if (int Res = cmpOperations(&*InstL, &*InstR)) 1195 return Res; 1196 assert(InstL->getNumOperands() == InstR->getNumOperands()); 1197 1198 for (unsigned i = 0, e = InstL->getNumOperands(); i != e; ++i) { 1199 Value *OpL = InstL->getOperand(i); 1200 Value *OpR = InstR->getOperand(i); 1201 if (int Res = cmpValues(OpL, OpR)) 1202 return Res; 1203 // cmpValues should ensure this is true. 1204 assert(cmpTypes(OpL->getType(), OpR->getType()) == 0); 1205 } 1206 } 1207 1208 ++InstL; 1209 ++InstR; 1210 } while (InstL != InstLE && InstR != InstRE); 1211 1212 if (InstL != InstLE && InstR == InstRE) 1213 return 1; 1214 if (InstL == InstLE && InstR != InstRE) 1215 return -1; 1216 return 0; 1217 } 1218 1219 // Test whether the two functions have equivalent behaviour. 1220 int FunctionComparator::compare() { 1221 sn_mapL.clear(); 1222 sn_mapR.clear(); 1223 1224 if (int Res = cmpAttrs(FnL->getAttributes(), FnR->getAttributes())) 1225 return Res; 1226 1227 if (int Res = cmpNumbers(FnL->hasGC(), FnR->hasGC())) 1228 return Res; 1229 1230 if (FnL->hasGC()) { 1231 if (int Res = cmpMem(FnL->getGC(), FnR->getGC())) 1232 return Res; 1233 } 1234 1235 if (int Res = cmpNumbers(FnL->hasSection(), FnR->hasSection())) 1236 return Res; 1237 1238 if (FnL->hasSection()) { 1239 if (int Res = cmpMem(FnL->getSection(), FnR->getSection())) 1240 return Res; 1241 } 1242 1243 if (int Res = cmpNumbers(FnL->isVarArg(), FnR->isVarArg())) 1244 return Res; 1245 1246 // TODO: if it's internal and only used in direct calls, we could handle this 1247 // case too. 1248 if (int Res = cmpNumbers(FnL->getCallingConv(), FnR->getCallingConv())) 1249 return Res; 1250 1251 if (int Res = cmpTypes(FnL->getFunctionType(), FnR->getFunctionType())) 1252 return Res; 1253 1254 assert(FnL->arg_size() == FnR->arg_size() && 1255 "Identically typed functions have different numbers of args!"); 1256 1257 // Visit the arguments so that they get enumerated in the order they're 1258 // passed in. 1259 for (Function::const_arg_iterator ArgLI = FnL->arg_begin(), 1260 ArgRI = FnR->arg_begin(), 1261 ArgLE = FnL->arg_end(); 1262 ArgLI != ArgLE; ++ArgLI, ++ArgRI) { 1263 if (cmpValues(&*ArgLI, &*ArgRI) != 0) 1264 llvm_unreachable("Arguments repeat!"); 1265 } 1266 1267 // We do a CFG-ordered walk since the actual ordering of the blocks in the 1268 // linked list is immaterial. Our walk starts at the entry block for both 1269 // functions, then takes each block from each terminator in order. As an 1270 // artifact, this also means that unreachable blocks are ignored. 1271 SmallVector<const BasicBlock *, 8> FnLBBs, FnRBBs; 1272 SmallPtrSet<const BasicBlock *, 32> VisitedBBs; // in terms of F1. 1273 1274 FnLBBs.push_back(&FnL->getEntryBlock()); 1275 FnRBBs.push_back(&FnR->getEntryBlock()); 1276 1277 VisitedBBs.insert(FnLBBs[0]); 1278 while (!FnLBBs.empty()) { 1279 const BasicBlock *BBL = FnLBBs.pop_back_val(); 1280 const BasicBlock *BBR = FnRBBs.pop_back_val(); 1281 1282 if (int Res = cmpValues(BBL, BBR)) 1283 return Res; 1284 1285 if (int Res = cmpBasicBlocks(BBL, BBR)) 1286 return Res; 1287 1288 const TerminatorInst *TermL = BBL->getTerminator(); 1289 const TerminatorInst *TermR = BBR->getTerminator(); 1290 1291 assert(TermL->getNumSuccessors() == TermR->getNumSuccessors()); 1292 for (unsigned i = 0, e = TermL->getNumSuccessors(); i != e; ++i) { 1293 if (!VisitedBBs.insert(TermL->getSuccessor(i)).second) 1294 continue; 1295 1296 FnLBBs.push_back(TermL->getSuccessor(i)); 1297 FnRBBs.push_back(TermR->getSuccessor(i)); 1298 } 1299 } 1300 return 0; 1301 } 1302 1303 namespace { 1304 // Accumulate the hash of a sequence of 64-bit integers. This is similar to a 1305 // hash of a sequence of 64bit ints, but the entire input does not need to be 1306 // available at once. This interface is necessary for functionHash because it 1307 // needs to accumulate the hash as the structure of the function is traversed 1308 // without saving these values to an intermediate buffer. This form of hashing 1309 // is not often needed, as usually the object to hash is just read from a 1310 // buffer. 1311 class HashAccumulator64 { 1312 uint64_t Hash; 1313 public: 1314 // Initialize to random constant, so the state isn't zero. 1315 HashAccumulator64() { Hash = 0x6acaa36bef8325c5ULL; } 1316 void add(uint64_t V) { 1317 Hash = llvm::hashing::detail::hash_16_bytes(Hash, V); 1318 } 1319 // No finishing is required, because the entire hash value is used. 1320 uint64_t getHash() { return Hash; } 1321 }; 1322 } // end anonymous namespace 1323 1324 // A function hash is calculated by considering only the number of arguments and 1325 // whether a function is varargs, the order of basic blocks (given by the 1326 // successors of each basic block in depth first order), and the order of 1327 // opcodes of each instruction within each of these basic blocks. This mirrors 1328 // the strategy compare() uses to compare functions by walking the BBs in depth 1329 // first order and comparing each instruction in sequence. Because this hash 1330 // does not look at the operands, it is insensitive to things such as the 1331 // target of calls and the constants used in the function, which makes it useful 1332 // when possibly merging functions which are the same modulo constants and call 1333 // targets. 1334 FunctionComparator::FunctionHash FunctionComparator::functionHash(Function &F) { 1335 HashAccumulator64 H; 1336 H.add(F.isVarArg()); 1337 H.add(F.arg_size()); 1338 1339 SmallVector<const BasicBlock *, 8> BBs; 1340 SmallSet<const BasicBlock *, 16> VisitedBBs; 1341 1342 // Walk the blocks in the same order as FunctionComparator::cmpBasicBlocks(), 1343 // accumulating the hash of the function "structure." (BB and opcode sequence) 1344 BBs.push_back(&F.getEntryBlock()); 1345 VisitedBBs.insert(BBs[0]); 1346 while (!BBs.empty()) { 1347 const BasicBlock *BB = BBs.pop_back_val(); 1348 // This random value acts as a block header, as otherwise the partition of 1349 // opcodes into BBs wouldn't affect the hash, only the order of the opcodes 1350 H.add(45798); 1351 for (auto &Inst : *BB) { 1352 H.add(Inst.getOpcode()); 1353 } 1354 const TerminatorInst *Term = BB->getTerminator(); 1355 for (unsigned i = 0, e = Term->getNumSuccessors(); i != e; ++i) { 1356 if (!VisitedBBs.insert(Term->getSuccessor(i)).second) 1357 continue; 1358 BBs.push_back(Term->getSuccessor(i)); 1359 } 1360 } 1361 return H.getHash(); 1362 } 1363 1364 1365 namespace { 1366 1367 /// MergeFunctions finds functions which will generate identical machine code, 1368 /// by considering all pointer types to be equivalent. Once identified, 1369 /// MergeFunctions will fold them by replacing a call to one to a call to a 1370 /// bitcast of the other. 1371 /// 1372 class MergeFunctions : public ModulePass { 1373 public: 1374 static char ID; 1375 MergeFunctions() 1376 : ModulePass(ID), FnTree(FunctionNodeCmp(&GlobalNumbers)), FNodesInTree(), 1377 HasGlobalAliases(false) { 1378 initializeMergeFunctionsPass(*PassRegistry::getPassRegistry()); 1379 } 1380 1381 bool runOnModule(Module &M) override; 1382 1383 private: 1384 // The function comparison operator is provided here so that FunctionNodes do 1385 // not need to become larger with another pointer. 1386 class FunctionNodeCmp { 1387 GlobalNumberState* GlobalNumbers; 1388 public: 1389 FunctionNodeCmp(GlobalNumberState* GN) : GlobalNumbers(GN) {} 1390 bool operator()(const FunctionNode &LHS, const FunctionNode &RHS) const { 1391 // Order first by hashes, then full function comparison. 1392 if (LHS.getHash() != RHS.getHash()) 1393 return LHS.getHash() < RHS.getHash(); 1394 FunctionComparator FCmp(LHS.getFunc(), RHS.getFunc(), GlobalNumbers); 1395 return FCmp.compare() == -1; 1396 } 1397 }; 1398 typedef std::set<FunctionNode, FunctionNodeCmp> FnTreeType; 1399 1400 GlobalNumberState GlobalNumbers; 1401 1402 /// A work queue of functions that may have been modified and should be 1403 /// analyzed again. 1404 std::vector<WeakVH> Deferred; 1405 1406 /// Checks the rules of order relation introduced among functions set. 1407 /// Returns true, if sanity check has been passed, and false if failed. 1408 bool doSanityCheck(std::vector<WeakVH> &Worklist); 1409 1410 /// Insert a ComparableFunction into the FnTree, or merge it away if it's 1411 /// equal to one that's already present. 1412 bool insert(Function *NewFunction); 1413 1414 /// Remove a Function from the FnTree and queue it up for a second sweep of 1415 /// analysis. 1416 void remove(Function *F); 1417 1418 /// Find the functions that use this Value and remove them from FnTree and 1419 /// queue the functions. 1420 void removeUsers(Value *V); 1421 1422 /// Replace all direct calls of Old with calls of New. Will bitcast New if 1423 /// necessary to make types match. 1424 void replaceDirectCallers(Function *Old, Function *New); 1425 1426 /// Merge two equivalent functions. Upon completion, G may be deleted, or may 1427 /// be converted into a thunk. In either case, it should never be visited 1428 /// again. 1429 void mergeTwoFunctions(Function *F, Function *G); 1430 1431 /// Replace G with a thunk or an alias to F. Deletes G. 1432 void writeThunkOrAlias(Function *F, Function *G); 1433 1434 /// Replace G with a simple tail call to bitcast(F). Also replace direct uses 1435 /// of G with bitcast(F). Deletes G. 1436 void writeThunk(Function *F, Function *G); 1437 1438 /// Replace G with an alias to F. Deletes G. 1439 void writeAlias(Function *F, Function *G); 1440 1441 /// Replace function F with function G in the function tree. 1442 void replaceFunctionInTree(const FunctionNode &FN, Function *G); 1443 1444 /// The set of all distinct functions. Use the insert() and remove() methods 1445 /// to modify it. The map allows efficient lookup and deferring of Functions. 1446 FnTreeType FnTree; 1447 // Map functions to the iterators of the FunctionNode which contains them 1448 // in the FnTree. This must be updated carefully whenever the FnTree is 1449 // modified, i.e. in insert(), remove(), and replaceFunctionInTree(), to avoid 1450 // dangling iterators into FnTree. The invariant that preserves this is that 1451 // there is exactly one mapping F -> FN for each FunctionNode FN in FnTree. 1452 ValueMap<Function*, FnTreeType::iterator> FNodesInTree; 1453 1454 /// Whether or not the target supports global aliases. 1455 bool HasGlobalAliases; 1456 }; 1457 1458 } // end anonymous namespace 1459 1460 char MergeFunctions::ID = 0; 1461 INITIALIZE_PASS(MergeFunctions, "mergefunc", "Merge Functions", false, false) 1462 1463 ModulePass *llvm::createMergeFunctionsPass() { 1464 return new MergeFunctions(); 1465 } 1466 1467 bool MergeFunctions::doSanityCheck(std::vector<WeakVH> &Worklist) { 1468 if (const unsigned Max = NumFunctionsForSanityCheck) { 1469 unsigned TripleNumber = 0; 1470 bool Valid = true; 1471 1472 dbgs() << "MERGEFUNC-SANITY: Started for first " << Max << " functions.\n"; 1473 1474 unsigned i = 0; 1475 for (std::vector<WeakVH>::iterator I = Worklist.begin(), E = Worklist.end(); 1476 I != E && i < Max; ++I, ++i) { 1477 unsigned j = i; 1478 for (std::vector<WeakVH>::iterator J = I; J != E && j < Max; ++J, ++j) { 1479 Function *F1 = cast<Function>(*I); 1480 Function *F2 = cast<Function>(*J); 1481 int Res1 = FunctionComparator(F1, F2, &GlobalNumbers).compare(); 1482 int Res2 = FunctionComparator(F2, F1, &GlobalNumbers).compare(); 1483 1484 // If F1 <= F2, then F2 >= F1, otherwise report failure. 1485 if (Res1 != -Res2) { 1486 dbgs() << "MERGEFUNC-SANITY: Non-symmetric; triple: " << TripleNumber 1487 << "\n"; 1488 F1->dump(); 1489 F2->dump(); 1490 Valid = false; 1491 } 1492 1493 if (Res1 == 0) 1494 continue; 1495 1496 unsigned k = j; 1497 for (std::vector<WeakVH>::iterator K = J; K != E && k < Max; 1498 ++k, ++K, ++TripleNumber) { 1499 if (K == J) 1500 continue; 1501 1502 Function *F3 = cast<Function>(*K); 1503 int Res3 = FunctionComparator(F1, F3, &GlobalNumbers).compare(); 1504 int Res4 = FunctionComparator(F2, F3, &GlobalNumbers).compare(); 1505 1506 bool Transitive = true; 1507 1508 if (Res1 != 0 && Res1 == Res4) { 1509 // F1 > F2, F2 > F3 => F1 > F3 1510 Transitive = Res3 == Res1; 1511 } else if (Res3 != 0 && Res3 == -Res4) { 1512 // F1 > F3, F3 > F2 => F1 > F2 1513 Transitive = Res3 == Res1; 1514 } else if (Res4 != 0 && -Res3 == Res4) { 1515 // F2 > F3, F3 > F1 => F2 > F1 1516 Transitive = Res4 == -Res1; 1517 } 1518 1519 if (!Transitive) { 1520 dbgs() << "MERGEFUNC-SANITY: Non-transitive; triple: " 1521 << TripleNumber << "\n"; 1522 dbgs() << "Res1, Res3, Res4: " << Res1 << ", " << Res3 << ", " 1523 << Res4 << "\n"; 1524 F1->dump(); 1525 F2->dump(); 1526 F3->dump(); 1527 Valid = false; 1528 } 1529 } 1530 } 1531 } 1532 1533 dbgs() << "MERGEFUNC-SANITY: " << (Valid ? "Passed." : "Failed.") << "\n"; 1534 return Valid; 1535 } 1536 return true; 1537 } 1538 1539 bool MergeFunctions::runOnModule(Module &M) { 1540 if (skipModule(M)) 1541 return false; 1542 1543 bool Changed = false; 1544 1545 // All functions in the module, ordered by hash. Functions with a unique 1546 // hash value are easily eliminated. 1547 std::vector<std::pair<FunctionComparator::FunctionHash, Function *>> 1548 HashedFuncs; 1549 for (Function &Func : M) { 1550 if (!Func.isDeclaration() && !Func.hasAvailableExternallyLinkage()) { 1551 HashedFuncs.push_back({FunctionComparator::functionHash(Func), &Func}); 1552 } 1553 } 1554 1555 std::stable_sort( 1556 HashedFuncs.begin(), HashedFuncs.end(), 1557 [](const std::pair<FunctionComparator::FunctionHash, Function *> &a, 1558 const std::pair<FunctionComparator::FunctionHash, Function *> &b) { 1559 return a.first < b.first; 1560 }); 1561 1562 auto S = HashedFuncs.begin(); 1563 for (auto I = HashedFuncs.begin(), IE = HashedFuncs.end(); I != IE; ++I) { 1564 // If the hash value matches the previous value or the next one, we must 1565 // consider merging it. Otherwise it is dropped and never considered again. 1566 if ((I != S && std::prev(I)->first == I->first) || 1567 (std::next(I) != IE && std::next(I)->first == I->first) ) { 1568 Deferred.push_back(WeakVH(I->second)); 1569 } 1570 } 1571 1572 do { 1573 std::vector<WeakVH> Worklist; 1574 Deferred.swap(Worklist); 1575 1576 DEBUG(doSanityCheck(Worklist)); 1577 1578 DEBUG(dbgs() << "size of module: " << M.size() << '\n'); 1579 DEBUG(dbgs() << "size of worklist: " << Worklist.size() << '\n'); 1580 1581 // Insert functions and merge them. 1582 for (WeakVH &I : Worklist) { 1583 if (!I) 1584 continue; 1585 Function *F = cast<Function>(I); 1586 if (!F->isDeclaration() && !F->hasAvailableExternallyLinkage()) { 1587 Changed |= insert(F); 1588 } 1589 } 1590 DEBUG(dbgs() << "size of FnTree: " << FnTree.size() << '\n'); 1591 } while (!Deferred.empty()); 1592 1593 FnTree.clear(); 1594 GlobalNumbers.clear(); 1595 1596 return Changed; 1597 } 1598 1599 // Replace direct callers of Old with New. 1600 void MergeFunctions::replaceDirectCallers(Function *Old, Function *New) { 1601 Constant *BitcastNew = ConstantExpr::getBitCast(New, Old->getType()); 1602 for (auto UI = Old->use_begin(), UE = Old->use_end(); UI != UE;) { 1603 Use *U = &*UI; 1604 ++UI; 1605 CallSite CS(U->getUser()); 1606 if (CS && CS.isCallee(U)) { 1607 // Transfer the called function's attributes to the call site. Due to the 1608 // bitcast we will 'lose' ABI changing attributes because the 'called 1609 // function' is no longer a Function* but the bitcast. Code that looks up 1610 // the attributes from the called function will fail. 1611 1612 // FIXME: This is not actually true, at least not anymore. The callsite 1613 // will always have the same ABI affecting attributes as the callee, 1614 // because otherwise the original input has UB. Note that Old and New 1615 // always have matching ABI, so no attributes need to be changed. 1616 // Transferring other attributes may help other optimizations, but that 1617 // should be done uniformly and not in this ad-hoc way. 1618 auto &Context = New->getContext(); 1619 auto NewFuncAttrs = New->getAttributes(); 1620 auto CallSiteAttrs = CS.getAttributes(); 1621 1622 CallSiteAttrs = CallSiteAttrs.addAttributes( 1623 Context, AttributeSet::ReturnIndex, NewFuncAttrs.getRetAttributes()); 1624 1625 for (unsigned argIdx = 0; argIdx < CS.arg_size(); argIdx++) { 1626 AttributeSet Attrs = NewFuncAttrs.getParamAttributes(argIdx); 1627 if (Attrs.getNumSlots()) 1628 CallSiteAttrs = CallSiteAttrs.addAttributes(Context, argIdx, Attrs); 1629 } 1630 1631 CS.setAttributes(CallSiteAttrs); 1632 1633 remove(CS.getInstruction()->getParent()->getParent()); 1634 U->set(BitcastNew); 1635 } 1636 } 1637 } 1638 1639 // Replace G with an alias to F if possible, or else a thunk to F. Deletes G. 1640 void MergeFunctions::writeThunkOrAlias(Function *F, Function *G) { 1641 if (HasGlobalAliases && G->hasGlobalUnnamedAddr()) { 1642 if (G->hasExternalLinkage() || G->hasLocalLinkage() || 1643 G->hasWeakLinkage()) { 1644 writeAlias(F, G); 1645 return; 1646 } 1647 } 1648 1649 writeThunk(F, G); 1650 } 1651 1652 // Helper for writeThunk, 1653 // Selects proper bitcast operation, 1654 // but a bit simpler then CastInst::getCastOpcode. 1655 static Value *createCast(IRBuilder<> &Builder, Value *V, Type *DestTy) { 1656 Type *SrcTy = V->getType(); 1657 if (SrcTy->isStructTy()) { 1658 assert(DestTy->isStructTy()); 1659 assert(SrcTy->getStructNumElements() == DestTy->getStructNumElements()); 1660 Value *Result = UndefValue::get(DestTy); 1661 for (unsigned int I = 0, E = SrcTy->getStructNumElements(); I < E; ++I) { 1662 Value *Element = createCast( 1663 Builder, Builder.CreateExtractValue(V, makeArrayRef(I)), 1664 DestTy->getStructElementType(I)); 1665 1666 Result = 1667 Builder.CreateInsertValue(Result, Element, makeArrayRef(I)); 1668 } 1669 return Result; 1670 } 1671 assert(!DestTy->isStructTy()); 1672 if (SrcTy->isIntegerTy() && DestTy->isPointerTy()) 1673 return Builder.CreateIntToPtr(V, DestTy); 1674 else if (SrcTy->isPointerTy() && DestTy->isIntegerTy()) 1675 return Builder.CreatePtrToInt(V, DestTy); 1676 else 1677 return Builder.CreateBitCast(V, DestTy); 1678 } 1679 1680 // Replace G with a simple tail call to bitcast(F). Also replace direct uses 1681 // of G with bitcast(F). Deletes G. 1682 void MergeFunctions::writeThunk(Function *F, Function *G) { 1683 if (!G->isInterposable()) { 1684 // Redirect direct callers of G to F. 1685 replaceDirectCallers(G, F); 1686 } 1687 1688 // If G was internal then we may have replaced all uses of G with F. If so, 1689 // stop here and delete G. There's no need for a thunk. 1690 if (G->hasLocalLinkage() && G->use_empty()) { 1691 G->eraseFromParent(); 1692 return; 1693 } 1694 1695 Function *NewG = Function::Create(G->getFunctionType(), G->getLinkage(), "", 1696 G->getParent()); 1697 BasicBlock *BB = BasicBlock::Create(F->getContext(), "", NewG); 1698 IRBuilder<> Builder(BB); 1699 1700 SmallVector<Value *, 16> Args; 1701 unsigned i = 0; 1702 FunctionType *FFTy = F->getFunctionType(); 1703 for (Argument & AI : NewG->args()) { 1704 Args.push_back(createCast(Builder, &AI, FFTy->getParamType(i))); 1705 ++i; 1706 } 1707 1708 CallInst *CI = Builder.CreateCall(F, Args); 1709 CI->setTailCall(); 1710 CI->setCallingConv(F->getCallingConv()); 1711 CI->setAttributes(F->getAttributes()); 1712 if (NewG->getReturnType()->isVoidTy()) { 1713 Builder.CreateRetVoid(); 1714 } else { 1715 Builder.CreateRet(createCast(Builder, CI, NewG->getReturnType())); 1716 } 1717 1718 NewG->copyAttributesFrom(G); 1719 NewG->takeName(G); 1720 removeUsers(G); 1721 G->replaceAllUsesWith(NewG); 1722 G->eraseFromParent(); 1723 1724 DEBUG(dbgs() << "writeThunk: " << NewG->getName() << '\n'); 1725 ++NumThunksWritten; 1726 } 1727 1728 // Replace G with an alias to F and delete G. 1729 void MergeFunctions::writeAlias(Function *F, Function *G) { 1730 auto *GA = GlobalAlias::create(G->getLinkage(), "", F); 1731 F->setAlignment(std::max(F->getAlignment(), G->getAlignment())); 1732 GA->takeName(G); 1733 GA->setVisibility(G->getVisibility()); 1734 removeUsers(G); 1735 G->replaceAllUsesWith(GA); 1736 G->eraseFromParent(); 1737 1738 DEBUG(dbgs() << "writeAlias: " << GA->getName() << '\n'); 1739 ++NumAliasesWritten; 1740 } 1741 1742 // Merge two equivalent functions. Upon completion, Function G is deleted. 1743 void MergeFunctions::mergeTwoFunctions(Function *F, Function *G) { 1744 if (F->isInterposable()) { 1745 assert(G->isInterposable()); 1746 1747 // Make them both thunks to the same internal function. 1748 Function *H = Function::Create(F->getFunctionType(), F->getLinkage(), "", 1749 F->getParent()); 1750 H->copyAttributesFrom(F); 1751 H->takeName(F); 1752 removeUsers(F); 1753 F->replaceAllUsesWith(H); 1754 1755 unsigned MaxAlignment = std::max(G->getAlignment(), H->getAlignment()); 1756 1757 if (HasGlobalAliases) { 1758 writeAlias(F, G); 1759 writeAlias(F, H); 1760 } else { 1761 writeThunk(F, G); 1762 writeThunk(F, H); 1763 } 1764 1765 F->setAlignment(MaxAlignment); 1766 F->setLinkage(GlobalValue::PrivateLinkage); 1767 ++NumDoubleWeak; 1768 } else { 1769 writeThunkOrAlias(F, G); 1770 } 1771 1772 ++NumFunctionsMerged; 1773 } 1774 1775 /// Replace function F by function G. 1776 void MergeFunctions::replaceFunctionInTree(const FunctionNode &FN, 1777 Function *G) { 1778 Function *F = FN.getFunc(); 1779 assert(FunctionComparator(F, G, &GlobalNumbers).compare() == 0 && 1780 "The two functions must be equal"); 1781 1782 auto I = FNodesInTree.find(F); 1783 assert(I != FNodesInTree.end() && "F should be in FNodesInTree"); 1784 assert(FNodesInTree.count(G) == 0 && "FNodesInTree should not contain G"); 1785 1786 FnTreeType::iterator IterToFNInFnTree = I->second; 1787 assert(&(*IterToFNInFnTree) == &FN && "F should map to FN in FNodesInTree."); 1788 // Remove F -> FN and insert G -> FN 1789 FNodesInTree.erase(I); 1790 FNodesInTree.insert({G, IterToFNInFnTree}); 1791 // Replace F with G in FN, which is stored inside the FnTree. 1792 FN.replaceBy(G); 1793 } 1794 1795 // Insert a ComparableFunction into the FnTree, or merge it away if equal to one 1796 // that was already inserted. 1797 bool MergeFunctions::insert(Function *NewFunction) { 1798 std::pair<FnTreeType::iterator, bool> Result = 1799 FnTree.insert(FunctionNode(NewFunction)); 1800 1801 if (Result.second) { 1802 assert(FNodesInTree.count(NewFunction) == 0); 1803 FNodesInTree.insert({NewFunction, Result.first}); 1804 DEBUG(dbgs() << "Inserting as unique: " << NewFunction->getName() << '\n'); 1805 return false; 1806 } 1807 1808 const FunctionNode &OldF = *Result.first; 1809 1810 // Don't merge tiny functions, since it can just end up making the function 1811 // larger. 1812 // FIXME: Should still merge them if they are unnamed_addr and produce an 1813 // alias. 1814 if (NewFunction->size() == 1) { 1815 if (NewFunction->front().size() <= 2) { 1816 DEBUG(dbgs() << NewFunction->getName() 1817 << " is to small to bother merging\n"); 1818 return false; 1819 } 1820 } 1821 1822 // Impose a total order (by name) on the replacement of functions. This is 1823 // important when operating on more than one module independently to prevent 1824 // cycles of thunks calling each other when the modules are linked together. 1825 // 1826 // First of all, we process strong functions before weak functions. 1827 if ((OldF.getFunc()->isInterposable() && !NewFunction->isInterposable()) || 1828 (OldF.getFunc()->isInterposable() == NewFunction->isInterposable() && 1829 OldF.getFunc()->getName() > NewFunction->getName())) { 1830 // Swap the two functions. 1831 Function *F = OldF.getFunc(); 1832 replaceFunctionInTree(*Result.first, NewFunction); 1833 NewFunction = F; 1834 assert(OldF.getFunc() != F && "Must have swapped the functions."); 1835 } 1836 1837 DEBUG(dbgs() << " " << OldF.getFunc()->getName() 1838 << " == " << NewFunction->getName() << '\n'); 1839 1840 Function *DeleteF = NewFunction; 1841 mergeTwoFunctions(OldF.getFunc(), DeleteF); 1842 return true; 1843 } 1844 1845 // Remove a function from FnTree. If it was already in FnTree, add 1846 // it to Deferred so that we'll look at it in the next round. 1847 void MergeFunctions::remove(Function *F) { 1848 auto I = FNodesInTree.find(F); 1849 if (I != FNodesInTree.end()) { 1850 DEBUG(dbgs() << "Deferred " << F->getName()<< ".\n"); 1851 FnTree.erase(I->second); 1852 // I->second has been invalidated, remove it from the FNodesInTree map to 1853 // preserve the invariant. 1854 FNodesInTree.erase(I); 1855 Deferred.emplace_back(F); 1856 } 1857 } 1858 1859 // For each instruction used by the value, remove() the function that contains 1860 // the instruction. This should happen right before a call to RAUW. 1861 void MergeFunctions::removeUsers(Value *V) { 1862 std::vector<Value *> Worklist; 1863 Worklist.push_back(V); 1864 SmallSet<Value*, 8> Visited; 1865 Visited.insert(V); 1866 while (!Worklist.empty()) { 1867 Value *V = Worklist.back(); 1868 Worklist.pop_back(); 1869 1870 for (User *U : V->users()) { 1871 if (Instruction *I = dyn_cast<Instruction>(U)) { 1872 remove(I->getParent()->getParent()); 1873 } else if (isa<GlobalValue>(U)) { 1874 // do nothing 1875 } else if (Constant *C = dyn_cast<Constant>(U)) { 1876 for (User *UU : C->users()) { 1877 if (!Visited.insert(UU).second) 1878 Worklist.push_back(UU); 1879 } 1880 } 1881 } 1882 } 1883 } 1884