1 //===- Inliner.cpp - Code common to all inliners --------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the mechanics required to implement inlining without 10 // missing any calls and updating the call graph. The decisions of which calls 11 // are profitable to inline are implemented elsewhere. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/IPO/Inliner.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/None.h" 18 #include "llvm/ADT/Optional.h" 19 #include "llvm/ADT/PriorityWorklist.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/ScopeExit.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Statistic.h" 26 #include "llvm/ADT/StringExtras.h" 27 #include "llvm/ADT/StringRef.h" 28 #include "llvm/Analysis/AssumptionCache.h" 29 #include "llvm/Analysis/BasicAliasAnalysis.h" 30 #include "llvm/Analysis/BlockFrequencyInfo.h" 31 #include "llvm/Analysis/CGSCCPassManager.h" 32 #include "llvm/Analysis/CallGraph.h" 33 #include "llvm/Analysis/GlobalsModRef.h" 34 #include "llvm/Analysis/InlineAdvisor.h" 35 #include "llvm/Analysis/InlineCost.h" 36 #include "llvm/Analysis/InlineOrder.h" 37 #include "llvm/Analysis/LazyCallGraph.h" 38 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 39 #include "llvm/Analysis/ProfileSummaryInfo.h" 40 #include "llvm/Analysis/ReplayInlineAdvisor.h" 41 #include "llvm/Analysis/TargetLibraryInfo.h" 42 #include "llvm/Analysis/TargetTransformInfo.h" 43 #include "llvm/Analysis/Utils/ImportedFunctionsInliningStatistics.h" 44 #include "llvm/IR/Attributes.h" 45 #include "llvm/IR/BasicBlock.h" 46 #include "llvm/IR/DataLayout.h" 47 #include "llvm/IR/DebugLoc.h" 48 #include "llvm/IR/DerivedTypes.h" 49 #include "llvm/IR/DiagnosticInfo.h" 50 #include "llvm/IR/Function.h" 51 #include "llvm/IR/InstIterator.h" 52 #include "llvm/IR/Instruction.h" 53 #include "llvm/IR/Instructions.h" 54 #include "llvm/IR/IntrinsicInst.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/IR/PassManager.h" 58 #include "llvm/IR/User.h" 59 #include "llvm/IR/Value.h" 60 #include "llvm/Pass.h" 61 #include "llvm/Support/Casting.h" 62 #include "llvm/Support/CommandLine.h" 63 #include "llvm/Support/Debug.h" 64 #include "llvm/Support/raw_ostream.h" 65 #include "llvm/Transforms/Utils/CallPromotionUtils.h" 66 #include "llvm/Transforms/Utils/Cloning.h" 67 #include "llvm/Transforms/Utils/Local.h" 68 #include "llvm/Transforms/Utils/ModuleUtils.h" 69 #include <algorithm> 70 #include <cassert> 71 #include <functional> 72 #include <sstream> 73 #include <tuple> 74 #include <utility> 75 #include <vector> 76 77 using namespace llvm; 78 79 #define DEBUG_TYPE "inline" 80 81 STATISTIC(NumInlined, "Number of functions inlined"); 82 STATISTIC(NumCallsDeleted, "Number of call sites deleted, not inlined"); 83 STATISTIC(NumDeleted, "Number of functions deleted because all callers found"); 84 STATISTIC(NumMergedAllocas, "Number of allocas merged together"); 85 86 /// Flag to disable manual alloca merging. 87 /// 88 /// Merging of allocas was originally done as a stack-size saving technique 89 /// prior to LLVM's code generator having support for stack coloring based on 90 /// lifetime markers. It is now in the process of being removed. To experiment 91 /// with disabling it and relying fully on lifetime marker based stack 92 /// coloring, you can pass this flag to LLVM. 93 static cl::opt<bool> 94 DisableInlinedAllocaMerging("disable-inlined-alloca-merging", 95 cl::init(false), cl::Hidden); 96 97 static cl::opt<int> IntraSCCCostMultiplier( 98 "intra-scc-cost-multiplier", cl::init(2), cl::Hidden, 99 cl::desc( 100 "Cost multiplier to multiply onto inlined call sites where the " 101 "new call was previously an intra-SCC call (not relevant when the " 102 "original call was already intra-SCC). This can accumulate over " 103 "multiple inlinings (e.g. if a call site already had a cost " 104 "multiplier and one of its inlined calls was also subject to " 105 "this, the inlined call would have the original multiplier " 106 "multiplied by intra-scc-cost-multiplier). This is to prevent tons of " 107 "inlining through a child SCC which can cause terrible compile times")); 108 109 /// A flag for test, so we can print the content of the advisor when running it 110 /// as part of the default (e.g. -O3) pipeline. 111 static cl::opt<bool> KeepAdvisorForPrinting("keep-inline-advisor-for-printing", 112 cl::init(false), cl::Hidden); 113 114 extern cl::opt<InlinerFunctionImportStatsOpts> InlinerFunctionImportStats; 115 116 static cl::opt<std::string> CGSCCInlineReplayFile( 117 "cgscc-inline-replay", cl::init(""), cl::value_desc("filename"), 118 cl::desc( 119 "Optimization remarks file containing inline remarks to be replayed " 120 "by cgscc inlining."), 121 cl::Hidden); 122 123 static cl::opt<ReplayInlinerSettings::Scope> CGSCCInlineReplayScope( 124 "cgscc-inline-replay-scope", 125 cl::init(ReplayInlinerSettings::Scope::Function), 126 cl::values(clEnumValN(ReplayInlinerSettings::Scope::Function, "Function", 127 "Replay on functions that have remarks associated " 128 "with them (default)"), 129 clEnumValN(ReplayInlinerSettings::Scope::Module, "Module", 130 "Replay on the entire module")), 131 cl::desc("Whether inline replay should be applied to the entire " 132 "Module or just the Functions (default) that are present as " 133 "callers in remarks during cgscc inlining."), 134 cl::Hidden); 135 136 static cl::opt<ReplayInlinerSettings::Fallback> CGSCCInlineReplayFallback( 137 "cgscc-inline-replay-fallback", 138 cl::init(ReplayInlinerSettings::Fallback::Original), 139 cl::values( 140 clEnumValN( 141 ReplayInlinerSettings::Fallback::Original, "Original", 142 "All decisions not in replay send to original advisor (default)"), 143 clEnumValN(ReplayInlinerSettings::Fallback::AlwaysInline, 144 "AlwaysInline", "All decisions not in replay are inlined"), 145 clEnumValN(ReplayInlinerSettings::Fallback::NeverInline, "NeverInline", 146 "All decisions not in replay are not inlined")), 147 cl::desc( 148 "How cgscc inline replay treats sites that don't come from the replay. " 149 "Original: defers to original advisor, AlwaysInline: inline all sites " 150 "not in replay, NeverInline: inline no sites not in replay"), 151 cl::Hidden); 152 153 static cl::opt<CallSiteFormat::Format> CGSCCInlineReplayFormat( 154 "cgscc-inline-replay-format", 155 cl::init(CallSiteFormat::Format::LineColumnDiscriminator), 156 cl::values( 157 clEnumValN(CallSiteFormat::Format::Line, "Line", "<Line Number>"), 158 clEnumValN(CallSiteFormat::Format::LineColumn, "LineColumn", 159 "<Line Number>:<Column Number>"), 160 clEnumValN(CallSiteFormat::Format::LineDiscriminator, 161 "LineDiscriminator", "<Line Number>.<Discriminator>"), 162 clEnumValN(CallSiteFormat::Format::LineColumnDiscriminator, 163 "LineColumnDiscriminator", 164 "<Line Number>:<Column Number>.<Discriminator> (default)")), 165 cl::desc("How cgscc inline replay file is formatted"), cl::Hidden); 166 167 static cl::opt<bool> InlineEnablePriorityOrder( 168 "inline-enable-priority-order", cl::Hidden, cl::init(false), 169 cl::desc("Enable the priority inline order for the inliner")); 170 171 LegacyInlinerBase::LegacyInlinerBase(char &ID) : CallGraphSCCPass(ID) {} 172 173 LegacyInlinerBase::LegacyInlinerBase(char &ID, bool InsertLifetime) 174 : CallGraphSCCPass(ID), InsertLifetime(InsertLifetime) {} 175 176 /// For this class, we declare that we require and preserve the call graph. 177 /// If the derived class implements this method, it should 178 /// always explicitly call the implementation here. 179 void LegacyInlinerBase::getAnalysisUsage(AnalysisUsage &AU) const { 180 AU.addRequired<AssumptionCacheTracker>(); 181 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 182 AU.addRequired<TargetLibraryInfoWrapperPass>(); 183 getAAResultsAnalysisUsage(AU); 184 CallGraphSCCPass::getAnalysisUsage(AU); 185 } 186 187 using InlinedArrayAllocasTy = DenseMap<ArrayType *, std::vector<AllocaInst *>>; 188 189 /// Look at all of the allocas that we inlined through this call site. If we 190 /// have already inlined other allocas through other calls into this function, 191 /// then we know that they have disjoint lifetimes and that we can merge them. 192 /// 193 /// There are many heuristics possible for merging these allocas, and the 194 /// different options have different tradeoffs. One thing that we *really* 195 /// don't want to hurt is SRoA: once inlining happens, often allocas are no 196 /// longer address taken and so they can be promoted. 197 /// 198 /// Our "solution" for that is to only merge allocas whose outermost type is an 199 /// array type. These are usually not promoted because someone is using a 200 /// variable index into them. These are also often the most important ones to 201 /// merge. 202 /// 203 /// A better solution would be to have real memory lifetime markers in the IR 204 /// and not have the inliner do any merging of allocas at all. This would 205 /// allow the backend to do proper stack slot coloring of all allocas that 206 /// *actually make it to the backend*, which is really what we want. 207 /// 208 /// Because we don't have this information, we do this simple and useful hack. 209 static void mergeInlinedArrayAllocas(Function *Caller, InlineFunctionInfo &IFI, 210 InlinedArrayAllocasTy &InlinedArrayAllocas, 211 int InlineHistory) { 212 SmallPtrSet<AllocaInst *, 16> UsedAllocas; 213 214 // When processing our SCC, check to see if the call site was inlined from 215 // some other call site. For example, if we're processing "A" in this code: 216 // A() { B() } 217 // B() { x = alloca ... C() } 218 // C() { y = alloca ... } 219 // Assume that C was not inlined into B initially, and so we're processing A 220 // and decide to inline B into A. Doing this makes an alloca available for 221 // reuse and makes a callsite (C) available for inlining. When we process 222 // the C call site we don't want to do any alloca merging between X and Y 223 // because their scopes are not disjoint. We could make this smarter by 224 // keeping track of the inline history for each alloca in the 225 // InlinedArrayAllocas but this isn't likely to be a significant win. 226 if (InlineHistory != -1) // Only do merging for top-level call sites in SCC. 227 return; 228 229 // Loop over all the allocas we have so far and see if they can be merged with 230 // a previously inlined alloca. If not, remember that we had it. 231 for (unsigned AllocaNo = 0, E = IFI.StaticAllocas.size(); AllocaNo != E; 232 ++AllocaNo) { 233 AllocaInst *AI = IFI.StaticAllocas[AllocaNo]; 234 235 // Don't bother trying to merge array allocations (they will usually be 236 // canonicalized to be an allocation *of* an array), or allocations whose 237 // type is not itself an array (because we're afraid of pessimizing SRoA). 238 ArrayType *ATy = dyn_cast<ArrayType>(AI->getAllocatedType()); 239 if (!ATy || AI->isArrayAllocation()) 240 continue; 241 242 // Get the list of all available allocas for this array type. 243 std::vector<AllocaInst *> &AllocasForType = InlinedArrayAllocas[ATy]; 244 245 // Loop over the allocas in AllocasForType to see if we can reuse one. Note 246 // that we have to be careful not to reuse the same "available" alloca for 247 // multiple different allocas that we just inlined, we use the 'UsedAllocas' 248 // set to keep track of which "available" allocas are being used by this 249 // function. Also, AllocasForType can be empty of course! 250 bool MergedAwayAlloca = false; 251 for (AllocaInst *AvailableAlloca : AllocasForType) { 252 Align Align1 = AI->getAlign(); 253 Align Align2 = AvailableAlloca->getAlign(); 254 255 // The available alloca has to be in the right function, not in some other 256 // function in this SCC. 257 if (AvailableAlloca->getParent() != AI->getParent()) 258 continue; 259 260 // If the inlined function already uses this alloca then we can't reuse 261 // it. 262 if (!UsedAllocas.insert(AvailableAlloca).second) 263 continue; 264 265 // Otherwise, we *can* reuse it, RAUW AI into AvailableAlloca and declare 266 // success! 267 LLVM_DEBUG(dbgs() << " ***MERGED ALLOCA: " << *AI 268 << "\n\t\tINTO: " << *AvailableAlloca << '\n'); 269 270 // Move affected dbg.declare calls immediately after the new alloca to 271 // avoid the situation when a dbg.declare precedes its alloca. 272 if (auto *L = LocalAsMetadata::getIfExists(AI)) 273 if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L)) 274 for (User *U : MDV->users()) 275 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(U)) 276 DDI->moveBefore(AvailableAlloca->getNextNode()); 277 278 AI->replaceAllUsesWith(AvailableAlloca); 279 280 if (Align1 > Align2) 281 AvailableAlloca->setAlignment(AI->getAlign()); 282 283 AI->eraseFromParent(); 284 MergedAwayAlloca = true; 285 ++NumMergedAllocas; 286 IFI.StaticAllocas[AllocaNo] = nullptr; 287 break; 288 } 289 290 // If we already nuked the alloca, we're done with it. 291 if (MergedAwayAlloca) 292 continue; 293 294 // If we were unable to merge away the alloca either because there are no 295 // allocas of the right type available or because we reused them all 296 // already, remember that this alloca came from an inlined function and mark 297 // it used so we don't reuse it for other allocas from this inline 298 // operation. 299 AllocasForType.push_back(AI); 300 UsedAllocas.insert(AI); 301 } 302 } 303 304 /// If it is possible to inline the specified call site, 305 /// do so and update the CallGraph for this operation. 306 /// 307 /// This function also does some basic book-keeping to update the IR. The 308 /// InlinedArrayAllocas map keeps track of any allocas that are already 309 /// available from other functions inlined into the caller. If we are able to 310 /// inline this call site we attempt to reuse already available allocas or add 311 /// any new allocas to the set if not possible. 312 static InlineResult inlineCallIfPossible( 313 CallBase &CB, InlineFunctionInfo &IFI, 314 InlinedArrayAllocasTy &InlinedArrayAllocas, int InlineHistory, 315 bool InsertLifetime, function_ref<AAResults &(Function &)> &AARGetter, 316 ImportedFunctionsInliningStatistics &ImportedFunctionsStats) { 317 Function *Callee = CB.getCalledFunction(); 318 Function *Caller = CB.getCaller(); 319 320 AAResults &AAR = AARGetter(*Callee); 321 322 // Try to inline the function. Get the list of static allocas that were 323 // inlined. 324 InlineResult IR = InlineFunction(CB, IFI, &AAR, InsertLifetime); 325 if (!IR.isSuccess()) 326 return IR; 327 328 if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No) 329 ImportedFunctionsStats.recordInline(*Caller, *Callee); 330 331 AttributeFuncs::mergeAttributesForInlining(*Caller, *Callee); 332 333 if (!DisableInlinedAllocaMerging) 334 mergeInlinedArrayAllocas(Caller, IFI, InlinedArrayAllocas, InlineHistory); 335 336 return IR; // success 337 } 338 339 /// Return true if the specified inline history ID 340 /// indicates an inline history that includes the specified function. 341 static bool inlineHistoryIncludes( 342 Function *F, int InlineHistoryID, 343 const SmallVectorImpl<std::pair<Function *, int>> &InlineHistory) { 344 while (InlineHistoryID != -1) { 345 assert(unsigned(InlineHistoryID) < InlineHistory.size() && 346 "Invalid inline history ID"); 347 if (InlineHistory[InlineHistoryID].first == F) 348 return true; 349 InlineHistoryID = InlineHistory[InlineHistoryID].second; 350 } 351 return false; 352 } 353 354 bool LegacyInlinerBase::doInitialization(CallGraph &CG) { 355 if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No) 356 ImportedFunctionsStats.setModuleInfo(CG.getModule()); 357 return false; // No changes to CallGraph. 358 } 359 360 bool LegacyInlinerBase::runOnSCC(CallGraphSCC &SCC) { 361 if (skipSCC(SCC)) 362 return false; 363 return inlineCalls(SCC); 364 } 365 366 static bool 367 inlineCallsImpl(CallGraphSCC &SCC, CallGraph &CG, 368 std::function<AssumptionCache &(Function &)> GetAssumptionCache, 369 ProfileSummaryInfo *PSI, 370 std::function<const TargetLibraryInfo &(Function &)> GetTLI, 371 bool InsertLifetime, 372 function_ref<InlineCost(CallBase &CB)> GetInlineCost, 373 function_ref<AAResults &(Function &)> AARGetter, 374 ImportedFunctionsInliningStatistics &ImportedFunctionsStats) { 375 SmallPtrSet<Function *, 8> SCCFunctions; 376 LLVM_DEBUG(dbgs() << "Inliner visiting SCC:"); 377 for (CallGraphNode *Node : SCC) { 378 Function *F = Node->getFunction(); 379 if (F) 380 SCCFunctions.insert(F); 381 LLVM_DEBUG(dbgs() << " " << (F ? F->getName() : "INDIRECTNODE")); 382 } 383 384 // Scan through and identify all call sites ahead of time so that we only 385 // inline call sites in the original functions, not call sites that result 386 // from inlining other functions. 387 SmallVector<std::pair<CallBase *, int>, 16> CallSites; 388 389 // When inlining a callee produces new call sites, we want to keep track of 390 // the fact that they were inlined from the callee. This allows us to avoid 391 // infinite inlining in some obscure cases. To represent this, we use an 392 // index into the InlineHistory vector. 393 SmallVector<std::pair<Function *, int>, 8> InlineHistory; 394 395 for (CallGraphNode *Node : SCC) { 396 Function *F = Node->getFunction(); 397 if (!F || F->isDeclaration()) 398 continue; 399 400 OptimizationRemarkEmitter ORE(F); 401 for (BasicBlock &BB : *F) 402 for (Instruction &I : BB) { 403 auto *CB = dyn_cast<CallBase>(&I); 404 // If this isn't a call, or it is a call to an intrinsic, it can 405 // never be inlined. 406 if (!CB || isa<IntrinsicInst>(I)) 407 continue; 408 409 // If this is a direct call to an external function, we can never inline 410 // it. If it is an indirect call, inlining may resolve it to be a 411 // direct call, so we keep it. 412 if (Function *Callee = CB->getCalledFunction()) 413 if (Callee->isDeclaration()) { 414 using namespace ore; 415 416 setInlineRemark(*CB, "unavailable definition"); 417 ORE.emit([&]() { 418 return OptimizationRemarkMissed(DEBUG_TYPE, "NoDefinition", &I) 419 << NV("Callee", Callee) << " will not be inlined into " 420 << NV("Caller", CB->getCaller()) 421 << " because its definition is unavailable" 422 << setIsVerbose(); 423 }); 424 continue; 425 } 426 427 CallSites.push_back(std::make_pair(CB, -1)); 428 } 429 } 430 431 LLVM_DEBUG(dbgs() << ": " << CallSites.size() << " call sites.\n"); 432 433 // If there are no calls in this function, exit early. 434 if (CallSites.empty()) 435 return false; 436 437 // Now that we have all of the call sites, move the ones to functions in the 438 // current SCC to the end of the list. 439 unsigned FirstCallInSCC = CallSites.size(); 440 for (unsigned I = 0; I < FirstCallInSCC; ++I) 441 if (Function *F = CallSites[I].first->getCalledFunction()) 442 if (SCCFunctions.count(F)) 443 std::swap(CallSites[I--], CallSites[--FirstCallInSCC]); 444 445 InlinedArrayAllocasTy InlinedArrayAllocas; 446 InlineFunctionInfo InlineInfo(&CG, GetAssumptionCache, PSI); 447 448 // Now that we have all of the call sites, loop over them and inline them if 449 // it looks profitable to do so. 450 bool Changed = false; 451 bool LocalChange; 452 do { 453 LocalChange = false; 454 // Iterate over the outer loop because inlining functions can cause indirect 455 // calls to become direct calls. 456 // CallSites may be modified inside so ranged for loop can not be used. 457 for (unsigned CSi = 0; CSi != CallSites.size(); ++CSi) { 458 auto &P = CallSites[CSi]; 459 CallBase &CB = *P.first; 460 const int InlineHistoryID = P.second; 461 462 Function *Caller = CB.getCaller(); 463 Function *Callee = CB.getCalledFunction(); 464 465 // We can only inline direct calls to non-declarations. 466 if (!Callee || Callee->isDeclaration()) 467 continue; 468 469 bool IsTriviallyDead = isInstructionTriviallyDead(&CB, &GetTLI(*Caller)); 470 471 if (!IsTriviallyDead) { 472 // If this call site was obtained by inlining another function, verify 473 // that the include path for the function did not include the callee 474 // itself. If so, we'd be recursively inlining the same function, 475 // which would provide the same callsites, which would cause us to 476 // infinitely inline. 477 if (InlineHistoryID != -1 && 478 inlineHistoryIncludes(Callee, InlineHistoryID, InlineHistory)) { 479 setInlineRemark(CB, "recursive"); 480 continue; 481 } 482 } 483 484 // FIXME for new PM: because of the old PM we currently generate ORE and 485 // in turn BFI on demand. With the new PM, the ORE dependency should 486 // just become a regular analysis dependency. 487 OptimizationRemarkEmitter ORE(Caller); 488 489 auto OIC = shouldInline(CB, GetInlineCost, ORE); 490 // If the policy determines that we should inline this function, 491 // delete the call instead. 492 if (!OIC) 493 continue; 494 495 // If this call site is dead and it is to a readonly function, we should 496 // just delete the call instead of trying to inline it, regardless of 497 // size. This happens because IPSCCP propagates the result out of the 498 // call and then we're left with the dead call. 499 if (IsTriviallyDead) { 500 LLVM_DEBUG(dbgs() << " -> Deleting dead call: " << CB << "\n"); 501 // Update the call graph by deleting the edge from Callee to Caller. 502 setInlineRemark(CB, "trivially dead"); 503 CG[Caller]->removeCallEdgeFor(CB); 504 CB.eraseFromParent(); 505 ++NumCallsDeleted; 506 } else { 507 // Get DebugLoc to report. CB will be invalid after Inliner. 508 DebugLoc DLoc = CB.getDebugLoc(); 509 BasicBlock *Block = CB.getParent(); 510 511 // Attempt to inline the function. 512 using namespace ore; 513 514 InlineResult IR = inlineCallIfPossible( 515 CB, InlineInfo, InlinedArrayAllocas, InlineHistoryID, 516 InsertLifetime, AARGetter, ImportedFunctionsStats); 517 if (!IR.isSuccess()) { 518 setInlineRemark(CB, std::string(IR.getFailureReason()) + "; " + 519 inlineCostStr(*OIC)); 520 ORE.emit([&]() { 521 return OptimizationRemarkMissed(DEBUG_TYPE, "NotInlined", DLoc, 522 Block) 523 << NV("Callee", Callee) << " will not be inlined into " 524 << NV("Caller", Caller) << ": " 525 << NV("Reason", IR.getFailureReason()); 526 }); 527 continue; 528 } 529 ++NumInlined; 530 531 emitInlinedIntoBasedOnCost(ORE, DLoc, Block, *Callee, *Caller, *OIC); 532 533 // If inlining this function gave us any new call sites, throw them 534 // onto our worklist to process. They are useful inline candidates. 535 if (!InlineInfo.InlinedCalls.empty()) { 536 // Create a new inline history entry for this, so that we remember 537 // that these new callsites came about due to inlining Callee. 538 int NewHistoryID = InlineHistory.size(); 539 InlineHistory.push_back(std::make_pair(Callee, InlineHistoryID)); 540 541 #ifndef NDEBUG 542 // Make sure no dupplicates in the inline candidates. This could 543 // happen when a callsite is simpilfied to reusing the return value 544 // of another callsite during function cloning, thus the other 545 // callsite will be reconsidered here. 546 DenseSet<CallBase *> DbgCallSites; 547 for (auto &II : CallSites) 548 DbgCallSites.insert(II.first); 549 #endif 550 551 for (Value *Ptr : InlineInfo.InlinedCalls) { 552 #ifndef NDEBUG 553 assert(DbgCallSites.count(dyn_cast<CallBase>(Ptr)) == 0); 554 #endif 555 CallSites.push_back( 556 std::make_pair(dyn_cast<CallBase>(Ptr), NewHistoryID)); 557 } 558 } 559 } 560 561 // If we inlined or deleted the last possible call site to the function, 562 // delete the function body now. 563 if (Callee && Callee->use_empty() && Callee->hasLocalLinkage() && 564 // TODO: Can remove if in SCC now. 565 !SCCFunctions.count(Callee) && 566 // The function may be apparently dead, but if there are indirect 567 // callgraph references to the node, we cannot delete it yet, this 568 // could invalidate the CGSCC iterator. 569 CG[Callee]->getNumReferences() == 0) { 570 LLVM_DEBUG(dbgs() << " -> Deleting dead function: " 571 << Callee->getName() << "\n"); 572 CallGraphNode *CalleeNode = CG[Callee]; 573 574 // Remove any call graph edges from the callee to its callees. 575 CalleeNode->removeAllCalledFunctions(); 576 577 // Removing the node for callee from the call graph and delete it. 578 delete CG.removeFunctionFromModule(CalleeNode); 579 ++NumDeleted; 580 } 581 582 // Remove this call site from the list. If possible, use 583 // swap/pop_back for efficiency, but do not use it if doing so would 584 // move a call site to a function in this SCC before the 585 // 'FirstCallInSCC' barrier. 586 if (SCC.isSingular()) { 587 CallSites[CSi] = CallSites.back(); 588 CallSites.pop_back(); 589 } else { 590 CallSites.erase(CallSites.begin() + CSi); 591 } 592 --CSi; 593 594 Changed = true; 595 LocalChange = true; 596 } 597 } while (LocalChange); 598 599 return Changed; 600 } 601 602 bool LegacyInlinerBase::inlineCalls(CallGraphSCC &SCC) { 603 CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph(); 604 ACT = &getAnalysis<AssumptionCacheTracker>(); 605 PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 606 GetTLI = [&](Function &F) -> const TargetLibraryInfo & { 607 return getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 608 }; 609 auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & { 610 return ACT->getAssumptionCache(F); 611 }; 612 return inlineCallsImpl( 613 SCC, CG, GetAssumptionCache, PSI, GetTLI, InsertLifetime, 614 [&](CallBase &CB) { return getInlineCost(CB); }, LegacyAARGetter(*this), 615 ImportedFunctionsStats); 616 } 617 618 /// Remove now-dead linkonce functions at the end of 619 /// processing to avoid breaking the SCC traversal. 620 bool LegacyInlinerBase::doFinalization(CallGraph &CG) { 621 if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No) 622 ImportedFunctionsStats.dump(InlinerFunctionImportStats == 623 InlinerFunctionImportStatsOpts::Verbose); 624 return removeDeadFunctions(CG); 625 } 626 627 /// Remove dead functions that are not included in DNR (Do Not Remove) list. 628 bool LegacyInlinerBase::removeDeadFunctions(CallGraph &CG, 629 bool AlwaysInlineOnly) { 630 SmallVector<CallGraphNode *, 16> FunctionsToRemove; 631 SmallVector<Function *, 16> DeadFunctionsInComdats; 632 633 auto RemoveCGN = [&](CallGraphNode *CGN) { 634 // Remove any call graph edges from the function to its callees. 635 CGN->removeAllCalledFunctions(); 636 637 // Remove any edges from the external node to the function's call graph 638 // node. These edges might have been made irrelegant due to 639 // optimization of the program. 640 CG.getExternalCallingNode()->removeAnyCallEdgeTo(CGN); 641 642 // Removing the node for callee from the call graph and delete it. 643 FunctionsToRemove.push_back(CGN); 644 }; 645 646 // Scan for all of the functions, looking for ones that should now be removed 647 // from the program. Insert the dead ones in the FunctionsToRemove set. 648 for (const auto &I : CG) { 649 CallGraphNode *CGN = I.second.get(); 650 Function *F = CGN->getFunction(); 651 if (!F || F->isDeclaration()) 652 continue; 653 654 // Handle the case when this function is called and we only want to care 655 // about always-inline functions. This is a bit of a hack to share code 656 // between here and the InlineAlways pass. 657 if (AlwaysInlineOnly && !F->hasFnAttribute(Attribute::AlwaysInline)) 658 continue; 659 660 // If the only remaining users of the function are dead constants, remove 661 // them. 662 F->removeDeadConstantUsers(); 663 664 if (!F->isDefTriviallyDead()) 665 continue; 666 667 // It is unsafe to drop a function with discardable linkage from a COMDAT 668 // without also dropping the other members of the COMDAT. 669 // The inliner doesn't visit non-function entities which are in COMDAT 670 // groups so it is unsafe to do so *unless* the linkage is local. 671 if (!F->hasLocalLinkage()) { 672 if (F->hasComdat()) { 673 DeadFunctionsInComdats.push_back(F); 674 continue; 675 } 676 } 677 678 RemoveCGN(CGN); 679 } 680 if (!DeadFunctionsInComdats.empty()) { 681 // Filter out the functions whose comdats remain alive. 682 filterDeadComdatFunctions(DeadFunctionsInComdats); 683 // Remove the rest. 684 for (Function *F : DeadFunctionsInComdats) 685 RemoveCGN(CG[F]); 686 } 687 688 if (FunctionsToRemove.empty()) 689 return false; 690 691 // Now that we know which functions to delete, do so. We didn't want to do 692 // this inline, because that would invalidate our CallGraph::iterator 693 // objects. :( 694 // 695 // Note that it doesn't matter that we are iterating over a non-stable order 696 // here to do this, it doesn't matter which order the functions are deleted 697 // in. 698 array_pod_sort(FunctionsToRemove.begin(), FunctionsToRemove.end()); 699 FunctionsToRemove.erase( 700 std::unique(FunctionsToRemove.begin(), FunctionsToRemove.end()), 701 FunctionsToRemove.end()); 702 for (CallGraphNode *CGN : FunctionsToRemove) { 703 delete CG.removeFunctionFromModule(CGN); 704 ++NumDeleted; 705 } 706 return true; 707 } 708 709 InlineAdvisor & 710 InlinerPass::getAdvisor(const ModuleAnalysisManagerCGSCCProxy::Result &MAM, 711 FunctionAnalysisManager &FAM, Module &M) { 712 if (OwnedAdvisor) 713 return *OwnedAdvisor; 714 715 auto *IAA = MAM.getCachedResult<InlineAdvisorAnalysis>(M); 716 if (!IAA) { 717 // It should still be possible to run the inliner as a stand-alone SCC pass, 718 // for test scenarios. In that case, we default to the 719 // DefaultInlineAdvisor, which doesn't need to keep state between SCC pass 720 // runs. It also uses just the default InlineParams. 721 // In this case, we need to use the provided FAM, which is valid for the 722 // duration of the inliner pass, and thus the lifetime of the owned advisor. 723 // The one we would get from the MAM can be invalidated as a result of the 724 // inliner's activity. 725 OwnedAdvisor = 726 std::make_unique<DefaultInlineAdvisor>(M, FAM, getInlineParams()); 727 728 if (!CGSCCInlineReplayFile.empty()) 729 OwnedAdvisor = getReplayInlineAdvisor( 730 M, FAM, M.getContext(), std::move(OwnedAdvisor), 731 ReplayInlinerSettings{CGSCCInlineReplayFile, 732 CGSCCInlineReplayScope, 733 CGSCCInlineReplayFallback, 734 {CGSCCInlineReplayFormat}}, 735 /*EmitRemarks=*/true); 736 737 return *OwnedAdvisor; 738 } 739 assert(IAA->getAdvisor() && 740 "Expected a present InlineAdvisorAnalysis also have an " 741 "InlineAdvisor initialized"); 742 return *IAA->getAdvisor(); 743 } 744 745 PreservedAnalyses InlinerPass::run(LazyCallGraph::SCC &InitialC, 746 CGSCCAnalysisManager &AM, LazyCallGraph &CG, 747 CGSCCUpdateResult &UR) { 748 const auto &MAMProxy = 749 AM.getResult<ModuleAnalysisManagerCGSCCProxy>(InitialC, CG); 750 bool Changed = false; 751 752 assert(InitialC.size() > 0 && "Cannot handle an empty SCC!"); 753 Module &M = *InitialC.begin()->getFunction().getParent(); 754 ProfileSummaryInfo *PSI = MAMProxy.getCachedResult<ProfileSummaryAnalysis>(M); 755 756 FunctionAnalysisManager &FAM = 757 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(InitialC, CG) 758 .getManager(); 759 760 InlineAdvisor &Advisor = getAdvisor(MAMProxy, FAM, M); 761 Advisor.onPassEntry(); 762 763 auto AdvisorOnExit = make_scope_exit([&] { Advisor.onPassExit(&InitialC); }); 764 765 // We use a single common worklist for calls across the entire SCC. We 766 // process these in-order and append new calls introduced during inlining to 767 // the end. The PriorityInlineOrder is optional here, in which the smaller 768 // callee would have a higher priority to inline. 769 // 770 // Note that this particular order of processing is actually critical to 771 // avoid very bad behaviors. Consider *highly connected* call graphs where 772 // each function contains a small amount of code and a couple of calls to 773 // other functions. Because the LLVM inliner is fundamentally a bottom-up 774 // inliner, it can handle gracefully the fact that these all appear to be 775 // reasonable inlining candidates as it will flatten things until they become 776 // too big to inline, and then move on and flatten another batch. 777 // 778 // However, when processing call edges *within* an SCC we cannot rely on this 779 // bottom-up behavior. As a consequence, with heavily connected *SCCs* of 780 // functions we can end up incrementally inlining N calls into each of 781 // N functions because each incremental inlining decision looks good and we 782 // don't have a topological ordering to prevent explosions. 783 // 784 // To compensate for this, we don't process transitive edges made immediate 785 // by inlining until we've done one pass of inlining across the entire SCC. 786 // Large, highly connected SCCs still lead to some amount of code bloat in 787 // this model, but it is uniformly spread across all the functions in the SCC 788 // and eventually they all become too large to inline, rather than 789 // incrementally maknig a single function grow in a super linear fashion. 790 std::unique_ptr<InlineOrder<std::pair<CallBase *, int>>> Calls; 791 if (InlineEnablePriorityOrder) 792 Calls = std::make_unique<PriorityInlineOrder<InlineSizePriority>>(); 793 else 794 Calls = std::make_unique<DefaultInlineOrder<std::pair<CallBase *, int>>>(); 795 assert(Calls != nullptr && "Expected an initialized InlineOrder"); 796 797 // Populate the initial list of calls in this SCC. 798 for (auto &N : InitialC) { 799 auto &ORE = 800 FAM.getResult<OptimizationRemarkEmitterAnalysis>(N.getFunction()); 801 // We want to generally process call sites top-down in order for 802 // simplifications stemming from replacing the call with the returned value 803 // after inlining to be visible to subsequent inlining decisions. 804 // FIXME: Using instructions sequence is a really bad way to do this. 805 // Instead we should do an actual RPO walk of the function body. 806 for (Instruction &I : instructions(N.getFunction())) 807 if (auto *CB = dyn_cast<CallBase>(&I)) 808 if (Function *Callee = CB->getCalledFunction()) { 809 if (!Callee->isDeclaration()) 810 Calls->push({CB, -1}); 811 else if (!isa<IntrinsicInst>(I)) { 812 using namespace ore; 813 setInlineRemark(*CB, "unavailable definition"); 814 ORE.emit([&]() { 815 return OptimizationRemarkMissed(DEBUG_TYPE, "NoDefinition", &I) 816 << NV("Callee", Callee) << " will not be inlined into " 817 << NV("Caller", CB->getCaller()) 818 << " because its definition is unavailable" 819 << setIsVerbose(); 820 }); 821 } 822 } 823 } 824 if (Calls->empty()) 825 return PreservedAnalyses::all(); 826 827 // Capture updatable variable for the current SCC. 828 auto *C = &InitialC; 829 830 // When inlining a callee produces new call sites, we want to keep track of 831 // the fact that they were inlined from the callee. This allows us to avoid 832 // infinite inlining in some obscure cases. To represent this, we use an 833 // index into the InlineHistory vector. 834 SmallVector<std::pair<Function *, int>, 16> InlineHistory; 835 836 // Track a set vector of inlined callees so that we can augment the caller 837 // with all of their edges in the call graph before pruning out the ones that 838 // got simplified away. 839 SmallSetVector<Function *, 4> InlinedCallees; 840 841 // Track the dead functions to delete once finished with inlining calls. We 842 // defer deleting these to make it easier to handle the call graph updates. 843 SmallVector<Function *, 4> DeadFunctions; 844 845 // Track potentially dead non-local functions with comdats to see if they can 846 // be deleted as a batch after inlining. 847 SmallVector<Function *, 4> DeadFunctionsInComdats; 848 849 // Loop forward over all of the calls. 850 while (!Calls->empty()) { 851 // We expect the calls to typically be batched with sequences of calls that 852 // have the same caller, so we first set up some shared infrastructure for 853 // this caller. We also do any pruning we can at this layer on the caller 854 // alone. 855 Function &F = *Calls->front().first->getCaller(); 856 LazyCallGraph::Node &N = *CG.lookup(F); 857 if (CG.lookupSCC(N) != C) { 858 Calls->pop(); 859 continue; 860 } 861 862 LLVM_DEBUG(dbgs() << "Inlining calls in: " << F.getName() << "\n" 863 << " Function size: " << F.getInstructionCount() 864 << "\n"); 865 866 auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & { 867 return FAM.getResult<AssumptionAnalysis>(F); 868 }; 869 870 // Now process as many calls as we have within this caller in the sequence. 871 // We bail out as soon as the caller has to change so we can update the 872 // call graph and prepare the context of that new caller. 873 bool DidInline = false; 874 while (!Calls->empty() && Calls->front().first->getCaller() == &F) { 875 auto P = Calls->pop(); 876 CallBase *CB = P.first; 877 const int InlineHistoryID = P.second; 878 Function &Callee = *CB->getCalledFunction(); 879 880 if (InlineHistoryID != -1 && 881 inlineHistoryIncludes(&Callee, InlineHistoryID, InlineHistory)) { 882 LLVM_DEBUG(dbgs() << "Skipping inlining due to history: " 883 << F.getName() << " -> " << Callee.getName() << "\n"); 884 setInlineRemark(*CB, "recursive"); 885 continue; 886 } 887 888 // Check if this inlining may repeat breaking an SCC apart that has 889 // already been split once before. In that case, inlining here may 890 // trigger infinite inlining, much like is prevented within the inliner 891 // itself by the InlineHistory above, but spread across CGSCC iterations 892 // and thus hidden from the full inline history. 893 LazyCallGraph::SCC *CalleeSCC = CG.lookupSCC(*CG.lookup(Callee)); 894 if (CalleeSCC == C && UR.InlinedInternalEdges.count({&N, C})) { 895 LLVM_DEBUG(dbgs() << "Skipping inlining internal SCC edge from a node " 896 "previously split out of this SCC by inlining: " 897 << F.getName() << " -> " << Callee.getName() << "\n"); 898 setInlineRemark(*CB, "recursive SCC split"); 899 continue; 900 } 901 902 std::unique_ptr<InlineAdvice> Advice = 903 Advisor.getAdvice(*CB, OnlyMandatory); 904 905 // Check whether we want to inline this callsite. 906 if (!Advice) 907 continue; 908 909 if (!Advice->isInliningRecommended()) { 910 Advice->recordUnattemptedInlining(); 911 continue; 912 } 913 914 int CBCostMult = 915 getStringFnAttrAsInt( 916 *CB, InlineConstants::FunctionInlineCostMultiplierAttributeName) 917 .getValueOr(1); 918 919 // Setup the data structure used to plumb customization into the 920 // `InlineFunction` routine. 921 InlineFunctionInfo IFI( 922 /*cg=*/nullptr, GetAssumptionCache, PSI, 923 &FAM.getResult<BlockFrequencyAnalysis>(*(CB->getCaller())), 924 &FAM.getResult<BlockFrequencyAnalysis>(Callee)); 925 926 InlineResult IR = 927 InlineFunction(*CB, IFI, &FAM.getResult<AAManager>(*CB->getCaller())); 928 if (!IR.isSuccess()) { 929 Advice->recordUnsuccessfulInlining(IR); 930 continue; 931 } 932 933 DidInline = true; 934 InlinedCallees.insert(&Callee); 935 ++NumInlined; 936 937 LLVM_DEBUG(dbgs() << " Size after inlining: " 938 << F.getInstructionCount() << "\n"); 939 940 // Add any new callsites to defined functions to the worklist. 941 if (!IFI.InlinedCallSites.empty()) { 942 int NewHistoryID = InlineHistory.size(); 943 InlineHistory.push_back({&Callee, InlineHistoryID}); 944 945 for (CallBase *ICB : reverse(IFI.InlinedCallSites)) { 946 Function *NewCallee = ICB->getCalledFunction(); 947 assert(!(NewCallee && NewCallee->isIntrinsic()) && 948 "Intrinsic calls should not be tracked."); 949 if (!NewCallee) { 950 // Try to promote an indirect (virtual) call without waiting for 951 // the post-inline cleanup and the next DevirtSCCRepeatedPass 952 // iteration because the next iteration may not happen and we may 953 // miss inlining it. 954 if (tryPromoteCall(*ICB)) 955 NewCallee = ICB->getCalledFunction(); 956 } 957 if (NewCallee) { 958 if (!NewCallee->isDeclaration()) { 959 Calls->push({ICB, NewHistoryID}); 960 // Continually inlining through an SCC can result in huge compile 961 // times and bloated code since we arbitrarily stop at some point 962 // when the inliner decides it's not profitable to inline anymore. 963 // We attempt to mitigate this by making these calls exponentially 964 // more expensive. 965 // This doesn't apply to calls in the same SCC since if we do 966 // inline through the SCC the function will end up being 967 // self-recursive which the inliner bails out on, and inlining 968 // within an SCC is necessary for performance. 969 if (CalleeSCC != C && 970 CalleeSCC == CG.lookupSCC(CG.get(*NewCallee))) { 971 Attribute NewCBCostMult = Attribute::get( 972 M.getContext(), 973 InlineConstants::FunctionInlineCostMultiplierAttributeName, 974 itostr(CBCostMult * IntraSCCCostMultiplier)); 975 ICB->addFnAttr(NewCBCostMult); 976 } 977 } 978 } 979 } 980 } 981 982 // Merge the attributes based on the inlining. 983 AttributeFuncs::mergeAttributesForInlining(F, Callee); 984 985 // For local functions or discardable functions without comdats, check 986 // whether this makes the callee trivially dead. In that case, we can drop 987 // the body of the function eagerly which may reduce the number of callers 988 // of other functions to one, changing inline cost thresholds. Non-local 989 // discardable functions with comdats are checked later on. 990 bool CalleeWasDeleted = false; 991 if (Callee.isDiscardableIfUnused() && Callee.hasZeroLiveUses() && 992 !CG.isLibFunction(Callee)) { 993 if (Callee.hasLocalLinkage() || !Callee.hasComdat()) { 994 Calls->erase_if([&](const std::pair<CallBase *, int> &Call) { 995 return Call.first->getCaller() == &Callee; 996 }); 997 // Clear the body and queue the function itself for deletion when we 998 // finish inlining and call graph updates. 999 // Note that after this point, it is an error to do anything other 1000 // than use the callee's address or delete it. 1001 Callee.dropAllReferences(); 1002 assert(!is_contained(DeadFunctions, &Callee) && 1003 "Cannot put cause a function to become dead twice!"); 1004 DeadFunctions.push_back(&Callee); 1005 CalleeWasDeleted = true; 1006 } else { 1007 DeadFunctionsInComdats.push_back(&Callee); 1008 } 1009 } 1010 if (CalleeWasDeleted) 1011 Advice->recordInliningWithCalleeDeleted(); 1012 else 1013 Advice->recordInlining(); 1014 } 1015 1016 if (!DidInline) 1017 continue; 1018 Changed = true; 1019 1020 // At this point, since we have made changes we have at least removed 1021 // a call instruction. However, in the process we do some incremental 1022 // simplification of the surrounding code. This simplification can 1023 // essentially do all of the same things as a function pass and we can 1024 // re-use the exact same logic for updating the call graph to reflect the 1025 // change. 1026 1027 // Inside the update, we also update the FunctionAnalysisManager in the 1028 // proxy for this particular SCC. We do this as the SCC may have changed and 1029 // as we're going to mutate this particular function we want to make sure 1030 // the proxy is in place to forward any invalidation events. 1031 LazyCallGraph::SCC *OldC = C; 1032 C = &updateCGAndAnalysisManagerForCGSCCPass(CG, *C, N, AM, UR, FAM); 1033 LLVM_DEBUG(dbgs() << "Updated inlining SCC: " << *C << "\n"); 1034 1035 // If this causes an SCC to split apart into multiple smaller SCCs, there 1036 // is a subtle risk we need to prepare for. Other transformations may 1037 // expose an "infinite inlining" opportunity later, and because of the SCC 1038 // mutation, we will revisit this function and potentially re-inline. If we 1039 // do, and that re-inlining also has the potentially to mutate the SCC 1040 // structure, the infinite inlining problem can manifest through infinite 1041 // SCC splits and merges. To avoid this, we capture the originating caller 1042 // node and the SCC containing the call edge. This is a slight over 1043 // approximation of the possible inlining decisions that must be avoided, 1044 // but is relatively efficient to store. We use C != OldC to know when 1045 // a new SCC is generated and the original SCC may be generated via merge 1046 // in later iterations. 1047 // 1048 // It is also possible that even if no new SCC is generated 1049 // (i.e., C == OldC), the original SCC could be split and then merged 1050 // into the same one as itself. and the original SCC will be added into 1051 // UR.CWorklist again, we want to catch such cases too. 1052 // 1053 // FIXME: This seems like a very heavyweight way of retaining the inline 1054 // history, we should look for a more efficient way of tracking it. 1055 if ((C != OldC || UR.CWorklist.count(OldC)) && 1056 llvm::any_of(InlinedCallees, [&](Function *Callee) { 1057 return CG.lookupSCC(*CG.lookup(*Callee)) == OldC; 1058 })) { 1059 LLVM_DEBUG(dbgs() << "Inlined an internal call edge and split an SCC, " 1060 "retaining this to avoid infinite inlining.\n"); 1061 UR.InlinedInternalEdges.insert({&N, OldC}); 1062 } 1063 InlinedCallees.clear(); 1064 1065 // Invalidate analyses for this function now so that we don't have to 1066 // invalidate analyses for all functions in this SCC later. 1067 FAM.invalidate(F, PreservedAnalyses::none()); 1068 } 1069 1070 // We must ensure that we only delete functions with comdats if every function 1071 // in the comdat is going to be deleted. 1072 if (!DeadFunctionsInComdats.empty()) { 1073 filterDeadComdatFunctions(DeadFunctionsInComdats); 1074 for (auto *Callee : DeadFunctionsInComdats) 1075 Callee->dropAllReferences(); 1076 DeadFunctions.append(DeadFunctionsInComdats); 1077 } 1078 1079 // Now that we've finished inlining all of the calls across this SCC, delete 1080 // all of the trivially dead functions, updating the call graph and the CGSCC 1081 // pass manager in the process. 1082 // 1083 // Note that this walks a pointer set which has non-deterministic order but 1084 // that is OK as all we do is delete things and add pointers to unordered 1085 // sets. 1086 for (Function *DeadF : DeadFunctions) { 1087 // Get the necessary information out of the call graph and nuke the 1088 // function there. Also, clear out any cached analyses. 1089 auto &DeadC = *CG.lookupSCC(*CG.lookup(*DeadF)); 1090 FAM.clear(*DeadF, DeadF->getName()); 1091 AM.clear(DeadC, DeadC.getName()); 1092 auto &DeadRC = DeadC.getOuterRefSCC(); 1093 CG.removeDeadFunction(*DeadF); 1094 1095 // Mark the relevant parts of the call graph as invalid so we don't visit 1096 // them. 1097 UR.InvalidatedSCCs.insert(&DeadC); 1098 UR.InvalidatedRefSCCs.insert(&DeadRC); 1099 1100 // If the updated SCC was the one containing the deleted function, clear it. 1101 if (&DeadC == UR.UpdatedC) 1102 UR.UpdatedC = nullptr; 1103 1104 // And delete the actual function from the module. 1105 M.getFunctionList().erase(DeadF); 1106 1107 ++NumDeleted; 1108 } 1109 1110 if (!Changed) 1111 return PreservedAnalyses::all(); 1112 1113 PreservedAnalyses PA; 1114 // Even if we change the IR, we update the core CGSCC data structures and so 1115 // can preserve the proxy to the function analysis manager. 1116 PA.preserve<FunctionAnalysisManagerCGSCCProxy>(); 1117 // We have already invalidated all analyses on modified functions. 1118 PA.preserveSet<AllAnalysesOn<Function>>(); 1119 return PA; 1120 } 1121 1122 ModuleInlinerWrapperPass::ModuleInlinerWrapperPass(InlineParams Params, 1123 bool MandatoryFirst, 1124 InliningAdvisorMode Mode, 1125 unsigned MaxDevirtIterations) 1126 : Params(Params), Mode(Mode), MaxDevirtIterations(MaxDevirtIterations) { 1127 // Run the inliner first. The theory is that we are walking bottom-up and so 1128 // the callees have already been fully optimized, and we want to inline them 1129 // into the callers so that our optimizations can reflect that. 1130 // For PreLinkThinLTO pass, we disable hot-caller heuristic for sample PGO 1131 // because it makes profile annotation in the backend inaccurate. 1132 if (MandatoryFirst) 1133 PM.addPass(InlinerPass(/*OnlyMandatory*/ true)); 1134 PM.addPass(InlinerPass()); 1135 } 1136 1137 PreservedAnalyses ModuleInlinerWrapperPass::run(Module &M, 1138 ModuleAnalysisManager &MAM) { 1139 auto &IAA = MAM.getResult<InlineAdvisorAnalysis>(M); 1140 if (!IAA.tryCreate(Params, Mode, 1141 {CGSCCInlineReplayFile, 1142 CGSCCInlineReplayScope, 1143 CGSCCInlineReplayFallback, 1144 {CGSCCInlineReplayFormat}})) { 1145 M.getContext().emitError( 1146 "Could not setup Inlining Advisor for the requested " 1147 "mode and/or options"); 1148 return PreservedAnalyses::all(); 1149 } 1150 1151 // We wrap the CGSCC pipeline in a devirtualization repeater. This will try 1152 // to detect when we devirtualize indirect calls and iterate the SCC passes 1153 // in that case to try and catch knock-on inlining or function attrs 1154 // opportunities. Then we add it to the module pipeline by walking the SCCs 1155 // in postorder (or bottom-up). 1156 // If MaxDevirtIterations is 0, we just don't use the devirtualization 1157 // wrapper. 1158 if (MaxDevirtIterations == 0) 1159 MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(PM))); 1160 else 1161 MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor( 1162 createDevirtSCCRepeatedPass(std::move(PM), MaxDevirtIterations))); 1163 1164 MPM.addPass(std::move(AfterCGMPM)); 1165 MPM.run(M, MAM); 1166 1167 // Discard the InlineAdvisor, a subsequent inlining session should construct 1168 // its own. 1169 auto PA = PreservedAnalyses::all(); 1170 if (!KeepAdvisorForPrinting) 1171 PA.abandon<InlineAdvisorAnalysis>(); 1172 return PA; 1173 } 1174 1175 void InlinerPass::printPipeline( 1176 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { 1177 static_cast<PassInfoMixin<InlinerPass> *>(this)->printPipeline( 1178 OS, MapClassName2PassName); 1179 if (OnlyMandatory) 1180 OS << "<only-mandatory>"; 1181 } 1182 1183 void ModuleInlinerWrapperPass::printPipeline( 1184 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { 1185 // Print some info about passes added to the wrapper. This is however 1186 // incomplete as InlineAdvisorAnalysis part isn't included (which also depends 1187 // on Params and Mode). 1188 if (!MPM.isEmpty()) { 1189 MPM.printPipeline(OS, MapClassName2PassName); 1190 OS << ","; 1191 } 1192 OS << "cgscc("; 1193 if (MaxDevirtIterations != 0) 1194 OS << "devirt<" << MaxDevirtIterations << ">("; 1195 PM.printPipeline(OS, MapClassName2PassName); 1196 if (MaxDevirtIterations != 0) 1197 OS << ")"; 1198 OS << ")"; 1199 } 1200