1 //===- Inliner.cpp - Code common to all inliners --------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the mechanics required to implement inlining without 10 // missing any calls and updating the call graph. The decisions of which calls 11 // are profitable to inline are implemented elsewhere. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/IPO/Inliner.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/None.h" 18 #include "llvm/ADT/Optional.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/ScopeExit.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/Analysis/AssumptionCache.h" 27 #include "llvm/Analysis/BasicAliasAnalysis.h" 28 #include "llvm/Analysis/BlockFrequencyInfo.h" 29 #include "llvm/Analysis/CGSCCPassManager.h" 30 #include "llvm/Analysis/CallGraph.h" 31 #include "llvm/Analysis/GlobalsModRef.h" 32 #include "llvm/Analysis/InlineAdvisor.h" 33 #include "llvm/Analysis/InlineCost.h" 34 #include "llvm/Analysis/InlineOrder.h" 35 #include "llvm/Analysis/LazyCallGraph.h" 36 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 37 #include "llvm/Analysis/ProfileSummaryInfo.h" 38 #include "llvm/Analysis/TargetLibraryInfo.h" 39 #include "llvm/Analysis/TargetTransformInfo.h" 40 #include "llvm/Analysis/Utils/ImportedFunctionsInliningStatistics.h" 41 #include "llvm/IR/Attributes.h" 42 #include "llvm/IR/BasicBlock.h" 43 #include "llvm/IR/DataLayout.h" 44 #include "llvm/IR/DebugLoc.h" 45 #include "llvm/IR/DerivedTypes.h" 46 #include "llvm/IR/DiagnosticInfo.h" 47 #include "llvm/IR/Function.h" 48 #include "llvm/IR/InstIterator.h" 49 #include "llvm/IR/Instruction.h" 50 #include "llvm/IR/Instructions.h" 51 #include "llvm/IR/IntrinsicInst.h" 52 #include "llvm/IR/Metadata.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/IR/PassManager.h" 55 #include "llvm/IR/User.h" 56 #include "llvm/IR/Value.h" 57 #include "llvm/Pass.h" 58 #include "llvm/Support/Casting.h" 59 #include "llvm/Support/CommandLine.h" 60 #include "llvm/Support/Debug.h" 61 #include "llvm/Support/raw_ostream.h" 62 #include "llvm/Transforms/Utils/CallPromotionUtils.h" 63 #include "llvm/Transforms/Utils/Cloning.h" 64 #include "llvm/Transforms/Utils/Local.h" 65 #include "llvm/Transforms/Utils/ModuleUtils.h" 66 #include <algorithm> 67 #include <cassert> 68 #include <functional> 69 #include <sstream> 70 #include <tuple> 71 #include <utility> 72 #include <vector> 73 74 using namespace llvm; 75 76 #define DEBUG_TYPE "inline" 77 78 STATISTIC(NumInlined, "Number of functions inlined"); 79 STATISTIC(NumCallsDeleted, "Number of call sites deleted, not inlined"); 80 STATISTIC(NumDeleted, "Number of functions deleted because all callers found"); 81 STATISTIC(NumMergedAllocas, "Number of allocas merged together"); 82 83 /// Flag to disable manual alloca merging. 84 /// 85 /// Merging of allocas was originally done as a stack-size saving technique 86 /// prior to LLVM's code generator having support for stack coloring based on 87 /// lifetime markers. It is now in the process of being removed. To experiment 88 /// with disabling it and relying fully on lifetime marker based stack 89 /// coloring, you can pass this flag to LLVM. 90 static cl::opt<bool> 91 DisableInlinedAllocaMerging("disable-inlined-alloca-merging", 92 cl::init(false), cl::Hidden); 93 94 extern cl::opt<InlinerFunctionImportStatsOpts> InlinerFunctionImportStats; 95 96 static cl::opt<std::string> CGSCCInlineReplayFile( 97 "cgscc-inline-replay", cl::init(""), cl::value_desc("filename"), 98 cl::desc( 99 "Optimization remarks file containing inline remarks to be replayed " 100 "by cgscc inlining."), 101 cl::Hidden); 102 103 static cl::opt<ReplayInlineScope> CGSCCInlineReplayScope( 104 "cgscc-inline-replay-scope", cl::init(ReplayInlineScope::Function), 105 cl::values(clEnumValN(ReplayInlineScope::Function, "Function", 106 "Replay on functions that have remarks associated " 107 "with them (default)"), 108 clEnumValN(ReplayInlineScope::Module, "Module", 109 "Replay on the entire module")), 110 cl::desc("Whether inline replay should be applied to the entire " 111 "Module or just the Functions (default) that are present as " 112 "callers in remarks during cgscc inlining."), 113 cl::Hidden); 114 115 static cl::opt<bool> InlineEnablePriorityOrder( 116 "inline-enable-priority-order", cl::Hidden, cl::init(false), 117 cl::desc("Enable the priority inline order for the inliner")); 118 119 LegacyInlinerBase::LegacyInlinerBase(char &ID) : CallGraphSCCPass(ID) {} 120 121 LegacyInlinerBase::LegacyInlinerBase(char &ID, bool InsertLifetime) 122 : CallGraphSCCPass(ID), InsertLifetime(InsertLifetime) {} 123 124 /// For this class, we declare that we require and preserve the call graph. 125 /// If the derived class implements this method, it should 126 /// always explicitly call the implementation here. 127 void LegacyInlinerBase::getAnalysisUsage(AnalysisUsage &AU) const { 128 AU.addRequired<AssumptionCacheTracker>(); 129 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 130 AU.addRequired<TargetLibraryInfoWrapperPass>(); 131 getAAResultsAnalysisUsage(AU); 132 CallGraphSCCPass::getAnalysisUsage(AU); 133 } 134 135 using InlinedArrayAllocasTy = DenseMap<ArrayType *, std::vector<AllocaInst *>>; 136 137 /// Look at all of the allocas that we inlined through this call site. If we 138 /// have already inlined other allocas through other calls into this function, 139 /// then we know that they have disjoint lifetimes and that we can merge them. 140 /// 141 /// There are many heuristics possible for merging these allocas, and the 142 /// different options have different tradeoffs. One thing that we *really* 143 /// don't want to hurt is SRoA: once inlining happens, often allocas are no 144 /// longer address taken and so they can be promoted. 145 /// 146 /// Our "solution" for that is to only merge allocas whose outermost type is an 147 /// array type. These are usually not promoted because someone is using a 148 /// variable index into them. These are also often the most important ones to 149 /// merge. 150 /// 151 /// A better solution would be to have real memory lifetime markers in the IR 152 /// and not have the inliner do any merging of allocas at all. This would 153 /// allow the backend to do proper stack slot coloring of all allocas that 154 /// *actually make it to the backend*, which is really what we want. 155 /// 156 /// Because we don't have this information, we do this simple and useful hack. 157 static void mergeInlinedArrayAllocas(Function *Caller, InlineFunctionInfo &IFI, 158 InlinedArrayAllocasTy &InlinedArrayAllocas, 159 int InlineHistory) { 160 SmallPtrSet<AllocaInst *, 16> UsedAllocas; 161 162 // When processing our SCC, check to see if the call site was inlined from 163 // some other call site. For example, if we're processing "A" in this code: 164 // A() { B() } 165 // B() { x = alloca ... C() } 166 // C() { y = alloca ... } 167 // Assume that C was not inlined into B initially, and so we're processing A 168 // and decide to inline B into A. Doing this makes an alloca available for 169 // reuse and makes a callsite (C) available for inlining. When we process 170 // the C call site we don't want to do any alloca merging between X and Y 171 // because their scopes are not disjoint. We could make this smarter by 172 // keeping track of the inline history for each alloca in the 173 // InlinedArrayAllocas but this isn't likely to be a significant win. 174 if (InlineHistory != -1) // Only do merging for top-level call sites in SCC. 175 return; 176 177 // Loop over all the allocas we have so far and see if they can be merged with 178 // a previously inlined alloca. If not, remember that we had it. 179 for (unsigned AllocaNo = 0, E = IFI.StaticAllocas.size(); AllocaNo != E; 180 ++AllocaNo) { 181 AllocaInst *AI = IFI.StaticAllocas[AllocaNo]; 182 183 // Don't bother trying to merge array allocations (they will usually be 184 // canonicalized to be an allocation *of* an array), or allocations whose 185 // type is not itself an array (because we're afraid of pessimizing SRoA). 186 ArrayType *ATy = dyn_cast<ArrayType>(AI->getAllocatedType()); 187 if (!ATy || AI->isArrayAllocation()) 188 continue; 189 190 // Get the list of all available allocas for this array type. 191 std::vector<AllocaInst *> &AllocasForType = InlinedArrayAllocas[ATy]; 192 193 // Loop over the allocas in AllocasForType to see if we can reuse one. Note 194 // that we have to be careful not to reuse the same "available" alloca for 195 // multiple different allocas that we just inlined, we use the 'UsedAllocas' 196 // set to keep track of which "available" allocas are being used by this 197 // function. Also, AllocasForType can be empty of course! 198 bool MergedAwayAlloca = false; 199 for (AllocaInst *AvailableAlloca : AllocasForType) { 200 Align Align1 = AI->getAlign(); 201 Align Align2 = AvailableAlloca->getAlign(); 202 203 // The available alloca has to be in the right function, not in some other 204 // function in this SCC. 205 if (AvailableAlloca->getParent() != AI->getParent()) 206 continue; 207 208 // If the inlined function already uses this alloca then we can't reuse 209 // it. 210 if (!UsedAllocas.insert(AvailableAlloca).second) 211 continue; 212 213 // Otherwise, we *can* reuse it, RAUW AI into AvailableAlloca and declare 214 // success! 215 LLVM_DEBUG(dbgs() << " ***MERGED ALLOCA: " << *AI 216 << "\n\t\tINTO: " << *AvailableAlloca << '\n'); 217 218 // Move affected dbg.declare calls immediately after the new alloca to 219 // avoid the situation when a dbg.declare precedes its alloca. 220 if (auto *L = LocalAsMetadata::getIfExists(AI)) 221 if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L)) 222 for (User *U : MDV->users()) 223 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(U)) 224 DDI->moveBefore(AvailableAlloca->getNextNode()); 225 226 AI->replaceAllUsesWith(AvailableAlloca); 227 228 if (Align1 > Align2) 229 AvailableAlloca->setAlignment(AI->getAlign()); 230 231 AI->eraseFromParent(); 232 MergedAwayAlloca = true; 233 ++NumMergedAllocas; 234 IFI.StaticAllocas[AllocaNo] = nullptr; 235 break; 236 } 237 238 // If we already nuked the alloca, we're done with it. 239 if (MergedAwayAlloca) 240 continue; 241 242 // If we were unable to merge away the alloca either because there are no 243 // allocas of the right type available or because we reused them all 244 // already, remember that this alloca came from an inlined function and mark 245 // it used so we don't reuse it for other allocas from this inline 246 // operation. 247 AllocasForType.push_back(AI); 248 UsedAllocas.insert(AI); 249 } 250 } 251 252 /// If it is possible to inline the specified call site, 253 /// do so and update the CallGraph for this operation. 254 /// 255 /// This function also does some basic book-keeping to update the IR. The 256 /// InlinedArrayAllocas map keeps track of any allocas that are already 257 /// available from other functions inlined into the caller. If we are able to 258 /// inline this call site we attempt to reuse already available allocas or add 259 /// any new allocas to the set if not possible. 260 static InlineResult inlineCallIfPossible( 261 CallBase &CB, InlineFunctionInfo &IFI, 262 InlinedArrayAllocasTy &InlinedArrayAllocas, int InlineHistory, 263 bool InsertLifetime, function_ref<AAResults &(Function &)> &AARGetter, 264 ImportedFunctionsInliningStatistics &ImportedFunctionsStats) { 265 Function *Callee = CB.getCalledFunction(); 266 Function *Caller = CB.getCaller(); 267 268 AAResults &AAR = AARGetter(*Callee); 269 270 // Try to inline the function. Get the list of static allocas that were 271 // inlined. 272 InlineResult IR = InlineFunction(CB, IFI, &AAR, InsertLifetime); 273 if (!IR.isSuccess()) 274 return IR; 275 276 if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No) 277 ImportedFunctionsStats.recordInline(*Caller, *Callee); 278 279 AttributeFuncs::mergeAttributesForInlining(*Caller, *Callee); 280 281 if (!DisableInlinedAllocaMerging) 282 mergeInlinedArrayAllocas(Caller, IFI, InlinedArrayAllocas, InlineHistory); 283 284 return IR; // success 285 } 286 287 /// Return true if the specified inline history ID 288 /// indicates an inline history that includes the specified function. 289 static bool inlineHistoryIncludes( 290 Function *F, int InlineHistoryID, 291 const SmallVectorImpl<std::pair<Function *, int>> &InlineHistory) { 292 while (InlineHistoryID != -1) { 293 assert(unsigned(InlineHistoryID) < InlineHistory.size() && 294 "Invalid inline history ID"); 295 if (InlineHistory[InlineHistoryID].first == F) 296 return true; 297 InlineHistoryID = InlineHistory[InlineHistoryID].second; 298 } 299 return false; 300 } 301 302 bool LegacyInlinerBase::doInitialization(CallGraph &CG) { 303 if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No) 304 ImportedFunctionsStats.setModuleInfo(CG.getModule()); 305 return false; // No changes to CallGraph. 306 } 307 308 bool LegacyInlinerBase::runOnSCC(CallGraphSCC &SCC) { 309 if (skipSCC(SCC)) 310 return false; 311 return inlineCalls(SCC); 312 } 313 314 static bool 315 inlineCallsImpl(CallGraphSCC &SCC, CallGraph &CG, 316 std::function<AssumptionCache &(Function &)> GetAssumptionCache, 317 ProfileSummaryInfo *PSI, 318 std::function<const TargetLibraryInfo &(Function &)> GetTLI, 319 bool InsertLifetime, 320 function_ref<InlineCost(CallBase &CB)> GetInlineCost, 321 function_ref<AAResults &(Function &)> AARGetter, 322 ImportedFunctionsInliningStatistics &ImportedFunctionsStats) { 323 SmallPtrSet<Function *, 8> SCCFunctions; 324 LLVM_DEBUG(dbgs() << "Inliner visiting SCC:"); 325 for (CallGraphNode *Node : SCC) { 326 Function *F = Node->getFunction(); 327 if (F) 328 SCCFunctions.insert(F); 329 LLVM_DEBUG(dbgs() << " " << (F ? F->getName() : "INDIRECTNODE")); 330 } 331 332 // Scan through and identify all call sites ahead of time so that we only 333 // inline call sites in the original functions, not call sites that result 334 // from inlining other functions. 335 SmallVector<std::pair<CallBase *, int>, 16> CallSites; 336 337 // When inlining a callee produces new call sites, we want to keep track of 338 // the fact that they were inlined from the callee. This allows us to avoid 339 // infinite inlining in some obscure cases. To represent this, we use an 340 // index into the InlineHistory vector. 341 SmallVector<std::pair<Function *, int>, 8> InlineHistory; 342 343 for (CallGraphNode *Node : SCC) { 344 Function *F = Node->getFunction(); 345 if (!F || F->isDeclaration()) 346 continue; 347 348 OptimizationRemarkEmitter ORE(F); 349 for (BasicBlock &BB : *F) 350 for (Instruction &I : BB) { 351 auto *CB = dyn_cast<CallBase>(&I); 352 // If this isn't a call, or it is a call to an intrinsic, it can 353 // never be inlined. 354 if (!CB || isa<IntrinsicInst>(I)) 355 continue; 356 357 // If this is a direct call to an external function, we can never inline 358 // it. If it is an indirect call, inlining may resolve it to be a 359 // direct call, so we keep it. 360 if (Function *Callee = CB->getCalledFunction()) 361 if (Callee->isDeclaration()) { 362 using namespace ore; 363 364 setInlineRemark(*CB, "unavailable definition"); 365 ORE.emit([&]() { 366 return OptimizationRemarkMissed(DEBUG_TYPE, "NoDefinition", &I) 367 << NV("Callee", Callee) << " will not be inlined into " 368 << NV("Caller", CB->getCaller()) 369 << " because its definition is unavailable" 370 << setIsVerbose(); 371 }); 372 continue; 373 } 374 375 CallSites.push_back(std::make_pair(CB, -1)); 376 } 377 } 378 379 LLVM_DEBUG(dbgs() << ": " << CallSites.size() << " call sites.\n"); 380 381 // If there are no calls in this function, exit early. 382 if (CallSites.empty()) 383 return false; 384 385 // Now that we have all of the call sites, move the ones to functions in the 386 // current SCC to the end of the list. 387 unsigned FirstCallInSCC = CallSites.size(); 388 for (unsigned I = 0; I < FirstCallInSCC; ++I) 389 if (Function *F = CallSites[I].first->getCalledFunction()) 390 if (SCCFunctions.count(F)) 391 std::swap(CallSites[I--], CallSites[--FirstCallInSCC]); 392 393 InlinedArrayAllocasTy InlinedArrayAllocas; 394 InlineFunctionInfo InlineInfo(&CG, GetAssumptionCache, PSI); 395 396 // Now that we have all of the call sites, loop over them and inline them if 397 // it looks profitable to do so. 398 bool Changed = false; 399 bool LocalChange; 400 do { 401 LocalChange = false; 402 // Iterate over the outer loop because inlining functions can cause indirect 403 // calls to become direct calls. 404 // CallSites may be modified inside so ranged for loop can not be used. 405 for (unsigned CSi = 0; CSi != CallSites.size(); ++CSi) { 406 auto &P = CallSites[CSi]; 407 CallBase &CB = *P.first; 408 const int InlineHistoryID = P.second; 409 410 Function *Caller = CB.getCaller(); 411 Function *Callee = CB.getCalledFunction(); 412 413 // We can only inline direct calls to non-declarations. 414 if (!Callee || Callee->isDeclaration()) 415 continue; 416 417 bool IsTriviallyDead = isInstructionTriviallyDead(&CB, &GetTLI(*Caller)); 418 419 if (!IsTriviallyDead) { 420 // If this call site was obtained by inlining another function, verify 421 // that the include path for the function did not include the callee 422 // itself. If so, we'd be recursively inlining the same function, 423 // which would provide the same callsites, which would cause us to 424 // infinitely inline. 425 if (InlineHistoryID != -1 && 426 inlineHistoryIncludes(Callee, InlineHistoryID, InlineHistory)) { 427 setInlineRemark(CB, "recursive"); 428 continue; 429 } 430 } 431 432 // FIXME for new PM: because of the old PM we currently generate ORE and 433 // in turn BFI on demand. With the new PM, the ORE dependency should 434 // just become a regular analysis dependency. 435 OptimizationRemarkEmitter ORE(Caller); 436 437 auto OIC = shouldInline(CB, GetInlineCost, ORE); 438 // If the policy determines that we should inline this function, 439 // delete the call instead. 440 if (!OIC) 441 continue; 442 443 // If this call site is dead and it is to a readonly function, we should 444 // just delete the call instead of trying to inline it, regardless of 445 // size. This happens because IPSCCP propagates the result out of the 446 // call and then we're left with the dead call. 447 if (IsTriviallyDead) { 448 LLVM_DEBUG(dbgs() << " -> Deleting dead call: " << CB << "\n"); 449 // Update the call graph by deleting the edge from Callee to Caller. 450 setInlineRemark(CB, "trivially dead"); 451 CG[Caller]->removeCallEdgeFor(CB); 452 CB.eraseFromParent(); 453 ++NumCallsDeleted; 454 } else { 455 // Get DebugLoc to report. CB will be invalid after Inliner. 456 DebugLoc DLoc = CB.getDebugLoc(); 457 BasicBlock *Block = CB.getParent(); 458 459 // Attempt to inline the function. 460 using namespace ore; 461 462 InlineResult IR = inlineCallIfPossible( 463 CB, InlineInfo, InlinedArrayAllocas, InlineHistoryID, 464 InsertLifetime, AARGetter, ImportedFunctionsStats); 465 if (!IR.isSuccess()) { 466 setInlineRemark(CB, std::string(IR.getFailureReason()) + "; " + 467 inlineCostStr(*OIC)); 468 ORE.emit([&]() { 469 return OptimizationRemarkMissed(DEBUG_TYPE, "NotInlined", DLoc, 470 Block) 471 << NV("Callee", Callee) << " will not be inlined into " 472 << NV("Caller", Caller) << ": " 473 << NV("Reason", IR.getFailureReason()); 474 }); 475 continue; 476 } 477 ++NumInlined; 478 479 emitInlinedIntoBasedOnCost(ORE, DLoc, Block, *Callee, *Caller, *OIC); 480 481 // If inlining this function gave us any new call sites, throw them 482 // onto our worklist to process. They are useful inline candidates. 483 if (!InlineInfo.InlinedCalls.empty()) { 484 // Create a new inline history entry for this, so that we remember 485 // that these new callsites came about due to inlining Callee. 486 int NewHistoryID = InlineHistory.size(); 487 InlineHistory.push_back(std::make_pair(Callee, InlineHistoryID)); 488 489 #ifndef NDEBUG 490 // Make sure no dupplicates in the inline candidates. This could 491 // happen when a callsite is simpilfied to reusing the return value 492 // of another callsite during function cloning, thus the other 493 // callsite will be reconsidered here. 494 DenseSet<CallBase *> DbgCallSites; 495 for (auto &II : CallSites) 496 DbgCallSites.insert(II.first); 497 #endif 498 499 for (Value *Ptr : InlineInfo.InlinedCalls) { 500 #ifndef NDEBUG 501 assert(DbgCallSites.count(dyn_cast<CallBase>(Ptr)) == 0); 502 #endif 503 CallSites.push_back( 504 std::make_pair(dyn_cast<CallBase>(Ptr), NewHistoryID)); 505 } 506 } 507 } 508 509 // If we inlined or deleted the last possible call site to the function, 510 // delete the function body now. 511 if (Callee && Callee->use_empty() && Callee->hasLocalLinkage() && 512 // TODO: Can remove if in SCC now. 513 !SCCFunctions.count(Callee) && 514 // The function may be apparently dead, but if there are indirect 515 // callgraph references to the node, we cannot delete it yet, this 516 // could invalidate the CGSCC iterator. 517 CG[Callee]->getNumReferences() == 0) { 518 LLVM_DEBUG(dbgs() << " -> Deleting dead function: " 519 << Callee->getName() << "\n"); 520 CallGraphNode *CalleeNode = CG[Callee]; 521 522 // Remove any call graph edges from the callee to its callees. 523 CalleeNode->removeAllCalledFunctions(); 524 525 // Removing the node for callee from the call graph and delete it. 526 delete CG.removeFunctionFromModule(CalleeNode); 527 ++NumDeleted; 528 } 529 530 // Remove this call site from the list. If possible, use 531 // swap/pop_back for efficiency, but do not use it if doing so would 532 // move a call site to a function in this SCC before the 533 // 'FirstCallInSCC' barrier. 534 if (SCC.isSingular()) { 535 CallSites[CSi] = CallSites.back(); 536 CallSites.pop_back(); 537 } else { 538 CallSites.erase(CallSites.begin() + CSi); 539 } 540 --CSi; 541 542 Changed = true; 543 LocalChange = true; 544 } 545 } while (LocalChange); 546 547 return Changed; 548 } 549 550 bool LegacyInlinerBase::inlineCalls(CallGraphSCC &SCC) { 551 CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph(); 552 ACT = &getAnalysis<AssumptionCacheTracker>(); 553 PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 554 GetTLI = [&](Function &F) -> const TargetLibraryInfo & { 555 return getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 556 }; 557 auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & { 558 return ACT->getAssumptionCache(F); 559 }; 560 return inlineCallsImpl( 561 SCC, CG, GetAssumptionCache, PSI, GetTLI, InsertLifetime, 562 [&](CallBase &CB) { return getInlineCost(CB); }, LegacyAARGetter(*this), 563 ImportedFunctionsStats); 564 } 565 566 /// Remove now-dead linkonce functions at the end of 567 /// processing to avoid breaking the SCC traversal. 568 bool LegacyInlinerBase::doFinalization(CallGraph &CG) { 569 if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No) 570 ImportedFunctionsStats.dump(InlinerFunctionImportStats == 571 InlinerFunctionImportStatsOpts::Verbose); 572 return removeDeadFunctions(CG); 573 } 574 575 /// Remove dead functions that are not included in DNR (Do Not Remove) list. 576 bool LegacyInlinerBase::removeDeadFunctions(CallGraph &CG, 577 bool AlwaysInlineOnly) { 578 SmallVector<CallGraphNode *, 16> FunctionsToRemove; 579 SmallVector<Function *, 16> DeadFunctionsInComdats; 580 581 auto RemoveCGN = [&](CallGraphNode *CGN) { 582 // Remove any call graph edges from the function to its callees. 583 CGN->removeAllCalledFunctions(); 584 585 // Remove any edges from the external node to the function's call graph 586 // node. These edges might have been made irrelegant due to 587 // optimization of the program. 588 CG.getExternalCallingNode()->removeAnyCallEdgeTo(CGN); 589 590 // Removing the node for callee from the call graph and delete it. 591 FunctionsToRemove.push_back(CGN); 592 }; 593 594 // Scan for all of the functions, looking for ones that should now be removed 595 // from the program. Insert the dead ones in the FunctionsToRemove set. 596 for (const auto &I : CG) { 597 CallGraphNode *CGN = I.second.get(); 598 Function *F = CGN->getFunction(); 599 if (!F || F->isDeclaration()) 600 continue; 601 602 // Handle the case when this function is called and we only want to care 603 // about always-inline functions. This is a bit of a hack to share code 604 // between here and the InlineAlways pass. 605 if (AlwaysInlineOnly && !F->hasFnAttribute(Attribute::AlwaysInline)) 606 continue; 607 608 // If the only remaining users of the function are dead constants, remove 609 // them. 610 F->removeDeadConstantUsers(); 611 612 if (!F->isDefTriviallyDead()) 613 continue; 614 615 // It is unsafe to drop a function with discardable linkage from a COMDAT 616 // without also dropping the other members of the COMDAT. 617 // The inliner doesn't visit non-function entities which are in COMDAT 618 // groups so it is unsafe to do so *unless* the linkage is local. 619 if (!F->hasLocalLinkage()) { 620 if (F->hasComdat()) { 621 DeadFunctionsInComdats.push_back(F); 622 continue; 623 } 624 } 625 626 RemoveCGN(CGN); 627 } 628 if (!DeadFunctionsInComdats.empty()) { 629 // Filter out the functions whose comdats remain alive. 630 filterDeadComdatFunctions(CG.getModule(), DeadFunctionsInComdats); 631 // Remove the rest. 632 for (Function *F : DeadFunctionsInComdats) 633 RemoveCGN(CG[F]); 634 } 635 636 if (FunctionsToRemove.empty()) 637 return false; 638 639 // Now that we know which functions to delete, do so. We didn't want to do 640 // this inline, because that would invalidate our CallGraph::iterator 641 // objects. :( 642 // 643 // Note that it doesn't matter that we are iterating over a non-stable order 644 // here to do this, it doesn't matter which order the functions are deleted 645 // in. 646 array_pod_sort(FunctionsToRemove.begin(), FunctionsToRemove.end()); 647 FunctionsToRemove.erase( 648 std::unique(FunctionsToRemove.begin(), FunctionsToRemove.end()), 649 FunctionsToRemove.end()); 650 for (CallGraphNode *CGN : FunctionsToRemove) { 651 delete CG.removeFunctionFromModule(CGN); 652 ++NumDeleted; 653 } 654 return true; 655 } 656 657 InlineAdvisor & 658 InlinerPass::getAdvisor(const ModuleAnalysisManagerCGSCCProxy::Result &MAM, 659 FunctionAnalysisManager &FAM, Module &M) { 660 if (OwnedAdvisor) 661 return *OwnedAdvisor; 662 663 auto *IAA = MAM.getCachedResult<InlineAdvisorAnalysis>(M); 664 if (!IAA) { 665 // It should still be possible to run the inliner as a stand-alone SCC pass, 666 // for test scenarios. In that case, we default to the 667 // DefaultInlineAdvisor, which doesn't need to keep state between SCC pass 668 // runs. It also uses just the default InlineParams. 669 // In this case, we need to use the provided FAM, which is valid for the 670 // duration of the inliner pass, and thus the lifetime of the owned advisor. 671 // The one we would get from the MAM can be invalidated as a result of the 672 // inliner's activity. 673 OwnedAdvisor = 674 std::make_unique<DefaultInlineAdvisor>(M, FAM, getInlineParams()); 675 676 if (!CGSCCInlineReplayFile.empty()) 677 OwnedAdvisor = getReplayInlineAdvisor( 678 M, FAM, M.getContext(), std::move(OwnedAdvisor), 679 CGSCCInlineReplayFile, CGSCCInlineReplayScope, 680 /*EmitRemarks=*/true); 681 682 return *OwnedAdvisor; 683 } 684 assert(IAA->getAdvisor() && 685 "Expected a present InlineAdvisorAnalysis also have an " 686 "InlineAdvisor initialized"); 687 return *IAA->getAdvisor(); 688 } 689 690 PreservedAnalyses InlinerPass::run(LazyCallGraph::SCC &InitialC, 691 CGSCCAnalysisManager &AM, LazyCallGraph &CG, 692 CGSCCUpdateResult &UR) { 693 const auto &MAMProxy = 694 AM.getResult<ModuleAnalysisManagerCGSCCProxy>(InitialC, CG); 695 bool Changed = false; 696 697 assert(InitialC.size() > 0 && "Cannot handle an empty SCC!"); 698 Module &M = *InitialC.begin()->getFunction().getParent(); 699 ProfileSummaryInfo *PSI = MAMProxy.getCachedResult<ProfileSummaryAnalysis>(M); 700 701 FunctionAnalysisManager &FAM = 702 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(InitialC, CG) 703 .getManager(); 704 705 InlineAdvisor &Advisor = getAdvisor(MAMProxy, FAM, M); 706 Advisor.onPassEntry(); 707 708 auto AdvisorOnExit = make_scope_exit([&] { Advisor.onPassExit(); }); 709 710 // We use a single common worklist for calls across the entire SCC. We 711 // process these in-order and append new calls introduced during inlining to 712 // the end. The PriorityInlineOrder is optional here, in which the smaller 713 // callee would have a higher priority to inline. 714 // 715 // Note that this particular order of processing is actually critical to 716 // avoid very bad behaviors. Consider *highly connected* call graphs where 717 // each function contains a small amount of code and a couple of calls to 718 // other functions. Because the LLVM inliner is fundamentally a bottom-up 719 // inliner, it can handle gracefully the fact that these all appear to be 720 // reasonable inlining candidates as it will flatten things until they become 721 // too big to inline, and then move on and flatten another batch. 722 // 723 // However, when processing call edges *within* an SCC we cannot rely on this 724 // bottom-up behavior. As a consequence, with heavily connected *SCCs* of 725 // functions we can end up incrementally inlining N calls into each of 726 // N functions because each incremental inlining decision looks good and we 727 // don't have a topological ordering to prevent explosions. 728 // 729 // To compensate for this, we don't process transitive edges made immediate 730 // by inlining until we've done one pass of inlining across the entire SCC. 731 // Large, highly connected SCCs still lead to some amount of code bloat in 732 // this model, but it is uniformly spread across all the functions in the SCC 733 // and eventually they all become too large to inline, rather than 734 // incrementally maknig a single function grow in a super linear fashion. 735 std::unique_ptr<InlineOrder<std::pair<CallBase *, int>>> Calls; 736 if (InlineEnablePriorityOrder) 737 Calls = std::make_unique<PriorityInlineOrder<InlineSizePriority>>(); 738 else 739 Calls = std::make_unique<DefaultInlineOrder<std::pair<CallBase *, int>>>(); 740 assert(Calls != nullptr && "Expected an initialized InlineOrder"); 741 742 // Populate the initial list of calls in this SCC. 743 for (auto &N : InitialC) { 744 auto &ORE = 745 FAM.getResult<OptimizationRemarkEmitterAnalysis>(N.getFunction()); 746 // We want to generally process call sites top-down in order for 747 // simplifications stemming from replacing the call with the returned value 748 // after inlining to be visible to subsequent inlining decisions. 749 // FIXME: Using instructions sequence is a really bad way to do this. 750 // Instead we should do an actual RPO walk of the function body. 751 for (Instruction &I : instructions(N.getFunction())) 752 if (auto *CB = dyn_cast<CallBase>(&I)) 753 if (Function *Callee = CB->getCalledFunction()) { 754 if (!Callee->isDeclaration()) 755 Calls->push({CB, -1}); 756 else if (!isa<IntrinsicInst>(I)) { 757 using namespace ore; 758 setInlineRemark(*CB, "unavailable definition"); 759 ORE.emit([&]() { 760 return OptimizationRemarkMissed(DEBUG_TYPE, "NoDefinition", &I) 761 << NV("Callee", Callee) << " will not be inlined into " 762 << NV("Caller", CB->getCaller()) 763 << " because its definition is unavailable" 764 << setIsVerbose(); 765 }); 766 } 767 } 768 } 769 if (Calls->empty()) 770 return PreservedAnalyses::all(); 771 772 // Capture updatable variable for the current SCC. 773 auto *C = &InitialC; 774 775 // When inlining a callee produces new call sites, we want to keep track of 776 // the fact that they were inlined from the callee. This allows us to avoid 777 // infinite inlining in some obscure cases. To represent this, we use an 778 // index into the InlineHistory vector. 779 SmallVector<std::pair<Function *, int>, 16> InlineHistory; 780 781 // Track a set vector of inlined callees so that we can augment the caller 782 // with all of their edges in the call graph before pruning out the ones that 783 // got simplified away. 784 SmallSetVector<Function *, 4> InlinedCallees; 785 786 // Track the dead functions to delete once finished with inlining calls. We 787 // defer deleting these to make it easier to handle the call graph updates. 788 SmallVector<Function *, 4> DeadFunctions; 789 790 // Loop forward over all of the calls. 791 while (!Calls->empty()) { 792 // We expect the calls to typically be batched with sequences of calls that 793 // have the same caller, so we first set up some shared infrastructure for 794 // this caller. We also do any pruning we can at this layer on the caller 795 // alone. 796 Function &F = *Calls->front().first->getCaller(); 797 LazyCallGraph::Node &N = *CG.lookup(F); 798 if (CG.lookupSCC(N) != C) { 799 Calls->pop(); 800 continue; 801 } 802 803 LLVM_DEBUG(dbgs() << "Inlining calls in: " << F.getName() << "\n" 804 << " Function size: " << F.getInstructionCount() 805 << "\n"); 806 807 auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & { 808 return FAM.getResult<AssumptionAnalysis>(F); 809 }; 810 811 // Now process as many calls as we have within this caller in the sequence. 812 // We bail out as soon as the caller has to change so we can update the 813 // call graph and prepare the context of that new caller. 814 bool DidInline = false; 815 while (!Calls->empty() && Calls->front().first->getCaller() == &F) { 816 auto P = Calls->pop(); 817 CallBase *CB = P.first; 818 const int InlineHistoryID = P.second; 819 Function &Callee = *CB->getCalledFunction(); 820 821 if (InlineHistoryID != -1 && 822 inlineHistoryIncludes(&Callee, InlineHistoryID, InlineHistory)) { 823 setInlineRemark(*CB, "recursive"); 824 continue; 825 } 826 827 // Check if this inlining may repeat breaking an SCC apart that has 828 // already been split once before. In that case, inlining here may 829 // trigger infinite inlining, much like is prevented within the inliner 830 // itself by the InlineHistory above, but spread across CGSCC iterations 831 // and thus hidden from the full inline history. 832 if (CG.lookupSCC(*CG.lookup(Callee)) == C && 833 UR.InlinedInternalEdges.count({&N, C})) { 834 LLVM_DEBUG(dbgs() << "Skipping inlining internal SCC edge from a node " 835 "previously split out of this SCC by inlining: " 836 << F.getName() << " -> " << Callee.getName() << "\n"); 837 setInlineRemark(*CB, "recursive SCC split"); 838 continue; 839 } 840 841 auto Advice = Advisor.getAdvice(*CB, OnlyMandatory); 842 843 // Check whether we want to inline this callsite. 844 if (!Advice || !Advice->isInliningRecommended()) { 845 Advice->recordUnattemptedInlining(); 846 continue; 847 } 848 849 // Setup the data structure used to plumb customization into the 850 // `InlineFunction` routine. 851 InlineFunctionInfo IFI( 852 /*cg=*/nullptr, GetAssumptionCache, PSI, 853 &FAM.getResult<BlockFrequencyAnalysis>(*(CB->getCaller())), 854 &FAM.getResult<BlockFrequencyAnalysis>(Callee)); 855 856 InlineResult IR = 857 InlineFunction(*CB, IFI, &FAM.getResult<AAManager>(*CB->getCaller())); 858 if (!IR.isSuccess()) { 859 Advice->recordUnsuccessfulInlining(IR); 860 continue; 861 } 862 863 DidInline = true; 864 InlinedCallees.insert(&Callee); 865 ++NumInlined; 866 867 LLVM_DEBUG(dbgs() << " Size after inlining: " 868 << F.getInstructionCount() << "\n"); 869 870 // Add any new callsites to defined functions to the worklist. 871 if (!IFI.InlinedCallSites.empty()) { 872 int NewHistoryID = InlineHistory.size(); 873 InlineHistory.push_back({&Callee, InlineHistoryID}); 874 875 for (CallBase *ICB : reverse(IFI.InlinedCallSites)) { 876 Function *NewCallee = ICB->getCalledFunction(); 877 assert(!(NewCallee && NewCallee->isIntrinsic()) && 878 "Intrinsic calls should not be tracked."); 879 if (!NewCallee) { 880 // Try to promote an indirect (virtual) call without waiting for 881 // the post-inline cleanup and the next DevirtSCCRepeatedPass 882 // iteration because the next iteration may not happen and we may 883 // miss inlining it. 884 if (tryPromoteCall(*ICB)) 885 NewCallee = ICB->getCalledFunction(); 886 } 887 if (NewCallee) 888 if (!NewCallee->isDeclaration()) 889 Calls->push({ICB, NewHistoryID}); 890 } 891 } 892 893 // Merge the attributes based on the inlining. 894 AttributeFuncs::mergeAttributesForInlining(F, Callee); 895 896 // For local functions, check whether this makes the callee trivially 897 // dead. In that case, we can drop the body of the function eagerly 898 // which may reduce the number of callers of other functions to one, 899 // changing inline cost thresholds. 900 bool CalleeWasDeleted = false; 901 if (Callee.hasLocalLinkage()) { 902 // To check this we also need to nuke any dead constant uses (perhaps 903 // made dead by this operation on other functions). 904 Callee.removeDeadConstantUsers(); 905 if (Callee.use_empty() && !CG.isLibFunction(Callee)) { 906 Calls->erase_if([&](const std::pair<CallBase *, int> &Call) { 907 return Call.first->getCaller() == &Callee; 908 }); 909 // Clear the body and queue the function itself for deletion when we 910 // finish inlining and call graph updates. 911 // Note that after this point, it is an error to do anything other 912 // than use the callee's address or delete it. 913 Callee.dropAllReferences(); 914 assert(!is_contained(DeadFunctions, &Callee) && 915 "Cannot put cause a function to become dead twice!"); 916 DeadFunctions.push_back(&Callee); 917 CalleeWasDeleted = true; 918 } 919 } 920 if (CalleeWasDeleted) 921 Advice->recordInliningWithCalleeDeleted(); 922 else 923 Advice->recordInlining(); 924 } 925 926 if (!DidInline) 927 continue; 928 Changed = true; 929 930 // At this point, since we have made changes we have at least removed 931 // a call instruction. However, in the process we do some incremental 932 // simplification of the surrounding code. This simplification can 933 // essentially do all of the same things as a function pass and we can 934 // re-use the exact same logic for updating the call graph to reflect the 935 // change. 936 937 // Inside the update, we also update the FunctionAnalysisManager in the 938 // proxy for this particular SCC. We do this as the SCC may have changed and 939 // as we're going to mutate this particular function we want to make sure 940 // the proxy is in place to forward any invalidation events. 941 LazyCallGraph::SCC *OldC = C; 942 C = &updateCGAndAnalysisManagerForCGSCCPass(CG, *C, N, AM, UR, FAM); 943 LLVM_DEBUG(dbgs() << "Updated inlining SCC: " << *C << "\n"); 944 945 // If this causes an SCC to split apart into multiple smaller SCCs, there 946 // is a subtle risk we need to prepare for. Other transformations may 947 // expose an "infinite inlining" opportunity later, and because of the SCC 948 // mutation, we will revisit this function and potentially re-inline. If we 949 // do, and that re-inlining also has the potentially to mutate the SCC 950 // structure, the infinite inlining problem can manifest through infinite 951 // SCC splits and merges. To avoid this, we capture the originating caller 952 // node and the SCC containing the call edge. This is a slight over 953 // approximation of the possible inlining decisions that must be avoided, 954 // but is relatively efficient to store. We use C != OldC to know when 955 // a new SCC is generated and the original SCC may be generated via merge 956 // in later iterations. 957 // 958 // It is also possible that even if no new SCC is generated 959 // (i.e., C == OldC), the original SCC could be split and then merged 960 // into the same one as itself. and the original SCC will be added into 961 // UR.CWorklist again, we want to catch such cases too. 962 // 963 // FIXME: This seems like a very heavyweight way of retaining the inline 964 // history, we should look for a more efficient way of tracking it. 965 if ((C != OldC || UR.CWorklist.count(OldC)) && 966 llvm::any_of(InlinedCallees, [&](Function *Callee) { 967 return CG.lookupSCC(*CG.lookup(*Callee)) == OldC; 968 })) { 969 LLVM_DEBUG(dbgs() << "Inlined an internal call edge and split an SCC, " 970 "retaining this to avoid infinite inlining.\n"); 971 UR.InlinedInternalEdges.insert({&N, OldC}); 972 } 973 InlinedCallees.clear(); 974 } 975 976 // Now that we've finished inlining all of the calls across this SCC, delete 977 // all of the trivially dead functions, updating the call graph and the CGSCC 978 // pass manager in the process. 979 // 980 // Note that this walks a pointer set which has non-deterministic order but 981 // that is OK as all we do is delete things and add pointers to unordered 982 // sets. 983 for (Function *DeadF : DeadFunctions) { 984 // Get the necessary information out of the call graph and nuke the 985 // function there. Also, clear out any cached analyses. 986 auto &DeadC = *CG.lookupSCC(*CG.lookup(*DeadF)); 987 FAM.clear(*DeadF, DeadF->getName()); 988 AM.clear(DeadC, DeadC.getName()); 989 auto &DeadRC = DeadC.getOuterRefSCC(); 990 CG.removeDeadFunction(*DeadF); 991 992 // Mark the relevant parts of the call graph as invalid so we don't visit 993 // them. 994 UR.InvalidatedSCCs.insert(&DeadC); 995 UR.InvalidatedRefSCCs.insert(&DeadRC); 996 997 // If the updated SCC was the one containing the deleted function, clear it. 998 if (&DeadC == UR.UpdatedC) 999 UR.UpdatedC = nullptr; 1000 1001 // And delete the actual function from the module. 1002 // The Advisor may use Function pointers to efficiently index various 1003 // internal maps, e.g. for memoization. Function cleanup passes like 1004 // argument promotion create new functions. It is possible for a new 1005 // function to be allocated at the address of a deleted function. We could 1006 // index using names, but that's inefficient. Alternatively, we let the 1007 // Advisor free the functions when it sees fit. 1008 DeadF->getBasicBlockList().clear(); 1009 M.getFunctionList().remove(DeadF); 1010 1011 ++NumDeleted; 1012 } 1013 1014 if (!Changed) 1015 return PreservedAnalyses::all(); 1016 1017 // Even if we change the IR, we update the core CGSCC data structures and so 1018 // can preserve the proxy to the function analysis manager. 1019 PreservedAnalyses PA; 1020 PA.preserve<FunctionAnalysisManagerCGSCCProxy>(); 1021 return PA; 1022 } 1023 1024 ModuleInlinerWrapperPass::ModuleInlinerWrapperPass(InlineParams Params, 1025 bool MandatoryFirst, 1026 InliningAdvisorMode Mode, 1027 unsigned MaxDevirtIterations) 1028 : Params(Params), Mode(Mode), MaxDevirtIterations(MaxDevirtIterations), 1029 PM(), MPM() { 1030 // Run the inliner first. The theory is that we are walking bottom-up and so 1031 // the callees have already been fully optimized, and we want to inline them 1032 // into the callers so that our optimizations can reflect that. 1033 // For PreLinkThinLTO pass, we disable hot-caller heuristic for sample PGO 1034 // because it makes profile annotation in the backend inaccurate. 1035 if (MandatoryFirst) 1036 PM.addPass(InlinerPass(/*OnlyMandatory*/ true)); 1037 PM.addPass(InlinerPass()); 1038 } 1039 1040 PreservedAnalyses ModuleInlinerWrapperPass::run(Module &M, 1041 ModuleAnalysisManager &MAM) { 1042 auto &IAA = MAM.getResult<InlineAdvisorAnalysis>(M); 1043 if (!IAA.tryCreate(Params, Mode, CGSCCInlineReplayFile, 1044 CGSCCInlineReplayScope)) { 1045 M.getContext().emitError( 1046 "Could not setup Inlining Advisor for the requested " 1047 "mode and/or options"); 1048 return PreservedAnalyses::all(); 1049 } 1050 1051 // We wrap the CGSCC pipeline in a devirtualization repeater. This will try 1052 // to detect when we devirtualize indirect calls and iterate the SCC passes 1053 // in that case to try and catch knock-on inlining or function attrs 1054 // opportunities. Then we add it to the module pipeline by walking the SCCs 1055 // in postorder (or bottom-up). 1056 // If MaxDevirtIterations is 0, we just don't use the devirtualization 1057 // wrapper. 1058 if (MaxDevirtIterations == 0) 1059 MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(PM))); 1060 else 1061 MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor( 1062 createDevirtSCCRepeatedPass(std::move(PM), MaxDevirtIterations))); 1063 MPM.run(M, MAM); 1064 1065 // Discard the InlineAdvisor, a subsequent inlining session should construct 1066 // its own. 1067 auto PA = PreservedAnalyses::all(); 1068 PA.abandon<InlineAdvisorAnalysis>(); 1069 return PA; 1070 } 1071 1072 void InlinerPass::printPipeline( 1073 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { 1074 static_cast<PassInfoMixin<InlinerPass> *>(this)->printPipeline( 1075 OS, MapClassName2PassName); 1076 if (OnlyMandatory) 1077 OS << "<only-mandatory>"; 1078 } 1079 1080 void ModuleInlinerWrapperPass::printPipeline( 1081 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { 1082 // Print some info about passes added to the wrapper. This is however 1083 // incomplete as InlineAdvisorAnalysis part isn't included (which also depends 1084 // on Params and Mode). 1085 if (!MPM.isEmpty()) { 1086 MPM.printPipeline(OS, MapClassName2PassName); 1087 OS << ","; 1088 } 1089 OS << "cgscc("; 1090 if (MaxDevirtIterations != 0) 1091 OS << "devirt<" << MaxDevirtIterations << ">("; 1092 PM.printPipeline(OS, MapClassName2PassName); 1093 if (MaxDevirtIterations != 0) 1094 OS << ")"; 1095 OS << ")"; 1096 } 1097