1 //===- Inliner.cpp - Code common to all inliners --------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the mechanics required to implement inlining without 10 // missing any calls and updating the call graph. The decisions of which calls 11 // are profitable to inline are implemented elsewhere. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/IPO/Inliner.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/None.h" 18 #include "llvm/ADT/Optional.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/Analysis/AliasAnalysis.h" 26 #include "llvm/Analysis/AssumptionCache.h" 27 #include "llvm/Analysis/BasicAliasAnalysis.h" 28 #include "llvm/Analysis/BlockFrequencyInfo.h" 29 #include "llvm/Analysis/CGSCCPassManager.h" 30 #include "llvm/Analysis/CallGraph.h" 31 #include "llvm/Analysis/InlineCost.h" 32 #include "llvm/Analysis/LazyCallGraph.h" 33 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 34 #include "llvm/Analysis/ProfileSummaryInfo.h" 35 #include "llvm/Analysis/TargetLibraryInfo.h" 36 #include "llvm/Analysis/TargetTransformInfo.h" 37 #include "llvm/Transforms/Utils/Local.h" 38 #include "llvm/Transforms/Utils/CallPromotionUtils.h" 39 #include "llvm/IR/Attributes.h" 40 #include "llvm/IR/BasicBlock.h" 41 #include "llvm/IR/DataLayout.h" 42 #include "llvm/IR/DebugLoc.h" 43 #include "llvm/IR/DerivedTypes.h" 44 #include "llvm/IR/DiagnosticInfo.h" 45 #include "llvm/IR/Function.h" 46 #include "llvm/IR/InstIterator.h" 47 #include "llvm/IR/Instruction.h" 48 #include "llvm/IR/Instructions.h" 49 #include "llvm/IR/IntrinsicInst.h" 50 #include "llvm/IR/Metadata.h" 51 #include "llvm/IR/Module.h" 52 #include "llvm/IR/PassManager.h" 53 #include "llvm/IR/User.h" 54 #include "llvm/IR/Value.h" 55 #include "llvm/Pass.h" 56 #include "llvm/Support/Casting.h" 57 #include "llvm/Support/CommandLine.h" 58 #include "llvm/Support/Debug.h" 59 #include "llvm/Support/raw_ostream.h" 60 #include "llvm/Transforms/Utils/Cloning.h" 61 #include "llvm/Transforms/Utils/ImportedFunctionsInliningStatistics.h" 62 #include "llvm/Transforms/Utils/ModuleUtils.h" 63 #include <algorithm> 64 #include <cassert> 65 #include <functional> 66 #include <sstream> 67 #include <tuple> 68 #include <utility> 69 #include <vector> 70 71 using namespace llvm; 72 73 #define DEBUG_TYPE "inline" 74 75 STATISTIC(NumInlined, "Number of functions inlined"); 76 STATISTIC(NumCallsDeleted, "Number of call sites deleted, not inlined"); 77 STATISTIC(NumDeleted, "Number of functions deleted because all callers found"); 78 STATISTIC(NumMergedAllocas, "Number of allocas merged together"); 79 80 // This weirdly named statistic tracks the number of times that, when attempting 81 // to inline a function A into B, we analyze the callers of B in order to see 82 // if those would be more profitable and blocked inline steps. 83 STATISTIC(NumCallerCallersAnalyzed, "Number of caller-callers analyzed"); 84 85 /// Flag to disable manual alloca merging. 86 /// 87 /// Merging of allocas was originally done as a stack-size saving technique 88 /// prior to LLVM's code generator having support for stack coloring based on 89 /// lifetime markers. It is now in the process of being removed. To experiment 90 /// with disabling it and relying fully on lifetime marker based stack 91 /// coloring, you can pass this flag to LLVM. 92 static cl::opt<bool> 93 DisableInlinedAllocaMerging("disable-inlined-alloca-merging", 94 cl::init(false), cl::Hidden); 95 96 namespace { 97 98 enum class InlinerFunctionImportStatsOpts { 99 No = 0, 100 Basic = 1, 101 Verbose = 2, 102 }; 103 104 } // end anonymous namespace 105 106 static cl::opt<InlinerFunctionImportStatsOpts> InlinerFunctionImportStats( 107 "inliner-function-import-stats", 108 cl::init(InlinerFunctionImportStatsOpts::No), 109 cl::values(clEnumValN(InlinerFunctionImportStatsOpts::Basic, "basic", 110 "basic statistics"), 111 clEnumValN(InlinerFunctionImportStatsOpts::Verbose, "verbose", 112 "printing of statistics for each inlined function")), 113 cl::Hidden, cl::desc("Enable inliner stats for imported functions")); 114 115 /// Flag to add inline messages as callsite attributes 'inline-remark'. 116 static cl::opt<bool> 117 InlineRemarkAttribute("inline-remark-attribute", cl::init(false), 118 cl::Hidden, 119 cl::desc("Enable adding inline-remark attribute to" 120 " callsites processed by inliner but decided" 121 " to be not inlined")); 122 123 LegacyInlinerBase::LegacyInlinerBase(char &ID) : CallGraphSCCPass(ID) {} 124 125 LegacyInlinerBase::LegacyInlinerBase(char &ID, bool InsertLifetime) 126 : CallGraphSCCPass(ID), InsertLifetime(InsertLifetime) {} 127 128 /// For this class, we declare that we require and preserve the call graph. 129 /// If the derived class implements this method, it should 130 /// always explicitly call the implementation here. 131 void LegacyInlinerBase::getAnalysisUsage(AnalysisUsage &AU) const { 132 AU.addRequired<AssumptionCacheTracker>(); 133 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 134 AU.addRequired<TargetLibraryInfoWrapperPass>(); 135 getAAResultsAnalysisUsage(AU); 136 CallGraphSCCPass::getAnalysisUsage(AU); 137 } 138 139 using InlinedArrayAllocasTy = DenseMap<ArrayType *, std::vector<AllocaInst *>>; 140 141 /// Look at all of the allocas that we inlined through this call site. If we 142 /// have already inlined other allocas through other calls into this function, 143 /// then we know that they have disjoint lifetimes and that we can merge them. 144 /// 145 /// There are many heuristics possible for merging these allocas, and the 146 /// different options have different tradeoffs. One thing that we *really* 147 /// don't want to hurt is SRoA: once inlining happens, often allocas are no 148 /// longer address taken and so they can be promoted. 149 /// 150 /// Our "solution" for that is to only merge allocas whose outermost type is an 151 /// array type. These are usually not promoted because someone is using a 152 /// variable index into them. These are also often the most important ones to 153 /// merge. 154 /// 155 /// A better solution would be to have real memory lifetime markers in the IR 156 /// and not have the inliner do any merging of allocas at all. This would 157 /// allow the backend to do proper stack slot coloring of all allocas that 158 /// *actually make it to the backend*, which is really what we want. 159 /// 160 /// Because we don't have this information, we do this simple and useful hack. 161 static void mergeInlinedArrayAllocas( 162 Function *Caller, InlineFunctionInfo &IFI, 163 InlinedArrayAllocasTy &InlinedArrayAllocas, int InlineHistory) { 164 SmallPtrSet<AllocaInst *, 16> UsedAllocas; 165 166 // When processing our SCC, check to see if CS was inlined from some other 167 // call site. For example, if we're processing "A" in this code: 168 // A() { B() } 169 // B() { x = alloca ... C() } 170 // C() { y = alloca ... } 171 // Assume that C was not inlined into B initially, and so we're processing A 172 // and decide to inline B into A. Doing this makes an alloca available for 173 // reuse and makes a callsite (C) available for inlining. When we process 174 // the C call site we don't want to do any alloca merging between X and Y 175 // because their scopes are not disjoint. We could make this smarter by 176 // keeping track of the inline history for each alloca in the 177 // InlinedArrayAllocas but this isn't likely to be a significant win. 178 if (InlineHistory != -1) // Only do merging for top-level call sites in SCC. 179 return; 180 181 // Loop over all the allocas we have so far and see if they can be merged with 182 // a previously inlined alloca. If not, remember that we had it. 183 for (unsigned AllocaNo = 0, E = IFI.StaticAllocas.size(); AllocaNo != E; 184 ++AllocaNo) { 185 AllocaInst *AI = IFI.StaticAllocas[AllocaNo]; 186 187 // Don't bother trying to merge array allocations (they will usually be 188 // canonicalized to be an allocation *of* an array), or allocations whose 189 // type is not itself an array (because we're afraid of pessimizing SRoA). 190 ArrayType *ATy = dyn_cast<ArrayType>(AI->getAllocatedType()); 191 if (!ATy || AI->isArrayAllocation()) 192 continue; 193 194 // Get the list of all available allocas for this array type. 195 std::vector<AllocaInst *> &AllocasForType = InlinedArrayAllocas[ATy]; 196 197 // Loop over the allocas in AllocasForType to see if we can reuse one. Note 198 // that we have to be careful not to reuse the same "available" alloca for 199 // multiple different allocas that we just inlined, we use the 'UsedAllocas' 200 // set to keep track of which "available" allocas are being used by this 201 // function. Also, AllocasForType can be empty of course! 202 bool MergedAwayAlloca = false; 203 for (AllocaInst *AvailableAlloca : AllocasForType) { 204 unsigned Align1 = AI->getAlignment(), 205 Align2 = AvailableAlloca->getAlignment(); 206 207 // The available alloca has to be in the right function, not in some other 208 // function in this SCC. 209 if (AvailableAlloca->getParent() != AI->getParent()) 210 continue; 211 212 // If the inlined function already uses this alloca then we can't reuse 213 // it. 214 if (!UsedAllocas.insert(AvailableAlloca).second) 215 continue; 216 217 // Otherwise, we *can* reuse it, RAUW AI into AvailableAlloca and declare 218 // success! 219 LLVM_DEBUG(dbgs() << " ***MERGED ALLOCA: " << *AI 220 << "\n\t\tINTO: " << *AvailableAlloca << '\n'); 221 222 // Move affected dbg.declare calls immediately after the new alloca to 223 // avoid the situation when a dbg.declare precedes its alloca. 224 if (auto *L = LocalAsMetadata::getIfExists(AI)) 225 if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L)) 226 for (User *U : MDV->users()) 227 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(U)) 228 DDI->moveBefore(AvailableAlloca->getNextNode()); 229 230 AI->replaceAllUsesWith(AvailableAlloca); 231 232 if (Align1 != Align2) { 233 if (!Align1 || !Align2) { 234 const DataLayout &DL = Caller->getParent()->getDataLayout(); 235 unsigned TypeAlign = DL.getABITypeAlignment(AI->getAllocatedType()); 236 237 Align1 = Align1 ? Align1 : TypeAlign; 238 Align2 = Align2 ? Align2 : TypeAlign; 239 } 240 241 if (Align1 > Align2) 242 AvailableAlloca->setAlignment(MaybeAlign(AI->getAlignment())); 243 } 244 245 AI->eraseFromParent(); 246 MergedAwayAlloca = true; 247 ++NumMergedAllocas; 248 IFI.StaticAllocas[AllocaNo] = nullptr; 249 break; 250 } 251 252 // If we already nuked the alloca, we're done with it. 253 if (MergedAwayAlloca) 254 continue; 255 256 // If we were unable to merge away the alloca either because there are no 257 // allocas of the right type available or because we reused them all 258 // already, remember that this alloca came from an inlined function and mark 259 // it used so we don't reuse it for other allocas from this inline 260 // operation. 261 AllocasForType.push_back(AI); 262 UsedAllocas.insert(AI); 263 } 264 } 265 266 /// If it is possible to inline the specified call site, 267 /// do so and update the CallGraph for this operation. 268 /// 269 /// This function also does some basic book-keeping to update the IR. The 270 /// InlinedArrayAllocas map keeps track of any allocas that are already 271 /// available from other functions inlined into the caller. If we are able to 272 /// inline this call site we attempt to reuse already available allocas or add 273 /// any new allocas to the set if not possible. 274 static InlineResult inlineCallIfPossible( 275 CallBase &CS, InlineFunctionInfo &IFI, 276 InlinedArrayAllocasTy &InlinedArrayAllocas, int InlineHistory, 277 bool InsertLifetime, function_ref<AAResults &(Function &)> &AARGetter, 278 ImportedFunctionsInliningStatistics &ImportedFunctionsStats) { 279 Function *Callee = CS.getCalledFunction(); 280 Function *Caller = CS.getCaller(); 281 282 AAResults &AAR = AARGetter(*Callee); 283 284 // Try to inline the function. Get the list of static allocas that were 285 // inlined. 286 InlineResult IR = InlineFunction(CS, IFI, &AAR, InsertLifetime); 287 if (!IR.isSuccess()) 288 return IR; 289 290 if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No) 291 ImportedFunctionsStats.recordInline(*Caller, *Callee); 292 293 AttributeFuncs::mergeAttributesForInlining(*Caller, *Callee); 294 295 if (!DisableInlinedAllocaMerging) 296 mergeInlinedArrayAllocas(Caller, IFI, InlinedArrayAllocas, InlineHistory); 297 298 return IR; // success 299 } 300 301 /// Return true if inlining of CS can block the caller from being 302 /// inlined which is proved to be more beneficial. \p IC is the 303 /// estimated inline cost associated with callsite \p CS. 304 /// \p TotalSecondaryCost will be set to the estimated cost of inlining the 305 /// caller if \p CS is suppressed for inlining. 306 static bool 307 shouldBeDeferred(Function *Caller, InlineCost IC, int &TotalSecondaryCost, 308 function_ref<InlineCost(CallBase &CS)> GetInlineCost) { 309 // For now we only handle local or inline functions. 310 if (!Caller->hasLocalLinkage() && !Caller->hasLinkOnceODRLinkage()) 311 return false; 312 // If the cost of inlining CS is non-positive, it is not going to prevent the 313 // caller from being inlined into its callers and hence we don't need to 314 // defer. 315 if (IC.getCost() <= 0) 316 return false; 317 // Try to detect the case where the current inlining candidate caller (call 318 // it B) is a static or linkonce-ODR function and is an inlining candidate 319 // elsewhere, and the current candidate callee (call it C) is large enough 320 // that inlining it into B would make B too big to inline later. In these 321 // circumstances it may be best not to inline C into B, but to inline B into 322 // its callers. 323 // 324 // This only applies to static and linkonce-ODR functions because those are 325 // expected to be available for inlining in the translation units where they 326 // are used. Thus we will always have the opportunity to make local inlining 327 // decisions. Importantly the linkonce-ODR linkage covers inline functions 328 // and templates in C++. 329 // 330 // FIXME: All of this logic should be sunk into getInlineCost. It relies on 331 // the internal implementation of the inline cost metrics rather than 332 // treating them as truly abstract units etc. 333 TotalSecondaryCost = 0; 334 // The candidate cost to be imposed upon the current function. 335 int CandidateCost = IC.getCost() - 1; 336 // If the caller has local linkage and can be inlined to all its callers, we 337 // can apply a huge negative bonus to TotalSecondaryCost. 338 bool ApplyLastCallBonus = Caller->hasLocalLinkage() && !Caller->hasOneUse(); 339 // This bool tracks what happens if we DO inline C into B. 340 bool InliningPreventsSomeOuterInline = false; 341 for (User *U : Caller->users()) { 342 // If the caller will not be removed (either because it does not have a 343 // local linkage or because the LastCallToStaticBonus has been already 344 // applied), then we can exit the loop early. 345 if (!ApplyLastCallBonus && TotalSecondaryCost >= IC.getCost()) 346 return false; 347 CallBase *CS2 = dyn_cast<CallBase>(U); 348 349 // If this isn't a call to Caller (it could be some other sort 350 // of reference) skip it. Such references will prevent the caller 351 // from being removed. 352 if (!CS2 || CS2->getCalledFunction() != Caller) { 353 ApplyLastCallBonus = false; 354 continue; 355 } 356 357 InlineCost IC2 = GetInlineCost(*CS2); 358 ++NumCallerCallersAnalyzed; 359 if (!IC2) { 360 ApplyLastCallBonus = false; 361 continue; 362 } 363 if (IC2.isAlways()) 364 continue; 365 366 // See if inlining of the original callsite would erase the cost delta of 367 // this callsite. We subtract off the penalty for the call instruction, 368 // which we would be deleting. 369 if (IC2.getCostDelta() <= CandidateCost) { 370 InliningPreventsSomeOuterInline = true; 371 TotalSecondaryCost += IC2.getCost(); 372 } 373 } 374 // If all outer calls to Caller would get inlined, the cost for the last 375 // one is set very low by getInlineCost, in anticipation that Caller will 376 // be removed entirely. We did not account for this above unless there 377 // is only one caller of Caller. 378 if (ApplyLastCallBonus) 379 TotalSecondaryCost -= InlineConstants::LastCallToStaticBonus; 380 381 return InliningPreventsSomeOuterInline && TotalSecondaryCost < IC.getCost(); 382 } 383 384 static std::basic_ostream<char> &operator<<(std::basic_ostream<char> &R, 385 const ore::NV &Arg) { 386 return R << Arg.Val; 387 } 388 389 template <class RemarkT> 390 RemarkT &operator<<(RemarkT &&R, const InlineCost &IC) { 391 using namespace ore; 392 if (IC.isAlways()) { 393 R << "(cost=always)"; 394 } else if (IC.isNever()) { 395 R << "(cost=never)"; 396 } else { 397 R << "(cost=" << ore::NV("Cost", IC.getCost()) 398 << ", threshold=" << ore::NV("Threshold", IC.getThreshold()) << ")"; 399 } 400 if (const char *Reason = IC.getReason()) 401 R << ": " << ore::NV("Reason", Reason); 402 return R; 403 } 404 405 static std::string inlineCostStr(const InlineCost &IC) { 406 std::stringstream Remark; 407 Remark << IC; 408 return Remark.str(); 409 } 410 411 /// Return the cost only if the inliner should attempt to inline at the given 412 /// CallSite. If we return the cost, we will emit an optimisation remark later 413 /// using that cost, so we won't do so from this function. 414 static Optional<InlineCost> 415 shouldInline(CallBase &CS, function_ref<InlineCost(CallBase &CS)> GetInlineCost, 416 OptimizationRemarkEmitter &ORE) { 417 using namespace ore; 418 419 InlineCost IC = GetInlineCost(CS); 420 Instruction *Call = &CS; 421 Function *Callee = CS.getCalledFunction(); 422 Function *Caller = CS.getCaller(); 423 424 if (IC.isAlways()) { 425 LLVM_DEBUG(dbgs() << " Inlining " << inlineCostStr(IC) 426 << ", Call: " << CS << "\n"); 427 return IC; 428 } 429 430 if (IC.isNever()) { 431 LLVM_DEBUG(dbgs() << " NOT Inlining " << inlineCostStr(IC) 432 << ", Call: " << CS << "\n"); 433 ORE.emit([&]() { 434 return OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline", Call) 435 << NV("Callee", Callee) << " not inlined into " 436 << NV("Caller", Caller) << " because it should never be inlined " 437 << IC; 438 }); 439 return IC; 440 } 441 442 if (!IC) { 443 LLVM_DEBUG(dbgs() << " NOT Inlining " << inlineCostStr(IC) 444 << ", Call: " << CS << "\n"); 445 ORE.emit([&]() { 446 return OptimizationRemarkMissed(DEBUG_TYPE, "TooCostly", Call) 447 << NV("Callee", Callee) << " not inlined into " 448 << NV("Caller", Caller) << " because too costly to inline " << IC; 449 }); 450 return IC; 451 } 452 453 int TotalSecondaryCost = 0; 454 if (shouldBeDeferred(Caller, IC, TotalSecondaryCost, GetInlineCost)) { 455 LLVM_DEBUG(dbgs() << " NOT Inlining: " << CS 456 << " Cost = " << IC.getCost() 457 << ", outer Cost = " << TotalSecondaryCost << '\n'); 458 ORE.emit([&]() { 459 return OptimizationRemarkMissed(DEBUG_TYPE, "IncreaseCostInOtherContexts", 460 Call) 461 << "Not inlining. Cost of inlining " << NV("Callee", Callee) 462 << " increases the cost of inlining " << NV("Caller", Caller) 463 << " in other contexts"; 464 }); 465 466 // IC does not bool() to false, so get an InlineCost that will. 467 // This will not be inspected to make an error message. 468 return None; 469 } 470 471 LLVM_DEBUG(dbgs() << " Inlining " << inlineCostStr(IC) << ", Call: " << CS 472 << '\n'); 473 return IC; 474 } 475 476 /// Return true if the specified inline history ID 477 /// indicates an inline history that includes the specified function. 478 static bool inlineHistoryIncludes( 479 Function *F, int InlineHistoryID, 480 const SmallVectorImpl<std::pair<Function *, int>> &InlineHistory) { 481 while (InlineHistoryID != -1) { 482 assert(unsigned(InlineHistoryID) < InlineHistory.size() && 483 "Invalid inline history ID"); 484 if (InlineHistory[InlineHistoryID].first == F) 485 return true; 486 InlineHistoryID = InlineHistory[InlineHistoryID].second; 487 } 488 return false; 489 } 490 491 bool LegacyInlinerBase::doInitialization(CallGraph &CG) { 492 if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No) 493 ImportedFunctionsStats.setModuleInfo(CG.getModule()); 494 return false; // No changes to CallGraph. 495 } 496 497 bool LegacyInlinerBase::runOnSCC(CallGraphSCC &SCC) { 498 if (skipSCC(SCC)) 499 return false; 500 return inlineCalls(SCC); 501 } 502 503 static void emitInlinedInto(OptimizationRemarkEmitter &ORE, DebugLoc &DLoc, 504 const BasicBlock *Block, const Function &Callee, 505 const Function &Caller, const InlineCost &IC) { 506 ORE.emit([&]() { 507 bool AlwaysInline = IC.isAlways(); 508 StringRef RemarkName = AlwaysInline ? "AlwaysInline" : "Inlined"; 509 return OptimizationRemark(DEBUG_TYPE, RemarkName, DLoc, Block) 510 << ore::NV("Callee", &Callee) << " inlined into " 511 << ore::NV("Caller", &Caller) << " with " << IC; 512 }); 513 } 514 515 static void setInlineRemark(CallBase &CS, StringRef Message) { 516 if (!InlineRemarkAttribute) 517 return; 518 519 Attribute Attr = Attribute::get(CS.getContext(), "inline-remark", Message); 520 CS.addAttribute(AttributeList::FunctionIndex, Attr); 521 } 522 523 static bool 524 inlineCallsImpl(CallGraphSCC &SCC, CallGraph &CG, 525 std::function<AssumptionCache &(Function &)> GetAssumptionCache, 526 ProfileSummaryInfo *PSI, 527 std::function<const TargetLibraryInfo &(Function &)> GetTLI, 528 bool InsertLifetime, 529 function_ref<InlineCost(CallBase &CS)> GetInlineCost, 530 function_ref<AAResults &(Function &)> AARGetter, 531 ImportedFunctionsInliningStatistics &ImportedFunctionsStats) { 532 SmallPtrSet<Function *, 8> SCCFunctions; 533 LLVM_DEBUG(dbgs() << "Inliner visiting SCC:"); 534 for (CallGraphNode *Node : SCC) { 535 Function *F = Node->getFunction(); 536 if (F) 537 SCCFunctions.insert(F); 538 LLVM_DEBUG(dbgs() << " " << (F ? F->getName() : "INDIRECTNODE")); 539 } 540 541 // Scan through and identify all call sites ahead of time so that we only 542 // inline call sites in the original functions, not call sites that result 543 // from inlining other functions. 544 SmallVector<std::pair<CallBase *, int>, 16> CallSites; 545 546 // When inlining a callee produces new call sites, we want to keep track of 547 // the fact that they were inlined from the callee. This allows us to avoid 548 // infinite inlining in some obscure cases. To represent this, we use an 549 // index into the InlineHistory vector. 550 SmallVector<std::pair<Function *, int>, 8> InlineHistory; 551 552 for (CallGraphNode *Node : SCC) { 553 Function *F = Node->getFunction(); 554 if (!F || F->isDeclaration()) 555 continue; 556 557 OptimizationRemarkEmitter ORE(F); 558 for (BasicBlock &BB : *F) 559 for (Instruction &I : BB) { 560 auto *CS = dyn_cast<CallBase>(&I); 561 // If this isn't a call, or it is a call to an intrinsic, it can 562 // never be inlined. 563 if (!CS || isa<IntrinsicInst>(I)) 564 continue; 565 566 // If this is a direct call to an external function, we can never inline 567 // it. If it is an indirect call, inlining may resolve it to be a 568 // direct call, so we keep it. 569 if (Function *Callee = CS->getCalledFunction()) 570 if (Callee->isDeclaration()) { 571 using namespace ore; 572 573 setInlineRemark(*CS, "unavailable definition"); 574 ORE.emit([&]() { 575 return OptimizationRemarkMissed(DEBUG_TYPE, "NoDefinition", &I) 576 << NV("Callee", Callee) << " will not be inlined into " 577 << NV("Caller", CS->getCaller()) 578 << " because its definition is unavailable" 579 << setIsVerbose(); 580 }); 581 continue; 582 } 583 584 CallSites.push_back(std::make_pair(CS, -1)); 585 } 586 } 587 588 LLVM_DEBUG(dbgs() << ": " << CallSites.size() << " call sites.\n"); 589 590 // If there are no calls in this function, exit early. 591 if (CallSites.empty()) 592 return false; 593 594 // Now that we have all of the call sites, move the ones to functions in the 595 // current SCC to the end of the list. 596 unsigned FirstCallInSCC = CallSites.size(); 597 for (unsigned I = 0; I < FirstCallInSCC; ++I) 598 if (Function *F = CallSites[I].first->getCalledFunction()) 599 if (SCCFunctions.count(F)) 600 std::swap(CallSites[I--], CallSites[--FirstCallInSCC]); 601 602 InlinedArrayAllocasTy InlinedArrayAllocas; 603 InlineFunctionInfo InlineInfo(&CG, &GetAssumptionCache, PSI); 604 605 // Now that we have all of the call sites, loop over them and inline them if 606 // it looks profitable to do so. 607 bool Changed = false; 608 bool LocalChange; 609 do { 610 LocalChange = false; 611 // Iterate over the outer loop because inlining functions can cause indirect 612 // calls to become direct calls. 613 // CallSites may be modified inside so ranged for loop can not be used. 614 for (unsigned CSi = 0; CSi != CallSites.size(); ++CSi) { 615 auto &P = CallSites[CSi]; 616 CallBase &CS = *P.first; 617 const int InlineHistoryID = P.second; 618 619 Function *Caller = CS.getCaller(); 620 Function *Callee = CS.getCalledFunction(); 621 622 // We can only inline direct calls to non-declarations. 623 if (!Callee || Callee->isDeclaration()) 624 continue; 625 626 bool IsTriviallyDead = isInstructionTriviallyDead(&CS, &GetTLI(*Caller)); 627 628 if (!IsTriviallyDead) { 629 // If this call site was obtained by inlining another function, verify 630 // that the include path for the function did not include the callee 631 // itself. If so, we'd be recursively inlining the same function, 632 // which would provide the same callsites, which would cause us to 633 // infinitely inline. 634 if (InlineHistoryID != -1 && 635 inlineHistoryIncludes(Callee, InlineHistoryID, InlineHistory)) { 636 setInlineRemark(CS, "recursive"); 637 continue; 638 } 639 } 640 641 // FIXME for new PM: because of the old PM we currently generate ORE and 642 // in turn BFI on demand. With the new PM, the ORE dependency should 643 // just become a regular analysis dependency. 644 OptimizationRemarkEmitter ORE(Caller); 645 646 Optional<InlineCost> OIC = shouldInline(CS, GetInlineCost, ORE); 647 // If the policy determines that we should inline this function, 648 // delete the call instead. 649 if (!OIC.hasValue()) { 650 setInlineRemark(CS, "deferred"); 651 continue; 652 } 653 654 if (!OIC.getValue()) { 655 // shouldInline() call returned a negative inline cost that explains 656 // why this callsite should not be inlined. 657 setInlineRemark(CS, inlineCostStr(*OIC)); 658 continue; 659 } 660 661 // If this call site is dead and it is to a readonly function, we should 662 // just delete the call instead of trying to inline it, regardless of 663 // size. This happens because IPSCCP propagates the result out of the 664 // call and then we're left with the dead call. 665 if (IsTriviallyDead) { 666 LLVM_DEBUG(dbgs() << " -> Deleting dead call: " << CS << "\n"); 667 // Update the call graph by deleting the edge from Callee to Caller. 668 setInlineRemark(CS, "trivially dead"); 669 CG[Caller]->removeCallEdgeFor(CS); 670 CS.eraseFromParent(); 671 ++NumCallsDeleted; 672 } else { 673 // Get DebugLoc to report. CS will be invalid after Inliner. 674 DebugLoc DLoc = CS.getDebugLoc(); 675 BasicBlock *Block = CS.getParent(); 676 677 // Attempt to inline the function. 678 using namespace ore; 679 680 InlineResult IR = inlineCallIfPossible( 681 CS, InlineInfo, InlinedArrayAllocas, InlineHistoryID, 682 InsertLifetime, AARGetter, ImportedFunctionsStats); 683 if (!IR.isSuccess()) { 684 setInlineRemark(CS, std::string(IR.getFailureReason()) + "; " + 685 inlineCostStr(*OIC)); 686 ORE.emit([&]() { 687 return OptimizationRemarkMissed(DEBUG_TYPE, "NotInlined", DLoc, 688 Block) 689 << NV("Callee", Callee) << " will not be inlined into " 690 << NV("Caller", Caller) << ": " 691 << NV("Reason", IR.getFailureReason()); 692 }); 693 continue; 694 } 695 ++NumInlined; 696 697 emitInlinedInto(ORE, DLoc, Block, *Callee, *Caller, *OIC); 698 699 // If inlining this function gave us any new call sites, throw them 700 // onto our worklist to process. They are useful inline candidates. 701 if (!InlineInfo.InlinedCalls.empty()) { 702 // Create a new inline history entry for this, so that we remember 703 // that these new callsites came about due to inlining Callee. 704 int NewHistoryID = InlineHistory.size(); 705 InlineHistory.push_back(std::make_pair(Callee, InlineHistoryID)); 706 707 #ifndef NDEBUG 708 // Make sure no dupplicates in the inline candidates. This could 709 // happen when a callsite is simpilfied to reusing the return value 710 // of another callsite during function cloning, thus the other 711 // callsite will be reconsidered here. 712 DenseSet<CallBase *> DbgCallSites; 713 for (auto &II : CallSites) 714 DbgCallSites.insert(II.first); 715 #endif 716 717 for (Value *Ptr : InlineInfo.InlinedCalls) { 718 #ifndef NDEBUG 719 assert(DbgCallSites.count(dyn_cast<CallBase>(Ptr)) == 0); 720 #endif 721 CallSites.push_back( 722 std::make_pair(dyn_cast<CallBase>(Ptr), NewHistoryID)); 723 } 724 } 725 } 726 727 // If we inlined or deleted the last possible call site to the function, 728 // delete the function body now. 729 if (Callee && Callee->use_empty() && Callee->hasLocalLinkage() && 730 // TODO: Can remove if in SCC now. 731 !SCCFunctions.count(Callee) && 732 // The function may be apparently dead, but if there are indirect 733 // callgraph references to the node, we cannot delete it yet, this 734 // could invalidate the CGSCC iterator. 735 CG[Callee]->getNumReferences() == 0) { 736 LLVM_DEBUG(dbgs() << " -> Deleting dead function: " 737 << Callee->getName() << "\n"); 738 CallGraphNode *CalleeNode = CG[Callee]; 739 740 // Remove any call graph edges from the callee to its callees. 741 CalleeNode->removeAllCalledFunctions(); 742 743 // Removing the node for callee from the call graph and delete it. 744 delete CG.removeFunctionFromModule(CalleeNode); 745 ++NumDeleted; 746 } 747 748 // Remove this call site from the list. If possible, use 749 // swap/pop_back for efficiency, but do not use it if doing so would 750 // move a call site to a function in this SCC before the 751 // 'FirstCallInSCC' barrier. 752 if (SCC.isSingular()) { 753 CallSites[CSi] = CallSites.back(); 754 CallSites.pop_back(); 755 } else { 756 CallSites.erase(CallSites.begin() + CSi); 757 } 758 --CSi; 759 760 Changed = true; 761 LocalChange = true; 762 } 763 } while (LocalChange); 764 765 return Changed; 766 } 767 768 bool LegacyInlinerBase::inlineCalls(CallGraphSCC &SCC) { 769 CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph(); 770 ACT = &getAnalysis<AssumptionCacheTracker>(); 771 PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 772 GetTLI = [&](Function &F) -> const TargetLibraryInfo & { 773 return getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 774 }; 775 auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & { 776 return ACT->getAssumptionCache(F); 777 }; 778 return inlineCallsImpl( 779 SCC, CG, GetAssumptionCache, PSI, GetTLI, InsertLifetime, 780 [&](CallBase &CS) { return getInlineCost(CS); }, LegacyAARGetter(*this), 781 ImportedFunctionsStats); 782 } 783 784 /// Remove now-dead linkonce functions at the end of 785 /// processing to avoid breaking the SCC traversal. 786 bool LegacyInlinerBase::doFinalization(CallGraph &CG) { 787 if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No) 788 ImportedFunctionsStats.dump(InlinerFunctionImportStats == 789 InlinerFunctionImportStatsOpts::Verbose); 790 return removeDeadFunctions(CG); 791 } 792 793 /// Remove dead functions that are not included in DNR (Do Not Remove) list. 794 bool LegacyInlinerBase::removeDeadFunctions(CallGraph &CG, 795 bool AlwaysInlineOnly) { 796 SmallVector<CallGraphNode *, 16> FunctionsToRemove; 797 SmallVector<Function *, 16> DeadFunctionsInComdats; 798 799 auto RemoveCGN = [&](CallGraphNode *CGN) { 800 // Remove any call graph edges from the function to its callees. 801 CGN->removeAllCalledFunctions(); 802 803 // Remove any edges from the external node to the function's call graph 804 // node. These edges might have been made irrelegant due to 805 // optimization of the program. 806 CG.getExternalCallingNode()->removeAnyCallEdgeTo(CGN); 807 808 // Removing the node for callee from the call graph and delete it. 809 FunctionsToRemove.push_back(CGN); 810 }; 811 812 // Scan for all of the functions, looking for ones that should now be removed 813 // from the program. Insert the dead ones in the FunctionsToRemove set. 814 for (const auto &I : CG) { 815 CallGraphNode *CGN = I.second.get(); 816 Function *F = CGN->getFunction(); 817 if (!F || F->isDeclaration()) 818 continue; 819 820 // Handle the case when this function is called and we only want to care 821 // about always-inline functions. This is a bit of a hack to share code 822 // between here and the InlineAlways pass. 823 if (AlwaysInlineOnly && !F->hasFnAttribute(Attribute::AlwaysInline)) 824 continue; 825 826 // If the only remaining users of the function are dead constants, remove 827 // them. 828 F->removeDeadConstantUsers(); 829 830 if (!F->isDefTriviallyDead()) 831 continue; 832 833 // It is unsafe to drop a function with discardable linkage from a COMDAT 834 // without also dropping the other members of the COMDAT. 835 // The inliner doesn't visit non-function entities which are in COMDAT 836 // groups so it is unsafe to do so *unless* the linkage is local. 837 if (!F->hasLocalLinkage()) { 838 if (F->hasComdat()) { 839 DeadFunctionsInComdats.push_back(F); 840 continue; 841 } 842 } 843 844 RemoveCGN(CGN); 845 } 846 if (!DeadFunctionsInComdats.empty()) { 847 // Filter out the functions whose comdats remain alive. 848 filterDeadComdatFunctions(CG.getModule(), DeadFunctionsInComdats); 849 // Remove the rest. 850 for (Function *F : DeadFunctionsInComdats) 851 RemoveCGN(CG[F]); 852 } 853 854 if (FunctionsToRemove.empty()) 855 return false; 856 857 // Now that we know which functions to delete, do so. We didn't want to do 858 // this inline, because that would invalidate our CallGraph::iterator 859 // objects. :( 860 // 861 // Note that it doesn't matter that we are iterating over a non-stable order 862 // here to do this, it doesn't matter which order the functions are deleted 863 // in. 864 array_pod_sort(FunctionsToRemove.begin(), FunctionsToRemove.end()); 865 FunctionsToRemove.erase( 866 std::unique(FunctionsToRemove.begin(), FunctionsToRemove.end()), 867 FunctionsToRemove.end()); 868 for (CallGraphNode *CGN : FunctionsToRemove) { 869 delete CG.removeFunctionFromModule(CGN); 870 ++NumDeleted; 871 } 872 return true; 873 } 874 875 InlinerPass::~InlinerPass() { 876 if (ImportedFunctionsStats) { 877 assert(InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No); 878 ImportedFunctionsStats->dump(InlinerFunctionImportStats == 879 InlinerFunctionImportStatsOpts::Verbose); 880 } 881 } 882 883 PreservedAnalyses InlinerPass::run(LazyCallGraph::SCC &InitialC, 884 CGSCCAnalysisManager &AM, LazyCallGraph &CG, 885 CGSCCUpdateResult &UR) { 886 const ModuleAnalysisManager &MAM = 887 AM.getResult<ModuleAnalysisManagerCGSCCProxy>(InitialC, CG).getManager(); 888 bool Changed = false; 889 890 assert(InitialC.size() > 0 && "Cannot handle an empty SCC!"); 891 Module &M = *InitialC.begin()->getFunction().getParent(); 892 ProfileSummaryInfo *PSI = MAM.getCachedResult<ProfileSummaryAnalysis>(M); 893 894 if (!ImportedFunctionsStats && 895 InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No) { 896 ImportedFunctionsStats = 897 std::make_unique<ImportedFunctionsInliningStatistics>(); 898 ImportedFunctionsStats->setModuleInfo(M); 899 } 900 901 // We use a single common worklist for calls across the entire SCC. We 902 // process these in-order and append new calls introduced during inlining to 903 // the end. 904 // 905 // Note that this particular order of processing is actually critical to 906 // avoid very bad behaviors. Consider *highly connected* call graphs where 907 // each function contains a small amonut of code and a couple of calls to 908 // other functions. Because the LLVM inliner is fundamentally a bottom-up 909 // inliner, it can handle gracefully the fact that these all appear to be 910 // reasonable inlining candidates as it will flatten things until they become 911 // too big to inline, and then move on and flatten another batch. 912 // 913 // However, when processing call edges *within* an SCC we cannot rely on this 914 // bottom-up behavior. As a consequence, with heavily connected *SCCs* of 915 // functions we can end up incrementally inlining N calls into each of 916 // N functions because each incremental inlining decision looks good and we 917 // don't have a topological ordering to prevent explosions. 918 // 919 // To compensate for this, we don't process transitive edges made immediate 920 // by inlining until we've done one pass of inlining across the entire SCC. 921 // Large, highly connected SCCs still lead to some amount of code bloat in 922 // this model, but it is uniformly spread across all the functions in the SCC 923 // and eventually they all become too large to inline, rather than 924 // incrementally maknig a single function grow in a super linear fashion. 925 SmallVector<std::pair<CallBase *, int>, 16> Calls; 926 927 FunctionAnalysisManager &FAM = 928 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(InitialC, CG) 929 .getManager(); 930 931 // Populate the initial list of calls in this SCC. 932 for (auto &N : InitialC) { 933 auto &ORE = 934 FAM.getResult<OptimizationRemarkEmitterAnalysis>(N.getFunction()); 935 // We want to generally process call sites top-down in order for 936 // simplifications stemming from replacing the call with the returned value 937 // after inlining to be visible to subsequent inlining decisions. 938 // FIXME: Using instructions sequence is a really bad way to do this. 939 // Instead we should do an actual RPO walk of the function body. 940 for (Instruction &I : instructions(N.getFunction())) 941 if (auto *CS = dyn_cast<CallBase>(&I)) 942 if (Function *Callee = CS->getCalledFunction()) { 943 if (!Callee->isDeclaration()) 944 Calls.push_back({CS, -1}); 945 else if (!isa<IntrinsicInst>(I)) { 946 using namespace ore; 947 setInlineRemark(*CS, "unavailable definition"); 948 ORE.emit([&]() { 949 return OptimizationRemarkMissed(DEBUG_TYPE, "NoDefinition", &I) 950 << NV("Callee", Callee) << " will not be inlined into " 951 << NV("Caller", CS->getCaller()) 952 << " because its definition is unavailable" 953 << setIsVerbose(); 954 }); 955 } 956 } 957 } 958 if (Calls.empty()) 959 return PreservedAnalyses::all(); 960 961 // Capture updatable variables for the current SCC and RefSCC. 962 auto *C = &InitialC; 963 auto *RC = &C->getOuterRefSCC(); 964 965 // When inlining a callee produces new call sites, we want to keep track of 966 // the fact that they were inlined from the callee. This allows us to avoid 967 // infinite inlining in some obscure cases. To represent this, we use an 968 // index into the InlineHistory vector. 969 SmallVector<std::pair<Function *, int>, 16> InlineHistory; 970 971 // Track a set vector of inlined callees so that we can augment the caller 972 // with all of their edges in the call graph before pruning out the ones that 973 // got simplified away. 974 SmallSetVector<Function *, 4> InlinedCallees; 975 976 // Track the dead functions to delete once finished with inlining calls. We 977 // defer deleting these to make it easier to handle the call graph updates. 978 SmallVector<Function *, 4> DeadFunctions; 979 980 // Loop forward over all of the calls. Note that we cannot cache the size as 981 // inlining can introduce new calls that need to be processed. 982 for (int I = 0; I < (int)Calls.size(); ++I) { 983 // We expect the calls to typically be batched with sequences of calls that 984 // have the same caller, so we first set up some shared infrastructure for 985 // this caller. We also do any pruning we can at this layer on the caller 986 // alone. 987 Function &F = *Calls[I].first->getCaller(); 988 LazyCallGraph::Node &N = *CG.lookup(F); 989 if (CG.lookupSCC(N) != C) 990 continue; 991 if (F.hasOptNone()) { 992 setInlineRemark(*Calls[I].first, "optnone attribute"); 993 continue; 994 } 995 996 LLVM_DEBUG(dbgs() << "Inlining calls in: " << F.getName() << "\n"); 997 998 // Get a FunctionAnalysisManager via a proxy for this particular node. We 999 // do this each time we visit a node as the SCC may have changed and as 1000 // we're going to mutate this particular function we want to make sure the 1001 // proxy is in place to forward any invalidation events. We can use the 1002 // manager we get here for looking up results for functions other than this 1003 // node however because those functions aren't going to be mutated by this 1004 // pass. 1005 FunctionAnalysisManager &FAM = 1006 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(*C, CG) 1007 .getManager(); 1008 1009 // Get the remarks emission analysis for the caller. 1010 auto &ORE = FAM.getResult<OptimizationRemarkEmitterAnalysis>(F); 1011 1012 std::function<AssumptionCache &(Function &)> GetAssumptionCache = 1013 [&](Function &F) -> AssumptionCache & { 1014 return FAM.getResult<AssumptionAnalysis>(F); 1015 }; 1016 auto GetBFI = [&](Function &F) -> BlockFrequencyInfo & { 1017 return FAM.getResult<BlockFrequencyAnalysis>(F); 1018 }; 1019 auto GetTLI = [&](Function &F) -> const TargetLibraryInfo & { 1020 return FAM.getResult<TargetLibraryAnalysis>(F); 1021 }; 1022 1023 auto GetInlineCost = [&](CallBase &CS) { 1024 Function &Callee = *CS.getCalledFunction(); 1025 auto &CalleeTTI = FAM.getResult<TargetIRAnalysis>(Callee); 1026 bool RemarksEnabled = 1027 Callee.getContext().getDiagHandlerPtr()->isMissedOptRemarkEnabled( 1028 DEBUG_TYPE); 1029 return getInlineCost(CS, Params, CalleeTTI, GetAssumptionCache, {GetBFI}, 1030 GetTLI, PSI, RemarksEnabled ? &ORE : nullptr); 1031 }; 1032 1033 // Now process as many calls as we have within this caller in the sequnece. 1034 // We bail out as soon as the caller has to change so we can update the 1035 // call graph and prepare the context of that new caller. 1036 bool DidInline = false; 1037 for (; I < (int)Calls.size() && Calls[I].first->getCaller() == &F; ++I) { 1038 auto &P = Calls[I]; 1039 CallBase *CS = P.first; 1040 const int InlineHistoryID = P.second; 1041 Function &Callee = *CS->getCalledFunction(); 1042 1043 if (InlineHistoryID != -1 && 1044 inlineHistoryIncludes(&Callee, InlineHistoryID, InlineHistory)) { 1045 setInlineRemark(*CS, "recursive"); 1046 continue; 1047 } 1048 1049 // Check if this inlining may repeat breaking an SCC apart that has 1050 // already been split once before. In that case, inlining here may 1051 // trigger infinite inlining, much like is prevented within the inliner 1052 // itself by the InlineHistory above, but spread across CGSCC iterations 1053 // and thus hidden from the full inline history. 1054 if (CG.lookupSCC(*CG.lookup(Callee)) == C && 1055 UR.InlinedInternalEdges.count({&N, C})) { 1056 LLVM_DEBUG(dbgs() << "Skipping inlining internal SCC edge from a node " 1057 "previously split out of this SCC by inlining: " 1058 << F.getName() << " -> " << Callee.getName() << "\n"); 1059 setInlineRemark(*CS, "recursive SCC split"); 1060 continue; 1061 } 1062 1063 Optional<InlineCost> OIC = shouldInline(*CS, GetInlineCost, ORE); 1064 // Check whether we want to inline this callsite. 1065 if (!OIC.hasValue()) { 1066 setInlineRemark(*CS, "deferred"); 1067 continue; 1068 } 1069 1070 if (!OIC.getValue()) { 1071 // shouldInline() call returned a negative inline cost that explains 1072 // why this callsite should not be inlined. 1073 setInlineRemark(*CS, inlineCostStr(*OIC)); 1074 continue; 1075 } 1076 1077 // Setup the data structure used to plumb customization into the 1078 // `InlineFunction` routine. 1079 InlineFunctionInfo IFI( 1080 /*cg=*/nullptr, &GetAssumptionCache, PSI, 1081 &FAM.getResult<BlockFrequencyAnalysis>(*(CS->getCaller())), 1082 &FAM.getResult<BlockFrequencyAnalysis>(Callee)); 1083 1084 // Get DebugLoc to report. CS will be invalid after Inliner. 1085 DebugLoc DLoc = CS->getDebugLoc(); 1086 BasicBlock *Block = CS->getParent(); 1087 1088 using namespace ore; 1089 1090 InlineResult IR = InlineFunction(*CS, IFI); 1091 if (!IR.isSuccess()) { 1092 setInlineRemark(*CS, std::string(IR.getFailureReason()) + "; " + 1093 inlineCostStr(*OIC)); 1094 ORE.emit([&]() { 1095 return OptimizationRemarkMissed(DEBUG_TYPE, "NotInlined", DLoc, Block) 1096 << NV("Callee", &Callee) << " will not be inlined into " 1097 << NV("Caller", &F) << ": " 1098 << NV("Reason", IR.getFailureReason()); 1099 }); 1100 continue; 1101 } 1102 DidInline = true; 1103 InlinedCallees.insert(&Callee); 1104 1105 ++NumInlined; 1106 1107 emitInlinedInto(ORE, DLoc, Block, Callee, F, *OIC); 1108 1109 // Add any new callsites to defined functions to the worklist. 1110 if (!IFI.InlinedCallSites.empty()) { 1111 int NewHistoryID = InlineHistory.size(); 1112 InlineHistory.push_back({&Callee, InlineHistoryID}); 1113 1114 // FIXME(mtrofin): refactor IFI.InlinedCallSites to be CallBase-based 1115 for (CallBase *CS : reverse(IFI.InlinedCallSites)) { 1116 Function *NewCallee = CS->getCalledFunction(); 1117 if (!NewCallee) { 1118 // Try to promote an indirect (virtual) call without waiting for the 1119 // post-inline cleanup and the next DevirtSCCRepeatedPass iteration 1120 // because the next iteration may not happen and we may miss 1121 // inlining it. 1122 if (tryPromoteCall(*CS)) 1123 NewCallee = CS->getCalledFunction(); 1124 } 1125 if (NewCallee) 1126 if (!NewCallee->isDeclaration()) 1127 Calls.push_back({CS, NewHistoryID}); 1128 } 1129 } 1130 1131 if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No) 1132 ImportedFunctionsStats->recordInline(F, Callee); 1133 1134 // Merge the attributes based on the inlining. 1135 AttributeFuncs::mergeAttributesForInlining(F, Callee); 1136 1137 // For local functions, check whether this makes the callee trivially 1138 // dead. In that case, we can drop the body of the function eagerly 1139 // which may reduce the number of callers of other functions to one, 1140 // changing inline cost thresholds. 1141 if (Callee.hasLocalLinkage()) { 1142 // To check this we also need to nuke any dead constant uses (perhaps 1143 // made dead by this operation on other functions). 1144 Callee.removeDeadConstantUsers(); 1145 if (Callee.use_empty() && !CG.isLibFunction(Callee)) { 1146 Calls.erase( 1147 std::remove_if(Calls.begin() + I + 1, Calls.end(), 1148 [&](const std::pair<CallBase *, int> &Call) { 1149 return Call.first->getCaller() == &Callee; 1150 }), 1151 Calls.end()); 1152 // Clear the body and queue the function itself for deletion when we 1153 // finish inlining and call graph updates. 1154 // Note that after this point, it is an error to do anything other 1155 // than use the callee's address or delete it. 1156 Callee.dropAllReferences(); 1157 assert(find(DeadFunctions, &Callee) == DeadFunctions.end() && 1158 "Cannot put cause a function to become dead twice!"); 1159 DeadFunctions.push_back(&Callee); 1160 } 1161 } 1162 } 1163 1164 // Back the call index up by one to put us in a good position to go around 1165 // the outer loop. 1166 --I; 1167 1168 if (!DidInline) 1169 continue; 1170 Changed = true; 1171 1172 // Add all the inlined callees' edges as ref edges to the caller. These are 1173 // by definition trivial edges as we always have *some* transitive ref edge 1174 // chain. While in some cases these edges are direct calls inside the 1175 // callee, they have to be modeled in the inliner as reference edges as 1176 // there may be a reference edge anywhere along the chain from the current 1177 // caller to the callee that causes the whole thing to appear like 1178 // a (transitive) reference edge that will require promotion to a call edge 1179 // below. 1180 for (Function *InlinedCallee : InlinedCallees) { 1181 LazyCallGraph::Node &CalleeN = *CG.lookup(*InlinedCallee); 1182 for (LazyCallGraph::Edge &E : *CalleeN) 1183 RC->insertTrivialRefEdge(N, E.getNode()); 1184 } 1185 1186 // At this point, since we have made changes we have at least removed 1187 // a call instruction. However, in the process we do some incremental 1188 // simplification of the surrounding code. This simplification can 1189 // essentially do all of the same things as a function pass and we can 1190 // re-use the exact same logic for updating the call graph to reflect the 1191 // change. 1192 LazyCallGraph::SCC *OldC = C; 1193 C = &updateCGAndAnalysisManagerForFunctionPass(CG, *C, N, AM, UR); 1194 LLVM_DEBUG(dbgs() << "Updated inlining SCC: " << *C << "\n"); 1195 RC = &C->getOuterRefSCC(); 1196 1197 // If this causes an SCC to split apart into multiple smaller SCCs, there 1198 // is a subtle risk we need to prepare for. Other transformations may 1199 // expose an "infinite inlining" opportunity later, and because of the SCC 1200 // mutation, we will revisit this function and potentially re-inline. If we 1201 // do, and that re-inlining also has the potentially to mutate the SCC 1202 // structure, the infinite inlining problem can manifest through infinite 1203 // SCC splits and merges. To avoid this, we capture the originating caller 1204 // node and the SCC containing the call edge. This is a slight over 1205 // approximation of the possible inlining decisions that must be avoided, 1206 // but is relatively efficient to store. We use C != OldC to know when 1207 // a new SCC is generated and the original SCC may be generated via merge 1208 // in later iterations. 1209 // 1210 // It is also possible that even if no new SCC is generated 1211 // (i.e., C == OldC), the original SCC could be split and then merged 1212 // into the same one as itself. and the original SCC will be added into 1213 // UR.CWorklist again, we want to catch such cases too. 1214 // 1215 // FIXME: This seems like a very heavyweight way of retaining the inline 1216 // history, we should look for a more efficient way of tracking it. 1217 if ((C != OldC || UR.CWorklist.count(OldC)) && 1218 llvm::any_of(InlinedCallees, [&](Function *Callee) { 1219 return CG.lookupSCC(*CG.lookup(*Callee)) == OldC; 1220 })) { 1221 LLVM_DEBUG(dbgs() << "Inlined an internal call edge and split an SCC, " 1222 "retaining this to avoid infinite inlining.\n"); 1223 UR.InlinedInternalEdges.insert({&N, OldC}); 1224 } 1225 InlinedCallees.clear(); 1226 } 1227 1228 // Now that we've finished inlining all of the calls across this SCC, delete 1229 // all of the trivially dead functions, updating the call graph and the CGSCC 1230 // pass manager in the process. 1231 // 1232 // Note that this walks a pointer set which has non-deterministic order but 1233 // that is OK as all we do is delete things and add pointers to unordered 1234 // sets. 1235 for (Function *DeadF : DeadFunctions) { 1236 // Get the necessary information out of the call graph and nuke the 1237 // function there. Also, cclear out any cached analyses. 1238 auto &DeadC = *CG.lookupSCC(*CG.lookup(*DeadF)); 1239 FunctionAnalysisManager &FAM = 1240 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(DeadC, CG) 1241 .getManager(); 1242 FAM.clear(*DeadF, DeadF->getName()); 1243 AM.clear(DeadC, DeadC.getName()); 1244 auto &DeadRC = DeadC.getOuterRefSCC(); 1245 CG.removeDeadFunction(*DeadF); 1246 1247 // Mark the relevant parts of the call graph as invalid so we don't visit 1248 // them. 1249 UR.InvalidatedSCCs.insert(&DeadC); 1250 UR.InvalidatedRefSCCs.insert(&DeadRC); 1251 1252 // And delete the actual function from the module. 1253 M.getFunctionList().erase(DeadF); 1254 ++NumDeleted; 1255 } 1256 1257 if (!Changed) 1258 return PreservedAnalyses::all(); 1259 1260 // Even if we change the IR, we update the core CGSCC data structures and so 1261 // can preserve the proxy to the function analysis manager. 1262 PreservedAnalyses PA; 1263 PA.preserve<FunctionAnalysisManagerCGSCCProxy>(); 1264 return PA; 1265 } 1266