1 //===- Inliner.cpp - Code common to all inliners --------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the mechanics required to implement inlining without 11 // missing any calls and updating the call graph. The decisions of which calls 12 // are profitable to inline are implemented elsewhere. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Transforms/IPO/InlinerPass.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/Analysis/CallGraph.h" 21 #include "llvm/Analysis/InlineCost.h" 22 #include "llvm/IR/CallSite.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/DiagnosticInfo.h" 25 #include "llvm/IR/Instructions.h" 26 #include "llvm/IR/IntrinsicInst.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/Support/CommandLine.h" 29 #include "llvm/Support/Debug.h" 30 #include "llvm/Support/raw_ostream.h" 31 #include "llvm/Target/TargetLibraryInfo.h" 32 #include "llvm/Transforms/Utils/Cloning.h" 33 #include "llvm/Transforms/Utils/Local.h" 34 using namespace llvm; 35 36 #define DEBUG_TYPE "inline" 37 38 STATISTIC(NumInlined, "Number of functions inlined"); 39 STATISTIC(NumCallsDeleted, "Number of call sites deleted, not inlined"); 40 STATISTIC(NumDeleted, "Number of functions deleted because all callers found"); 41 STATISTIC(NumMergedAllocas, "Number of allocas merged together"); 42 43 // This weirdly named statistic tracks the number of times that, when attempting 44 // to inline a function A into B, we analyze the callers of B in order to see 45 // if those would be more profitable and blocked inline steps. 46 STATISTIC(NumCallerCallersAnalyzed, "Number of caller-callers analyzed"); 47 48 static cl::opt<int> 49 InlineLimit("inline-threshold", cl::Hidden, cl::init(225), cl::ZeroOrMore, 50 cl::desc("Control the amount of inlining to perform (default = 225)")); 51 52 static cl::opt<int> 53 HintThreshold("inlinehint-threshold", cl::Hidden, cl::init(325), 54 cl::desc("Threshold for inlining functions with inline hint")); 55 56 // We instroduce this threshold to help performance of instrumentation based 57 // PGO before we actually hook up inliner with analysis passes such as BPI and 58 // BFI. 59 static cl::opt<int> 60 ColdThreshold("inlinecold-threshold", cl::Hidden, cl::init(225), 61 cl::desc("Threshold for inlining functions with cold attribute")); 62 63 // Threshold to use when optsize is specified (and there is no -inline-limit). 64 const int OptSizeThreshold = 75; 65 66 Inliner::Inliner(char &ID) 67 : CallGraphSCCPass(ID), InlineThreshold(InlineLimit), InsertLifetime(true) {} 68 69 Inliner::Inliner(char &ID, int Threshold, bool InsertLifetime) 70 : CallGraphSCCPass(ID), InlineThreshold(InlineLimit.getNumOccurrences() > 0 ? 71 InlineLimit : Threshold), 72 InsertLifetime(InsertLifetime) {} 73 74 /// getAnalysisUsage - For this class, we declare that we require and preserve 75 /// the call graph. If the derived class implements this method, it should 76 /// always explicitly call the implementation here. 77 void Inliner::getAnalysisUsage(AnalysisUsage &AU) const { 78 AU.addRequired<AliasAnalysis>(); 79 CallGraphSCCPass::getAnalysisUsage(AU); 80 } 81 82 83 typedef DenseMap<ArrayType*, std::vector<AllocaInst*> > 84 InlinedArrayAllocasTy; 85 86 /// \brief If the inlined function had a higher stack protection level than the 87 /// calling function, then bump up the caller's stack protection level. 88 static void AdjustCallerSSPLevel(Function *Caller, Function *Callee) { 89 // If upgrading the SSP attribute, clear out the old SSP Attributes first. 90 // Having multiple SSP attributes doesn't actually hurt, but it adds useless 91 // clutter to the IR. 92 AttrBuilder B; 93 B.addAttribute(Attribute::StackProtect) 94 .addAttribute(Attribute::StackProtectStrong); 95 AttributeSet OldSSPAttr = AttributeSet::get(Caller->getContext(), 96 AttributeSet::FunctionIndex, 97 B); 98 AttributeSet CallerAttr = Caller->getAttributes(), 99 CalleeAttr = Callee->getAttributes(); 100 101 if (CalleeAttr.hasAttribute(AttributeSet::FunctionIndex, 102 Attribute::StackProtectReq)) { 103 Caller->removeAttributes(AttributeSet::FunctionIndex, OldSSPAttr); 104 Caller->addFnAttr(Attribute::StackProtectReq); 105 } else if (CalleeAttr.hasAttribute(AttributeSet::FunctionIndex, 106 Attribute::StackProtectStrong) && 107 !CallerAttr.hasAttribute(AttributeSet::FunctionIndex, 108 Attribute::StackProtectReq)) { 109 Caller->removeAttributes(AttributeSet::FunctionIndex, OldSSPAttr); 110 Caller->addFnAttr(Attribute::StackProtectStrong); 111 } else if (CalleeAttr.hasAttribute(AttributeSet::FunctionIndex, 112 Attribute::StackProtect) && 113 !CallerAttr.hasAttribute(AttributeSet::FunctionIndex, 114 Attribute::StackProtectReq) && 115 !CallerAttr.hasAttribute(AttributeSet::FunctionIndex, 116 Attribute::StackProtectStrong)) 117 Caller->addFnAttr(Attribute::StackProtect); 118 } 119 120 /// InlineCallIfPossible - If it is possible to inline the specified call site, 121 /// do so and update the CallGraph for this operation. 122 /// 123 /// This function also does some basic book-keeping to update the IR. The 124 /// InlinedArrayAllocas map keeps track of any allocas that are already 125 /// available from other functions inlined into the caller. If we are able to 126 /// inline this call site we attempt to reuse already available allocas or add 127 /// any new allocas to the set if not possible. 128 static bool InlineCallIfPossible(CallSite CS, InlineFunctionInfo &IFI, 129 InlinedArrayAllocasTy &InlinedArrayAllocas, 130 int InlineHistory, bool InsertLifetime, 131 const DataLayout *DL) { 132 Function *Callee = CS.getCalledFunction(); 133 Function *Caller = CS.getCaller(); 134 135 // Try to inline the function. Get the list of static allocas that were 136 // inlined. 137 if (!InlineFunction(CS, IFI, InsertLifetime)) 138 return false; 139 140 AdjustCallerSSPLevel(Caller, Callee); 141 142 // Look at all of the allocas that we inlined through this call site. If we 143 // have already inlined other allocas through other calls into this function, 144 // then we know that they have disjoint lifetimes and that we can merge them. 145 // 146 // There are many heuristics possible for merging these allocas, and the 147 // different options have different tradeoffs. One thing that we *really* 148 // don't want to hurt is SRoA: once inlining happens, often allocas are no 149 // longer address taken and so they can be promoted. 150 // 151 // Our "solution" for that is to only merge allocas whose outermost type is an 152 // array type. These are usually not promoted because someone is using a 153 // variable index into them. These are also often the most important ones to 154 // merge. 155 // 156 // A better solution would be to have real memory lifetime markers in the IR 157 // and not have the inliner do any merging of allocas at all. This would 158 // allow the backend to do proper stack slot coloring of all allocas that 159 // *actually make it to the backend*, which is really what we want. 160 // 161 // Because we don't have this information, we do this simple and useful hack. 162 // 163 SmallPtrSet<AllocaInst*, 16> UsedAllocas; 164 165 // When processing our SCC, check to see if CS was inlined from some other 166 // call site. For example, if we're processing "A" in this code: 167 // A() { B() } 168 // B() { x = alloca ... C() } 169 // C() { y = alloca ... } 170 // Assume that C was not inlined into B initially, and so we're processing A 171 // and decide to inline B into A. Doing this makes an alloca available for 172 // reuse and makes a callsite (C) available for inlining. When we process 173 // the C call site we don't want to do any alloca merging between X and Y 174 // because their scopes are not disjoint. We could make this smarter by 175 // keeping track of the inline history for each alloca in the 176 // InlinedArrayAllocas but this isn't likely to be a significant win. 177 if (InlineHistory != -1) // Only do merging for top-level call sites in SCC. 178 return true; 179 180 // Loop over all the allocas we have so far and see if they can be merged with 181 // a previously inlined alloca. If not, remember that we had it. 182 for (unsigned AllocaNo = 0, e = IFI.StaticAllocas.size(); 183 AllocaNo != e; ++AllocaNo) { 184 AllocaInst *AI = IFI.StaticAllocas[AllocaNo]; 185 186 // Don't bother trying to merge array allocations (they will usually be 187 // canonicalized to be an allocation *of* an array), or allocations whose 188 // type is not itself an array (because we're afraid of pessimizing SRoA). 189 ArrayType *ATy = dyn_cast<ArrayType>(AI->getAllocatedType()); 190 if (!ATy || AI->isArrayAllocation()) 191 continue; 192 193 // Get the list of all available allocas for this array type. 194 std::vector<AllocaInst*> &AllocasForType = InlinedArrayAllocas[ATy]; 195 196 // Loop over the allocas in AllocasForType to see if we can reuse one. Note 197 // that we have to be careful not to reuse the same "available" alloca for 198 // multiple different allocas that we just inlined, we use the 'UsedAllocas' 199 // set to keep track of which "available" allocas are being used by this 200 // function. Also, AllocasForType can be empty of course! 201 bool MergedAwayAlloca = false; 202 for (unsigned i = 0, e = AllocasForType.size(); i != e; ++i) { 203 AllocaInst *AvailableAlloca = AllocasForType[i]; 204 205 unsigned Align1 = AI->getAlignment(), 206 Align2 = AvailableAlloca->getAlignment(); 207 // If we don't have data layout information, and only one alloca is using 208 // the target default, then we can't safely merge them because we can't 209 // pick the greater alignment. 210 if (!DL && (!Align1 || !Align2) && Align1 != Align2) 211 continue; 212 213 // The available alloca has to be in the right function, not in some other 214 // function in this SCC. 215 if (AvailableAlloca->getParent() != AI->getParent()) 216 continue; 217 218 // If the inlined function already uses this alloca then we can't reuse 219 // it. 220 if (!UsedAllocas.insert(AvailableAlloca)) 221 continue; 222 223 // Otherwise, we *can* reuse it, RAUW AI into AvailableAlloca and declare 224 // success! 225 DEBUG(dbgs() << " ***MERGED ALLOCA: " << *AI << "\n\t\tINTO: " 226 << *AvailableAlloca << '\n'); 227 228 AI->replaceAllUsesWith(AvailableAlloca); 229 230 if (Align1 != Align2) { 231 if (!Align1 || !Align2) { 232 assert(DL && "DataLayout required to compare default alignments"); 233 unsigned TypeAlign = DL->getABITypeAlignment(AI->getAllocatedType()); 234 235 Align1 = Align1 ? Align1 : TypeAlign; 236 Align2 = Align2 ? Align2 : TypeAlign; 237 } 238 239 if (Align1 > Align2) 240 AvailableAlloca->setAlignment(AI->getAlignment()); 241 } 242 243 AI->eraseFromParent(); 244 MergedAwayAlloca = true; 245 ++NumMergedAllocas; 246 IFI.StaticAllocas[AllocaNo] = nullptr; 247 break; 248 } 249 250 // If we already nuked the alloca, we're done with it. 251 if (MergedAwayAlloca) 252 continue; 253 254 // If we were unable to merge away the alloca either because there are no 255 // allocas of the right type available or because we reused them all 256 // already, remember that this alloca came from an inlined function and mark 257 // it used so we don't reuse it for other allocas from this inline 258 // operation. 259 AllocasForType.push_back(AI); 260 UsedAllocas.insert(AI); 261 } 262 263 return true; 264 } 265 266 unsigned Inliner::getInlineThreshold(CallSite CS) const { 267 int thres = InlineThreshold; // -inline-threshold or else selected by 268 // overall opt level 269 270 // If -inline-threshold is not given, listen to the optsize attribute when it 271 // would decrease the threshold. 272 Function *Caller = CS.getCaller(); 273 bool OptSize = Caller && !Caller->isDeclaration() && 274 Caller->getAttributes().hasAttribute(AttributeSet::FunctionIndex, 275 Attribute::OptimizeForSize); 276 if (!(InlineLimit.getNumOccurrences() > 0) && OptSize && 277 OptSizeThreshold < thres) 278 thres = OptSizeThreshold; 279 280 // Listen to the inlinehint attribute when it would increase the threshold 281 // and the caller does not need to minimize its size. 282 Function *Callee = CS.getCalledFunction(); 283 bool InlineHint = Callee && !Callee->isDeclaration() && 284 Callee->getAttributes().hasAttribute(AttributeSet::FunctionIndex, 285 Attribute::InlineHint); 286 if (InlineHint && HintThreshold > thres 287 && !Caller->getAttributes().hasAttribute(AttributeSet::FunctionIndex, 288 Attribute::MinSize)) 289 thres = HintThreshold; 290 291 // Listen to the cold attribute when it would decrease the threshold. 292 bool ColdCallee = Callee && !Callee->isDeclaration() && 293 Callee->getAttributes().hasAttribute(AttributeSet::FunctionIndex, 294 Attribute::Cold); 295 // Command line argument for InlineLimit will override the default 296 // ColdThreshold. If we have -inline-threshold but no -inlinecold-threshold, 297 // do not use the default cold threshold even if it is smaller. 298 if ((InlineLimit.getNumOccurrences() == 0 || 299 ColdThreshold.getNumOccurrences() > 0) && ColdCallee && 300 ColdThreshold < thres) 301 thres = ColdThreshold; 302 303 return thres; 304 } 305 306 static void emitAnalysis(CallSite CS, const Twine &Msg) { 307 Function *Caller = CS.getCaller(); 308 LLVMContext &Ctx = Caller->getContext(); 309 DebugLoc DLoc = CS.getInstruction()->getDebugLoc(); 310 emitOptimizationRemarkAnalysis(Ctx, DEBUG_TYPE, *Caller, DLoc, Msg); 311 } 312 313 /// shouldInline - Return true if the inliner should attempt to inline 314 /// at the given CallSite. 315 bool Inliner::shouldInline(CallSite CS) { 316 InlineCost IC = getInlineCost(CS); 317 318 if (IC.isAlways()) { 319 DEBUG(dbgs() << " Inlining: cost=always" 320 << ", Call: " << *CS.getInstruction() << "\n"); 321 emitAnalysis(CS, Twine(CS.getCalledFunction()->getName()) + 322 " should always be inlined (cost=always)"); 323 return true; 324 } 325 326 if (IC.isNever()) { 327 DEBUG(dbgs() << " NOT Inlining: cost=never" 328 << ", Call: " << *CS.getInstruction() << "\n"); 329 emitAnalysis(CS, Twine(CS.getCalledFunction()->getName() + 330 " should never be inlined (cost=never)")); 331 return false; 332 } 333 334 Function *Caller = CS.getCaller(); 335 if (!IC) { 336 DEBUG(dbgs() << " NOT Inlining: cost=" << IC.getCost() 337 << ", thres=" << (IC.getCostDelta() + IC.getCost()) 338 << ", Call: " << *CS.getInstruction() << "\n"); 339 emitAnalysis(CS, Twine(CS.getCalledFunction()->getName() + 340 " too costly to inline (cost=") + 341 Twine(IC.getCost()) + ", threshold=" + 342 Twine(IC.getCostDelta() + IC.getCost()) + ")"); 343 return false; 344 } 345 346 // Try to detect the case where the current inlining candidate caller (call 347 // it B) is a static or linkonce-ODR function and is an inlining candidate 348 // elsewhere, and the current candidate callee (call it C) is large enough 349 // that inlining it into B would make B too big to inline later. In these 350 // circumstances it may be best not to inline C into B, but to inline B into 351 // its callers. 352 // 353 // This only applies to static and linkonce-ODR functions because those are 354 // expected to be available for inlining in the translation units where they 355 // are used. Thus we will always have the opportunity to make local inlining 356 // decisions. Importantly the linkonce-ODR linkage covers inline functions 357 // and templates in C++. 358 // 359 // FIXME: All of this logic should be sunk into getInlineCost. It relies on 360 // the internal implementation of the inline cost metrics rather than 361 // treating them as truly abstract units etc. 362 if (Caller->hasLocalLinkage() || Caller->hasLinkOnceODRLinkage()) { 363 int TotalSecondaryCost = 0; 364 // The candidate cost to be imposed upon the current function. 365 int CandidateCost = IC.getCost() - (InlineConstants::CallPenalty + 1); 366 // This bool tracks what happens if we do NOT inline C into B. 367 bool callerWillBeRemoved = Caller->hasLocalLinkage(); 368 // This bool tracks what happens if we DO inline C into B. 369 bool inliningPreventsSomeOuterInline = false; 370 for (User *U : Caller->users()) { 371 CallSite CS2(U); 372 373 // If this isn't a call to Caller (it could be some other sort 374 // of reference) skip it. Such references will prevent the caller 375 // from being removed. 376 if (!CS2 || CS2.getCalledFunction() != Caller) { 377 callerWillBeRemoved = false; 378 continue; 379 } 380 381 InlineCost IC2 = getInlineCost(CS2); 382 ++NumCallerCallersAnalyzed; 383 if (!IC2) { 384 callerWillBeRemoved = false; 385 continue; 386 } 387 if (IC2.isAlways()) 388 continue; 389 390 // See if inlining or original callsite would erase the cost delta of 391 // this callsite. We subtract off the penalty for the call instruction, 392 // which we would be deleting. 393 if (IC2.getCostDelta() <= CandidateCost) { 394 inliningPreventsSomeOuterInline = true; 395 TotalSecondaryCost += IC2.getCost(); 396 } 397 } 398 // If all outer calls to Caller would get inlined, the cost for the last 399 // one is set very low by getInlineCost, in anticipation that Caller will 400 // be removed entirely. We did not account for this above unless there 401 // is only one caller of Caller. 402 if (callerWillBeRemoved && !Caller->use_empty()) 403 TotalSecondaryCost += InlineConstants::LastCallToStaticBonus; 404 405 if (inliningPreventsSomeOuterInline && TotalSecondaryCost < IC.getCost()) { 406 DEBUG(dbgs() << " NOT Inlining: " << *CS.getInstruction() << 407 " Cost = " << IC.getCost() << 408 ", outer Cost = " << TotalSecondaryCost << '\n'); 409 emitAnalysis( 410 CS, Twine("Not inlining. Cost of inlining " + 411 CS.getCalledFunction()->getName() + 412 " increases the cost of inlining " + 413 CS.getCaller()->getName() + " in other contexts")); 414 return false; 415 } 416 } 417 418 DEBUG(dbgs() << " Inlining: cost=" << IC.getCost() 419 << ", thres=" << (IC.getCostDelta() + IC.getCost()) 420 << ", Call: " << *CS.getInstruction() << '\n'); 421 emitAnalysis( 422 CS, CS.getCalledFunction()->getName() + Twine(" can be inlined into ") + 423 CS.getCaller()->getName() + " with cost=" + Twine(IC.getCost()) + 424 " (threshold=" + Twine(IC.getCostDelta() + IC.getCost()) + ")"); 425 return true; 426 } 427 428 /// InlineHistoryIncludes - Return true if the specified inline history ID 429 /// indicates an inline history that includes the specified function. 430 static bool InlineHistoryIncludes(Function *F, int InlineHistoryID, 431 const SmallVectorImpl<std::pair<Function*, int> > &InlineHistory) { 432 while (InlineHistoryID != -1) { 433 assert(unsigned(InlineHistoryID) < InlineHistory.size() && 434 "Invalid inline history ID"); 435 if (InlineHistory[InlineHistoryID].first == F) 436 return true; 437 InlineHistoryID = InlineHistory[InlineHistoryID].second; 438 } 439 return false; 440 } 441 442 bool Inliner::runOnSCC(CallGraphSCC &SCC) { 443 CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph(); 444 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>(); 445 const DataLayout *DL = DLP ? &DLP->getDataLayout() : nullptr; 446 const TargetLibraryInfo *TLI = getAnalysisIfAvailable<TargetLibraryInfo>(); 447 AliasAnalysis *AA = &getAnalysis<AliasAnalysis>(); 448 449 SmallPtrSet<Function*, 8> SCCFunctions; 450 DEBUG(dbgs() << "Inliner visiting SCC:"); 451 for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) { 452 Function *F = (*I)->getFunction(); 453 if (F) SCCFunctions.insert(F); 454 DEBUG(dbgs() << " " << (F ? F->getName() : "INDIRECTNODE")); 455 } 456 457 // Scan through and identify all call sites ahead of time so that we only 458 // inline call sites in the original functions, not call sites that result 459 // from inlining other functions. 460 SmallVector<std::pair<CallSite, int>, 16> CallSites; 461 462 // When inlining a callee produces new call sites, we want to keep track of 463 // the fact that they were inlined from the callee. This allows us to avoid 464 // infinite inlining in some obscure cases. To represent this, we use an 465 // index into the InlineHistory vector. 466 SmallVector<std::pair<Function*, int>, 8> InlineHistory; 467 468 for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) { 469 Function *F = (*I)->getFunction(); 470 if (!F) continue; 471 472 for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) 473 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 474 CallSite CS(cast<Value>(I)); 475 // If this isn't a call, or it is a call to an intrinsic, it can 476 // never be inlined. 477 if (!CS || isa<IntrinsicInst>(I)) 478 continue; 479 480 // If this is a direct call to an external function, we can never inline 481 // it. If it is an indirect call, inlining may resolve it to be a 482 // direct call, so we keep it. 483 if (CS.getCalledFunction() && CS.getCalledFunction()->isDeclaration()) 484 continue; 485 486 CallSites.push_back(std::make_pair(CS, -1)); 487 } 488 } 489 490 DEBUG(dbgs() << ": " << CallSites.size() << " call sites.\n"); 491 492 // If there are no calls in this function, exit early. 493 if (CallSites.empty()) 494 return false; 495 496 // Now that we have all of the call sites, move the ones to functions in the 497 // current SCC to the end of the list. 498 unsigned FirstCallInSCC = CallSites.size(); 499 for (unsigned i = 0; i < FirstCallInSCC; ++i) 500 if (Function *F = CallSites[i].first.getCalledFunction()) 501 if (SCCFunctions.count(F)) 502 std::swap(CallSites[i--], CallSites[--FirstCallInSCC]); 503 504 505 InlinedArrayAllocasTy InlinedArrayAllocas; 506 InlineFunctionInfo InlineInfo(&CG, DL, AA); 507 508 // Now that we have all of the call sites, loop over them and inline them if 509 // it looks profitable to do so. 510 bool Changed = false; 511 bool LocalChange; 512 do { 513 LocalChange = false; 514 // Iterate over the outer loop because inlining functions can cause indirect 515 // calls to become direct calls. 516 for (unsigned CSi = 0; CSi != CallSites.size(); ++CSi) { 517 CallSite CS = CallSites[CSi].first; 518 519 Function *Caller = CS.getCaller(); 520 Function *Callee = CS.getCalledFunction(); 521 522 // If this call site is dead and it is to a readonly function, we should 523 // just delete the call instead of trying to inline it, regardless of 524 // size. This happens because IPSCCP propagates the result out of the 525 // call and then we're left with the dead call. 526 if (isInstructionTriviallyDead(CS.getInstruction(), TLI)) { 527 DEBUG(dbgs() << " -> Deleting dead call: " 528 << *CS.getInstruction() << "\n"); 529 // Update the call graph by deleting the edge from Callee to Caller. 530 CG[Caller]->removeCallEdgeFor(CS); 531 CS.getInstruction()->eraseFromParent(); 532 ++NumCallsDeleted; 533 } else { 534 // We can only inline direct calls to non-declarations. 535 if (!Callee || Callee->isDeclaration()) continue; 536 537 // If this call site was obtained by inlining another function, verify 538 // that the include path for the function did not include the callee 539 // itself. If so, we'd be recursively inlining the same function, 540 // which would provide the same callsites, which would cause us to 541 // infinitely inline. 542 int InlineHistoryID = CallSites[CSi].second; 543 if (InlineHistoryID != -1 && 544 InlineHistoryIncludes(Callee, InlineHistoryID, InlineHistory)) 545 continue; 546 547 LLVMContext &CallerCtx = Caller->getContext(); 548 549 // Get DebugLoc to report. CS will be invalid after Inliner. 550 DebugLoc DLoc = CS.getInstruction()->getDebugLoc(); 551 552 // If the policy determines that we should inline this function, 553 // try to do so. 554 if (!shouldInline(CS)) { 555 emitOptimizationRemarkMissed(CallerCtx, DEBUG_TYPE, *Caller, DLoc, 556 Twine(Callee->getName() + 557 " will not be inlined into " + 558 Caller->getName())); 559 continue; 560 } 561 562 // Attempt to inline the function. 563 if (!InlineCallIfPossible(CS, InlineInfo, InlinedArrayAllocas, 564 InlineHistoryID, InsertLifetime, DL)) { 565 emitOptimizationRemarkMissed(CallerCtx, DEBUG_TYPE, *Caller, DLoc, 566 Twine(Callee->getName() + 567 " will not be inlined into " + 568 Caller->getName())); 569 continue; 570 } 571 ++NumInlined; 572 573 // Report the inline decision. 574 emitOptimizationRemark( 575 CallerCtx, DEBUG_TYPE, *Caller, DLoc, 576 Twine(Callee->getName() + " inlined into " + Caller->getName())); 577 578 // If inlining this function gave us any new call sites, throw them 579 // onto our worklist to process. They are useful inline candidates. 580 if (!InlineInfo.InlinedCalls.empty()) { 581 // Create a new inline history entry for this, so that we remember 582 // that these new callsites came about due to inlining Callee. 583 int NewHistoryID = InlineHistory.size(); 584 InlineHistory.push_back(std::make_pair(Callee, InlineHistoryID)); 585 586 for (unsigned i = 0, e = InlineInfo.InlinedCalls.size(); 587 i != e; ++i) { 588 Value *Ptr = InlineInfo.InlinedCalls[i]; 589 CallSites.push_back(std::make_pair(CallSite(Ptr), NewHistoryID)); 590 } 591 } 592 } 593 594 // If we inlined or deleted the last possible call site to the function, 595 // delete the function body now. 596 if (Callee && Callee->use_empty() && Callee->hasLocalLinkage() && 597 // TODO: Can remove if in SCC now. 598 !SCCFunctions.count(Callee) && 599 600 // The function may be apparently dead, but if there are indirect 601 // callgraph references to the node, we cannot delete it yet, this 602 // could invalidate the CGSCC iterator. 603 CG[Callee]->getNumReferences() == 0) { 604 DEBUG(dbgs() << " -> Deleting dead function: " 605 << Callee->getName() << "\n"); 606 CallGraphNode *CalleeNode = CG[Callee]; 607 608 // Remove any call graph edges from the callee to its callees. 609 CalleeNode->removeAllCalledFunctions(); 610 611 // Removing the node for callee from the call graph and delete it. 612 delete CG.removeFunctionFromModule(CalleeNode); 613 ++NumDeleted; 614 } 615 616 // Remove this call site from the list. If possible, use 617 // swap/pop_back for efficiency, but do not use it if doing so would 618 // move a call site to a function in this SCC before the 619 // 'FirstCallInSCC' barrier. 620 if (SCC.isSingular()) { 621 CallSites[CSi] = CallSites.back(); 622 CallSites.pop_back(); 623 } else { 624 CallSites.erase(CallSites.begin()+CSi); 625 } 626 --CSi; 627 628 Changed = true; 629 LocalChange = true; 630 } 631 } while (LocalChange); 632 633 return Changed; 634 } 635 636 // doFinalization - Remove now-dead linkonce functions at the end of 637 // processing to avoid breaking the SCC traversal. 638 bool Inliner::doFinalization(CallGraph &CG) { 639 return removeDeadFunctions(CG); 640 } 641 642 /// removeDeadFunctions - Remove dead functions that are not included in 643 /// DNR (Do Not Remove) list. 644 bool Inliner::removeDeadFunctions(CallGraph &CG, bool AlwaysInlineOnly) { 645 SmallVector<CallGraphNode*, 16> FunctionsToRemove; 646 647 // Scan for all of the functions, looking for ones that should now be removed 648 // from the program. Insert the dead ones in the FunctionsToRemove set. 649 for (CallGraph::iterator I = CG.begin(), E = CG.end(); I != E; ++I) { 650 CallGraphNode *CGN = I->second; 651 Function *F = CGN->getFunction(); 652 if (!F || F->isDeclaration()) 653 continue; 654 655 // Handle the case when this function is called and we only want to care 656 // about always-inline functions. This is a bit of a hack to share code 657 // between here and the InlineAlways pass. 658 if (AlwaysInlineOnly && 659 !F->getAttributes().hasAttribute(AttributeSet::FunctionIndex, 660 Attribute::AlwaysInline)) 661 continue; 662 663 // If the only remaining users of the function are dead constants, remove 664 // them. 665 F->removeDeadConstantUsers(); 666 667 if (!F->isDefTriviallyDead()) 668 continue; 669 670 // Remove any call graph edges from the function to its callees. 671 CGN->removeAllCalledFunctions(); 672 673 // Remove any edges from the external node to the function's call graph 674 // node. These edges might have been made irrelegant due to 675 // optimization of the program. 676 CG.getExternalCallingNode()->removeAnyCallEdgeTo(CGN); 677 678 // Removing the node for callee from the call graph and delete it. 679 FunctionsToRemove.push_back(CGN); 680 } 681 if (FunctionsToRemove.empty()) 682 return false; 683 684 // Now that we know which functions to delete, do so. We didn't want to do 685 // this inline, because that would invalidate our CallGraph::iterator 686 // objects. :( 687 // 688 // Note that it doesn't matter that we are iterating over a non-stable order 689 // here to do this, it doesn't matter which order the functions are deleted 690 // in. 691 array_pod_sort(FunctionsToRemove.begin(), FunctionsToRemove.end()); 692 FunctionsToRemove.erase(std::unique(FunctionsToRemove.begin(), 693 FunctionsToRemove.end()), 694 FunctionsToRemove.end()); 695 for (SmallVectorImpl<CallGraphNode *>::iterator I = FunctionsToRemove.begin(), 696 E = FunctionsToRemove.end(); 697 I != E; ++I) { 698 delete CG.removeFunctionFromModule(*I); 699 ++NumDeleted; 700 } 701 return true; 702 } 703