1 //===- Inliner.cpp - Code common to all inliners --------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the mechanics required to implement inlining without 11 // missing any calls and updating the call graph. The decisions of which calls 12 // are profitable to inline are implemented elsewhere. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Transforms/IPO/InlinerPass.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/Analysis/AssumptionCache.h" 21 #include "llvm/Analysis/CallGraph.h" 22 #include "llvm/Analysis/InlineCost.h" 23 #include "llvm/Analysis/TargetLibraryInfo.h" 24 #include "llvm/IR/CallSite.h" 25 #include "llvm/IR/DataLayout.h" 26 #include "llvm/IR/DiagnosticInfo.h" 27 #include "llvm/IR/Instructions.h" 28 #include "llvm/IR/IntrinsicInst.h" 29 #include "llvm/IR/Module.h" 30 #include "llvm/Support/CommandLine.h" 31 #include "llvm/Support/Debug.h" 32 #include "llvm/Support/raw_ostream.h" 33 #include "llvm/Transforms/Utils/Cloning.h" 34 #include "llvm/Transforms/Utils/Local.h" 35 using namespace llvm; 36 37 #define DEBUG_TYPE "inline" 38 39 STATISTIC(NumInlined, "Number of functions inlined"); 40 STATISTIC(NumCallsDeleted, "Number of call sites deleted, not inlined"); 41 STATISTIC(NumDeleted, "Number of functions deleted because all callers found"); 42 STATISTIC(NumMergedAllocas, "Number of allocas merged together"); 43 44 // This weirdly named statistic tracks the number of times that, when attempting 45 // to inline a function A into B, we analyze the callers of B in order to see 46 // if those would be more profitable and blocked inline steps. 47 STATISTIC(NumCallerCallersAnalyzed, "Number of caller-callers analyzed"); 48 49 static cl::opt<int> 50 InlineLimit("inline-threshold", cl::Hidden, cl::init(225), cl::ZeroOrMore, 51 cl::desc("Control the amount of inlining to perform (default = 225)")); 52 53 static cl::opt<int> 54 HintThreshold("inlinehint-threshold", cl::Hidden, cl::init(325), 55 cl::desc("Threshold for inlining functions with inline hint")); 56 57 // We instroduce this threshold to help performance of instrumentation based 58 // PGO before we actually hook up inliner with analysis passes such as BPI and 59 // BFI. 60 static cl::opt<int> 61 ColdThreshold("inlinecold-threshold", cl::Hidden, cl::init(225), 62 cl::desc("Threshold for inlining functions with cold attribute")); 63 64 // Threshold to use when optsize is specified (and there is no -inline-limit). 65 const int OptSizeThreshold = 75; 66 67 Inliner::Inliner(char &ID) 68 : CallGraphSCCPass(ID), InlineThreshold(InlineLimit), InsertLifetime(true) {} 69 70 Inliner::Inliner(char &ID, int Threshold, bool InsertLifetime) 71 : CallGraphSCCPass(ID), InlineThreshold(InlineLimit.getNumOccurrences() > 0 ? 72 InlineLimit : Threshold), 73 InsertLifetime(InsertLifetime) {} 74 75 /// For this class, we declare that we require and preserve the call graph. 76 /// If the derived class implements this method, it should 77 /// always explicitly call the implementation here. 78 void Inliner::getAnalysisUsage(AnalysisUsage &AU) const { 79 AU.addRequired<AliasAnalysis>(); 80 AU.addRequired<AssumptionCacheTracker>(); 81 CallGraphSCCPass::getAnalysisUsage(AU); 82 } 83 84 85 typedef DenseMap<ArrayType*, std::vector<AllocaInst*> > 86 InlinedArrayAllocasTy; 87 88 /// \brief If the inlined function had a higher stack protection level than the 89 /// calling function, then bump up the caller's stack protection level. 90 static void AdjustCallerSSPLevel(Function *Caller, Function *Callee) { 91 // If upgrading the SSP attribute, clear out the old SSP Attributes first. 92 // Having multiple SSP attributes doesn't actually hurt, but it adds useless 93 // clutter to the IR. 94 AttrBuilder B; 95 B.addAttribute(Attribute::StackProtect) 96 .addAttribute(Attribute::StackProtectStrong) 97 .addAttribute(Attribute::StackProtectReq); 98 AttributeSet OldSSPAttr = AttributeSet::get(Caller->getContext(), 99 AttributeSet::FunctionIndex, 100 B); 101 102 if (Callee->hasFnAttribute(Attribute::SafeStack)) { 103 Caller->removeAttributes(AttributeSet::FunctionIndex, OldSSPAttr); 104 Caller->addFnAttr(Attribute::SafeStack); 105 } else if (Callee->hasFnAttribute(Attribute::StackProtectReq) && 106 !Caller->hasFnAttribute(Attribute::SafeStack)) { 107 Caller->removeAttributes(AttributeSet::FunctionIndex, OldSSPAttr); 108 Caller->addFnAttr(Attribute::StackProtectReq); 109 } else if (Callee->hasFnAttribute(Attribute::StackProtectStrong) && 110 !Caller->hasFnAttribute(Attribute::SafeStack) && 111 !Caller->hasFnAttribute(Attribute::StackProtectReq)) { 112 Caller->removeAttributes(AttributeSet::FunctionIndex, OldSSPAttr); 113 Caller->addFnAttr(Attribute::StackProtectStrong); 114 } else if (Callee->hasFnAttribute(Attribute::StackProtect) && 115 !Caller->hasFnAttribute(Attribute::SafeStack) && 116 !Caller->hasFnAttribute(Attribute::StackProtectReq) && 117 !Caller->hasFnAttribute(Attribute::StackProtectStrong)) 118 Caller->addFnAttr(Attribute::StackProtect); 119 } 120 121 /// If it is possible to inline the specified call site, 122 /// do so and update the CallGraph for this operation. 123 /// 124 /// This function also does some basic book-keeping to update the IR. The 125 /// InlinedArrayAllocas map keeps track of any allocas that are already 126 /// available from other functions inlined into the caller. If we are able to 127 /// inline this call site we attempt to reuse already available allocas or add 128 /// any new allocas to the set if not possible. 129 static bool InlineCallIfPossible(CallSite CS, InlineFunctionInfo &IFI, 130 InlinedArrayAllocasTy &InlinedArrayAllocas, 131 int InlineHistory, bool InsertLifetime) { 132 Function *Callee = CS.getCalledFunction(); 133 Function *Caller = CS.getCaller(); 134 135 // Try to inline the function. Get the list of static allocas that were 136 // inlined. 137 if (!InlineFunction(CS, IFI, InsertLifetime)) 138 return false; 139 140 AdjustCallerSSPLevel(Caller, Callee); 141 142 // Look at all of the allocas that we inlined through this call site. If we 143 // have already inlined other allocas through other calls into this function, 144 // then we know that they have disjoint lifetimes and that we can merge them. 145 // 146 // There are many heuristics possible for merging these allocas, and the 147 // different options have different tradeoffs. One thing that we *really* 148 // don't want to hurt is SRoA: once inlining happens, often allocas are no 149 // longer address taken and so they can be promoted. 150 // 151 // Our "solution" for that is to only merge allocas whose outermost type is an 152 // array type. These are usually not promoted because someone is using a 153 // variable index into them. These are also often the most important ones to 154 // merge. 155 // 156 // A better solution would be to have real memory lifetime markers in the IR 157 // and not have the inliner do any merging of allocas at all. This would 158 // allow the backend to do proper stack slot coloring of all allocas that 159 // *actually make it to the backend*, which is really what we want. 160 // 161 // Because we don't have this information, we do this simple and useful hack. 162 // 163 SmallPtrSet<AllocaInst*, 16> UsedAllocas; 164 165 // When processing our SCC, check to see if CS was inlined from some other 166 // call site. For example, if we're processing "A" in this code: 167 // A() { B() } 168 // B() { x = alloca ... C() } 169 // C() { y = alloca ... } 170 // Assume that C was not inlined into B initially, and so we're processing A 171 // and decide to inline B into A. Doing this makes an alloca available for 172 // reuse and makes a callsite (C) available for inlining. When we process 173 // the C call site we don't want to do any alloca merging between X and Y 174 // because their scopes are not disjoint. We could make this smarter by 175 // keeping track of the inline history for each alloca in the 176 // InlinedArrayAllocas but this isn't likely to be a significant win. 177 if (InlineHistory != -1) // Only do merging for top-level call sites in SCC. 178 return true; 179 180 // Loop over all the allocas we have so far and see if they can be merged with 181 // a previously inlined alloca. If not, remember that we had it. 182 for (unsigned AllocaNo = 0, e = IFI.StaticAllocas.size(); 183 AllocaNo != e; ++AllocaNo) { 184 AllocaInst *AI = IFI.StaticAllocas[AllocaNo]; 185 186 // Don't bother trying to merge array allocations (they will usually be 187 // canonicalized to be an allocation *of* an array), or allocations whose 188 // type is not itself an array (because we're afraid of pessimizing SRoA). 189 ArrayType *ATy = dyn_cast<ArrayType>(AI->getAllocatedType()); 190 if (!ATy || AI->isArrayAllocation()) 191 continue; 192 193 // Get the list of all available allocas for this array type. 194 std::vector<AllocaInst*> &AllocasForType = InlinedArrayAllocas[ATy]; 195 196 // Loop over the allocas in AllocasForType to see if we can reuse one. Note 197 // that we have to be careful not to reuse the same "available" alloca for 198 // multiple different allocas that we just inlined, we use the 'UsedAllocas' 199 // set to keep track of which "available" allocas are being used by this 200 // function. Also, AllocasForType can be empty of course! 201 bool MergedAwayAlloca = false; 202 for (AllocaInst *AvailableAlloca : AllocasForType) { 203 204 unsigned Align1 = AI->getAlignment(), 205 Align2 = AvailableAlloca->getAlignment(); 206 207 // The available alloca has to be in the right function, not in some other 208 // function in this SCC. 209 if (AvailableAlloca->getParent() != AI->getParent()) 210 continue; 211 212 // If the inlined function already uses this alloca then we can't reuse 213 // it. 214 if (!UsedAllocas.insert(AvailableAlloca).second) 215 continue; 216 217 // Otherwise, we *can* reuse it, RAUW AI into AvailableAlloca and declare 218 // success! 219 DEBUG(dbgs() << " ***MERGED ALLOCA: " << *AI << "\n\t\tINTO: " 220 << *AvailableAlloca << '\n'); 221 222 AI->replaceAllUsesWith(AvailableAlloca); 223 224 if (Align1 != Align2) { 225 if (!Align1 || !Align2) { 226 const DataLayout &DL = Caller->getParent()->getDataLayout(); 227 unsigned TypeAlign = DL.getABITypeAlignment(AI->getAllocatedType()); 228 229 Align1 = Align1 ? Align1 : TypeAlign; 230 Align2 = Align2 ? Align2 : TypeAlign; 231 } 232 233 if (Align1 > Align2) 234 AvailableAlloca->setAlignment(AI->getAlignment()); 235 } 236 237 AI->eraseFromParent(); 238 MergedAwayAlloca = true; 239 ++NumMergedAllocas; 240 IFI.StaticAllocas[AllocaNo] = nullptr; 241 break; 242 } 243 244 // If we already nuked the alloca, we're done with it. 245 if (MergedAwayAlloca) 246 continue; 247 248 // If we were unable to merge away the alloca either because there are no 249 // allocas of the right type available or because we reused them all 250 // already, remember that this alloca came from an inlined function and mark 251 // it used so we don't reuse it for other allocas from this inline 252 // operation. 253 AllocasForType.push_back(AI); 254 UsedAllocas.insert(AI); 255 } 256 257 return true; 258 } 259 260 unsigned Inliner::getInlineThreshold(CallSite CS) const { 261 int Threshold = InlineThreshold; // -inline-threshold or else selected by 262 // overall opt level 263 264 // If -inline-threshold is not given, listen to the optsize attribute when it 265 // would decrease the threshold. 266 Function *Caller = CS.getCaller(); 267 bool OptSize = Caller && !Caller->isDeclaration() && 268 // FIXME: Use Function::optForSize(). 269 Caller->hasFnAttribute(Attribute::OptimizeForSize); 270 if (!(InlineLimit.getNumOccurrences() > 0) && OptSize && 271 OptSizeThreshold < Threshold) 272 Threshold = OptSizeThreshold; 273 274 // Listen to the inlinehint attribute when it would increase the threshold 275 // and the caller does not need to minimize its size. 276 Function *Callee = CS.getCalledFunction(); 277 bool InlineHint = Callee && !Callee->isDeclaration() && 278 Callee->hasFnAttribute(Attribute::InlineHint); 279 if (InlineHint && HintThreshold > Threshold && 280 !Caller->hasFnAttribute(Attribute::MinSize)) 281 Threshold = HintThreshold; 282 283 // Listen to the cold attribute when it would decrease the threshold. 284 bool ColdCallee = Callee && !Callee->isDeclaration() && 285 Callee->hasFnAttribute(Attribute::Cold); 286 // Command line argument for InlineLimit will override the default 287 // ColdThreshold. If we have -inline-threshold but no -inlinecold-threshold, 288 // do not use the default cold threshold even if it is smaller. 289 if ((InlineLimit.getNumOccurrences() == 0 || 290 ColdThreshold.getNumOccurrences() > 0) && ColdCallee && 291 ColdThreshold < Threshold) 292 Threshold = ColdThreshold; 293 294 return Threshold; 295 } 296 297 static void emitAnalysis(CallSite CS, const Twine &Msg) { 298 Function *Caller = CS.getCaller(); 299 LLVMContext &Ctx = Caller->getContext(); 300 DebugLoc DLoc = CS.getInstruction()->getDebugLoc(); 301 emitOptimizationRemarkAnalysis(Ctx, DEBUG_TYPE, *Caller, DLoc, Msg); 302 } 303 304 /// Return true if the inliner should attempt to inline at the given CallSite. 305 bool Inliner::shouldInline(CallSite CS) { 306 InlineCost IC = getInlineCost(CS); 307 308 if (IC.isAlways()) { 309 DEBUG(dbgs() << " Inlining: cost=always" 310 << ", Call: " << *CS.getInstruction() << "\n"); 311 emitAnalysis(CS, Twine(CS.getCalledFunction()->getName()) + 312 " should always be inlined (cost=always)"); 313 return true; 314 } 315 316 if (IC.isNever()) { 317 DEBUG(dbgs() << " NOT Inlining: cost=never" 318 << ", Call: " << *CS.getInstruction() << "\n"); 319 emitAnalysis(CS, Twine(CS.getCalledFunction()->getName() + 320 " should never be inlined (cost=never)")); 321 return false; 322 } 323 324 Function *Caller = CS.getCaller(); 325 if (!IC) { 326 DEBUG(dbgs() << " NOT Inlining: cost=" << IC.getCost() 327 << ", thres=" << (IC.getCostDelta() + IC.getCost()) 328 << ", Call: " << *CS.getInstruction() << "\n"); 329 emitAnalysis(CS, Twine(CS.getCalledFunction()->getName() + 330 " too costly to inline (cost=") + 331 Twine(IC.getCost()) + ", threshold=" + 332 Twine(IC.getCostDelta() + IC.getCost()) + ")"); 333 return false; 334 } 335 336 // Try to detect the case where the current inlining candidate caller (call 337 // it B) is a static or linkonce-ODR function and is an inlining candidate 338 // elsewhere, and the current candidate callee (call it C) is large enough 339 // that inlining it into B would make B too big to inline later. In these 340 // circumstances it may be best not to inline C into B, but to inline B into 341 // its callers. 342 // 343 // This only applies to static and linkonce-ODR functions because those are 344 // expected to be available for inlining in the translation units where they 345 // are used. Thus we will always have the opportunity to make local inlining 346 // decisions. Importantly the linkonce-ODR linkage covers inline functions 347 // and templates in C++. 348 // 349 // FIXME: All of this logic should be sunk into getInlineCost. It relies on 350 // the internal implementation of the inline cost metrics rather than 351 // treating them as truly abstract units etc. 352 if (Caller->hasLocalLinkage() || Caller->hasLinkOnceODRLinkage()) { 353 int TotalSecondaryCost = 0; 354 // The candidate cost to be imposed upon the current function. 355 int CandidateCost = IC.getCost() - (InlineConstants::CallPenalty + 1); 356 // This bool tracks what happens if we do NOT inline C into B. 357 bool callerWillBeRemoved = Caller->hasLocalLinkage(); 358 // This bool tracks what happens if we DO inline C into B. 359 bool inliningPreventsSomeOuterInline = false; 360 for (User *U : Caller->users()) { 361 CallSite CS2(U); 362 363 // If this isn't a call to Caller (it could be some other sort 364 // of reference) skip it. Such references will prevent the caller 365 // from being removed. 366 if (!CS2 || CS2.getCalledFunction() != Caller) { 367 callerWillBeRemoved = false; 368 continue; 369 } 370 371 InlineCost IC2 = getInlineCost(CS2); 372 ++NumCallerCallersAnalyzed; 373 if (!IC2) { 374 callerWillBeRemoved = false; 375 continue; 376 } 377 if (IC2.isAlways()) 378 continue; 379 380 // See if inlining or original callsite would erase the cost delta of 381 // this callsite. We subtract off the penalty for the call instruction, 382 // which we would be deleting. 383 if (IC2.getCostDelta() <= CandidateCost) { 384 inliningPreventsSomeOuterInline = true; 385 TotalSecondaryCost += IC2.getCost(); 386 } 387 } 388 // If all outer calls to Caller would get inlined, the cost for the last 389 // one is set very low by getInlineCost, in anticipation that Caller will 390 // be removed entirely. We did not account for this above unless there 391 // is only one caller of Caller. 392 if (callerWillBeRemoved && !Caller->use_empty()) 393 TotalSecondaryCost += InlineConstants::LastCallToStaticBonus; 394 395 if (inliningPreventsSomeOuterInline && TotalSecondaryCost < IC.getCost()) { 396 DEBUG(dbgs() << " NOT Inlining: " << *CS.getInstruction() << 397 " Cost = " << IC.getCost() << 398 ", outer Cost = " << TotalSecondaryCost << '\n'); 399 emitAnalysis( 400 CS, Twine("Not inlining. Cost of inlining " + 401 CS.getCalledFunction()->getName() + 402 " increases the cost of inlining " + 403 CS.getCaller()->getName() + " in other contexts")); 404 return false; 405 } 406 } 407 408 DEBUG(dbgs() << " Inlining: cost=" << IC.getCost() 409 << ", thres=" << (IC.getCostDelta() + IC.getCost()) 410 << ", Call: " << *CS.getInstruction() << '\n'); 411 emitAnalysis( 412 CS, CS.getCalledFunction()->getName() + Twine(" can be inlined into ") + 413 CS.getCaller()->getName() + " with cost=" + Twine(IC.getCost()) + 414 " (threshold=" + Twine(IC.getCostDelta() + IC.getCost()) + ")"); 415 return true; 416 } 417 418 /// Return true if the specified inline history ID 419 /// indicates an inline history that includes the specified function. 420 static bool InlineHistoryIncludes(Function *F, int InlineHistoryID, 421 const SmallVectorImpl<std::pair<Function*, int> > &InlineHistory) { 422 while (InlineHistoryID != -1) { 423 assert(unsigned(InlineHistoryID) < InlineHistory.size() && 424 "Invalid inline history ID"); 425 if (InlineHistory[InlineHistoryID].first == F) 426 return true; 427 InlineHistoryID = InlineHistory[InlineHistoryID].second; 428 } 429 return false; 430 } 431 432 bool Inliner::runOnSCC(CallGraphSCC &SCC) { 433 CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph(); 434 AssumptionCacheTracker *ACT = &getAnalysis<AssumptionCacheTracker>(); 435 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 436 const TargetLibraryInfo *TLI = TLIP ? &TLIP->getTLI() : nullptr; 437 AliasAnalysis *AA = &getAnalysis<AliasAnalysis>(); 438 439 SmallPtrSet<Function*, 8> SCCFunctions; 440 DEBUG(dbgs() << "Inliner visiting SCC:"); 441 for (CallGraphNode *Node : SCC) { 442 Function *F = Node->getFunction(); 443 if (F) SCCFunctions.insert(F); 444 DEBUG(dbgs() << " " << (F ? F->getName() : "INDIRECTNODE")); 445 } 446 447 // Scan through and identify all call sites ahead of time so that we only 448 // inline call sites in the original functions, not call sites that result 449 // from inlining other functions. 450 SmallVector<std::pair<CallSite, int>, 16> CallSites; 451 452 // When inlining a callee produces new call sites, we want to keep track of 453 // the fact that they were inlined from the callee. This allows us to avoid 454 // infinite inlining in some obscure cases. To represent this, we use an 455 // index into the InlineHistory vector. 456 SmallVector<std::pair<Function*, int>, 8> InlineHistory; 457 458 for (CallGraphNode *Node : SCC) { 459 Function *F = Node->getFunction(); 460 if (!F) continue; 461 462 for (BasicBlock &BB : *F) 463 for (Instruction &I : BB) { 464 CallSite CS(cast<Value>(&I)); 465 // If this isn't a call, or it is a call to an intrinsic, it can 466 // never be inlined. 467 if (!CS || isa<IntrinsicInst>(I)) 468 continue; 469 470 // If this is a direct call to an external function, we can never inline 471 // it. If it is an indirect call, inlining may resolve it to be a 472 // direct call, so we keep it. 473 if (Function *Callee = CS.getCalledFunction()) 474 if (Callee->isDeclaration()) 475 continue; 476 477 CallSites.push_back(std::make_pair(CS, -1)); 478 } 479 } 480 481 DEBUG(dbgs() << ": " << CallSites.size() << " call sites.\n"); 482 483 // If there are no calls in this function, exit early. 484 if (CallSites.empty()) 485 return false; 486 487 // Now that we have all of the call sites, move the ones to functions in the 488 // current SCC to the end of the list. 489 unsigned FirstCallInSCC = CallSites.size(); 490 for (unsigned i = 0; i < FirstCallInSCC; ++i) 491 if (Function *F = CallSites[i].first.getCalledFunction()) 492 if (SCCFunctions.count(F)) 493 std::swap(CallSites[i--], CallSites[--FirstCallInSCC]); 494 495 496 InlinedArrayAllocasTy InlinedArrayAllocas; 497 InlineFunctionInfo InlineInfo(&CG, AA, ACT); 498 499 // Now that we have all of the call sites, loop over them and inline them if 500 // it looks profitable to do so. 501 bool Changed = false; 502 bool LocalChange; 503 do { 504 LocalChange = false; 505 // Iterate over the outer loop because inlining functions can cause indirect 506 // calls to become direct calls. 507 // CallSites may be modified inside so ranged for loop can not be used. 508 for (unsigned CSi = 0; CSi != CallSites.size(); ++CSi) { 509 CallSite CS = CallSites[CSi].first; 510 511 Function *Caller = CS.getCaller(); 512 Function *Callee = CS.getCalledFunction(); 513 514 // If this call site is dead and it is to a readonly function, we should 515 // just delete the call instead of trying to inline it, regardless of 516 // size. This happens because IPSCCP propagates the result out of the 517 // call and then we're left with the dead call. 518 if (isInstructionTriviallyDead(CS.getInstruction(), TLI)) { 519 DEBUG(dbgs() << " -> Deleting dead call: " 520 << *CS.getInstruction() << "\n"); 521 // Update the call graph by deleting the edge from Callee to Caller. 522 CG[Caller]->removeCallEdgeFor(CS); 523 CS.getInstruction()->eraseFromParent(); 524 ++NumCallsDeleted; 525 } else { 526 // We can only inline direct calls to non-declarations. 527 if (!Callee || Callee->isDeclaration()) continue; 528 529 // If this call site was obtained by inlining another function, verify 530 // that the include path for the function did not include the callee 531 // itself. If so, we'd be recursively inlining the same function, 532 // which would provide the same callsites, which would cause us to 533 // infinitely inline. 534 int InlineHistoryID = CallSites[CSi].second; 535 if (InlineHistoryID != -1 && 536 InlineHistoryIncludes(Callee, InlineHistoryID, InlineHistory)) 537 continue; 538 539 LLVMContext &CallerCtx = Caller->getContext(); 540 541 // Get DebugLoc to report. CS will be invalid after Inliner. 542 DebugLoc DLoc = CS.getInstruction()->getDebugLoc(); 543 544 // If the policy determines that we should inline this function, 545 // try to do so. 546 if (!shouldInline(CS)) { 547 emitOptimizationRemarkMissed(CallerCtx, DEBUG_TYPE, *Caller, DLoc, 548 Twine(Callee->getName() + 549 " will not be inlined into " + 550 Caller->getName())); 551 continue; 552 } 553 554 // Attempt to inline the function. 555 if (!InlineCallIfPossible(CS, InlineInfo, InlinedArrayAllocas, 556 InlineHistoryID, InsertLifetime)) { 557 emitOptimizationRemarkMissed(CallerCtx, DEBUG_TYPE, *Caller, DLoc, 558 Twine(Callee->getName() + 559 " will not be inlined into " + 560 Caller->getName())); 561 continue; 562 } 563 ++NumInlined; 564 565 // Report the inline decision. 566 emitOptimizationRemark( 567 CallerCtx, DEBUG_TYPE, *Caller, DLoc, 568 Twine(Callee->getName() + " inlined into " + Caller->getName())); 569 570 // If inlining this function gave us any new call sites, throw them 571 // onto our worklist to process. They are useful inline candidates. 572 if (!InlineInfo.InlinedCalls.empty()) { 573 // Create a new inline history entry for this, so that we remember 574 // that these new callsites came about due to inlining Callee. 575 int NewHistoryID = InlineHistory.size(); 576 InlineHistory.push_back(std::make_pair(Callee, InlineHistoryID)); 577 578 for (Value *Ptr : InlineInfo.InlinedCalls) 579 CallSites.push_back(std::make_pair(CallSite(Ptr), NewHistoryID)); 580 } 581 } 582 583 // If we inlined or deleted the last possible call site to the function, 584 // delete the function body now. 585 if (Callee && Callee->use_empty() && Callee->hasLocalLinkage() && 586 // TODO: Can remove if in SCC now. 587 !SCCFunctions.count(Callee) && 588 589 // The function may be apparently dead, but if there are indirect 590 // callgraph references to the node, we cannot delete it yet, this 591 // could invalidate the CGSCC iterator. 592 CG[Callee]->getNumReferences() == 0) { 593 DEBUG(dbgs() << " -> Deleting dead function: " 594 << Callee->getName() << "\n"); 595 CallGraphNode *CalleeNode = CG[Callee]; 596 597 // Remove any call graph edges from the callee to its callees. 598 CalleeNode->removeAllCalledFunctions(); 599 600 // Removing the node for callee from the call graph and delete it. 601 delete CG.removeFunctionFromModule(CalleeNode); 602 ++NumDeleted; 603 } 604 605 // Remove this call site from the list. If possible, use 606 // swap/pop_back for efficiency, but do not use it if doing so would 607 // move a call site to a function in this SCC before the 608 // 'FirstCallInSCC' barrier. 609 if (SCC.isSingular()) { 610 CallSites[CSi] = CallSites.back(); 611 CallSites.pop_back(); 612 } else { 613 CallSites.erase(CallSites.begin()+CSi); 614 } 615 --CSi; 616 617 Changed = true; 618 LocalChange = true; 619 } 620 } while (LocalChange); 621 622 return Changed; 623 } 624 625 /// Remove now-dead linkonce functions at the end of 626 /// processing to avoid breaking the SCC traversal. 627 bool Inliner::doFinalization(CallGraph &CG) { 628 return removeDeadFunctions(CG); 629 } 630 631 /// Remove dead functions that are not included in DNR (Do Not Remove) list. 632 bool Inliner::removeDeadFunctions(CallGraph &CG, bool AlwaysInlineOnly) { 633 SmallVector<CallGraphNode*, 16> FunctionsToRemove; 634 SmallVector<CallGraphNode *, 16> DeadFunctionsInComdats; 635 SmallDenseMap<const Comdat *, int, 16> ComdatEntriesAlive; 636 637 auto RemoveCGN = [&](CallGraphNode *CGN) { 638 // Remove any call graph edges from the function to its callees. 639 CGN->removeAllCalledFunctions(); 640 641 // Remove any edges from the external node to the function's call graph 642 // node. These edges might have been made irrelegant due to 643 // optimization of the program. 644 CG.getExternalCallingNode()->removeAnyCallEdgeTo(CGN); 645 646 // Removing the node for callee from the call graph and delete it. 647 FunctionsToRemove.push_back(CGN); 648 }; 649 650 // Scan for all of the functions, looking for ones that should now be removed 651 // from the program. Insert the dead ones in the FunctionsToRemove set. 652 for (const auto &I : CG) { 653 CallGraphNode *CGN = I.second.get(); 654 Function *F = CGN->getFunction(); 655 if (!F || F->isDeclaration()) 656 continue; 657 658 // Handle the case when this function is called and we only want to care 659 // about always-inline functions. This is a bit of a hack to share code 660 // between here and the InlineAlways pass. 661 if (AlwaysInlineOnly && !F->hasFnAttribute(Attribute::AlwaysInline)) 662 continue; 663 664 // If the only remaining users of the function are dead constants, remove 665 // them. 666 F->removeDeadConstantUsers(); 667 668 if (!F->isDefTriviallyDead()) 669 continue; 670 671 // It is unsafe to drop a function with discardable linkage from a COMDAT 672 // without also dropping the other members of the COMDAT. 673 // The inliner doesn't visit non-function entities which are in COMDAT 674 // groups so it is unsafe to do so *unless* the linkage is local. 675 if (!F->hasLocalLinkage()) { 676 if (const Comdat *C = F->getComdat()) { 677 --ComdatEntriesAlive[C]; 678 DeadFunctionsInComdats.push_back(CGN); 679 continue; 680 } 681 } 682 683 RemoveCGN(CGN); 684 } 685 if (!DeadFunctionsInComdats.empty()) { 686 // Count up all the entities in COMDAT groups 687 auto ComdatGroupReferenced = [&](const Comdat *C) { 688 auto I = ComdatEntriesAlive.find(C); 689 if (I != ComdatEntriesAlive.end()) 690 ++(I->getSecond()); 691 }; 692 for (const Function &F : CG.getModule()) 693 if (const Comdat *C = F.getComdat()) 694 ComdatGroupReferenced(C); 695 for (const GlobalVariable &GV : CG.getModule().globals()) 696 if (const Comdat *C = GV.getComdat()) 697 ComdatGroupReferenced(C); 698 for (const GlobalAlias &GA : CG.getModule().aliases()) 699 if (const Comdat *C = GA.getComdat()) 700 ComdatGroupReferenced(C); 701 for (CallGraphNode *CGN : DeadFunctionsInComdats) { 702 Function *F = CGN->getFunction(); 703 const Comdat *C = F->getComdat(); 704 int NumAlive = ComdatEntriesAlive[C]; 705 // We can remove functions in a COMDAT group if the entire group is dead. 706 assert(NumAlive >= 0); 707 if (NumAlive > 0) 708 continue; 709 710 RemoveCGN(CGN); 711 } 712 } 713 714 if (FunctionsToRemove.empty()) 715 return false; 716 717 // Now that we know which functions to delete, do so. We didn't want to do 718 // this inline, because that would invalidate our CallGraph::iterator 719 // objects. :( 720 // 721 // Note that it doesn't matter that we are iterating over a non-stable order 722 // here to do this, it doesn't matter which order the functions are deleted 723 // in. 724 array_pod_sort(FunctionsToRemove.begin(), FunctionsToRemove.end()); 725 FunctionsToRemove.erase(std::unique(FunctionsToRemove.begin(), 726 FunctionsToRemove.end()), 727 FunctionsToRemove.end()); 728 for (CallGraphNode *CGN : FunctionsToRemove) { 729 delete CG.removeFunctionFromModule(CGN); 730 ++NumDeleted; 731 } 732 return true; 733 } 734