1 //===- Inliner.cpp - Code common to all inliners --------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the mechanics required to implement inlining without 10 // missing any calls and updating the call graph. The decisions of which calls 11 // are profitable to inline are implemented elsewhere. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/IPO/Inliner.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/None.h" 18 #include "llvm/ADT/Optional.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/ScopeExit.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/Analysis/AssumptionCache.h" 27 #include "llvm/Analysis/BasicAliasAnalysis.h" 28 #include "llvm/Analysis/BlockFrequencyInfo.h" 29 #include "llvm/Analysis/CGSCCPassManager.h" 30 #include "llvm/Analysis/CallGraph.h" 31 #include "llvm/Analysis/GlobalsModRef.h" 32 #include "llvm/Analysis/InlineAdvisor.h" 33 #include "llvm/Analysis/InlineCost.h" 34 #include "llvm/Analysis/InlineOrder.h" 35 #include "llvm/Analysis/LazyCallGraph.h" 36 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 37 #include "llvm/Analysis/ProfileSummaryInfo.h" 38 #include "llvm/Analysis/TargetLibraryInfo.h" 39 #include "llvm/Analysis/TargetTransformInfo.h" 40 #include "llvm/Analysis/Utils/ImportedFunctionsInliningStatistics.h" 41 #include "llvm/IR/Attributes.h" 42 #include "llvm/IR/BasicBlock.h" 43 #include "llvm/IR/DataLayout.h" 44 #include "llvm/IR/DebugLoc.h" 45 #include "llvm/IR/DerivedTypes.h" 46 #include "llvm/IR/DiagnosticInfo.h" 47 #include "llvm/IR/Function.h" 48 #include "llvm/IR/InstIterator.h" 49 #include "llvm/IR/Instruction.h" 50 #include "llvm/IR/Instructions.h" 51 #include "llvm/IR/IntrinsicInst.h" 52 #include "llvm/IR/Metadata.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/IR/PassManager.h" 55 #include "llvm/IR/User.h" 56 #include "llvm/IR/Value.h" 57 #include "llvm/Pass.h" 58 #include "llvm/Support/Casting.h" 59 #include "llvm/Support/CommandLine.h" 60 #include "llvm/Support/Debug.h" 61 #include "llvm/Support/raw_ostream.h" 62 #include "llvm/Transforms/Utils/CallPromotionUtils.h" 63 #include "llvm/Transforms/Utils/Cloning.h" 64 #include "llvm/Transforms/Utils/Local.h" 65 #include "llvm/Transforms/Utils/ModuleUtils.h" 66 #include <algorithm> 67 #include <cassert> 68 #include <functional> 69 #include <sstream> 70 #include <tuple> 71 #include <utility> 72 #include <vector> 73 74 using namespace llvm; 75 76 #define DEBUG_TYPE "inline" 77 78 STATISTIC(NumInlined, "Number of functions inlined"); 79 STATISTIC(NumCallsDeleted, "Number of call sites deleted, not inlined"); 80 STATISTIC(NumDeleted, "Number of functions deleted because all callers found"); 81 STATISTIC(NumMergedAllocas, "Number of allocas merged together"); 82 83 /// Flag to disable manual alloca merging. 84 /// 85 /// Merging of allocas was originally done as a stack-size saving technique 86 /// prior to LLVM's code generator having support for stack coloring based on 87 /// lifetime markers. It is now in the process of being removed. To experiment 88 /// with disabling it and relying fully on lifetime marker based stack 89 /// coloring, you can pass this flag to LLVM. 90 static cl::opt<bool> 91 DisableInlinedAllocaMerging("disable-inlined-alloca-merging", 92 cl::init(false), cl::Hidden); 93 94 extern cl::opt<InlinerFunctionImportStatsOpts> InlinerFunctionImportStats; 95 96 static cl::opt<std::string> CGSCCInlineReplayFile( 97 "cgscc-inline-replay", cl::init(""), cl::value_desc("filename"), 98 cl::desc( 99 "Optimization remarks file containing inline remarks to be replayed " 100 "by inlining from cgscc inline remarks."), 101 cl::Hidden); 102 103 static cl::opt<bool> InlineEnablePriorityOrder( 104 "inline-enable-priority-order", cl::Hidden, cl::init(false), 105 cl::desc("Enable the priority inline order for the inliner")); 106 107 LegacyInlinerBase::LegacyInlinerBase(char &ID) : CallGraphSCCPass(ID) {} 108 109 LegacyInlinerBase::LegacyInlinerBase(char &ID, bool InsertLifetime) 110 : CallGraphSCCPass(ID), InsertLifetime(InsertLifetime) {} 111 112 /// For this class, we declare that we require and preserve the call graph. 113 /// If the derived class implements this method, it should 114 /// always explicitly call the implementation here. 115 void LegacyInlinerBase::getAnalysisUsage(AnalysisUsage &AU) const { 116 AU.addRequired<AssumptionCacheTracker>(); 117 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 118 AU.addRequired<TargetLibraryInfoWrapperPass>(); 119 getAAResultsAnalysisUsage(AU); 120 CallGraphSCCPass::getAnalysisUsage(AU); 121 } 122 123 using InlinedArrayAllocasTy = DenseMap<ArrayType *, std::vector<AllocaInst *>>; 124 125 /// Look at all of the allocas that we inlined through this call site. If we 126 /// have already inlined other allocas through other calls into this function, 127 /// then we know that they have disjoint lifetimes and that we can merge them. 128 /// 129 /// There are many heuristics possible for merging these allocas, and the 130 /// different options have different tradeoffs. One thing that we *really* 131 /// don't want to hurt is SRoA: once inlining happens, often allocas are no 132 /// longer address taken and so they can be promoted. 133 /// 134 /// Our "solution" for that is to only merge allocas whose outermost type is an 135 /// array type. These are usually not promoted because someone is using a 136 /// variable index into them. These are also often the most important ones to 137 /// merge. 138 /// 139 /// A better solution would be to have real memory lifetime markers in the IR 140 /// and not have the inliner do any merging of allocas at all. This would 141 /// allow the backend to do proper stack slot coloring of all allocas that 142 /// *actually make it to the backend*, which is really what we want. 143 /// 144 /// Because we don't have this information, we do this simple and useful hack. 145 static void mergeInlinedArrayAllocas(Function *Caller, InlineFunctionInfo &IFI, 146 InlinedArrayAllocasTy &InlinedArrayAllocas, 147 int InlineHistory) { 148 SmallPtrSet<AllocaInst *, 16> UsedAllocas; 149 150 // When processing our SCC, check to see if the call site was inlined from 151 // some other call site. For example, if we're processing "A" in this code: 152 // A() { B() } 153 // B() { x = alloca ... C() } 154 // C() { y = alloca ... } 155 // Assume that C was not inlined into B initially, and so we're processing A 156 // and decide to inline B into A. Doing this makes an alloca available for 157 // reuse and makes a callsite (C) available for inlining. When we process 158 // the C call site we don't want to do any alloca merging between X and Y 159 // because their scopes are not disjoint. We could make this smarter by 160 // keeping track of the inline history for each alloca in the 161 // InlinedArrayAllocas but this isn't likely to be a significant win. 162 if (InlineHistory != -1) // Only do merging for top-level call sites in SCC. 163 return; 164 165 // Loop over all the allocas we have so far and see if they can be merged with 166 // a previously inlined alloca. If not, remember that we had it. 167 for (unsigned AllocaNo = 0, E = IFI.StaticAllocas.size(); AllocaNo != E; 168 ++AllocaNo) { 169 AllocaInst *AI = IFI.StaticAllocas[AllocaNo]; 170 171 // Don't bother trying to merge array allocations (they will usually be 172 // canonicalized to be an allocation *of* an array), or allocations whose 173 // type is not itself an array (because we're afraid of pessimizing SRoA). 174 ArrayType *ATy = dyn_cast<ArrayType>(AI->getAllocatedType()); 175 if (!ATy || AI->isArrayAllocation()) 176 continue; 177 178 // Get the list of all available allocas for this array type. 179 std::vector<AllocaInst *> &AllocasForType = InlinedArrayAllocas[ATy]; 180 181 // Loop over the allocas in AllocasForType to see if we can reuse one. Note 182 // that we have to be careful not to reuse the same "available" alloca for 183 // multiple different allocas that we just inlined, we use the 'UsedAllocas' 184 // set to keep track of which "available" allocas are being used by this 185 // function. Also, AllocasForType can be empty of course! 186 bool MergedAwayAlloca = false; 187 for (AllocaInst *AvailableAlloca : AllocasForType) { 188 Align Align1 = AI->getAlign(); 189 Align Align2 = AvailableAlloca->getAlign(); 190 191 // The available alloca has to be in the right function, not in some other 192 // function in this SCC. 193 if (AvailableAlloca->getParent() != AI->getParent()) 194 continue; 195 196 // If the inlined function already uses this alloca then we can't reuse 197 // it. 198 if (!UsedAllocas.insert(AvailableAlloca).second) 199 continue; 200 201 // Otherwise, we *can* reuse it, RAUW AI into AvailableAlloca and declare 202 // success! 203 LLVM_DEBUG(dbgs() << " ***MERGED ALLOCA: " << *AI 204 << "\n\t\tINTO: " << *AvailableAlloca << '\n'); 205 206 // Move affected dbg.declare calls immediately after the new alloca to 207 // avoid the situation when a dbg.declare precedes its alloca. 208 if (auto *L = LocalAsMetadata::getIfExists(AI)) 209 if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L)) 210 for (User *U : MDV->users()) 211 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(U)) 212 DDI->moveBefore(AvailableAlloca->getNextNode()); 213 214 AI->replaceAllUsesWith(AvailableAlloca); 215 216 if (Align1 > Align2) 217 AvailableAlloca->setAlignment(AI->getAlign()); 218 219 AI->eraseFromParent(); 220 MergedAwayAlloca = true; 221 ++NumMergedAllocas; 222 IFI.StaticAllocas[AllocaNo] = nullptr; 223 break; 224 } 225 226 // If we already nuked the alloca, we're done with it. 227 if (MergedAwayAlloca) 228 continue; 229 230 // If we were unable to merge away the alloca either because there are no 231 // allocas of the right type available or because we reused them all 232 // already, remember that this alloca came from an inlined function and mark 233 // it used so we don't reuse it for other allocas from this inline 234 // operation. 235 AllocasForType.push_back(AI); 236 UsedAllocas.insert(AI); 237 } 238 } 239 240 /// If it is possible to inline the specified call site, 241 /// do so and update the CallGraph for this operation. 242 /// 243 /// This function also does some basic book-keeping to update the IR. The 244 /// InlinedArrayAllocas map keeps track of any allocas that are already 245 /// available from other functions inlined into the caller. If we are able to 246 /// inline this call site we attempt to reuse already available allocas or add 247 /// any new allocas to the set if not possible. 248 static InlineResult inlineCallIfPossible( 249 CallBase &CB, InlineFunctionInfo &IFI, 250 InlinedArrayAllocasTy &InlinedArrayAllocas, int InlineHistory, 251 bool InsertLifetime, function_ref<AAResults &(Function &)> &AARGetter, 252 ImportedFunctionsInliningStatistics &ImportedFunctionsStats) { 253 Function *Callee = CB.getCalledFunction(); 254 Function *Caller = CB.getCaller(); 255 256 AAResults &AAR = AARGetter(*Callee); 257 258 // Try to inline the function. Get the list of static allocas that were 259 // inlined. 260 InlineResult IR = InlineFunction(CB, IFI, &AAR, InsertLifetime); 261 if (!IR.isSuccess()) 262 return IR; 263 264 if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No) 265 ImportedFunctionsStats.recordInline(*Caller, *Callee); 266 267 AttributeFuncs::mergeAttributesForInlining(*Caller, *Callee); 268 269 if (!DisableInlinedAllocaMerging) 270 mergeInlinedArrayAllocas(Caller, IFI, InlinedArrayAllocas, InlineHistory); 271 272 return IR; // success 273 } 274 275 /// Return true if the specified inline history ID 276 /// indicates an inline history that includes the specified function. 277 static bool inlineHistoryIncludes( 278 Function *F, int InlineHistoryID, 279 const SmallVectorImpl<std::pair<Function *, int>> &InlineHistory) { 280 while (InlineHistoryID != -1) { 281 assert(unsigned(InlineHistoryID) < InlineHistory.size() && 282 "Invalid inline history ID"); 283 if (InlineHistory[InlineHistoryID].first == F) 284 return true; 285 InlineHistoryID = InlineHistory[InlineHistoryID].second; 286 } 287 return false; 288 } 289 290 bool LegacyInlinerBase::doInitialization(CallGraph &CG) { 291 if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No) 292 ImportedFunctionsStats.setModuleInfo(CG.getModule()); 293 return false; // No changes to CallGraph. 294 } 295 296 bool LegacyInlinerBase::runOnSCC(CallGraphSCC &SCC) { 297 if (skipSCC(SCC)) 298 return false; 299 return inlineCalls(SCC); 300 } 301 302 static bool 303 inlineCallsImpl(CallGraphSCC &SCC, CallGraph &CG, 304 std::function<AssumptionCache &(Function &)> GetAssumptionCache, 305 ProfileSummaryInfo *PSI, 306 std::function<const TargetLibraryInfo &(Function &)> GetTLI, 307 bool InsertLifetime, 308 function_ref<InlineCost(CallBase &CB)> GetInlineCost, 309 function_ref<AAResults &(Function &)> AARGetter, 310 ImportedFunctionsInliningStatistics &ImportedFunctionsStats) { 311 SmallPtrSet<Function *, 8> SCCFunctions; 312 LLVM_DEBUG(dbgs() << "Inliner visiting SCC:"); 313 for (CallGraphNode *Node : SCC) { 314 Function *F = Node->getFunction(); 315 if (F) 316 SCCFunctions.insert(F); 317 LLVM_DEBUG(dbgs() << " " << (F ? F->getName() : "INDIRECTNODE")); 318 } 319 320 // Scan through and identify all call sites ahead of time so that we only 321 // inline call sites in the original functions, not call sites that result 322 // from inlining other functions. 323 SmallVector<std::pair<CallBase *, int>, 16> CallSites; 324 325 // When inlining a callee produces new call sites, we want to keep track of 326 // the fact that they were inlined from the callee. This allows us to avoid 327 // infinite inlining in some obscure cases. To represent this, we use an 328 // index into the InlineHistory vector. 329 SmallVector<std::pair<Function *, int>, 8> InlineHistory; 330 331 for (CallGraphNode *Node : SCC) { 332 Function *F = Node->getFunction(); 333 if (!F || F->isDeclaration()) 334 continue; 335 336 OptimizationRemarkEmitter ORE(F); 337 for (BasicBlock &BB : *F) 338 for (Instruction &I : BB) { 339 auto *CB = dyn_cast<CallBase>(&I); 340 // If this isn't a call, or it is a call to an intrinsic, it can 341 // never be inlined. 342 if (!CB || isa<IntrinsicInst>(I)) 343 continue; 344 345 // If this is a direct call to an external function, we can never inline 346 // it. If it is an indirect call, inlining may resolve it to be a 347 // direct call, so we keep it. 348 if (Function *Callee = CB->getCalledFunction()) 349 if (Callee->isDeclaration()) { 350 using namespace ore; 351 352 setInlineRemark(*CB, "unavailable definition"); 353 ORE.emit([&]() { 354 return OptimizationRemarkMissed(DEBUG_TYPE, "NoDefinition", &I) 355 << NV("Callee", Callee) << " will not be inlined into " 356 << NV("Caller", CB->getCaller()) 357 << " because its definition is unavailable" 358 << setIsVerbose(); 359 }); 360 continue; 361 } 362 363 CallSites.push_back(std::make_pair(CB, -1)); 364 } 365 } 366 367 LLVM_DEBUG(dbgs() << ": " << CallSites.size() << " call sites.\n"); 368 369 // If there are no calls in this function, exit early. 370 if (CallSites.empty()) 371 return false; 372 373 // Now that we have all of the call sites, move the ones to functions in the 374 // current SCC to the end of the list. 375 unsigned FirstCallInSCC = CallSites.size(); 376 for (unsigned I = 0; I < FirstCallInSCC; ++I) 377 if (Function *F = CallSites[I].first->getCalledFunction()) 378 if (SCCFunctions.count(F)) 379 std::swap(CallSites[I--], CallSites[--FirstCallInSCC]); 380 381 InlinedArrayAllocasTy InlinedArrayAllocas; 382 InlineFunctionInfo InlineInfo(&CG, GetAssumptionCache, PSI); 383 384 // Now that we have all of the call sites, loop over them and inline them if 385 // it looks profitable to do so. 386 bool Changed = false; 387 bool LocalChange; 388 do { 389 LocalChange = false; 390 // Iterate over the outer loop because inlining functions can cause indirect 391 // calls to become direct calls. 392 // CallSites may be modified inside so ranged for loop can not be used. 393 for (unsigned CSi = 0; CSi != CallSites.size(); ++CSi) { 394 auto &P = CallSites[CSi]; 395 CallBase &CB = *P.first; 396 const int InlineHistoryID = P.second; 397 398 Function *Caller = CB.getCaller(); 399 Function *Callee = CB.getCalledFunction(); 400 401 // We can only inline direct calls to non-declarations. 402 if (!Callee || Callee->isDeclaration()) 403 continue; 404 405 bool IsTriviallyDead = isInstructionTriviallyDead(&CB, &GetTLI(*Caller)); 406 407 if (!IsTriviallyDead) { 408 // If this call site was obtained by inlining another function, verify 409 // that the include path for the function did not include the callee 410 // itself. If so, we'd be recursively inlining the same function, 411 // which would provide the same callsites, which would cause us to 412 // infinitely inline. 413 if (InlineHistoryID != -1 && 414 inlineHistoryIncludes(Callee, InlineHistoryID, InlineHistory)) { 415 setInlineRemark(CB, "recursive"); 416 continue; 417 } 418 } 419 420 // FIXME for new PM: because of the old PM we currently generate ORE and 421 // in turn BFI on demand. With the new PM, the ORE dependency should 422 // just become a regular analysis dependency. 423 OptimizationRemarkEmitter ORE(Caller); 424 425 auto OIC = shouldInline(CB, GetInlineCost, ORE); 426 // If the policy determines that we should inline this function, 427 // delete the call instead. 428 if (!OIC) 429 continue; 430 431 // If this call site is dead and it is to a readonly function, we should 432 // just delete the call instead of trying to inline it, regardless of 433 // size. This happens because IPSCCP propagates the result out of the 434 // call and then we're left with the dead call. 435 if (IsTriviallyDead) { 436 LLVM_DEBUG(dbgs() << " -> Deleting dead call: " << CB << "\n"); 437 // Update the call graph by deleting the edge from Callee to Caller. 438 setInlineRemark(CB, "trivially dead"); 439 CG[Caller]->removeCallEdgeFor(CB); 440 CB.eraseFromParent(); 441 ++NumCallsDeleted; 442 } else { 443 // Get DebugLoc to report. CB will be invalid after Inliner. 444 DebugLoc DLoc = CB.getDebugLoc(); 445 BasicBlock *Block = CB.getParent(); 446 447 // Attempt to inline the function. 448 using namespace ore; 449 450 InlineResult IR = inlineCallIfPossible( 451 CB, InlineInfo, InlinedArrayAllocas, InlineHistoryID, 452 InsertLifetime, AARGetter, ImportedFunctionsStats); 453 if (!IR.isSuccess()) { 454 setInlineRemark(CB, std::string(IR.getFailureReason()) + "; " + 455 inlineCostStr(*OIC)); 456 ORE.emit([&]() { 457 return OptimizationRemarkMissed(DEBUG_TYPE, "NotInlined", DLoc, 458 Block) 459 << NV("Callee", Callee) << " will not be inlined into " 460 << NV("Caller", Caller) << ": " 461 << NV("Reason", IR.getFailureReason()); 462 }); 463 continue; 464 } 465 ++NumInlined; 466 467 emitInlinedInto(ORE, DLoc, Block, *Callee, *Caller, *OIC); 468 469 // If inlining this function gave us any new call sites, throw them 470 // onto our worklist to process. They are useful inline candidates. 471 if (!InlineInfo.InlinedCalls.empty()) { 472 // Create a new inline history entry for this, so that we remember 473 // that these new callsites came about due to inlining Callee. 474 int NewHistoryID = InlineHistory.size(); 475 InlineHistory.push_back(std::make_pair(Callee, InlineHistoryID)); 476 477 #ifndef NDEBUG 478 // Make sure no dupplicates in the inline candidates. This could 479 // happen when a callsite is simpilfied to reusing the return value 480 // of another callsite during function cloning, thus the other 481 // callsite will be reconsidered here. 482 DenseSet<CallBase *> DbgCallSites; 483 for (auto &II : CallSites) 484 DbgCallSites.insert(II.first); 485 #endif 486 487 for (Value *Ptr : InlineInfo.InlinedCalls) { 488 #ifndef NDEBUG 489 assert(DbgCallSites.count(dyn_cast<CallBase>(Ptr)) == 0); 490 #endif 491 CallSites.push_back( 492 std::make_pair(dyn_cast<CallBase>(Ptr), NewHistoryID)); 493 } 494 } 495 } 496 497 // If we inlined or deleted the last possible call site to the function, 498 // delete the function body now. 499 if (Callee && Callee->use_empty() && Callee->hasLocalLinkage() && 500 // TODO: Can remove if in SCC now. 501 !SCCFunctions.count(Callee) && 502 // The function may be apparently dead, but if there are indirect 503 // callgraph references to the node, we cannot delete it yet, this 504 // could invalidate the CGSCC iterator. 505 CG[Callee]->getNumReferences() == 0) { 506 LLVM_DEBUG(dbgs() << " -> Deleting dead function: " 507 << Callee->getName() << "\n"); 508 CallGraphNode *CalleeNode = CG[Callee]; 509 510 // Remove any call graph edges from the callee to its callees. 511 CalleeNode->removeAllCalledFunctions(); 512 513 // Removing the node for callee from the call graph and delete it. 514 delete CG.removeFunctionFromModule(CalleeNode); 515 ++NumDeleted; 516 } 517 518 // Remove this call site from the list. If possible, use 519 // swap/pop_back for efficiency, but do not use it if doing so would 520 // move a call site to a function in this SCC before the 521 // 'FirstCallInSCC' barrier. 522 if (SCC.isSingular()) { 523 CallSites[CSi] = CallSites.back(); 524 CallSites.pop_back(); 525 } else { 526 CallSites.erase(CallSites.begin() + CSi); 527 } 528 --CSi; 529 530 Changed = true; 531 LocalChange = true; 532 } 533 } while (LocalChange); 534 535 return Changed; 536 } 537 538 bool LegacyInlinerBase::inlineCalls(CallGraphSCC &SCC) { 539 CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph(); 540 ACT = &getAnalysis<AssumptionCacheTracker>(); 541 PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 542 GetTLI = [&](Function &F) -> const TargetLibraryInfo & { 543 return getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 544 }; 545 auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & { 546 return ACT->getAssumptionCache(F); 547 }; 548 return inlineCallsImpl( 549 SCC, CG, GetAssumptionCache, PSI, GetTLI, InsertLifetime, 550 [&](CallBase &CB) { return getInlineCost(CB); }, LegacyAARGetter(*this), 551 ImportedFunctionsStats); 552 } 553 554 /// Remove now-dead linkonce functions at the end of 555 /// processing to avoid breaking the SCC traversal. 556 bool LegacyInlinerBase::doFinalization(CallGraph &CG) { 557 if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No) 558 ImportedFunctionsStats.dump(InlinerFunctionImportStats == 559 InlinerFunctionImportStatsOpts::Verbose); 560 return removeDeadFunctions(CG); 561 } 562 563 /// Remove dead functions that are not included in DNR (Do Not Remove) list. 564 bool LegacyInlinerBase::removeDeadFunctions(CallGraph &CG, 565 bool AlwaysInlineOnly) { 566 SmallVector<CallGraphNode *, 16> FunctionsToRemove; 567 SmallVector<Function *, 16> DeadFunctionsInComdats; 568 569 auto RemoveCGN = [&](CallGraphNode *CGN) { 570 // Remove any call graph edges from the function to its callees. 571 CGN->removeAllCalledFunctions(); 572 573 // Remove any edges from the external node to the function's call graph 574 // node. These edges might have been made irrelegant due to 575 // optimization of the program. 576 CG.getExternalCallingNode()->removeAnyCallEdgeTo(CGN); 577 578 // Removing the node for callee from the call graph and delete it. 579 FunctionsToRemove.push_back(CGN); 580 }; 581 582 // Scan for all of the functions, looking for ones that should now be removed 583 // from the program. Insert the dead ones in the FunctionsToRemove set. 584 for (const auto &I : CG) { 585 CallGraphNode *CGN = I.second.get(); 586 Function *F = CGN->getFunction(); 587 if (!F || F->isDeclaration()) 588 continue; 589 590 // Handle the case when this function is called and we only want to care 591 // about always-inline functions. This is a bit of a hack to share code 592 // between here and the InlineAlways pass. 593 if (AlwaysInlineOnly && !F->hasFnAttribute(Attribute::AlwaysInline)) 594 continue; 595 596 // If the only remaining users of the function are dead constants, remove 597 // them. 598 F->removeDeadConstantUsers(); 599 600 if (!F->isDefTriviallyDead()) 601 continue; 602 603 // It is unsafe to drop a function with discardable linkage from a COMDAT 604 // without also dropping the other members of the COMDAT. 605 // The inliner doesn't visit non-function entities which are in COMDAT 606 // groups so it is unsafe to do so *unless* the linkage is local. 607 if (!F->hasLocalLinkage()) { 608 if (F->hasComdat()) { 609 DeadFunctionsInComdats.push_back(F); 610 continue; 611 } 612 } 613 614 RemoveCGN(CGN); 615 } 616 if (!DeadFunctionsInComdats.empty()) { 617 // Filter out the functions whose comdats remain alive. 618 filterDeadComdatFunctions(CG.getModule(), DeadFunctionsInComdats); 619 // Remove the rest. 620 for (Function *F : DeadFunctionsInComdats) 621 RemoveCGN(CG[F]); 622 } 623 624 if (FunctionsToRemove.empty()) 625 return false; 626 627 // Now that we know which functions to delete, do so. We didn't want to do 628 // this inline, because that would invalidate our CallGraph::iterator 629 // objects. :( 630 // 631 // Note that it doesn't matter that we are iterating over a non-stable order 632 // here to do this, it doesn't matter which order the functions are deleted 633 // in. 634 array_pod_sort(FunctionsToRemove.begin(), FunctionsToRemove.end()); 635 FunctionsToRemove.erase( 636 std::unique(FunctionsToRemove.begin(), FunctionsToRemove.end()), 637 FunctionsToRemove.end()); 638 for (CallGraphNode *CGN : FunctionsToRemove) { 639 delete CG.removeFunctionFromModule(CGN); 640 ++NumDeleted; 641 } 642 return true; 643 } 644 645 InlineAdvisor & 646 InlinerPass::getAdvisor(const ModuleAnalysisManagerCGSCCProxy::Result &MAM, 647 FunctionAnalysisManager &FAM, Module &M) { 648 if (OwnedAdvisor) 649 return *OwnedAdvisor; 650 651 auto *IAA = MAM.getCachedResult<InlineAdvisorAnalysis>(M); 652 if (!IAA) { 653 // It should still be possible to run the inliner as a stand-alone SCC pass, 654 // for test scenarios. In that case, we default to the 655 // DefaultInlineAdvisor, which doesn't need to keep state between SCC pass 656 // runs. It also uses just the default InlineParams. 657 // In this case, we need to use the provided FAM, which is valid for the 658 // duration of the inliner pass, and thus the lifetime of the owned advisor. 659 // The one we would get from the MAM can be invalidated as a result of the 660 // inliner's activity. 661 OwnedAdvisor = 662 std::make_unique<DefaultInlineAdvisor>(M, FAM, getInlineParams()); 663 664 if (!CGSCCInlineReplayFile.empty()) 665 OwnedAdvisor = std::make_unique<ReplayInlineAdvisor>( 666 M, FAM, M.getContext(), std::move(OwnedAdvisor), 667 CGSCCInlineReplayFile, 668 /*EmitRemarks=*/true); 669 670 return *OwnedAdvisor; 671 } 672 assert(IAA->getAdvisor() && 673 "Expected a present InlineAdvisorAnalysis also have an " 674 "InlineAdvisor initialized"); 675 return *IAA->getAdvisor(); 676 } 677 678 PreservedAnalyses InlinerPass::run(LazyCallGraph::SCC &InitialC, 679 CGSCCAnalysisManager &AM, LazyCallGraph &CG, 680 CGSCCUpdateResult &UR) { 681 const auto &MAMProxy = 682 AM.getResult<ModuleAnalysisManagerCGSCCProxy>(InitialC, CG); 683 bool Changed = false; 684 685 assert(InitialC.size() > 0 && "Cannot handle an empty SCC!"); 686 Module &M = *InitialC.begin()->getFunction().getParent(); 687 ProfileSummaryInfo *PSI = MAMProxy.getCachedResult<ProfileSummaryAnalysis>(M); 688 689 FunctionAnalysisManager &FAM = 690 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(InitialC, CG) 691 .getManager(); 692 693 InlineAdvisor &Advisor = getAdvisor(MAMProxy, FAM, M); 694 Advisor.onPassEntry(); 695 696 auto AdvisorOnExit = make_scope_exit([&] { Advisor.onPassExit(); }); 697 698 // We use a single common worklist for calls across the entire SCC. We 699 // process these in-order and append new calls introduced during inlining to 700 // the end. The PriorityInlineOrder is optional here, in which the smaller 701 // callee would have a higher priority to inline. 702 // 703 // Note that this particular order of processing is actually critical to 704 // avoid very bad behaviors. Consider *highly connected* call graphs where 705 // each function contains a small amount of code and a couple of calls to 706 // other functions. Because the LLVM inliner is fundamentally a bottom-up 707 // inliner, it can handle gracefully the fact that these all appear to be 708 // reasonable inlining candidates as it will flatten things until they become 709 // too big to inline, and then move on and flatten another batch. 710 // 711 // However, when processing call edges *within* an SCC we cannot rely on this 712 // bottom-up behavior. As a consequence, with heavily connected *SCCs* of 713 // functions we can end up incrementally inlining N calls into each of 714 // N functions because each incremental inlining decision looks good and we 715 // don't have a topological ordering to prevent explosions. 716 // 717 // To compensate for this, we don't process transitive edges made immediate 718 // by inlining until we've done one pass of inlining across the entire SCC. 719 // Large, highly connected SCCs still lead to some amount of code bloat in 720 // this model, but it is uniformly spread across all the functions in the SCC 721 // and eventually they all become too large to inline, rather than 722 // incrementally maknig a single function grow in a super linear fashion. 723 std::unique_ptr<InlineOrder<std::pair<CallBase *, int>>> Calls; 724 if (InlineEnablePriorityOrder) 725 Calls = std::make_unique<PriorityInlineOrder<InlineSizePriority>>(); 726 else 727 Calls = std::make_unique<DefaultInlineOrder<std::pair<CallBase *, int>>>(); 728 assert(Calls != nullptr && "Expected an initialized InlineOrder"); 729 730 // Populate the initial list of calls in this SCC. 731 for (auto &N : InitialC) { 732 auto &ORE = 733 FAM.getResult<OptimizationRemarkEmitterAnalysis>(N.getFunction()); 734 // We want to generally process call sites top-down in order for 735 // simplifications stemming from replacing the call with the returned value 736 // after inlining to be visible to subsequent inlining decisions. 737 // FIXME: Using instructions sequence is a really bad way to do this. 738 // Instead we should do an actual RPO walk of the function body. 739 for (Instruction &I : instructions(N.getFunction())) 740 if (auto *CB = dyn_cast<CallBase>(&I)) 741 if (Function *Callee = CB->getCalledFunction()) { 742 if (!Callee->isDeclaration()) 743 Calls->push({CB, -1}); 744 else if (!isa<IntrinsicInst>(I)) { 745 using namespace ore; 746 setInlineRemark(*CB, "unavailable definition"); 747 ORE.emit([&]() { 748 return OptimizationRemarkMissed(DEBUG_TYPE, "NoDefinition", &I) 749 << NV("Callee", Callee) << " will not be inlined into " 750 << NV("Caller", CB->getCaller()) 751 << " because its definition is unavailable" 752 << setIsVerbose(); 753 }); 754 } 755 } 756 } 757 if (Calls->empty()) 758 return PreservedAnalyses::all(); 759 760 // Capture updatable variable for the current SCC. 761 auto *C = &InitialC; 762 763 // When inlining a callee produces new call sites, we want to keep track of 764 // the fact that they were inlined from the callee. This allows us to avoid 765 // infinite inlining in some obscure cases. To represent this, we use an 766 // index into the InlineHistory vector. 767 SmallVector<std::pair<Function *, int>, 16> InlineHistory; 768 769 // Track a set vector of inlined callees so that we can augment the caller 770 // with all of their edges in the call graph before pruning out the ones that 771 // got simplified away. 772 SmallSetVector<Function *, 4> InlinedCallees; 773 774 // Track the dead functions to delete once finished with inlining calls. We 775 // defer deleting these to make it easier to handle the call graph updates. 776 SmallVector<Function *, 4> DeadFunctions; 777 778 // Loop forward over all of the calls. 779 while (!Calls->empty()) { 780 // We expect the calls to typically be batched with sequences of calls that 781 // have the same caller, so we first set up some shared infrastructure for 782 // this caller. We also do any pruning we can at this layer on the caller 783 // alone. 784 Function &F = *Calls->front().first->getCaller(); 785 LazyCallGraph::Node &N = *CG.lookup(F); 786 if (CG.lookupSCC(N) != C) { 787 Calls->pop(); 788 continue; 789 } 790 791 LLVM_DEBUG(dbgs() << "Inlining calls in: " << F.getName() << "\n" 792 << " Function size: " << F.getInstructionCount() 793 << "\n"); 794 795 auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & { 796 return FAM.getResult<AssumptionAnalysis>(F); 797 }; 798 799 // Now process as many calls as we have within this caller in the sequence. 800 // We bail out as soon as the caller has to change so we can update the 801 // call graph and prepare the context of that new caller. 802 bool DidInline = false; 803 while (!Calls->empty() && Calls->front().first->getCaller() == &F) { 804 auto P = Calls->pop(); 805 CallBase *CB = P.first; 806 const int InlineHistoryID = P.second; 807 Function &Callee = *CB->getCalledFunction(); 808 809 if (InlineHistoryID != -1 && 810 inlineHistoryIncludes(&Callee, InlineHistoryID, InlineHistory)) { 811 setInlineRemark(*CB, "recursive"); 812 continue; 813 } 814 815 // Check if this inlining may repeat breaking an SCC apart that has 816 // already been split once before. In that case, inlining here may 817 // trigger infinite inlining, much like is prevented within the inliner 818 // itself by the InlineHistory above, but spread across CGSCC iterations 819 // and thus hidden from the full inline history. 820 if (CG.lookupSCC(*CG.lookup(Callee)) == C && 821 UR.InlinedInternalEdges.count({&N, C})) { 822 LLVM_DEBUG(dbgs() << "Skipping inlining internal SCC edge from a node " 823 "previously split out of this SCC by inlining: " 824 << F.getName() << " -> " << Callee.getName() << "\n"); 825 setInlineRemark(*CB, "recursive SCC split"); 826 continue; 827 } 828 829 auto Advice = Advisor.getAdvice(*CB, OnlyMandatory); 830 // Check whether we want to inline this callsite. 831 if (!Advice->isInliningRecommended()) { 832 Advice->recordUnattemptedInlining(); 833 continue; 834 } 835 836 // Setup the data structure used to plumb customization into the 837 // `InlineFunction` routine. 838 InlineFunctionInfo IFI( 839 /*cg=*/nullptr, GetAssumptionCache, PSI, 840 &FAM.getResult<BlockFrequencyAnalysis>(*(CB->getCaller())), 841 &FAM.getResult<BlockFrequencyAnalysis>(Callee)); 842 843 InlineResult IR = 844 InlineFunction(*CB, IFI, &FAM.getResult<AAManager>(*CB->getCaller())); 845 if (!IR.isSuccess()) { 846 Advice->recordUnsuccessfulInlining(IR); 847 continue; 848 } 849 850 DidInline = true; 851 InlinedCallees.insert(&Callee); 852 ++NumInlined; 853 854 LLVM_DEBUG(dbgs() << " Size after inlining: " 855 << F.getInstructionCount() << "\n"); 856 857 // Add any new callsites to defined functions to the worklist. 858 if (!IFI.InlinedCallSites.empty()) { 859 int NewHistoryID = InlineHistory.size(); 860 InlineHistory.push_back({&Callee, InlineHistoryID}); 861 862 for (CallBase *ICB : reverse(IFI.InlinedCallSites)) { 863 Function *NewCallee = ICB->getCalledFunction(); 864 assert(!(NewCallee && NewCallee->isIntrinsic()) && 865 "Intrinsic calls should not be tracked."); 866 if (!NewCallee) { 867 // Try to promote an indirect (virtual) call without waiting for 868 // the post-inline cleanup and the next DevirtSCCRepeatedPass 869 // iteration because the next iteration may not happen and we may 870 // miss inlining it. 871 if (tryPromoteCall(*ICB)) 872 NewCallee = ICB->getCalledFunction(); 873 } 874 if (NewCallee) 875 if (!NewCallee->isDeclaration()) 876 Calls->push({ICB, NewHistoryID}); 877 } 878 } 879 880 // Merge the attributes based on the inlining. 881 AttributeFuncs::mergeAttributesForInlining(F, Callee); 882 883 // For local functions, check whether this makes the callee trivially 884 // dead. In that case, we can drop the body of the function eagerly 885 // which may reduce the number of callers of other functions to one, 886 // changing inline cost thresholds. 887 bool CalleeWasDeleted = false; 888 if (Callee.hasLocalLinkage()) { 889 // To check this we also need to nuke any dead constant uses (perhaps 890 // made dead by this operation on other functions). 891 Callee.removeDeadConstantUsers(); 892 if (Callee.use_empty() && !CG.isLibFunction(Callee)) { 893 Calls->erase_if([&](const std::pair<CallBase *, int> &Call) { 894 return Call.first->getCaller() == &Callee; 895 }); 896 // Clear the body and queue the function itself for deletion when we 897 // finish inlining and call graph updates. 898 // Note that after this point, it is an error to do anything other 899 // than use the callee's address or delete it. 900 Callee.dropAllReferences(); 901 assert(!is_contained(DeadFunctions, &Callee) && 902 "Cannot put cause a function to become dead twice!"); 903 DeadFunctions.push_back(&Callee); 904 CalleeWasDeleted = true; 905 } 906 } 907 if (CalleeWasDeleted) 908 Advice->recordInliningWithCalleeDeleted(); 909 else 910 Advice->recordInlining(); 911 } 912 913 if (!DidInline) 914 continue; 915 Changed = true; 916 917 // At this point, since we have made changes we have at least removed 918 // a call instruction. However, in the process we do some incremental 919 // simplification of the surrounding code. This simplification can 920 // essentially do all of the same things as a function pass and we can 921 // re-use the exact same logic for updating the call graph to reflect the 922 // change. 923 924 // Inside the update, we also update the FunctionAnalysisManager in the 925 // proxy for this particular SCC. We do this as the SCC may have changed and 926 // as we're going to mutate this particular function we want to make sure 927 // the proxy is in place to forward any invalidation events. 928 LazyCallGraph::SCC *OldC = C; 929 C = &updateCGAndAnalysisManagerForCGSCCPass(CG, *C, N, AM, UR, FAM); 930 LLVM_DEBUG(dbgs() << "Updated inlining SCC: " << *C << "\n"); 931 932 // If this causes an SCC to split apart into multiple smaller SCCs, there 933 // is a subtle risk we need to prepare for. Other transformations may 934 // expose an "infinite inlining" opportunity later, and because of the SCC 935 // mutation, we will revisit this function and potentially re-inline. If we 936 // do, and that re-inlining also has the potentially to mutate the SCC 937 // structure, the infinite inlining problem can manifest through infinite 938 // SCC splits and merges. To avoid this, we capture the originating caller 939 // node and the SCC containing the call edge. This is a slight over 940 // approximation of the possible inlining decisions that must be avoided, 941 // but is relatively efficient to store. We use C != OldC to know when 942 // a new SCC is generated and the original SCC may be generated via merge 943 // in later iterations. 944 // 945 // It is also possible that even if no new SCC is generated 946 // (i.e., C == OldC), the original SCC could be split and then merged 947 // into the same one as itself. and the original SCC will be added into 948 // UR.CWorklist again, we want to catch such cases too. 949 // 950 // FIXME: This seems like a very heavyweight way of retaining the inline 951 // history, we should look for a more efficient way of tracking it. 952 if ((C != OldC || UR.CWorklist.count(OldC)) && 953 llvm::any_of(InlinedCallees, [&](Function *Callee) { 954 return CG.lookupSCC(*CG.lookup(*Callee)) == OldC; 955 })) { 956 LLVM_DEBUG(dbgs() << "Inlined an internal call edge and split an SCC, " 957 "retaining this to avoid infinite inlining.\n"); 958 UR.InlinedInternalEdges.insert({&N, OldC}); 959 } 960 InlinedCallees.clear(); 961 } 962 963 // Now that we've finished inlining all of the calls across this SCC, delete 964 // all of the trivially dead functions, updating the call graph and the CGSCC 965 // pass manager in the process. 966 // 967 // Note that this walks a pointer set which has non-deterministic order but 968 // that is OK as all we do is delete things and add pointers to unordered 969 // sets. 970 for (Function *DeadF : DeadFunctions) { 971 // Get the necessary information out of the call graph and nuke the 972 // function there. Also, clear out any cached analyses. 973 auto &DeadC = *CG.lookupSCC(*CG.lookup(*DeadF)); 974 FAM.clear(*DeadF, DeadF->getName()); 975 AM.clear(DeadC, DeadC.getName()); 976 auto &DeadRC = DeadC.getOuterRefSCC(); 977 CG.removeDeadFunction(*DeadF); 978 979 // Mark the relevant parts of the call graph as invalid so we don't visit 980 // them. 981 UR.InvalidatedSCCs.insert(&DeadC); 982 UR.InvalidatedRefSCCs.insert(&DeadRC); 983 984 // If the updated SCC was the one containing the deleted function, clear it. 985 if (&DeadC == UR.UpdatedC) 986 UR.UpdatedC = nullptr; 987 988 // And delete the actual function from the module. 989 // The Advisor may use Function pointers to efficiently index various 990 // internal maps, e.g. for memoization. Function cleanup passes like 991 // argument promotion create new functions. It is possible for a new 992 // function to be allocated at the address of a deleted function. We could 993 // index using names, but that's inefficient. Alternatively, we let the 994 // Advisor free the functions when it sees fit. 995 DeadF->getBasicBlockList().clear(); 996 M.getFunctionList().remove(DeadF); 997 998 ++NumDeleted; 999 } 1000 1001 if (!Changed) 1002 return PreservedAnalyses::all(); 1003 1004 // Even if we change the IR, we update the core CGSCC data structures and so 1005 // can preserve the proxy to the function analysis manager. 1006 PreservedAnalyses PA; 1007 PA.preserve<FunctionAnalysisManagerCGSCCProxy>(); 1008 return PA; 1009 } 1010 1011 ModuleInlinerWrapperPass::ModuleInlinerWrapperPass(InlineParams Params, 1012 bool MandatoryFirst, 1013 InliningAdvisorMode Mode, 1014 unsigned MaxDevirtIterations) 1015 : Params(Params), Mode(Mode), MaxDevirtIterations(MaxDevirtIterations), 1016 PM(), MPM() { 1017 // Run the inliner first. The theory is that we are walking bottom-up and so 1018 // the callees have already been fully optimized, and we want to inline them 1019 // into the callers so that our optimizations can reflect that. 1020 // For PreLinkThinLTO pass, we disable hot-caller heuristic for sample PGO 1021 // because it makes profile annotation in the backend inaccurate. 1022 if (MandatoryFirst) 1023 PM.addPass(InlinerPass(/*OnlyMandatory*/ true)); 1024 PM.addPass(InlinerPass()); 1025 } 1026 1027 PreservedAnalyses ModuleInlinerWrapperPass::run(Module &M, 1028 ModuleAnalysisManager &MAM) { 1029 auto &IAA = MAM.getResult<InlineAdvisorAnalysis>(M); 1030 if (!IAA.tryCreate(Params, Mode, CGSCCInlineReplayFile)) { 1031 M.getContext().emitError( 1032 "Could not setup Inlining Advisor for the requested " 1033 "mode and/or options"); 1034 return PreservedAnalyses::all(); 1035 } 1036 1037 // We wrap the CGSCC pipeline in a devirtualization repeater. This will try 1038 // to detect when we devirtualize indirect calls and iterate the SCC passes 1039 // in that case to try and catch knock-on inlining or function attrs 1040 // opportunities. Then we add it to the module pipeline by walking the SCCs 1041 // in postorder (or bottom-up). 1042 // If MaxDevirtIterations is 0, we just don't use the devirtualization 1043 // wrapper. 1044 if (MaxDevirtIterations == 0) 1045 MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(PM))); 1046 else 1047 MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor( 1048 createDevirtSCCRepeatedPass(std::move(PM), MaxDevirtIterations))); 1049 MPM.run(M, MAM); 1050 1051 IAA.clear(); 1052 1053 // The ModulePassManager has already taken care of invalidating analyses. 1054 return PreservedAnalyses::all(); 1055 } 1056