1 //===- Inliner.cpp - Code common to all inliners --------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the mechanics required to implement inlining without 11 // missing any calls and updating the call graph. The decisions of which calls 12 // are profitable to inline are implemented elsewhere. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Transforms/IPO/Inliner.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/Analysis/AssumptionCache.h" 21 #include "llvm/Analysis/BasicAliasAnalysis.h" 22 #include "llvm/Analysis/BlockFrequencyInfo.h" 23 #include "llvm/Analysis/CallGraph.h" 24 #include "llvm/Analysis/InlineCost.h" 25 #include "llvm/Analysis/OptimizationDiagnosticInfo.h" 26 #include "llvm/Analysis/ProfileSummaryInfo.h" 27 #include "llvm/Analysis/TargetLibraryInfo.h" 28 #include "llvm/IR/CallSite.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/DiagnosticInfo.h" 31 #include "llvm/IR/InstIterator.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/IntrinsicInst.h" 34 #include "llvm/IR/Module.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include "llvm/Transforms/Utils/Cloning.h" 38 #include "llvm/Transforms/Utils/Local.h" 39 #include "llvm/Transforms/Utils/ModuleUtils.h" 40 using namespace llvm; 41 42 #define DEBUG_TYPE "inline" 43 44 STATISTIC(NumInlined, "Number of functions inlined"); 45 STATISTIC(NumCallsDeleted, "Number of call sites deleted, not inlined"); 46 STATISTIC(NumDeleted, "Number of functions deleted because all callers found"); 47 STATISTIC(NumMergedAllocas, "Number of allocas merged together"); 48 49 // This weirdly named statistic tracks the number of times that, when attempting 50 // to inline a function A into B, we analyze the callers of B in order to see 51 // if those would be more profitable and blocked inline steps. 52 STATISTIC(NumCallerCallersAnalyzed, "Number of caller-callers analyzed"); 53 54 /// Flag to disable manual alloca merging. 55 /// 56 /// Merging of allocas was originally done as a stack-size saving technique 57 /// prior to LLVM's code generator having support for stack coloring based on 58 /// lifetime markers. It is now in the process of being removed. To experiment 59 /// with disabling it and relying fully on lifetime marker based stack 60 /// coloring, you can pass this flag to LLVM. 61 static cl::opt<bool> 62 DisableInlinedAllocaMerging("disable-inlined-alloca-merging", 63 cl::init(false), cl::Hidden); 64 65 namespace { 66 enum class InlinerFunctionImportStatsOpts { 67 No = 0, 68 Basic = 1, 69 Verbose = 2, 70 }; 71 72 cl::opt<InlinerFunctionImportStatsOpts> InlinerFunctionImportStats( 73 "inliner-function-import-stats", 74 cl::init(InlinerFunctionImportStatsOpts::No), 75 cl::values(clEnumValN(InlinerFunctionImportStatsOpts::Basic, "basic", 76 "basic statistics"), 77 clEnumValN(InlinerFunctionImportStatsOpts::Verbose, "verbose", 78 "printing of statistics for each inlined function")), 79 cl::Hidden, cl::desc("Enable inliner stats for imported functions")); 80 } // namespace 81 82 LegacyInlinerBase::LegacyInlinerBase(char &ID) 83 : CallGraphSCCPass(ID), InsertLifetime(true) {} 84 85 LegacyInlinerBase::LegacyInlinerBase(char &ID, bool InsertLifetime) 86 : CallGraphSCCPass(ID), InsertLifetime(InsertLifetime) {} 87 88 /// For this class, we declare that we require and preserve the call graph. 89 /// If the derived class implements this method, it should 90 /// always explicitly call the implementation here. 91 void LegacyInlinerBase::getAnalysisUsage(AnalysisUsage &AU) const { 92 AU.addRequired<AssumptionCacheTracker>(); 93 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 94 AU.addRequired<TargetLibraryInfoWrapperPass>(); 95 getAAResultsAnalysisUsage(AU); 96 CallGraphSCCPass::getAnalysisUsage(AU); 97 } 98 99 typedef DenseMap<ArrayType *, std::vector<AllocaInst *>> InlinedArrayAllocasTy; 100 101 /// Look at all of the allocas that we inlined through this call site. If we 102 /// have already inlined other allocas through other calls into this function, 103 /// then we know that they have disjoint lifetimes and that we can merge them. 104 /// 105 /// There are many heuristics possible for merging these allocas, and the 106 /// different options have different tradeoffs. One thing that we *really* 107 /// don't want to hurt is SRoA: once inlining happens, often allocas are no 108 /// longer address taken and so they can be promoted. 109 /// 110 /// Our "solution" for that is to only merge allocas whose outermost type is an 111 /// array type. These are usually not promoted because someone is using a 112 /// variable index into them. These are also often the most important ones to 113 /// merge. 114 /// 115 /// A better solution would be to have real memory lifetime markers in the IR 116 /// and not have the inliner do any merging of allocas at all. This would 117 /// allow the backend to do proper stack slot coloring of all allocas that 118 /// *actually make it to the backend*, which is really what we want. 119 /// 120 /// Because we don't have this information, we do this simple and useful hack. 121 static void mergeInlinedArrayAllocas( 122 Function *Caller, InlineFunctionInfo &IFI, 123 InlinedArrayAllocasTy &InlinedArrayAllocas, int InlineHistory) { 124 SmallPtrSet<AllocaInst *, 16> UsedAllocas; 125 126 // When processing our SCC, check to see if CS was inlined from some other 127 // call site. For example, if we're processing "A" in this code: 128 // A() { B() } 129 // B() { x = alloca ... C() } 130 // C() { y = alloca ... } 131 // Assume that C was not inlined into B initially, and so we're processing A 132 // and decide to inline B into A. Doing this makes an alloca available for 133 // reuse and makes a callsite (C) available for inlining. When we process 134 // the C call site we don't want to do any alloca merging between X and Y 135 // because their scopes are not disjoint. We could make this smarter by 136 // keeping track of the inline history for each alloca in the 137 // InlinedArrayAllocas but this isn't likely to be a significant win. 138 if (InlineHistory != -1) // Only do merging for top-level call sites in SCC. 139 return; 140 141 // Loop over all the allocas we have so far and see if they can be merged with 142 // a previously inlined alloca. If not, remember that we had it. 143 for (unsigned AllocaNo = 0, e = IFI.StaticAllocas.size(); AllocaNo != e; 144 ++AllocaNo) { 145 AllocaInst *AI = IFI.StaticAllocas[AllocaNo]; 146 147 // Don't bother trying to merge array allocations (they will usually be 148 // canonicalized to be an allocation *of* an array), or allocations whose 149 // type is not itself an array (because we're afraid of pessimizing SRoA). 150 ArrayType *ATy = dyn_cast<ArrayType>(AI->getAllocatedType()); 151 if (!ATy || AI->isArrayAllocation()) 152 continue; 153 154 // Get the list of all available allocas for this array type. 155 std::vector<AllocaInst *> &AllocasForType = InlinedArrayAllocas[ATy]; 156 157 // Loop over the allocas in AllocasForType to see if we can reuse one. Note 158 // that we have to be careful not to reuse the same "available" alloca for 159 // multiple different allocas that we just inlined, we use the 'UsedAllocas' 160 // set to keep track of which "available" allocas are being used by this 161 // function. Also, AllocasForType can be empty of course! 162 bool MergedAwayAlloca = false; 163 for (AllocaInst *AvailableAlloca : AllocasForType) { 164 165 unsigned Align1 = AI->getAlignment(), 166 Align2 = AvailableAlloca->getAlignment(); 167 168 // The available alloca has to be in the right function, not in some other 169 // function in this SCC. 170 if (AvailableAlloca->getParent() != AI->getParent()) 171 continue; 172 173 // If the inlined function already uses this alloca then we can't reuse 174 // it. 175 if (!UsedAllocas.insert(AvailableAlloca).second) 176 continue; 177 178 // Otherwise, we *can* reuse it, RAUW AI into AvailableAlloca and declare 179 // success! 180 DEBUG(dbgs() << " ***MERGED ALLOCA: " << *AI 181 << "\n\t\tINTO: " << *AvailableAlloca << '\n'); 182 183 // Move affected dbg.declare calls immediately after the new alloca to 184 // avoid the situation when a dbg.declare precedes its alloca. 185 if (auto *L = LocalAsMetadata::getIfExists(AI)) 186 if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L)) 187 for (User *U : MDV->users()) 188 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(U)) 189 DDI->moveBefore(AvailableAlloca->getNextNode()); 190 191 AI->replaceAllUsesWith(AvailableAlloca); 192 193 if (Align1 != Align2) { 194 if (!Align1 || !Align2) { 195 const DataLayout &DL = Caller->getParent()->getDataLayout(); 196 unsigned TypeAlign = DL.getABITypeAlignment(AI->getAllocatedType()); 197 198 Align1 = Align1 ? Align1 : TypeAlign; 199 Align2 = Align2 ? Align2 : TypeAlign; 200 } 201 202 if (Align1 > Align2) 203 AvailableAlloca->setAlignment(AI->getAlignment()); 204 } 205 206 AI->eraseFromParent(); 207 MergedAwayAlloca = true; 208 ++NumMergedAllocas; 209 IFI.StaticAllocas[AllocaNo] = nullptr; 210 break; 211 } 212 213 // If we already nuked the alloca, we're done with it. 214 if (MergedAwayAlloca) 215 continue; 216 217 // If we were unable to merge away the alloca either because there are no 218 // allocas of the right type available or because we reused them all 219 // already, remember that this alloca came from an inlined function and mark 220 // it used so we don't reuse it for other allocas from this inline 221 // operation. 222 AllocasForType.push_back(AI); 223 UsedAllocas.insert(AI); 224 } 225 } 226 227 /// If it is possible to inline the specified call site, 228 /// do so and update the CallGraph for this operation. 229 /// 230 /// This function also does some basic book-keeping to update the IR. The 231 /// InlinedArrayAllocas map keeps track of any allocas that are already 232 /// available from other functions inlined into the caller. If we are able to 233 /// inline this call site we attempt to reuse already available allocas or add 234 /// any new allocas to the set if not possible. 235 static bool InlineCallIfPossible( 236 CallSite CS, InlineFunctionInfo &IFI, 237 InlinedArrayAllocasTy &InlinedArrayAllocas, int InlineHistory, 238 bool InsertLifetime, function_ref<AAResults &(Function &)> &AARGetter, 239 ImportedFunctionsInliningStatistics &ImportedFunctionsStats) { 240 Function *Callee = CS.getCalledFunction(); 241 Function *Caller = CS.getCaller(); 242 243 AAResults &AAR = AARGetter(*Callee); 244 245 // Try to inline the function. Get the list of static allocas that were 246 // inlined. 247 if (!InlineFunction(CS, IFI, &AAR, InsertLifetime)) 248 return false; 249 250 if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No) 251 ImportedFunctionsStats.recordInline(*Caller, *Callee); 252 253 AttributeFuncs::mergeAttributesForInlining(*Caller, *Callee); 254 255 if (!DisableInlinedAllocaMerging) 256 mergeInlinedArrayAllocas(Caller, IFI, InlinedArrayAllocas, InlineHistory); 257 258 return true; 259 } 260 261 /// Return true if inlining of CS can block the caller from being 262 /// inlined which is proved to be more beneficial. \p IC is the 263 /// estimated inline cost associated with callsite \p CS. 264 /// \p TotalSecondaryCost will be set to the estimated cost of inlining the 265 /// caller if \p CS is suppressed for inlining. 266 static bool 267 shouldBeDeferred(Function *Caller, CallSite CS, InlineCost IC, 268 int &TotalSecondaryCost, 269 function_ref<InlineCost(CallSite CS)> GetInlineCost) { 270 271 // For now we only handle local or inline functions. 272 if (!Caller->hasLocalLinkage() && !Caller->hasLinkOnceODRLinkage()) 273 return false; 274 // Try to detect the case where the current inlining candidate caller (call 275 // it B) is a static or linkonce-ODR function and is an inlining candidate 276 // elsewhere, and the current candidate callee (call it C) is large enough 277 // that inlining it into B would make B too big to inline later. In these 278 // circumstances it may be best not to inline C into B, but to inline B into 279 // its callers. 280 // 281 // This only applies to static and linkonce-ODR functions because those are 282 // expected to be available for inlining in the translation units where they 283 // are used. Thus we will always have the opportunity to make local inlining 284 // decisions. Importantly the linkonce-ODR linkage covers inline functions 285 // and templates in C++. 286 // 287 // FIXME: All of this logic should be sunk into getInlineCost. It relies on 288 // the internal implementation of the inline cost metrics rather than 289 // treating them as truly abstract units etc. 290 TotalSecondaryCost = 0; 291 // The candidate cost to be imposed upon the current function. 292 int CandidateCost = IC.getCost() - 1; 293 // This bool tracks what happens if we do NOT inline C into B. 294 bool callerWillBeRemoved = Caller->hasLocalLinkage(); 295 // This bool tracks what happens if we DO inline C into B. 296 bool inliningPreventsSomeOuterInline = false; 297 for (User *U : Caller->users()) { 298 CallSite CS2(U); 299 300 // If this isn't a call to Caller (it could be some other sort 301 // of reference) skip it. Such references will prevent the caller 302 // from being removed. 303 if (!CS2 || CS2.getCalledFunction() != Caller) { 304 callerWillBeRemoved = false; 305 continue; 306 } 307 308 InlineCost IC2 = GetInlineCost(CS2); 309 ++NumCallerCallersAnalyzed; 310 if (!IC2) { 311 callerWillBeRemoved = false; 312 continue; 313 } 314 if (IC2.isAlways()) 315 continue; 316 317 // See if inlining of the original callsite would erase the cost delta of 318 // this callsite. We subtract off the penalty for the call instruction, 319 // which we would be deleting. 320 if (IC2.getCostDelta() <= CandidateCost) { 321 inliningPreventsSomeOuterInline = true; 322 TotalSecondaryCost += IC2.getCost(); 323 } 324 } 325 // If all outer calls to Caller would get inlined, the cost for the last 326 // one is set very low by getInlineCost, in anticipation that Caller will 327 // be removed entirely. We did not account for this above unless there 328 // is only one caller of Caller. 329 if (callerWillBeRemoved && !Caller->hasOneUse()) 330 TotalSecondaryCost -= InlineConstants::LastCallToStaticBonus; 331 332 if (inliningPreventsSomeOuterInline && TotalSecondaryCost < IC.getCost()) 333 return true; 334 335 return false; 336 } 337 338 /// Return the cost only if the inliner should attempt to inline at the given 339 /// CallSite. If we return the cost, we will emit an optimisation remark later 340 /// using that cost, so we won't do so from this function. 341 static Optional<InlineCost> 342 shouldInline(CallSite CS, function_ref<InlineCost(CallSite CS)> GetInlineCost, 343 OptimizationRemarkEmitter &ORE) { 344 using namespace ore; 345 InlineCost IC = GetInlineCost(CS); 346 Instruction *Call = CS.getInstruction(); 347 Function *Callee = CS.getCalledFunction(); 348 Function *Caller = CS.getCaller(); 349 350 if (IC.isAlways()) { 351 DEBUG(dbgs() << " Inlining: cost=always" 352 << ", Call: " << *CS.getInstruction() << "\n"); 353 return IC; 354 } 355 356 if (IC.isNever()) { 357 DEBUG(dbgs() << " NOT Inlining: cost=never" 358 << ", Call: " << *CS.getInstruction() << "\n"); 359 ORE.emit(OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline", Call) 360 << NV("Callee", Callee) << " not inlined into " 361 << NV("Caller", Caller) 362 << " because it should never be inlined (cost=never)"); 363 return None; 364 } 365 366 if (!IC) { 367 DEBUG(dbgs() << " NOT Inlining: cost=" << IC.getCost() 368 << ", thres=" << IC.getThreshold() 369 << ", Call: " << *CS.getInstruction() << "\n"); 370 ORE.emit(OptimizationRemarkMissed(DEBUG_TYPE, "TooCostly", Call) 371 << NV("Callee", Callee) << " not inlined into " 372 << NV("Caller", Caller) << " because too costly to inline (cost=" 373 << NV("Cost", IC.getCost()) 374 << ", threshold=" << NV("Threshold", IC.getThreshold()) << ")"); 375 return None; 376 } 377 378 int TotalSecondaryCost = 0; 379 if (shouldBeDeferred(Caller, CS, IC, TotalSecondaryCost, GetInlineCost)) { 380 DEBUG(dbgs() << " NOT Inlining: " << *CS.getInstruction() 381 << " Cost = " << IC.getCost() 382 << ", outer Cost = " << TotalSecondaryCost << '\n'); 383 ORE.emit(OptimizationRemarkMissed(DEBUG_TYPE, "IncreaseCostInOtherContexts", 384 Call) 385 << "Not inlining. Cost of inlining " << NV("Callee", Callee) 386 << " increases the cost of inlining " << NV("Caller", Caller) 387 << " in other contexts"); 388 389 // IC does not bool() to false, so get an InlineCost that will. 390 // This will not be inspected to make an error message. 391 return None; 392 } 393 394 DEBUG(dbgs() << " Inlining: cost=" << IC.getCost() 395 << ", thres=" << IC.getThreshold() 396 << ", Call: " << *CS.getInstruction() << '\n'); 397 return IC; 398 } 399 400 /// Return true if the specified inline history ID 401 /// indicates an inline history that includes the specified function. 402 static bool InlineHistoryIncludes( 403 Function *F, int InlineHistoryID, 404 const SmallVectorImpl<std::pair<Function *, int>> &InlineHistory) { 405 while (InlineHistoryID != -1) { 406 assert(unsigned(InlineHistoryID) < InlineHistory.size() && 407 "Invalid inline history ID"); 408 if (InlineHistory[InlineHistoryID].first == F) 409 return true; 410 InlineHistoryID = InlineHistory[InlineHistoryID].second; 411 } 412 return false; 413 } 414 415 bool LegacyInlinerBase::doInitialization(CallGraph &CG) { 416 if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No) 417 ImportedFunctionsStats.setModuleInfo(CG.getModule()); 418 return false; // No changes to CallGraph. 419 } 420 421 bool LegacyInlinerBase::runOnSCC(CallGraphSCC &SCC) { 422 if (skipSCC(SCC)) 423 return false; 424 return inlineCalls(SCC); 425 } 426 427 static bool 428 inlineCallsImpl(CallGraphSCC &SCC, CallGraph &CG, 429 std::function<AssumptionCache &(Function &)> GetAssumptionCache, 430 ProfileSummaryInfo *PSI, TargetLibraryInfo &TLI, 431 bool InsertLifetime, 432 function_ref<InlineCost(CallSite CS)> GetInlineCost, 433 function_ref<AAResults &(Function &)> AARGetter, 434 ImportedFunctionsInliningStatistics &ImportedFunctionsStats) { 435 SmallPtrSet<Function *, 8> SCCFunctions; 436 DEBUG(dbgs() << "Inliner visiting SCC:"); 437 for (CallGraphNode *Node : SCC) { 438 Function *F = Node->getFunction(); 439 if (F) 440 SCCFunctions.insert(F); 441 DEBUG(dbgs() << " " << (F ? F->getName() : "INDIRECTNODE")); 442 } 443 444 // Scan through and identify all call sites ahead of time so that we only 445 // inline call sites in the original functions, not call sites that result 446 // from inlining other functions. 447 SmallVector<std::pair<CallSite, int>, 16> CallSites; 448 449 // When inlining a callee produces new call sites, we want to keep track of 450 // the fact that they were inlined from the callee. This allows us to avoid 451 // infinite inlining in some obscure cases. To represent this, we use an 452 // index into the InlineHistory vector. 453 SmallVector<std::pair<Function *, int>, 8> InlineHistory; 454 455 for (CallGraphNode *Node : SCC) { 456 Function *F = Node->getFunction(); 457 if (!F || F->isDeclaration()) 458 continue; 459 460 OptimizationRemarkEmitter ORE(F); 461 for (BasicBlock &BB : *F) 462 for (Instruction &I : BB) { 463 CallSite CS(cast<Value>(&I)); 464 // If this isn't a call, or it is a call to an intrinsic, it can 465 // never be inlined. 466 if (!CS || isa<IntrinsicInst>(I)) 467 continue; 468 469 // If this is a direct call to an external function, we can never inline 470 // it. If it is an indirect call, inlining may resolve it to be a 471 // direct call, so we keep it. 472 if (Function *Callee = CS.getCalledFunction()) 473 if (Callee->isDeclaration()) { 474 using namespace ore; 475 ORE.emit(OptimizationRemarkMissed(DEBUG_TYPE, "NoDefinition", &I) 476 << NV("Callee", Callee) << " will not be inlined into " 477 << NV("Caller", CS.getCaller()) 478 << " because its definition is unavailable" 479 << setIsVerbose()); 480 continue; 481 } 482 483 CallSites.push_back(std::make_pair(CS, -1)); 484 } 485 } 486 487 DEBUG(dbgs() << ": " << CallSites.size() << " call sites.\n"); 488 489 // If there are no calls in this function, exit early. 490 if (CallSites.empty()) 491 return false; 492 493 // Now that we have all of the call sites, move the ones to functions in the 494 // current SCC to the end of the list. 495 unsigned FirstCallInSCC = CallSites.size(); 496 for (unsigned i = 0; i < FirstCallInSCC; ++i) 497 if (Function *F = CallSites[i].first.getCalledFunction()) 498 if (SCCFunctions.count(F)) 499 std::swap(CallSites[i--], CallSites[--FirstCallInSCC]); 500 501 InlinedArrayAllocasTy InlinedArrayAllocas; 502 InlineFunctionInfo InlineInfo(&CG, &GetAssumptionCache, PSI); 503 504 // Now that we have all of the call sites, loop over them and inline them if 505 // it looks profitable to do so. 506 bool Changed = false; 507 bool LocalChange; 508 do { 509 LocalChange = false; 510 // Iterate over the outer loop because inlining functions can cause indirect 511 // calls to become direct calls. 512 // CallSites may be modified inside so ranged for loop can not be used. 513 for (unsigned CSi = 0; CSi != CallSites.size(); ++CSi) { 514 CallSite CS = CallSites[CSi].first; 515 516 Function *Caller = CS.getCaller(); 517 Function *Callee = CS.getCalledFunction(); 518 519 // We can only inline direct calls to non-declarations. 520 if (!Callee || Callee->isDeclaration()) 521 continue; 522 523 Instruction *Instr = CS.getInstruction(); 524 525 bool IsTriviallyDead = isInstructionTriviallyDead(Instr, &TLI); 526 527 int InlineHistoryID; 528 if (!IsTriviallyDead) { 529 // If this call site was obtained by inlining another function, verify 530 // that the include path for the function did not include the callee 531 // itself. If so, we'd be recursively inlining the same function, 532 // which would provide the same callsites, which would cause us to 533 // infinitely inline. 534 InlineHistoryID = CallSites[CSi].second; 535 if (InlineHistoryID != -1 && 536 InlineHistoryIncludes(Callee, InlineHistoryID, InlineHistory)) 537 continue; 538 } 539 540 // FIXME for new PM: because of the old PM we currently generate ORE and 541 // in turn BFI on demand. With the new PM, the ORE dependency should 542 // just become a regular analysis dependency. 543 OptimizationRemarkEmitter ORE(Caller); 544 545 Optional<InlineCost> OIC = shouldInline(CS, GetInlineCost, ORE); 546 // If the policy determines that we should inline this function, 547 // delete the call instead. 548 if (!OIC) 549 continue; 550 551 // If this call site is dead and it is to a readonly function, we should 552 // just delete the call instead of trying to inline it, regardless of 553 // size. This happens because IPSCCP propagates the result out of the 554 // call and then we're left with the dead call. 555 if (IsTriviallyDead) { 556 DEBUG(dbgs() << " -> Deleting dead call: " << *Instr << "\n"); 557 // Update the call graph by deleting the edge from Callee to Caller. 558 CG[Caller]->removeCallEdgeFor(CS); 559 Instr->eraseFromParent(); 560 ++NumCallsDeleted; 561 } else { 562 // Get DebugLoc to report. CS will be invalid after Inliner. 563 DebugLoc DLoc = CS->getDebugLoc(); 564 BasicBlock *Block = CS.getParent(); 565 566 // Attempt to inline the function. 567 using namespace ore; 568 if (!InlineCallIfPossible(CS, InlineInfo, InlinedArrayAllocas, 569 InlineHistoryID, InsertLifetime, AARGetter, 570 ImportedFunctionsStats)) { 571 ORE.emit( 572 OptimizationRemarkMissed(DEBUG_TYPE, "NotInlined", DLoc, Block) 573 << NV("Callee", Callee) << " will not be inlined into " 574 << NV("Caller", Caller)); 575 continue; 576 } 577 ++NumInlined; 578 579 if (OIC->isAlways()) 580 ORE.emit(OptimizationRemark(DEBUG_TYPE, "AlwaysInline", DLoc, Block) 581 << NV("Callee", Callee) << " inlined into " 582 << NV("Caller", Caller) << " with cost=always"); 583 else 584 ORE.emit(OptimizationRemark(DEBUG_TYPE, "Inlined", DLoc, Block) 585 << NV("Callee", Callee) << " inlined into " 586 << NV("Caller", Caller) 587 << " with cost=" << NV("Cost", OIC->getCost()) 588 << " (threshold=" << NV("Threshold", OIC->getThreshold()) 589 << ")"); 590 591 // If inlining this function gave us any new call sites, throw them 592 // onto our worklist to process. They are useful inline candidates. 593 if (!InlineInfo.InlinedCalls.empty()) { 594 // Create a new inline history entry for this, so that we remember 595 // that these new callsites came about due to inlining Callee. 596 int NewHistoryID = InlineHistory.size(); 597 InlineHistory.push_back(std::make_pair(Callee, InlineHistoryID)); 598 599 for (Value *Ptr : InlineInfo.InlinedCalls) 600 CallSites.push_back(std::make_pair(CallSite(Ptr), NewHistoryID)); 601 } 602 } 603 604 // If we inlined or deleted the last possible call site to the function, 605 // delete the function body now. 606 if (Callee && Callee->use_empty() && Callee->hasLocalLinkage() && 607 // TODO: Can remove if in SCC now. 608 !SCCFunctions.count(Callee) && 609 610 // The function may be apparently dead, but if there are indirect 611 // callgraph references to the node, we cannot delete it yet, this 612 // could invalidate the CGSCC iterator. 613 CG[Callee]->getNumReferences() == 0) { 614 DEBUG(dbgs() << " -> Deleting dead function: " << Callee->getName() 615 << "\n"); 616 CallGraphNode *CalleeNode = CG[Callee]; 617 618 // Remove any call graph edges from the callee to its callees. 619 CalleeNode->removeAllCalledFunctions(); 620 621 // Removing the node for callee from the call graph and delete it. 622 delete CG.removeFunctionFromModule(CalleeNode); 623 ++NumDeleted; 624 } 625 626 // Remove this call site from the list. If possible, use 627 // swap/pop_back for efficiency, but do not use it if doing so would 628 // move a call site to a function in this SCC before the 629 // 'FirstCallInSCC' barrier. 630 if (SCC.isSingular()) { 631 CallSites[CSi] = CallSites.back(); 632 CallSites.pop_back(); 633 } else { 634 CallSites.erase(CallSites.begin() + CSi); 635 } 636 --CSi; 637 638 Changed = true; 639 LocalChange = true; 640 } 641 } while (LocalChange); 642 643 return Changed; 644 } 645 646 bool LegacyInlinerBase::inlineCalls(CallGraphSCC &SCC) { 647 CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph(); 648 ACT = &getAnalysis<AssumptionCacheTracker>(); 649 PSI = getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 650 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 651 auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & { 652 return ACT->getAssumptionCache(F); 653 }; 654 return inlineCallsImpl(SCC, CG, GetAssumptionCache, PSI, TLI, InsertLifetime, 655 [this](CallSite CS) { return getInlineCost(CS); }, 656 LegacyAARGetter(*this), ImportedFunctionsStats); 657 } 658 659 /// Remove now-dead linkonce functions at the end of 660 /// processing to avoid breaking the SCC traversal. 661 bool LegacyInlinerBase::doFinalization(CallGraph &CG) { 662 if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No) 663 ImportedFunctionsStats.dump(InlinerFunctionImportStats == 664 InlinerFunctionImportStatsOpts::Verbose); 665 return removeDeadFunctions(CG); 666 } 667 668 /// Remove dead functions that are not included in DNR (Do Not Remove) list. 669 bool LegacyInlinerBase::removeDeadFunctions(CallGraph &CG, 670 bool AlwaysInlineOnly) { 671 SmallVector<CallGraphNode *, 16> FunctionsToRemove; 672 SmallVector<Function *, 16> DeadFunctionsInComdats; 673 674 auto RemoveCGN = [&](CallGraphNode *CGN) { 675 // Remove any call graph edges from the function to its callees. 676 CGN->removeAllCalledFunctions(); 677 678 // Remove any edges from the external node to the function's call graph 679 // node. These edges might have been made irrelegant due to 680 // optimization of the program. 681 CG.getExternalCallingNode()->removeAnyCallEdgeTo(CGN); 682 683 // Removing the node for callee from the call graph and delete it. 684 FunctionsToRemove.push_back(CGN); 685 }; 686 687 // Scan for all of the functions, looking for ones that should now be removed 688 // from the program. Insert the dead ones in the FunctionsToRemove set. 689 for (const auto &I : CG) { 690 CallGraphNode *CGN = I.second.get(); 691 Function *F = CGN->getFunction(); 692 if (!F || F->isDeclaration()) 693 continue; 694 695 // Handle the case when this function is called and we only want to care 696 // about always-inline functions. This is a bit of a hack to share code 697 // between here and the InlineAlways pass. 698 if (AlwaysInlineOnly && !F->hasFnAttribute(Attribute::AlwaysInline)) 699 continue; 700 701 // If the only remaining users of the function are dead constants, remove 702 // them. 703 F->removeDeadConstantUsers(); 704 705 if (!F->isDefTriviallyDead()) 706 continue; 707 708 // It is unsafe to drop a function with discardable linkage from a COMDAT 709 // without also dropping the other members of the COMDAT. 710 // The inliner doesn't visit non-function entities which are in COMDAT 711 // groups so it is unsafe to do so *unless* the linkage is local. 712 if (!F->hasLocalLinkage()) { 713 if (F->hasComdat()) { 714 DeadFunctionsInComdats.push_back(F); 715 continue; 716 } 717 } 718 719 RemoveCGN(CGN); 720 } 721 if (!DeadFunctionsInComdats.empty()) { 722 // Filter out the functions whose comdats remain alive. 723 filterDeadComdatFunctions(CG.getModule(), DeadFunctionsInComdats); 724 // Remove the rest. 725 for (Function *F : DeadFunctionsInComdats) 726 RemoveCGN(CG[F]); 727 } 728 729 if (FunctionsToRemove.empty()) 730 return false; 731 732 // Now that we know which functions to delete, do so. We didn't want to do 733 // this inline, because that would invalidate our CallGraph::iterator 734 // objects. :( 735 // 736 // Note that it doesn't matter that we are iterating over a non-stable order 737 // here to do this, it doesn't matter which order the functions are deleted 738 // in. 739 array_pod_sort(FunctionsToRemove.begin(), FunctionsToRemove.end()); 740 FunctionsToRemove.erase( 741 std::unique(FunctionsToRemove.begin(), FunctionsToRemove.end()), 742 FunctionsToRemove.end()); 743 for (CallGraphNode *CGN : FunctionsToRemove) { 744 delete CG.removeFunctionFromModule(CGN); 745 ++NumDeleted; 746 } 747 return true; 748 } 749 750 PreservedAnalyses InlinerPass::run(LazyCallGraph::SCC &InitialC, 751 CGSCCAnalysisManager &AM, LazyCallGraph &CG, 752 CGSCCUpdateResult &UR) { 753 const ModuleAnalysisManager &MAM = 754 AM.getResult<ModuleAnalysisManagerCGSCCProxy>(InitialC, CG).getManager(); 755 bool Changed = false; 756 757 assert(InitialC.size() > 0 && "Cannot handle an empty SCC!"); 758 Module &M = *InitialC.begin()->getFunction().getParent(); 759 ProfileSummaryInfo *PSI = MAM.getCachedResult<ProfileSummaryAnalysis>(M); 760 761 // We use a single common worklist for calls across the entire SCC. We 762 // process these in-order and append new calls introduced during inlining to 763 // the end. 764 // 765 // Note that this particular order of processing is actually critical to 766 // avoid very bad behaviors. Consider *highly connected* call graphs where 767 // each function contains a small amonut of code and a couple of calls to 768 // other functions. Because the LLVM inliner is fundamentally a bottom-up 769 // inliner, it can handle gracefully the fact that these all appear to be 770 // reasonable inlining candidates as it will flatten things until they become 771 // too big to inline, and then move on and flatten another batch. 772 // 773 // However, when processing call edges *within* an SCC we cannot rely on this 774 // bottom-up behavior. As a consequence, with heavily connected *SCCs* of 775 // functions we can end up incrementally inlining N calls into each of 776 // N functions because each incremental inlining decision looks good and we 777 // don't have a topological ordering to prevent explosions. 778 // 779 // To compensate for this, we don't process transitive edges made immediate 780 // by inlining until we've done one pass of inlining across the entire SCC. 781 // Large, highly connected SCCs still lead to some amount of code bloat in 782 // this model, but it is uniformly spread across all the functions in the SCC 783 // and eventually they all become too large to inline, rather than 784 // incrementally maknig a single function grow in a super linear fashion. 785 SmallVector<std::pair<CallSite, int>, 16> Calls; 786 787 // Populate the initial list of calls in this SCC. 788 for (auto &N : InitialC) { 789 // We want to generally process call sites top-down in order for 790 // simplifications stemming from replacing the call with the returned value 791 // after inlining to be visible to subsequent inlining decisions. 792 // FIXME: Using instructions sequence is a really bad way to do this. 793 // Instead we should do an actual RPO walk of the function body. 794 for (Instruction &I : instructions(N.getFunction())) 795 if (auto CS = CallSite(&I)) 796 if (Function *Callee = CS.getCalledFunction()) 797 if (!Callee->isDeclaration()) 798 Calls.push_back({CS, -1}); 799 } 800 if (Calls.empty()) 801 return PreservedAnalyses::all(); 802 803 // Capture updatable variables for the current SCC and RefSCC. 804 auto *C = &InitialC; 805 auto *RC = &C->getOuterRefSCC(); 806 807 // When inlining a callee produces new call sites, we want to keep track of 808 // the fact that they were inlined from the callee. This allows us to avoid 809 // infinite inlining in some obscure cases. To represent this, we use an 810 // index into the InlineHistory vector. 811 SmallVector<std::pair<Function *, int>, 16> InlineHistory; 812 813 // Track a set vector of inlined callees so that we can augment the caller 814 // with all of their edges in the call graph before pruning out the ones that 815 // got simplified away. 816 SmallSetVector<Function *, 4> InlinedCallees; 817 818 // Track the dead functions to delete once finished with inlining calls. We 819 // defer deleting these to make it easier to handle the call graph updates. 820 SmallVector<Function *, 4> DeadFunctions; 821 822 // Loop forward over all of the calls. Note that we cannot cache the size as 823 // inlining can introduce new calls that need to be processed. 824 for (int i = 0; i < (int)Calls.size(); ++i) { 825 // We expect the calls to typically be batched with sequences of calls that 826 // have the same caller, so we first set up some shared infrastructure for 827 // this caller. We also do any pruning we can at this layer on the caller 828 // alone. 829 Function &F = *Calls[i].first.getCaller(); 830 LazyCallGraph::Node &N = *CG.lookup(F); 831 if (CG.lookupSCC(N) != C) 832 continue; 833 if (F.hasFnAttribute(Attribute::OptimizeNone)) 834 continue; 835 836 DEBUG(dbgs() << "Inlining calls in: " << F.getName() << "\n"); 837 838 // Get a FunctionAnalysisManager via a proxy for this particular node. We 839 // do this each time we visit a node as the SCC may have changed and as 840 // we're going to mutate this particular function we want to make sure the 841 // proxy is in place to forward any invalidation events. We can use the 842 // manager we get here for looking up results for functions other than this 843 // node however because those functions aren't going to be mutated by this 844 // pass. 845 FunctionAnalysisManager &FAM = 846 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(*C, CG) 847 .getManager(); 848 849 // Get the remarks emission analysis for the caller. 850 auto &ORE = FAM.getResult<OptimizationRemarkEmitterAnalysis>(F); 851 852 std::function<AssumptionCache &(Function &)> GetAssumptionCache = 853 [&](Function &F) -> AssumptionCache & { 854 return FAM.getResult<AssumptionAnalysis>(F); 855 }; 856 auto GetBFI = [&](Function &F) -> BlockFrequencyInfo & { 857 return FAM.getResult<BlockFrequencyAnalysis>(F); 858 }; 859 860 auto GetInlineCost = [&](CallSite CS) { 861 Function &Callee = *CS.getCalledFunction(); 862 auto &CalleeTTI = FAM.getResult<TargetIRAnalysis>(Callee); 863 return getInlineCost(CS, Params, CalleeTTI, GetAssumptionCache, {GetBFI}, 864 PSI, &ORE); 865 }; 866 867 // Now process as many calls as we have within this caller in the sequnece. 868 // We bail out as soon as the caller has to change so we can update the 869 // call graph and prepare the context of that new caller. 870 bool DidInline = false; 871 for (; i < (int)Calls.size() && Calls[i].first.getCaller() == &F; ++i) { 872 int InlineHistoryID; 873 CallSite CS; 874 std::tie(CS, InlineHistoryID) = Calls[i]; 875 Function &Callee = *CS.getCalledFunction(); 876 877 if (InlineHistoryID != -1 && 878 InlineHistoryIncludes(&Callee, InlineHistoryID, InlineHistory)) 879 continue; 880 881 // Check if this inlining may repeat breaking an SCC apart that has 882 // already been split once before. In that case, inlining here may 883 // trigger infinite inlining, much like is prevented within the inliner 884 // itself by the InlineHistory above, but spread across CGSCC iterations 885 // and thus hidden from the full inline history. 886 if (CG.lookupSCC(*CG.lookup(Callee)) == C && 887 UR.InlinedInternalEdges.count({&N, C})) { 888 DEBUG(dbgs() << "Skipping inlining internal SCC edge from a node " 889 "previously split out of this SCC by inlining: " 890 << F.getName() << " -> " << Callee.getName() << "\n"); 891 continue; 892 } 893 894 Optional<InlineCost> OIC = shouldInline(CS, GetInlineCost, ORE); 895 // Check whether we want to inline this callsite. 896 if (!OIC) 897 continue; 898 899 // Setup the data structure used to plumb customization into the 900 // `InlineFunction` routine. 901 InlineFunctionInfo IFI( 902 /*cg=*/nullptr, &GetAssumptionCache, PSI, 903 &FAM.getResult<BlockFrequencyAnalysis>(*(CS.getCaller())), 904 &FAM.getResult<BlockFrequencyAnalysis>(Callee)); 905 906 // Get DebugLoc to report. CS will be invalid after Inliner. 907 DebugLoc DLoc = CS->getDebugLoc(); 908 BasicBlock *Block = CS.getParent(); 909 910 using namespace ore; 911 if (!InlineFunction(CS, IFI)) { 912 ORE.emit( 913 OptimizationRemarkMissed(DEBUG_TYPE, "NotInlined", DLoc, Block) 914 << NV("Callee", &Callee) << " will not be inlined into " 915 << NV("Caller", &F)); 916 continue; 917 } 918 DidInline = true; 919 InlinedCallees.insert(&Callee); 920 921 if (OIC->isAlways()) 922 ORE.emit(OptimizationRemark(DEBUG_TYPE, "AlwaysInline", DLoc, Block) 923 << NV("Callee", &Callee) << " inlined into " 924 << NV("Caller", &F) << " with cost=always"); 925 else 926 ORE.emit( 927 OptimizationRemark(DEBUG_TYPE, "Inlined", DLoc, Block) 928 << NV("Callee", &Callee) << " inlined into " << NV("Caller", &F) 929 << " with cost=" << NV("Cost", OIC->getCost()) 930 << " (threshold=" << NV("Threshold", OIC->getThreshold()) << ")"); 931 932 // Add any new callsites to defined functions to the worklist. 933 if (!IFI.InlinedCallSites.empty()) { 934 int NewHistoryID = InlineHistory.size(); 935 InlineHistory.push_back({&Callee, InlineHistoryID}); 936 for (CallSite &CS : reverse(IFI.InlinedCallSites)) 937 if (Function *NewCallee = CS.getCalledFunction()) 938 if (!NewCallee->isDeclaration()) 939 Calls.push_back({CS, NewHistoryID}); 940 } 941 942 // Merge the attributes based on the inlining. 943 AttributeFuncs::mergeAttributesForInlining(F, Callee); 944 945 // For local functions, check whether this makes the callee trivially 946 // dead. In that case, we can drop the body of the function eagerly 947 // which may reduce the number of callers of other functions to one, 948 // changing inline cost thresholds. 949 if (Callee.hasLocalLinkage()) { 950 // To check this we also need to nuke any dead constant uses (perhaps 951 // made dead by this operation on other functions). 952 Callee.removeDeadConstantUsers(); 953 if (Callee.use_empty() && !CG.isLibFunction(Callee)) { 954 Calls.erase( 955 std::remove_if(Calls.begin() + i + 1, Calls.end(), 956 [&Callee](const std::pair<CallSite, int> &Call) { 957 return Call.first.getCaller() == &Callee; 958 }), 959 Calls.end()); 960 // Clear the body and queue the function itself for deletion when we 961 // finish inlining and call graph updates. 962 // Note that after this point, it is an error to do anything other 963 // than use the callee's address or delete it. 964 Callee.dropAllReferences(); 965 assert(find(DeadFunctions, &Callee) == DeadFunctions.end() && 966 "Cannot put cause a function to become dead twice!"); 967 DeadFunctions.push_back(&Callee); 968 } 969 } 970 } 971 972 // Back the call index up by one to put us in a good position to go around 973 // the outer loop. 974 --i; 975 976 if (!DidInline) 977 continue; 978 Changed = true; 979 980 // Add all the inlined callees' edges as ref edges to the caller. These are 981 // by definition trivial edges as we always have *some* transitive ref edge 982 // chain. While in some cases these edges are direct calls inside the 983 // callee, they have to be modeled in the inliner as reference edges as 984 // there may be a reference edge anywhere along the chain from the current 985 // caller to the callee that causes the whole thing to appear like 986 // a (transitive) reference edge that will require promotion to a call edge 987 // below. 988 for (Function *InlinedCallee : InlinedCallees) { 989 LazyCallGraph::Node &CalleeN = *CG.lookup(*InlinedCallee); 990 for (LazyCallGraph::Edge &E : *CalleeN) 991 RC->insertTrivialRefEdge(N, E.getNode()); 992 } 993 994 // At this point, since we have made changes we have at least removed 995 // a call instruction. However, in the process we do some incremental 996 // simplification of the surrounding code. This simplification can 997 // essentially do all of the same things as a function pass and we can 998 // re-use the exact same logic for updating the call graph to reflect the 999 // change. 1000 LazyCallGraph::SCC *OldC = C; 1001 C = &updateCGAndAnalysisManagerForFunctionPass(CG, *C, N, AM, UR); 1002 DEBUG(dbgs() << "Updated inlining SCC: " << *C << "\n"); 1003 RC = &C->getOuterRefSCC(); 1004 1005 // If this causes an SCC to split apart into multiple smaller SCCs, there 1006 // is a subtle risk we need to prepare for. Other transformations may 1007 // expose an "infinite inlining" opportunity later, and because of the SCC 1008 // mutation, we will revisit this function and potentially re-inline. If we 1009 // do, and that re-inlining also has the potentially to mutate the SCC 1010 // structure, the infinite inlining problem can manifest through infinite 1011 // SCC splits and merges. To avoid this, we capture the originating caller 1012 // node and the SCC containing the call edge. This is a slight over 1013 // approximation of the possible inlining decisions that must be avoided, 1014 // but is relatively efficient to store. 1015 // FIXME: This seems like a very heavyweight way of retaining the inline 1016 // history, we should look for a more efficient way of tracking it. 1017 if (C != OldC && llvm::any_of(InlinedCallees, [&](Function *Callee) { 1018 return CG.lookupSCC(*CG.lookup(*Callee)) == OldC; 1019 })) { 1020 DEBUG(dbgs() << "Inlined an internal call edge and split an SCC, " 1021 "retaining this to avoid infinite inlining.\n"); 1022 UR.InlinedInternalEdges.insert({&N, OldC}); 1023 } 1024 InlinedCallees.clear(); 1025 } 1026 1027 // Now that we've finished inlining all of the calls across this SCC, delete 1028 // all of the trivially dead functions, updating the call graph and the CGSCC 1029 // pass manager in the process. 1030 // 1031 // Note that this walks a pointer set which has non-deterministic order but 1032 // that is OK as all we do is delete things and add pointers to unordered 1033 // sets. 1034 for (Function *DeadF : DeadFunctions) { 1035 // Get the necessary information out of the call graph and nuke the 1036 // function there. Also, cclear out any cached analyses. 1037 auto &DeadC = *CG.lookupSCC(*CG.lookup(*DeadF)); 1038 FunctionAnalysisManager &FAM = 1039 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(DeadC, CG) 1040 .getManager(); 1041 FAM.clear(*DeadF); 1042 AM.clear(DeadC); 1043 auto &DeadRC = DeadC.getOuterRefSCC(); 1044 CG.removeDeadFunction(*DeadF); 1045 1046 // Mark the relevant parts of the call graph as invalid so we don't visit 1047 // them. 1048 UR.InvalidatedSCCs.insert(&DeadC); 1049 UR.InvalidatedRefSCCs.insert(&DeadRC); 1050 1051 // And delete the actual function from the module. 1052 M.getFunctionList().erase(DeadF); 1053 } 1054 1055 if (!Changed) 1056 return PreservedAnalyses::all(); 1057 1058 // Even if we change the IR, we update the core CGSCC data structures and so 1059 // can preserve the proxy to the function analysis manager. 1060 PreservedAnalyses PA; 1061 PA.preserve<FunctionAnalysisManagerCGSCCProxy>(); 1062 return PA; 1063 } 1064