1 //===- Inliner.cpp - Code common to all inliners --------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the mechanics required to implement inlining without 11 // missing any calls and updating the call graph. The decisions of which calls 12 // are profitable to inline are implemented elsewhere. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/ADT/SmallPtrSet.h" 17 #include "llvm/ADT/Statistic.h" 18 #include "llvm/Analysis/AliasAnalysis.h" 19 #include "llvm/Analysis/AssumptionCache.h" 20 #include "llvm/Analysis/BasicAliasAnalysis.h" 21 #include "llvm/Analysis/CallGraph.h" 22 #include "llvm/Analysis/InlineCost.h" 23 #include "llvm/Analysis/TargetLibraryInfo.h" 24 #include "llvm/IR/CallSite.h" 25 #include "llvm/IR/DataLayout.h" 26 #include "llvm/IR/DiagnosticInfo.h" 27 #include "llvm/IR/Instructions.h" 28 #include "llvm/IR/IntrinsicInst.h" 29 #include "llvm/IR/Module.h" 30 #include "llvm/Support/Debug.h" 31 #include "llvm/Support/raw_ostream.h" 32 #include "llvm/Transforms/IPO/InlinerPass.h" 33 #include "llvm/Transforms/Utils/Cloning.h" 34 #include "llvm/Transforms/Utils/Local.h" 35 using namespace llvm; 36 37 #define DEBUG_TYPE "inline" 38 39 STATISTIC(NumInlined, "Number of functions inlined"); 40 STATISTIC(NumCallsDeleted, "Number of call sites deleted, not inlined"); 41 STATISTIC(NumDeleted, "Number of functions deleted because all callers found"); 42 STATISTIC(NumMergedAllocas, "Number of allocas merged together"); 43 44 // This weirdly named statistic tracks the number of times that, when attempting 45 // to inline a function A into B, we analyze the callers of B in order to see 46 // if those would be more profitable and blocked inline steps. 47 STATISTIC(NumCallerCallersAnalyzed, "Number of caller-callers analyzed"); 48 49 Inliner::Inliner(char &ID) : CallGraphSCCPass(ID), InsertLifetime(true) {} 50 51 Inliner::Inliner(char &ID, bool InsertLifetime) 52 : CallGraphSCCPass(ID), InsertLifetime(InsertLifetime) {} 53 54 /// For this class, we declare that we require and preserve the call graph. 55 /// If the derived class implements this method, it should 56 /// always explicitly call the implementation here. 57 void Inliner::getAnalysisUsage(AnalysisUsage &AU) const { 58 AU.addRequired<AssumptionCacheTracker>(); 59 AU.addRequired<TargetLibraryInfoWrapperPass>(); 60 getAAResultsAnalysisUsage(AU); 61 CallGraphSCCPass::getAnalysisUsage(AU); 62 } 63 64 65 typedef DenseMap<ArrayType*, std::vector<AllocaInst*> > 66 InlinedArrayAllocasTy; 67 68 /// If it is possible to inline the specified call site, 69 /// do so and update the CallGraph for this operation. 70 /// 71 /// This function also does some basic book-keeping to update the IR. The 72 /// InlinedArrayAllocas map keeps track of any allocas that are already 73 /// available from other functions inlined into the caller. If we are able to 74 /// inline this call site we attempt to reuse already available allocas or add 75 /// any new allocas to the set if not possible. 76 static bool InlineCallIfPossible(Pass &P, CallSite CS, InlineFunctionInfo &IFI, 77 InlinedArrayAllocasTy &InlinedArrayAllocas, 78 int InlineHistory, bool InsertLifetime) { 79 Function *Callee = CS.getCalledFunction(); 80 Function *Caller = CS.getCaller(); 81 82 // We need to manually construct BasicAA directly in order to disable 83 // its use of other function analyses. 84 BasicAAResult BAR(createLegacyPMBasicAAResult(P, *Callee)); 85 86 // Construct our own AA results for this function. We do this manually to 87 // work around the limitations of the legacy pass manager. 88 AAResults AAR(createLegacyPMAAResults(P, *Callee, BAR)); 89 90 // Try to inline the function. Get the list of static allocas that were 91 // inlined. 92 if (!InlineFunction(CS, IFI, &AAR, InsertLifetime)) 93 return false; 94 95 AttributeFuncs::mergeAttributesForInlining(*Caller, *Callee); 96 97 // Look at all of the allocas that we inlined through this call site. If we 98 // have already inlined other allocas through other calls into this function, 99 // then we know that they have disjoint lifetimes and that we can merge them. 100 // 101 // There are many heuristics possible for merging these allocas, and the 102 // different options have different tradeoffs. One thing that we *really* 103 // don't want to hurt is SRoA: once inlining happens, often allocas are no 104 // longer address taken and so they can be promoted. 105 // 106 // Our "solution" for that is to only merge allocas whose outermost type is an 107 // array type. These are usually not promoted because someone is using a 108 // variable index into them. These are also often the most important ones to 109 // merge. 110 // 111 // A better solution would be to have real memory lifetime markers in the IR 112 // and not have the inliner do any merging of allocas at all. This would 113 // allow the backend to do proper stack slot coloring of all allocas that 114 // *actually make it to the backend*, which is really what we want. 115 // 116 // Because we don't have this information, we do this simple and useful hack. 117 // 118 SmallPtrSet<AllocaInst*, 16> UsedAllocas; 119 120 // When processing our SCC, check to see if CS was inlined from some other 121 // call site. For example, if we're processing "A" in this code: 122 // A() { B() } 123 // B() { x = alloca ... C() } 124 // C() { y = alloca ... } 125 // Assume that C was not inlined into B initially, and so we're processing A 126 // and decide to inline B into A. Doing this makes an alloca available for 127 // reuse and makes a callsite (C) available for inlining. When we process 128 // the C call site we don't want to do any alloca merging between X and Y 129 // because their scopes are not disjoint. We could make this smarter by 130 // keeping track of the inline history for each alloca in the 131 // InlinedArrayAllocas but this isn't likely to be a significant win. 132 if (InlineHistory != -1) // Only do merging for top-level call sites in SCC. 133 return true; 134 135 // Loop over all the allocas we have so far and see if they can be merged with 136 // a previously inlined alloca. If not, remember that we had it. 137 for (unsigned AllocaNo = 0, e = IFI.StaticAllocas.size(); 138 AllocaNo != e; ++AllocaNo) { 139 AllocaInst *AI = IFI.StaticAllocas[AllocaNo]; 140 141 // Don't bother trying to merge array allocations (they will usually be 142 // canonicalized to be an allocation *of* an array), or allocations whose 143 // type is not itself an array (because we're afraid of pessimizing SRoA). 144 ArrayType *ATy = dyn_cast<ArrayType>(AI->getAllocatedType()); 145 if (!ATy || AI->isArrayAllocation()) 146 continue; 147 148 // Get the list of all available allocas for this array type. 149 std::vector<AllocaInst*> &AllocasForType = InlinedArrayAllocas[ATy]; 150 151 // Loop over the allocas in AllocasForType to see if we can reuse one. Note 152 // that we have to be careful not to reuse the same "available" alloca for 153 // multiple different allocas that we just inlined, we use the 'UsedAllocas' 154 // set to keep track of which "available" allocas are being used by this 155 // function. Also, AllocasForType can be empty of course! 156 bool MergedAwayAlloca = false; 157 for (AllocaInst *AvailableAlloca : AllocasForType) { 158 159 unsigned Align1 = AI->getAlignment(), 160 Align2 = AvailableAlloca->getAlignment(); 161 162 // The available alloca has to be in the right function, not in some other 163 // function in this SCC. 164 if (AvailableAlloca->getParent() != AI->getParent()) 165 continue; 166 167 // If the inlined function already uses this alloca then we can't reuse 168 // it. 169 if (!UsedAllocas.insert(AvailableAlloca).second) 170 continue; 171 172 // Otherwise, we *can* reuse it, RAUW AI into AvailableAlloca and declare 173 // success! 174 DEBUG(dbgs() << " ***MERGED ALLOCA: " << *AI << "\n\t\tINTO: " 175 << *AvailableAlloca << '\n'); 176 177 // Move affected dbg.declare calls immediately after the new alloca to 178 // avoid the situation when a dbg.declare preceeds its alloca. 179 if (auto *L = LocalAsMetadata::getIfExists(AI)) 180 if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L)) 181 for (User *U : MDV->users()) 182 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(U)) 183 DDI->moveBefore(AvailableAlloca->getNextNode()); 184 185 AI->replaceAllUsesWith(AvailableAlloca); 186 187 if (Align1 != Align2) { 188 if (!Align1 || !Align2) { 189 const DataLayout &DL = Caller->getParent()->getDataLayout(); 190 unsigned TypeAlign = DL.getABITypeAlignment(AI->getAllocatedType()); 191 192 Align1 = Align1 ? Align1 : TypeAlign; 193 Align2 = Align2 ? Align2 : TypeAlign; 194 } 195 196 if (Align1 > Align2) 197 AvailableAlloca->setAlignment(AI->getAlignment()); 198 } 199 200 AI->eraseFromParent(); 201 MergedAwayAlloca = true; 202 ++NumMergedAllocas; 203 IFI.StaticAllocas[AllocaNo] = nullptr; 204 break; 205 } 206 207 // If we already nuked the alloca, we're done with it. 208 if (MergedAwayAlloca) 209 continue; 210 211 // If we were unable to merge away the alloca either because there are no 212 // allocas of the right type available or because we reused them all 213 // already, remember that this alloca came from an inlined function and mark 214 // it used so we don't reuse it for other allocas from this inline 215 // operation. 216 AllocasForType.push_back(AI); 217 UsedAllocas.insert(AI); 218 } 219 220 return true; 221 } 222 223 static void emitAnalysis(CallSite CS, const Twine &Msg) { 224 Function *Caller = CS.getCaller(); 225 LLVMContext &Ctx = Caller->getContext(); 226 DebugLoc DLoc = CS.getInstruction()->getDebugLoc(); 227 emitOptimizationRemarkAnalysis(Ctx, DEBUG_TYPE, *Caller, DLoc, Msg); 228 } 229 230 /// Return true if the inliner should attempt to inline at the given CallSite. 231 bool Inliner::shouldInline(CallSite CS) { 232 InlineCost IC = getInlineCost(CS); 233 234 if (IC.isAlways()) { 235 DEBUG(dbgs() << " Inlining: cost=always" 236 << ", Call: " << *CS.getInstruction() << "\n"); 237 emitAnalysis(CS, Twine(CS.getCalledFunction()->getName()) + 238 " should always be inlined (cost=always)"); 239 return true; 240 } 241 242 if (IC.isNever()) { 243 DEBUG(dbgs() << " NOT Inlining: cost=never" 244 << ", Call: " << *CS.getInstruction() << "\n"); 245 emitAnalysis(CS, Twine(CS.getCalledFunction()->getName() + 246 " should never be inlined (cost=never)")); 247 return false; 248 } 249 250 Function *Caller = CS.getCaller(); 251 if (!IC) { 252 DEBUG(dbgs() << " NOT Inlining: cost=" << IC.getCost() 253 << ", thres=" << (IC.getCostDelta() + IC.getCost()) 254 << ", Call: " << *CS.getInstruction() << "\n"); 255 emitAnalysis(CS, Twine(CS.getCalledFunction()->getName() + 256 " too costly to inline (cost=") + 257 Twine(IC.getCost()) + ", threshold=" + 258 Twine(IC.getCostDelta() + IC.getCost()) + ")"); 259 return false; 260 } 261 262 // Try to detect the case where the current inlining candidate caller (call 263 // it B) is a static or linkonce-ODR function and is an inlining candidate 264 // elsewhere, and the current candidate callee (call it C) is large enough 265 // that inlining it into B would make B too big to inline later. In these 266 // circumstances it may be best not to inline C into B, but to inline B into 267 // its callers. 268 // 269 // This only applies to static and linkonce-ODR functions because those are 270 // expected to be available for inlining in the translation units where they 271 // are used. Thus we will always have the opportunity to make local inlining 272 // decisions. Importantly the linkonce-ODR linkage covers inline functions 273 // and templates in C++. 274 // 275 // FIXME: All of this logic should be sunk into getInlineCost. It relies on 276 // the internal implementation of the inline cost metrics rather than 277 // treating them as truly abstract units etc. 278 if (Caller->hasLocalLinkage() || Caller->hasLinkOnceODRLinkage()) { 279 int TotalSecondaryCost = 0; 280 // The candidate cost to be imposed upon the current function. 281 int CandidateCost = IC.getCost() - (InlineConstants::CallPenalty + 1); 282 // This bool tracks what happens if we do NOT inline C into B. 283 bool callerWillBeRemoved = Caller->hasLocalLinkage(); 284 // This bool tracks what happens if we DO inline C into B. 285 bool inliningPreventsSomeOuterInline = false; 286 for (User *U : Caller->users()) { 287 CallSite CS2(U); 288 289 // If this isn't a call to Caller (it could be some other sort 290 // of reference) skip it. Such references will prevent the caller 291 // from being removed. 292 if (!CS2 || CS2.getCalledFunction() != Caller) { 293 callerWillBeRemoved = false; 294 continue; 295 } 296 297 InlineCost IC2 = getInlineCost(CS2); 298 ++NumCallerCallersAnalyzed; 299 if (!IC2) { 300 callerWillBeRemoved = false; 301 continue; 302 } 303 if (IC2.isAlways()) 304 continue; 305 306 // See if inlining or original callsite would erase the cost delta of 307 // this callsite. We subtract off the penalty for the call instruction, 308 // which we would be deleting. 309 if (IC2.getCostDelta() <= CandidateCost) { 310 inliningPreventsSomeOuterInline = true; 311 TotalSecondaryCost += IC2.getCost(); 312 } 313 } 314 // If all outer calls to Caller would get inlined, the cost for the last 315 // one is set very low by getInlineCost, in anticipation that Caller will 316 // be removed entirely. We did not account for this above unless there 317 // is only one caller of Caller. 318 if (callerWillBeRemoved && !Caller->use_empty()) 319 TotalSecondaryCost += InlineConstants::LastCallToStaticBonus; 320 321 if (inliningPreventsSomeOuterInline && TotalSecondaryCost < IC.getCost()) { 322 DEBUG(dbgs() << " NOT Inlining: " << *CS.getInstruction() << 323 " Cost = " << IC.getCost() << 324 ", outer Cost = " << TotalSecondaryCost << '\n'); 325 emitAnalysis( 326 CS, Twine("Not inlining. Cost of inlining " + 327 CS.getCalledFunction()->getName() + 328 " increases the cost of inlining " + 329 CS.getCaller()->getName() + " in other contexts")); 330 return false; 331 } 332 } 333 334 DEBUG(dbgs() << " Inlining: cost=" << IC.getCost() 335 << ", thres=" << (IC.getCostDelta() + IC.getCost()) 336 << ", Call: " << *CS.getInstruction() << '\n'); 337 emitAnalysis( 338 CS, CS.getCalledFunction()->getName() + Twine(" can be inlined into ") + 339 CS.getCaller()->getName() + " with cost=" + Twine(IC.getCost()) + 340 " (threshold=" + Twine(IC.getCostDelta() + IC.getCost()) + ")"); 341 return true; 342 } 343 344 /// Return true if the specified inline history ID 345 /// indicates an inline history that includes the specified function. 346 static bool InlineHistoryIncludes(Function *F, int InlineHistoryID, 347 const SmallVectorImpl<std::pair<Function*, int> > &InlineHistory) { 348 while (InlineHistoryID != -1) { 349 assert(unsigned(InlineHistoryID) < InlineHistory.size() && 350 "Invalid inline history ID"); 351 if (InlineHistory[InlineHistoryID].first == F) 352 return true; 353 InlineHistoryID = InlineHistory[InlineHistoryID].second; 354 } 355 return false; 356 } 357 358 bool Inliner::runOnSCC(CallGraphSCC &SCC) { 359 CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph(); 360 ACT = &getAnalysis<AssumptionCacheTracker>(); 361 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 362 363 SmallPtrSet<Function*, 8> SCCFunctions; 364 DEBUG(dbgs() << "Inliner visiting SCC:"); 365 for (CallGraphNode *Node : SCC) { 366 Function *F = Node->getFunction(); 367 if (F) SCCFunctions.insert(F); 368 DEBUG(dbgs() << " " << (F ? F->getName() : "INDIRECTNODE")); 369 } 370 371 // Scan through and identify all call sites ahead of time so that we only 372 // inline call sites in the original functions, not call sites that result 373 // from inlining other functions. 374 SmallVector<std::pair<CallSite, int>, 16> CallSites; 375 376 // When inlining a callee produces new call sites, we want to keep track of 377 // the fact that they were inlined from the callee. This allows us to avoid 378 // infinite inlining in some obscure cases. To represent this, we use an 379 // index into the InlineHistory vector. 380 SmallVector<std::pair<Function*, int>, 8> InlineHistory; 381 382 for (CallGraphNode *Node : SCC) { 383 Function *F = Node->getFunction(); 384 if (!F) continue; 385 386 for (BasicBlock &BB : *F) 387 for (Instruction &I : BB) { 388 CallSite CS(cast<Value>(&I)); 389 // If this isn't a call, or it is a call to an intrinsic, it can 390 // never be inlined. 391 if (!CS || isa<IntrinsicInst>(I)) 392 continue; 393 394 // If this is a direct call to an external function, we can never inline 395 // it. If it is an indirect call, inlining may resolve it to be a 396 // direct call, so we keep it. 397 if (Function *Callee = CS.getCalledFunction()) 398 if (Callee->isDeclaration()) 399 continue; 400 401 CallSites.push_back(std::make_pair(CS, -1)); 402 } 403 } 404 405 DEBUG(dbgs() << ": " << CallSites.size() << " call sites.\n"); 406 407 // If there are no calls in this function, exit early. 408 if (CallSites.empty()) 409 return false; 410 411 // Now that we have all of the call sites, move the ones to functions in the 412 // current SCC to the end of the list. 413 unsigned FirstCallInSCC = CallSites.size(); 414 for (unsigned i = 0; i < FirstCallInSCC; ++i) 415 if (Function *F = CallSites[i].first.getCalledFunction()) 416 if (SCCFunctions.count(F)) 417 std::swap(CallSites[i--], CallSites[--FirstCallInSCC]); 418 419 420 InlinedArrayAllocasTy InlinedArrayAllocas; 421 InlineFunctionInfo InlineInfo(&CG, ACT); 422 423 // Now that we have all of the call sites, loop over them and inline them if 424 // it looks profitable to do so. 425 bool Changed = false; 426 bool LocalChange; 427 do { 428 LocalChange = false; 429 // Iterate over the outer loop because inlining functions can cause indirect 430 // calls to become direct calls. 431 // CallSites may be modified inside so ranged for loop can not be used. 432 for (unsigned CSi = 0; CSi != CallSites.size(); ++CSi) { 433 CallSite CS = CallSites[CSi].first; 434 435 Function *Caller = CS.getCaller(); 436 Function *Callee = CS.getCalledFunction(); 437 438 // If this call site is dead and it is to a readonly function, we should 439 // just delete the call instead of trying to inline it, regardless of 440 // size. This happens because IPSCCP propagates the result out of the 441 // call and then we're left with the dead call. 442 if (isInstructionTriviallyDead(CS.getInstruction(), &TLI)) { 443 DEBUG(dbgs() << " -> Deleting dead call: " 444 << *CS.getInstruction() << "\n"); 445 // Update the call graph by deleting the edge from Callee to Caller. 446 CG[Caller]->removeCallEdgeFor(CS); 447 CS.getInstruction()->eraseFromParent(); 448 ++NumCallsDeleted; 449 } else { 450 // We can only inline direct calls to non-declarations. 451 if (!Callee || Callee->isDeclaration()) continue; 452 453 // If this call site was obtained by inlining another function, verify 454 // that the include path for the function did not include the callee 455 // itself. If so, we'd be recursively inlining the same function, 456 // which would provide the same callsites, which would cause us to 457 // infinitely inline. 458 int InlineHistoryID = CallSites[CSi].second; 459 if (InlineHistoryID != -1 && 460 InlineHistoryIncludes(Callee, InlineHistoryID, InlineHistory)) 461 continue; 462 463 LLVMContext &CallerCtx = Caller->getContext(); 464 465 // Get DebugLoc to report. CS will be invalid after Inliner. 466 DebugLoc DLoc = CS.getInstruction()->getDebugLoc(); 467 468 // If the policy determines that we should inline this function, 469 // try to do so. 470 if (!shouldInline(CS)) { 471 emitOptimizationRemarkMissed(CallerCtx, DEBUG_TYPE, *Caller, DLoc, 472 Twine(Callee->getName() + 473 " will not be inlined into " + 474 Caller->getName())); 475 continue; 476 } 477 478 // Attempt to inline the function. 479 if (!InlineCallIfPossible(*this, CS, InlineInfo, InlinedArrayAllocas, 480 InlineHistoryID, InsertLifetime)) { 481 emitOptimizationRemarkMissed(CallerCtx, DEBUG_TYPE, *Caller, DLoc, 482 Twine(Callee->getName() + 483 " will not be inlined into " + 484 Caller->getName())); 485 continue; 486 } 487 ++NumInlined; 488 489 // Report the inline decision. 490 emitOptimizationRemark( 491 CallerCtx, DEBUG_TYPE, *Caller, DLoc, 492 Twine(Callee->getName() + " inlined into " + Caller->getName())); 493 494 // If inlining this function gave us any new call sites, throw them 495 // onto our worklist to process. They are useful inline candidates. 496 if (!InlineInfo.InlinedCalls.empty()) { 497 // Create a new inline history entry for this, so that we remember 498 // that these new callsites came about due to inlining Callee. 499 int NewHistoryID = InlineHistory.size(); 500 InlineHistory.push_back(std::make_pair(Callee, InlineHistoryID)); 501 502 for (Value *Ptr : InlineInfo.InlinedCalls) 503 CallSites.push_back(std::make_pair(CallSite(Ptr), NewHistoryID)); 504 } 505 } 506 507 // If we inlined or deleted the last possible call site to the function, 508 // delete the function body now. 509 if (Callee && Callee->use_empty() && Callee->hasLocalLinkage() && 510 // TODO: Can remove if in SCC now. 511 !SCCFunctions.count(Callee) && 512 513 // The function may be apparently dead, but if there are indirect 514 // callgraph references to the node, we cannot delete it yet, this 515 // could invalidate the CGSCC iterator. 516 CG[Callee]->getNumReferences() == 0) { 517 DEBUG(dbgs() << " -> Deleting dead function: " 518 << Callee->getName() << "\n"); 519 CallGraphNode *CalleeNode = CG[Callee]; 520 521 // Remove any call graph edges from the callee to its callees. 522 CalleeNode->removeAllCalledFunctions(); 523 524 // Removing the node for callee from the call graph and delete it. 525 delete CG.removeFunctionFromModule(CalleeNode); 526 ++NumDeleted; 527 } 528 529 // Remove this call site from the list. If possible, use 530 // swap/pop_back for efficiency, but do not use it if doing so would 531 // move a call site to a function in this SCC before the 532 // 'FirstCallInSCC' barrier. 533 if (SCC.isSingular()) { 534 CallSites[CSi] = CallSites.back(); 535 CallSites.pop_back(); 536 } else { 537 CallSites.erase(CallSites.begin()+CSi); 538 } 539 --CSi; 540 541 Changed = true; 542 LocalChange = true; 543 } 544 } while (LocalChange); 545 546 return Changed; 547 } 548 549 /// Remove now-dead linkonce functions at the end of 550 /// processing to avoid breaking the SCC traversal. 551 bool Inliner::doFinalization(CallGraph &CG) { 552 return removeDeadFunctions(CG); 553 } 554 555 /// Remove dead functions that are not included in DNR (Do Not Remove) list. 556 bool Inliner::removeDeadFunctions(CallGraph &CG, bool AlwaysInlineOnly) { 557 SmallVector<CallGraphNode*, 16> FunctionsToRemove; 558 SmallVector<CallGraphNode *, 16> DeadFunctionsInComdats; 559 SmallDenseMap<const Comdat *, int, 16> ComdatEntriesAlive; 560 561 auto RemoveCGN = [&](CallGraphNode *CGN) { 562 // Remove any call graph edges from the function to its callees. 563 CGN->removeAllCalledFunctions(); 564 565 // Remove any edges from the external node to the function's call graph 566 // node. These edges might have been made irrelegant due to 567 // optimization of the program. 568 CG.getExternalCallingNode()->removeAnyCallEdgeTo(CGN); 569 570 // Removing the node for callee from the call graph and delete it. 571 FunctionsToRemove.push_back(CGN); 572 }; 573 574 // Scan for all of the functions, looking for ones that should now be removed 575 // from the program. Insert the dead ones in the FunctionsToRemove set. 576 for (const auto &I : CG) { 577 CallGraphNode *CGN = I.second.get(); 578 Function *F = CGN->getFunction(); 579 if (!F || F->isDeclaration()) 580 continue; 581 582 // Handle the case when this function is called and we only want to care 583 // about always-inline functions. This is a bit of a hack to share code 584 // between here and the InlineAlways pass. 585 if (AlwaysInlineOnly && !F->hasFnAttribute(Attribute::AlwaysInline)) 586 continue; 587 588 // If the only remaining users of the function are dead constants, remove 589 // them. 590 F->removeDeadConstantUsers(); 591 592 if (!F->isDefTriviallyDead()) 593 continue; 594 595 // It is unsafe to drop a function with discardable linkage from a COMDAT 596 // without also dropping the other members of the COMDAT. 597 // The inliner doesn't visit non-function entities which are in COMDAT 598 // groups so it is unsafe to do so *unless* the linkage is local. 599 if (!F->hasLocalLinkage()) { 600 if (const Comdat *C = F->getComdat()) { 601 --ComdatEntriesAlive[C]; 602 DeadFunctionsInComdats.push_back(CGN); 603 continue; 604 } 605 } 606 607 RemoveCGN(CGN); 608 } 609 if (!DeadFunctionsInComdats.empty()) { 610 // Count up all the entities in COMDAT groups 611 auto ComdatGroupReferenced = [&](const Comdat *C) { 612 auto I = ComdatEntriesAlive.find(C); 613 if (I != ComdatEntriesAlive.end()) 614 ++(I->getSecond()); 615 }; 616 for (const Function &F : CG.getModule()) 617 if (const Comdat *C = F.getComdat()) 618 ComdatGroupReferenced(C); 619 for (const GlobalVariable &GV : CG.getModule().globals()) 620 if (const Comdat *C = GV.getComdat()) 621 ComdatGroupReferenced(C); 622 for (const GlobalAlias &GA : CG.getModule().aliases()) 623 if (const Comdat *C = GA.getComdat()) 624 ComdatGroupReferenced(C); 625 for (CallGraphNode *CGN : DeadFunctionsInComdats) { 626 Function *F = CGN->getFunction(); 627 const Comdat *C = F->getComdat(); 628 int NumAlive = ComdatEntriesAlive[C]; 629 // We can remove functions in a COMDAT group if the entire group is dead. 630 assert(NumAlive >= 0); 631 if (NumAlive > 0) 632 continue; 633 634 RemoveCGN(CGN); 635 } 636 } 637 638 if (FunctionsToRemove.empty()) 639 return false; 640 641 // Now that we know which functions to delete, do so. We didn't want to do 642 // this inline, because that would invalidate our CallGraph::iterator 643 // objects. :( 644 // 645 // Note that it doesn't matter that we are iterating over a non-stable order 646 // here to do this, it doesn't matter which order the functions are deleted 647 // in. 648 array_pod_sort(FunctionsToRemove.begin(), FunctionsToRemove.end()); 649 FunctionsToRemove.erase(std::unique(FunctionsToRemove.begin(), 650 FunctionsToRemove.end()), 651 FunctionsToRemove.end()); 652 for (CallGraphNode *CGN : FunctionsToRemove) { 653 delete CG.removeFunctionFromModule(CGN); 654 ++NumDeleted; 655 } 656 return true; 657 } 658