1 //===- Inliner.cpp - Code common to all inliners --------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the mechanics required to implement inlining without 11 // missing any calls and updating the call graph. The decisions of which calls 12 // are profitable to inline are implemented elsewhere. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Transforms/IPO/Inliner.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/AssumptionCache.h" 28 #include "llvm/Analysis/BasicAliasAnalysis.h" 29 #include "llvm/Analysis/BlockFrequencyInfo.h" 30 #include "llvm/Analysis/CGSCCPassManager.h" 31 #include "llvm/Analysis/CallGraph.h" 32 #include "llvm/Analysis/InlineCost.h" 33 #include "llvm/Analysis/LazyCallGraph.h" 34 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 35 #include "llvm/Analysis/ProfileSummaryInfo.h" 36 #include "llvm/Analysis/TargetLibraryInfo.h" 37 #include "llvm/Analysis/TargetTransformInfo.h" 38 #include "llvm/Transforms/Utils/Local.h" 39 #include "llvm/IR/Attributes.h" 40 #include "llvm/IR/BasicBlock.h" 41 #include "llvm/IR/CallSite.h" 42 #include "llvm/IR/DataLayout.h" 43 #include "llvm/IR/DebugLoc.h" 44 #include "llvm/IR/DerivedTypes.h" 45 #include "llvm/IR/DiagnosticInfo.h" 46 #include "llvm/IR/Function.h" 47 #include "llvm/IR/InstIterator.h" 48 #include "llvm/IR/Instruction.h" 49 #include "llvm/IR/Instructions.h" 50 #include "llvm/IR/IntrinsicInst.h" 51 #include "llvm/IR/Metadata.h" 52 #include "llvm/IR/Module.h" 53 #include "llvm/IR/PassManager.h" 54 #include "llvm/IR/User.h" 55 #include "llvm/IR/Value.h" 56 #include "llvm/Pass.h" 57 #include "llvm/Support/Casting.h" 58 #include "llvm/Support/CommandLine.h" 59 #include "llvm/Support/Debug.h" 60 #include "llvm/Support/raw_ostream.h" 61 #include "llvm/Transforms/Utils/Cloning.h" 62 #include "llvm/Transforms/Utils/ImportedFunctionsInliningStatistics.h" 63 #include "llvm/Transforms/Utils/ModuleUtils.h" 64 #include <algorithm> 65 #include <cassert> 66 #include <functional> 67 #include <sstream> 68 #include <tuple> 69 #include <utility> 70 #include <vector> 71 72 using namespace llvm; 73 74 #define DEBUG_TYPE "inline" 75 76 STATISTIC(NumInlined, "Number of functions inlined"); 77 STATISTIC(NumCallsDeleted, "Number of call sites deleted, not inlined"); 78 STATISTIC(NumDeleted, "Number of functions deleted because all callers found"); 79 STATISTIC(NumMergedAllocas, "Number of allocas merged together"); 80 81 // This weirdly named statistic tracks the number of times that, when attempting 82 // to inline a function A into B, we analyze the callers of B in order to see 83 // if those would be more profitable and blocked inline steps. 84 STATISTIC(NumCallerCallersAnalyzed, "Number of caller-callers analyzed"); 85 86 /// Flag to disable manual alloca merging. 87 /// 88 /// Merging of allocas was originally done as a stack-size saving technique 89 /// prior to LLVM's code generator having support for stack coloring based on 90 /// lifetime markers. It is now in the process of being removed. To experiment 91 /// with disabling it and relying fully on lifetime marker based stack 92 /// coloring, you can pass this flag to LLVM. 93 static cl::opt<bool> 94 DisableInlinedAllocaMerging("disable-inlined-alloca-merging", 95 cl::init(false), cl::Hidden); 96 97 namespace { 98 99 enum class InlinerFunctionImportStatsOpts { 100 No = 0, 101 Basic = 1, 102 Verbose = 2, 103 }; 104 105 } // end anonymous namespace 106 107 static cl::opt<InlinerFunctionImportStatsOpts> InlinerFunctionImportStats( 108 "inliner-function-import-stats", 109 cl::init(InlinerFunctionImportStatsOpts::No), 110 cl::values(clEnumValN(InlinerFunctionImportStatsOpts::Basic, "basic", 111 "basic statistics"), 112 clEnumValN(InlinerFunctionImportStatsOpts::Verbose, "verbose", 113 "printing of statistics for each inlined function")), 114 cl::Hidden, cl::desc("Enable inliner stats for imported functions")); 115 116 /// Flag to add inline messages as callsite attributes 'inline-remark'. 117 static cl::opt<bool> 118 InlineRemarkAttribute("inline-remark-attribute", cl::init(false), 119 cl::Hidden, 120 cl::desc("Enable adding inline-remark attribute to" 121 " callsites processed by inliner but decided" 122 " to be not inlined")); 123 124 LegacyInlinerBase::LegacyInlinerBase(char &ID) : CallGraphSCCPass(ID) {} 125 126 LegacyInlinerBase::LegacyInlinerBase(char &ID, bool InsertLifetime) 127 : CallGraphSCCPass(ID), InsertLifetime(InsertLifetime) {} 128 129 /// For this class, we declare that we require and preserve the call graph. 130 /// If the derived class implements this method, it should 131 /// always explicitly call the implementation here. 132 void LegacyInlinerBase::getAnalysisUsage(AnalysisUsage &AU) const { 133 AU.addRequired<AssumptionCacheTracker>(); 134 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 135 AU.addRequired<TargetLibraryInfoWrapperPass>(); 136 getAAResultsAnalysisUsage(AU); 137 CallGraphSCCPass::getAnalysisUsage(AU); 138 } 139 140 using InlinedArrayAllocasTy = DenseMap<ArrayType *, std::vector<AllocaInst *>>; 141 142 /// Look at all of the allocas that we inlined through this call site. If we 143 /// have already inlined other allocas through other calls into this function, 144 /// then we know that they have disjoint lifetimes and that we can merge them. 145 /// 146 /// There are many heuristics possible for merging these allocas, and the 147 /// different options have different tradeoffs. One thing that we *really* 148 /// don't want to hurt is SRoA: once inlining happens, often allocas are no 149 /// longer address taken and so they can be promoted. 150 /// 151 /// Our "solution" for that is to only merge allocas whose outermost type is an 152 /// array type. These are usually not promoted because someone is using a 153 /// variable index into them. These are also often the most important ones to 154 /// merge. 155 /// 156 /// A better solution would be to have real memory lifetime markers in the IR 157 /// and not have the inliner do any merging of allocas at all. This would 158 /// allow the backend to do proper stack slot coloring of all allocas that 159 /// *actually make it to the backend*, which is really what we want. 160 /// 161 /// Because we don't have this information, we do this simple and useful hack. 162 static void mergeInlinedArrayAllocas( 163 Function *Caller, InlineFunctionInfo &IFI, 164 InlinedArrayAllocasTy &InlinedArrayAllocas, int InlineHistory) { 165 SmallPtrSet<AllocaInst *, 16> UsedAllocas; 166 167 // When processing our SCC, check to see if CS was inlined from some other 168 // call site. For example, if we're processing "A" in this code: 169 // A() { B() } 170 // B() { x = alloca ... C() } 171 // C() { y = alloca ... } 172 // Assume that C was not inlined into B initially, and so we're processing A 173 // and decide to inline B into A. Doing this makes an alloca available for 174 // reuse and makes a callsite (C) available for inlining. When we process 175 // the C call site we don't want to do any alloca merging between X and Y 176 // because their scopes are not disjoint. We could make this smarter by 177 // keeping track of the inline history for each alloca in the 178 // InlinedArrayAllocas but this isn't likely to be a significant win. 179 if (InlineHistory != -1) // Only do merging for top-level call sites in SCC. 180 return; 181 182 // Loop over all the allocas we have so far and see if they can be merged with 183 // a previously inlined alloca. If not, remember that we had it. 184 for (unsigned AllocaNo = 0, e = IFI.StaticAllocas.size(); AllocaNo != e; 185 ++AllocaNo) { 186 AllocaInst *AI = IFI.StaticAllocas[AllocaNo]; 187 188 // Don't bother trying to merge array allocations (they will usually be 189 // canonicalized to be an allocation *of* an array), or allocations whose 190 // type is not itself an array (because we're afraid of pessimizing SRoA). 191 ArrayType *ATy = dyn_cast<ArrayType>(AI->getAllocatedType()); 192 if (!ATy || AI->isArrayAllocation()) 193 continue; 194 195 // Get the list of all available allocas for this array type. 196 std::vector<AllocaInst *> &AllocasForType = InlinedArrayAllocas[ATy]; 197 198 // Loop over the allocas in AllocasForType to see if we can reuse one. Note 199 // that we have to be careful not to reuse the same "available" alloca for 200 // multiple different allocas that we just inlined, we use the 'UsedAllocas' 201 // set to keep track of which "available" allocas are being used by this 202 // function. Also, AllocasForType can be empty of course! 203 bool MergedAwayAlloca = false; 204 for (AllocaInst *AvailableAlloca : AllocasForType) { 205 unsigned Align1 = AI->getAlignment(), 206 Align2 = AvailableAlloca->getAlignment(); 207 208 // The available alloca has to be in the right function, not in some other 209 // function in this SCC. 210 if (AvailableAlloca->getParent() != AI->getParent()) 211 continue; 212 213 // If the inlined function already uses this alloca then we can't reuse 214 // it. 215 if (!UsedAllocas.insert(AvailableAlloca).second) 216 continue; 217 218 // Otherwise, we *can* reuse it, RAUW AI into AvailableAlloca and declare 219 // success! 220 LLVM_DEBUG(dbgs() << " ***MERGED ALLOCA: " << *AI 221 << "\n\t\tINTO: " << *AvailableAlloca << '\n'); 222 223 // Move affected dbg.declare calls immediately after the new alloca to 224 // avoid the situation when a dbg.declare precedes its alloca. 225 if (auto *L = LocalAsMetadata::getIfExists(AI)) 226 if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L)) 227 for (User *U : MDV->users()) 228 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(U)) 229 DDI->moveBefore(AvailableAlloca->getNextNode()); 230 231 AI->replaceAllUsesWith(AvailableAlloca); 232 233 if (Align1 != Align2) { 234 if (!Align1 || !Align2) { 235 const DataLayout &DL = Caller->getParent()->getDataLayout(); 236 unsigned TypeAlign = DL.getABITypeAlignment(AI->getAllocatedType()); 237 238 Align1 = Align1 ? Align1 : TypeAlign; 239 Align2 = Align2 ? Align2 : TypeAlign; 240 } 241 242 if (Align1 > Align2) 243 AvailableAlloca->setAlignment(AI->getAlignment()); 244 } 245 246 AI->eraseFromParent(); 247 MergedAwayAlloca = true; 248 ++NumMergedAllocas; 249 IFI.StaticAllocas[AllocaNo] = nullptr; 250 break; 251 } 252 253 // If we already nuked the alloca, we're done with it. 254 if (MergedAwayAlloca) 255 continue; 256 257 // If we were unable to merge away the alloca either because there are no 258 // allocas of the right type available or because we reused them all 259 // already, remember that this alloca came from an inlined function and mark 260 // it used so we don't reuse it for other allocas from this inline 261 // operation. 262 AllocasForType.push_back(AI); 263 UsedAllocas.insert(AI); 264 } 265 } 266 267 /// If it is possible to inline the specified call site, 268 /// do so and update the CallGraph for this operation. 269 /// 270 /// This function also does some basic book-keeping to update the IR. The 271 /// InlinedArrayAllocas map keeps track of any allocas that are already 272 /// available from other functions inlined into the caller. If we are able to 273 /// inline this call site we attempt to reuse already available allocas or add 274 /// any new allocas to the set if not possible. 275 static InlineResult InlineCallIfPossible( 276 CallSite CS, InlineFunctionInfo &IFI, 277 InlinedArrayAllocasTy &InlinedArrayAllocas, int InlineHistory, 278 bool InsertLifetime, function_ref<AAResults &(Function &)> &AARGetter, 279 ImportedFunctionsInliningStatistics &ImportedFunctionsStats) { 280 Function *Callee = CS.getCalledFunction(); 281 Function *Caller = CS.getCaller(); 282 283 AAResults &AAR = AARGetter(*Callee); 284 285 // Try to inline the function. Get the list of static allocas that were 286 // inlined. 287 InlineResult IR = InlineFunction(CS, IFI, &AAR, InsertLifetime); 288 if (!IR) 289 return IR; 290 291 if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No) 292 ImportedFunctionsStats.recordInline(*Caller, *Callee); 293 294 AttributeFuncs::mergeAttributesForInlining(*Caller, *Callee); 295 296 if (!DisableInlinedAllocaMerging) 297 mergeInlinedArrayAllocas(Caller, IFI, InlinedArrayAllocas, InlineHistory); 298 299 return IR; // success 300 } 301 302 /// Return true if inlining of CS can block the caller from being 303 /// inlined which is proved to be more beneficial. \p IC is the 304 /// estimated inline cost associated with callsite \p CS. 305 /// \p TotalSecondaryCost will be set to the estimated cost of inlining the 306 /// caller if \p CS is suppressed for inlining. 307 static bool 308 shouldBeDeferred(Function *Caller, CallSite CS, InlineCost IC, 309 int &TotalSecondaryCost, 310 function_ref<InlineCost(CallSite CS)> GetInlineCost) { 311 // For now we only handle local or inline functions. 312 if (!Caller->hasLocalLinkage() && !Caller->hasLinkOnceODRLinkage()) 313 return false; 314 // Try to detect the case where the current inlining candidate caller (call 315 // it B) is a static or linkonce-ODR function and is an inlining candidate 316 // elsewhere, and the current candidate callee (call it C) is large enough 317 // that inlining it into B would make B too big to inline later. In these 318 // circumstances it may be best not to inline C into B, but to inline B into 319 // its callers. 320 // 321 // This only applies to static and linkonce-ODR functions because those are 322 // expected to be available for inlining in the translation units where they 323 // are used. Thus we will always have the opportunity to make local inlining 324 // decisions. Importantly the linkonce-ODR linkage covers inline functions 325 // and templates in C++. 326 // 327 // FIXME: All of this logic should be sunk into getInlineCost. It relies on 328 // the internal implementation of the inline cost metrics rather than 329 // treating them as truly abstract units etc. 330 TotalSecondaryCost = 0; 331 // The candidate cost to be imposed upon the current function. 332 int CandidateCost = IC.getCost() - 1; 333 // This bool tracks what happens if we do NOT inline C into B. 334 bool callerWillBeRemoved = Caller->hasLocalLinkage(); 335 // This bool tracks what happens if we DO inline C into B. 336 bool inliningPreventsSomeOuterInline = false; 337 for (User *U : Caller->users()) { 338 CallSite CS2(U); 339 340 // If this isn't a call to Caller (it could be some other sort 341 // of reference) skip it. Such references will prevent the caller 342 // from being removed. 343 if (!CS2 || CS2.getCalledFunction() != Caller) { 344 callerWillBeRemoved = false; 345 continue; 346 } 347 348 InlineCost IC2 = GetInlineCost(CS2); 349 ++NumCallerCallersAnalyzed; 350 if (!IC2) { 351 callerWillBeRemoved = false; 352 continue; 353 } 354 if (IC2.isAlways()) 355 continue; 356 357 // See if inlining of the original callsite would erase the cost delta of 358 // this callsite. We subtract off the penalty for the call instruction, 359 // which we would be deleting. 360 if (IC2.getCostDelta() <= CandidateCost) { 361 inliningPreventsSomeOuterInline = true; 362 TotalSecondaryCost += IC2.getCost(); 363 } 364 } 365 // If all outer calls to Caller would get inlined, the cost for the last 366 // one is set very low by getInlineCost, in anticipation that Caller will 367 // be removed entirely. We did not account for this above unless there 368 // is only one caller of Caller. 369 if (callerWillBeRemoved && !Caller->hasOneUse()) 370 TotalSecondaryCost -= InlineConstants::LastCallToStaticBonus; 371 372 if (inliningPreventsSomeOuterInline && TotalSecondaryCost < IC.getCost()) 373 return true; 374 375 return false; 376 } 377 378 static std::basic_ostream<char> &operator<<(std::basic_ostream<char> &R, 379 const ore::NV &Arg) { 380 return R << Arg.Val; 381 } 382 383 template <class RemarkT> 384 RemarkT &operator<<(RemarkT &&R, const InlineCost &IC) { 385 using namespace ore; 386 if (IC.isAlways()) { 387 R << "(cost=always)"; 388 } else if (IC.isNever()) { 389 R << "(cost=never)"; 390 } else { 391 R << "(cost=" << ore::NV("Cost", IC.getCost()) 392 << ", threshold=" << ore::NV("Threshold", IC.getThreshold()) << ")"; 393 } 394 if (const char *Reason = IC.getReason()) 395 R << ": " << ore::NV("Reason", Reason); 396 return R; 397 } 398 399 static std::string inlineCostStr(const InlineCost &IC) { 400 std::stringstream Remark; 401 Remark << IC; 402 return Remark.str(); 403 } 404 405 /// Return the cost only if the inliner should attempt to inline at the given 406 /// CallSite. If we return the cost, we will emit an optimisation remark later 407 /// using that cost, so we won't do so from this function. 408 static Optional<InlineCost> 409 shouldInline(CallSite CS, function_ref<InlineCost(CallSite CS)> GetInlineCost, 410 OptimizationRemarkEmitter &ORE) { 411 using namespace ore; 412 413 InlineCost IC = GetInlineCost(CS); 414 Instruction *Call = CS.getInstruction(); 415 Function *Callee = CS.getCalledFunction(); 416 Function *Caller = CS.getCaller(); 417 418 if (IC.isAlways()) { 419 LLVM_DEBUG(dbgs() << " Inlining " << inlineCostStr(IC) 420 << ", Call: " << *CS.getInstruction() << "\n"); 421 return IC; 422 } 423 424 if (IC.isNever()) { 425 LLVM_DEBUG(dbgs() << " NOT Inlining " << inlineCostStr(IC) 426 << ", Call: " << *CS.getInstruction() << "\n"); 427 ORE.emit([&]() { 428 return OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline", Call) 429 << NV("Callee", Callee) << " not inlined into " 430 << NV("Caller", Caller) << " because it should never be inlined " 431 << IC; 432 }); 433 return IC; 434 } 435 436 if (!IC) { 437 LLVM_DEBUG(dbgs() << " NOT Inlining " << inlineCostStr(IC) 438 << ", Call: " << *CS.getInstruction() << "\n"); 439 ORE.emit([&]() { 440 return OptimizationRemarkMissed(DEBUG_TYPE, "TooCostly", Call) 441 << NV("Callee", Callee) << " not inlined into " 442 << NV("Caller", Caller) << " because too costly to inline " << IC; 443 }); 444 return IC; 445 } 446 447 int TotalSecondaryCost = 0; 448 if (shouldBeDeferred(Caller, CS, IC, TotalSecondaryCost, GetInlineCost)) { 449 LLVM_DEBUG(dbgs() << " NOT Inlining: " << *CS.getInstruction() 450 << " Cost = " << IC.getCost() 451 << ", outer Cost = " << TotalSecondaryCost << '\n'); 452 ORE.emit([&]() { 453 return OptimizationRemarkMissed(DEBUG_TYPE, "IncreaseCostInOtherContexts", 454 Call) 455 << "Not inlining. Cost of inlining " << NV("Callee", Callee) 456 << " increases the cost of inlining " << NV("Caller", Caller) 457 << " in other contexts"; 458 }); 459 460 // IC does not bool() to false, so get an InlineCost that will. 461 // This will not be inspected to make an error message. 462 return None; 463 } 464 465 LLVM_DEBUG(dbgs() << " Inlining " << inlineCostStr(IC) 466 << ", Call: " << *CS.getInstruction() << '\n'); 467 return IC; 468 } 469 470 /// Return true if the specified inline history ID 471 /// indicates an inline history that includes the specified function. 472 static bool InlineHistoryIncludes( 473 Function *F, int InlineHistoryID, 474 const SmallVectorImpl<std::pair<Function *, int>> &InlineHistory) { 475 while (InlineHistoryID != -1) { 476 assert(unsigned(InlineHistoryID) < InlineHistory.size() && 477 "Invalid inline history ID"); 478 if (InlineHistory[InlineHistoryID].first == F) 479 return true; 480 InlineHistoryID = InlineHistory[InlineHistoryID].second; 481 } 482 return false; 483 } 484 485 bool LegacyInlinerBase::doInitialization(CallGraph &CG) { 486 if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No) 487 ImportedFunctionsStats.setModuleInfo(CG.getModule()); 488 return false; // No changes to CallGraph. 489 } 490 491 bool LegacyInlinerBase::runOnSCC(CallGraphSCC &SCC) { 492 if (skipSCC(SCC)) 493 return false; 494 return inlineCalls(SCC); 495 } 496 497 static void emit_inlined_into(OptimizationRemarkEmitter &ORE, DebugLoc &DLoc, 498 const BasicBlock *Block, const Function &Callee, 499 const Function &Caller, const InlineCost &IC) { 500 ORE.emit([&]() { 501 bool AlwaysInline = IC.isAlways(); 502 StringRef RemarkName = AlwaysInline ? "AlwaysInline" : "Inlined"; 503 return OptimizationRemark(DEBUG_TYPE, RemarkName, DLoc, Block) 504 << ore::NV("Callee", &Callee) << " inlined into " 505 << ore::NV("Caller", &Caller) << " with " << IC; 506 }); 507 } 508 509 static void setInlineRemark(CallSite &CS, StringRef message) { 510 if (!InlineRemarkAttribute) 511 return; 512 513 Attribute attr = Attribute::get(CS->getContext(), "inline-remark", message); 514 CS.addAttribute(AttributeList::FunctionIndex, attr); 515 } 516 517 static bool 518 inlineCallsImpl(CallGraphSCC &SCC, CallGraph &CG, 519 std::function<AssumptionCache &(Function &)> GetAssumptionCache, 520 ProfileSummaryInfo *PSI, TargetLibraryInfo &TLI, 521 bool InsertLifetime, 522 function_ref<InlineCost(CallSite CS)> GetInlineCost, 523 function_ref<AAResults &(Function &)> AARGetter, 524 ImportedFunctionsInliningStatistics &ImportedFunctionsStats) { 525 SmallPtrSet<Function *, 8> SCCFunctions; 526 LLVM_DEBUG(dbgs() << "Inliner visiting SCC:"); 527 for (CallGraphNode *Node : SCC) { 528 Function *F = Node->getFunction(); 529 if (F) 530 SCCFunctions.insert(F); 531 LLVM_DEBUG(dbgs() << " " << (F ? F->getName() : "INDIRECTNODE")); 532 } 533 534 // Scan through and identify all call sites ahead of time so that we only 535 // inline call sites in the original functions, not call sites that result 536 // from inlining other functions. 537 SmallVector<std::pair<CallSite, int>, 16> CallSites; 538 539 // When inlining a callee produces new call sites, we want to keep track of 540 // the fact that they were inlined from the callee. This allows us to avoid 541 // infinite inlining in some obscure cases. To represent this, we use an 542 // index into the InlineHistory vector. 543 SmallVector<std::pair<Function *, int>, 8> InlineHistory; 544 545 for (CallGraphNode *Node : SCC) { 546 Function *F = Node->getFunction(); 547 if (!F || F->isDeclaration()) 548 continue; 549 550 OptimizationRemarkEmitter ORE(F); 551 for (BasicBlock &BB : *F) 552 for (Instruction &I : BB) { 553 CallSite CS(cast<Value>(&I)); 554 // If this isn't a call, or it is a call to an intrinsic, it can 555 // never be inlined. 556 if (!CS || isa<IntrinsicInst>(I)) 557 continue; 558 559 // If this is a direct call to an external function, we can never inline 560 // it. If it is an indirect call, inlining may resolve it to be a 561 // direct call, so we keep it. 562 if (Function *Callee = CS.getCalledFunction()) 563 if (Callee->isDeclaration()) { 564 using namespace ore; 565 566 setInlineRemark(CS, "unavailable definition"); 567 ORE.emit([&]() { 568 return OptimizationRemarkMissed(DEBUG_TYPE, "NoDefinition", &I) 569 << NV("Callee", Callee) << " will not be inlined into " 570 << NV("Caller", CS.getCaller()) 571 << " because its definition is unavailable" 572 << setIsVerbose(); 573 }); 574 continue; 575 } 576 577 CallSites.push_back(std::make_pair(CS, -1)); 578 } 579 } 580 581 LLVM_DEBUG(dbgs() << ": " << CallSites.size() << " call sites.\n"); 582 583 // If there are no calls in this function, exit early. 584 if (CallSites.empty()) 585 return false; 586 587 // Now that we have all of the call sites, move the ones to functions in the 588 // current SCC to the end of the list. 589 unsigned FirstCallInSCC = CallSites.size(); 590 for (unsigned i = 0; i < FirstCallInSCC; ++i) 591 if (Function *F = CallSites[i].first.getCalledFunction()) 592 if (SCCFunctions.count(F)) 593 std::swap(CallSites[i--], CallSites[--FirstCallInSCC]); 594 595 InlinedArrayAllocasTy InlinedArrayAllocas; 596 InlineFunctionInfo InlineInfo(&CG, &GetAssumptionCache, PSI); 597 598 // Now that we have all of the call sites, loop over them and inline them if 599 // it looks profitable to do so. 600 bool Changed = false; 601 bool LocalChange; 602 do { 603 LocalChange = false; 604 // Iterate over the outer loop because inlining functions can cause indirect 605 // calls to become direct calls. 606 // CallSites may be modified inside so ranged for loop can not be used. 607 for (unsigned CSi = 0; CSi != CallSites.size(); ++CSi) { 608 CallSite CS = CallSites[CSi].first; 609 610 Function *Caller = CS.getCaller(); 611 Function *Callee = CS.getCalledFunction(); 612 613 // We can only inline direct calls to non-declarations. 614 if (!Callee || Callee->isDeclaration()) 615 continue; 616 617 Instruction *Instr = CS.getInstruction(); 618 619 bool IsTriviallyDead = isInstructionTriviallyDead(Instr, &TLI); 620 621 int InlineHistoryID; 622 if (!IsTriviallyDead) { 623 // If this call site was obtained by inlining another function, verify 624 // that the include path for the function did not include the callee 625 // itself. If so, we'd be recursively inlining the same function, 626 // which would provide the same callsites, which would cause us to 627 // infinitely inline. 628 InlineHistoryID = CallSites[CSi].second; 629 if (InlineHistoryID != -1 && 630 InlineHistoryIncludes(Callee, InlineHistoryID, InlineHistory)) { 631 setInlineRemark(CS, "recursive"); 632 continue; 633 } 634 } 635 636 // FIXME for new PM: because of the old PM we currently generate ORE and 637 // in turn BFI on demand. With the new PM, the ORE dependency should 638 // just become a regular analysis dependency. 639 OptimizationRemarkEmitter ORE(Caller); 640 641 Optional<InlineCost> OIC = shouldInline(CS, GetInlineCost, ORE); 642 // If the policy determines that we should inline this function, 643 // delete the call instead. 644 if (!OIC.hasValue()) { 645 setInlineRemark(CS, "deferred"); 646 continue; 647 } 648 649 if (!OIC.getValue()) { 650 // shouldInline() call returned a negative inline cost that explains 651 // why this callsite should not be inlined. 652 setInlineRemark(CS, inlineCostStr(*OIC)); 653 continue; 654 } 655 656 // If this call site is dead and it is to a readonly function, we should 657 // just delete the call instead of trying to inline it, regardless of 658 // size. This happens because IPSCCP propagates the result out of the 659 // call and then we're left with the dead call. 660 if (IsTriviallyDead) { 661 LLVM_DEBUG(dbgs() << " -> Deleting dead call: " << *Instr << "\n"); 662 // Update the call graph by deleting the edge from Callee to Caller. 663 setInlineRemark(CS, "trivially dead"); 664 CG[Caller]->removeCallEdgeFor(CS); 665 Instr->eraseFromParent(); 666 ++NumCallsDeleted; 667 } else { 668 // Get DebugLoc to report. CS will be invalid after Inliner. 669 DebugLoc DLoc = CS->getDebugLoc(); 670 BasicBlock *Block = CS.getParent(); 671 672 // Attempt to inline the function. 673 using namespace ore; 674 675 InlineResult IR = InlineCallIfPossible( 676 CS, InlineInfo, InlinedArrayAllocas, InlineHistoryID, 677 InsertLifetime, AARGetter, ImportedFunctionsStats); 678 if (!IR) { 679 setInlineRemark(CS, std::string(IR) + "; " + inlineCostStr(*OIC)); 680 ORE.emit([&]() { 681 return OptimizationRemarkMissed(DEBUG_TYPE, "NotInlined", DLoc, 682 Block) 683 << NV("Callee", Callee) << " will not be inlined into " 684 << NV("Caller", Caller) << ": " << NV("Reason", IR.message); 685 }); 686 continue; 687 } 688 ++NumInlined; 689 690 emit_inlined_into(ORE, DLoc, Block, *Callee, *Caller, *OIC); 691 692 // If inlining this function gave us any new call sites, throw them 693 // onto our worklist to process. They are useful inline candidates. 694 if (!InlineInfo.InlinedCalls.empty()) { 695 // Create a new inline history entry for this, so that we remember 696 // that these new callsites came about due to inlining Callee. 697 int NewHistoryID = InlineHistory.size(); 698 InlineHistory.push_back(std::make_pair(Callee, InlineHistoryID)); 699 700 for (Value *Ptr : InlineInfo.InlinedCalls) 701 CallSites.push_back(std::make_pair(CallSite(Ptr), NewHistoryID)); 702 } 703 } 704 705 // If we inlined or deleted the last possible call site to the function, 706 // delete the function body now. 707 if (Callee && Callee->use_empty() && Callee->hasLocalLinkage() && 708 // TODO: Can remove if in SCC now. 709 !SCCFunctions.count(Callee) && 710 // The function may be apparently dead, but if there are indirect 711 // callgraph references to the node, we cannot delete it yet, this 712 // could invalidate the CGSCC iterator. 713 CG[Callee]->getNumReferences() == 0) { 714 LLVM_DEBUG(dbgs() << " -> Deleting dead function: " 715 << Callee->getName() << "\n"); 716 CallGraphNode *CalleeNode = CG[Callee]; 717 718 // Remove any call graph edges from the callee to its callees. 719 CalleeNode->removeAllCalledFunctions(); 720 721 // Removing the node for callee from the call graph and delete it. 722 delete CG.removeFunctionFromModule(CalleeNode); 723 ++NumDeleted; 724 } 725 726 // Remove this call site from the list. If possible, use 727 // swap/pop_back for efficiency, but do not use it if doing so would 728 // move a call site to a function in this SCC before the 729 // 'FirstCallInSCC' barrier. 730 if (SCC.isSingular()) { 731 CallSites[CSi] = CallSites.back(); 732 CallSites.pop_back(); 733 } else { 734 CallSites.erase(CallSites.begin() + CSi); 735 } 736 --CSi; 737 738 Changed = true; 739 LocalChange = true; 740 } 741 } while (LocalChange); 742 743 return Changed; 744 } 745 746 bool LegacyInlinerBase::inlineCalls(CallGraphSCC &SCC) { 747 CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph(); 748 ACT = &getAnalysis<AssumptionCacheTracker>(); 749 PSI = getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 750 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 751 auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & { 752 return ACT->getAssumptionCache(F); 753 }; 754 return inlineCallsImpl(SCC, CG, GetAssumptionCache, PSI, TLI, InsertLifetime, 755 [this](CallSite CS) { return getInlineCost(CS); }, 756 LegacyAARGetter(*this), ImportedFunctionsStats); 757 } 758 759 /// Remove now-dead linkonce functions at the end of 760 /// processing to avoid breaking the SCC traversal. 761 bool LegacyInlinerBase::doFinalization(CallGraph &CG) { 762 if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No) 763 ImportedFunctionsStats.dump(InlinerFunctionImportStats == 764 InlinerFunctionImportStatsOpts::Verbose); 765 return removeDeadFunctions(CG); 766 } 767 768 /// Remove dead functions that are not included in DNR (Do Not Remove) list. 769 bool LegacyInlinerBase::removeDeadFunctions(CallGraph &CG, 770 bool AlwaysInlineOnly) { 771 SmallVector<CallGraphNode *, 16> FunctionsToRemove; 772 SmallVector<Function *, 16> DeadFunctionsInComdats; 773 774 auto RemoveCGN = [&](CallGraphNode *CGN) { 775 // Remove any call graph edges from the function to its callees. 776 CGN->removeAllCalledFunctions(); 777 778 // Remove any edges from the external node to the function's call graph 779 // node. These edges might have been made irrelegant due to 780 // optimization of the program. 781 CG.getExternalCallingNode()->removeAnyCallEdgeTo(CGN); 782 783 // Removing the node for callee from the call graph and delete it. 784 FunctionsToRemove.push_back(CGN); 785 }; 786 787 // Scan for all of the functions, looking for ones that should now be removed 788 // from the program. Insert the dead ones in the FunctionsToRemove set. 789 for (const auto &I : CG) { 790 CallGraphNode *CGN = I.second.get(); 791 Function *F = CGN->getFunction(); 792 if (!F || F->isDeclaration()) 793 continue; 794 795 // Handle the case when this function is called and we only want to care 796 // about always-inline functions. This is a bit of a hack to share code 797 // between here and the InlineAlways pass. 798 if (AlwaysInlineOnly && !F->hasFnAttribute(Attribute::AlwaysInline)) 799 continue; 800 801 // If the only remaining users of the function are dead constants, remove 802 // them. 803 F->removeDeadConstantUsers(); 804 805 if (!F->isDefTriviallyDead()) 806 continue; 807 808 // It is unsafe to drop a function with discardable linkage from a COMDAT 809 // without also dropping the other members of the COMDAT. 810 // The inliner doesn't visit non-function entities which are in COMDAT 811 // groups so it is unsafe to do so *unless* the linkage is local. 812 if (!F->hasLocalLinkage()) { 813 if (F->hasComdat()) { 814 DeadFunctionsInComdats.push_back(F); 815 continue; 816 } 817 } 818 819 RemoveCGN(CGN); 820 } 821 if (!DeadFunctionsInComdats.empty()) { 822 // Filter out the functions whose comdats remain alive. 823 filterDeadComdatFunctions(CG.getModule(), DeadFunctionsInComdats); 824 // Remove the rest. 825 for (Function *F : DeadFunctionsInComdats) 826 RemoveCGN(CG[F]); 827 } 828 829 if (FunctionsToRemove.empty()) 830 return false; 831 832 // Now that we know which functions to delete, do so. We didn't want to do 833 // this inline, because that would invalidate our CallGraph::iterator 834 // objects. :( 835 // 836 // Note that it doesn't matter that we are iterating over a non-stable order 837 // here to do this, it doesn't matter which order the functions are deleted 838 // in. 839 array_pod_sort(FunctionsToRemove.begin(), FunctionsToRemove.end()); 840 FunctionsToRemove.erase( 841 std::unique(FunctionsToRemove.begin(), FunctionsToRemove.end()), 842 FunctionsToRemove.end()); 843 for (CallGraphNode *CGN : FunctionsToRemove) { 844 delete CG.removeFunctionFromModule(CGN); 845 ++NumDeleted; 846 } 847 return true; 848 } 849 850 InlinerPass::~InlinerPass() { 851 if (ImportedFunctionsStats) { 852 assert(InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No); 853 ImportedFunctionsStats->dump(InlinerFunctionImportStats == 854 InlinerFunctionImportStatsOpts::Verbose); 855 } 856 } 857 858 PreservedAnalyses InlinerPass::run(LazyCallGraph::SCC &InitialC, 859 CGSCCAnalysisManager &AM, LazyCallGraph &CG, 860 CGSCCUpdateResult &UR) { 861 const ModuleAnalysisManager &MAM = 862 AM.getResult<ModuleAnalysisManagerCGSCCProxy>(InitialC, CG).getManager(); 863 bool Changed = false; 864 865 assert(InitialC.size() > 0 && "Cannot handle an empty SCC!"); 866 Module &M = *InitialC.begin()->getFunction().getParent(); 867 ProfileSummaryInfo *PSI = MAM.getCachedResult<ProfileSummaryAnalysis>(M); 868 869 if (!ImportedFunctionsStats && 870 InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No) { 871 ImportedFunctionsStats = 872 llvm::make_unique<ImportedFunctionsInliningStatistics>(); 873 ImportedFunctionsStats->setModuleInfo(M); 874 } 875 876 // We use a single common worklist for calls across the entire SCC. We 877 // process these in-order and append new calls introduced during inlining to 878 // the end. 879 // 880 // Note that this particular order of processing is actually critical to 881 // avoid very bad behaviors. Consider *highly connected* call graphs where 882 // each function contains a small amonut of code and a couple of calls to 883 // other functions. Because the LLVM inliner is fundamentally a bottom-up 884 // inliner, it can handle gracefully the fact that these all appear to be 885 // reasonable inlining candidates as it will flatten things until they become 886 // too big to inline, and then move on and flatten another batch. 887 // 888 // However, when processing call edges *within* an SCC we cannot rely on this 889 // bottom-up behavior. As a consequence, with heavily connected *SCCs* of 890 // functions we can end up incrementally inlining N calls into each of 891 // N functions because each incremental inlining decision looks good and we 892 // don't have a topological ordering to prevent explosions. 893 // 894 // To compensate for this, we don't process transitive edges made immediate 895 // by inlining until we've done one pass of inlining across the entire SCC. 896 // Large, highly connected SCCs still lead to some amount of code bloat in 897 // this model, but it is uniformly spread across all the functions in the SCC 898 // and eventually they all become too large to inline, rather than 899 // incrementally maknig a single function grow in a super linear fashion. 900 SmallVector<std::pair<CallSite, int>, 16> Calls; 901 902 FunctionAnalysisManager &FAM = 903 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(InitialC, CG) 904 .getManager(); 905 906 // Populate the initial list of calls in this SCC. 907 for (auto &N : InitialC) { 908 auto &ORE = 909 FAM.getResult<OptimizationRemarkEmitterAnalysis>(N.getFunction()); 910 // We want to generally process call sites top-down in order for 911 // simplifications stemming from replacing the call with the returned value 912 // after inlining to be visible to subsequent inlining decisions. 913 // FIXME: Using instructions sequence is a really bad way to do this. 914 // Instead we should do an actual RPO walk of the function body. 915 for (Instruction &I : instructions(N.getFunction())) 916 if (auto CS = CallSite(&I)) 917 if (Function *Callee = CS.getCalledFunction()) { 918 if (!Callee->isDeclaration()) 919 Calls.push_back({CS, -1}); 920 else if (!isa<IntrinsicInst>(I)) { 921 using namespace ore; 922 setInlineRemark(CS, "unavailable definition"); 923 ORE.emit([&]() { 924 return OptimizationRemarkMissed(DEBUG_TYPE, "NoDefinition", &I) 925 << NV("Callee", Callee) << " will not be inlined into " 926 << NV("Caller", CS.getCaller()) 927 << " because its definition is unavailable" 928 << setIsVerbose(); 929 }); 930 } 931 } 932 } 933 if (Calls.empty()) 934 return PreservedAnalyses::all(); 935 936 // Capture updatable variables for the current SCC and RefSCC. 937 auto *C = &InitialC; 938 auto *RC = &C->getOuterRefSCC(); 939 940 // When inlining a callee produces new call sites, we want to keep track of 941 // the fact that they were inlined from the callee. This allows us to avoid 942 // infinite inlining in some obscure cases. To represent this, we use an 943 // index into the InlineHistory vector. 944 SmallVector<std::pair<Function *, int>, 16> InlineHistory; 945 946 // Track a set vector of inlined callees so that we can augment the caller 947 // with all of their edges in the call graph before pruning out the ones that 948 // got simplified away. 949 SmallSetVector<Function *, 4> InlinedCallees; 950 951 // Track the dead functions to delete once finished with inlining calls. We 952 // defer deleting these to make it easier to handle the call graph updates. 953 SmallVector<Function *, 4> DeadFunctions; 954 955 // Loop forward over all of the calls. Note that we cannot cache the size as 956 // inlining can introduce new calls that need to be processed. 957 for (int i = 0; i < (int)Calls.size(); ++i) { 958 // We expect the calls to typically be batched with sequences of calls that 959 // have the same caller, so we first set up some shared infrastructure for 960 // this caller. We also do any pruning we can at this layer on the caller 961 // alone. 962 Function &F = *Calls[i].first.getCaller(); 963 LazyCallGraph::Node &N = *CG.lookup(F); 964 if (CG.lookupSCC(N) != C) 965 continue; 966 if (F.hasFnAttribute(Attribute::OptimizeNone)) { 967 setInlineRemark(Calls[i].first, "optnone attribute"); 968 continue; 969 } 970 971 LLVM_DEBUG(dbgs() << "Inlining calls in: " << F.getName() << "\n"); 972 973 // Get a FunctionAnalysisManager via a proxy for this particular node. We 974 // do this each time we visit a node as the SCC may have changed and as 975 // we're going to mutate this particular function we want to make sure the 976 // proxy is in place to forward any invalidation events. We can use the 977 // manager we get here for looking up results for functions other than this 978 // node however because those functions aren't going to be mutated by this 979 // pass. 980 FunctionAnalysisManager &FAM = 981 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(*C, CG) 982 .getManager(); 983 984 // Get the remarks emission analysis for the caller. 985 auto &ORE = FAM.getResult<OptimizationRemarkEmitterAnalysis>(F); 986 987 std::function<AssumptionCache &(Function &)> GetAssumptionCache = 988 [&](Function &F) -> AssumptionCache & { 989 return FAM.getResult<AssumptionAnalysis>(F); 990 }; 991 auto GetBFI = [&](Function &F) -> BlockFrequencyInfo & { 992 return FAM.getResult<BlockFrequencyAnalysis>(F); 993 }; 994 995 auto GetInlineCost = [&](CallSite CS) { 996 Function &Callee = *CS.getCalledFunction(); 997 auto &CalleeTTI = FAM.getResult<TargetIRAnalysis>(Callee); 998 return getInlineCost(CS, Params, CalleeTTI, GetAssumptionCache, {GetBFI}, 999 PSI, &ORE); 1000 }; 1001 1002 // Now process as many calls as we have within this caller in the sequnece. 1003 // We bail out as soon as the caller has to change so we can update the 1004 // call graph and prepare the context of that new caller. 1005 bool DidInline = false; 1006 for (; i < (int)Calls.size() && Calls[i].first.getCaller() == &F; ++i) { 1007 int InlineHistoryID; 1008 CallSite CS; 1009 std::tie(CS, InlineHistoryID) = Calls[i]; 1010 Function &Callee = *CS.getCalledFunction(); 1011 1012 if (InlineHistoryID != -1 && 1013 InlineHistoryIncludes(&Callee, InlineHistoryID, InlineHistory)) { 1014 setInlineRemark(CS, "recursive"); 1015 continue; 1016 } 1017 1018 // Check if this inlining may repeat breaking an SCC apart that has 1019 // already been split once before. In that case, inlining here may 1020 // trigger infinite inlining, much like is prevented within the inliner 1021 // itself by the InlineHistory above, but spread across CGSCC iterations 1022 // and thus hidden from the full inline history. 1023 if (CG.lookupSCC(*CG.lookup(Callee)) == C && 1024 UR.InlinedInternalEdges.count({&N, C})) { 1025 LLVM_DEBUG(dbgs() << "Skipping inlining internal SCC edge from a node " 1026 "previously split out of this SCC by inlining: " 1027 << F.getName() << " -> " << Callee.getName() << "\n"); 1028 setInlineRemark(CS, "recursive SCC split"); 1029 continue; 1030 } 1031 1032 Optional<InlineCost> OIC = shouldInline(CS, GetInlineCost, ORE); 1033 // Check whether we want to inline this callsite. 1034 if (!OIC.hasValue()) { 1035 setInlineRemark(CS, "deferred"); 1036 continue; 1037 } 1038 1039 if (!OIC.getValue()) { 1040 // shouldInline() call returned a negative inline cost that explains 1041 // why this callsite should not be inlined. 1042 setInlineRemark(CS, inlineCostStr(*OIC)); 1043 continue; 1044 } 1045 1046 // Setup the data structure used to plumb customization into the 1047 // `InlineFunction` routine. 1048 InlineFunctionInfo IFI( 1049 /*cg=*/nullptr, &GetAssumptionCache, PSI, 1050 &FAM.getResult<BlockFrequencyAnalysis>(*(CS.getCaller())), 1051 &FAM.getResult<BlockFrequencyAnalysis>(Callee)); 1052 1053 // Get DebugLoc to report. CS will be invalid after Inliner. 1054 DebugLoc DLoc = CS->getDebugLoc(); 1055 BasicBlock *Block = CS.getParent(); 1056 1057 using namespace ore; 1058 1059 InlineResult IR = InlineFunction(CS, IFI); 1060 if (!IR) { 1061 setInlineRemark(CS, std::string(IR) + "; " + inlineCostStr(*OIC)); 1062 ORE.emit([&]() { 1063 return OptimizationRemarkMissed(DEBUG_TYPE, "NotInlined", DLoc, Block) 1064 << NV("Callee", &Callee) << " will not be inlined into " 1065 << NV("Caller", &F) << ": " << NV("Reason", IR.message); 1066 }); 1067 continue; 1068 } 1069 DidInline = true; 1070 InlinedCallees.insert(&Callee); 1071 1072 ++NumInlined; 1073 1074 emit_inlined_into(ORE, DLoc, Block, Callee, F, *OIC); 1075 1076 // Add any new callsites to defined functions to the worklist. 1077 if (!IFI.InlinedCallSites.empty()) { 1078 int NewHistoryID = InlineHistory.size(); 1079 InlineHistory.push_back({&Callee, InlineHistoryID}); 1080 for (CallSite &CS : reverse(IFI.InlinedCallSites)) 1081 if (Function *NewCallee = CS.getCalledFunction()) 1082 if (!NewCallee->isDeclaration()) 1083 Calls.push_back({CS, NewHistoryID}); 1084 } 1085 1086 if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No) 1087 ImportedFunctionsStats->recordInline(F, Callee); 1088 1089 // Merge the attributes based on the inlining. 1090 AttributeFuncs::mergeAttributesForInlining(F, Callee); 1091 1092 // For local functions, check whether this makes the callee trivially 1093 // dead. In that case, we can drop the body of the function eagerly 1094 // which may reduce the number of callers of other functions to one, 1095 // changing inline cost thresholds. 1096 if (Callee.hasLocalLinkage()) { 1097 // To check this we also need to nuke any dead constant uses (perhaps 1098 // made dead by this operation on other functions). 1099 Callee.removeDeadConstantUsers(); 1100 if (Callee.use_empty() && !CG.isLibFunction(Callee)) { 1101 Calls.erase( 1102 std::remove_if(Calls.begin() + i + 1, Calls.end(), 1103 [&Callee](const std::pair<CallSite, int> &Call) { 1104 return Call.first.getCaller() == &Callee; 1105 }), 1106 Calls.end()); 1107 // Clear the body and queue the function itself for deletion when we 1108 // finish inlining and call graph updates. 1109 // Note that after this point, it is an error to do anything other 1110 // than use the callee's address or delete it. 1111 Callee.dropAllReferences(); 1112 assert(find(DeadFunctions, &Callee) == DeadFunctions.end() && 1113 "Cannot put cause a function to become dead twice!"); 1114 DeadFunctions.push_back(&Callee); 1115 } 1116 } 1117 } 1118 1119 // Back the call index up by one to put us in a good position to go around 1120 // the outer loop. 1121 --i; 1122 1123 if (!DidInline) 1124 continue; 1125 Changed = true; 1126 1127 // Add all the inlined callees' edges as ref edges to the caller. These are 1128 // by definition trivial edges as we always have *some* transitive ref edge 1129 // chain. While in some cases these edges are direct calls inside the 1130 // callee, they have to be modeled in the inliner as reference edges as 1131 // there may be a reference edge anywhere along the chain from the current 1132 // caller to the callee that causes the whole thing to appear like 1133 // a (transitive) reference edge that will require promotion to a call edge 1134 // below. 1135 for (Function *InlinedCallee : InlinedCallees) { 1136 LazyCallGraph::Node &CalleeN = *CG.lookup(*InlinedCallee); 1137 for (LazyCallGraph::Edge &E : *CalleeN) 1138 RC->insertTrivialRefEdge(N, E.getNode()); 1139 } 1140 1141 // At this point, since we have made changes we have at least removed 1142 // a call instruction. However, in the process we do some incremental 1143 // simplification of the surrounding code. This simplification can 1144 // essentially do all of the same things as a function pass and we can 1145 // re-use the exact same logic for updating the call graph to reflect the 1146 // change. 1147 LazyCallGraph::SCC *OldC = C; 1148 C = &updateCGAndAnalysisManagerForFunctionPass(CG, *C, N, AM, UR); 1149 LLVM_DEBUG(dbgs() << "Updated inlining SCC: " << *C << "\n"); 1150 RC = &C->getOuterRefSCC(); 1151 1152 // If this causes an SCC to split apart into multiple smaller SCCs, there 1153 // is a subtle risk we need to prepare for. Other transformations may 1154 // expose an "infinite inlining" opportunity later, and because of the SCC 1155 // mutation, we will revisit this function and potentially re-inline. If we 1156 // do, and that re-inlining also has the potentially to mutate the SCC 1157 // structure, the infinite inlining problem can manifest through infinite 1158 // SCC splits and merges. To avoid this, we capture the originating caller 1159 // node and the SCC containing the call edge. This is a slight over 1160 // approximation of the possible inlining decisions that must be avoided, 1161 // but is relatively efficient to store. 1162 // FIXME: This seems like a very heavyweight way of retaining the inline 1163 // history, we should look for a more efficient way of tracking it. 1164 if (C != OldC && llvm::any_of(InlinedCallees, [&](Function *Callee) { 1165 return CG.lookupSCC(*CG.lookup(*Callee)) == OldC; 1166 })) { 1167 LLVM_DEBUG(dbgs() << "Inlined an internal call edge and split an SCC, " 1168 "retaining this to avoid infinite inlining.\n"); 1169 UR.InlinedInternalEdges.insert({&N, OldC}); 1170 } 1171 InlinedCallees.clear(); 1172 } 1173 1174 // Now that we've finished inlining all of the calls across this SCC, delete 1175 // all of the trivially dead functions, updating the call graph and the CGSCC 1176 // pass manager in the process. 1177 // 1178 // Note that this walks a pointer set which has non-deterministic order but 1179 // that is OK as all we do is delete things and add pointers to unordered 1180 // sets. 1181 for (Function *DeadF : DeadFunctions) { 1182 // Get the necessary information out of the call graph and nuke the 1183 // function there. Also, cclear out any cached analyses. 1184 auto &DeadC = *CG.lookupSCC(*CG.lookup(*DeadF)); 1185 FunctionAnalysisManager &FAM = 1186 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(DeadC, CG) 1187 .getManager(); 1188 FAM.clear(*DeadF, DeadF->getName()); 1189 AM.clear(DeadC, DeadC.getName()); 1190 auto &DeadRC = DeadC.getOuterRefSCC(); 1191 CG.removeDeadFunction(*DeadF); 1192 1193 // Mark the relevant parts of the call graph as invalid so we don't visit 1194 // them. 1195 UR.InvalidatedSCCs.insert(&DeadC); 1196 UR.InvalidatedRefSCCs.insert(&DeadRC); 1197 1198 // And delete the actual function from the module. 1199 M.getFunctionList().erase(DeadF); 1200 ++NumDeleted; 1201 } 1202 1203 if (!Changed) 1204 return PreservedAnalyses::all(); 1205 1206 // Even if we change the IR, we update the core CGSCC data structures and so 1207 // can preserve the proxy to the function analysis manager. 1208 PreservedAnalyses PA; 1209 PA.preserve<FunctionAnalysisManagerCGSCCProxy>(); 1210 return PA; 1211 } 1212