1 //===- Inliner.cpp - Code common to all inliners --------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the mechanics required to implement inlining without 11 // missing any calls and updating the call graph. The decisions of which calls 12 // are profitable to inline are implemented elsewhere. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Transforms/IPO/InlinerPass.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/Analysis/AssumptionCache.h" 21 #include "llvm/Analysis/CallGraph.h" 22 #include "llvm/Analysis/InlineCost.h" 23 #include "llvm/IR/CallSite.h" 24 #include "llvm/IR/DataLayout.h" 25 #include "llvm/IR/DiagnosticInfo.h" 26 #include "llvm/IR/Instructions.h" 27 #include "llvm/IR/IntrinsicInst.h" 28 #include "llvm/IR/Module.h" 29 #include "llvm/Support/CommandLine.h" 30 #include "llvm/Support/Debug.h" 31 #include "llvm/Support/raw_ostream.h" 32 #include "llvm/Analysis/TargetLibraryInfo.h" 33 #include "llvm/Transforms/Utils/Cloning.h" 34 #include "llvm/Transforms/Utils/Local.h" 35 using namespace llvm; 36 37 #define DEBUG_TYPE "inline" 38 39 STATISTIC(NumInlined, "Number of functions inlined"); 40 STATISTIC(NumCallsDeleted, "Number of call sites deleted, not inlined"); 41 STATISTIC(NumDeleted, "Number of functions deleted because all callers found"); 42 STATISTIC(NumMergedAllocas, "Number of allocas merged together"); 43 44 // This weirdly named statistic tracks the number of times that, when attempting 45 // to inline a function A into B, we analyze the callers of B in order to see 46 // if those would be more profitable and blocked inline steps. 47 STATISTIC(NumCallerCallersAnalyzed, "Number of caller-callers analyzed"); 48 49 static cl::opt<int> 50 InlineLimit("inline-threshold", cl::Hidden, cl::init(225), cl::ZeroOrMore, 51 cl::desc("Control the amount of inlining to perform (default = 225)")); 52 53 static cl::opt<int> 54 HintThreshold("inlinehint-threshold", cl::Hidden, cl::init(325), 55 cl::desc("Threshold for inlining functions with inline hint")); 56 57 // We instroduce this threshold to help performance of instrumentation based 58 // PGO before we actually hook up inliner with analysis passes such as BPI and 59 // BFI. 60 static cl::opt<int> 61 ColdThreshold("inlinecold-threshold", cl::Hidden, cl::init(225), 62 cl::desc("Threshold for inlining functions with cold attribute")); 63 64 // Threshold to use when optsize is specified (and there is no -inline-limit). 65 const int OptSizeThreshold = 75; 66 67 Inliner::Inliner(char &ID) 68 : CallGraphSCCPass(ID), InlineThreshold(InlineLimit), InsertLifetime(true) {} 69 70 Inliner::Inliner(char &ID, int Threshold, bool InsertLifetime) 71 : CallGraphSCCPass(ID), InlineThreshold(InlineLimit.getNumOccurrences() > 0 ? 72 InlineLimit : Threshold), 73 InsertLifetime(InsertLifetime) {} 74 75 /// getAnalysisUsage - For this class, we declare that we require and preserve 76 /// the call graph. If the derived class implements this method, it should 77 /// always explicitly call the implementation here. 78 void Inliner::getAnalysisUsage(AnalysisUsage &AU) const { 79 AU.addRequired<AliasAnalysis>(); 80 AU.addRequired<AssumptionCacheTracker>(); 81 CallGraphSCCPass::getAnalysisUsage(AU); 82 } 83 84 85 typedef DenseMap<ArrayType*, std::vector<AllocaInst*> > 86 InlinedArrayAllocasTy; 87 88 /// \brief If the inlined function had a higher stack protection level than the 89 /// calling function, then bump up the caller's stack protection level. 90 static void AdjustCallerSSPLevel(Function *Caller, Function *Callee) { 91 // If upgrading the SSP attribute, clear out the old SSP Attributes first. 92 // Having multiple SSP attributes doesn't actually hurt, but it adds useless 93 // clutter to the IR. 94 AttrBuilder B; 95 B.addAttribute(Attribute::StackProtect) 96 .addAttribute(Attribute::StackProtectStrong); 97 AttributeSet OldSSPAttr = AttributeSet::get(Caller->getContext(), 98 AttributeSet::FunctionIndex, 99 B); 100 101 if (Callee->hasFnAttribute(Attribute::StackProtectReq)) { 102 Caller->removeAttributes(AttributeSet::FunctionIndex, OldSSPAttr); 103 Caller->addFnAttr(Attribute::StackProtectReq); 104 } else if (Callee->hasFnAttribute(Attribute::StackProtectStrong) && 105 !Caller->hasFnAttribute(Attribute::StackProtectReq)) { 106 Caller->removeAttributes(AttributeSet::FunctionIndex, OldSSPAttr); 107 Caller->addFnAttr(Attribute::StackProtectStrong); 108 } else if (Callee->hasFnAttribute(Attribute::StackProtect) && 109 !Caller->hasFnAttribute(Attribute::StackProtectReq) && 110 !Caller->hasFnAttribute(Attribute::StackProtectStrong)) 111 Caller->addFnAttr(Attribute::StackProtect); 112 } 113 114 /// InlineCallIfPossible - If it is possible to inline the specified call site, 115 /// do so and update the CallGraph for this operation. 116 /// 117 /// This function also does some basic book-keeping to update the IR. The 118 /// InlinedArrayAllocas map keeps track of any allocas that are already 119 /// available from other functions inlined into the caller. If we are able to 120 /// inline this call site we attempt to reuse already available allocas or add 121 /// any new allocas to the set if not possible. 122 static bool InlineCallIfPossible(CallSite CS, InlineFunctionInfo &IFI, 123 InlinedArrayAllocasTy &InlinedArrayAllocas, 124 int InlineHistory, bool InsertLifetime, 125 const DataLayout *DL) { 126 Function *Callee = CS.getCalledFunction(); 127 Function *Caller = CS.getCaller(); 128 129 // Try to inline the function. Get the list of static allocas that were 130 // inlined. 131 if (!InlineFunction(CS, IFI, InsertLifetime)) 132 return false; 133 134 AdjustCallerSSPLevel(Caller, Callee); 135 136 // Look at all of the allocas that we inlined through this call site. If we 137 // have already inlined other allocas through other calls into this function, 138 // then we know that they have disjoint lifetimes and that we can merge them. 139 // 140 // There are many heuristics possible for merging these allocas, and the 141 // different options have different tradeoffs. One thing that we *really* 142 // don't want to hurt is SRoA: once inlining happens, often allocas are no 143 // longer address taken and so they can be promoted. 144 // 145 // Our "solution" for that is to only merge allocas whose outermost type is an 146 // array type. These are usually not promoted because someone is using a 147 // variable index into them. These are also often the most important ones to 148 // merge. 149 // 150 // A better solution would be to have real memory lifetime markers in the IR 151 // and not have the inliner do any merging of allocas at all. This would 152 // allow the backend to do proper stack slot coloring of all allocas that 153 // *actually make it to the backend*, which is really what we want. 154 // 155 // Because we don't have this information, we do this simple and useful hack. 156 // 157 SmallPtrSet<AllocaInst*, 16> UsedAllocas; 158 159 // When processing our SCC, check to see if CS was inlined from some other 160 // call site. For example, if we're processing "A" in this code: 161 // A() { B() } 162 // B() { x = alloca ... C() } 163 // C() { y = alloca ... } 164 // Assume that C was not inlined into B initially, and so we're processing A 165 // and decide to inline B into A. Doing this makes an alloca available for 166 // reuse and makes a callsite (C) available for inlining. When we process 167 // the C call site we don't want to do any alloca merging between X and Y 168 // because their scopes are not disjoint. We could make this smarter by 169 // keeping track of the inline history for each alloca in the 170 // InlinedArrayAllocas but this isn't likely to be a significant win. 171 if (InlineHistory != -1) // Only do merging for top-level call sites in SCC. 172 return true; 173 174 // Loop over all the allocas we have so far and see if they can be merged with 175 // a previously inlined alloca. If not, remember that we had it. 176 for (unsigned AllocaNo = 0, e = IFI.StaticAllocas.size(); 177 AllocaNo != e; ++AllocaNo) { 178 AllocaInst *AI = IFI.StaticAllocas[AllocaNo]; 179 180 // Don't bother trying to merge array allocations (they will usually be 181 // canonicalized to be an allocation *of* an array), or allocations whose 182 // type is not itself an array (because we're afraid of pessimizing SRoA). 183 ArrayType *ATy = dyn_cast<ArrayType>(AI->getAllocatedType()); 184 if (!ATy || AI->isArrayAllocation()) 185 continue; 186 187 // Get the list of all available allocas for this array type. 188 std::vector<AllocaInst*> &AllocasForType = InlinedArrayAllocas[ATy]; 189 190 // Loop over the allocas in AllocasForType to see if we can reuse one. Note 191 // that we have to be careful not to reuse the same "available" alloca for 192 // multiple different allocas that we just inlined, we use the 'UsedAllocas' 193 // set to keep track of which "available" allocas are being used by this 194 // function. Also, AllocasForType can be empty of course! 195 bool MergedAwayAlloca = false; 196 for (unsigned i = 0, e = AllocasForType.size(); i != e; ++i) { 197 AllocaInst *AvailableAlloca = AllocasForType[i]; 198 199 unsigned Align1 = AI->getAlignment(), 200 Align2 = AvailableAlloca->getAlignment(); 201 // If we don't have data layout information, and only one alloca is using 202 // the target default, then we can't safely merge them because we can't 203 // pick the greater alignment. 204 if (!DL && (!Align1 || !Align2) && Align1 != Align2) 205 continue; 206 207 // The available alloca has to be in the right function, not in some other 208 // function in this SCC. 209 if (AvailableAlloca->getParent() != AI->getParent()) 210 continue; 211 212 // If the inlined function already uses this alloca then we can't reuse 213 // it. 214 if (!UsedAllocas.insert(AvailableAlloca).second) 215 continue; 216 217 // Otherwise, we *can* reuse it, RAUW AI into AvailableAlloca and declare 218 // success! 219 DEBUG(dbgs() << " ***MERGED ALLOCA: " << *AI << "\n\t\tINTO: " 220 << *AvailableAlloca << '\n'); 221 222 AI->replaceAllUsesWith(AvailableAlloca); 223 224 if (Align1 != Align2) { 225 if (!Align1 || !Align2) { 226 assert(DL && "DataLayout required to compare default alignments"); 227 unsigned TypeAlign = DL->getABITypeAlignment(AI->getAllocatedType()); 228 229 Align1 = Align1 ? Align1 : TypeAlign; 230 Align2 = Align2 ? Align2 : TypeAlign; 231 } 232 233 if (Align1 > Align2) 234 AvailableAlloca->setAlignment(AI->getAlignment()); 235 } 236 237 AI->eraseFromParent(); 238 MergedAwayAlloca = true; 239 ++NumMergedAllocas; 240 IFI.StaticAllocas[AllocaNo] = nullptr; 241 break; 242 } 243 244 // If we already nuked the alloca, we're done with it. 245 if (MergedAwayAlloca) 246 continue; 247 248 // If we were unable to merge away the alloca either because there are no 249 // allocas of the right type available or because we reused them all 250 // already, remember that this alloca came from an inlined function and mark 251 // it used so we don't reuse it for other allocas from this inline 252 // operation. 253 AllocasForType.push_back(AI); 254 UsedAllocas.insert(AI); 255 } 256 257 return true; 258 } 259 260 unsigned Inliner::getInlineThreshold(CallSite CS) const { 261 int thres = InlineThreshold; // -inline-threshold or else selected by 262 // overall opt level 263 264 // If -inline-threshold is not given, listen to the optsize attribute when it 265 // would decrease the threshold. 266 Function *Caller = CS.getCaller(); 267 bool OptSize = Caller && !Caller->isDeclaration() && 268 Caller->hasFnAttribute(Attribute::OptimizeForSize); 269 if (!(InlineLimit.getNumOccurrences() > 0) && OptSize && 270 OptSizeThreshold < thres) 271 thres = OptSizeThreshold; 272 273 // Listen to the inlinehint attribute when it would increase the threshold 274 // and the caller does not need to minimize its size. 275 Function *Callee = CS.getCalledFunction(); 276 bool InlineHint = Callee && !Callee->isDeclaration() && 277 Callee->hasFnAttribute(Attribute::InlineHint); 278 if (InlineHint && HintThreshold > thres && 279 !Caller->hasFnAttribute(Attribute::MinSize)) 280 thres = HintThreshold; 281 282 // Listen to the cold attribute when it would decrease the threshold. 283 bool ColdCallee = Callee && !Callee->isDeclaration() && 284 Callee->hasFnAttribute(Attribute::Cold); 285 // Command line argument for InlineLimit will override the default 286 // ColdThreshold. If we have -inline-threshold but no -inlinecold-threshold, 287 // do not use the default cold threshold even if it is smaller. 288 if ((InlineLimit.getNumOccurrences() == 0 || 289 ColdThreshold.getNumOccurrences() > 0) && ColdCallee && 290 ColdThreshold < thres) 291 thres = ColdThreshold; 292 293 return thres; 294 } 295 296 static void emitAnalysis(CallSite CS, const Twine &Msg) { 297 Function *Caller = CS.getCaller(); 298 LLVMContext &Ctx = Caller->getContext(); 299 DebugLoc DLoc = CS.getInstruction()->getDebugLoc(); 300 emitOptimizationRemarkAnalysis(Ctx, DEBUG_TYPE, *Caller, DLoc, Msg); 301 } 302 303 /// shouldInline - Return true if the inliner should attempt to inline 304 /// at the given CallSite. 305 bool Inliner::shouldInline(CallSite CS) { 306 InlineCost IC = getInlineCost(CS); 307 308 if (IC.isAlways()) { 309 DEBUG(dbgs() << " Inlining: cost=always" 310 << ", Call: " << *CS.getInstruction() << "\n"); 311 emitAnalysis(CS, Twine(CS.getCalledFunction()->getName()) + 312 " should always be inlined (cost=always)"); 313 return true; 314 } 315 316 if (IC.isNever()) { 317 DEBUG(dbgs() << " NOT Inlining: cost=never" 318 << ", Call: " << *CS.getInstruction() << "\n"); 319 emitAnalysis(CS, Twine(CS.getCalledFunction()->getName() + 320 " should never be inlined (cost=never)")); 321 return false; 322 } 323 324 Function *Caller = CS.getCaller(); 325 if (!IC) { 326 DEBUG(dbgs() << " NOT Inlining: cost=" << IC.getCost() 327 << ", thres=" << (IC.getCostDelta() + IC.getCost()) 328 << ", Call: " << *CS.getInstruction() << "\n"); 329 emitAnalysis(CS, Twine(CS.getCalledFunction()->getName() + 330 " too costly to inline (cost=") + 331 Twine(IC.getCost()) + ", threshold=" + 332 Twine(IC.getCostDelta() + IC.getCost()) + ")"); 333 return false; 334 } 335 336 // Try to detect the case where the current inlining candidate caller (call 337 // it B) is a static or linkonce-ODR function and is an inlining candidate 338 // elsewhere, and the current candidate callee (call it C) is large enough 339 // that inlining it into B would make B too big to inline later. In these 340 // circumstances it may be best not to inline C into B, but to inline B into 341 // its callers. 342 // 343 // This only applies to static and linkonce-ODR functions because those are 344 // expected to be available for inlining in the translation units where they 345 // are used. Thus we will always have the opportunity to make local inlining 346 // decisions. Importantly the linkonce-ODR linkage covers inline functions 347 // and templates in C++. 348 // 349 // FIXME: All of this logic should be sunk into getInlineCost. It relies on 350 // the internal implementation of the inline cost metrics rather than 351 // treating them as truly abstract units etc. 352 if (Caller->hasLocalLinkage() || Caller->hasLinkOnceODRLinkage()) { 353 int TotalSecondaryCost = 0; 354 // The candidate cost to be imposed upon the current function. 355 int CandidateCost = IC.getCost() - (InlineConstants::CallPenalty + 1); 356 // This bool tracks what happens if we do NOT inline C into B. 357 bool callerWillBeRemoved = Caller->hasLocalLinkage(); 358 // This bool tracks what happens if we DO inline C into B. 359 bool inliningPreventsSomeOuterInline = false; 360 for (User *U : Caller->users()) { 361 CallSite CS2(U); 362 363 // If this isn't a call to Caller (it could be some other sort 364 // of reference) skip it. Such references will prevent the caller 365 // from being removed. 366 if (!CS2 || CS2.getCalledFunction() != Caller) { 367 callerWillBeRemoved = false; 368 continue; 369 } 370 371 InlineCost IC2 = getInlineCost(CS2); 372 ++NumCallerCallersAnalyzed; 373 if (!IC2) { 374 callerWillBeRemoved = false; 375 continue; 376 } 377 if (IC2.isAlways()) 378 continue; 379 380 // See if inlining or original callsite would erase the cost delta of 381 // this callsite. We subtract off the penalty for the call instruction, 382 // which we would be deleting. 383 if (IC2.getCostDelta() <= CandidateCost) { 384 inliningPreventsSomeOuterInline = true; 385 TotalSecondaryCost += IC2.getCost(); 386 } 387 } 388 // If all outer calls to Caller would get inlined, the cost for the last 389 // one is set very low by getInlineCost, in anticipation that Caller will 390 // be removed entirely. We did not account for this above unless there 391 // is only one caller of Caller. 392 if (callerWillBeRemoved && !Caller->use_empty()) 393 TotalSecondaryCost += InlineConstants::LastCallToStaticBonus; 394 395 if (inliningPreventsSomeOuterInline && TotalSecondaryCost < IC.getCost()) { 396 DEBUG(dbgs() << " NOT Inlining: " << *CS.getInstruction() << 397 " Cost = " << IC.getCost() << 398 ", outer Cost = " << TotalSecondaryCost << '\n'); 399 emitAnalysis( 400 CS, Twine("Not inlining. Cost of inlining " + 401 CS.getCalledFunction()->getName() + 402 " increases the cost of inlining " + 403 CS.getCaller()->getName() + " in other contexts")); 404 return false; 405 } 406 } 407 408 DEBUG(dbgs() << " Inlining: cost=" << IC.getCost() 409 << ", thres=" << (IC.getCostDelta() + IC.getCost()) 410 << ", Call: " << *CS.getInstruction() << '\n'); 411 emitAnalysis( 412 CS, CS.getCalledFunction()->getName() + Twine(" can be inlined into ") + 413 CS.getCaller()->getName() + " with cost=" + Twine(IC.getCost()) + 414 " (threshold=" + Twine(IC.getCostDelta() + IC.getCost()) + ")"); 415 return true; 416 } 417 418 /// InlineHistoryIncludes - Return true if the specified inline history ID 419 /// indicates an inline history that includes the specified function. 420 static bool InlineHistoryIncludes(Function *F, int InlineHistoryID, 421 const SmallVectorImpl<std::pair<Function*, int> > &InlineHistory) { 422 while (InlineHistoryID != -1) { 423 assert(unsigned(InlineHistoryID) < InlineHistory.size() && 424 "Invalid inline history ID"); 425 if (InlineHistory[InlineHistoryID].first == F) 426 return true; 427 InlineHistoryID = InlineHistory[InlineHistoryID].second; 428 } 429 return false; 430 } 431 432 bool Inliner::runOnSCC(CallGraphSCC &SCC) { 433 CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph(); 434 AssumptionCacheTracker *ACT = &getAnalysis<AssumptionCacheTracker>(); 435 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>(); 436 const DataLayout *DL = DLP ? &DLP->getDataLayout() : nullptr; 437 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 438 const TargetLibraryInfo *TLI = TLIP ? &TLIP->getTLI() : nullptr; 439 AliasAnalysis *AA = &getAnalysis<AliasAnalysis>(); 440 441 SmallPtrSet<Function*, 8> SCCFunctions; 442 DEBUG(dbgs() << "Inliner visiting SCC:"); 443 for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) { 444 Function *F = (*I)->getFunction(); 445 if (F) SCCFunctions.insert(F); 446 DEBUG(dbgs() << " " << (F ? F->getName() : "INDIRECTNODE")); 447 } 448 449 // Scan through and identify all call sites ahead of time so that we only 450 // inline call sites in the original functions, not call sites that result 451 // from inlining other functions. 452 SmallVector<std::pair<CallSite, int>, 16> CallSites; 453 454 // When inlining a callee produces new call sites, we want to keep track of 455 // the fact that they were inlined from the callee. This allows us to avoid 456 // infinite inlining in some obscure cases. To represent this, we use an 457 // index into the InlineHistory vector. 458 SmallVector<std::pair<Function*, int>, 8> InlineHistory; 459 460 for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) { 461 Function *F = (*I)->getFunction(); 462 if (!F) continue; 463 464 for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) 465 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 466 CallSite CS(cast<Value>(I)); 467 // If this isn't a call, or it is a call to an intrinsic, it can 468 // never be inlined. 469 if (!CS || isa<IntrinsicInst>(I)) 470 continue; 471 472 // If this is a direct call to an external function, we can never inline 473 // it. If it is an indirect call, inlining may resolve it to be a 474 // direct call, so we keep it. 475 if (CS.getCalledFunction() && CS.getCalledFunction()->isDeclaration()) 476 continue; 477 478 CallSites.push_back(std::make_pair(CS, -1)); 479 } 480 } 481 482 DEBUG(dbgs() << ": " << CallSites.size() << " call sites.\n"); 483 484 // If there are no calls in this function, exit early. 485 if (CallSites.empty()) 486 return false; 487 488 // Now that we have all of the call sites, move the ones to functions in the 489 // current SCC to the end of the list. 490 unsigned FirstCallInSCC = CallSites.size(); 491 for (unsigned i = 0; i < FirstCallInSCC; ++i) 492 if (Function *F = CallSites[i].first.getCalledFunction()) 493 if (SCCFunctions.count(F)) 494 std::swap(CallSites[i--], CallSites[--FirstCallInSCC]); 495 496 497 InlinedArrayAllocasTy InlinedArrayAllocas; 498 InlineFunctionInfo InlineInfo(&CG, DL, AA, ACT); 499 500 // Now that we have all of the call sites, loop over them and inline them if 501 // it looks profitable to do so. 502 bool Changed = false; 503 bool LocalChange; 504 do { 505 LocalChange = false; 506 // Iterate over the outer loop because inlining functions can cause indirect 507 // calls to become direct calls. 508 for (unsigned CSi = 0; CSi != CallSites.size(); ++CSi) { 509 CallSite CS = CallSites[CSi].first; 510 511 Function *Caller = CS.getCaller(); 512 Function *Callee = CS.getCalledFunction(); 513 514 // If this call site is dead and it is to a readonly function, we should 515 // just delete the call instead of trying to inline it, regardless of 516 // size. This happens because IPSCCP propagates the result out of the 517 // call and then we're left with the dead call. 518 if (isInstructionTriviallyDead(CS.getInstruction(), TLI)) { 519 DEBUG(dbgs() << " -> Deleting dead call: " 520 << *CS.getInstruction() << "\n"); 521 // Update the call graph by deleting the edge from Callee to Caller. 522 CG[Caller]->removeCallEdgeFor(CS); 523 CS.getInstruction()->eraseFromParent(); 524 ++NumCallsDeleted; 525 } else { 526 // We can only inline direct calls to non-declarations. 527 if (!Callee || Callee->isDeclaration()) continue; 528 529 // If this call site was obtained by inlining another function, verify 530 // that the include path for the function did not include the callee 531 // itself. If so, we'd be recursively inlining the same function, 532 // which would provide the same callsites, which would cause us to 533 // infinitely inline. 534 int InlineHistoryID = CallSites[CSi].second; 535 if (InlineHistoryID != -1 && 536 InlineHistoryIncludes(Callee, InlineHistoryID, InlineHistory)) 537 continue; 538 539 LLVMContext &CallerCtx = Caller->getContext(); 540 541 // Get DebugLoc to report. CS will be invalid after Inliner. 542 DebugLoc DLoc = CS.getInstruction()->getDebugLoc(); 543 544 // If the policy determines that we should inline this function, 545 // try to do so. 546 if (!shouldInline(CS)) { 547 emitOptimizationRemarkMissed(CallerCtx, DEBUG_TYPE, *Caller, DLoc, 548 Twine(Callee->getName() + 549 " will not be inlined into " + 550 Caller->getName())); 551 continue; 552 } 553 554 // Attempt to inline the function. 555 if (!InlineCallIfPossible(CS, InlineInfo, InlinedArrayAllocas, 556 InlineHistoryID, InsertLifetime, DL)) { 557 emitOptimizationRemarkMissed(CallerCtx, DEBUG_TYPE, *Caller, DLoc, 558 Twine(Callee->getName() + 559 " will not be inlined into " + 560 Caller->getName())); 561 continue; 562 } 563 ++NumInlined; 564 565 // Report the inline decision. 566 emitOptimizationRemark( 567 CallerCtx, DEBUG_TYPE, *Caller, DLoc, 568 Twine(Callee->getName() + " inlined into " + Caller->getName())); 569 570 // If inlining this function gave us any new call sites, throw them 571 // onto our worklist to process. They are useful inline candidates. 572 if (!InlineInfo.InlinedCalls.empty()) { 573 // Create a new inline history entry for this, so that we remember 574 // that these new callsites came about due to inlining Callee. 575 int NewHistoryID = InlineHistory.size(); 576 InlineHistory.push_back(std::make_pair(Callee, InlineHistoryID)); 577 578 for (unsigned i = 0, e = InlineInfo.InlinedCalls.size(); 579 i != e; ++i) { 580 Value *Ptr = InlineInfo.InlinedCalls[i]; 581 CallSites.push_back(std::make_pair(CallSite(Ptr), NewHistoryID)); 582 } 583 } 584 } 585 586 // If we inlined or deleted the last possible call site to the function, 587 // delete the function body now. 588 if (Callee && Callee->use_empty() && Callee->hasLocalLinkage() && 589 // TODO: Can remove if in SCC now. 590 !SCCFunctions.count(Callee) && 591 592 // The function may be apparently dead, but if there are indirect 593 // callgraph references to the node, we cannot delete it yet, this 594 // could invalidate the CGSCC iterator. 595 CG[Callee]->getNumReferences() == 0) { 596 DEBUG(dbgs() << " -> Deleting dead function: " 597 << Callee->getName() << "\n"); 598 CallGraphNode *CalleeNode = CG[Callee]; 599 600 // Remove any call graph edges from the callee to its callees. 601 CalleeNode->removeAllCalledFunctions(); 602 603 // Removing the node for callee from the call graph and delete it. 604 delete CG.removeFunctionFromModule(CalleeNode); 605 ++NumDeleted; 606 } 607 608 // Remove this call site from the list. If possible, use 609 // swap/pop_back for efficiency, but do not use it if doing so would 610 // move a call site to a function in this SCC before the 611 // 'FirstCallInSCC' barrier. 612 if (SCC.isSingular()) { 613 CallSites[CSi] = CallSites.back(); 614 CallSites.pop_back(); 615 } else { 616 CallSites.erase(CallSites.begin()+CSi); 617 } 618 --CSi; 619 620 Changed = true; 621 LocalChange = true; 622 } 623 } while (LocalChange); 624 625 return Changed; 626 } 627 628 // doFinalization - Remove now-dead linkonce functions at the end of 629 // processing to avoid breaking the SCC traversal. 630 bool Inliner::doFinalization(CallGraph &CG) { 631 return removeDeadFunctions(CG); 632 } 633 634 /// removeDeadFunctions - Remove dead functions that are not included in 635 /// DNR (Do Not Remove) list. 636 bool Inliner::removeDeadFunctions(CallGraph &CG, bool AlwaysInlineOnly) { 637 SmallVector<CallGraphNode*, 16> FunctionsToRemove; 638 639 // Scan for all of the functions, looking for ones that should now be removed 640 // from the program. Insert the dead ones in the FunctionsToRemove set. 641 for (CallGraph::iterator I = CG.begin(), E = CG.end(); I != E; ++I) { 642 CallGraphNode *CGN = I->second; 643 Function *F = CGN->getFunction(); 644 if (!F || F->isDeclaration()) 645 continue; 646 647 // Handle the case when this function is called and we only want to care 648 // about always-inline functions. This is a bit of a hack to share code 649 // between here and the InlineAlways pass. 650 if (AlwaysInlineOnly && !F->hasFnAttribute(Attribute::AlwaysInline)) 651 continue; 652 653 // If the only remaining users of the function are dead constants, remove 654 // them. 655 F->removeDeadConstantUsers(); 656 657 if (!F->isDefTriviallyDead()) 658 continue; 659 660 // It is unsafe to drop a function with discardable linkage from a COMDAT 661 // without also dropping the other members of the COMDAT. 662 // The inliner doesn't visit non-function entities which are in COMDAT 663 // groups so it is unsafe to do so *unless* the linkage is local. 664 if (!F->hasLocalLinkage() && F->hasComdat()) 665 continue; 666 667 // Remove any call graph edges from the function to its callees. 668 CGN->removeAllCalledFunctions(); 669 670 // Remove any edges from the external node to the function's call graph 671 // node. These edges might have been made irrelegant due to 672 // optimization of the program. 673 CG.getExternalCallingNode()->removeAnyCallEdgeTo(CGN); 674 675 // Removing the node for callee from the call graph and delete it. 676 FunctionsToRemove.push_back(CGN); 677 } 678 if (FunctionsToRemove.empty()) 679 return false; 680 681 // Now that we know which functions to delete, do so. We didn't want to do 682 // this inline, because that would invalidate our CallGraph::iterator 683 // objects. :( 684 // 685 // Note that it doesn't matter that we are iterating over a non-stable order 686 // here to do this, it doesn't matter which order the functions are deleted 687 // in. 688 array_pod_sort(FunctionsToRemove.begin(), FunctionsToRemove.end()); 689 FunctionsToRemove.erase(std::unique(FunctionsToRemove.begin(), 690 FunctionsToRemove.end()), 691 FunctionsToRemove.end()); 692 for (SmallVectorImpl<CallGraphNode *>::iterator I = FunctionsToRemove.begin(), 693 E = FunctionsToRemove.end(); 694 I != E; ++I) { 695 delete CG.removeFunctionFromModule(*I); 696 ++NumDeleted; 697 } 698 return true; 699 } 700