1 //===- Inliner.cpp - Code common to all inliners --------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the mechanics required to implement inlining without 11 // missing any calls and updating the call graph. The decisions of which calls 12 // are profitable to inline are implemented elsewhere. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Transforms/IPO/InlinerPass.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/Analysis/AssumptionTracker.h" 21 #include "llvm/Analysis/CallGraph.h" 22 #include "llvm/Analysis/InlineCost.h" 23 #include "llvm/IR/CallSite.h" 24 #include "llvm/IR/DataLayout.h" 25 #include "llvm/IR/DiagnosticInfo.h" 26 #include "llvm/IR/Instructions.h" 27 #include "llvm/IR/IntrinsicInst.h" 28 #include "llvm/IR/Module.h" 29 #include "llvm/Support/CommandLine.h" 30 #include "llvm/Support/Debug.h" 31 #include "llvm/Support/raw_ostream.h" 32 #include "llvm/Target/TargetLibraryInfo.h" 33 #include "llvm/Transforms/Utils/Cloning.h" 34 #include "llvm/Transforms/Utils/Local.h" 35 using namespace llvm; 36 37 #define DEBUG_TYPE "inline" 38 39 STATISTIC(NumInlined, "Number of functions inlined"); 40 STATISTIC(NumCallsDeleted, "Number of call sites deleted, not inlined"); 41 STATISTIC(NumDeleted, "Number of functions deleted because all callers found"); 42 STATISTIC(NumMergedAllocas, "Number of allocas merged together"); 43 44 // This weirdly named statistic tracks the number of times that, when attempting 45 // to inline a function A into B, we analyze the callers of B in order to see 46 // if those would be more profitable and blocked inline steps. 47 STATISTIC(NumCallerCallersAnalyzed, "Number of caller-callers analyzed"); 48 49 static cl::opt<int> 50 InlineLimit("inline-threshold", cl::Hidden, cl::init(225), cl::ZeroOrMore, 51 cl::desc("Control the amount of inlining to perform (default = 225)")); 52 53 static cl::opt<int> 54 HintThreshold("inlinehint-threshold", cl::Hidden, cl::init(325), 55 cl::desc("Threshold for inlining functions with inline hint")); 56 57 // We instroduce this threshold to help performance of instrumentation based 58 // PGO before we actually hook up inliner with analysis passes such as BPI and 59 // BFI. 60 static cl::opt<int> 61 ColdThreshold("inlinecold-threshold", cl::Hidden, cl::init(225), 62 cl::desc("Threshold for inlining functions with cold attribute")); 63 64 // Threshold to use when optsize is specified (and there is no -inline-limit). 65 const int OptSizeThreshold = 75; 66 67 Inliner::Inliner(char &ID) 68 : CallGraphSCCPass(ID), InlineThreshold(InlineLimit), InsertLifetime(true) {} 69 70 Inliner::Inliner(char &ID, int Threshold, bool InsertLifetime) 71 : CallGraphSCCPass(ID), InlineThreshold(InlineLimit.getNumOccurrences() > 0 ? 72 InlineLimit : Threshold), 73 InsertLifetime(InsertLifetime) {} 74 75 /// getAnalysisUsage - For this class, we declare that we require and preserve 76 /// the call graph. If the derived class implements this method, it should 77 /// always explicitly call the implementation here. 78 void Inliner::getAnalysisUsage(AnalysisUsage &AU) const { 79 AU.addRequired<AliasAnalysis>(); 80 AU.addRequired<AssumptionTracker>(); 81 CallGraphSCCPass::getAnalysisUsage(AU); 82 } 83 84 85 typedef DenseMap<ArrayType*, std::vector<AllocaInst*> > 86 InlinedArrayAllocasTy; 87 88 /// \brief If the inlined function had a higher stack protection level than the 89 /// calling function, then bump up the caller's stack protection level. 90 static void AdjustCallerSSPLevel(Function *Caller, Function *Callee) { 91 // If upgrading the SSP attribute, clear out the old SSP Attributes first. 92 // Having multiple SSP attributes doesn't actually hurt, but it adds useless 93 // clutter to the IR. 94 AttrBuilder B; 95 B.addAttribute(Attribute::StackProtect) 96 .addAttribute(Attribute::StackProtectStrong); 97 AttributeSet OldSSPAttr = AttributeSet::get(Caller->getContext(), 98 AttributeSet::FunctionIndex, 99 B); 100 AttributeSet CallerAttr = Caller->getAttributes(), 101 CalleeAttr = Callee->getAttributes(); 102 103 if (CalleeAttr.hasAttribute(AttributeSet::FunctionIndex, 104 Attribute::StackProtectReq)) { 105 Caller->removeAttributes(AttributeSet::FunctionIndex, OldSSPAttr); 106 Caller->addFnAttr(Attribute::StackProtectReq); 107 } else if (CalleeAttr.hasAttribute(AttributeSet::FunctionIndex, 108 Attribute::StackProtectStrong) && 109 !CallerAttr.hasAttribute(AttributeSet::FunctionIndex, 110 Attribute::StackProtectReq)) { 111 Caller->removeAttributes(AttributeSet::FunctionIndex, OldSSPAttr); 112 Caller->addFnAttr(Attribute::StackProtectStrong); 113 } else if (CalleeAttr.hasAttribute(AttributeSet::FunctionIndex, 114 Attribute::StackProtect) && 115 !CallerAttr.hasAttribute(AttributeSet::FunctionIndex, 116 Attribute::StackProtectReq) && 117 !CallerAttr.hasAttribute(AttributeSet::FunctionIndex, 118 Attribute::StackProtectStrong)) 119 Caller->addFnAttr(Attribute::StackProtect); 120 } 121 122 /// InlineCallIfPossible - If it is possible to inline the specified call site, 123 /// do so and update the CallGraph for this operation. 124 /// 125 /// This function also does some basic book-keeping to update the IR. The 126 /// InlinedArrayAllocas map keeps track of any allocas that are already 127 /// available from other functions inlined into the caller. If we are able to 128 /// inline this call site we attempt to reuse already available allocas or add 129 /// any new allocas to the set if not possible. 130 static bool InlineCallIfPossible(CallSite CS, InlineFunctionInfo &IFI, 131 InlinedArrayAllocasTy &InlinedArrayAllocas, 132 int InlineHistory, bool InsertLifetime, 133 const DataLayout *DL) { 134 Function *Callee = CS.getCalledFunction(); 135 Function *Caller = CS.getCaller(); 136 137 // Try to inline the function. Get the list of static allocas that were 138 // inlined. 139 if (!InlineFunction(CS, IFI, InsertLifetime)) 140 return false; 141 142 AdjustCallerSSPLevel(Caller, Callee); 143 144 // Look at all of the allocas that we inlined through this call site. If we 145 // have already inlined other allocas through other calls into this function, 146 // then we know that they have disjoint lifetimes and that we can merge them. 147 // 148 // There are many heuristics possible for merging these allocas, and the 149 // different options have different tradeoffs. One thing that we *really* 150 // don't want to hurt is SRoA: once inlining happens, often allocas are no 151 // longer address taken and so they can be promoted. 152 // 153 // Our "solution" for that is to only merge allocas whose outermost type is an 154 // array type. These are usually not promoted because someone is using a 155 // variable index into them. These are also often the most important ones to 156 // merge. 157 // 158 // A better solution would be to have real memory lifetime markers in the IR 159 // and not have the inliner do any merging of allocas at all. This would 160 // allow the backend to do proper stack slot coloring of all allocas that 161 // *actually make it to the backend*, which is really what we want. 162 // 163 // Because we don't have this information, we do this simple and useful hack. 164 // 165 SmallPtrSet<AllocaInst*, 16> UsedAllocas; 166 167 // When processing our SCC, check to see if CS was inlined from some other 168 // call site. For example, if we're processing "A" in this code: 169 // A() { B() } 170 // B() { x = alloca ... C() } 171 // C() { y = alloca ... } 172 // Assume that C was not inlined into B initially, and so we're processing A 173 // and decide to inline B into A. Doing this makes an alloca available for 174 // reuse and makes a callsite (C) available for inlining. When we process 175 // the C call site we don't want to do any alloca merging between X and Y 176 // because their scopes are not disjoint. We could make this smarter by 177 // keeping track of the inline history for each alloca in the 178 // InlinedArrayAllocas but this isn't likely to be a significant win. 179 if (InlineHistory != -1) // Only do merging for top-level call sites in SCC. 180 return true; 181 182 // Loop over all the allocas we have so far and see if they can be merged with 183 // a previously inlined alloca. If not, remember that we had it. 184 for (unsigned AllocaNo = 0, e = IFI.StaticAllocas.size(); 185 AllocaNo != e; ++AllocaNo) { 186 AllocaInst *AI = IFI.StaticAllocas[AllocaNo]; 187 188 // Don't bother trying to merge array allocations (they will usually be 189 // canonicalized to be an allocation *of* an array), or allocations whose 190 // type is not itself an array (because we're afraid of pessimizing SRoA). 191 ArrayType *ATy = dyn_cast<ArrayType>(AI->getAllocatedType()); 192 if (!ATy || AI->isArrayAllocation()) 193 continue; 194 195 // Get the list of all available allocas for this array type. 196 std::vector<AllocaInst*> &AllocasForType = InlinedArrayAllocas[ATy]; 197 198 // Loop over the allocas in AllocasForType to see if we can reuse one. Note 199 // that we have to be careful not to reuse the same "available" alloca for 200 // multiple different allocas that we just inlined, we use the 'UsedAllocas' 201 // set to keep track of which "available" allocas are being used by this 202 // function. Also, AllocasForType can be empty of course! 203 bool MergedAwayAlloca = false; 204 for (unsigned i = 0, e = AllocasForType.size(); i != e; ++i) { 205 AllocaInst *AvailableAlloca = AllocasForType[i]; 206 207 unsigned Align1 = AI->getAlignment(), 208 Align2 = AvailableAlloca->getAlignment(); 209 // If we don't have data layout information, and only one alloca is using 210 // the target default, then we can't safely merge them because we can't 211 // pick the greater alignment. 212 if (!DL && (!Align1 || !Align2) && Align1 != Align2) 213 continue; 214 215 // The available alloca has to be in the right function, not in some other 216 // function in this SCC. 217 if (AvailableAlloca->getParent() != AI->getParent()) 218 continue; 219 220 // If the inlined function already uses this alloca then we can't reuse 221 // it. 222 if (!UsedAllocas.insert(AvailableAlloca)) 223 continue; 224 225 // Otherwise, we *can* reuse it, RAUW AI into AvailableAlloca and declare 226 // success! 227 DEBUG(dbgs() << " ***MERGED ALLOCA: " << *AI << "\n\t\tINTO: " 228 << *AvailableAlloca << '\n'); 229 230 AI->replaceAllUsesWith(AvailableAlloca); 231 232 if (Align1 != Align2) { 233 if (!Align1 || !Align2) { 234 assert(DL && "DataLayout required to compare default alignments"); 235 unsigned TypeAlign = DL->getABITypeAlignment(AI->getAllocatedType()); 236 237 Align1 = Align1 ? Align1 : TypeAlign; 238 Align2 = Align2 ? Align2 : TypeAlign; 239 } 240 241 if (Align1 > Align2) 242 AvailableAlloca->setAlignment(AI->getAlignment()); 243 } 244 245 AI->eraseFromParent(); 246 MergedAwayAlloca = true; 247 ++NumMergedAllocas; 248 IFI.StaticAllocas[AllocaNo] = nullptr; 249 break; 250 } 251 252 // If we already nuked the alloca, we're done with it. 253 if (MergedAwayAlloca) 254 continue; 255 256 // If we were unable to merge away the alloca either because there are no 257 // allocas of the right type available or because we reused them all 258 // already, remember that this alloca came from an inlined function and mark 259 // it used so we don't reuse it for other allocas from this inline 260 // operation. 261 AllocasForType.push_back(AI); 262 UsedAllocas.insert(AI); 263 } 264 265 return true; 266 } 267 268 unsigned Inliner::getInlineThreshold(CallSite CS) const { 269 int thres = InlineThreshold; // -inline-threshold or else selected by 270 // overall opt level 271 272 // If -inline-threshold is not given, listen to the optsize attribute when it 273 // would decrease the threshold. 274 Function *Caller = CS.getCaller(); 275 bool OptSize = Caller && !Caller->isDeclaration() && 276 Caller->getAttributes().hasAttribute(AttributeSet::FunctionIndex, 277 Attribute::OptimizeForSize); 278 if (!(InlineLimit.getNumOccurrences() > 0) && OptSize && 279 OptSizeThreshold < thres) 280 thres = OptSizeThreshold; 281 282 // Listen to the inlinehint attribute when it would increase the threshold 283 // and the caller does not need to minimize its size. 284 Function *Callee = CS.getCalledFunction(); 285 bool InlineHint = Callee && !Callee->isDeclaration() && 286 Callee->getAttributes().hasAttribute(AttributeSet::FunctionIndex, 287 Attribute::InlineHint); 288 if (InlineHint && HintThreshold > thres 289 && !Caller->getAttributes().hasAttribute(AttributeSet::FunctionIndex, 290 Attribute::MinSize)) 291 thres = HintThreshold; 292 293 // Listen to the cold attribute when it would decrease the threshold. 294 bool ColdCallee = Callee && !Callee->isDeclaration() && 295 Callee->getAttributes().hasAttribute(AttributeSet::FunctionIndex, 296 Attribute::Cold); 297 // Command line argument for InlineLimit will override the default 298 // ColdThreshold. If we have -inline-threshold but no -inlinecold-threshold, 299 // do not use the default cold threshold even if it is smaller. 300 if ((InlineLimit.getNumOccurrences() == 0 || 301 ColdThreshold.getNumOccurrences() > 0) && ColdCallee && 302 ColdThreshold < thres) 303 thres = ColdThreshold; 304 305 return thres; 306 } 307 308 static void emitAnalysis(CallSite CS, const Twine &Msg) { 309 Function *Caller = CS.getCaller(); 310 LLVMContext &Ctx = Caller->getContext(); 311 DebugLoc DLoc = CS.getInstruction()->getDebugLoc(); 312 emitOptimizationRemarkAnalysis(Ctx, DEBUG_TYPE, *Caller, DLoc, Msg); 313 } 314 315 /// shouldInline - Return true if the inliner should attempt to inline 316 /// at the given CallSite. 317 bool Inliner::shouldInline(CallSite CS) { 318 InlineCost IC = getInlineCost(CS); 319 320 if (IC.isAlways()) { 321 DEBUG(dbgs() << " Inlining: cost=always" 322 << ", Call: " << *CS.getInstruction() << "\n"); 323 emitAnalysis(CS, Twine(CS.getCalledFunction()->getName()) + 324 " should always be inlined (cost=always)"); 325 return true; 326 } 327 328 if (IC.isNever()) { 329 DEBUG(dbgs() << " NOT Inlining: cost=never" 330 << ", Call: " << *CS.getInstruction() << "\n"); 331 emitAnalysis(CS, Twine(CS.getCalledFunction()->getName() + 332 " should never be inlined (cost=never)")); 333 return false; 334 } 335 336 Function *Caller = CS.getCaller(); 337 if (!IC) { 338 DEBUG(dbgs() << " NOT Inlining: cost=" << IC.getCost() 339 << ", thres=" << (IC.getCostDelta() + IC.getCost()) 340 << ", Call: " << *CS.getInstruction() << "\n"); 341 emitAnalysis(CS, Twine(CS.getCalledFunction()->getName() + 342 " too costly to inline (cost=") + 343 Twine(IC.getCost()) + ", threshold=" + 344 Twine(IC.getCostDelta() + IC.getCost()) + ")"); 345 return false; 346 } 347 348 // Try to detect the case where the current inlining candidate caller (call 349 // it B) is a static or linkonce-ODR function and is an inlining candidate 350 // elsewhere, and the current candidate callee (call it C) is large enough 351 // that inlining it into B would make B too big to inline later. In these 352 // circumstances it may be best not to inline C into B, but to inline B into 353 // its callers. 354 // 355 // This only applies to static and linkonce-ODR functions because those are 356 // expected to be available for inlining in the translation units where they 357 // are used. Thus we will always have the opportunity to make local inlining 358 // decisions. Importantly the linkonce-ODR linkage covers inline functions 359 // and templates in C++. 360 // 361 // FIXME: All of this logic should be sunk into getInlineCost. It relies on 362 // the internal implementation of the inline cost metrics rather than 363 // treating them as truly abstract units etc. 364 if (Caller->hasLocalLinkage() || Caller->hasLinkOnceODRLinkage()) { 365 int TotalSecondaryCost = 0; 366 // The candidate cost to be imposed upon the current function. 367 int CandidateCost = IC.getCost() - (InlineConstants::CallPenalty + 1); 368 // This bool tracks what happens if we do NOT inline C into B. 369 bool callerWillBeRemoved = Caller->hasLocalLinkage(); 370 // This bool tracks what happens if we DO inline C into B. 371 bool inliningPreventsSomeOuterInline = false; 372 for (User *U : Caller->users()) { 373 CallSite CS2(U); 374 375 // If this isn't a call to Caller (it could be some other sort 376 // of reference) skip it. Such references will prevent the caller 377 // from being removed. 378 if (!CS2 || CS2.getCalledFunction() != Caller) { 379 callerWillBeRemoved = false; 380 continue; 381 } 382 383 InlineCost IC2 = getInlineCost(CS2); 384 ++NumCallerCallersAnalyzed; 385 if (!IC2) { 386 callerWillBeRemoved = false; 387 continue; 388 } 389 if (IC2.isAlways()) 390 continue; 391 392 // See if inlining or original callsite would erase the cost delta of 393 // this callsite. We subtract off the penalty for the call instruction, 394 // which we would be deleting. 395 if (IC2.getCostDelta() <= CandidateCost) { 396 inliningPreventsSomeOuterInline = true; 397 TotalSecondaryCost += IC2.getCost(); 398 } 399 } 400 // If all outer calls to Caller would get inlined, the cost for the last 401 // one is set very low by getInlineCost, in anticipation that Caller will 402 // be removed entirely. We did not account for this above unless there 403 // is only one caller of Caller. 404 if (callerWillBeRemoved && !Caller->use_empty()) 405 TotalSecondaryCost += InlineConstants::LastCallToStaticBonus; 406 407 if (inliningPreventsSomeOuterInline && TotalSecondaryCost < IC.getCost()) { 408 DEBUG(dbgs() << " NOT Inlining: " << *CS.getInstruction() << 409 " Cost = " << IC.getCost() << 410 ", outer Cost = " << TotalSecondaryCost << '\n'); 411 emitAnalysis( 412 CS, Twine("Not inlining. Cost of inlining " + 413 CS.getCalledFunction()->getName() + 414 " increases the cost of inlining " + 415 CS.getCaller()->getName() + " in other contexts")); 416 return false; 417 } 418 } 419 420 DEBUG(dbgs() << " Inlining: cost=" << IC.getCost() 421 << ", thres=" << (IC.getCostDelta() + IC.getCost()) 422 << ", Call: " << *CS.getInstruction() << '\n'); 423 emitAnalysis( 424 CS, CS.getCalledFunction()->getName() + Twine(" can be inlined into ") + 425 CS.getCaller()->getName() + " with cost=" + Twine(IC.getCost()) + 426 " (threshold=" + Twine(IC.getCostDelta() + IC.getCost()) + ")"); 427 return true; 428 } 429 430 /// InlineHistoryIncludes - Return true if the specified inline history ID 431 /// indicates an inline history that includes the specified function. 432 static bool InlineHistoryIncludes(Function *F, int InlineHistoryID, 433 const SmallVectorImpl<std::pair<Function*, int> > &InlineHistory) { 434 while (InlineHistoryID != -1) { 435 assert(unsigned(InlineHistoryID) < InlineHistory.size() && 436 "Invalid inline history ID"); 437 if (InlineHistory[InlineHistoryID].first == F) 438 return true; 439 InlineHistoryID = InlineHistory[InlineHistoryID].second; 440 } 441 return false; 442 } 443 444 bool Inliner::runOnSCC(CallGraphSCC &SCC) { 445 CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph(); 446 AssumptionTracker *AT = &getAnalysis<AssumptionTracker>(); 447 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>(); 448 const DataLayout *DL = DLP ? &DLP->getDataLayout() : nullptr; 449 const TargetLibraryInfo *TLI = getAnalysisIfAvailable<TargetLibraryInfo>(); 450 AliasAnalysis *AA = &getAnalysis<AliasAnalysis>(); 451 452 SmallPtrSet<Function*, 8> SCCFunctions; 453 DEBUG(dbgs() << "Inliner visiting SCC:"); 454 for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) { 455 Function *F = (*I)->getFunction(); 456 if (F) SCCFunctions.insert(F); 457 DEBUG(dbgs() << " " << (F ? F->getName() : "INDIRECTNODE")); 458 } 459 460 // Scan through and identify all call sites ahead of time so that we only 461 // inline call sites in the original functions, not call sites that result 462 // from inlining other functions. 463 SmallVector<std::pair<CallSite, int>, 16> CallSites; 464 465 // When inlining a callee produces new call sites, we want to keep track of 466 // the fact that they were inlined from the callee. This allows us to avoid 467 // infinite inlining in some obscure cases. To represent this, we use an 468 // index into the InlineHistory vector. 469 SmallVector<std::pair<Function*, int>, 8> InlineHistory; 470 471 for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) { 472 Function *F = (*I)->getFunction(); 473 if (!F) continue; 474 475 for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) 476 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 477 CallSite CS(cast<Value>(I)); 478 // If this isn't a call, or it is a call to an intrinsic, it can 479 // never be inlined. 480 if (!CS || isa<IntrinsicInst>(I)) 481 continue; 482 483 // If this is a direct call to an external function, we can never inline 484 // it. If it is an indirect call, inlining may resolve it to be a 485 // direct call, so we keep it. 486 if (CS.getCalledFunction() && CS.getCalledFunction()->isDeclaration()) 487 continue; 488 489 CallSites.push_back(std::make_pair(CS, -1)); 490 } 491 } 492 493 DEBUG(dbgs() << ": " << CallSites.size() << " call sites.\n"); 494 495 // If there are no calls in this function, exit early. 496 if (CallSites.empty()) 497 return false; 498 499 // Now that we have all of the call sites, move the ones to functions in the 500 // current SCC to the end of the list. 501 unsigned FirstCallInSCC = CallSites.size(); 502 for (unsigned i = 0; i < FirstCallInSCC; ++i) 503 if (Function *F = CallSites[i].first.getCalledFunction()) 504 if (SCCFunctions.count(F)) 505 std::swap(CallSites[i--], CallSites[--FirstCallInSCC]); 506 507 508 InlinedArrayAllocasTy InlinedArrayAllocas; 509 InlineFunctionInfo InlineInfo(&CG, DL, AA, AT); 510 511 // Now that we have all of the call sites, loop over them and inline them if 512 // it looks profitable to do so. 513 bool Changed = false; 514 bool LocalChange; 515 do { 516 LocalChange = false; 517 // Iterate over the outer loop because inlining functions can cause indirect 518 // calls to become direct calls. 519 for (unsigned CSi = 0; CSi != CallSites.size(); ++CSi) { 520 CallSite CS = CallSites[CSi].first; 521 522 Function *Caller = CS.getCaller(); 523 Function *Callee = CS.getCalledFunction(); 524 525 // If this call site is dead and it is to a readonly function, we should 526 // just delete the call instead of trying to inline it, regardless of 527 // size. This happens because IPSCCP propagates the result out of the 528 // call and then we're left with the dead call. 529 if (isInstructionTriviallyDead(CS.getInstruction(), TLI)) { 530 DEBUG(dbgs() << " -> Deleting dead call: " 531 << *CS.getInstruction() << "\n"); 532 // Update the call graph by deleting the edge from Callee to Caller. 533 CG[Caller]->removeCallEdgeFor(CS); 534 CS.getInstruction()->eraseFromParent(); 535 ++NumCallsDeleted; 536 } else { 537 // We can only inline direct calls to non-declarations. 538 if (!Callee || Callee->isDeclaration()) continue; 539 540 // If this call site was obtained by inlining another function, verify 541 // that the include path for the function did not include the callee 542 // itself. If so, we'd be recursively inlining the same function, 543 // which would provide the same callsites, which would cause us to 544 // infinitely inline. 545 int InlineHistoryID = CallSites[CSi].second; 546 if (InlineHistoryID != -1 && 547 InlineHistoryIncludes(Callee, InlineHistoryID, InlineHistory)) 548 continue; 549 550 LLVMContext &CallerCtx = Caller->getContext(); 551 552 // Get DebugLoc to report. CS will be invalid after Inliner. 553 DebugLoc DLoc = CS.getInstruction()->getDebugLoc(); 554 555 // If the policy determines that we should inline this function, 556 // try to do so. 557 if (!shouldInline(CS)) { 558 emitOptimizationRemarkMissed(CallerCtx, DEBUG_TYPE, *Caller, DLoc, 559 Twine(Callee->getName() + 560 " will not be inlined into " + 561 Caller->getName())); 562 continue; 563 } 564 565 // Attempt to inline the function. 566 if (!InlineCallIfPossible(CS, InlineInfo, InlinedArrayAllocas, 567 InlineHistoryID, InsertLifetime, DL)) { 568 emitOptimizationRemarkMissed(CallerCtx, DEBUG_TYPE, *Caller, DLoc, 569 Twine(Callee->getName() + 570 " will not be inlined into " + 571 Caller->getName())); 572 continue; 573 } 574 ++NumInlined; 575 576 // Report the inline decision. 577 emitOptimizationRemark( 578 CallerCtx, DEBUG_TYPE, *Caller, DLoc, 579 Twine(Callee->getName() + " inlined into " + Caller->getName())); 580 581 // If inlining this function gave us any new call sites, throw them 582 // onto our worklist to process. They are useful inline candidates. 583 if (!InlineInfo.InlinedCalls.empty()) { 584 // Create a new inline history entry for this, so that we remember 585 // that these new callsites came about due to inlining Callee. 586 int NewHistoryID = InlineHistory.size(); 587 InlineHistory.push_back(std::make_pair(Callee, InlineHistoryID)); 588 589 for (unsigned i = 0, e = InlineInfo.InlinedCalls.size(); 590 i != e; ++i) { 591 Value *Ptr = InlineInfo.InlinedCalls[i]; 592 CallSites.push_back(std::make_pair(CallSite(Ptr), NewHistoryID)); 593 } 594 } 595 } 596 597 // If we inlined or deleted the last possible call site to the function, 598 // delete the function body now. 599 if (Callee && Callee->use_empty() && Callee->hasLocalLinkage() && 600 // TODO: Can remove if in SCC now. 601 !SCCFunctions.count(Callee) && 602 603 // The function may be apparently dead, but if there are indirect 604 // callgraph references to the node, we cannot delete it yet, this 605 // could invalidate the CGSCC iterator. 606 CG[Callee]->getNumReferences() == 0) { 607 DEBUG(dbgs() << " -> Deleting dead function: " 608 << Callee->getName() << "\n"); 609 CallGraphNode *CalleeNode = CG[Callee]; 610 611 // Remove any call graph edges from the callee to its callees. 612 CalleeNode->removeAllCalledFunctions(); 613 614 // Removing the node for callee from the call graph and delete it. 615 delete CG.removeFunctionFromModule(CalleeNode); 616 ++NumDeleted; 617 } 618 619 // Remove this call site from the list. If possible, use 620 // swap/pop_back for efficiency, but do not use it if doing so would 621 // move a call site to a function in this SCC before the 622 // 'FirstCallInSCC' barrier. 623 if (SCC.isSingular()) { 624 CallSites[CSi] = CallSites.back(); 625 CallSites.pop_back(); 626 } else { 627 CallSites.erase(CallSites.begin()+CSi); 628 } 629 --CSi; 630 631 Changed = true; 632 LocalChange = true; 633 } 634 } while (LocalChange); 635 636 return Changed; 637 } 638 639 // doFinalization - Remove now-dead linkonce functions at the end of 640 // processing to avoid breaking the SCC traversal. 641 bool Inliner::doFinalization(CallGraph &CG) { 642 return removeDeadFunctions(CG); 643 } 644 645 /// removeDeadFunctions - Remove dead functions that are not included in 646 /// DNR (Do Not Remove) list. 647 bool Inliner::removeDeadFunctions(CallGraph &CG, bool AlwaysInlineOnly) { 648 SmallVector<CallGraphNode*, 16> FunctionsToRemove; 649 650 // Scan for all of the functions, looking for ones that should now be removed 651 // from the program. Insert the dead ones in the FunctionsToRemove set. 652 for (CallGraph::iterator I = CG.begin(), E = CG.end(); I != E; ++I) { 653 CallGraphNode *CGN = I->second; 654 Function *F = CGN->getFunction(); 655 if (!F || F->isDeclaration()) 656 continue; 657 658 // Handle the case when this function is called and we only want to care 659 // about always-inline functions. This is a bit of a hack to share code 660 // between here and the InlineAlways pass. 661 if (AlwaysInlineOnly && 662 !F->getAttributes().hasAttribute(AttributeSet::FunctionIndex, 663 Attribute::AlwaysInline)) 664 continue; 665 666 // If the only remaining users of the function are dead constants, remove 667 // them. 668 F->removeDeadConstantUsers(); 669 670 if (!F->isDefTriviallyDead()) 671 continue; 672 673 // It is unsafe to drop a function with discardable linkage from a COMDAT 674 // without also dropping the other members of the COMDAT. 675 // The inliner doesn't visit non-function entities which are in COMDAT 676 // groups so it is unsafe to do so *unless* the linkage is local. 677 if (!F->hasLocalLinkage() && F->hasComdat()) 678 continue; 679 680 // Remove any call graph edges from the function to its callees. 681 CGN->removeAllCalledFunctions(); 682 683 // Remove any edges from the external node to the function's call graph 684 // node. These edges might have been made irrelegant due to 685 // optimization of the program. 686 CG.getExternalCallingNode()->removeAnyCallEdgeTo(CGN); 687 688 // Removing the node for callee from the call graph and delete it. 689 FunctionsToRemove.push_back(CGN); 690 } 691 if (FunctionsToRemove.empty()) 692 return false; 693 694 // Now that we know which functions to delete, do so. We didn't want to do 695 // this inline, because that would invalidate our CallGraph::iterator 696 // objects. :( 697 // 698 // Note that it doesn't matter that we are iterating over a non-stable order 699 // here to do this, it doesn't matter which order the functions are deleted 700 // in. 701 array_pod_sort(FunctionsToRemove.begin(), FunctionsToRemove.end()); 702 FunctionsToRemove.erase(std::unique(FunctionsToRemove.begin(), 703 FunctionsToRemove.end()), 704 FunctionsToRemove.end()); 705 for (SmallVectorImpl<CallGraphNode *>::iterator I = FunctionsToRemove.begin(), 706 E = FunctionsToRemove.end(); 707 I != E; ++I) { 708 delete CG.removeFunctionFromModule(*I); 709 ++NumDeleted; 710 } 711 return true; 712 } 713