1 //===- Inliner.cpp - Code common to all inliners --------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the mechanics required to implement inlining without 11 // missing any calls and updating the call graph. The decisions of which calls 12 // are profitable to inline are implemented elsewhere. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Transforms/IPO/InlinerPass.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/Analysis/AssumptionCache.h" 21 #include "llvm/Analysis/BasicAliasAnalysis.h" 22 #include "llvm/Analysis/CallGraph.h" 23 #include "llvm/Analysis/InlineCost.h" 24 #include "llvm/Analysis/TargetLibraryInfo.h" 25 #include "llvm/IR/CallSite.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/DiagnosticInfo.h" 28 #include "llvm/IR/Instructions.h" 29 #include "llvm/IR/IntrinsicInst.h" 30 #include "llvm/IR/Module.h" 31 #include "llvm/Support/CommandLine.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/raw_ostream.h" 34 #include "llvm/Transforms/Utils/Cloning.h" 35 #include "llvm/Transforms/Utils/Local.h" 36 using namespace llvm; 37 38 #define DEBUG_TYPE "inline" 39 40 STATISTIC(NumInlined, "Number of functions inlined"); 41 STATISTIC(NumCallsDeleted, "Number of call sites deleted, not inlined"); 42 STATISTIC(NumDeleted, "Number of functions deleted because all callers found"); 43 STATISTIC(NumMergedAllocas, "Number of allocas merged together"); 44 45 // This weirdly named statistic tracks the number of times that, when attempting 46 // to inline a function A into B, we analyze the callers of B in order to see 47 // if those would be more profitable and blocked inline steps. 48 STATISTIC(NumCallerCallersAnalyzed, "Number of caller-callers analyzed"); 49 50 Inliner::Inliner(char &ID) : CallGraphSCCPass(ID), InsertLifetime(true) {} 51 52 Inliner::Inliner(char &ID, bool InsertLifetime) 53 : CallGraphSCCPass(ID), InsertLifetime(InsertLifetime) {} 54 55 /// For this class, we declare that we require and preserve the call graph. 56 /// If the derived class implements this method, it should 57 /// always explicitly call the implementation here. 58 void Inliner::getAnalysisUsage(AnalysisUsage &AU) const { 59 AU.addRequired<AssumptionCacheTracker>(); 60 AU.addRequired<TargetLibraryInfoWrapperPass>(); 61 getAAResultsAnalysisUsage(AU); 62 CallGraphSCCPass::getAnalysisUsage(AU); 63 } 64 65 66 typedef DenseMap<ArrayType*, std::vector<AllocaInst*> > 67 InlinedArrayAllocasTy; 68 69 /// If it is possible to inline the specified call site, 70 /// do so and update the CallGraph for this operation. 71 /// 72 /// This function also does some basic book-keeping to update the IR. The 73 /// InlinedArrayAllocas map keeps track of any allocas that are already 74 /// available from other functions inlined into the caller. If we are able to 75 /// inline this call site we attempt to reuse already available allocas or add 76 /// any new allocas to the set if not possible. 77 static bool InlineCallIfPossible(Pass &P, CallSite CS, InlineFunctionInfo &IFI, 78 InlinedArrayAllocasTy &InlinedArrayAllocas, 79 int InlineHistory, bool InsertLifetime) { 80 Function *Callee = CS.getCalledFunction(); 81 Function *Caller = CS.getCaller(); 82 83 // We need to manually construct BasicAA directly in order to disable 84 // its use of other function analyses. 85 BasicAAResult BAR(createLegacyPMBasicAAResult(P, *Callee)); 86 87 // Construct our own AA results for this function. We do this manually to 88 // work around the limitations of the legacy pass manager. 89 AAResults AAR(createLegacyPMAAResults(P, *Callee, BAR)); 90 91 // Try to inline the function. Get the list of static allocas that were 92 // inlined. 93 if (!InlineFunction(CS, IFI, &AAR, InsertLifetime)) 94 return false; 95 96 AttributeFuncs::mergeAttributesForInlining(*Caller, *Callee); 97 98 // Look at all of the allocas that we inlined through this call site. If we 99 // have already inlined other allocas through other calls into this function, 100 // then we know that they have disjoint lifetimes and that we can merge them. 101 // 102 // There are many heuristics possible for merging these allocas, and the 103 // different options have different tradeoffs. One thing that we *really* 104 // don't want to hurt is SRoA: once inlining happens, often allocas are no 105 // longer address taken and so they can be promoted. 106 // 107 // Our "solution" for that is to only merge allocas whose outermost type is an 108 // array type. These are usually not promoted because someone is using a 109 // variable index into them. These are also often the most important ones to 110 // merge. 111 // 112 // A better solution would be to have real memory lifetime markers in the IR 113 // and not have the inliner do any merging of allocas at all. This would 114 // allow the backend to do proper stack slot coloring of all allocas that 115 // *actually make it to the backend*, which is really what we want. 116 // 117 // Because we don't have this information, we do this simple and useful hack. 118 // 119 SmallPtrSet<AllocaInst*, 16> UsedAllocas; 120 121 // When processing our SCC, check to see if CS was inlined from some other 122 // call site. For example, if we're processing "A" in this code: 123 // A() { B() } 124 // B() { x = alloca ... C() } 125 // C() { y = alloca ... } 126 // Assume that C was not inlined into B initially, and so we're processing A 127 // and decide to inline B into A. Doing this makes an alloca available for 128 // reuse and makes a callsite (C) available for inlining. When we process 129 // the C call site we don't want to do any alloca merging between X and Y 130 // because their scopes are not disjoint. We could make this smarter by 131 // keeping track of the inline history for each alloca in the 132 // InlinedArrayAllocas but this isn't likely to be a significant win. 133 if (InlineHistory != -1) // Only do merging for top-level call sites in SCC. 134 return true; 135 136 // Loop over all the allocas we have so far and see if they can be merged with 137 // a previously inlined alloca. If not, remember that we had it. 138 for (unsigned AllocaNo = 0, e = IFI.StaticAllocas.size(); 139 AllocaNo != e; ++AllocaNo) { 140 AllocaInst *AI = IFI.StaticAllocas[AllocaNo]; 141 142 // Don't bother trying to merge array allocations (they will usually be 143 // canonicalized to be an allocation *of* an array), or allocations whose 144 // type is not itself an array (because we're afraid of pessimizing SRoA). 145 ArrayType *ATy = dyn_cast<ArrayType>(AI->getAllocatedType()); 146 if (!ATy || AI->isArrayAllocation()) 147 continue; 148 149 // Get the list of all available allocas for this array type. 150 std::vector<AllocaInst*> &AllocasForType = InlinedArrayAllocas[ATy]; 151 152 // Loop over the allocas in AllocasForType to see if we can reuse one. Note 153 // that we have to be careful not to reuse the same "available" alloca for 154 // multiple different allocas that we just inlined, we use the 'UsedAllocas' 155 // set to keep track of which "available" allocas are being used by this 156 // function. Also, AllocasForType can be empty of course! 157 bool MergedAwayAlloca = false; 158 for (AllocaInst *AvailableAlloca : AllocasForType) { 159 160 unsigned Align1 = AI->getAlignment(), 161 Align2 = AvailableAlloca->getAlignment(); 162 163 // The available alloca has to be in the right function, not in some other 164 // function in this SCC. 165 if (AvailableAlloca->getParent() != AI->getParent()) 166 continue; 167 168 // If the inlined function already uses this alloca then we can't reuse 169 // it. 170 if (!UsedAllocas.insert(AvailableAlloca).second) 171 continue; 172 173 // Otherwise, we *can* reuse it, RAUW AI into AvailableAlloca and declare 174 // success! 175 DEBUG(dbgs() << " ***MERGED ALLOCA: " << *AI << "\n\t\tINTO: " 176 << *AvailableAlloca << '\n'); 177 178 // Move affected dbg.declare calls immediately after the new alloca to 179 // avoid the situation when a dbg.declare preceeds its alloca. 180 if (auto *L = LocalAsMetadata::getIfExists(AI)) 181 if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L)) 182 for (User *U : MDV->users()) 183 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(U)) 184 DDI->moveBefore(AvailableAlloca->getNextNode()); 185 186 AI->replaceAllUsesWith(AvailableAlloca); 187 188 if (Align1 != Align2) { 189 if (!Align1 || !Align2) { 190 const DataLayout &DL = Caller->getParent()->getDataLayout(); 191 unsigned TypeAlign = DL.getABITypeAlignment(AI->getAllocatedType()); 192 193 Align1 = Align1 ? Align1 : TypeAlign; 194 Align2 = Align2 ? Align2 : TypeAlign; 195 } 196 197 if (Align1 > Align2) 198 AvailableAlloca->setAlignment(AI->getAlignment()); 199 } 200 201 AI->eraseFromParent(); 202 MergedAwayAlloca = true; 203 ++NumMergedAllocas; 204 IFI.StaticAllocas[AllocaNo] = nullptr; 205 break; 206 } 207 208 // If we already nuked the alloca, we're done with it. 209 if (MergedAwayAlloca) 210 continue; 211 212 // If we were unable to merge away the alloca either because there are no 213 // allocas of the right type available or because we reused them all 214 // already, remember that this alloca came from an inlined function and mark 215 // it used so we don't reuse it for other allocas from this inline 216 // operation. 217 AllocasForType.push_back(AI); 218 UsedAllocas.insert(AI); 219 } 220 221 return true; 222 } 223 224 static void emitAnalysis(CallSite CS, const Twine &Msg) { 225 Function *Caller = CS.getCaller(); 226 LLVMContext &Ctx = Caller->getContext(); 227 DebugLoc DLoc = CS.getInstruction()->getDebugLoc(); 228 emitOptimizationRemarkAnalysis(Ctx, DEBUG_TYPE, *Caller, DLoc, Msg); 229 } 230 231 /// Return true if the inliner should attempt to inline at the given CallSite. 232 bool Inliner::shouldInline(CallSite CS) { 233 InlineCost IC = getInlineCost(CS); 234 235 if (IC.isAlways()) { 236 DEBUG(dbgs() << " Inlining: cost=always" 237 << ", Call: " << *CS.getInstruction() << "\n"); 238 emitAnalysis(CS, Twine(CS.getCalledFunction()->getName()) + 239 " should always be inlined (cost=always)"); 240 return true; 241 } 242 243 if (IC.isNever()) { 244 DEBUG(dbgs() << " NOT Inlining: cost=never" 245 << ", Call: " << *CS.getInstruction() << "\n"); 246 emitAnalysis(CS, Twine(CS.getCalledFunction()->getName() + 247 " should never be inlined (cost=never)")); 248 return false; 249 } 250 251 Function *Caller = CS.getCaller(); 252 if (!IC) { 253 DEBUG(dbgs() << " NOT Inlining: cost=" << IC.getCost() 254 << ", thres=" << (IC.getCostDelta() + IC.getCost()) 255 << ", Call: " << *CS.getInstruction() << "\n"); 256 emitAnalysis(CS, Twine(CS.getCalledFunction()->getName() + 257 " too costly to inline (cost=") + 258 Twine(IC.getCost()) + ", threshold=" + 259 Twine(IC.getCostDelta() + IC.getCost()) + ")"); 260 return false; 261 } 262 263 // Try to detect the case where the current inlining candidate caller (call 264 // it B) is a static or linkonce-ODR function and is an inlining candidate 265 // elsewhere, and the current candidate callee (call it C) is large enough 266 // that inlining it into B would make B too big to inline later. In these 267 // circumstances it may be best not to inline C into B, but to inline B into 268 // its callers. 269 // 270 // This only applies to static and linkonce-ODR functions because those are 271 // expected to be available for inlining in the translation units where they 272 // are used. Thus we will always have the opportunity to make local inlining 273 // decisions. Importantly the linkonce-ODR linkage covers inline functions 274 // and templates in C++. 275 // 276 // FIXME: All of this logic should be sunk into getInlineCost. It relies on 277 // the internal implementation of the inline cost metrics rather than 278 // treating them as truly abstract units etc. 279 if (Caller->hasLocalLinkage() || Caller->hasLinkOnceODRLinkage()) { 280 int TotalSecondaryCost = 0; 281 // The candidate cost to be imposed upon the current function. 282 int CandidateCost = IC.getCost() - (InlineConstants::CallPenalty + 1); 283 // This bool tracks what happens if we do NOT inline C into B. 284 bool callerWillBeRemoved = Caller->hasLocalLinkage(); 285 // This bool tracks what happens if we DO inline C into B. 286 bool inliningPreventsSomeOuterInline = false; 287 for (User *U : Caller->users()) { 288 CallSite CS2(U); 289 290 // If this isn't a call to Caller (it could be some other sort 291 // of reference) skip it. Such references will prevent the caller 292 // from being removed. 293 if (!CS2 || CS2.getCalledFunction() != Caller) { 294 callerWillBeRemoved = false; 295 continue; 296 } 297 298 InlineCost IC2 = getInlineCost(CS2); 299 ++NumCallerCallersAnalyzed; 300 if (!IC2) { 301 callerWillBeRemoved = false; 302 continue; 303 } 304 if (IC2.isAlways()) 305 continue; 306 307 // See if inlining or original callsite would erase the cost delta of 308 // this callsite. We subtract off the penalty for the call instruction, 309 // which we would be deleting. 310 if (IC2.getCostDelta() <= CandidateCost) { 311 inliningPreventsSomeOuterInline = true; 312 TotalSecondaryCost += IC2.getCost(); 313 } 314 } 315 // If all outer calls to Caller would get inlined, the cost for the last 316 // one is set very low by getInlineCost, in anticipation that Caller will 317 // be removed entirely. We did not account for this above unless there 318 // is only one caller of Caller. 319 if (callerWillBeRemoved && !Caller->use_empty()) 320 TotalSecondaryCost += InlineConstants::LastCallToStaticBonus; 321 322 if (inliningPreventsSomeOuterInline && TotalSecondaryCost < IC.getCost()) { 323 DEBUG(dbgs() << " NOT Inlining: " << *CS.getInstruction() << 324 " Cost = " << IC.getCost() << 325 ", outer Cost = " << TotalSecondaryCost << '\n'); 326 emitAnalysis( 327 CS, Twine("Not inlining. Cost of inlining " + 328 CS.getCalledFunction()->getName() + 329 " increases the cost of inlining " + 330 CS.getCaller()->getName() + " in other contexts")); 331 return false; 332 } 333 } 334 335 DEBUG(dbgs() << " Inlining: cost=" << IC.getCost() 336 << ", thres=" << (IC.getCostDelta() + IC.getCost()) 337 << ", Call: " << *CS.getInstruction() << '\n'); 338 emitAnalysis( 339 CS, CS.getCalledFunction()->getName() + Twine(" can be inlined into ") + 340 CS.getCaller()->getName() + " with cost=" + Twine(IC.getCost()) + 341 " (threshold=" + Twine(IC.getCostDelta() + IC.getCost()) + ")"); 342 return true; 343 } 344 345 /// Return true if the specified inline history ID 346 /// indicates an inline history that includes the specified function. 347 static bool InlineHistoryIncludes(Function *F, int InlineHistoryID, 348 const SmallVectorImpl<std::pair<Function*, int> > &InlineHistory) { 349 while (InlineHistoryID != -1) { 350 assert(unsigned(InlineHistoryID) < InlineHistory.size() && 351 "Invalid inline history ID"); 352 if (InlineHistory[InlineHistoryID].first == F) 353 return true; 354 InlineHistoryID = InlineHistory[InlineHistoryID].second; 355 } 356 return false; 357 } 358 359 bool Inliner::runOnSCC(CallGraphSCC &SCC) { 360 CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph(); 361 ACT = &getAnalysis<AssumptionCacheTracker>(); 362 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 363 364 SmallPtrSet<Function*, 8> SCCFunctions; 365 DEBUG(dbgs() << "Inliner visiting SCC:"); 366 for (CallGraphNode *Node : SCC) { 367 Function *F = Node->getFunction(); 368 if (F) SCCFunctions.insert(F); 369 DEBUG(dbgs() << " " << (F ? F->getName() : "INDIRECTNODE")); 370 } 371 372 // Scan through and identify all call sites ahead of time so that we only 373 // inline call sites in the original functions, not call sites that result 374 // from inlining other functions. 375 SmallVector<std::pair<CallSite, int>, 16> CallSites; 376 377 // When inlining a callee produces new call sites, we want to keep track of 378 // the fact that they were inlined from the callee. This allows us to avoid 379 // infinite inlining in some obscure cases. To represent this, we use an 380 // index into the InlineHistory vector. 381 SmallVector<std::pair<Function*, int>, 8> InlineHistory; 382 383 for (CallGraphNode *Node : SCC) { 384 Function *F = Node->getFunction(); 385 if (!F) continue; 386 387 for (BasicBlock &BB : *F) 388 for (Instruction &I : BB) { 389 CallSite CS(cast<Value>(&I)); 390 // If this isn't a call, or it is a call to an intrinsic, it can 391 // never be inlined. 392 if (!CS || isa<IntrinsicInst>(I)) 393 continue; 394 395 // If this is a direct call to an external function, we can never inline 396 // it. If it is an indirect call, inlining may resolve it to be a 397 // direct call, so we keep it. 398 if (Function *Callee = CS.getCalledFunction()) 399 if (Callee->isDeclaration()) 400 continue; 401 402 CallSites.push_back(std::make_pair(CS, -1)); 403 } 404 } 405 406 DEBUG(dbgs() << ": " << CallSites.size() << " call sites.\n"); 407 408 // If there are no calls in this function, exit early. 409 if (CallSites.empty()) 410 return false; 411 412 // Now that we have all of the call sites, move the ones to functions in the 413 // current SCC to the end of the list. 414 unsigned FirstCallInSCC = CallSites.size(); 415 for (unsigned i = 0; i < FirstCallInSCC; ++i) 416 if (Function *F = CallSites[i].first.getCalledFunction()) 417 if (SCCFunctions.count(F)) 418 std::swap(CallSites[i--], CallSites[--FirstCallInSCC]); 419 420 421 InlinedArrayAllocasTy InlinedArrayAllocas; 422 InlineFunctionInfo InlineInfo(&CG, ACT); 423 424 // Now that we have all of the call sites, loop over them and inline them if 425 // it looks profitable to do so. 426 bool Changed = false; 427 bool LocalChange; 428 do { 429 LocalChange = false; 430 // Iterate over the outer loop because inlining functions can cause indirect 431 // calls to become direct calls. 432 // CallSites may be modified inside so ranged for loop can not be used. 433 for (unsigned CSi = 0; CSi != CallSites.size(); ++CSi) { 434 CallSite CS = CallSites[CSi].first; 435 436 Function *Caller = CS.getCaller(); 437 Function *Callee = CS.getCalledFunction(); 438 439 // If this call site is dead and it is to a readonly function, we should 440 // just delete the call instead of trying to inline it, regardless of 441 // size. This happens because IPSCCP propagates the result out of the 442 // call and then we're left with the dead call. 443 if (isInstructionTriviallyDead(CS.getInstruction(), &TLI)) { 444 DEBUG(dbgs() << " -> Deleting dead call: " 445 << *CS.getInstruction() << "\n"); 446 // Update the call graph by deleting the edge from Callee to Caller. 447 CG[Caller]->removeCallEdgeFor(CS); 448 CS.getInstruction()->eraseFromParent(); 449 ++NumCallsDeleted; 450 } else { 451 // We can only inline direct calls to non-declarations. 452 if (!Callee || Callee->isDeclaration()) continue; 453 454 // If this call site was obtained by inlining another function, verify 455 // that the include path for the function did not include the callee 456 // itself. If so, we'd be recursively inlining the same function, 457 // which would provide the same callsites, which would cause us to 458 // infinitely inline. 459 int InlineHistoryID = CallSites[CSi].second; 460 if (InlineHistoryID != -1 && 461 InlineHistoryIncludes(Callee, InlineHistoryID, InlineHistory)) 462 continue; 463 464 LLVMContext &CallerCtx = Caller->getContext(); 465 466 // Get DebugLoc to report. CS will be invalid after Inliner. 467 DebugLoc DLoc = CS.getInstruction()->getDebugLoc(); 468 469 // If the policy determines that we should inline this function, 470 // try to do so. 471 if (!shouldInline(CS)) { 472 emitOptimizationRemarkMissed(CallerCtx, DEBUG_TYPE, *Caller, DLoc, 473 Twine(Callee->getName() + 474 " will not be inlined into " + 475 Caller->getName())); 476 continue; 477 } 478 479 // Attempt to inline the function. 480 if (!InlineCallIfPossible(*this, CS, InlineInfo, InlinedArrayAllocas, 481 InlineHistoryID, InsertLifetime)) { 482 emitOptimizationRemarkMissed(CallerCtx, DEBUG_TYPE, *Caller, DLoc, 483 Twine(Callee->getName() + 484 " will not be inlined into " + 485 Caller->getName())); 486 continue; 487 } 488 ++NumInlined; 489 490 // Report the inline decision. 491 emitOptimizationRemark( 492 CallerCtx, DEBUG_TYPE, *Caller, DLoc, 493 Twine(Callee->getName() + " inlined into " + Caller->getName())); 494 495 // If inlining this function gave us any new call sites, throw them 496 // onto our worklist to process. They are useful inline candidates. 497 if (!InlineInfo.InlinedCalls.empty()) { 498 // Create a new inline history entry for this, so that we remember 499 // that these new callsites came about due to inlining Callee. 500 int NewHistoryID = InlineHistory.size(); 501 InlineHistory.push_back(std::make_pair(Callee, InlineHistoryID)); 502 503 for (Value *Ptr : InlineInfo.InlinedCalls) 504 CallSites.push_back(std::make_pair(CallSite(Ptr), NewHistoryID)); 505 } 506 } 507 508 // If we inlined or deleted the last possible call site to the function, 509 // delete the function body now. 510 if (Callee && Callee->use_empty() && Callee->hasLocalLinkage() && 511 // TODO: Can remove if in SCC now. 512 !SCCFunctions.count(Callee) && 513 514 // The function may be apparently dead, but if there are indirect 515 // callgraph references to the node, we cannot delete it yet, this 516 // could invalidate the CGSCC iterator. 517 CG[Callee]->getNumReferences() == 0) { 518 DEBUG(dbgs() << " -> Deleting dead function: " 519 << Callee->getName() << "\n"); 520 CallGraphNode *CalleeNode = CG[Callee]; 521 522 // Remove any call graph edges from the callee to its callees. 523 CalleeNode->removeAllCalledFunctions(); 524 525 // Removing the node for callee from the call graph and delete it. 526 delete CG.removeFunctionFromModule(CalleeNode); 527 ++NumDeleted; 528 } 529 530 // Remove this call site from the list. If possible, use 531 // swap/pop_back for efficiency, but do not use it if doing so would 532 // move a call site to a function in this SCC before the 533 // 'FirstCallInSCC' barrier. 534 if (SCC.isSingular()) { 535 CallSites[CSi] = CallSites.back(); 536 CallSites.pop_back(); 537 } else { 538 CallSites.erase(CallSites.begin()+CSi); 539 } 540 --CSi; 541 542 Changed = true; 543 LocalChange = true; 544 } 545 } while (LocalChange); 546 547 return Changed; 548 } 549 550 /// Remove now-dead linkonce functions at the end of 551 /// processing to avoid breaking the SCC traversal. 552 bool Inliner::doFinalization(CallGraph &CG) { 553 return removeDeadFunctions(CG); 554 } 555 556 /// Remove dead functions that are not included in DNR (Do Not Remove) list. 557 bool Inliner::removeDeadFunctions(CallGraph &CG, bool AlwaysInlineOnly) { 558 SmallVector<CallGraphNode*, 16> FunctionsToRemove; 559 SmallVector<CallGraphNode *, 16> DeadFunctionsInComdats; 560 SmallDenseMap<const Comdat *, int, 16> ComdatEntriesAlive; 561 562 auto RemoveCGN = [&](CallGraphNode *CGN) { 563 // Remove any call graph edges from the function to its callees. 564 CGN->removeAllCalledFunctions(); 565 566 // Remove any edges from the external node to the function's call graph 567 // node. These edges might have been made irrelegant due to 568 // optimization of the program. 569 CG.getExternalCallingNode()->removeAnyCallEdgeTo(CGN); 570 571 // Removing the node for callee from the call graph and delete it. 572 FunctionsToRemove.push_back(CGN); 573 }; 574 575 // Scan for all of the functions, looking for ones that should now be removed 576 // from the program. Insert the dead ones in the FunctionsToRemove set. 577 for (const auto &I : CG) { 578 CallGraphNode *CGN = I.second.get(); 579 Function *F = CGN->getFunction(); 580 if (!F || F->isDeclaration()) 581 continue; 582 583 // Handle the case when this function is called and we only want to care 584 // about always-inline functions. This is a bit of a hack to share code 585 // between here and the InlineAlways pass. 586 if (AlwaysInlineOnly && !F->hasFnAttribute(Attribute::AlwaysInline)) 587 continue; 588 589 // If the only remaining users of the function are dead constants, remove 590 // them. 591 F->removeDeadConstantUsers(); 592 593 if (!F->isDefTriviallyDead()) 594 continue; 595 596 // It is unsafe to drop a function with discardable linkage from a COMDAT 597 // without also dropping the other members of the COMDAT. 598 // The inliner doesn't visit non-function entities which are in COMDAT 599 // groups so it is unsafe to do so *unless* the linkage is local. 600 if (!F->hasLocalLinkage()) { 601 if (const Comdat *C = F->getComdat()) { 602 --ComdatEntriesAlive[C]; 603 DeadFunctionsInComdats.push_back(CGN); 604 continue; 605 } 606 } 607 608 RemoveCGN(CGN); 609 } 610 if (!DeadFunctionsInComdats.empty()) { 611 // Count up all the entities in COMDAT groups 612 auto ComdatGroupReferenced = [&](const Comdat *C) { 613 auto I = ComdatEntriesAlive.find(C); 614 if (I != ComdatEntriesAlive.end()) 615 ++(I->getSecond()); 616 }; 617 for (const Function &F : CG.getModule()) 618 if (const Comdat *C = F.getComdat()) 619 ComdatGroupReferenced(C); 620 for (const GlobalVariable &GV : CG.getModule().globals()) 621 if (const Comdat *C = GV.getComdat()) 622 ComdatGroupReferenced(C); 623 for (const GlobalAlias &GA : CG.getModule().aliases()) 624 if (const Comdat *C = GA.getComdat()) 625 ComdatGroupReferenced(C); 626 for (CallGraphNode *CGN : DeadFunctionsInComdats) { 627 Function *F = CGN->getFunction(); 628 const Comdat *C = F->getComdat(); 629 int NumAlive = ComdatEntriesAlive[C]; 630 // We can remove functions in a COMDAT group if the entire group is dead. 631 assert(NumAlive >= 0); 632 if (NumAlive > 0) 633 continue; 634 635 RemoveCGN(CGN); 636 } 637 } 638 639 if (FunctionsToRemove.empty()) 640 return false; 641 642 // Now that we know which functions to delete, do so. We didn't want to do 643 // this inline, because that would invalidate our CallGraph::iterator 644 // objects. :( 645 // 646 // Note that it doesn't matter that we are iterating over a non-stable order 647 // here to do this, it doesn't matter which order the functions are deleted 648 // in. 649 array_pod_sort(FunctionsToRemove.begin(), FunctionsToRemove.end()); 650 FunctionsToRemove.erase(std::unique(FunctionsToRemove.begin(), 651 FunctionsToRemove.end()), 652 FunctionsToRemove.end()); 653 for (CallGraphNode *CGN : FunctionsToRemove) { 654 delete CG.removeFunctionFromModule(CGN); 655 ++NumDeleted; 656 } 657 return true; 658 } 659