1 //===- Inliner.cpp - Code common to all inliners --------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the mechanics required to implement inlining without
10 // missing any calls and updating the call graph.  The decisions of which calls
11 // are profitable to inline are implemented elsewhere.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/IPO/Inliner.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/PriorityWorklist.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/ScopeExit.h"
21 #include "llvm/ADT/SetVector.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/ADT/StringExtras.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/Analysis/AssumptionCache.h"
28 #include "llvm/Analysis/BasicAliasAnalysis.h"
29 #include "llvm/Analysis/BlockFrequencyInfo.h"
30 #include "llvm/Analysis/CGSCCPassManager.h"
31 #include "llvm/Analysis/CallGraph.h"
32 #include "llvm/Analysis/InlineAdvisor.h"
33 #include "llvm/Analysis/InlineCost.h"
34 #include "llvm/Analysis/InlineOrder.h"
35 #include "llvm/Analysis/LazyCallGraph.h"
36 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
37 #include "llvm/Analysis/ProfileSummaryInfo.h"
38 #include "llvm/Analysis/ReplayInlineAdvisor.h"
39 #include "llvm/Analysis/TargetLibraryInfo.h"
40 #include "llvm/Analysis/Utils/ImportedFunctionsInliningStatistics.h"
41 #include "llvm/IR/Attributes.h"
42 #include "llvm/IR/BasicBlock.h"
43 #include "llvm/IR/DebugLoc.h"
44 #include "llvm/IR/DerivedTypes.h"
45 #include "llvm/IR/DiagnosticInfo.h"
46 #include "llvm/IR/Function.h"
47 #include "llvm/IR/InstIterator.h"
48 #include "llvm/IR/Instruction.h"
49 #include "llvm/IR/Instructions.h"
50 #include "llvm/IR/IntrinsicInst.h"
51 #include "llvm/IR/Metadata.h"
52 #include "llvm/IR/Module.h"
53 #include "llvm/IR/PassManager.h"
54 #include "llvm/IR/User.h"
55 #include "llvm/IR/Value.h"
56 #include "llvm/Pass.h"
57 #include "llvm/Support/Casting.h"
58 #include "llvm/Support/CommandLine.h"
59 #include "llvm/Support/Debug.h"
60 #include "llvm/Support/raw_ostream.h"
61 #include "llvm/Transforms/Utils/CallPromotionUtils.h"
62 #include "llvm/Transforms/Utils/Cloning.h"
63 #include "llvm/Transforms/Utils/Local.h"
64 #include "llvm/Transforms/Utils/ModuleUtils.h"
65 #include <algorithm>
66 #include <cassert>
67 #include <functional>
68 #include <utility>
69 #include <vector>
70 
71 using namespace llvm;
72 
73 #define DEBUG_TYPE "inline"
74 
75 STATISTIC(NumInlined, "Number of functions inlined");
76 STATISTIC(NumCallsDeleted, "Number of call sites deleted, not inlined");
77 STATISTIC(NumDeleted, "Number of functions deleted because all callers found");
78 STATISTIC(NumMergedAllocas, "Number of allocas merged together");
79 
80 /// Flag to disable manual alloca merging.
81 ///
82 /// Merging of allocas was originally done as a stack-size saving technique
83 /// prior to LLVM's code generator having support for stack coloring based on
84 /// lifetime markers. It is now in the process of being removed. To experiment
85 /// with disabling it and relying fully on lifetime marker based stack
86 /// coloring, you can pass this flag to LLVM.
87 static cl::opt<bool>
88     DisableInlinedAllocaMerging("disable-inlined-alloca-merging",
89                                 cl::init(false), cl::Hidden);
90 
91 static cl::opt<int> IntraSCCCostMultiplier(
92     "intra-scc-cost-multiplier", cl::init(2), cl::Hidden,
93     cl::desc(
94         "Cost multiplier to multiply onto inlined call sites where the "
95         "new call was previously an intra-SCC call (not relevant when the "
96         "original call was already intra-SCC). This can accumulate over "
97         "multiple inlinings (e.g. if a call site already had a cost "
98         "multiplier and one of its inlined calls was also subject to "
99         "this, the inlined call would have the original multiplier "
100         "multiplied by intra-scc-cost-multiplier). This is to prevent tons of "
101         "inlining through a child SCC which can cause terrible compile times"));
102 
103 /// A flag for test, so we can print the content of the advisor when running it
104 /// as part of the default (e.g. -O3) pipeline.
105 static cl::opt<bool> KeepAdvisorForPrinting("keep-inline-advisor-for-printing",
106                                             cl::init(false), cl::Hidden);
107 
108 extern cl::opt<InlinerFunctionImportStatsOpts> InlinerFunctionImportStats;
109 
110 static cl::opt<std::string> CGSCCInlineReplayFile(
111     "cgscc-inline-replay", cl::init(""), cl::value_desc("filename"),
112     cl::desc(
113         "Optimization remarks file containing inline remarks to be replayed "
114         "by cgscc inlining."),
115     cl::Hidden);
116 
117 static cl::opt<ReplayInlinerSettings::Scope> CGSCCInlineReplayScope(
118     "cgscc-inline-replay-scope",
119     cl::init(ReplayInlinerSettings::Scope::Function),
120     cl::values(clEnumValN(ReplayInlinerSettings::Scope::Function, "Function",
121                           "Replay on functions that have remarks associated "
122                           "with them (default)"),
123                clEnumValN(ReplayInlinerSettings::Scope::Module, "Module",
124                           "Replay on the entire module")),
125     cl::desc("Whether inline replay should be applied to the entire "
126              "Module or just the Functions (default) that are present as "
127              "callers in remarks during cgscc inlining."),
128     cl::Hidden);
129 
130 static cl::opt<ReplayInlinerSettings::Fallback> CGSCCInlineReplayFallback(
131     "cgscc-inline-replay-fallback",
132     cl::init(ReplayInlinerSettings::Fallback::Original),
133     cl::values(
134         clEnumValN(
135             ReplayInlinerSettings::Fallback::Original, "Original",
136             "All decisions not in replay send to original advisor (default)"),
137         clEnumValN(ReplayInlinerSettings::Fallback::AlwaysInline,
138                    "AlwaysInline", "All decisions not in replay are inlined"),
139         clEnumValN(ReplayInlinerSettings::Fallback::NeverInline, "NeverInline",
140                    "All decisions not in replay are not inlined")),
141     cl::desc(
142         "How cgscc inline replay treats sites that don't come from the replay. "
143         "Original: defers to original advisor, AlwaysInline: inline all sites "
144         "not in replay, NeverInline: inline no sites not in replay"),
145     cl::Hidden);
146 
147 static cl::opt<CallSiteFormat::Format> CGSCCInlineReplayFormat(
148     "cgscc-inline-replay-format",
149     cl::init(CallSiteFormat::Format::LineColumnDiscriminator),
150     cl::values(
151         clEnumValN(CallSiteFormat::Format::Line, "Line", "<Line Number>"),
152         clEnumValN(CallSiteFormat::Format::LineColumn, "LineColumn",
153                    "<Line Number>:<Column Number>"),
154         clEnumValN(CallSiteFormat::Format::LineDiscriminator,
155                    "LineDiscriminator", "<Line Number>.<Discriminator>"),
156         clEnumValN(CallSiteFormat::Format::LineColumnDiscriminator,
157                    "LineColumnDiscriminator",
158                    "<Line Number>:<Column Number>.<Discriminator> (default)")),
159     cl::desc("How cgscc inline replay file is formatted"), cl::Hidden);
160 
161 static cl::opt<bool> InlineEnablePriorityOrder(
162     "inline-enable-priority-order", cl::Hidden, cl::init(false),
163     cl::desc("Enable the priority inline order for the inliner"));
164 
165 LegacyInlinerBase::LegacyInlinerBase(char &ID) : CallGraphSCCPass(ID) {}
166 
167 LegacyInlinerBase::LegacyInlinerBase(char &ID, bool InsertLifetime)
168     : CallGraphSCCPass(ID), InsertLifetime(InsertLifetime) {}
169 
170 /// For this class, we declare that we require and preserve the call graph.
171 /// If the derived class implements this method, it should
172 /// always explicitly call the implementation here.
173 void LegacyInlinerBase::getAnalysisUsage(AnalysisUsage &AU) const {
174   AU.addRequired<AssumptionCacheTracker>();
175   AU.addRequired<ProfileSummaryInfoWrapperPass>();
176   AU.addRequired<TargetLibraryInfoWrapperPass>();
177   getAAResultsAnalysisUsage(AU);
178   CallGraphSCCPass::getAnalysisUsage(AU);
179 }
180 
181 using InlinedArrayAllocasTy = DenseMap<ArrayType *, std::vector<AllocaInst *>>;
182 
183 /// Look at all of the allocas that we inlined through this call site.  If we
184 /// have already inlined other allocas through other calls into this function,
185 /// then we know that they have disjoint lifetimes and that we can merge them.
186 ///
187 /// There are many heuristics possible for merging these allocas, and the
188 /// different options have different tradeoffs.  One thing that we *really*
189 /// don't want to hurt is SRoA: once inlining happens, often allocas are no
190 /// longer address taken and so they can be promoted.
191 ///
192 /// Our "solution" for that is to only merge allocas whose outermost type is an
193 /// array type.  These are usually not promoted because someone is using a
194 /// variable index into them.  These are also often the most important ones to
195 /// merge.
196 ///
197 /// A better solution would be to have real memory lifetime markers in the IR
198 /// and not have the inliner do any merging of allocas at all.  This would
199 /// allow the backend to do proper stack slot coloring of all allocas that
200 /// *actually make it to the backend*, which is really what we want.
201 ///
202 /// Because we don't have this information, we do this simple and useful hack.
203 static void mergeInlinedArrayAllocas(Function *Caller, InlineFunctionInfo &IFI,
204                                      InlinedArrayAllocasTy &InlinedArrayAllocas,
205                                      int InlineHistory) {
206   SmallPtrSet<AllocaInst *, 16> UsedAllocas;
207 
208   // When processing our SCC, check to see if the call site was inlined from
209   // some other call site.  For example, if we're processing "A" in this code:
210   //   A() { B() }
211   //   B() { x = alloca ... C() }
212   //   C() { y = alloca ... }
213   // Assume that C was not inlined into B initially, and so we're processing A
214   // and decide to inline B into A.  Doing this makes an alloca available for
215   // reuse and makes a callsite (C) available for inlining.  When we process
216   // the C call site we don't want to do any alloca merging between X and Y
217   // because their scopes are not disjoint.  We could make this smarter by
218   // keeping track of the inline history for each alloca in the
219   // InlinedArrayAllocas but this isn't likely to be a significant win.
220   if (InlineHistory != -1) // Only do merging for top-level call sites in SCC.
221     return;
222 
223   // Loop over all the allocas we have so far and see if they can be merged with
224   // a previously inlined alloca.  If not, remember that we had it.
225   for (unsigned AllocaNo = 0, E = IFI.StaticAllocas.size(); AllocaNo != E;
226        ++AllocaNo) {
227     AllocaInst *AI = IFI.StaticAllocas[AllocaNo];
228 
229     // Don't bother trying to merge array allocations (they will usually be
230     // canonicalized to be an allocation *of* an array), or allocations whose
231     // type is not itself an array (because we're afraid of pessimizing SRoA).
232     ArrayType *ATy = dyn_cast<ArrayType>(AI->getAllocatedType());
233     if (!ATy || AI->isArrayAllocation())
234       continue;
235 
236     // Get the list of all available allocas for this array type.
237     std::vector<AllocaInst *> &AllocasForType = InlinedArrayAllocas[ATy];
238 
239     // Loop over the allocas in AllocasForType to see if we can reuse one.  Note
240     // that we have to be careful not to reuse the same "available" alloca for
241     // multiple different allocas that we just inlined, we use the 'UsedAllocas'
242     // set to keep track of which "available" allocas are being used by this
243     // function.  Also, AllocasForType can be empty of course!
244     bool MergedAwayAlloca = false;
245     for (AllocaInst *AvailableAlloca : AllocasForType) {
246       Align Align1 = AI->getAlign();
247       Align Align2 = AvailableAlloca->getAlign();
248 
249       // The available alloca has to be in the right function, not in some other
250       // function in this SCC.
251       if (AvailableAlloca->getParent() != AI->getParent())
252         continue;
253 
254       // If the inlined function already uses this alloca then we can't reuse
255       // it.
256       if (!UsedAllocas.insert(AvailableAlloca).second)
257         continue;
258 
259       // Otherwise, we *can* reuse it, RAUW AI into AvailableAlloca and declare
260       // success!
261       LLVM_DEBUG(dbgs() << "    ***MERGED ALLOCA: " << *AI
262                         << "\n\t\tINTO: " << *AvailableAlloca << '\n');
263 
264       // Move affected dbg.declare calls immediately after the new alloca to
265       // avoid the situation when a dbg.declare precedes its alloca.
266       if (auto *L = LocalAsMetadata::getIfExists(AI))
267         if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L))
268           for (User *U : MDV->users())
269             if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(U))
270               DDI->moveBefore(AvailableAlloca->getNextNode());
271 
272       AI->replaceAllUsesWith(AvailableAlloca);
273 
274       if (Align1 > Align2)
275         AvailableAlloca->setAlignment(AI->getAlign());
276 
277       AI->eraseFromParent();
278       MergedAwayAlloca = true;
279       ++NumMergedAllocas;
280       IFI.StaticAllocas[AllocaNo] = nullptr;
281       break;
282     }
283 
284     // If we already nuked the alloca, we're done with it.
285     if (MergedAwayAlloca)
286       continue;
287 
288     // If we were unable to merge away the alloca either because there are no
289     // allocas of the right type available or because we reused them all
290     // already, remember that this alloca came from an inlined function and mark
291     // it used so we don't reuse it for other allocas from this inline
292     // operation.
293     AllocasForType.push_back(AI);
294     UsedAllocas.insert(AI);
295   }
296 }
297 
298 /// If it is possible to inline the specified call site,
299 /// do so and update the CallGraph for this operation.
300 ///
301 /// This function also does some basic book-keeping to update the IR.  The
302 /// InlinedArrayAllocas map keeps track of any allocas that are already
303 /// available from other functions inlined into the caller.  If we are able to
304 /// inline this call site we attempt to reuse already available allocas or add
305 /// any new allocas to the set if not possible.
306 static InlineResult inlineCallIfPossible(
307     CallBase &CB, InlineFunctionInfo &IFI,
308     InlinedArrayAllocasTy &InlinedArrayAllocas, int InlineHistory,
309     bool InsertLifetime, function_ref<AAResults &(Function &)> &AARGetter,
310     ImportedFunctionsInliningStatistics &ImportedFunctionsStats) {
311   Function *Callee = CB.getCalledFunction();
312   Function *Caller = CB.getCaller();
313 
314   AAResults &AAR = AARGetter(*Callee);
315 
316   // Try to inline the function.  Get the list of static allocas that were
317   // inlined.
318   InlineResult IR = InlineFunction(CB, IFI, &AAR, InsertLifetime);
319   if (!IR.isSuccess())
320     return IR;
321 
322   if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No)
323     ImportedFunctionsStats.recordInline(*Caller, *Callee);
324 
325   AttributeFuncs::mergeAttributesForInlining(*Caller, *Callee);
326 
327   if (!DisableInlinedAllocaMerging)
328     mergeInlinedArrayAllocas(Caller, IFI, InlinedArrayAllocas, InlineHistory);
329 
330   return IR; // success
331 }
332 
333 /// Return true if the specified inline history ID
334 /// indicates an inline history that includes the specified function.
335 static bool inlineHistoryIncludes(
336     Function *F, int InlineHistoryID,
337     const SmallVectorImpl<std::pair<Function *, int>> &InlineHistory) {
338   while (InlineHistoryID != -1) {
339     assert(unsigned(InlineHistoryID) < InlineHistory.size() &&
340            "Invalid inline history ID");
341     if (InlineHistory[InlineHistoryID].first == F)
342       return true;
343     InlineHistoryID = InlineHistory[InlineHistoryID].second;
344   }
345   return false;
346 }
347 
348 bool LegacyInlinerBase::doInitialization(CallGraph &CG) {
349   if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No)
350     ImportedFunctionsStats.setModuleInfo(CG.getModule());
351   return false; // No changes to CallGraph.
352 }
353 
354 bool LegacyInlinerBase::runOnSCC(CallGraphSCC &SCC) {
355   if (skipSCC(SCC))
356     return false;
357   return inlineCalls(SCC);
358 }
359 
360 static bool
361 inlineCallsImpl(CallGraphSCC &SCC, CallGraph &CG,
362                 std::function<AssumptionCache &(Function &)> GetAssumptionCache,
363                 ProfileSummaryInfo *PSI,
364                 std::function<const TargetLibraryInfo &(Function &)> GetTLI,
365                 bool InsertLifetime,
366                 function_ref<InlineCost(CallBase &CB)> GetInlineCost,
367                 function_ref<AAResults &(Function &)> AARGetter,
368                 ImportedFunctionsInliningStatistics &ImportedFunctionsStats) {
369   SmallPtrSet<Function *, 8> SCCFunctions;
370   LLVM_DEBUG(dbgs() << "Inliner visiting SCC:");
371   for (CallGraphNode *Node : SCC) {
372     Function *F = Node->getFunction();
373     if (F)
374       SCCFunctions.insert(F);
375     LLVM_DEBUG(dbgs() << " " << (F ? F->getName() : "INDIRECTNODE"));
376   }
377 
378   // Scan through and identify all call sites ahead of time so that we only
379   // inline call sites in the original functions, not call sites that result
380   // from inlining other functions.
381   SmallVector<std::pair<CallBase *, int>, 16> CallSites;
382 
383   // When inlining a callee produces new call sites, we want to keep track of
384   // the fact that they were inlined from the callee.  This allows us to avoid
385   // infinite inlining in some obscure cases.  To represent this, we use an
386   // index into the InlineHistory vector.
387   SmallVector<std::pair<Function *, int>, 8> InlineHistory;
388 
389   for (CallGraphNode *Node : SCC) {
390     Function *F = Node->getFunction();
391     if (!F || F->isDeclaration())
392       continue;
393 
394     OptimizationRemarkEmitter ORE(F);
395     for (BasicBlock &BB : *F)
396       for (Instruction &I : BB) {
397         auto *CB = dyn_cast<CallBase>(&I);
398         // If this isn't a call, or it is a call to an intrinsic, it can
399         // never be inlined.
400         if (!CB || isa<IntrinsicInst>(I))
401           continue;
402 
403         // If this is a direct call to an external function, we can never inline
404         // it.  If it is an indirect call, inlining may resolve it to be a
405         // direct call, so we keep it.
406         if (Function *Callee = CB->getCalledFunction())
407           if (Callee->isDeclaration()) {
408             using namespace ore;
409 
410             setInlineRemark(*CB, "unavailable definition");
411             ORE.emit([&]() {
412               return OptimizationRemarkMissed(DEBUG_TYPE, "NoDefinition", &I)
413                      << NV("Callee", Callee) << " will not be inlined into "
414                      << NV("Caller", CB->getCaller())
415                      << " because its definition is unavailable"
416                      << setIsVerbose();
417             });
418             continue;
419           }
420 
421         CallSites.push_back(std::make_pair(CB, -1));
422       }
423   }
424 
425   LLVM_DEBUG(dbgs() << ": " << CallSites.size() << " call sites.\n");
426 
427   // If there are no calls in this function, exit early.
428   if (CallSites.empty())
429     return false;
430 
431   // Now that we have all of the call sites, move the ones to functions in the
432   // current SCC to the end of the list.
433   unsigned FirstCallInSCC = CallSites.size();
434   for (unsigned I = 0; I < FirstCallInSCC; ++I)
435     if (Function *F = CallSites[I].first->getCalledFunction())
436       if (SCCFunctions.count(F))
437         std::swap(CallSites[I--], CallSites[--FirstCallInSCC]);
438 
439   InlinedArrayAllocasTy InlinedArrayAllocas;
440   InlineFunctionInfo InlineInfo(&CG, GetAssumptionCache, PSI);
441 
442   // Now that we have all of the call sites, loop over them and inline them if
443   // it looks profitable to do so.
444   bool Changed = false;
445   bool LocalChange;
446   do {
447     LocalChange = false;
448     // Iterate over the outer loop because inlining functions can cause indirect
449     // calls to become direct calls.
450     // CallSites may be modified inside so ranged for loop can not be used.
451     for (unsigned CSi = 0; CSi != CallSites.size(); ++CSi) {
452       auto &P = CallSites[CSi];
453       CallBase &CB = *P.first;
454       const int InlineHistoryID = P.second;
455 
456       Function *Caller = CB.getCaller();
457       Function *Callee = CB.getCalledFunction();
458 
459       // We can only inline direct calls to non-declarations.
460       if (!Callee || Callee->isDeclaration())
461         continue;
462 
463       bool IsTriviallyDead = isInstructionTriviallyDead(&CB, &GetTLI(*Caller));
464 
465       if (!IsTriviallyDead) {
466         // If this call site was obtained by inlining another function, verify
467         // that the include path for the function did not include the callee
468         // itself.  If so, we'd be recursively inlining the same function,
469         // which would provide the same callsites, which would cause us to
470         // infinitely inline.
471         if (InlineHistoryID != -1 &&
472             inlineHistoryIncludes(Callee, InlineHistoryID, InlineHistory)) {
473           setInlineRemark(CB, "recursive");
474           continue;
475         }
476       }
477 
478       // FIXME for new PM: because of the old PM we currently generate ORE and
479       // in turn BFI on demand.  With the new PM, the ORE dependency should
480       // just become a regular analysis dependency.
481       OptimizationRemarkEmitter ORE(Caller);
482 
483       auto OIC = shouldInline(CB, GetInlineCost, ORE);
484       // If the policy determines that we should inline this function,
485       // delete the call instead.
486       if (!OIC)
487         continue;
488 
489       // If this call site is dead and it is to a readonly function, we should
490       // just delete the call instead of trying to inline it, regardless of
491       // size.  This happens because IPSCCP propagates the result out of the
492       // call and then we're left with the dead call.
493       if (IsTriviallyDead) {
494         LLVM_DEBUG(dbgs() << "    -> Deleting dead call: " << CB << "\n");
495         // Update the call graph by deleting the edge from Callee to Caller.
496         setInlineRemark(CB, "trivially dead");
497         CG[Caller]->removeCallEdgeFor(CB);
498         CB.eraseFromParent();
499         ++NumCallsDeleted;
500       } else {
501         // Get DebugLoc to report. CB will be invalid after Inliner.
502         DebugLoc DLoc = CB.getDebugLoc();
503         BasicBlock *Block = CB.getParent();
504 
505         // Attempt to inline the function.
506         using namespace ore;
507 
508         InlineResult IR = inlineCallIfPossible(
509             CB, InlineInfo, InlinedArrayAllocas, InlineHistoryID,
510             InsertLifetime, AARGetter, ImportedFunctionsStats);
511         if (!IR.isSuccess()) {
512           setInlineRemark(CB, std::string(IR.getFailureReason()) + "; " +
513                                   inlineCostStr(*OIC));
514           ORE.emit([&]() {
515             return OptimizationRemarkMissed(DEBUG_TYPE, "NotInlined", DLoc,
516                                             Block)
517                    << NV("Callee", Callee) << " will not be inlined into "
518                    << NV("Caller", Caller) << ": "
519                    << NV("Reason", IR.getFailureReason());
520           });
521           continue;
522         }
523         ++NumInlined;
524 
525         emitInlinedIntoBasedOnCost(ORE, DLoc, Block, *Callee, *Caller, *OIC);
526 
527         // If inlining this function gave us any new call sites, throw them
528         // onto our worklist to process.  They are useful inline candidates.
529         if (!InlineInfo.InlinedCalls.empty()) {
530           // Create a new inline history entry for this, so that we remember
531           // that these new callsites came about due to inlining Callee.
532           int NewHistoryID = InlineHistory.size();
533           InlineHistory.push_back(std::make_pair(Callee, InlineHistoryID));
534 
535 #ifndef NDEBUG
536           // Make sure no dupplicates in the inline candidates. This could
537           // happen when a callsite is simpilfied to reusing the return value
538           // of another callsite during function cloning, thus the other
539           // callsite will be reconsidered here.
540           DenseSet<CallBase *> DbgCallSites;
541           for (auto &II : CallSites)
542             DbgCallSites.insert(II.first);
543 #endif
544 
545           for (Value *Ptr : InlineInfo.InlinedCalls) {
546 #ifndef NDEBUG
547             assert(DbgCallSites.count(dyn_cast<CallBase>(Ptr)) == 0);
548 #endif
549             CallSites.push_back(
550                 std::make_pair(dyn_cast<CallBase>(Ptr), NewHistoryID));
551           }
552         }
553       }
554 
555       // If we inlined or deleted the last possible call site to the function,
556       // delete the function body now.
557       if (Callee && Callee->use_empty() && Callee->hasLocalLinkage() &&
558           // TODO: Can remove if in SCC now.
559           !SCCFunctions.count(Callee) &&
560           // The function may be apparently dead, but if there are indirect
561           // callgraph references to the node, we cannot delete it yet, this
562           // could invalidate the CGSCC iterator.
563           CG[Callee]->getNumReferences() == 0) {
564         LLVM_DEBUG(dbgs() << "    -> Deleting dead function: "
565                           << Callee->getName() << "\n");
566         CallGraphNode *CalleeNode = CG[Callee];
567 
568         // Remove any call graph edges from the callee to its callees.
569         CalleeNode->removeAllCalledFunctions();
570 
571         // Removing the node for callee from the call graph and delete it.
572         delete CG.removeFunctionFromModule(CalleeNode);
573         ++NumDeleted;
574       }
575 
576       // Remove this call site from the list.  If possible, use
577       // swap/pop_back for efficiency, but do not use it if doing so would
578       // move a call site to a function in this SCC before the
579       // 'FirstCallInSCC' barrier.
580       if (SCC.isSingular()) {
581         CallSites[CSi] = CallSites.back();
582         CallSites.pop_back();
583       } else {
584         CallSites.erase(CallSites.begin() + CSi);
585       }
586       --CSi;
587 
588       Changed = true;
589       LocalChange = true;
590     }
591   } while (LocalChange);
592 
593   return Changed;
594 }
595 
596 bool LegacyInlinerBase::inlineCalls(CallGraphSCC &SCC) {
597   CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();
598   ACT = &getAnalysis<AssumptionCacheTracker>();
599   PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
600   GetTLI = [&](Function &F) -> const TargetLibraryInfo & {
601     return getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
602   };
603   auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & {
604     return ACT->getAssumptionCache(F);
605   };
606   return inlineCallsImpl(
607       SCC, CG, GetAssumptionCache, PSI, GetTLI, InsertLifetime,
608       [&](CallBase &CB) { return getInlineCost(CB); }, LegacyAARGetter(*this),
609       ImportedFunctionsStats);
610 }
611 
612 /// Remove now-dead linkonce functions at the end of
613 /// processing to avoid breaking the SCC traversal.
614 bool LegacyInlinerBase::doFinalization(CallGraph &CG) {
615   if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No)
616     ImportedFunctionsStats.dump(InlinerFunctionImportStats ==
617                                 InlinerFunctionImportStatsOpts::Verbose);
618   return removeDeadFunctions(CG);
619 }
620 
621 /// Remove dead functions that are not included in DNR (Do Not Remove) list.
622 bool LegacyInlinerBase::removeDeadFunctions(CallGraph &CG,
623                                             bool AlwaysInlineOnly) {
624   SmallVector<CallGraphNode *, 16> FunctionsToRemove;
625   SmallVector<Function *, 16> DeadFunctionsInComdats;
626 
627   auto RemoveCGN = [&](CallGraphNode *CGN) {
628     // Remove any call graph edges from the function to its callees.
629     CGN->removeAllCalledFunctions();
630 
631     // Remove any edges from the external node to the function's call graph
632     // node.  These edges might have been made irrelegant due to
633     // optimization of the program.
634     CG.getExternalCallingNode()->removeAnyCallEdgeTo(CGN);
635 
636     // Removing the node for callee from the call graph and delete it.
637     FunctionsToRemove.push_back(CGN);
638   };
639 
640   // Scan for all of the functions, looking for ones that should now be removed
641   // from the program.  Insert the dead ones in the FunctionsToRemove set.
642   for (const auto &I : CG) {
643     CallGraphNode *CGN = I.second.get();
644     Function *F = CGN->getFunction();
645     if (!F || F->isDeclaration())
646       continue;
647 
648     // Handle the case when this function is called and we only want to care
649     // about always-inline functions. This is a bit of a hack to share code
650     // between here and the InlineAlways pass.
651     if (AlwaysInlineOnly && !F->hasFnAttribute(Attribute::AlwaysInline))
652       continue;
653 
654     // If the only remaining users of the function are dead constants, remove
655     // them.
656     F->removeDeadConstantUsers();
657 
658     if (!F->isDefTriviallyDead())
659       continue;
660 
661     // It is unsafe to drop a function with discardable linkage from a COMDAT
662     // without also dropping the other members of the COMDAT.
663     // The inliner doesn't visit non-function entities which are in COMDAT
664     // groups so it is unsafe to do so *unless* the linkage is local.
665     if (!F->hasLocalLinkage()) {
666       if (F->hasComdat()) {
667         DeadFunctionsInComdats.push_back(F);
668         continue;
669       }
670     }
671 
672     RemoveCGN(CGN);
673   }
674   if (!DeadFunctionsInComdats.empty()) {
675     // Filter out the functions whose comdats remain alive.
676     filterDeadComdatFunctions(DeadFunctionsInComdats);
677     // Remove the rest.
678     for (Function *F : DeadFunctionsInComdats)
679       RemoveCGN(CG[F]);
680   }
681 
682   if (FunctionsToRemove.empty())
683     return false;
684 
685   // Now that we know which functions to delete, do so.  We didn't want to do
686   // this inline, because that would invalidate our CallGraph::iterator
687   // objects. :(
688   //
689   // Note that it doesn't matter that we are iterating over a non-stable order
690   // here to do this, it doesn't matter which order the functions are deleted
691   // in.
692   array_pod_sort(FunctionsToRemove.begin(), FunctionsToRemove.end());
693   FunctionsToRemove.erase(
694       std::unique(FunctionsToRemove.begin(), FunctionsToRemove.end()),
695       FunctionsToRemove.end());
696   for (CallGraphNode *CGN : FunctionsToRemove) {
697     delete CG.removeFunctionFromModule(CGN);
698     ++NumDeleted;
699   }
700   return true;
701 }
702 
703 InlineAdvisor &
704 InlinerPass::getAdvisor(const ModuleAnalysisManagerCGSCCProxy::Result &MAM,
705                         FunctionAnalysisManager &FAM, Module &M) {
706   if (OwnedAdvisor)
707     return *OwnedAdvisor;
708 
709   auto *IAA = MAM.getCachedResult<InlineAdvisorAnalysis>(M);
710   if (!IAA) {
711     // It should still be possible to run the inliner as a stand-alone SCC pass,
712     // for test scenarios. In that case, we default to the
713     // DefaultInlineAdvisor, which doesn't need to keep state between SCC pass
714     // runs. It also uses just the default InlineParams.
715     // In this case, we need to use the provided FAM, which is valid for the
716     // duration of the inliner pass, and thus the lifetime of the owned advisor.
717     // The one we would get from the MAM can be invalidated as a result of the
718     // inliner's activity.
719     OwnedAdvisor =
720         std::make_unique<DefaultInlineAdvisor>(M, FAM, getInlineParams());
721 
722     if (!CGSCCInlineReplayFile.empty())
723       OwnedAdvisor = getReplayInlineAdvisor(
724           M, FAM, M.getContext(), std::move(OwnedAdvisor),
725           ReplayInlinerSettings{CGSCCInlineReplayFile,
726                                 CGSCCInlineReplayScope,
727                                 CGSCCInlineReplayFallback,
728                                 {CGSCCInlineReplayFormat}},
729           /*EmitRemarks=*/true);
730 
731     return *OwnedAdvisor;
732   }
733   assert(IAA->getAdvisor() &&
734          "Expected a present InlineAdvisorAnalysis also have an "
735          "InlineAdvisor initialized");
736   return *IAA->getAdvisor();
737 }
738 
739 PreservedAnalyses InlinerPass::run(LazyCallGraph::SCC &InitialC,
740                                    CGSCCAnalysisManager &AM, LazyCallGraph &CG,
741                                    CGSCCUpdateResult &UR) {
742   const auto &MAMProxy =
743       AM.getResult<ModuleAnalysisManagerCGSCCProxy>(InitialC, CG);
744   bool Changed = false;
745 
746   assert(InitialC.size() > 0 && "Cannot handle an empty SCC!");
747   Module &M = *InitialC.begin()->getFunction().getParent();
748   ProfileSummaryInfo *PSI = MAMProxy.getCachedResult<ProfileSummaryAnalysis>(M);
749 
750   FunctionAnalysisManager &FAM =
751       AM.getResult<FunctionAnalysisManagerCGSCCProxy>(InitialC, CG)
752           .getManager();
753 
754   InlineAdvisor &Advisor = getAdvisor(MAMProxy, FAM, M);
755   Advisor.onPassEntry();
756 
757   auto AdvisorOnExit = make_scope_exit([&] { Advisor.onPassExit(&InitialC); });
758 
759   // We use a single common worklist for calls across the entire SCC. We
760   // process these in-order and append new calls introduced during inlining to
761   // the end. The PriorityInlineOrder is optional here, in which the smaller
762   // callee would have a higher priority to inline.
763   //
764   // Note that this particular order of processing is actually critical to
765   // avoid very bad behaviors. Consider *highly connected* call graphs where
766   // each function contains a small amount of code and a couple of calls to
767   // other functions. Because the LLVM inliner is fundamentally a bottom-up
768   // inliner, it can handle gracefully the fact that these all appear to be
769   // reasonable inlining candidates as it will flatten things until they become
770   // too big to inline, and then move on and flatten another batch.
771   //
772   // However, when processing call edges *within* an SCC we cannot rely on this
773   // bottom-up behavior. As a consequence, with heavily connected *SCCs* of
774   // functions we can end up incrementally inlining N calls into each of
775   // N functions because each incremental inlining decision looks good and we
776   // don't have a topological ordering to prevent explosions.
777   //
778   // To compensate for this, we don't process transitive edges made immediate
779   // by inlining until we've done one pass of inlining across the entire SCC.
780   // Large, highly connected SCCs still lead to some amount of code bloat in
781   // this model, but it is uniformly spread across all the functions in the SCC
782   // and eventually they all become too large to inline, rather than
783   // incrementally maknig a single function grow in a super linear fashion.
784   std::unique_ptr<InlineOrder<std::pair<CallBase *, int>>> Calls;
785   if (InlineEnablePriorityOrder)
786     Calls = std::make_unique<PriorityInlineOrder<InlineSizePriority>>();
787   else
788     Calls = std::make_unique<DefaultInlineOrder<std::pair<CallBase *, int>>>();
789   assert(Calls != nullptr && "Expected an initialized InlineOrder");
790 
791   // Populate the initial list of calls in this SCC.
792   for (auto &N : InitialC) {
793     auto &ORE =
794         FAM.getResult<OptimizationRemarkEmitterAnalysis>(N.getFunction());
795     // We want to generally process call sites top-down in order for
796     // simplifications stemming from replacing the call with the returned value
797     // after inlining to be visible to subsequent inlining decisions.
798     // FIXME: Using instructions sequence is a really bad way to do this.
799     // Instead we should do an actual RPO walk of the function body.
800     for (Instruction &I : instructions(N.getFunction()))
801       if (auto *CB = dyn_cast<CallBase>(&I))
802         if (Function *Callee = CB->getCalledFunction()) {
803           if (!Callee->isDeclaration())
804             Calls->push({CB, -1});
805           else if (!isa<IntrinsicInst>(I)) {
806             using namespace ore;
807             setInlineRemark(*CB, "unavailable definition");
808             ORE.emit([&]() {
809               return OptimizationRemarkMissed(DEBUG_TYPE, "NoDefinition", &I)
810                      << NV("Callee", Callee) << " will not be inlined into "
811                      << NV("Caller", CB->getCaller())
812                      << " because its definition is unavailable"
813                      << setIsVerbose();
814             });
815           }
816         }
817   }
818   if (Calls->empty())
819     return PreservedAnalyses::all();
820 
821   // Capture updatable variable for the current SCC.
822   auto *C = &InitialC;
823 
824   // When inlining a callee produces new call sites, we want to keep track of
825   // the fact that they were inlined from the callee.  This allows us to avoid
826   // infinite inlining in some obscure cases.  To represent this, we use an
827   // index into the InlineHistory vector.
828   SmallVector<std::pair<Function *, int>, 16> InlineHistory;
829 
830   // Track a set vector of inlined callees so that we can augment the caller
831   // with all of their edges in the call graph before pruning out the ones that
832   // got simplified away.
833   SmallSetVector<Function *, 4> InlinedCallees;
834 
835   // Track the dead functions to delete once finished with inlining calls. We
836   // defer deleting these to make it easier to handle the call graph updates.
837   SmallVector<Function *, 4> DeadFunctions;
838 
839   // Track potentially dead non-local functions with comdats to see if they can
840   // be deleted as a batch after inlining.
841   SmallVector<Function *, 4> DeadFunctionsInComdats;
842 
843   // Loop forward over all of the calls.
844   while (!Calls->empty()) {
845     // We expect the calls to typically be batched with sequences of calls that
846     // have the same caller, so we first set up some shared infrastructure for
847     // this caller. We also do any pruning we can at this layer on the caller
848     // alone.
849     Function &F = *Calls->front().first->getCaller();
850     LazyCallGraph::Node &N = *CG.lookup(F);
851     if (CG.lookupSCC(N) != C) {
852       Calls->pop();
853       continue;
854     }
855 
856     LLVM_DEBUG(dbgs() << "Inlining calls in: " << F.getName() << "\n"
857                       << "    Function size: " << F.getInstructionCount()
858                       << "\n");
859 
860     auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & {
861       return FAM.getResult<AssumptionAnalysis>(F);
862     };
863 
864     // Now process as many calls as we have within this caller in the sequence.
865     // We bail out as soon as the caller has to change so we can update the
866     // call graph and prepare the context of that new caller.
867     bool DidInline = false;
868     while (!Calls->empty() && Calls->front().first->getCaller() == &F) {
869       auto P = Calls->pop();
870       CallBase *CB = P.first;
871       const int InlineHistoryID = P.second;
872       Function &Callee = *CB->getCalledFunction();
873 
874       if (InlineHistoryID != -1 &&
875           inlineHistoryIncludes(&Callee, InlineHistoryID, InlineHistory)) {
876         LLVM_DEBUG(dbgs() << "Skipping inlining due to history: "
877                           << F.getName() << " -> " << Callee.getName() << "\n");
878         setInlineRemark(*CB, "recursive");
879         continue;
880       }
881 
882       // Check if this inlining may repeat breaking an SCC apart that has
883       // already been split once before. In that case, inlining here may
884       // trigger infinite inlining, much like is prevented within the inliner
885       // itself by the InlineHistory above, but spread across CGSCC iterations
886       // and thus hidden from the full inline history.
887       LazyCallGraph::SCC *CalleeSCC = CG.lookupSCC(*CG.lookup(Callee));
888       if (CalleeSCC == C && UR.InlinedInternalEdges.count({&N, C})) {
889         LLVM_DEBUG(dbgs() << "Skipping inlining internal SCC edge from a node "
890                              "previously split out of this SCC by inlining: "
891                           << F.getName() << " -> " << Callee.getName() << "\n");
892         setInlineRemark(*CB, "recursive SCC split");
893         continue;
894       }
895 
896       std::unique_ptr<InlineAdvice> Advice =
897           Advisor.getAdvice(*CB, OnlyMandatory);
898 
899       // Check whether we want to inline this callsite.
900       if (!Advice)
901         continue;
902 
903       if (!Advice->isInliningRecommended()) {
904         Advice->recordUnattemptedInlining();
905         continue;
906       }
907 
908       int CBCostMult =
909           getStringFnAttrAsInt(
910               *CB, InlineConstants::FunctionInlineCostMultiplierAttributeName)
911               .getValueOr(1);
912 
913       // Setup the data structure used to plumb customization into the
914       // `InlineFunction` routine.
915       InlineFunctionInfo IFI(
916           /*cg=*/nullptr, GetAssumptionCache, PSI,
917           &FAM.getResult<BlockFrequencyAnalysis>(*(CB->getCaller())),
918           &FAM.getResult<BlockFrequencyAnalysis>(Callee));
919 
920       InlineResult IR =
921           InlineFunction(*CB, IFI, &FAM.getResult<AAManager>(*CB->getCaller()));
922       if (!IR.isSuccess()) {
923         Advice->recordUnsuccessfulInlining(IR);
924         continue;
925       }
926 
927       DidInline = true;
928       InlinedCallees.insert(&Callee);
929       ++NumInlined;
930 
931       LLVM_DEBUG(dbgs() << "    Size after inlining: "
932                         << F.getInstructionCount() << "\n");
933 
934       // Add any new callsites to defined functions to the worklist.
935       if (!IFI.InlinedCallSites.empty()) {
936         int NewHistoryID = InlineHistory.size();
937         InlineHistory.push_back({&Callee, InlineHistoryID});
938 
939         for (CallBase *ICB : reverse(IFI.InlinedCallSites)) {
940           Function *NewCallee = ICB->getCalledFunction();
941           assert(!(NewCallee && NewCallee->isIntrinsic()) &&
942                  "Intrinsic calls should not be tracked.");
943           if (!NewCallee) {
944             // Try to promote an indirect (virtual) call without waiting for
945             // the post-inline cleanup and the next DevirtSCCRepeatedPass
946             // iteration because the next iteration may not happen and we may
947             // miss inlining it.
948             if (tryPromoteCall(*ICB))
949               NewCallee = ICB->getCalledFunction();
950           }
951           if (NewCallee) {
952             if (!NewCallee->isDeclaration()) {
953               Calls->push({ICB, NewHistoryID});
954               // Continually inlining through an SCC can result in huge compile
955               // times and bloated code since we arbitrarily stop at some point
956               // when the inliner decides it's not profitable to inline anymore.
957               // We attempt to mitigate this by making these calls exponentially
958               // more expensive.
959               // This doesn't apply to calls in the same SCC since if we do
960               // inline through the SCC the function will end up being
961               // self-recursive which the inliner bails out on, and inlining
962               // within an SCC is necessary for performance.
963               if (CalleeSCC != C &&
964                   CalleeSCC == CG.lookupSCC(CG.get(*NewCallee))) {
965                 Attribute NewCBCostMult = Attribute::get(
966                     M.getContext(),
967                     InlineConstants::FunctionInlineCostMultiplierAttributeName,
968                     itostr(CBCostMult * IntraSCCCostMultiplier));
969                 ICB->addFnAttr(NewCBCostMult);
970               }
971             }
972           }
973         }
974       }
975 
976       // Merge the attributes based on the inlining.
977       AttributeFuncs::mergeAttributesForInlining(F, Callee);
978 
979       // For local functions or discardable functions without comdats, check
980       // whether this makes the callee trivially dead. In that case, we can drop
981       // the body of the function eagerly which may reduce the number of callers
982       // of other functions to one, changing inline cost thresholds. Non-local
983       // discardable functions with comdats are checked later on.
984       bool CalleeWasDeleted = false;
985       if (Callee.isDiscardableIfUnused() && Callee.hasZeroLiveUses() &&
986           !CG.isLibFunction(Callee)) {
987         if (Callee.hasLocalLinkage() || !Callee.hasComdat()) {
988           Calls->erase_if([&](const std::pair<CallBase *, int> &Call) {
989             return Call.first->getCaller() == &Callee;
990           });
991           // Clear the body and queue the function itself for deletion when we
992           // finish inlining and call graph updates.
993           // Note that after this point, it is an error to do anything other
994           // than use the callee's address or delete it.
995           Callee.dropAllReferences();
996           assert(!is_contained(DeadFunctions, &Callee) &&
997                  "Cannot put cause a function to become dead twice!");
998           DeadFunctions.push_back(&Callee);
999           CalleeWasDeleted = true;
1000         } else {
1001           DeadFunctionsInComdats.push_back(&Callee);
1002         }
1003       }
1004       if (CalleeWasDeleted)
1005         Advice->recordInliningWithCalleeDeleted();
1006       else
1007         Advice->recordInlining();
1008     }
1009 
1010     if (!DidInline)
1011       continue;
1012     Changed = true;
1013 
1014     // At this point, since we have made changes we have at least removed
1015     // a call instruction. However, in the process we do some incremental
1016     // simplification of the surrounding code. This simplification can
1017     // essentially do all of the same things as a function pass and we can
1018     // re-use the exact same logic for updating the call graph to reflect the
1019     // change.
1020 
1021     // Inside the update, we also update the FunctionAnalysisManager in the
1022     // proxy for this particular SCC. We do this as the SCC may have changed and
1023     // as we're going to mutate this particular function we want to make sure
1024     // the proxy is in place to forward any invalidation events.
1025     LazyCallGraph::SCC *OldC = C;
1026     C = &updateCGAndAnalysisManagerForCGSCCPass(CG, *C, N, AM, UR, FAM);
1027     LLVM_DEBUG(dbgs() << "Updated inlining SCC: " << *C << "\n");
1028 
1029     // If this causes an SCC to split apart into multiple smaller SCCs, there
1030     // is a subtle risk we need to prepare for. Other transformations may
1031     // expose an "infinite inlining" opportunity later, and because of the SCC
1032     // mutation, we will revisit this function and potentially re-inline. If we
1033     // do, and that re-inlining also has the potentially to mutate the SCC
1034     // structure, the infinite inlining problem can manifest through infinite
1035     // SCC splits and merges. To avoid this, we capture the originating caller
1036     // node and the SCC containing the call edge. This is a slight over
1037     // approximation of the possible inlining decisions that must be avoided,
1038     // but is relatively efficient to store. We use C != OldC to know when
1039     // a new SCC is generated and the original SCC may be generated via merge
1040     // in later iterations.
1041     //
1042     // It is also possible that even if no new SCC is generated
1043     // (i.e., C == OldC), the original SCC could be split and then merged
1044     // into the same one as itself. and the original SCC will be added into
1045     // UR.CWorklist again, we want to catch such cases too.
1046     //
1047     // FIXME: This seems like a very heavyweight way of retaining the inline
1048     // history, we should look for a more efficient way of tracking it.
1049     if ((C != OldC || UR.CWorklist.count(OldC)) &&
1050         llvm::any_of(InlinedCallees, [&](Function *Callee) {
1051           return CG.lookupSCC(*CG.lookup(*Callee)) == OldC;
1052         })) {
1053       LLVM_DEBUG(dbgs() << "Inlined an internal call edge and split an SCC, "
1054                            "retaining this to avoid infinite inlining.\n");
1055       UR.InlinedInternalEdges.insert({&N, OldC});
1056     }
1057     InlinedCallees.clear();
1058 
1059     // Invalidate analyses for this function now so that we don't have to
1060     // invalidate analyses for all functions in this SCC later.
1061     FAM.invalidate(F, PreservedAnalyses::none());
1062   }
1063 
1064   // We must ensure that we only delete functions with comdats if every function
1065   // in the comdat is going to be deleted.
1066   if (!DeadFunctionsInComdats.empty()) {
1067     filterDeadComdatFunctions(DeadFunctionsInComdats);
1068     for (auto *Callee : DeadFunctionsInComdats)
1069       Callee->dropAllReferences();
1070     DeadFunctions.append(DeadFunctionsInComdats);
1071   }
1072 
1073   // Now that we've finished inlining all of the calls across this SCC, delete
1074   // all of the trivially dead functions, updating the call graph and the CGSCC
1075   // pass manager in the process.
1076   //
1077   // Note that this walks a pointer set which has non-deterministic order but
1078   // that is OK as all we do is delete things and add pointers to unordered
1079   // sets.
1080   for (Function *DeadF : DeadFunctions) {
1081     // Get the necessary information out of the call graph and nuke the
1082     // function there. Also, clear out any cached analyses.
1083     auto &DeadC = *CG.lookupSCC(*CG.lookup(*DeadF));
1084     FAM.clear(*DeadF, DeadF->getName());
1085     AM.clear(DeadC, DeadC.getName());
1086     auto &DeadRC = DeadC.getOuterRefSCC();
1087     CG.removeDeadFunction(*DeadF);
1088 
1089     // Mark the relevant parts of the call graph as invalid so we don't visit
1090     // them.
1091     UR.InvalidatedSCCs.insert(&DeadC);
1092     UR.InvalidatedRefSCCs.insert(&DeadRC);
1093 
1094     // If the updated SCC was the one containing the deleted function, clear it.
1095     if (&DeadC == UR.UpdatedC)
1096       UR.UpdatedC = nullptr;
1097 
1098     // And delete the actual function from the module.
1099     M.getFunctionList().erase(DeadF);
1100 
1101     ++NumDeleted;
1102   }
1103 
1104   if (!Changed)
1105     return PreservedAnalyses::all();
1106 
1107   PreservedAnalyses PA;
1108   // Even if we change the IR, we update the core CGSCC data structures and so
1109   // can preserve the proxy to the function analysis manager.
1110   PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
1111   // We have already invalidated all analyses on modified functions.
1112   PA.preserveSet<AllAnalysesOn<Function>>();
1113   return PA;
1114 }
1115 
1116 ModuleInlinerWrapperPass::ModuleInlinerWrapperPass(InlineParams Params,
1117                                                    bool MandatoryFirst,
1118                                                    InliningAdvisorMode Mode,
1119                                                    unsigned MaxDevirtIterations)
1120     : Params(Params), Mode(Mode), MaxDevirtIterations(MaxDevirtIterations) {
1121   // Run the inliner first. The theory is that we are walking bottom-up and so
1122   // the callees have already been fully optimized, and we want to inline them
1123   // into the callers so that our optimizations can reflect that.
1124   // For PreLinkThinLTO pass, we disable hot-caller heuristic for sample PGO
1125   // because it makes profile annotation in the backend inaccurate.
1126   if (MandatoryFirst)
1127     PM.addPass(InlinerPass(/*OnlyMandatory*/ true));
1128   PM.addPass(InlinerPass());
1129 }
1130 
1131 PreservedAnalyses ModuleInlinerWrapperPass::run(Module &M,
1132                                                 ModuleAnalysisManager &MAM) {
1133   auto &IAA = MAM.getResult<InlineAdvisorAnalysis>(M);
1134   if (!IAA.tryCreate(Params, Mode,
1135                      {CGSCCInlineReplayFile,
1136                       CGSCCInlineReplayScope,
1137                       CGSCCInlineReplayFallback,
1138                       {CGSCCInlineReplayFormat}})) {
1139     M.getContext().emitError(
1140         "Could not setup Inlining Advisor for the requested "
1141         "mode and/or options");
1142     return PreservedAnalyses::all();
1143   }
1144 
1145   // We wrap the CGSCC pipeline in a devirtualization repeater. This will try
1146   // to detect when we devirtualize indirect calls and iterate the SCC passes
1147   // in that case to try and catch knock-on inlining or function attrs
1148   // opportunities. Then we add it to the module pipeline by walking the SCCs
1149   // in postorder (or bottom-up).
1150   // If MaxDevirtIterations is 0, we just don't use the devirtualization
1151   // wrapper.
1152   if (MaxDevirtIterations == 0)
1153     MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(PM)));
1154   else
1155     MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(
1156         createDevirtSCCRepeatedPass(std::move(PM), MaxDevirtIterations)));
1157 
1158   MPM.addPass(std::move(AfterCGMPM));
1159   MPM.run(M, MAM);
1160 
1161   // Discard the InlineAdvisor, a subsequent inlining session should construct
1162   // its own.
1163   auto PA = PreservedAnalyses::all();
1164   if (!KeepAdvisorForPrinting)
1165     PA.abandon<InlineAdvisorAnalysis>();
1166   return PA;
1167 }
1168 
1169 void InlinerPass::printPipeline(
1170     raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
1171   static_cast<PassInfoMixin<InlinerPass> *>(this)->printPipeline(
1172       OS, MapClassName2PassName);
1173   if (OnlyMandatory)
1174     OS << "<only-mandatory>";
1175 }
1176 
1177 void ModuleInlinerWrapperPass::printPipeline(
1178     raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
1179   // Print some info about passes added to the wrapper. This is however
1180   // incomplete as InlineAdvisorAnalysis part isn't included (which also depends
1181   // on Params and Mode).
1182   if (!MPM.isEmpty()) {
1183     MPM.printPipeline(OS, MapClassName2PassName);
1184     OS << ",";
1185   }
1186   OS << "cgscc(";
1187   if (MaxDevirtIterations != 0)
1188     OS << "devirt<" << MaxDevirtIterations << ">(";
1189   PM.printPipeline(OS, MapClassName2PassName);
1190   if (MaxDevirtIterations != 0)
1191     OS << ")";
1192   OS << ")";
1193 }
1194