1 //===- MergeFunctions.cpp - Merge identical functions ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass looks for equivalent functions that are mergable and folds them. 11 // 12 // Order relation is defined on set of functions. It was made through 13 // special function comparison procedure that returns 14 // 0 when functions are equal, 15 // -1 when Left function is less than right function, and 16 // 1 for opposite case. We need total-ordering, so we need to maintain 17 // four properties on the functions set: 18 // a <= a (reflexivity) 19 // if a <= b and b <= a then a = b (antisymmetry) 20 // if a <= b and b <= c then a <= c (transitivity). 21 // for all a and b: a <= b or b <= a (totality). 22 // 23 // Comparison iterates through each instruction in each basic block. 24 // Functions are kept on binary tree. For each new function F we perform 25 // lookup in binary tree. 26 // In practice it works the following way: 27 // -- We define Function* container class with custom "operator<" (FunctionPtr). 28 // -- "FunctionPtr" instances are stored in std::set collection, so every 29 // std::set::insert operation will give you result in log(N) time. 30 // 31 // As an optimization, a hash of the function structure is calculated first, and 32 // two functions are only compared if they have the same hash. This hash is 33 // cheap to compute, and has the property that if function F == G according to 34 // the comparison function, then hash(F) == hash(G). This consistency property 35 // is critical to ensuring all possible merging opportunities are exploited. 36 // Collisions in the hash affect the speed of the pass but not the correctness 37 // or determinism of the resulting transformation. 38 // 39 // When a match is found the functions are folded. If both functions are 40 // overridable, we move the functionality into a new internal function and 41 // leave two overridable thunks to it. 42 // 43 //===----------------------------------------------------------------------===// 44 // 45 // Future work: 46 // 47 // * virtual functions. 48 // 49 // Many functions have their address taken by the virtual function table for 50 // the object they belong to. However, as long as it's only used for a lookup 51 // and call, this is irrelevant, and we'd like to fold such functions. 52 // 53 // * be smarter about bitcasts. 54 // 55 // In order to fold functions, we will sometimes add either bitcast instructions 56 // or bitcast constant expressions. Unfortunately, this can confound further 57 // analysis since the two functions differ where one has a bitcast and the 58 // other doesn't. We should learn to look through bitcasts. 59 // 60 // * Compare complex types with pointer types inside. 61 // * Compare cross-reference cases. 62 // * Compare complex expressions. 63 // 64 // All the three issues above could be described as ability to prove that 65 // fA == fB == fC == fE == fF == fG in example below: 66 // 67 // void fA() { 68 // fB(); 69 // } 70 // void fB() { 71 // fA(); 72 // } 73 // 74 // void fE() { 75 // fF(); 76 // } 77 // void fF() { 78 // fG(); 79 // } 80 // void fG() { 81 // fE(); 82 // } 83 // 84 // Simplest cross-reference case (fA <--> fB) was implemented in previous 85 // versions of MergeFunctions, though it presented only in two function pairs 86 // in test-suite (that counts >50k functions) 87 // Though possibility to detect complex cross-referencing (e.g.: A->B->C->D->A) 88 // could cover much more cases. 89 // 90 //===----------------------------------------------------------------------===// 91 92 #include "llvm/Transforms/IPO.h" 93 #include "llvm/ADT/DenseSet.h" 94 #include "llvm/ADT/FoldingSet.h" 95 #include "llvm/ADT/STLExtras.h" 96 #include "llvm/ADT/SmallSet.h" 97 #include "llvm/ADT/Statistic.h" 98 #include "llvm/ADT/Hashing.h" 99 #include "llvm/IR/CallSite.h" 100 #include "llvm/IR/Constants.h" 101 #include "llvm/IR/DataLayout.h" 102 #include "llvm/IR/IRBuilder.h" 103 #include "llvm/IR/InlineAsm.h" 104 #include "llvm/IR/Instructions.h" 105 #include "llvm/IR/LLVMContext.h" 106 #include "llvm/IR/Module.h" 107 #include "llvm/IR/Operator.h" 108 #include "llvm/IR/ValueHandle.h" 109 #include "llvm/IR/ValueMap.h" 110 #include "llvm/Pass.h" 111 #include "llvm/Support/CommandLine.h" 112 #include "llvm/Support/Debug.h" 113 #include "llvm/Support/ErrorHandling.h" 114 #include "llvm/Support/raw_ostream.h" 115 #include <vector> 116 117 using namespace llvm; 118 119 #define DEBUG_TYPE "mergefunc" 120 121 STATISTIC(NumFunctionsMerged, "Number of functions merged"); 122 STATISTIC(NumThunksWritten, "Number of thunks generated"); 123 STATISTIC(NumAliasesWritten, "Number of aliases generated"); 124 STATISTIC(NumDoubleWeak, "Number of new functions created"); 125 126 static cl::opt<unsigned> NumFunctionsForSanityCheck( 127 "mergefunc-sanity", 128 cl::desc("How many functions in module could be used for " 129 "MergeFunctions pass sanity check. " 130 "'0' disables this check. Works only with '-debug' key."), 131 cl::init(0), cl::Hidden); 132 133 namespace { 134 135 /// GlobalNumberState assigns an integer to each global value in the program, 136 /// which is used by the comparison routine to order references to globals. This 137 /// state must be preserved throughout the pass, because Functions and other 138 /// globals need to maintain their relative order. Globals are assigned a number 139 /// when they are first visited. This order is deterministic, and so the 140 /// assigned numbers are as well. When two functions are merged, neither number 141 /// is updated. If the symbols are weak, this would be incorrect. If they are 142 /// strong, then one will be replaced at all references to the other, and so 143 /// direct callsites will now see one or the other symbol, and no update is 144 /// necessary. Note that if we were guaranteed unique names, we could just 145 /// compare those, but this would not work for stripped bitcodes or for those 146 /// few symbols without a name. 147 class GlobalNumberState { 148 struct Config : ValueMapConfig<GlobalValue*> { 149 enum { FollowRAUW = false }; 150 }; 151 // Each GlobalValue is mapped to an identifier. The Config ensures when RAUW 152 // occurs, the mapping does not change. Tracking changes is unnecessary, and 153 // also problematic for weak symbols (which may be overwritten). 154 typedef ValueMap<GlobalValue *, uint64_t, Config> ValueNumberMap; 155 ValueNumberMap GlobalNumbers; 156 // The next unused serial number to assign to a global. 157 uint64_t NextNumber; 158 public: 159 GlobalNumberState() : GlobalNumbers(), NextNumber(0) {} 160 uint64_t getNumber(GlobalValue* Global) { 161 ValueNumberMap::iterator MapIter; 162 bool Inserted; 163 std::tie(MapIter, Inserted) = GlobalNumbers.insert({Global, NextNumber}); 164 if (Inserted) 165 NextNumber++; 166 return MapIter->second; 167 } 168 void clear() { 169 GlobalNumbers.clear(); 170 } 171 }; 172 173 /// FunctionComparator - Compares two functions to determine whether or not 174 /// they will generate machine code with the same behaviour. DataLayout is 175 /// used if available. The comparator always fails conservatively (erring on the 176 /// side of claiming that two functions are different). 177 class FunctionComparator { 178 public: 179 FunctionComparator(const Function *F1, const Function *F2, 180 GlobalNumberState* GN) 181 : FnL(F1), FnR(F2), GlobalNumbers(GN) {} 182 183 /// Test whether the two functions have equivalent behaviour. 184 int compare(); 185 /// Hash a function. Equivalent functions will have the same hash, and unequal 186 /// functions will have different hashes with high probability. 187 typedef uint64_t FunctionHash; 188 static FunctionHash functionHash(Function &); 189 190 private: 191 /// Test whether two basic blocks have equivalent behaviour. 192 int cmpBasicBlocks(const BasicBlock *BBL, const BasicBlock *BBR) const; 193 194 /// Constants comparison. 195 /// Its analog to lexicographical comparison between hypothetical numbers 196 /// of next format: 197 /// <bitcastability-trait><raw-bit-contents> 198 /// 199 /// 1. Bitcastability. 200 /// Check whether L's type could be losslessly bitcasted to R's type. 201 /// On this stage method, in case when lossless bitcast is not possible 202 /// method returns -1 or 1, thus also defining which type is greater in 203 /// context of bitcastability. 204 /// Stage 0: If types are equal in terms of cmpTypes, then we can go straight 205 /// to the contents comparison. 206 /// If types differ, remember types comparison result and check 207 /// whether we still can bitcast types. 208 /// Stage 1: Types that satisfies isFirstClassType conditions are always 209 /// greater then others. 210 /// Stage 2: Vector is greater then non-vector. 211 /// If both types are vectors, then vector with greater bitwidth is 212 /// greater. 213 /// If both types are vectors with the same bitwidth, then types 214 /// are bitcastable, and we can skip other stages, and go to contents 215 /// comparison. 216 /// Stage 3: Pointer types are greater than non-pointers. If both types are 217 /// pointers of the same address space - go to contents comparison. 218 /// Different address spaces: pointer with greater address space is 219 /// greater. 220 /// Stage 4: Types are neither vectors, nor pointers. And they differ. 221 /// We don't know how to bitcast them. So, we better don't do it, 222 /// and return types comparison result (so it determines the 223 /// relationship among constants we don't know how to bitcast). 224 /// 225 /// Just for clearance, let's see how the set of constants could look 226 /// on single dimension axis: 227 /// 228 /// [NFCT], [FCT, "others"], [FCT, pointers], [FCT, vectors] 229 /// Where: NFCT - Not a FirstClassType 230 /// FCT - FirstClassTyp: 231 /// 232 /// 2. Compare raw contents. 233 /// It ignores types on this stage and only compares bits from L and R. 234 /// Returns 0, if L and R has equivalent contents. 235 /// -1 or 1 if values are different. 236 /// Pretty trivial: 237 /// 2.1. If contents are numbers, compare numbers. 238 /// Ints with greater bitwidth are greater. Ints with same bitwidths 239 /// compared by their contents. 240 /// 2.2. "And so on". Just to avoid discrepancies with comments 241 /// perhaps it would be better to read the implementation itself. 242 /// 3. And again about overall picture. Let's look back at how the ordered set 243 /// of constants will look like: 244 /// [NFCT], [FCT, "others"], [FCT, pointers], [FCT, vectors] 245 /// 246 /// Now look, what could be inside [FCT, "others"], for example: 247 /// [FCT, "others"] = 248 /// [ 249 /// [double 0.1], [double 1.23], 250 /// [i32 1], [i32 2], 251 /// { double 1.0 }, ; StructTyID, NumElements = 1 252 /// { i32 1 }, ; StructTyID, NumElements = 1 253 /// { double 1, i32 1 }, ; StructTyID, NumElements = 2 254 /// { i32 1, double 1 } ; StructTyID, NumElements = 2 255 /// ] 256 /// 257 /// Let's explain the order. Float numbers will be less than integers, just 258 /// because of cmpType terms: FloatTyID < IntegerTyID. 259 /// Floats (with same fltSemantics) are sorted according to their value. 260 /// Then you can see integers, and they are, like a floats, 261 /// could be easy sorted among each others. 262 /// The structures. Structures are grouped at the tail, again because of their 263 /// TypeID: StructTyID > IntegerTyID > FloatTyID. 264 /// Structures with greater number of elements are greater. Structures with 265 /// greater elements going first are greater. 266 /// The same logic with vectors, arrays and other possible complex types. 267 /// 268 /// Bitcastable constants. 269 /// Let's assume, that some constant, belongs to some group of 270 /// "so-called-equal" values with different types, and at the same time 271 /// belongs to another group of constants with equal types 272 /// and "really" equal values. 273 /// 274 /// Now, prove that this is impossible: 275 /// 276 /// If constant A with type TyA is bitcastable to B with type TyB, then: 277 /// 1. All constants with equal types to TyA, are bitcastable to B. Since 278 /// those should be vectors (if TyA is vector), pointers 279 /// (if TyA is pointer), or else (if TyA equal to TyB), those types should 280 /// be equal to TyB. 281 /// 2. All constants with non-equal, but bitcastable types to TyA, are 282 /// bitcastable to B. 283 /// Once again, just because we allow it to vectors and pointers only. 284 /// This statement could be expanded as below: 285 /// 2.1. All vectors with equal bitwidth to vector A, has equal bitwidth to 286 /// vector B, and thus bitcastable to B as well. 287 /// 2.2. All pointers of the same address space, no matter what they point to, 288 /// bitcastable. So if C is pointer, it could be bitcasted to A and to B. 289 /// So any constant equal or bitcastable to A is equal or bitcastable to B. 290 /// QED. 291 /// 292 /// In another words, for pointers and vectors, we ignore top-level type and 293 /// look at their particular properties (bit-width for vectors, and 294 /// address space for pointers). 295 /// If these properties are equal - compare their contents. 296 int cmpConstants(const Constant *L, const Constant *R) const; 297 298 /// Compares two global values by number. Uses the GlobalNumbersState to 299 /// identify the same gobals across function calls. 300 int cmpGlobalValues(GlobalValue *L, GlobalValue *R) const; 301 302 /// Assign or look up previously assigned numbers for the two values, and 303 /// return whether the numbers are equal. Numbers are assigned in the order 304 /// visited. 305 /// Comparison order: 306 /// Stage 0: Value that is function itself is always greater then others. 307 /// If left and right values are references to their functions, then 308 /// they are equal. 309 /// Stage 1: Constants are greater than non-constants. 310 /// If both left and right are constants, then the result of 311 /// cmpConstants is used as cmpValues result. 312 /// Stage 2: InlineAsm instances are greater than others. If both left and 313 /// right are InlineAsm instances, InlineAsm* pointers casted to 314 /// integers and compared as numbers. 315 /// Stage 3: For all other cases we compare order we meet these values in 316 /// their functions. If right value was met first during scanning, 317 /// then left value is greater. 318 /// In another words, we compare serial numbers, for more details 319 /// see comments for sn_mapL and sn_mapR. 320 int cmpValues(const Value *L, const Value *R) const; 321 322 /// Compare two Instructions for equivalence, similar to 323 /// Instruction::isSameOperationAs. 324 /// 325 /// Stages are listed in "most significant stage first" order: 326 /// On each stage below, we do comparison between some left and right 327 /// operation parts. If parts are non-equal, we assign parts comparison 328 /// result to the operation comparison result and exit from method. 329 /// Otherwise we proceed to the next stage. 330 /// Stages: 331 /// 1. Operations opcodes. Compared as numbers. 332 /// 2. Number of operands. 333 /// 3. Operation types. Compared with cmpType method. 334 /// 4. Compare operation subclass optional data as stream of bytes: 335 /// just convert it to integers and call cmpNumbers. 336 /// 5. Compare in operation operand types with cmpType in 337 /// most significant operand first order. 338 /// 6. Last stage. Check operations for some specific attributes. 339 /// For example, for Load it would be: 340 /// 6.1.Load: volatile (as boolean flag) 341 /// 6.2.Load: alignment (as integer numbers) 342 /// 6.3.Load: ordering (as underlying enum class value) 343 /// 6.4.Load: synch-scope (as integer numbers) 344 /// 6.5.Load: range metadata (as integer ranges) 345 /// On this stage its better to see the code, since its not more than 10-15 346 /// strings for particular instruction, and could change sometimes. 347 int cmpOperations(const Instruction *L, const Instruction *R) const; 348 349 /// Compare two GEPs for equivalent pointer arithmetic. 350 /// Parts to be compared for each comparison stage, 351 /// most significant stage first: 352 /// 1. Address space. As numbers. 353 /// 2. Constant offset, (using GEPOperator::accumulateConstantOffset method). 354 /// 3. Pointer operand type (using cmpType method). 355 /// 4. Number of operands. 356 /// 5. Compare operands, using cmpValues method. 357 int cmpGEPs(const GEPOperator *GEPL, const GEPOperator *GEPR) const; 358 int cmpGEPs(const GetElementPtrInst *GEPL, 359 const GetElementPtrInst *GEPR) const { 360 return cmpGEPs(cast<GEPOperator>(GEPL), cast<GEPOperator>(GEPR)); 361 } 362 363 /// cmpType - compares two types, 364 /// defines total ordering among the types set. 365 /// 366 /// Return values: 367 /// 0 if types are equal, 368 /// -1 if Left is less than Right, 369 /// +1 if Left is greater than Right. 370 /// 371 /// Description: 372 /// Comparison is broken onto stages. Like in lexicographical comparison 373 /// stage coming first has higher priority. 374 /// On each explanation stage keep in mind total ordering properties. 375 /// 376 /// 0. Before comparison we coerce pointer types of 0 address space to 377 /// integer. 378 /// We also don't bother with same type at left and right, so 379 /// just return 0 in this case. 380 /// 381 /// 1. If types are of different kind (different type IDs). 382 /// Return result of type IDs comparison, treating them as numbers. 383 /// 2. If types are integers, check that they have the same width. If they 384 /// are vectors, check that they have the same count and subtype. 385 /// 3. Types have the same ID, so check whether they are one of: 386 /// * Void 387 /// * Float 388 /// * Double 389 /// * X86_FP80 390 /// * FP128 391 /// * PPC_FP128 392 /// * Label 393 /// * Metadata 394 /// We can treat these types as equal whenever their IDs are same. 395 /// 4. If Left and Right are pointers, return result of address space 396 /// comparison (numbers comparison). We can treat pointer types of same 397 /// address space as equal. 398 /// 5. If types are complex. 399 /// Then both Left and Right are to be expanded and their element types will 400 /// be checked with the same way. If we get Res != 0 on some stage, return it. 401 /// Otherwise return 0. 402 /// 6. For all other cases put llvm_unreachable. 403 int cmpTypes(Type *TyL, Type *TyR) const; 404 405 int cmpNumbers(uint64_t L, uint64_t R) const; 406 int cmpOrderings(AtomicOrdering L, AtomicOrdering R) const; 407 int cmpAPInts(const APInt &L, const APInt &R) const; 408 int cmpAPFloats(const APFloat &L, const APFloat &R) const; 409 int cmpInlineAsm(const InlineAsm *L, const InlineAsm *R) const; 410 int cmpMem(StringRef L, StringRef R) const; 411 int cmpAttrs(const AttributeSet L, const AttributeSet R) const; 412 int cmpRangeMetadata(const MDNode *L, const MDNode *R) const; 413 int cmpOperandBundlesSchema(const Instruction *L, const Instruction *R) const; 414 415 // The two functions undergoing comparison. 416 const Function *FnL, *FnR; 417 418 /// Assign serial numbers to values from left function, and values from 419 /// right function. 420 /// Explanation: 421 /// Being comparing functions we need to compare values we meet at left and 422 /// right sides. 423 /// Its easy to sort things out for external values. It just should be 424 /// the same value at left and right. 425 /// But for local values (those were introduced inside function body) 426 /// we have to ensure they were introduced at exactly the same place, 427 /// and plays the same role. 428 /// Let's assign serial number to each value when we meet it first time. 429 /// Values that were met at same place will be with same serial numbers. 430 /// In this case it would be good to explain few points about values assigned 431 /// to BBs and other ways of implementation (see below). 432 /// 433 /// 1. Safety of BB reordering. 434 /// It's safe to change the order of BasicBlocks in function. 435 /// Relationship with other functions and serial numbering will not be 436 /// changed in this case. 437 /// As follows from FunctionComparator::compare(), we do CFG walk: we start 438 /// from the entry, and then take each terminator. So it doesn't matter how in 439 /// fact BBs are ordered in function. And since cmpValues are called during 440 /// this walk, the numbering depends only on how BBs located inside the CFG. 441 /// So the answer is - yes. We will get the same numbering. 442 /// 443 /// 2. Impossibility to use dominance properties of values. 444 /// If we compare two instruction operands: first is usage of local 445 /// variable AL from function FL, and second is usage of local variable AR 446 /// from FR, we could compare their origins and check whether they are 447 /// defined at the same place. 448 /// But, we are still not able to compare operands of PHI nodes, since those 449 /// could be operands from further BBs we didn't scan yet. 450 /// So it's impossible to use dominance properties in general. 451 mutable DenseMap<const Value*, int> sn_mapL, sn_mapR; 452 453 // The global state we will use 454 GlobalNumberState* GlobalNumbers; 455 }; 456 457 class FunctionNode { 458 mutable AssertingVH<Function> F; 459 FunctionComparator::FunctionHash Hash; 460 public: 461 // Note the hash is recalculated potentially multiple times, but it is cheap. 462 FunctionNode(Function *F) 463 : F(F), Hash(FunctionComparator::functionHash(*F)) {} 464 Function *getFunc() const { return F; } 465 FunctionComparator::FunctionHash getHash() const { return Hash; } 466 467 /// Replace the reference to the function F by the function G, assuming their 468 /// implementations are equal. 469 void replaceBy(Function *G) const { 470 F = G; 471 } 472 473 void release() { F = nullptr; } 474 }; 475 } // end anonymous namespace 476 477 int FunctionComparator::cmpNumbers(uint64_t L, uint64_t R) const { 478 if (L < R) return -1; 479 if (L > R) return 1; 480 return 0; 481 } 482 483 int FunctionComparator::cmpOrderings(AtomicOrdering L, AtomicOrdering R) const { 484 if ((int)L < (int)R) return -1; 485 if ((int)L > (int)R) return 1; 486 return 0; 487 } 488 489 int FunctionComparator::cmpAPInts(const APInt &L, const APInt &R) const { 490 if (int Res = cmpNumbers(L.getBitWidth(), R.getBitWidth())) 491 return Res; 492 if (L.ugt(R)) return 1; 493 if (R.ugt(L)) return -1; 494 return 0; 495 } 496 497 int FunctionComparator::cmpAPFloats(const APFloat &L, const APFloat &R) const { 498 // Floats are ordered first by semantics (i.e. float, double, half, etc.), 499 // then by value interpreted as a bitstring (aka APInt). 500 const fltSemantics &SL = L.getSemantics(), &SR = R.getSemantics(); 501 if (int Res = cmpNumbers(APFloat::semanticsPrecision(SL), 502 APFloat::semanticsPrecision(SR))) 503 return Res; 504 if (int Res = cmpNumbers(APFloat::semanticsMaxExponent(SL), 505 APFloat::semanticsMaxExponent(SR))) 506 return Res; 507 if (int Res = cmpNumbers(APFloat::semanticsMinExponent(SL), 508 APFloat::semanticsMinExponent(SR))) 509 return Res; 510 if (int Res = cmpNumbers(APFloat::semanticsSizeInBits(SL), 511 APFloat::semanticsSizeInBits(SR))) 512 return Res; 513 return cmpAPInts(L.bitcastToAPInt(), R.bitcastToAPInt()); 514 } 515 516 int FunctionComparator::cmpMem(StringRef L, StringRef R) const { 517 // Prevent heavy comparison, compare sizes first. 518 if (int Res = cmpNumbers(L.size(), R.size())) 519 return Res; 520 521 // Compare strings lexicographically only when it is necessary: only when 522 // strings are equal in size. 523 return L.compare(R); 524 } 525 526 int FunctionComparator::cmpAttrs(const AttributeSet L, 527 const AttributeSet R) const { 528 if (int Res = cmpNumbers(L.getNumSlots(), R.getNumSlots())) 529 return Res; 530 531 for (unsigned i = 0, e = L.getNumSlots(); i != e; ++i) { 532 AttributeSet::iterator LI = L.begin(i), LE = L.end(i), RI = R.begin(i), 533 RE = R.end(i); 534 for (; LI != LE && RI != RE; ++LI, ++RI) { 535 Attribute LA = *LI; 536 Attribute RA = *RI; 537 if (LA < RA) 538 return -1; 539 if (RA < LA) 540 return 1; 541 } 542 if (LI != LE) 543 return 1; 544 if (RI != RE) 545 return -1; 546 } 547 return 0; 548 } 549 550 int FunctionComparator::cmpRangeMetadata(const MDNode *L, 551 const MDNode *R) const { 552 if (L == R) 553 return 0; 554 if (!L) 555 return -1; 556 if (!R) 557 return 1; 558 // Range metadata is a sequence of numbers. Make sure they are the same 559 // sequence. 560 // TODO: Note that as this is metadata, it is possible to drop and/or merge 561 // this data when considering functions to merge. Thus this comparison would 562 // return 0 (i.e. equivalent), but merging would become more complicated 563 // because the ranges would need to be unioned. It is not likely that 564 // functions differ ONLY in this metadata if they are actually the same 565 // function semantically. 566 if (int Res = cmpNumbers(L->getNumOperands(), R->getNumOperands())) 567 return Res; 568 for (size_t I = 0; I < L->getNumOperands(); ++I) { 569 ConstantInt *LLow = mdconst::extract<ConstantInt>(L->getOperand(I)); 570 ConstantInt *RLow = mdconst::extract<ConstantInt>(R->getOperand(I)); 571 if (int Res = cmpAPInts(LLow->getValue(), RLow->getValue())) 572 return Res; 573 } 574 return 0; 575 } 576 577 int FunctionComparator::cmpOperandBundlesSchema(const Instruction *L, 578 const Instruction *R) const { 579 ImmutableCallSite LCS(L); 580 ImmutableCallSite RCS(R); 581 582 assert(LCS && RCS && "Must be calls or invokes!"); 583 assert(LCS.isCall() == RCS.isCall() && "Can't compare otherwise!"); 584 585 if (int Res = 586 cmpNumbers(LCS.getNumOperandBundles(), RCS.getNumOperandBundles())) 587 return Res; 588 589 for (unsigned i = 0, e = LCS.getNumOperandBundles(); i != e; ++i) { 590 auto OBL = LCS.getOperandBundleAt(i); 591 auto OBR = RCS.getOperandBundleAt(i); 592 593 if (int Res = OBL.getTagName().compare(OBR.getTagName())) 594 return Res; 595 596 if (int Res = cmpNumbers(OBL.Inputs.size(), OBR.Inputs.size())) 597 return Res; 598 } 599 600 return 0; 601 } 602 603 /// Constants comparison: 604 /// 1. Check whether type of L constant could be losslessly bitcasted to R 605 /// type. 606 /// 2. Compare constant contents. 607 /// For more details see declaration comments. 608 int FunctionComparator::cmpConstants(const Constant *L, 609 const Constant *R) const { 610 611 Type *TyL = L->getType(); 612 Type *TyR = R->getType(); 613 614 // Check whether types are bitcastable. This part is just re-factored 615 // Type::canLosslesslyBitCastTo method, but instead of returning true/false, 616 // we also pack into result which type is "less" for us. 617 int TypesRes = cmpTypes(TyL, TyR); 618 if (TypesRes != 0) { 619 // Types are different, but check whether we can bitcast them. 620 if (!TyL->isFirstClassType()) { 621 if (TyR->isFirstClassType()) 622 return -1; 623 // Neither TyL nor TyR are values of first class type. Return the result 624 // of comparing the types 625 return TypesRes; 626 } 627 if (!TyR->isFirstClassType()) { 628 if (TyL->isFirstClassType()) 629 return 1; 630 return TypesRes; 631 } 632 633 // Vector -> Vector conversions are always lossless if the two vector types 634 // have the same size, otherwise not. 635 unsigned TyLWidth = 0; 636 unsigned TyRWidth = 0; 637 638 if (auto *VecTyL = dyn_cast<VectorType>(TyL)) 639 TyLWidth = VecTyL->getBitWidth(); 640 if (auto *VecTyR = dyn_cast<VectorType>(TyR)) 641 TyRWidth = VecTyR->getBitWidth(); 642 643 if (TyLWidth != TyRWidth) 644 return cmpNumbers(TyLWidth, TyRWidth); 645 646 // Zero bit-width means neither TyL nor TyR are vectors. 647 if (!TyLWidth) { 648 PointerType *PTyL = dyn_cast<PointerType>(TyL); 649 PointerType *PTyR = dyn_cast<PointerType>(TyR); 650 if (PTyL && PTyR) { 651 unsigned AddrSpaceL = PTyL->getAddressSpace(); 652 unsigned AddrSpaceR = PTyR->getAddressSpace(); 653 if (int Res = cmpNumbers(AddrSpaceL, AddrSpaceR)) 654 return Res; 655 } 656 if (PTyL) 657 return 1; 658 if (PTyR) 659 return -1; 660 661 // TyL and TyR aren't vectors, nor pointers. We don't know how to 662 // bitcast them. 663 return TypesRes; 664 } 665 } 666 667 // OK, types are bitcastable, now check constant contents. 668 669 if (L->isNullValue() && R->isNullValue()) 670 return TypesRes; 671 if (L->isNullValue() && !R->isNullValue()) 672 return 1; 673 if (!L->isNullValue() && R->isNullValue()) 674 return -1; 675 676 auto GlobalValueL = const_cast<GlobalValue*>(dyn_cast<GlobalValue>(L)); 677 auto GlobalValueR = const_cast<GlobalValue*>(dyn_cast<GlobalValue>(R)); 678 if (GlobalValueL && GlobalValueR) { 679 return cmpGlobalValues(GlobalValueL, GlobalValueR); 680 } 681 682 if (int Res = cmpNumbers(L->getValueID(), R->getValueID())) 683 return Res; 684 685 if (const auto *SeqL = dyn_cast<ConstantDataSequential>(L)) { 686 const auto *SeqR = cast<ConstantDataSequential>(R); 687 // This handles ConstantDataArray and ConstantDataVector. Note that we 688 // compare the two raw data arrays, which might differ depending on the host 689 // endianness. This isn't a problem though, because the endiness of a module 690 // will affect the order of the constants, but this order is the same 691 // for a given input module and host platform. 692 return cmpMem(SeqL->getRawDataValues(), SeqR->getRawDataValues()); 693 } 694 695 switch (L->getValueID()) { 696 case Value::UndefValueVal: 697 case Value::ConstantTokenNoneVal: 698 return TypesRes; 699 case Value::ConstantIntVal: { 700 const APInt &LInt = cast<ConstantInt>(L)->getValue(); 701 const APInt &RInt = cast<ConstantInt>(R)->getValue(); 702 return cmpAPInts(LInt, RInt); 703 } 704 case Value::ConstantFPVal: { 705 const APFloat &LAPF = cast<ConstantFP>(L)->getValueAPF(); 706 const APFloat &RAPF = cast<ConstantFP>(R)->getValueAPF(); 707 return cmpAPFloats(LAPF, RAPF); 708 } 709 case Value::ConstantArrayVal: { 710 const ConstantArray *LA = cast<ConstantArray>(L); 711 const ConstantArray *RA = cast<ConstantArray>(R); 712 uint64_t NumElementsL = cast<ArrayType>(TyL)->getNumElements(); 713 uint64_t NumElementsR = cast<ArrayType>(TyR)->getNumElements(); 714 if (int Res = cmpNumbers(NumElementsL, NumElementsR)) 715 return Res; 716 for (uint64_t i = 0; i < NumElementsL; ++i) { 717 if (int Res = cmpConstants(cast<Constant>(LA->getOperand(i)), 718 cast<Constant>(RA->getOperand(i)))) 719 return Res; 720 } 721 return 0; 722 } 723 case Value::ConstantStructVal: { 724 const ConstantStruct *LS = cast<ConstantStruct>(L); 725 const ConstantStruct *RS = cast<ConstantStruct>(R); 726 unsigned NumElementsL = cast<StructType>(TyL)->getNumElements(); 727 unsigned NumElementsR = cast<StructType>(TyR)->getNumElements(); 728 if (int Res = cmpNumbers(NumElementsL, NumElementsR)) 729 return Res; 730 for (unsigned i = 0; i != NumElementsL; ++i) { 731 if (int Res = cmpConstants(cast<Constant>(LS->getOperand(i)), 732 cast<Constant>(RS->getOperand(i)))) 733 return Res; 734 } 735 return 0; 736 } 737 case Value::ConstantVectorVal: { 738 const ConstantVector *LV = cast<ConstantVector>(L); 739 const ConstantVector *RV = cast<ConstantVector>(R); 740 unsigned NumElementsL = cast<VectorType>(TyL)->getNumElements(); 741 unsigned NumElementsR = cast<VectorType>(TyR)->getNumElements(); 742 if (int Res = cmpNumbers(NumElementsL, NumElementsR)) 743 return Res; 744 for (uint64_t i = 0; i < NumElementsL; ++i) { 745 if (int Res = cmpConstants(cast<Constant>(LV->getOperand(i)), 746 cast<Constant>(RV->getOperand(i)))) 747 return Res; 748 } 749 return 0; 750 } 751 case Value::ConstantExprVal: { 752 const ConstantExpr *LE = cast<ConstantExpr>(L); 753 const ConstantExpr *RE = cast<ConstantExpr>(R); 754 unsigned NumOperandsL = LE->getNumOperands(); 755 unsigned NumOperandsR = RE->getNumOperands(); 756 if (int Res = cmpNumbers(NumOperandsL, NumOperandsR)) 757 return Res; 758 for (unsigned i = 0; i < NumOperandsL; ++i) { 759 if (int Res = cmpConstants(cast<Constant>(LE->getOperand(i)), 760 cast<Constant>(RE->getOperand(i)))) 761 return Res; 762 } 763 return 0; 764 } 765 case Value::BlockAddressVal: { 766 const BlockAddress *LBA = cast<BlockAddress>(L); 767 const BlockAddress *RBA = cast<BlockAddress>(R); 768 if (int Res = cmpValues(LBA->getFunction(), RBA->getFunction())) 769 return Res; 770 if (LBA->getFunction() == RBA->getFunction()) { 771 // They are BBs in the same function. Order by which comes first in the 772 // BB order of the function. This order is deterministic. 773 Function* F = LBA->getFunction(); 774 BasicBlock *LBB = LBA->getBasicBlock(); 775 BasicBlock *RBB = RBA->getBasicBlock(); 776 if (LBB == RBB) 777 return 0; 778 for(BasicBlock &BB : F->getBasicBlockList()) { 779 if (&BB == LBB) { 780 assert(&BB != RBB); 781 return -1; 782 } 783 if (&BB == RBB) 784 return 1; 785 } 786 llvm_unreachable("Basic Block Address does not point to a basic block in " 787 "its function."); 788 return -1; 789 } else { 790 // cmpValues said the functions are the same. So because they aren't 791 // literally the same pointer, they must respectively be the left and 792 // right functions. 793 assert(LBA->getFunction() == FnL && RBA->getFunction() == FnR); 794 // cmpValues will tell us if these are equivalent BasicBlocks, in the 795 // context of their respective functions. 796 return cmpValues(LBA->getBasicBlock(), RBA->getBasicBlock()); 797 } 798 } 799 default: // Unknown constant, abort. 800 DEBUG(dbgs() << "Looking at valueID " << L->getValueID() << "\n"); 801 llvm_unreachable("Constant ValueID not recognized."); 802 return -1; 803 } 804 } 805 806 int FunctionComparator::cmpGlobalValues(GlobalValue *L, GlobalValue *R) const { 807 return cmpNumbers(GlobalNumbers->getNumber(L), GlobalNumbers->getNumber(R)); 808 } 809 810 /// cmpType - compares two types, 811 /// defines total ordering among the types set. 812 /// See method declaration comments for more details. 813 int FunctionComparator::cmpTypes(Type *TyL, Type *TyR) const { 814 PointerType *PTyL = dyn_cast<PointerType>(TyL); 815 PointerType *PTyR = dyn_cast<PointerType>(TyR); 816 817 const DataLayout &DL = FnL->getParent()->getDataLayout(); 818 if (PTyL && PTyL->getAddressSpace() == 0) 819 TyL = DL.getIntPtrType(TyL); 820 if (PTyR && PTyR->getAddressSpace() == 0) 821 TyR = DL.getIntPtrType(TyR); 822 823 if (TyL == TyR) 824 return 0; 825 826 if (int Res = cmpNumbers(TyL->getTypeID(), TyR->getTypeID())) 827 return Res; 828 829 switch (TyL->getTypeID()) { 830 default: 831 llvm_unreachable("Unknown type!"); 832 // Fall through in Release mode. 833 case Type::IntegerTyID: 834 return cmpNumbers(cast<IntegerType>(TyL)->getBitWidth(), 835 cast<IntegerType>(TyR)->getBitWidth()); 836 case Type::VectorTyID: { 837 VectorType *VTyL = cast<VectorType>(TyL), *VTyR = cast<VectorType>(TyR); 838 if (int Res = cmpNumbers(VTyL->getNumElements(), VTyR->getNumElements())) 839 return Res; 840 return cmpTypes(VTyL->getElementType(), VTyR->getElementType()); 841 } 842 // TyL == TyR would have returned true earlier, because types are uniqued. 843 case Type::VoidTyID: 844 case Type::FloatTyID: 845 case Type::DoubleTyID: 846 case Type::X86_FP80TyID: 847 case Type::FP128TyID: 848 case Type::PPC_FP128TyID: 849 case Type::LabelTyID: 850 case Type::MetadataTyID: 851 case Type::TokenTyID: 852 return 0; 853 854 case Type::PointerTyID: { 855 assert(PTyL && PTyR && "Both types must be pointers here."); 856 return cmpNumbers(PTyL->getAddressSpace(), PTyR->getAddressSpace()); 857 } 858 859 case Type::StructTyID: { 860 StructType *STyL = cast<StructType>(TyL); 861 StructType *STyR = cast<StructType>(TyR); 862 if (STyL->getNumElements() != STyR->getNumElements()) 863 return cmpNumbers(STyL->getNumElements(), STyR->getNumElements()); 864 865 if (STyL->isPacked() != STyR->isPacked()) 866 return cmpNumbers(STyL->isPacked(), STyR->isPacked()); 867 868 for (unsigned i = 0, e = STyL->getNumElements(); i != e; ++i) { 869 if (int Res = cmpTypes(STyL->getElementType(i), STyR->getElementType(i))) 870 return Res; 871 } 872 return 0; 873 } 874 875 case Type::FunctionTyID: { 876 FunctionType *FTyL = cast<FunctionType>(TyL); 877 FunctionType *FTyR = cast<FunctionType>(TyR); 878 if (FTyL->getNumParams() != FTyR->getNumParams()) 879 return cmpNumbers(FTyL->getNumParams(), FTyR->getNumParams()); 880 881 if (FTyL->isVarArg() != FTyR->isVarArg()) 882 return cmpNumbers(FTyL->isVarArg(), FTyR->isVarArg()); 883 884 if (int Res = cmpTypes(FTyL->getReturnType(), FTyR->getReturnType())) 885 return Res; 886 887 for (unsigned i = 0, e = FTyL->getNumParams(); i != e; ++i) { 888 if (int Res = cmpTypes(FTyL->getParamType(i), FTyR->getParamType(i))) 889 return Res; 890 } 891 return 0; 892 } 893 894 case Type::ArrayTyID: { 895 ArrayType *ATyL = cast<ArrayType>(TyL); 896 ArrayType *ATyR = cast<ArrayType>(TyR); 897 if (ATyL->getNumElements() != ATyR->getNumElements()) 898 return cmpNumbers(ATyL->getNumElements(), ATyR->getNumElements()); 899 return cmpTypes(ATyL->getElementType(), ATyR->getElementType()); 900 } 901 } 902 } 903 904 // Determine whether the two operations are the same except that pointer-to-A 905 // and pointer-to-B are equivalent. This should be kept in sync with 906 // Instruction::isSameOperationAs. 907 // Read method declaration comments for more details. 908 int FunctionComparator::cmpOperations(const Instruction *L, 909 const Instruction *R) const { 910 // Differences from Instruction::isSameOperationAs: 911 // * replace type comparison with calls to cmpTypes. 912 // * we test for I->getRawSubclassOptionalData (nuw/nsw/tail) at the top. 913 // * because of the above, we don't test for the tail bit on calls later on. 914 if (int Res = cmpNumbers(L->getOpcode(), R->getOpcode())) 915 return Res; 916 917 if (int Res = cmpNumbers(L->getNumOperands(), R->getNumOperands())) 918 return Res; 919 920 if (int Res = cmpTypes(L->getType(), R->getType())) 921 return Res; 922 923 if (int Res = cmpNumbers(L->getRawSubclassOptionalData(), 924 R->getRawSubclassOptionalData())) 925 return Res; 926 927 // We have two instructions of identical opcode and #operands. Check to see 928 // if all operands are the same type 929 for (unsigned i = 0, e = L->getNumOperands(); i != e; ++i) { 930 if (int Res = 931 cmpTypes(L->getOperand(i)->getType(), R->getOperand(i)->getType())) 932 return Res; 933 } 934 935 // Check special state that is a part of some instructions. 936 if (const AllocaInst *AI = dyn_cast<AllocaInst>(L)) { 937 if (int Res = cmpTypes(AI->getAllocatedType(), 938 cast<AllocaInst>(R)->getAllocatedType())) 939 return Res; 940 return cmpNumbers(AI->getAlignment(), cast<AllocaInst>(R)->getAlignment()); 941 } 942 if (const LoadInst *LI = dyn_cast<LoadInst>(L)) { 943 if (int Res = cmpNumbers(LI->isVolatile(), cast<LoadInst>(R)->isVolatile())) 944 return Res; 945 if (int Res = 946 cmpNumbers(LI->getAlignment(), cast<LoadInst>(R)->getAlignment())) 947 return Res; 948 if (int Res = 949 cmpOrderings(LI->getOrdering(), cast<LoadInst>(R)->getOrdering())) 950 return Res; 951 if (int Res = 952 cmpNumbers(LI->getSynchScope(), cast<LoadInst>(R)->getSynchScope())) 953 return Res; 954 return cmpRangeMetadata(LI->getMetadata(LLVMContext::MD_range), 955 cast<LoadInst>(R)->getMetadata(LLVMContext::MD_range)); 956 } 957 if (const StoreInst *SI = dyn_cast<StoreInst>(L)) { 958 if (int Res = 959 cmpNumbers(SI->isVolatile(), cast<StoreInst>(R)->isVolatile())) 960 return Res; 961 if (int Res = 962 cmpNumbers(SI->getAlignment(), cast<StoreInst>(R)->getAlignment())) 963 return Res; 964 if (int Res = 965 cmpOrderings(SI->getOrdering(), cast<StoreInst>(R)->getOrdering())) 966 return Res; 967 return cmpNumbers(SI->getSynchScope(), cast<StoreInst>(R)->getSynchScope()); 968 } 969 if (const CmpInst *CI = dyn_cast<CmpInst>(L)) 970 return cmpNumbers(CI->getPredicate(), cast<CmpInst>(R)->getPredicate()); 971 if (const CallInst *CI = dyn_cast<CallInst>(L)) { 972 if (int Res = cmpNumbers(CI->getCallingConv(), 973 cast<CallInst>(R)->getCallingConv())) 974 return Res; 975 if (int Res = 976 cmpAttrs(CI->getAttributes(), cast<CallInst>(R)->getAttributes())) 977 return Res; 978 if (int Res = cmpOperandBundlesSchema(CI, R)) 979 return Res; 980 return cmpRangeMetadata( 981 CI->getMetadata(LLVMContext::MD_range), 982 cast<CallInst>(R)->getMetadata(LLVMContext::MD_range)); 983 } 984 if (const InvokeInst *II = dyn_cast<InvokeInst>(L)) { 985 if (int Res = cmpNumbers(II->getCallingConv(), 986 cast<InvokeInst>(R)->getCallingConv())) 987 return Res; 988 if (int Res = 989 cmpAttrs(II->getAttributes(), cast<InvokeInst>(R)->getAttributes())) 990 return Res; 991 if (int Res = cmpOperandBundlesSchema(II, R)) 992 return Res; 993 return cmpRangeMetadata( 994 II->getMetadata(LLVMContext::MD_range), 995 cast<InvokeInst>(R)->getMetadata(LLVMContext::MD_range)); 996 } 997 if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(L)) { 998 ArrayRef<unsigned> LIndices = IVI->getIndices(); 999 ArrayRef<unsigned> RIndices = cast<InsertValueInst>(R)->getIndices(); 1000 if (int Res = cmpNumbers(LIndices.size(), RIndices.size())) 1001 return Res; 1002 for (size_t i = 0, e = LIndices.size(); i != e; ++i) { 1003 if (int Res = cmpNumbers(LIndices[i], RIndices[i])) 1004 return Res; 1005 } 1006 return 0; 1007 } 1008 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(L)) { 1009 ArrayRef<unsigned> LIndices = EVI->getIndices(); 1010 ArrayRef<unsigned> RIndices = cast<ExtractValueInst>(R)->getIndices(); 1011 if (int Res = cmpNumbers(LIndices.size(), RIndices.size())) 1012 return Res; 1013 for (size_t i = 0, e = LIndices.size(); i != e; ++i) { 1014 if (int Res = cmpNumbers(LIndices[i], RIndices[i])) 1015 return Res; 1016 } 1017 } 1018 if (const FenceInst *FI = dyn_cast<FenceInst>(L)) { 1019 if (int Res = 1020 cmpOrderings(FI->getOrdering(), cast<FenceInst>(R)->getOrdering())) 1021 return Res; 1022 return cmpNumbers(FI->getSynchScope(), cast<FenceInst>(R)->getSynchScope()); 1023 } 1024 if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(L)) { 1025 if (int Res = cmpNumbers(CXI->isVolatile(), 1026 cast<AtomicCmpXchgInst>(R)->isVolatile())) 1027 return Res; 1028 if (int Res = cmpNumbers(CXI->isWeak(), 1029 cast<AtomicCmpXchgInst>(R)->isWeak())) 1030 return Res; 1031 if (int Res = 1032 cmpOrderings(CXI->getSuccessOrdering(), 1033 cast<AtomicCmpXchgInst>(R)->getSuccessOrdering())) 1034 return Res; 1035 if (int Res = 1036 cmpOrderings(CXI->getFailureOrdering(), 1037 cast<AtomicCmpXchgInst>(R)->getFailureOrdering())) 1038 return Res; 1039 return cmpNumbers(CXI->getSynchScope(), 1040 cast<AtomicCmpXchgInst>(R)->getSynchScope()); 1041 } 1042 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(L)) { 1043 if (int Res = cmpNumbers(RMWI->getOperation(), 1044 cast<AtomicRMWInst>(R)->getOperation())) 1045 return Res; 1046 if (int Res = cmpNumbers(RMWI->isVolatile(), 1047 cast<AtomicRMWInst>(R)->isVolatile())) 1048 return Res; 1049 if (int Res = cmpOrderings(RMWI->getOrdering(), 1050 cast<AtomicRMWInst>(R)->getOrdering())) 1051 return Res; 1052 return cmpNumbers(RMWI->getSynchScope(), 1053 cast<AtomicRMWInst>(R)->getSynchScope()); 1054 } 1055 return 0; 1056 } 1057 1058 // Determine whether two GEP operations perform the same underlying arithmetic. 1059 // Read method declaration comments for more details. 1060 int FunctionComparator::cmpGEPs(const GEPOperator *GEPL, 1061 const GEPOperator *GEPR) const { 1062 1063 unsigned int ASL = GEPL->getPointerAddressSpace(); 1064 unsigned int ASR = GEPR->getPointerAddressSpace(); 1065 1066 if (int Res = cmpNumbers(ASL, ASR)) 1067 return Res; 1068 1069 // When we have target data, we can reduce the GEP down to the value in bytes 1070 // added to the address. 1071 const DataLayout &DL = FnL->getParent()->getDataLayout(); 1072 unsigned BitWidth = DL.getPointerSizeInBits(ASL); 1073 APInt OffsetL(BitWidth, 0), OffsetR(BitWidth, 0); 1074 if (GEPL->accumulateConstantOffset(DL, OffsetL) && 1075 GEPR->accumulateConstantOffset(DL, OffsetR)) 1076 return cmpAPInts(OffsetL, OffsetR); 1077 if (int Res = cmpTypes(GEPL->getSourceElementType(), 1078 GEPR->getSourceElementType())) 1079 return Res; 1080 1081 if (int Res = cmpNumbers(GEPL->getNumOperands(), GEPR->getNumOperands())) 1082 return Res; 1083 1084 for (unsigned i = 0, e = GEPL->getNumOperands(); i != e; ++i) { 1085 if (int Res = cmpValues(GEPL->getOperand(i), GEPR->getOperand(i))) 1086 return Res; 1087 } 1088 1089 return 0; 1090 } 1091 1092 int FunctionComparator::cmpInlineAsm(const InlineAsm *L, 1093 const InlineAsm *R) const { 1094 // InlineAsm's are uniqued. If they are the same pointer, obviously they are 1095 // the same, otherwise compare the fields. 1096 if (L == R) 1097 return 0; 1098 if (int Res = cmpTypes(L->getFunctionType(), R->getFunctionType())) 1099 return Res; 1100 if (int Res = cmpMem(L->getAsmString(), R->getAsmString())) 1101 return Res; 1102 if (int Res = cmpMem(L->getConstraintString(), R->getConstraintString())) 1103 return Res; 1104 if (int Res = cmpNumbers(L->hasSideEffects(), R->hasSideEffects())) 1105 return Res; 1106 if (int Res = cmpNumbers(L->isAlignStack(), R->isAlignStack())) 1107 return Res; 1108 if (int Res = cmpNumbers(L->getDialect(), R->getDialect())) 1109 return Res; 1110 llvm_unreachable("InlineAsm blocks were not uniqued."); 1111 return 0; 1112 } 1113 1114 /// Compare two values used by the two functions under pair-wise comparison. If 1115 /// this is the first time the values are seen, they're added to the mapping so 1116 /// that we will detect mismatches on next use. 1117 /// See comments in declaration for more details. 1118 int FunctionComparator::cmpValues(const Value *L, const Value *R) const { 1119 // Catch self-reference case. 1120 if (L == FnL) { 1121 if (R == FnR) 1122 return 0; 1123 return -1; 1124 } 1125 if (R == FnR) { 1126 if (L == FnL) 1127 return 0; 1128 return 1; 1129 } 1130 1131 const Constant *ConstL = dyn_cast<Constant>(L); 1132 const Constant *ConstR = dyn_cast<Constant>(R); 1133 if (ConstL && ConstR) { 1134 if (L == R) 1135 return 0; 1136 return cmpConstants(ConstL, ConstR); 1137 } 1138 1139 if (ConstL) 1140 return 1; 1141 if (ConstR) 1142 return -1; 1143 1144 const InlineAsm *InlineAsmL = dyn_cast<InlineAsm>(L); 1145 const InlineAsm *InlineAsmR = dyn_cast<InlineAsm>(R); 1146 1147 if (InlineAsmL && InlineAsmR) 1148 return cmpInlineAsm(InlineAsmL, InlineAsmR); 1149 if (InlineAsmL) 1150 return 1; 1151 if (InlineAsmR) 1152 return -1; 1153 1154 auto LeftSN = sn_mapL.insert(std::make_pair(L, sn_mapL.size())), 1155 RightSN = sn_mapR.insert(std::make_pair(R, sn_mapR.size())); 1156 1157 return cmpNumbers(LeftSN.first->second, RightSN.first->second); 1158 } 1159 // Test whether two basic blocks have equivalent behaviour. 1160 int FunctionComparator::cmpBasicBlocks(const BasicBlock *BBL, 1161 const BasicBlock *BBR) const { 1162 BasicBlock::const_iterator InstL = BBL->begin(), InstLE = BBL->end(); 1163 BasicBlock::const_iterator InstR = BBR->begin(), InstRE = BBR->end(); 1164 1165 do { 1166 if (int Res = cmpValues(&*InstL, &*InstR)) 1167 return Res; 1168 1169 const GetElementPtrInst *GEPL = dyn_cast<GetElementPtrInst>(InstL); 1170 const GetElementPtrInst *GEPR = dyn_cast<GetElementPtrInst>(InstR); 1171 1172 if (GEPL && !GEPR) 1173 return 1; 1174 if (GEPR && !GEPL) 1175 return -1; 1176 1177 if (GEPL && GEPR) { 1178 if (int Res = 1179 cmpValues(GEPL->getPointerOperand(), GEPR->getPointerOperand())) 1180 return Res; 1181 if (int Res = cmpGEPs(GEPL, GEPR)) 1182 return Res; 1183 } else { 1184 if (int Res = cmpOperations(&*InstL, &*InstR)) 1185 return Res; 1186 assert(InstL->getNumOperands() == InstR->getNumOperands()); 1187 1188 for (unsigned i = 0, e = InstL->getNumOperands(); i != e; ++i) { 1189 Value *OpL = InstL->getOperand(i); 1190 Value *OpR = InstR->getOperand(i); 1191 if (int Res = cmpValues(OpL, OpR)) 1192 return Res; 1193 // cmpValues should ensure this is true. 1194 assert(cmpTypes(OpL->getType(), OpR->getType()) == 0); 1195 } 1196 } 1197 1198 ++InstL; 1199 ++InstR; 1200 } while (InstL != InstLE && InstR != InstRE); 1201 1202 if (InstL != InstLE && InstR == InstRE) 1203 return 1; 1204 if (InstL == InstLE && InstR != InstRE) 1205 return -1; 1206 return 0; 1207 } 1208 1209 // Test whether the two functions have equivalent behaviour. 1210 int FunctionComparator::compare() { 1211 sn_mapL.clear(); 1212 sn_mapR.clear(); 1213 1214 if (int Res = cmpAttrs(FnL->getAttributes(), FnR->getAttributes())) 1215 return Res; 1216 1217 if (int Res = cmpNumbers(FnL->hasGC(), FnR->hasGC())) 1218 return Res; 1219 1220 if (FnL->hasGC()) { 1221 if (int Res = cmpMem(FnL->getGC(), FnR->getGC())) 1222 return Res; 1223 } 1224 1225 if (int Res = cmpNumbers(FnL->hasSection(), FnR->hasSection())) 1226 return Res; 1227 1228 if (FnL->hasSection()) { 1229 if (int Res = cmpMem(FnL->getSection(), FnR->getSection())) 1230 return Res; 1231 } 1232 1233 if (int Res = cmpNumbers(FnL->isVarArg(), FnR->isVarArg())) 1234 return Res; 1235 1236 // TODO: if it's internal and only used in direct calls, we could handle this 1237 // case too. 1238 if (int Res = cmpNumbers(FnL->getCallingConv(), FnR->getCallingConv())) 1239 return Res; 1240 1241 if (int Res = cmpTypes(FnL->getFunctionType(), FnR->getFunctionType())) 1242 return Res; 1243 1244 assert(FnL->arg_size() == FnR->arg_size() && 1245 "Identically typed functions have different numbers of args!"); 1246 1247 // Visit the arguments so that they get enumerated in the order they're 1248 // passed in. 1249 for (Function::const_arg_iterator ArgLI = FnL->arg_begin(), 1250 ArgRI = FnR->arg_begin(), 1251 ArgLE = FnL->arg_end(); 1252 ArgLI != ArgLE; ++ArgLI, ++ArgRI) { 1253 if (cmpValues(&*ArgLI, &*ArgRI) != 0) 1254 llvm_unreachable("Arguments repeat!"); 1255 } 1256 1257 // We do a CFG-ordered walk since the actual ordering of the blocks in the 1258 // linked list is immaterial. Our walk starts at the entry block for both 1259 // functions, then takes each block from each terminator in order. As an 1260 // artifact, this also means that unreachable blocks are ignored. 1261 SmallVector<const BasicBlock *, 8> FnLBBs, FnRBBs; 1262 SmallPtrSet<const BasicBlock *, 32> VisitedBBs; // in terms of F1. 1263 1264 FnLBBs.push_back(&FnL->getEntryBlock()); 1265 FnRBBs.push_back(&FnR->getEntryBlock()); 1266 1267 VisitedBBs.insert(FnLBBs[0]); 1268 while (!FnLBBs.empty()) { 1269 const BasicBlock *BBL = FnLBBs.pop_back_val(); 1270 const BasicBlock *BBR = FnRBBs.pop_back_val(); 1271 1272 if (int Res = cmpValues(BBL, BBR)) 1273 return Res; 1274 1275 if (int Res = cmpBasicBlocks(BBL, BBR)) 1276 return Res; 1277 1278 const TerminatorInst *TermL = BBL->getTerminator(); 1279 const TerminatorInst *TermR = BBR->getTerminator(); 1280 1281 assert(TermL->getNumSuccessors() == TermR->getNumSuccessors()); 1282 for (unsigned i = 0, e = TermL->getNumSuccessors(); i != e; ++i) { 1283 if (!VisitedBBs.insert(TermL->getSuccessor(i)).second) 1284 continue; 1285 1286 FnLBBs.push_back(TermL->getSuccessor(i)); 1287 FnRBBs.push_back(TermR->getSuccessor(i)); 1288 } 1289 } 1290 return 0; 1291 } 1292 1293 namespace { 1294 // Accumulate the hash of a sequence of 64-bit integers. This is similar to a 1295 // hash of a sequence of 64bit ints, but the entire input does not need to be 1296 // available at once. This interface is necessary for functionHash because it 1297 // needs to accumulate the hash as the structure of the function is traversed 1298 // without saving these values to an intermediate buffer. This form of hashing 1299 // is not often needed, as usually the object to hash is just read from a 1300 // buffer. 1301 class HashAccumulator64 { 1302 uint64_t Hash; 1303 public: 1304 // Initialize to random constant, so the state isn't zero. 1305 HashAccumulator64() { Hash = 0x6acaa36bef8325c5ULL; } 1306 void add(uint64_t V) { 1307 Hash = llvm::hashing::detail::hash_16_bytes(Hash, V); 1308 } 1309 // No finishing is required, because the entire hash value is used. 1310 uint64_t getHash() { return Hash; } 1311 }; 1312 } // end anonymous namespace 1313 1314 // A function hash is calculated by considering only the number of arguments and 1315 // whether a function is varargs, the order of basic blocks (given by the 1316 // successors of each basic block in depth first order), and the order of 1317 // opcodes of each instruction within each of these basic blocks. This mirrors 1318 // the strategy compare() uses to compare functions by walking the BBs in depth 1319 // first order and comparing each instruction in sequence. Because this hash 1320 // does not look at the operands, it is insensitive to things such as the 1321 // target of calls and the constants used in the function, which makes it useful 1322 // when possibly merging functions which are the same modulo constants and call 1323 // targets. 1324 FunctionComparator::FunctionHash FunctionComparator::functionHash(Function &F) { 1325 HashAccumulator64 H; 1326 H.add(F.isVarArg()); 1327 H.add(F.arg_size()); 1328 1329 SmallVector<const BasicBlock *, 8> BBs; 1330 SmallSet<const BasicBlock *, 16> VisitedBBs; 1331 1332 // Walk the blocks in the same order as FunctionComparator::cmpBasicBlocks(), 1333 // accumulating the hash of the function "structure." (BB and opcode sequence) 1334 BBs.push_back(&F.getEntryBlock()); 1335 VisitedBBs.insert(BBs[0]); 1336 while (!BBs.empty()) { 1337 const BasicBlock *BB = BBs.pop_back_val(); 1338 // This random value acts as a block header, as otherwise the partition of 1339 // opcodes into BBs wouldn't affect the hash, only the order of the opcodes 1340 H.add(45798); 1341 for (auto &Inst : *BB) { 1342 H.add(Inst.getOpcode()); 1343 } 1344 const TerminatorInst *Term = BB->getTerminator(); 1345 for (unsigned i = 0, e = Term->getNumSuccessors(); i != e; ++i) { 1346 if (!VisitedBBs.insert(Term->getSuccessor(i)).second) 1347 continue; 1348 BBs.push_back(Term->getSuccessor(i)); 1349 } 1350 } 1351 return H.getHash(); 1352 } 1353 1354 1355 namespace { 1356 1357 /// MergeFunctions finds functions which will generate identical machine code, 1358 /// by considering all pointer types to be equivalent. Once identified, 1359 /// MergeFunctions will fold them by replacing a call to one to a call to a 1360 /// bitcast of the other. 1361 /// 1362 class MergeFunctions : public ModulePass { 1363 public: 1364 static char ID; 1365 MergeFunctions() 1366 : ModulePass(ID), FnTree(FunctionNodeCmp(&GlobalNumbers)), FNodesInTree(), 1367 HasGlobalAliases(false) { 1368 initializeMergeFunctionsPass(*PassRegistry::getPassRegistry()); 1369 } 1370 1371 bool runOnModule(Module &M) override; 1372 1373 private: 1374 // The function comparison operator is provided here so that FunctionNodes do 1375 // not need to become larger with another pointer. 1376 class FunctionNodeCmp { 1377 GlobalNumberState* GlobalNumbers; 1378 public: 1379 FunctionNodeCmp(GlobalNumberState* GN) : GlobalNumbers(GN) {} 1380 bool operator()(const FunctionNode &LHS, const FunctionNode &RHS) const { 1381 // Order first by hashes, then full function comparison. 1382 if (LHS.getHash() != RHS.getHash()) 1383 return LHS.getHash() < RHS.getHash(); 1384 FunctionComparator FCmp(LHS.getFunc(), RHS.getFunc(), GlobalNumbers); 1385 return FCmp.compare() == -1; 1386 } 1387 }; 1388 typedef std::set<FunctionNode, FunctionNodeCmp> FnTreeType; 1389 1390 GlobalNumberState GlobalNumbers; 1391 1392 /// A work queue of functions that may have been modified and should be 1393 /// analyzed again. 1394 std::vector<WeakVH> Deferred; 1395 1396 /// Checks the rules of order relation introduced among functions set. 1397 /// Returns true, if sanity check has been passed, and false if failed. 1398 bool doSanityCheck(std::vector<WeakVH> &Worklist); 1399 1400 /// Insert a ComparableFunction into the FnTree, or merge it away if it's 1401 /// equal to one that's already present. 1402 bool insert(Function *NewFunction); 1403 1404 /// Remove a Function from the FnTree and queue it up for a second sweep of 1405 /// analysis. 1406 void remove(Function *F); 1407 1408 /// Find the functions that use this Value and remove them from FnTree and 1409 /// queue the functions. 1410 void removeUsers(Value *V); 1411 1412 /// Replace all direct calls of Old with calls of New. Will bitcast New if 1413 /// necessary to make types match. 1414 void replaceDirectCallers(Function *Old, Function *New); 1415 1416 /// Merge two equivalent functions. Upon completion, G may be deleted, or may 1417 /// be converted into a thunk. In either case, it should never be visited 1418 /// again. 1419 void mergeTwoFunctions(Function *F, Function *G); 1420 1421 /// Replace G with a thunk or an alias to F. Deletes G. 1422 void writeThunkOrAlias(Function *F, Function *G); 1423 1424 /// Replace G with a simple tail call to bitcast(F). Also replace direct uses 1425 /// of G with bitcast(F). Deletes G. 1426 void writeThunk(Function *F, Function *G); 1427 1428 /// Replace G with an alias to F. Deletes G. 1429 void writeAlias(Function *F, Function *G); 1430 1431 /// Replace function F with function G in the function tree. 1432 void replaceFunctionInTree(const FunctionNode &FN, Function *G); 1433 1434 /// The set of all distinct functions. Use the insert() and remove() methods 1435 /// to modify it. The map allows efficient lookup and deferring of Functions. 1436 FnTreeType FnTree; 1437 // Map functions to the iterators of the FunctionNode which contains them 1438 // in the FnTree. This must be updated carefully whenever the FnTree is 1439 // modified, i.e. in insert(), remove(), and replaceFunctionInTree(), to avoid 1440 // dangling iterators into FnTree. The invariant that preserves this is that 1441 // there is exactly one mapping F -> FN for each FunctionNode FN in FnTree. 1442 ValueMap<Function*, FnTreeType::iterator> FNodesInTree; 1443 1444 /// Whether or not the target supports global aliases. 1445 bool HasGlobalAliases; 1446 }; 1447 1448 } // end anonymous namespace 1449 1450 char MergeFunctions::ID = 0; 1451 INITIALIZE_PASS(MergeFunctions, "mergefunc", "Merge Functions", false, false) 1452 1453 ModulePass *llvm::createMergeFunctionsPass() { 1454 return new MergeFunctions(); 1455 } 1456 1457 bool MergeFunctions::doSanityCheck(std::vector<WeakVH> &Worklist) { 1458 if (const unsigned Max = NumFunctionsForSanityCheck) { 1459 unsigned TripleNumber = 0; 1460 bool Valid = true; 1461 1462 dbgs() << "MERGEFUNC-SANITY: Started for first " << Max << " functions.\n"; 1463 1464 unsigned i = 0; 1465 for (std::vector<WeakVH>::iterator I = Worklist.begin(), E = Worklist.end(); 1466 I != E && i < Max; ++I, ++i) { 1467 unsigned j = i; 1468 for (std::vector<WeakVH>::iterator J = I; J != E && j < Max; ++J, ++j) { 1469 Function *F1 = cast<Function>(*I); 1470 Function *F2 = cast<Function>(*J); 1471 int Res1 = FunctionComparator(F1, F2, &GlobalNumbers).compare(); 1472 int Res2 = FunctionComparator(F2, F1, &GlobalNumbers).compare(); 1473 1474 // If F1 <= F2, then F2 >= F1, otherwise report failure. 1475 if (Res1 != -Res2) { 1476 dbgs() << "MERGEFUNC-SANITY: Non-symmetric; triple: " << TripleNumber 1477 << "\n"; 1478 F1->dump(); 1479 F2->dump(); 1480 Valid = false; 1481 } 1482 1483 if (Res1 == 0) 1484 continue; 1485 1486 unsigned k = j; 1487 for (std::vector<WeakVH>::iterator K = J; K != E && k < Max; 1488 ++k, ++K, ++TripleNumber) { 1489 if (K == J) 1490 continue; 1491 1492 Function *F3 = cast<Function>(*K); 1493 int Res3 = FunctionComparator(F1, F3, &GlobalNumbers).compare(); 1494 int Res4 = FunctionComparator(F2, F3, &GlobalNumbers).compare(); 1495 1496 bool Transitive = true; 1497 1498 if (Res1 != 0 && Res1 == Res4) { 1499 // F1 > F2, F2 > F3 => F1 > F3 1500 Transitive = Res3 == Res1; 1501 } else if (Res3 != 0 && Res3 == -Res4) { 1502 // F1 > F3, F3 > F2 => F1 > F2 1503 Transitive = Res3 == Res1; 1504 } else if (Res4 != 0 && -Res3 == Res4) { 1505 // F2 > F3, F3 > F1 => F2 > F1 1506 Transitive = Res4 == -Res1; 1507 } 1508 1509 if (!Transitive) { 1510 dbgs() << "MERGEFUNC-SANITY: Non-transitive; triple: " 1511 << TripleNumber << "\n"; 1512 dbgs() << "Res1, Res3, Res4: " << Res1 << ", " << Res3 << ", " 1513 << Res4 << "\n"; 1514 F1->dump(); 1515 F2->dump(); 1516 F3->dump(); 1517 Valid = false; 1518 } 1519 } 1520 } 1521 } 1522 1523 dbgs() << "MERGEFUNC-SANITY: " << (Valid ? "Passed." : "Failed.") << "\n"; 1524 return Valid; 1525 } 1526 return true; 1527 } 1528 1529 bool MergeFunctions::runOnModule(Module &M) { 1530 bool Changed = false; 1531 1532 // All functions in the module, ordered by hash. Functions with a unique 1533 // hash value are easily eliminated. 1534 std::vector<std::pair<FunctionComparator::FunctionHash, Function *>> 1535 HashedFuncs; 1536 for (Function &Func : M) { 1537 if (!Func.isDeclaration() && !Func.hasAvailableExternallyLinkage()) { 1538 HashedFuncs.push_back({FunctionComparator::functionHash(Func), &Func}); 1539 } 1540 } 1541 1542 std::stable_sort( 1543 HashedFuncs.begin(), HashedFuncs.end(), 1544 [](const std::pair<FunctionComparator::FunctionHash, Function *> &a, 1545 const std::pair<FunctionComparator::FunctionHash, Function *> &b) { 1546 return a.first < b.first; 1547 }); 1548 1549 auto S = HashedFuncs.begin(); 1550 for (auto I = HashedFuncs.begin(), IE = HashedFuncs.end(); I != IE; ++I) { 1551 // If the hash value matches the previous value or the next one, we must 1552 // consider merging it. Otherwise it is dropped and never considered again. 1553 if ((I != S && std::prev(I)->first == I->first) || 1554 (std::next(I) != IE && std::next(I)->first == I->first) ) { 1555 Deferred.push_back(WeakVH(I->second)); 1556 } 1557 } 1558 1559 do { 1560 std::vector<WeakVH> Worklist; 1561 Deferred.swap(Worklist); 1562 1563 DEBUG(doSanityCheck(Worklist)); 1564 1565 DEBUG(dbgs() << "size of module: " << M.size() << '\n'); 1566 DEBUG(dbgs() << "size of worklist: " << Worklist.size() << '\n'); 1567 1568 // Insert only strong functions and merge them. Strong function merging 1569 // always deletes one of them. 1570 for (std::vector<WeakVH>::iterator I = Worklist.begin(), 1571 E = Worklist.end(); I != E; ++I) { 1572 if (!*I) continue; 1573 Function *F = cast<Function>(*I); 1574 if (!F->isDeclaration() && !F->hasAvailableExternallyLinkage() && 1575 !F->isInterposable()) { 1576 Changed |= insert(F); 1577 } 1578 } 1579 1580 // Insert only weak functions and merge them. By doing these second we 1581 // create thunks to the strong function when possible. When two weak 1582 // functions are identical, we create a new strong function with two weak 1583 // weak thunks to it which are identical but not mergable. 1584 for (std::vector<WeakVH>::iterator I = Worklist.begin(), 1585 E = Worklist.end(); I != E; ++I) { 1586 if (!*I) continue; 1587 Function *F = cast<Function>(*I); 1588 if (!F->isDeclaration() && !F->hasAvailableExternallyLinkage() && 1589 F->isInterposable()) { 1590 Changed |= insert(F); 1591 } 1592 } 1593 DEBUG(dbgs() << "size of FnTree: " << FnTree.size() << '\n'); 1594 } while (!Deferred.empty()); 1595 1596 FnTree.clear(); 1597 GlobalNumbers.clear(); 1598 1599 return Changed; 1600 } 1601 1602 // Replace direct callers of Old with New. 1603 void MergeFunctions::replaceDirectCallers(Function *Old, Function *New) { 1604 Constant *BitcastNew = ConstantExpr::getBitCast(New, Old->getType()); 1605 for (auto UI = Old->use_begin(), UE = Old->use_end(); UI != UE;) { 1606 Use *U = &*UI; 1607 ++UI; 1608 CallSite CS(U->getUser()); 1609 if (CS && CS.isCallee(U)) { 1610 // Transfer the called function's attributes to the call site. Due to the 1611 // bitcast we will 'lose' ABI changing attributes because the 'called 1612 // function' is no longer a Function* but the bitcast. Code that looks up 1613 // the attributes from the called function will fail. 1614 1615 // FIXME: This is not actually true, at least not anymore. The callsite 1616 // will always have the same ABI affecting attributes as the callee, 1617 // because otherwise the original input has UB. Note that Old and New 1618 // always have matching ABI, so no attributes need to be changed. 1619 // Transferring other attributes may help other optimizations, but that 1620 // should be done uniformly and not in this ad-hoc way. 1621 auto &Context = New->getContext(); 1622 auto NewFuncAttrs = New->getAttributes(); 1623 auto CallSiteAttrs = CS.getAttributes(); 1624 1625 CallSiteAttrs = CallSiteAttrs.addAttributes( 1626 Context, AttributeSet::ReturnIndex, NewFuncAttrs.getRetAttributes()); 1627 1628 for (unsigned argIdx = 0; argIdx < CS.arg_size(); argIdx++) { 1629 AttributeSet Attrs = NewFuncAttrs.getParamAttributes(argIdx); 1630 if (Attrs.getNumSlots()) 1631 CallSiteAttrs = CallSiteAttrs.addAttributes(Context, argIdx, Attrs); 1632 } 1633 1634 CS.setAttributes(CallSiteAttrs); 1635 1636 remove(CS.getInstruction()->getParent()->getParent()); 1637 U->set(BitcastNew); 1638 } 1639 } 1640 } 1641 1642 // Replace G with an alias to F if possible, or else a thunk to F. Deletes G. 1643 void MergeFunctions::writeThunkOrAlias(Function *F, Function *G) { 1644 if (HasGlobalAliases && G->hasUnnamedAddr()) { 1645 if (G->hasExternalLinkage() || G->hasLocalLinkage() || 1646 G->hasWeakLinkage()) { 1647 writeAlias(F, G); 1648 return; 1649 } 1650 } 1651 1652 writeThunk(F, G); 1653 } 1654 1655 // Helper for writeThunk, 1656 // Selects proper bitcast operation, 1657 // but a bit simpler then CastInst::getCastOpcode. 1658 static Value *createCast(IRBuilder<> &Builder, Value *V, Type *DestTy) { 1659 Type *SrcTy = V->getType(); 1660 if (SrcTy->isStructTy()) { 1661 assert(DestTy->isStructTy()); 1662 assert(SrcTy->getStructNumElements() == DestTy->getStructNumElements()); 1663 Value *Result = UndefValue::get(DestTy); 1664 for (unsigned int I = 0, E = SrcTy->getStructNumElements(); I < E; ++I) { 1665 Value *Element = createCast( 1666 Builder, Builder.CreateExtractValue(V, makeArrayRef(I)), 1667 DestTy->getStructElementType(I)); 1668 1669 Result = 1670 Builder.CreateInsertValue(Result, Element, makeArrayRef(I)); 1671 } 1672 return Result; 1673 } 1674 assert(!DestTy->isStructTy()); 1675 if (SrcTy->isIntegerTy() && DestTy->isPointerTy()) 1676 return Builder.CreateIntToPtr(V, DestTy); 1677 else if (SrcTy->isPointerTy() && DestTy->isIntegerTy()) 1678 return Builder.CreatePtrToInt(V, DestTy); 1679 else 1680 return Builder.CreateBitCast(V, DestTy); 1681 } 1682 1683 // Replace G with a simple tail call to bitcast(F). Also replace direct uses 1684 // of G with bitcast(F). Deletes G. 1685 void MergeFunctions::writeThunk(Function *F, Function *G) { 1686 if (!G->isInterposable()) { 1687 // Redirect direct callers of G to F. 1688 replaceDirectCallers(G, F); 1689 } 1690 1691 // If G was internal then we may have replaced all uses of G with F. If so, 1692 // stop here and delete G. There's no need for a thunk. 1693 if (G->hasLocalLinkage() && G->use_empty()) { 1694 G->eraseFromParent(); 1695 return; 1696 } 1697 1698 Function *NewG = Function::Create(G->getFunctionType(), G->getLinkage(), "", 1699 G->getParent()); 1700 BasicBlock *BB = BasicBlock::Create(F->getContext(), "", NewG); 1701 IRBuilder<> Builder(BB); 1702 1703 SmallVector<Value *, 16> Args; 1704 unsigned i = 0; 1705 FunctionType *FFTy = F->getFunctionType(); 1706 for (Argument & AI : NewG->args()) { 1707 Args.push_back(createCast(Builder, &AI, FFTy->getParamType(i))); 1708 ++i; 1709 } 1710 1711 CallInst *CI = Builder.CreateCall(F, Args); 1712 CI->setTailCall(); 1713 CI->setCallingConv(F->getCallingConv()); 1714 CI->setAttributes(F->getAttributes()); 1715 if (NewG->getReturnType()->isVoidTy()) { 1716 Builder.CreateRetVoid(); 1717 } else { 1718 Builder.CreateRet(createCast(Builder, CI, NewG->getReturnType())); 1719 } 1720 1721 NewG->copyAttributesFrom(G); 1722 NewG->takeName(G); 1723 removeUsers(G); 1724 G->replaceAllUsesWith(NewG); 1725 G->eraseFromParent(); 1726 1727 DEBUG(dbgs() << "writeThunk: " << NewG->getName() << '\n'); 1728 ++NumThunksWritten; 1729 } 1730 1731 // Replace G with an alias to F and delete G. 1732 void MergeFunctions::writeAlias(Function *F, Function *G) { 1733 auto *GA = GlobalAlias::create(G->getLinkage(), "", F); 1734 F->setAlignment(std::max(F->getAlignment(), G->getAlignment())); 1735 GA->takeName(G); 1736 GA->setVisibility(G->getVisibility()); 1737 removeUsers(G); 1738 G->replaceAllUsesWith(GA); 1739 G->eraseFromParent(); 1740 1741 DEBUG(dbgs() << "writeAlias: " << GA->getName() << '\n'); 1742 ++NumAliasesWritten; 1743 } 1744 1745 // Merge two equivalent functions. Upon completion, Function G is deleted. 1746 void MergeFunctions::mergeTwoFunctions(Function *F, Function *G) { 1747 if (F->isInterposable()) { 1748 assert(G->isInterposable()); 1749 1750 // Make them both thunks to the same internal function. 1751 Function *H = Function::Create(F->getFunctionType(), F->getLinkage(), "", 1752 F->getParent()); 1753 H->copyAttributesFrom(F); 1754 H->takeName(F); 1755 removeUsers(F); 1756 F->replaceAllUsesWith(H); 1757 1758 unsigned MaxAlignment = std::max(G->getAlignment(), H->getAlignment()); 1759 1760 if (HasGlobalAliases) { 1761 writeAlias(F, G); 1762 writeAlias(F, H); 1763 } else { 1764 writeThunk(F, G); 1765 writeThunk(F, H); 1766 } 1767 1768 F->setAlignment(MaxAlignment); 1769 F->setLinkage(GlobalValue::PrivateLinkage); 1770 ++NumDoubleWeak; 1771 } else { 1772 writeThunkOrAlias(F, G); 1773 } 1774 1775 ++NumFunctionsMerged; 1776 } 1777 1778 /// Replace function F by function G. 1779 void MergeFunctions::replaceFunctionInTree(const FunctionNode &FN, 1780 Function *G) { 1781 Function *F = FN.getFunc(); 1782 assert(FunctionComparator(F, G, &GlobalNumbers).compare() == 0 && 1783 "The two functions must be equal"); 1784 1785 auto I = FNodesInTree.find(F); 1786 assert(I != FNodesInTree.end() && "F should be in FNodesInTree"); 1787 assert(FNodesInTree.count(G) == 0 && "FNodesInTree should not contain G"); 1788 1789 FnTreeType::iterator IterToFNInFnTree = I->second; 1790 assert(&(*IterToFNInFnTree) == &FN && "F should map to FN in FNodesInTree."); 1791 // Remove F -> FN and insert G -> FN 1792 FNodesInTree.erase(I); 1793 FNodesInTree.insert({G, IterToFNInFnTree}); 1794 // Replace F with G in FN, which is stored inside the FnTree. 1795 FN.replaceBy(G); 1796 } 1797 1798 // Insert a ComparableFunction into the FnTree, or merge it away if equal to one 1799 // that was already inserted. 1800 bool MergeFunctions::insert(Function *NewFunction) { 1801 std::pair<FnTreeType::iterator, bool> Result = 1802 FnTree.insert(FunctionNode(NewFunction)); 1803 1804 if (Result.second) { 1805 assert(FNodesInTree.count(NewFunction) == 0); 1806 FNodesInTree.insert({NewFunction, Result.first}); 1807 DEBUG(dbgs() << "Inserting as unique: " << NewFunction->getName() << '\n'); 1808 return false; 1809 } 1810 1811 const FunctionNode &OldF = *Result.first; 1812 1813 // Don't merge tiny functions, since it can just end up making the function 1814 // larger. 1815 // FIXME: Should still merge them if they are unnamed_addr and produce an 1816 // alias. 1817 if (NewFunction->size() == 1) { 1818 if (NewFunction->front().size() <= 2) { 1819 DEBUG(dbgs() << NewFunction->getName() 1820 << " is to small to bother merging\n"); 1821 return false; 1822 } 1823 } 1824 1825 // Impose a total order (by name) on the replacement of functions. This is 1826 // important when operating on more than one module independently to prevent 1827 // cycles of thunks calling each other when the modules are linked together. 1828 // 1829 // When one function is weak and the other is strong there is an order imposed 1830 // already. We process strong functions before weak functions. 1831 if ((OldF.getFunc()->isInterposable() && NewFunction->isInterposable()) || 1832 (!OldF.getFunc()->isInterposable() && !NewFunction->isInterposable())) 1833 if (OldF.getFunc()->getName() > NewFunction->getName()) { 1834 // Swap the two functions. 1835 Function *F = OldF.getFunc(); 1836 replaceFunctionInTree(*Result.first, NewFunction); 1837 NewFunction = F; 1838 assert(OldF.getFunc() != F && "Must have swapped the functions."); 1839 } 1840 1841 // Never thunk a strong function to a weak function. 1842 assert(!OldF.getFunc()->isInterposable() || NewFunction->isInterposable()); 1843 1844 DEBUG(dbgs() << " " << OldF.getFunc()->getName() 1845 << " == " << NewFunction->getName() << '\n'); 1846 1847 Function *DeleteF = NewFunction; 1848 mergeTwoFunctions(OldF.getFunc(), DeleteF); 1849 return true; 1850 } 1851 1852 // Remove a function from FnTree. If it was already in FnTree, add 1853 // it to Deferred so that we'll look at it in the next round. 1854 void MergeFunctions::remove(Function *F) { 1855 auto I = FNodesInTree.find(F); 1856 if (I != FNodesInTree.end()) { 1857 DEBUG(dbgs() << "Deferred " << F->getName()<< ".\n"); 1858 FnTree.erase(I->second); 1859 // I->second has been invalidated, remove it from the FNodesInTree map to 1860 // preserve the invariant. 1861 FNodesInTree.erase(I); 1862 Deferred.emplace_back(F); 1863 } 1864 } 1865 1866 // For each instruction used by the value, remove() the function that contains 1867 // the instruction. This should happen right before a call to RAUW. 1868 void MergeFunctions::removeUsers(Value *V) { 1869 std::vector<Value *> Worklist; 1870 Worklist.push_back(V); 1871 SmallSet<Value*, 8> Visited; 1872 Visited.insert(V); 1873 while (!Worklist.empty()) { 1874 Value *V = Worklist.back(); 1875 Worklist.pop_back(); 1876 1877 for (User *U : V->users()) { 1878 if (Instruction *I = dyn_cast<Instruction>(U)) { 1879 remove(I->getParent()->getParent()); 1880 } else if (isa<GlobalValue>(U)) { 1881 // do nothing 1882 } else if (Constant *C = dyn_cast<Constant>(U)) { 1883 for (User *UU : C->users()) { 1884 if (!Visited.insert(UU).second) 1885 Worklist.push_back(UU); 1886 } 1887 } 1888 } 1889 } 1890 } 1891