1 //===- Inliner.cpp - Code common to all inliners --------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the mechanics required to implement inlining without
11 // missing any calls and updating the call graph.  The decisions of which calls
12 // are profitable to inline are implemented elsewhere.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/Transforms/IPO/Inliner.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SetVector.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/AssumptionCache.h"
28 #include "llvm/Analysis/BasicAliasAnalysis.h"
29 #include "llvm/Analysis/BlockFrequencyInfo.h"
30 #include "llvm/Analysis/CGSCCPassManager.h"
31 #include "llvm/Analysis/CallGraph.h"
32 #include "llvm/Analysis/InlineCost.h"
33 #include "llvm/Analysis/LazyCallGraph.h"
34 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
35 #include "llvm/Analysis/ProfileSummaryInfo.h"
36 #include "llvm/Analysis/TargetLibraryInfo.h"
37 #include "llvm/Analysis/TargetTransformInfo.h"
38 #include "llvm/Transforms/Utils/Local.h"
39 #include "llvm/IR/Attributes.h"
40 #include "llvm/IR/BasicBlock.h"
41 #include "llvm/IR/CallSite.h"
42 #include "llvm/IR/DataLayout.h"
43 #include "llvm/IR/DebugLoc.h"
44 #include "llvm/IR/DerivedTypes.h"
45 #include "llvm/IR/DiagnosticInfo.h"
46 #include "llvm/IR/Function.h"
47 #include "llvm/IR/InstIterator.h"
48 #include "llvm/IR/Instruction.h"
49 #include "llvm/IR/Instructions.h"
50 #include "llvm/IR/IntrinsicInst.h"
51 #include "llvm/IR/Metadata.h"
52 #include "llvm/IR/Module.h"
53 #include "llvm/IR/PassManager.h"
54 #include "llvm/IR/User.h"
55 #include "llvm/IR/Value.h"
56 #include "llvm/Pass.h"
57 #include "llvm/Support/Casting.h"
58 #include "llvm/Support/CommandLine.h"
59 #include "llvm/Support/Debug.h"
60 #include "llvm/Support/raw_ostream.h"
61 #include "llvm/Transforms/Utils/Cloning.h"
62 #include "llvm/Transforms/Utils/ImportedFunctionsInliningStatistics.h"
63 #include "llvm/Transforms/Utils/ModuleUtils.h"
64 #include <algorithm>
65 #include <cassert>
66 #include <functional>
67 #include <sstream>
68 #include <tuple>
69 #include <utility>
70 #include <vector>
71 
72 using namespace llvm;
73 
74 #define DEBUG_TYPE "inline"
75 
76 STATISTIC(NumInlined, "Number of functions inlined");
77 STATISTIC(NumCallsDeleted, "Number of call sites deleted, not inlined");
78 STATISTIC(NumDeleted, "Number of functions deleted because all callers found");
79 STATISTIC(NumMergedAllocas, "Number of allocas merged together");
80 
81 // This weirdly named statistic tracks the number of times that, when attempting
82 // to inline a function A into B, we analyze the callers of B in order to see
83 // if those would be more profitable and blocked inline steps.
84 STATISTIC(NumCallerCallersAnalyzed, "Number of caller-callers analyzed");
85 
86 /// Flag to disable manual alloca merging.
87 ///
88 /// Merging of allocas was originally done as a stack-size saving technique
89 /// prior to LLVM's code generator having support for stack coloring based on
90 /// lifetime markers. It is now in the process of being removed. To experiment
91 /// with disabling it and relying fully on lifetime marker based stack
92 /// coloring, you can pass this flag to LLVM.
93 static cl::opt<bool>
94     DisableInlinedAllocaMerging("disable-inlined-alloca-merging",
95                                 cl::init(false), cl::Hidden);
96 
97 namespace {
98 
99 enum class InlinerFunctionImportStatsOpts {
100   No = 0,
101   Basic = 1,
102   Verbose = 2,
103 };
104 
105 } // end anonymous namespace
106 
107 static cl::opt<InlinerFunctionImportStatsOpts> InlinerFunctionImportStats(
108     "inliner-function-import-stats",
109     cl::init(InlinerFunctionImportStatsOpts::No),
110     cl::values(clEnumValN(InlinerFunctionImportStatsOpts::Basic, "basic",
111                           "basic statistics"),
112                clEnumValN(InlinerFunctionImportStatsOpts::Verbose, "verbose",
113                           "printing of statistics for each inlined function")),
114     cl::Hidden, cl::desc("Enable inliner stats for imported functions"));
115 
116 /// Flag to add inline messages as callsite attributes 'inline-remark'.
117 static cl::opt<bool>
118     InlineRemarkAttribute("inline-remark-attribute", cl::init(false),
119                           cl::Hidden,
120                           cl::desc("Enable adding inline-remark attribute to"
121                                    " callsites processed by inliner but decided"
122                                    " to be not inlined"));
123 
124 LegacyInlinerBase::LegacyInlinerBase(char &ID) : CallGraphSCCPass(ID) {}
125 
126 LegacyInlinerBase::LegacyInlinerBase(char &ID, bool InsertLifetime)
127     : CallGraphSCCPass(ID), InsertLifetime(InsertLifetime) {}
128 
129 /// For this class, we declare that we require and preserve the call graph.
130 /// If the derived class implements this method, it should
131 /// always explicitly call the implementation here.
132 void LegacyInlinerBase::getAnalysisUsage(AnalysisUsage &AU) const {
133   AU.addRequired<AssumptionCacheTracker>();
134   AU.addRequired<ProfileSummaryInfoWrapperPass>();
135   AU.addRequired<TargetLibraryInfoWrapperPass>();
136   getAAResultsAnalysisUsage(AU);
137   CallGraphSCCPass::getAnalysisUsage(AU);
138 }
139 
140 using InlinedArrayAllocasTy = DenseMap<ArrayType *, std::vector<AllocaInst *>>;
141 
142 /// Look at all of the allocas that we inlined through this call site.  If we
143 /// have already inlined other allocas through other calls into this function,
144 /// then we know that they have disjoint lifetimes and that we can merge them.
145 ///
146 /// There are many heuristics possible for merging these allocas, and the
147 /// different options have different tradeoffs.  One thing that we *really*
148 /// don't want to hurt is SRoA: once inlining happens, often allocas are no
149 /// longer address taken and so they can be promoted.
150 ///
151 /// Our "solution" for that is to only merge allocas whose outermost type is an
152 /// array type.  These are usually not promoted because someone is using a
153 /// variable index into them.  These are also often the most important ones to
154 /// merge.
155 ///
156 /// A better solution would be to have real memory lifetime markers in the IR
157 /// and not have the inliner do any merging of allocas at all.  This would
158 /// allow the backend to do proper stack slot coloring of all allocas that
159 /// *actually make it to the backend*, which is really what we want.
160 ///
161 /// Because we don't have this information, we do this simple and useful hack.
162 static void mergeInlinedArrayAllocas(
163     Function *Caller, InlineFunctionInfo &IFI,
164     InlinedArrayAllocasTy &InlinedArrayAllocas, int InlineHistory) {
165   SmallPtrSet<AllocaInst *, 16> UsedAllocas;
166 
167   // When processing our SCC, check to see if CS was inlined from some other
168   // call site.  For example, if we're processing "A" in this code:
169   //   A() { B() }
170   //   B() { x = alloca ... C() }
171   //   C() { y = alloca ... }
172   // Assume that C was not inlined into B initially, and so we're processing A
173   // and decide to inline B into A.  Doing this makes an alloca available for
174   // reuse and makes a callsite (C) available for inlining.  When we process
175   // the C call site we don't want to do any alloca merging between X and Y
176   // because their scopes are not disjoint.  We could make this smarter by
177   // keeping track of the inline history for each alloca in the
178   // InlinedArrayAllocas but this isn't likely to be a significant win.
179   if (InlineHistory != -1) // Only do merging for top-level call sites in SCC.
180     return;
181 
182   // Loop over all the allocas we have so far and see if they can be merged with
183   // a previously inlined alloca.  If not, remember that we had it.
184   for (unsigned AllocaNo = 0, e = IFI.StaticAllocas.size(); AllocaNo != e;
185        ++AllocaNo) {
186     AllocaInst *AI = IFI.StaticAllocas[AllocaNo];
187 
188     // Don't bother trying to merge array allocations (they will usually be
189     // canonicalized to be an allocation *of* an array), or allocations whose
190     // type is not itself an array (because we're afraid of pessimizing SRoA).
191     ArrayType *ATy = dyn_cast<ArrayType>(AI->getAllocatedType());
192     if (!ATy || AI->isArrayAllocation())
193       continue;
194 
195     // Get the list of all available allocas for this array type.
196     std::vector<AllocaInst *> &AllocasForType = InlinedArrayAllocas[ATy];
197 
198     // Loop over the allocas in AllocasForType to see if we can reuse one.  Note
199     // that we have to be careful not to reuse the same "available" alloca for
200     // multiple different allocas that we just inlined, we use the 'UsedAllocas'
201     // set to keep track of which "available" allocas are being used by this
202     // function.  Also, AllocasForType can be empty of course!
203     bool MergedAwayAlloca = false;
204     for (AllocaInst *AvailableAlloca : AllocasForType) {
205       unsigned Align1 = AI->getAlignment(),
206                Align2 = AvailableAlloca->getAlignment();
207 
208       // The available alloca has to be in the right function, not in some other
209       // function in this SCC.
210       if (AvailableAlloca->getParent() != AI->getParent())
211         continue;
212 
213       // If the inlined function already uses this alloca then we can't reuse
214       // it.
215       if (!UsedAllocas.insert(AvailableAlloca).second)
216         continue;
217 
218       // Otherwise, we *can* reuse it, RAUW AI into AvailableAlloca and declare
219       // success!
220       LLVM_DEBUG(dbgs() << "    ***MERGED ALLOCA: " << *AI
221                         << "\n\t\tINTO: " << *AvailableAlloca << '\n');
222 
223       // Move affected dbg.declare calls immediately after the new alloca to
224       // avoid the situation when a dbg.declare precedes its alloca.
225       if (auto *L = LocalAsMetadata::getIfExists(AI))
226         if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L))
227           for (User *U : MDV->users())
228             if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(U))
229               DDI->moveBefore(AvailableAlloca->getNextNode());
230 
231       AI->replaceAllUsesWith(AvailableAlloca);
232 
233       if (Align1 != Align2) {
234         if (!Align1 || !Align2) {
235           const DataLayout &DL = Caller->getParent()->getDataLayout();
236           unsigned TypeAlign = DL.getABITypeAlignment(AI->getAllocatedType());
237 
238           Align1 = Align1 ? Align1 : TypeAlign;
239           Align2 = Align2 ? Align2 : TypeAlign;
240         }
241 
242         if (Align1 > Align2)
243           AvailableAlloca->setAlignment(AI->getAlignment());
244       }
245 
246       AI->eraseFromParent();
247       MergedAwayAlloca = true;
248       ++NumMergedAllocas;
249       IFI.StaticAllocas[AllocaNo] = nullptr;
250       break;
251     }
252 
253     // If we already nuked the alloca, we're done with it.
254     if (MergedAwayAlloca)
255       continue;
256 
257     // If we were unable to merge away the alloca either because there are no
258     // allocas of the right type available or because we reused them all
259     // already, remember that this alloca came from an inlined function and mark
260     // it used so we don't reuse it for other allocas from this inline
261     // operation.
262     AllocasForType.push_back(AI);
263     UsedAllocas.insert(AI);
264   }
265 }
266 
267 /// If it is possible to inline the specified call site,
268 /// do so and update the CallGraph for this operation.
269 ///
270 /// This function also does some basic book-keeping to update the IR.  The
271 /// InlinedArrayAllocas map keeps track of any allocas that are already
272 /// available from other functions inlined into the caller.  If we are able to
273 /// inline this call site we attempt to reuse already available allocas or add
274 /// any new allocas to the set if not possible.
275 static InlineResult InlineCallIfPossible(
276     CallSite CS, InlineFunctionInfo &IFI,
277     InlinedArrayAllocasTy &InlinedArrayAllocas, int InlineHistory,
278     bool InsertLifetime, function_ref<AAResults &(Function &)> &AARGetter,
279     ImportedFunctionsInliningStatistics &ImportedFunctionsStats) {
280   Function *Callee = CS.getCalledFunction();
281   Function *Caller = CS.getCaller();
282 
283   AAResults &AAR = AARGetter(*Callee);
284 
285   // Try to inline the function.  Get the list of static allocas that were
286   // inlined.
287   InlineResult IR = InlineFunction(CS, IFI, &AAR, InsertLifetime);
288   if (!IR)
289     return IR;
290 
291   if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No)
292     ImportedFunctionsStats.recordInline(*Caller, *Callee);
293 
294   AttributeFuncs::mergeAttributesForInlining(*Caller, *Callee);
295 
296   if (!DisableInlinedAllocaMerging)
297     mergeInlinedArrayAllocas(Caller, IFI, InlinedArrayAllocas, InlineHistory);
298 
299   return IR; // success
300 }
301 
302 /// Return true if inlining of CS can block the caller from being
303 /// inlined which is proved to be more beneficial. \p IC is the
304 /// estimated inline cost associated with callsite \p CS.
305 /// \p TotalSecondaryCost will be set to the estimated cost of inlining the
306 /// caller if \p CS is suppressed for inlining.
307 static bool
308 shouldBeDeferred(Function *Caller, CallSite CS, InlineCost IC,
309                  int &TotalSecondaryCost,
310                  function_ref<InlineCost(CallSite CS)> GetInlineCost) {
311   // For now we only handle local or inline functions.
312   if (!Caller->hasLocalLinkage() && !Caller->hasLinkOnceODRLinkage())
313     return false;
314   // Try to detect the case where the current inlining candidate caller (call
315   // it B) is a static or linkonce-ODR function and is an inlining candidate
316   // elsewhere, and the current candidate callee (call it C) is large enough
317   // that inlining it into B would make B too big to inline later. In these
318   // circumstances it may be best not to inline C into B, but to inline B into
319   // its callers.
320   //
321   // This only applies to static and linkonce-ODR functions because those are
322   // expected to be available for inlining in the translation units where they
323   // are used. Thus we will always have the opportunity to make local inlining
324   // decisions. Importantly the linkonce-ODR linkage covers inline functions
325   // and templates in C++.
326   //
327   // FIXME: All of this logic should be sunk into getInlineCost. It relies on
328   // the internal implementation of the inline cost metrics rather than
329   // treating them as truly abstract units etc.
330   TotalSecondaryCost = 0;
331   // The candidate cost to be imposed upon the current function.
332   int CandidateCost = IC.getCost() - 1;
333   // This bool tracks what happens if we do NOT inline C into B.
334   bool callerWillBeRemoved = Caller->hasLocalLinkage();
335   // This bool tracks what happens if we DO inline C into B.
336   bool inliningPreventsSomeOuterInline = false;
337   for (User *U : Caller->users()) {
338     CallSite CS2(U);
339 
340     // If this isn't a call to Caller (it could be some other sort
341     // of reference) skip it.  Such references will prevent the caller
342     // from being removed.
343     if (!CS2 || CS2.getCalledFunction() != Caller) {
344       callerWillBeRemoved = false;
345       continue;
346     }
347 
348     InlineCost IC2 = GetInlineCost(CS2);
349     ++NumCallerCallersAnalyzed;
350     if (!IC2) {
351       callerWillBeRemoved = false;
352       continue;
353     }
354     if (IC2.isAlways())
355       continue;
356 
357     // See if inlining of the original callsite would erase the cost delta of
358     // this callsite. We subtract off the penalty for the call instruction,
359     // which we would be deleting.
360     if (IC2.getCostDelta() <= CandidateCost) {
361       inliningPreventsSomeOuterInline = true;
362       TotalSecondaryCost += IC2.getCost();
363     }
364   }
365   // If all outer calls to Caller would get inlined, the cost for the last
366   // one is set very low by getInlineCost, in anticipation that Caller will
367   // be removed entirely.  We did not account for this above unless there
368   // is only one caller of Caller.
369   if (callerWillBeRemoved && !Caller->hasOneUse())
370     TotalSecondaryCost -= InlineConstants::LastCallToStaticBonus;
371 
372   if (inliningPreventsSomeOuterInline && TotalSecondaryCost < IC.getCost())
373     return true;
374 
375   return false;
376 }
377 
378 static std::basic_ostream<char> &operator<<(std::basic_ostream<char> &R,
379                                             const ore::NV &Arg) {
380   return R << Arg.Val;
381 }
382 
383 template <class RemarkT>
384 RemarkT &operator<<(RemarkT &&R, const InlineCost &IC) {
385   using namespace ore;
386   if (IC.isAlways()) {
387     R << "(cost=always)";
388   } else if (IC.isNever()) {
389     R << "(cost=never)";
390   } else {
391     R << "(cost=" << ore::NV("Cost", IC.getCost())
392       << ", threshold=" << ore::NV("Threshold", IC.getThreshold()) << ")";
393   }
394   if (const char *Reason = IC.getReason())
395     R << ": " << ore::NV("Reason", Reason);
396   return R;
397 }
398 
399 static std::string inlineCostStr(const InlineCost &IC) {
400   std::stringstream Remark;
401   Remark << IC;
402   return Remark.str();
403 }
404 
405 /// Return the cost only if the inliner should attempt to inline at the given
406 /// CallSite. If we return the cost, we will emit an optimisation remark later
407 /// using that cost, so we won't do so from this function.
408 static Optional<InlineCost>
409 shouldInline(CallSite CS, function_ref<InlineCost(CallSite CS)> GetInlineCost,
410              OptimizationRemarkEmitter &ORE) {
411   using namespace ore;
412 
413   InlineCost IC = GetInlineCost(CS);
414   Instruction *Call = CS.getInstruction();
415   Function *Callee = CS.getCalledFunction();
416   Function *Caller = CS.getCaller();
417 
418   if (IC.isAlways()) {
419     LLVM_DEBUG(dbgs() << "    Inlining " << inlineCostStr(IC)
420                       << ", Call: " << *CS.getInstruction() << "\n");
421     return IC;
422   }
423 
424   if (IC.isNever()) {
425     LLVM_DEBUG(dbgs() << "    NOT Inlining " << inlineCostStr(IC)
426                       << ", Call: " << *CS.getInstruction() << "\n");
427     ORE.emit([&]() {
428       return OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline", Call)
429              << NV("Callee", Callee) << " not inlined into "
430              << NV("Caller", Caller) << " because it should never be inlined "
431              << IC;
432     });
433     return IC;
434   }
435 
436   if (!IC) {
437     LLVM_DEBUG(dbgs() << "    NOT Inlining " << inlineCostStr(IC)
438                       << ", Call: " << *CS.getInstruction() << "\n");
439     ORE.emit([&]() {
440       return OptimizationRemarkMissed(DEBUG_TYPE, "TooCostly", Call)
441              << NV("Callee", Callee) << " not inlined into "
442              << NV("Caller", Caller) << " because too costly to inline " << IC;
443     });
444     return IC;
445   }
446 
447   int TotalSecondaryCost = 0;
448   if (shouldBeDeferred(Caller, CS, IC, TotalSecondaryCost, GetInlineCost)) {
449     LLVM_DEBUG(dbgs() << "    NOT Inlining: " << *CS.getInstruction()
450                       << " Cost = " << IC.getCost()
451                       << ", outer Cost = " << TotalSecondaryCost << '\n');
452     ORE.emit([&]() {
453       return OptimizationRemarkMissed(DEBUG_TYPE, "IncreaseCostInOtherContexts",
454                                       Call)
455              << "Not inlining. Cost of inlining " << NV("Callee", Callee)
456              << " increases the cost of inlining " << NV("Caller", Caller)
457              << " in other contexts";
458     });
459 
460     // IC does not bool() to false, so get an InlineCost that will.
461     // This will not be inspected to make an error message.
462     return None;
463   }
464 
465   LLVM_DEBUG(dbgs() << "    Inlining " << inlineCostStr(IC)
466                     << ", Call: " << *CS.getInstruction() << '\n');
467   return IC;
468 }
469 
470 /// Return true if the specified inline history ID
471 /// indicates an inline history that includes the specified function.
472 static bool InlineHistoryIncludes(
473     Function *F, int InlineHistoryID,
474     const SmallVectorImpl<std::pair<Function *, int>> &InlineHistory) {
475   while (InlineHistoryID != -1) {
476     assert(unsigned(InlineHistoryID) < InlineHistory.size() &&
477            "Invalid inline history ID");
478     if (InlineHistory[InlineHistoryID].first == F)
479       return true;
480     InlineHistoryID = InlineHistory[InlineHistoryID].second;
481   }
482   return false;
483 }
484 
485 bool LegacyInlinerBase::doInitialization(CallGraph &CG) {
486   if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No)
487     ImportedFunctionsStats.setModuleInfo(CG.getModule());
488   return false; // No changes to CallGraph.
489 }
490 
491 bool LegacyInlinerBase::runOnSCC(CallGraphSCC &SCC) {
492   if (skipSCC(SCC))
493     return false;
494   return inlineCalls(SCC);
495 }
496 
497 static void emit_inlined_into(OptimizationRemarkEmitter &ORE, DebugLoc &DLoc,
498                               const BasicBlock *Block, const Function &Callee,
499                               const Function &Caller, const InlineCost &IC) {
500   ORE.emit([&]() {
501     bool AlwaysInline = IC.isAlways();
502     StringRef RemarkName = AlwaysInline ? "AlwaysInline" : "Inlined";
503     return OptimizationRemark(DEBUG_TYPE, RemarkName, DLoc, Block)
504            << ore::NV("Callee", &Callee) << " inlined into "
505            << ore::NV("Caller", &Caller) << " with " << IC;
506   });
507 }
508 
509 static void setInlineRemark(CallSite &CS, StringRef message) {
510   if (!InlineRemarkAttribute)
511     return;
512 
513   Attribute attr = Attribute::get(CS->getContext(), "inline-remark", message);
514   CS.addAttribute(AttributeList::FunctionIndex, attr);
515 }
516 
517 static bool
518 inlineCallsImpl(CallGraphSCC &SCC, CallGraph &CG,
519                 std::function<AssumptionCache &(Function &)> GetAssumptionCache,
520                 ProfileSummaryInfo *PSI, TargetLibraryInfo &TLI,
521                 bool InsertLifetime,
522                 function_ref<InlineCost(CallSite CS)> GetInlineCost,
523                 function_ref<AAResults &(Function &)> AARGetter,
524                 ImportedFunctionsInliningStatistics &ImportedFunctionsStats) {
525   SmallPtrSet<Function *, 8> SCCFunctions;
526   LLVM_DEBUG(dbgs() << "Inliner visiting SCC:");
527   for (CallGraphNode *Node : SCC) {
528     Function *F = Node->getFunction();
529     if (F)
530       SCCFunctions.insert(F);
531     LLVM_DEBUG(dbgs() << " " << (F ? F->getName() : "INDIRECTNODE"));
532   }
533 
534   // Scan through and identify all call sites ahead of time so that we only
535   // inline call sites in the original functions, not call sites that result
536   // from inlining other functions.
537   SmallVector<std::pair<CallSite, int>, 16> CallSites;
538 
539   // When inlining a callee produces new call sites, we want to keep track of
540   // the fact that they were inlined from the callee.  This allows us to avoid
541   // infinite inlining in some obscure cases.  To represent this, we use an
542   // index into the InlineHistory vector.
543   SmallVector<std::pair<Function *, int>, 8> InlineHistory;
544 
545   for (CallGraphNode *Node : SCC) {
546     Function *F = Node->getFunction();
547     if (!F || F->isDeclaration())
548       continue;
549 
550     OptimizationRemarkEmitter ORE(F);
551     for (BasicBlock &BB : *F)
552       for (Instruction &I : BB) {
553         CallSite CS(cast<Value>(&I));
554         // If this isn't a call, or it is a call to an intrinsic, it can
555         // never be inlined.
556         if (!CS || isa<IntrinsicInst>(I))
557           continue;
558 
559         // If this is a direct call to an external function, we can never inline
560         // it.  If it is an indirect call, inlining may resolve it to be a
561         // direct call, so we keep it.
562         if (Function *Callee = CS.getCalledFunction())
563           if (Callee->isDeclaration()) {
564             using namespace ore;
565 
566             setInlineRemark(CS, "unavailable definition");
567             ORE.emit([&]() {
568               return OptimizationRemarkMissed(DEBUG_TYPE, "NoDefinition", &I)
569                      << NV("Callee", Callee) << " will not be inlined into "
570                      << NV("Caller", CS.getCaller())
571                      << " because its definition is unavailable"
572                      << setIsVerbose();
573             });
574             continue;
575           }
576 
577         CallSites.push_back(std::make_pair(CS, -1));
578       }
579   }
580 
581   LLVM_DEBUG(dbgs() << ": " << CallSites.size() << " call sites.\n");
582 
583   // If there are no calls in this function, exit early.
584   if (CallSites.empty())
585     return false;
586 
587   // Now that we have all of the call sites, move the ones to functions in the
588   // current SCC to the end of the list.
589   unsigned FirstCallInSCC = CallSites.size();
590   for (unsigned i = 0; i < FirstCallInSCC; ++i)
591     if (Function *F = CallSites[i].first.getCalledFunction())
592       if (SCCFunctions.count(F))
593         std::swap(CallSites[i--], CallSites[--FirstCallInSCC]);
594 
595   InlinedArrayAllocasTy InlinedArrayAllocas;
596   InlineFunctionInfo InlineInfo(&CG, &GetAssumptionCache, PSI);
597 
598   // Now that we have all of the call sites, loop over them and inline them if
599   // it looks profitable to do so.
600   bool Changed = false;
601   bool LocalChange;
602   do {
603     LocalChange = false;
604     // Iterate over the outer loop because inlining functions can cause indirect
605     // calls to become direct calls.
606     // CallSites may be modified inside so ranged for loop can not be used.
607     for (unsigned CSi = 0; CSi != CallSites.size(); ++CSi) {
608       CallSite CS = CallSites[CSi].first;
609 
610       Function *Caller = CS.getCaller();
611       Function *Callee = CS.getCalledFunction();
612 
613       // We can only inline direct calls to non-declarations.
614       if (!Callee || Callee->isDeclaration())
615         continue;
616 
617       Instruction *Instr = CS.getInstruction();
618 
619       bool IsTriviallyDead = isInstructionTriviallyDead(Instr, &TLI);
620 
621       int InlineHistoryID;
622       if (!IsTriviallyDead) {
623         // If this call site was obtained by inlining another function, verify
624         // that the include path for the function did not include the callee
625         // itself.  If so, we'd be recursively inlining the same function,
626         // which would provide the same callsites, which would cause us to
627         // infinitely inline.
628         InlineHistoryID = CallSites[CSi].second;
629         if (InlineHistoryID != -1 &&
630             InlineHistoryIncludes(Callee, InlineHistoryID, InlineHistory)) {
631           setInlineRemark(CS, "recursive");
632           continue;
633         }
634       }
635 
636       // FIXME for new PM: because of the old PM we currently generate ORE and
637       // in turn BFI on demand.  With the new PM, the ORE dependency should
638       // just become a regular analysis dependency.
639       OptimizationRemarkEmitter ORE(Caller);
640 
641       Optional<InlineCost> OIC = shouldInline(CS, GetInlineCost, ORE);
642       // If the policy determines that we should inline this function,
643       // delete the call instead.
644       if (!OIC.hasValue()) {
645         setInlineRemark(CS, "deferred");
646         continue;
647       }
648 
649       if (!OIC.getValue()) {
650         // shouldInline() call returned a negative inline cost that explains
651         // why this callsite should not be inlined.
652         setInlineRemark(CS, inlineCostStr(*OIC));
653         continue;
654       }
655 
656       // If this call site is dead and it is to a readonly function, we should
657       // just delete the call instead of trying to inline it, regardless of
658       // size.  This happens because IPSCCP propagates the result out of the
659       // call and then we're left with the dead call.
660       if (IsTriviallyDead) {
661         LLVM_DEBUG(dbgs() << "    -> Deleting dead call: " << *Instr << "\n");
662         // Update the call graph by deleting the edge from Callee to Caller.
663         setInlineRemark(CS, "trivially dead");
664         CG[Caller]->removeCallEdgeFor(CS);
665         Instr->eraseFromParent();
666         ++NumCallsDeleted;
667       } else {
668         // Get DebugLoc to report. CS will be invalid after Inliner.
669         DebugLoc DLoc = CS->getDebugLoc();
670         BasicBlock *Block = CS.getParent();
671 
672         // Attempt to inline the function.
673         using namespace ore;
674 
675         InlineResult IR = InlineCallIfPossible(
676             CS, InlineInfo, InlinedArrayAllocas, InlineHistoryID,
677             InsertLifetime, AARGetter, ImportedFunctionsStats);
678         if (!IR) {
679           setInlineRemark(CS, std::string(IR) + "; " + inlineCostStr(*OIC));
680           ORE.emit([&]() {
681             return OptimizationRemarkMissed(DEBUG_TYPE, "NotInlined", DLoc,
682                                             Block)
683                    << NV("Callee", Callee) << " will not be inlined into "
684                    << NV("Caller", Caller) << ": " << NV("Reason", IR.message);
685           });
686           continue;
687         }
688         ++NumInlined;
689 
690         emit_inlined_into(ORE, DLoc, Block, *Callee, *Caller, *OIC);
691 
692         // If inlining this function gave us any new call sites, throw them
693         // onto our worklist to process.  They are useful inline candidates.
694         if (!InlineInfo.InlinedCalls.empty()) {
695           // Create a new inline history entry for this, so that we remember
696           // that these new callsites came about due to inlining Callee.
697           int NewHistoryID = InlineHistory.size();
698           InlineHistory.push_back(std::make_pair(Callee, InlineHistoryID));
699 
700           for (Value *Ptr : InlineInfo.InlinedCalls)
701             CallSites.push_back(std::make_pair(CallSite(Ptr), NewHistoryID));
702         }
703       }
704 
705       // If we inlined or deleted the last possible call site to the function,
706       // delete the function body now.
707       if (Callee && Callee->use_empty() && Callee->hasLocalLinkage() &&
708           // TODO: Can remove if in SCC now.
709           !SCCFunctions.count(Callee) &&
710           // The function may be apparently dead, but if there are indirect
711           // callgraph references to the node, we cannot delete it yet, this
712           // could invalidate the CGSCC iterator.
713           CG[Callee]->getNumReferences() == 0) {
714         LLVM_DEBUG(dbgs() << "    -> Deleting dead function: "
715                           << Callee->getName() << "\n");
716         CallGraphNode *CalleeNode = CG[Callee];
717 
718         // Remove any call graph edges from the callee to its callees.
719         CalleeNode->removeAllCalledFunctions();
720 
721         // Removing the node for callee from the call graph and delete it.
722         delete CG.removeFunctionFromModule(CalleeNode);
723         ++NumDeleted;
724       }
725 
726       // Remove this call site from the list.  If possible, use
727       // swap/pop_back for efficiency, but do not use it if doing so would
728       // move a call site to a function in this SCC before the
729       // 'FirstCallInSCC' barrier.
730       if (SCC.isSingular()) {
731         CallSites[CSi] = CallSites.back();
732         CallSites.pop_back();
733       } else {
734         CallSites.erase(CallSites.begin() + CSi);
735       }
736       --CSi;
737 
738       Changed = true;
739       LocalChange = true;
740     }
741   } while (LocalChange);
742 
743   return Changed;
744 }
745 
746 bool LegacyInlinerBase::inlineCalls(CallGraphSCC &SCC) {
747   CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();
748   ACT = &getAnalysis<AssumptionCacheTracker>();
749   PSI = getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
750   auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
751   auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & {
752     return ACT->getAssumptionCache(F);
753   };
754   return inlineCallsImpl(SCC, CG, GetAssumptionCache, PSI, TLI, InsertLifetime,
755                          [this](CallSite CS) { return getInlineCost(CS); },
756                          LegacyAARGetter(*this), ImportedFunctionsStats);
757 }
758 
759 /// Remove now-dead linkonce functions at the end of
760 /// processing to avoid breaking the SCC traversal.
761 bool LegacyInlinerBase::doFinalization(CallGraph &CG) {
762   if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No)
763     ImportedFunctionsStats.dump(InlinerFunctionImportStats ==
764                                 InlinerFunctionImportStatsOpts::Verbose);
765   return removeDeadFunctions(CG);
766 }
767 
768 /// Remove dead functions that are not included in DNR (Do Not Remove) list.
769 bool LegacyInlinerBase::removeDeadFunctions(CallGraph &CG,
770                                             bool AlwaysInlineOnly) {
771   SmallVector<CallGraphNode *, 16> FunctionsToRemove;
772   SmallVector<Function *, 16> DeadFunctionsInComdats;
773 
774   auto RemoveCGN = [&](CallGraphNode *CGN) {
775     // Remove any call graph edges from the function to its callees.
776     CGN->removeAllCalledFunctions();
777 
778     // Remove any edges from the external node to the function's call graph
779     // node.  These edges might have been made irrelegant due to
780     // optimization of the program.
781     CG.getExternalCallingNode()->removeAnyCallEdgeTo(CGN);
782 
783     // Removing the node for callee from the call graph and delete it.
784     FunctionsToRemove.push_back(CGN);
785   };
786 
787   // Scan for all of the functions, looking for ones that should now be removed
788   // from the program.  Insert the dead ones in the FunctionsToRemove set.
789   for (const auto &I : CG) {
790     CallGraphNode *CGN = I.second.get();
791     Function *F = CGN->getFunction();
792     if (!F || F->isDeclaration())
793       continue;
794 
795     // Handle the case when this function is called and we only want to care
796     // about always-inline functions. This is a bit of a hack to share code
797     // between here and the InlineAlways pass.
798     if (AlwaysInlineOnly && !F->hasFnAttribute(Attribute::AlwaysInline))
799       continue;
800 
801     // If the only remaining users of the function are dead constants, remove
802     // them.
803     F->removeDeadConstantUsers();
804 
805     if (!F->isDefTriviallyDead())
806       continue;
807 
808     // It is unsafe to drop a function with discardable linkage from a COMDAT
809     // without also dropping the other members of the COMDAT.
810     // The inliner doesn't visit non-function entities which are in COMDAT
811     // groups so it is unsafe to do so *unless* the linkage is local.
812     if (!F->hasLocalLinkage()) {
813       if (F->hasComdat()) {
814         DeadFunctionsInComdats.push_back(F);
815         continue;
816       }
817     }
818 
819     RemoveCGN(CGN);
820   }
821   if (!DeadFunctionsInComdats.empty()) {
822     // Filter out the functions whose comdats remain alive.
823     filterDeadComdatFunctions(CG.getModule(), DeadFunctionsInComdats);
824     // Remove the rest.
825     for (Function *F : DeadFunctionsInComdats)
826       RemoveCGN(CG[F]);
827   }
828 
829   if (FunctionsToRemove.empty())
830     return false;
831 
832   // Now that we know which functions to delete, do so.  We didn't want to do
833   // this inline, because that would invalidate our CallGraph::iterator
834   // objects. :(
835   //
836   // Note that it doesn't matter that we are iterating over a non-stable order
837   // here to do this, it doesn't matter which order the functions are deleted
838   // in.
839   array_pod_sort(FunctionsToRemove.begin(), FunctionsToRemove.end());
840   FunctionsToRemove.erase(
841       std::unique(FunctionsToRemove.begin(), FunctionsToRemove.end()),
842       FunctionsToRemove.end());
843   for (CallGraphNode *CGN : FunctionsToRemove) {
844     delete CG.removeFunctionFromModule(CGN);
845     ++NumDeleted;
846   }
847   return true;
848 }
849 
850 InlinerPass::~InlinerPass() {
851   if (ImportedFunctionsStats) {
852     assert(InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No);
853     ImportedFunctionsStats->dump(InlinerFunctionImportStats ==
854                                  InlinerFunctionImportStatsOpts::Verbose);
855   }
856 }
857 
858 PreservedAnalyses InlinerPass::run(LazyCallGraph::SCC &InitialC,
859                                    CGSCCAnalysisManager &AM, LazyCallGraph &CG,
860                                    CGSCCUpdateResult &UR) {
861   const ModuleAnalysisManager &MAM =
862       AM.getResult<ModuleAnalysisManagerCGSCCProxy>(InitialC, CG).getManager();
863   bool Changed = false;
864 
865   assert(InitialC.size() > 0 && "Cannot handle an empty SCC!");
866   Module &M = *InitialC.begin()->getFunction().getParent();
867   ProfileSummaryInfo *PSI = MAM.getCachedResult<ProfileSummaryAnalysis>(M);
868 
869   if (!ImportedFunctionsStats &&
870       InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No) {
871     ImportedFunctionsStats =
872         llvm::make_unique<ImportedFunctionsInliningStatistics>();
873     ImportedFunctionsStats->setModuleInfo(M);
874   }
875 
876   // We use a single common worklist for calls across the entire SCC. We
877   // process these in-order and append new calls introduced during inlining to
878   // the end.
879   //
880   // Note that this particular order of processing is actually critical to
881   // avoid very bad behaviors. Consider *highly connected* call graphs where
882   // each function contains a small amonut of code and a couple of calls to
883   // other functions. Because the LLVM inliner is fundamentally a bottom-up
884   // inliner, it can handle gracefully the fact that these all appear to be
885   // reasonable inlining candidates as it will flatten things until they become
886   // too big to inline, and then move on and flatten another batch.
887   //
888   // However, when processing call edges *within* an SCC we cannot rely on this
889   // bottom-up behavior. As a consequence, with heavily connected *SCCs* of
890   // functions we can end up incrementally inlining N calls into each of
891   // N functions because each incremental inlining decision looks good and we
892   // don't have a topological ordering to prevent explosions.
893   //
894   // To compensate for this, we don't process transitive edges made immediate
895   // by inlining until we've done one pass of inlining across the entire SCC.
896   // Large, highly connected SCCs still lead to some amount of code bloat in
897   // this model, but it is uniformly spread across all the functions in the SCC
898   // and eventually they all become too large to inline, rather than
899   // incrementally maknig a single function grow in a super linear fashion.
900   SmallVector<std::pair<CallSite, int>, 16> Calls;
901 
902   FunctionAnalysisManager &FAM =
903       AM.getResult<FunctionAnalysisManagerCGSCCProxy>(InitialC, CG)
904           .getManager();
905 
906   // Populate the initial list of calls in this SCC.
907   for (auto &N : InitialC) {
908     auto &ORE =
909         FAM.getResult<OptimizationRemarkEmitterAnalysis>(N.getFunction());
910     // We want to generally process call sites top-down in order for
911     // simplifications stemming from replacing the call with the returned value
912     // after inlining to be visible to subsequent inlining decisions.
913     // FIXME: Using instructions sequence is a really bad way to do this.
914     // Instead we should do an actual RPO walk of the function body.
915     for (Instruction &I : instructions(N.getFunction()))
916       if (auto CS = CallSite(&I))
917         if (Function *Callee = CS.getCalledFunction()) {
918           if (!Callee->isDeclaration())
919             Calls.push_back({CS, -1});
920           else if (!isa<IntrinsicInst>(I)) {
921             using namespace ore;
922             setInlineRemark(CS, "unavailable definition");
923             ORE.emit([&]() {
924               return OptimizationRemarkMissed(DEBUG_TYPE, "NoDefinition", &I)
925                      << NV("Callee", Callee) << " will not be inlined into "
926                      << NV("Caller", CS.getCaller())
927                      << " because its definition is unavailable"
928                      << setIsVerbose();
929             });
930           }
931         }
932   }
933   if (Calls.empty())
934     return PreservedAnalyses::all();
935 
936   // Capture updatable variables for the current SCC and RefSCC.
937   auto *C = &InitialC;
938   auto *RC = &C->getOuterRefSCC();
939 
940   // When inlining a callee produces new call sites, we want to keep track of
941   // the fact that they were inlined from the callee.  This allows us to avoid
942   // infinite inlining in some obscure cases.  To represent this, we use an
943   // index into the InlineHistory vector.
944   SmallVector<std::pair<Function *, int>, 16> InlineHistory;
945 
946   // Track a set vector of inlined callees so that we can augment the caller
947   // with all of their edges in the call graph before pruning out the ones that
948   // got simplified away.
949   SmallSetVector<Function *, 4> InlinedCallees;
950 
951   // Track the dead functions to delete once finished with inlining calls. We
952   // defer deleting these to make it easier to handle the call graph updates.
953   SmallVector<Function *, 4> DeadFunctions;
954 
955   // Loop forward over all of the calls. Note that we cannot cache the size as
956   // inlining can introduce new calls that need to be processed.
957   for (int i = 0; i < (int)Calls.size(); ++i) {
958     // We expect the calls to typically be batched with sequences of calls that
959     // have the same caller, so we first set up some shared infrastructure for
960     // this caller. We also do any pruning we can at this layer on the caller
961     // alone.
962     Function &F = *Calls[i].first.getCaller();
963     LazyCallGraph::Node &N = *CG.lookup(F);
964     if (CG.lookupSCC(N) != C)
965       continue;
966     if (F.hasFnAttribute(Attribute::OptimizeNone)) {
967       setInlineRemark(Calls[i].first, "optnone attribute");
968       continue;
969     }
970 
971     LLVM_DEBUG(dbgs() << "Inlining calls in: " << F.getName() << "\n");
972 
973     // Get a FunctionAnalysisManager via a proxy for this particular node. We
974     // do this each time we visit a node as the SCC may have changed and as
975     // we're going to mutate this particular function we want to make sure the
976     // proxy is in place to forward any invalidation events. We can use the
977     // manager we get here for looking up results for functions other than this
978     // node however because those functions aren't going to be mutated by this
979     // pass.
980     FunctionAnalysisManager &FAM =
981         AM.getResult<FunctionAnalysisManagerCGSCCProxy>(*C, CG)
982             .getManager();
983 
984     // Get the remarks emission analysis for the caller.
985     auto &ORE = FAM.getResult<OptimizationRemarkEmitterAnalysis>(F);
986 
987     std::function<AssumptionCache &(Function &)> GetAssumptionCache =
988         [&](Function &F) -> AssumptionCache & {
989       return FAM.getResult<AssumptionAnalysis>(F);
990     };
991     auto GetBFI = [&](Function &F) -> BlockFrequencyInfo & {
992       return FAM.getResult<BlockFrequencyAnalysis>(F);
993     };
994 
995     auto GetInlineCost = [&](CallSite CS) {
996       Function &Callee = *CS.getCalledFunction();
997       auto &CalleeTTI = FAM.getResult<TargetIRAnalysis>(Callee);
998       return getInlineCost(CS, Params, CalleeTTI, GetAssumptionCache, {GetBFI},
999                            PSI, &ORE);
1000     };
1001 
1002     // Now process as many calls as we have within this caller in the sequnece.
1003     // We bail out as soon as the caller has to change so we can update the
1004     // call graph and prepare the context of that new caller.
1005     bool DidInline = false;
1006     for (; i < (int)Calls.size() && Calls[i].first.getCaller() == &F; ++i) {
1007       int InlineHistoryID;
1008       CallSite CS;
1009       std::tie(CS, InlineHistoryID) = Calls[i];
1010       Function &Callee = *CS.getCalledFunction();
1011 
1012       if (InlineHistoryID != -1 &&
1013           InlineHistoryIncludes(&Callee, InlineHistoryID, InlineHistory)) {
1014         setInlineRemark(CS, "recursive");
1015         continue;
1016       }
1017 
1018       // Check if this inlining may repeat breaking an SCC apart that has
1019       // already been split once before. In that case, inlining here may
1020       // trigger infinite inlining, much like is prevented within the inliner
1021       // itself by the InlineHistory above, but spread across CGSCC iterations
1022       // and thus hidden from the full inline history.
1023       if (CG.lookupSCC(*CG.lookup(Callee)) == C &&
1024           UR.InlinedInternalEdges.count({&N, C})) {
1025         LLVM_DEBUG(dbgs() << "Skipping inlining internal SCC edge from a node "
1026                              "previously split out of this SCC by inlining: "
1027                           << F.getName() << " -> " << Callee.getName() << "\n");
1028         setInlineRemark(CS, "recursive SCC split");
1029         continue;
1030       }
1031 
1032       Optional<InlineCost> OIC = shouldInline(CS, GetInlineCost, ORE);
1033       // Check whether we want to inline this callsite.
1034       if (!OIC.hasValue()) {
1035         setInlineRemark(CS, "deferred");
1036         continue;
1037       }
1038 
1039       if (!OIC.getValue()) {
1040         // shouldInline() call returned a negative inline cost that explains
1041         // why this callsite should not be inlined.
1042         setInlineRemark(CS, inlineCostStr(*OIC));
1043         continue;
1044       }
1045 
1046       // Setup the data structure used to plumb customization into the
1047       // `InlineFunction` routine.
1048       InlineFunctionInfo IFI(
1049           /*cg=*/nullptr, &GetAssumptionCache, PSI,
1050           &FAM.getResult<BlockFrequencyAnalysis>(*(CS.getCaller())),
1051           &FAM.getResult<BlockFrequencyAnalysis>(Callee));
1052 
1053       // Get DebugLoc to report. CS will be invalid after Inliner.
1054       DebugLoc DLoc = CS->getDebugLoc();
1055       BasicBlock *Block = CS.getParent();
1056 
1057       using namespace ore;
1058 
1059       InlineResult IR = InlineFunction(CS, IFI);
1060       if (!IR) {
1061         setInlineRemark(CS, std::string(IR) + "; " + inlineCostStr(*OIC));
1062         ORE.emit([&]() {
1063           return OptimizationRemarkMissed(DEBUG_TYPE, "NotInlined", DLoc, Block)
1064                  << NV("Callee", &Callee) << " will not be inlined into "
1065                  << NV("Caller", &F) << ": " << NV("Reason", IR.message);
1066         });
1067         continue;
1068       }
1069       DidInline = true;
1070       InlinedCallees.insert(&Callee);
1071 
1072       ++NumInlined;
1073 
1074       emit_inlined_into(ORE, DLoc, Block, Callee, F, *OIC);
1075 
1076       // Add any new callsites to defined functions to the worklist.
1077       if (!IFI.InlinedCallSites.empty()) {
1078         int NewHistoryID = InlineHistory.size();
1079         InlineHistory.push_back({&Callee, InlineHistoryID});
1080         for (CallSite &CS : reverse(IFI.InlinedCallSites))
1081           if (Function *NewCallee = CS.getCalledFunction())
1082             if (!NewCallee->isDeclaration())
1083               Calls.push_back({CS, NewHistoryID});
1084       }
1085 
1086       if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No)
1087         ImportedFunctionsStats->recordInline(F, Callee);
1088 
1089       // Merge the attributes based on the inlining.
1090       AttributeFuncs::mergeAttributesForInlining(F, Callee);
1091 
1092       // For local functions, check whether this makes the callee trivially
1093       // dead. In that case, we can drop the body of the function eagerly
1094       // which may reduce the number of callers of other functions to one,
1095       // changing inline cost thresholds.
1096       if (Callee.hasLocalLinkage()) {
1097         // To check this we also need to nuke any dead constant uses (perhaps
1098         // made dead by this operation on other functions).
1099         Callee.removeDeadConstantUsers();
1100         if (Callee.use_empty() && !CG.isLibFunction(Callee)) {
1101           Calls.erase(
1102               std::remove_if(Calls.begin() + i + 1, Calls.end(),
1103                              [&Callee](const std::pair<CallSite, int> &Call) {
1104                                return Call.first.getCaller() == &Callee;
1105                              }),
1106               Calls.end());
1107           // Clear the body and queue the function itself for deletion when we
1108           // finish inlining and call graph updates.
1109           // Note that after this point, it is an error to do anything other
1110           // than use the callee's address or delete it.
1111           Callee.dropAllReferences();
1112           assert(find(DeadFunctions, &Callee) == DeadFunctions.end() &&
1113                  "Cannot put cause a function to become dead twice!");
1114           DeadFunctions.push_back(&Callee);
1115         }
1116       }
1117     }
1118 
1119     // Back the call index up by one to put us in a good position to go around
1120     // the outer loop.
1121     --i;
1122 
1123     if (!DidInline)
1124       continue;
1125     Changed = true;
1126 
1127     // Add all the inlined callees' edges as ref edges to the caller. These are
1128     // by definition trivial edges as we always have *some* transitive ref edge
1129     // chain. While in some cases these edges are direct calls inside the
1130     // callee, they have to be modeled in the inliner as reference edges as
1131     // there may be a reference edge anywhere along the chain from the current
1132     // caller to the callee that causes the whole thing to appear like
1133     // a (transitive) reference edge that will require promotion to a call edge
1134     // below.
1135     for (Function *InlinedCallee : InlinedCallees) {
1136       LazyCallGraph::Node &CalleeN = *CG.lookup(*InlinedCallee);
1137       for (LazyCallGraph::Edge &E : *CalleeN)
1138         RC->insertTrivialRefEdge(N, E.getNode());
1139     }
1140 
1141     // At this point, since we have made changes we have at least removed
1142     // a call instruction. However, in the process we do some incremental
1143     // simplification of the surrounding code. This simplification can
1144     // essentially do all of the same things as a function pass and we can
1145     // re-use the exact same logic for updating the call graph to reflect the
1146     // change.
1147     LazyCallGraph::SCC *OldC = C;
1148     C = &updateCGAndAnalysisManagerForFunctionPass(CG, *C, N, AM, UR);
1149     LLVM_DEBUG(dbgs() << "Updated inlining SCC: " << *C << "\n");
1150     RC = &C->getOuterRefSCC();
1151 
1152     // If this causes an SCC to split apart into multiple smaller SCCs, there
1153     // is a subtle risk we need to prepare for. Other transformations may
1154     // expose an "infinite inlining" opportunity later, and because of the SCC
1155     // mutation, we will revisit this function and potentially re-inline. If we
1156     // do, and that re-inlining also has the potentially to mutate the SCC
1157     // structure, the infinite inlining problem can manifest through infinite
1158     // SCC splits and merges. To avoid this, we capture the originating caller
1159     // node and the SCC containing the call edge. This is a slight over
1160     // approximation of the possible inlining decisions that must be avoided,
1161     // but is relatively efficient to store.
1162     // FIXME: This seems like a very heavyweight way of retaining the inline
1163     // history, we should look for a more efficient way of tracking it.
1164     if (C != OldC && llvm::any_of(InlinedCallees, [&](Function *Callee) {
1165           return CG.lookupSCC(*CG.lookup(*Callee)) == OldC;
1166         })) {
1167       LLVM_DEBUG(dbgs() << "Inlined an internal call edge and split an SCC, "
1168                            "retaining this to avoid infinite inlining.\n");
1169       UR.InlinedInternalEdges.insert({&N, OldC});
1170     }
1171     InlinedCallees.clear();
1172   }
1173 
1174   // Now that we've finished inlining all of the calls across this SCC, delete
1175   // all of the trivially dead functions, updating the call graph and the CGSCC
1176   // pass manager in the process.
1177   //
1178   // Note that this walks a pointer set which has non-deterministic order but
1179   // that is OK as all we do is delete things and add pointers to unordered
1180   // sets.
1181   for (Function *DeadF : DeadFunctions) {
1182     // Get the necessary information out of the call graph and nuke the
1183     // function there. Also, cclear out any cached analyses.
1184     auto &DeadC = *CG.lookupSCC(*CG.lookup(*DeadF));
1185     FunctionAnalysisManager &FAM =
1186         AM.getResult<FunctionAnalysisManagerCGSCCProxy>(DeadC, CG)
1187             .getManager();
1188     FAM.clear(*DeadF, DeadF->getName());
1189     AM.clear(DeadC, DeadC.getName());
1190     auto &DeadRC = DeadC.getOuterRefSCC();
1191     CG.removeDeadFunction(*DeadF);
1192 
1193     // Mark the relevant parts of the call graph as invalid so we don't visit
1194     // them.
1195     UR.InvalidatedSCCs.insert(&DeadC);
1196     UR.InvalidatedRefSCCs.insert(&DeadRC);
1197 
1198     // And delete the actual function from the module.
1199     M.getFunctionList().erase(DeadF);
1200     ++NumDeleted;
1201   }
1202 
1203   if (!Changed)
1204     return PreservedAnalyses::all();
1205 
1206   // Even if we change the IR, we update the core CGSCC data structures and so
1207   // can preserve the proxy to the function analysis manager.
1208   PreservedAnalyses PA;
1209   PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
1210   return PA;
1211 }
1212