1 //===- Inliner.cpp - Code common to all inliners --------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the mechanics required to implement inlining without
10 // missing any calls and updating the call graph.  The decisions of which calls
11 // are profitable to inline are implemented elsewhere.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/IPO/Inliner.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/PriorityWorklist.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/ScopeExit.h"
21 #include "llvm/ADT/SetVector.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/ADT/StringExtras.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/Analysis/AssumptionCache.h"
28 #include "llvm/Analysis/BasicAliasAnalysis.h"
29 #include "llvm/Analysis/BlockFrequencyInfo.h"
30 #include "llvm/Analysis/CGSCCPassManager.h"
31 #include "llvm/Analysis/CallGraph.h"
32 #include "llvm/Analysis/InlineAdvisor.h"
33 #include "llvm/Analysis/InlineCost.h"
34 #include "llvm/Analysis/InlineOrder.h"
35 #include "llvm/Analysis/LazyCallGraph.h"
36 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
37 #include "llvm/Analysis/ProfileSummaryInfo.h"
38 #include "llvm/Analysis/ReplayInlineAdvisor.h"
39 #include "llvm/Analysis/TargetLibraryInfo.h"
40 #include "llvm/Analysis/Utils/ImportedFunctionsInliningStatistics.h"
41 #include "llvm/IR/Attributes.h"
42 #include "llvm/IR/BasicBlock.h"
43 #include "llvm/IR/DebugLoc.h"
44 #include "llvm/IR/DerivedTypes.h"
45 #include "llvm/IR/DiagnosticInfo.h"
46 #include "llvm/IR/Function.h"
47 #include "llvm/IR/InstIterator.h"
48 #include "llvm/IR/Instruction.h"
49 #include "llvm/IR/Instructions.h"
50 #include "llvm/IR/IntrinsicInst.h"
51 #include "llvm/IR/Metadata.h"
52 #include "llvm/IR/Module.h"
53 #include "llvm/IR/PassManager.h"
54 #include "llvm/IR/User.h"
55 #include "llvm/IR/Value.h"
56 #include "llvm/Pass.h"
57 #include "llvm/Support/Casting.h"
58 #include "llvm/Support/CommandLine.h"
59 #include "llvm/Support/Debug.h"
60 #include "llvm/Support/raw_ostream.h"
61 #include "llvm/Transforms/Utils/CallPromotionUtils.h"
62 #include "llvm/Transforms/Utils/Cloning.h"
63 #include "llvm/Transforms/Utils/Local.h"
64 #include "llvm/Transforms/Utils/ModuleUtils.h"
65 #include <algorithm>
66 #include <cassert>
67 #include <functional>
68 #include <utility>
69 #include <vector>
70 
71 using namespace llvm;
72 
73 #define DEBUG_TYPE "inline"
74 
75 STATISTIC(NumInlined, "Number of functions inlined");
76 STATISTIC(NumCallsDeleted, "Number of call sites deleted, not inlined");
77 STATISTIC(NumDeleted, "Number of functions deleted because all callers found");
78 STATISTIC(NumMergedAllocas, "Number of allocas merged together");
79 
80 /// Flag to disable manual alloca merging.
81 ///
82 /// Merging of allocas was originally done as a stack-size saving technique
83 /// prior to LLVM's code generator having support for stack coloring based on
84 /// lifetime markers. It is now in the process of being removed. To experiment
85 /// with disabling it and relying fully on lifetime marker based stack
86 /// coloring, you can pass this flag to LLVM.
87 static cl::opt<bool>
88     DisableInlinedAllocaMerging("disable-inlined-alloca-merging",
89                                 cl::init(false), cl::Hidden);
90 
91 static cl::opt<int> IntraSCCCostMultiplier(
92     "intra-scc-cost-multiplier", cl::init(2), cl::Hidden,
93     cl::desc(
94         "Cost multiplier to multiply onto inlined call sites where the "
95         "new call was previously an intra-SCC call (not relevant when the "
96         "original call was already intra-SCC). This can accumulate over "
97         "multiple inlinings (e.g. if a call site already had a cost "
98         "multiplier and one of its inlined calls was also subject to "
99         "this, the inlined call would have the original multiplier "
100         "multiplied by intra-scc-cost-multiplier). This is to prevent tons of "
101         "inlining through a child SCC which can cause terrible compile times"));
102 
103 /// A flag for test, so we can print the content of the advisor when running it
104 /// as part of the default (e.g. -O3) pipeline.
105 static cl::opt<bool> KeepAdvisorForPrinting("keep-inline-advisor-for-printing",
106                                             cl::init(false), cl::Hidden);
107 
108 extern cl::opt<InlinerFunctionImportStatsOpts> InlinerFunctionImportStats;
109 
110 static cl::opt<std::string> CGSCCInlineReplayFile(
111     "cgscc-inline-replay", cl::init(""), cl::value_desc("filename"),
112     cl::desc(
113         "Optimization remarks file containing inline remarks to be replayed "
114         "by cgscc inlining."),
115     cl::Hidden);
116 
117 static cl::opt<ReplayInlinerSettings::Scope> CGSCCInlineReplayScope(
118     "cgscc-inline-replay-scope",
119     cl::init(ReplayInlinerSettings::Scope::Function),
120     cl::values(clEnumValN(ReplayInlinerSettings::Scope::Function, "Function",
121                           "Replay on functions that have remarks associated "
122                           "with them (default)"),
123                clEnumValN(ReplayInlinerSettings::Scope::Module, "Module",
124                           "Replay on the entire module")),
125     cl::desc("Whether inline replay should be applied to the entire "
126              "Module or just the Functions (default) that are present as "
127              "callers in remarks during cgscc inlining."),
128     cl::Hidden);
129 
130 static cl::opt<ReplayInlinerSettings::Fallback> CGSCCInlineReplayFallback(
131     "cgscc-inline-replay-fallback",
132     cl::init(ReplayInlinerSettings::Fallback::Original),
133     cl::values(
134         clEnumValN(
135             ReplayInlinerSettings::Fallback::Original, "Original",
136             "All decisions not in replay send to original advisor (default)"),
137         clEnumValN(ReplayInlinerSettings::Fallback::AlwaysInline,
138                    "AlwaysInline", "All decisions not in replay are inlined"),
139         clEnumValN(ReplayInlinerSettings::Fallback::NeverInline, "NeverInline",
140                    "All decisions not in replay are not inlined")),
141     cl::desc(
142         "How cgscc inline replay treats sites that don't come from the replay. "
143         "Original: defers to original advisor, AlwaysInline: inline all sites "
144         "not in replay, NeverInline: inline no sites not in replay"),
145     cl::Hidden);
146 
147 static cl::opt<CallSiteFormat::Format> CGSCCInlineReplayFormat(
148     "cgscc-inline-replay-format",
149     cl::init(CallSiteFormat::Format::LineColumnDiscriminator),
150     cl::values(
151         clEnumValN(CallSiteFormat::Format::Line, "Line", "<Line Number>"),
152         clEnumValN(CallSiteFormat::Format::LineColumn, "LineColumn",
153                    "<Line Number>:<Column Number>"),
154         clEnumValN(CallSiteFormat::Format::LineDiscriminator,
155                    "LineDiscriminator", "<Line Number>.<Discriminator>"),
156         clEnumValN(CallSiteFormat::Format::LineColumnDiscriminator,
157                    "LineColumnDiscriminator",
158                    "<Line Number>:<Column Number>.<Discriminator> (default)")),
159     cl::desc("How cgscc inline replay file is formatted"), cl::Hidden);
160 
161 LegacyInlinerBase::LegacyInlinerBase(char &ID) : CallGraphSCCPass(ID) {}
162 
163 LegacyInlinerBase::LegacyInlinerBase(char &ID, bool InsertLifetime)
164     : CallGraphSCCPass(ID), InsertLifetime(InsertLifetime) {}
165 
166 /// For this class, we declare that we require and preserve the call graph.
167 /// If the derived class implements this method, it should
168 /// always explicitly call the implementation here.
169 void LegacyInlinerBase::getAnalysisUsage(AnalysisUsage &AU) const {
170   AU.addRequired<AssumptionCacheTracker>();
171   AU.addRequired<ProfileSummaryInfoWrapperPass>();
172   AU.addRequired<TargetLibraryInfoWrapperPass>();
173   getAAResultsAnalysisUsage(AU);
174   CallGraphSCCPass::getAnalysisUsage(AU);
175 }
176 
177 using InlinedArrayAllocasTy = DenseMap<ArrayType *, std::vector<AllocaInst *>>;
178 
179 /// Look at all of the allocas that we inlined through this call site.  If we
180 /// have already inlined other allocas through other calls into this function,
181 /// then we know that they have disjoint lifetimes and that we can merge them.
182 ///
183 /// There are many heuristics possible for merging these allocas, and the
184 /// different options have different tradeoffs.  One thing that we *really*
185 /// don't want to hurt is SRoA: once inlining happens, often allocas are no
186 /// longer address taken and so they can be promoted.
187 ///
188 /// Our "solution" for that is to only merge allocas whose outermost type is an
189 /// array type.  These are usually not promoted because someone is using a
190 /// variable index into them.  These are also often the most important ones to
191 /// merge.
192 ///
193 /// A better solution would be to have real memory lifetime markers in the IR
194 /// and not have the inliner do any merging of allocas at all.  This would
195 /// allow the backend to do proper stack slot coloring of all allocas that
196 /// *actually make it to the backend*, which is really what we want.
197 ///
198 /// Because we don't have this information, we do this simple and useful hack.
199 static void mergeInlinedArrayAllocas(Function *Caller, InlineFunctionInfo &IFI,
200                                      InlinedArrayAllocasTy &InlinedArrayAllocas,
201                                      int InlineHistory) {
202   SmallPtrSet<AllocaInst *, 16> UsedAllocas;
203 
204   // When processing our SCC, check to see if the call site was inlined from
205   // some other call site.  For example, if we're processing "A" in this code:
206   //   A() { B() }
207   //   B() { x = alloca ... C() }
208   //   C() { y = alloca ... }
209   // Assume that C was not inlined into B initially, and so we're processing A
210   // and decide to inline B into A.  Doing this makes an alloca available for
211   // reuse and makes a callsite (C) available for inlining.  When we process
212   // the C call site we don't want to do any alloca merging between X and Y
213   // because their scopes are not disjoint.  We could make this smarter by
214   // keeping track of the inline history for each alloca in the
215   // InlinedArrayAllocas but this isn't likely to be a significant win.
216   if (InlineHistory != -1) // Only do merging for top-level call sites in SCC.
217     return;
218 
219   // Loop over all the allocas we have so far and see if they can be merged with
220   // a previously inlined alloca.  If not, remember that we had it.
221   for (unsigned AllocaNo = 0, E = IFI.StaticAllocas.size(); AllocaNo != E;
222        ++AllocaNo) {
223     AllocaInst *AI = IFI.StaticAllocas[AllocaNo];
224 
225     // Don't bother trying to merge array allocations (they will usually be
226     // canonicalized to be an allocation *of* an array), or allocations whose
227     // type is not itself an array (because we're afraid of pessimizing SRoA).
228     ArrayType *ATy = dyn_cast<ArrayType>(AI->getAllocatedType());
229     if (!ATy || AI->isArrayAllocation())
230       continue;
231 
232     // Get the list of all available allocas for this array type.
233     std::vector<AllocaInst *> &AllocasForType = InlinedArrayAllocas[ATy];
234 
235     // Loop over the allocas in AllocasForType to see if we can reuse one.  Note
236     // that we have to be careful not to reuse the same "available" alloca for
237     // multiple different allocas that we just inlined, we use the 'UsedAllocas'
238     // set to keep track of which "available" allocas are being used by this
239     // function.  Also, AllocasForType can be empty of course!
240     bool MergedAwayAlloca = false;
241     for (AllocaInst *AvailableAlloca : AllocasForType) {
242       Align Align1 = AI->getAlign();
243       Align Align2 = AvailableAlloca->getAlign();
244 
245       // The available alloca has to be in the right function, not in some other
246       // function in this SCC.
247       if (AvailableAlloca->getParent() != AI->getParent())
248         continue;
249 
250       // If the inlined function already uses this alloca then we can't reuse
251       // it.
252       if (!UsedAllocas.insert(AvailableAlloca).second)
253         continue;
254 
255       // Otherwise, we *can* reuse it, RAUW AI into AvailableAlloca and declare
256       // success!
257       LLVM_DEBUG(dbgs() << "    ***MERGED ALLOCA: " << *AI
258                         << "\n\t\tINTO: " << *AvailableAlloca << '\n');
259 
260       // Move affected dbg.declare calls immediately after the new alloca to
261       // avoid the situation when a dbg.declare precedes its alloca.
262       if (auto *L = LocalAsMetadata::getIfExists(AI))
263         if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L))
264           for (User *U : MDV->users())
265             if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(U))
266               DDI->moveBefore(AvailableAlloca->getNextNode());
267 
268       AI->replaceAllUsesWith(AvailableAlloca);
269 
270       if (Align1 > Align2)
271         AvailableAlloca->setAlignment(AI->getAlign());
272 
273       AI->eraseFromParent();
274       MergedAwayAlloca = true;
275       ++NumMergedAllocas;
276       IFI.StaticAllocas[AllocaNo] = nullptr;
277       break;
278     }
279 
280     // If we already nuked the alloca, we're done with it.
281     if (MergedAwayAlloca)
282       continue;
283 
284     // If we were unable to merge away the alloca either because there are no
285     // allocas of the right type available or because we reused them all
286     // already, remember that this alloca came from an inlined function and mark
287     // it used so we don't reuse it for other allocas from this inline
288     // operation.
289     AllocasForType.push_back(AI);
290     UsedAllocas.insert(AI);
291   }
292 }
293 
294 /// If it is possible to inline the specified call site,
295 /// do so and update the CallGraph for this operation.
296 ///
297 /// This function also does some basic book-keeping to update the IR.  The
298 /// InlinedArrayAllocas map keeps track of any allocas that are already
299 /// available from other functions inlined into the caller.  If we are able to
300 /// inline this call site we attempt to reuse already available allocas or add
301 /// any new allocas to the set if not possible.
302 static InlineResult inlineCallIfPossible(
303     CallBase &CB, InlineFunctionInfo &IFI,
304     InlinedArrayAllocasTy &InlinedArrayAllocas, int InlineHistory,
305     bool InsertLifetime, function_ref<AAResults &(Function &)> &AARGetter,
306     ImportedFunctionsInliningStatistics &ImportedFunctionsStats) {
307   Function *Callee = CB.getCalledFunction();
308   Function *Caller = CB.getCaller();
309 
310   AAResults &AAR = AARGetter(*Callee);
311 
312   // Try to inline the function.  Get the list of static allocas that were
313   // inlined.
314   InlineResult IR = InlineFunction(CB, IFI, &AAR, InsertLifetime);
315   if (!IR.isSuccess())
316     return IR;
317 
318   if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No)
319     ImportedFunctionsStats.recordInline(*Caller, *Callee);
320 
321   AttributeFuncs::mergeAttributesForInlining(*Caller, *Callee);
322 
323   if (!DisableInlinedAllocaMerging)
324     mergeInlinedArrayAllocas(Caller, IFI, InlinedArrayAllocas, InlineHistory);
325 
326   return IR; // success
327 }
328 
329 /// Return true if the specified inline history ID
330 /// indicates an inline history that includes the specified function.
331 static bool inlineHistoryIncludes(
332     Function *F, int InlineHistoryID,
333     const SmallVectorImpl<std::pair<Function *, int>> &InlineHistory) {
334   while (InlineHistoryID != -1) {
335     assert(unsigned(InlineHistoryID) < InlineHistory.size() &&
336            "Invalid inline history ID");
337     if (InlineHistory[InlineHistoryID].first == F)
338       return true;
339     InlineHistoryID = InlineHistory[InlineHistoryID].second;
340   }
341   return false;
342 }
343 
344 bool LegacyInlinerBase::doInitialization(CallGraph &CG) {
345   if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No)
346     ImportedFunctionsStats.setModuleInfo(CG.getModule());
347   return false; // No changes to CallGraph.
348 }
349 
350 bool LegacyInlinerBase::runOnSCC(CallGraphSCC &SCC) {
351   if (skipSCC(SCC))
352     return false;
353   return inlineCalls(SCC);
354 }
355 
356 static bool
357 inlineCallsImpl(CallGraphSCC &SCC, CallGraph &CG,
358                 std::function<AssumptionCache &(Function &)> GetAssumptionCache,
359                 ProfileSummaryInfo *PSI,
360                 std::function<const TargetLibraryInfo &(Function &)> GetTLI,
361                 bool InsertLifetime,
362                 function_ref<InlineCost(CallBase &CB)> GetInlineCost,
363                 function_ref<AAResults &(Function &)> AARGetter,
364                 ImportedFunctionsInliningStatistics &ImportedFunctionsStats) {
365   SmallPtrSet<Function *, 8> SCCFunctions;
366   LLVM_DEBUG(dbgs() << "Inliner visiting SCC:");
367   for (CallGraphNode *Node : SCC) {
368     Function *F = Node->getFunction();
369     if (F)
370       SCCFunctions.insert(F);
371     LLVM_DEBUG(dbgs() << " " << (F ? F->getName() : "INDIRECTNODE"));
372   }
373 
374   // Scan through and identify all call sites ahead of time so that we only
375   // inline call sites in the original functions, not call sites that result
376   // from inlining other functions.
377   SmallVector<std::pair<CallBase *, int>, 16> CallSites;
378 
379   // When inlining a callee produces new call sites, we want to keep track of
380   // the fact that they were inlined from the callee.  This allows us to avoid
381   // infinite inlining in some obscure cases.  To represent this, we use an
382   // index into the InlineHistory vector.
383   SmallVector<std::pair<Function *, int>, 8> InlineHistory;
384 
385   for (CallGraphNode *Node : SCC) {
386     Function *F = Node->getFunction();
387     if (!F || F->isDeclaration())
388       continue;
389 
390     OptimizationRemarkEmitter ORE(F);
391     for (BasicBlock &BB : *F)
392       for (Instruction &I : BB) {
393         auto *CB = dyn_cast<CallBase>(&I);
394         // If this isn't a call, or it is a call to an intrinsic, it can
395         // never be inlined.
396         if (!CB || isa<IntrinsicInst>(I))
397           continue;
398 
399         // If this is a direct call to an external function, we can never inline
400         // it.  If it is an indirect call, inlining may resolve it to be a
401         // direct call, so we keep it.
402         if (Function *Callee = CB->getCalledFunction())
403           if (Callee->isDeclaration()) {
404             using namespace ore;
405 
406             setInlineRemark(*CB, "unavailable definition");
407             ORE.emit([&]() {
408               return OptimizationRemarkMissed(DEBUG_TYPE, "NoDefinition", &I)
409                      << NV("Callee", Callee) << " will not be inlined into "
410                      << NV("Caller", CB->getCaller())
411                      << " because its definition is unavailable"
412                      << setIsVerbose();
413             });
414             continue;
415           }
416 
417         CallSites.push_back(std::make_pair(CB, -1));
418       }
419   }
420 
421   LLVM_DEBUG(dbgs() << ": " << CallSites.size() << " call sites.\n");
422 
423   // If there are no calls in this function, exit early.
424   if (CallSites.empty())
425     return false;
426 
427   // Now that we have all of the call sites, move the ones to functions in the
428   // current SCC to the end of the list.
429   unsigned FirstCallInSCC = CallSites.size();
430   for (unsigned I = 0; I < FirstCallInSCC; ++I)
431     if (Function *F = CallSites[I].first->getCalledFunction())
432       if (SCCFunctions.count(F))
433         std::swap(CallSites[I--], CallSites[--FirstCallInSCC]);
434 
435   InlinedArrayAllocasTy InlinedArrayAllocas;
436   InlineFunctionInfo InlineInfo(&CG, GetAssumptionCache, PSI);
437 
438   // Now that we have all of the call sites, loop over them and inline them if
439   // it looks profitable to do so.
440   bool Changed = false;
441   bool LocalChange;
442   do {
443     LocalChange = false;
444     // Iterate over the outer loop because inlining functions can cause indirect
445     // calls to become direct calls.
446     // CallSites may be modified inside so ranged for loop can not be used.
447     for (unsigned CSi = 0; CSi != CallSites.size(); ++CSi) {
448       auto &P = CallSites[CSi];
449       CallBase &CB = *P.first;
450       const int InlineHistoryID = P.second;
451 
452       Function *Caller = CB.getCaller();
453       Function *Callee = CB.getCalledFunction();
454 
455       // We can only inline direct calls to non-declarations.
456       if (!Callee || Callee->isDeclaration())
457         continue;
458 
459       bool IsTriviallyDead = isInstructionTriviallyDead(&CB, &GetTLI(*Caller));
460 
461       if (!IsTriviallyDead) {
462         // If this call site was obtained by inlining another function, verify
463         // that the include path for the function did not include the callee
464         // itself.  If so, we'd be recursively inlining the same function,
465         // which would provide the same callsites, which would cause us to
466         // infinitely inline.
467         if (InlineHistoryID != -1 &&
468             inlineHistoryIncludes(Callee, InlineHistoryID, InlineHistory)) {
469           setInlineRemark(CB, "recursive");
470           continue;
471         }
472       }
473 
474       // FIXME for new PM: because of the old PM we currently generate ORE and
475       // in turn BFI on demand.  With the new PM, the ORE dependency should
476       // just become a regular analysis dependency.
477       OptimizationRemarkEmitter ORE(Caller);
478 
479       auto OIC = shouldInline(CB, GetInlineCost, ORE);
480       // If the policy determines that we should inline this function,
481       // delete the call instead.
482       if (!OIC)
483         continue;
484 
485       // If this call site is dead and it is to a readonly function, we should
486       // just delete the call instead of trying to inline it, regardless of
487       // size.  This happens because IPSCCP propagates the result out of the
488       // call and then we're left with the dead call.
489       if (IsTriviallyDead) {
490         LLVM_DEBUG(dbgs() << "    -> Deleting dead call: " << CB << "\n");
491         // Update the call graph by deleting the edge from Callee to Caller.
492         setInlineRemark(CB, "trivially dead");
493         CG[Caller]->removeCallEdgeFor(CB);
494         CB.eraseFromParent();
495         ++NumCallsDeleted;
496       } else {
497         // Get DebugLoc to report. CB will be invalid after Inliner.
498         DebugLoc DLoc = CB.getDebugLoc();
499         BasicBlock *Block = CB.getParent();
500 
501         // Attempt to inline the function.
502         using namespace ore;
503 
504         InlineResult IR = inlineCallIfPossible(
505             CB, InlineInfo, InlinedArrayAllocas, InlineHistoryID,
506             InsertLifetime, AARGetter, ImportedFunctionsStats);
507         if (!IR.isSuccess()) {
508           setInlineRemark(CB, std::string(IR.getFailureReason()) + "; " +
509                                   inlineCostStr(*OIC));
510           ORE.emit([&]() {
511             return OptimizationRemarkMissed(DEBUG_TYPE, "NotInlined", DLoc,
512                                             Block)
513                    << NV("Callee", Callee) << " will not be inlined into "
514                    << NV("Caller", Caller) << ": "
515                    << NV("Reason", IR.getFailureReason());
516           });
517           continue;
518         }
519         ++NumInlined;
520 
521         emitInlinedIntoBasedOnCost(ORE, DLoc, Block, *Callee, *Caller, *OIC);
522 
523         // If inlining this function gave us any new call sites, throw them
524         // onto our worklist to process.  They are useful inline candidates.
525         if (!InlineInfo.InlinedCalls.empty()) {
526           // Create a new inline history entry for this, so that we remember
527           // that these new callsites came about due to inlining Callee.
528           int NewHistoryID = InlineHistory.size();
529           InlineHistory.push_back(std::make_pair(Callee, InlineHistoryID));
530 
531 #ifndef NDEBUG
532           // Make sure no dupplicates in the inline candidates. This could
533           // happen when a callsite is simpilfied to reusing the return value
534           // of another callsite during function cloning, thus the other
535           // callsite will be reconsidered here.
536           DenseSet<CallBase *> DbgCallSites;
537           for (auto &II : CallSites)
538             DbgCallSites.insert(II.first);
539 #endif
540 
541           for (Value *Ptr : InlineInfo.InlinedCalls) {
542 #ifndef NDEBUG
543             assert(DbgCallSites.count(dyn_cast<CallBase>(Ptr)) == 0);
544 #endif
545             CallSites.push_back(
546                 std::make_pair(dyn_cast<CallBase>(Ptr), NewHistoryID));
547           }
548         }
549       }
550 
551       // If we inlined or deleted the last possible call site to the function,
552       // delete the function body now.
553       if (Callee && Callee->use_empty() && Callee->hasLocalLinkage() &&
554           // TODO: Can remove if in SCC now.
555           !SCCFunctions.count(Callee) &&
556           // The function may be apparently dead, but if there are indirect
557           // callgraph references to the node, we cannot delete it yet, this
558           // could invalidate the CGSCC iterator.
559           CG[Callee]->getNumReferences() == 0) {
560         LLVM_DEBUG(dbgs() << "    -> Deleting dead function: "
561                           << Callee->getName() << "\n");
562         CallGraphNode *CalleeNode = CG[Callee];
563 
564         // Remove any call graph edges from the callee to its callees.
565         CalleeNode->removeAllCalledFunctions();
566 
567         // Removing the node for callee from the call graph and delete it.
568         delete CG.removeFunctionFromModule(CalleeNode);
569         ++NumDeleted;
570       }
571 
572       // Remove this call site from the list.  If possible, use
573       // swap/pop_back for efficiency, but do not use it if doing so would
574       // move a call site to a function in this SCC before the
575       // 'FirstCallInSCC' barrier.
576       if (SCC.isSingular()) {
577         CallSites[CSi] = CallSites.back();
578         CallSites.pop_back();
579       } else {
580         CallSites.erase(CallSites.begin() + CSi);
581       }
582       --CSi;
583 
584       Changed = true;
585       LocalChange = true;
586     }
587   } while (LocalChange);
588 
589   return Changed;
590 }
591 
592 bool LegacyInlinerBase::inlineCalls(CallGraphSCC &SCC) {
593   CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();
594   ACT = &getAnalysis<AssumptionCacheTracker>();
595   PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
596   GetTLI = [&](Function &F) -> const TargetLibraryInfo & {
597     return getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
598   };
599   auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & {
600     return ACT->getAssumptionCache(F);
601   };
602   return inlineCallsImpl(
603       SCC, CG, GetAssumptionCache, PSI, GetTLI, InsertLifetime,
604       [&](CallBase &CB) { return getInlineCost(CB); }, LegacyAARGetter(*this),
605       ImportedFunctionsStats);
606 }
607 
608 /// Remove now-dead linkonce functions at the end of
609 /// processing to avoid breaking the SCC traversal.
610 bool LegacyInlinerBase::doFinalization(CallGraph &CG) {
611   if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No)
612     ImportedFunctionsStats.dump(InlinerFunctionImportStats ==
613                                 InlinerFunctionImportStatsOpts::Verbose);
614   return removeDeadFunctions(CG);
615 }
616 
617 /// Remove dead functions that are not included in DNR (Do Not Remove) list.
618 bool LegacyInlinerBase::removeDeadFunctions(CallGraph &CG,
619                                             bool AlwaysInlineOnly) {
620   SmallVector<CallGraphNode *, 16> FunctionsToRemove;
621   SmallVector<Function *, 16> DeadFunctionsInComdats;
622 
623   auto RemoveCGN = [&](CallGraphNode *CGN) {
624     // Remove any call graph edges from the function to its callees.
625     CGN->removeAllCalledFunctions();
626 
627     // Remove any edges from the external node to the function's call graph
628     // node.  These edges might have been made irrelegant due to
629     // optimization of the program.
630     CG.getExternalCallingNode()->removeAnyCallEdgeTo(CGN);
631 
632     // Removing the node for callee from the call graph and delete it.
633     FunctionsToRemove.push_back(CGN);
634   };
635 
636   // Scan for all of the functions, looking for ones that should now be removed
637   // from the program.  Insert the dead ones in the FunctionsToRemove set.
638   for (const auto &I : CG) {
639     CallGraphNode *CGN = I.second.get();
640     Function *F = CGN->getFunction();
641     if (!F || F->isDeclaration())
642       continue;
643 
644     // Handle the case when this function is called and we only want to care
645     // about always-inline functions. This is a bit of a hack to share code
646     // between here and the InlineAlways pass.
647     if (AlwaysInlineOnly && !F->hasFnAttribute(Attribute::AlwaysInline))
648       continue;
649 
650     // If the only remaining users of the function are dead constants, remove
651     // them.
652     F->removeDeadConstantUsers();
653 
654     if (!F->isDefTriviallyDead())
655       continue;
656 
657     // It is unsafe to drop a function with discardable linkage from a COMDAT
658     // without also dropping the other members of the COMDAT.
659     // The inliner doesn't visit non-function entities which are in COMDAT
660     // groups so it is unsafe to do so *unless* the linkage is local.
661     if (!F->hasLocalLinkage()) {
662       if (F->hasComdat()) {
663         DeadFunctionsInComdats.push_back(F);
664         continue;
665       }
666     }
667 
668     RemoveCGN(CGN);
669   }
670   if (!DeadFunctionsInComdats.empty()) {
671     // Filter out the functions whose comdats remain alive.
672     filterDeadComdatFunctions(DeadFunctionsInComdats);
673     // Remove the rest.
674     for (Function *F : DeadFunctionsInComdats)
675       RemoveCGN(CG[F]);
676   }
677 
678   if (FunctionsToRemove.empty())
679     return false;
680 
681   // Now that we know which functions to delete, do so.  We didn't want to do
682   // this inline, because that would invalidate our CallGraph::iterator
683   // objects. :(
684   //
685   // Note that it doesn't matter that we are iterating over a non-stable order
686   // here to do this, it doesn't matter which order the functions are deleted
687   // in.
688   array_pod_sort(FunctionsToRemove.begin(), FunctionsToRemove.end());
689   FunctionsToRemove.erase(
690       std::unique(FunctionsToRemove.begin(), FunctionsToRemove.end()),
691       FunctionsToRemove.end());
692   for (CallGraphNode *CGN : FunctionsToRemove) {
693     delete CG.removeFunctionFromModule(CGN);
694     ++NumDeleted;
695   }
696   return true;
697 }
698 
699 InlineAdvisor &
700 InlinerPass::getAdvisor(const ModuleAnalysisManagerCGSCCProxy::Result &MAM,
701                         FunctionAnalysisManager &FAM, Module &M) {
702   if (OwnedAdvisor)
703     return *OwnedAdvisor;
704 
705   auto *IAA = MAM.getCachedResult<InlineAdvisorAnalysis>(M);
706   if (!IAA) {
707     // It should still be possible to run the inliner as a stand-alone SCC pass,
708     // for test scenarios. In that case, we default to the
709     // DefaultInlineAdvisor, which doesn't need to keep state between SCC pass
710     // runs. It also uses just the default InlineParams.
711     // In this case, we need to use the provided FAM, which is valid for the
712     // duration of the inliner pass, and thus the lifetime of the owned advisor.
713     // The one we would get from the MAM can be invalidated as a result of the
714     // inliner's activity.
715     OwnedAdvisor =
716         std::make_unique<DefaultInlineAdvisor>(M, FAM, getInlineParams());
717 
718     if (!CGSCCInlineReplayFile.empty())
719       OwnedAdvisor = getReplayInlineAdvisor(
720           M, FAM, M.getContext(), std::move(OwnedAdvisor),
721           ReplayInlinerSettings{CGSCCInlineReplayFile,
722                                 CGSCCInlineReplayScope,
723                                 CGSCCInlineReplayFallback,
724                                 {CGSCCInlineReplayFormat}},
725           /*EmitRemarks=*/true);
726 
727     return *OwnedAdvisor;
728   }
729   assert(IAA->getAdvisor() &&
730          "Expected a present InlineAdvisorAnalysis also have an "
731          "InlineAdvisor initialized");
732   return *IAA->getAdvisor();
733 }
734 
735 PreservedAnalyses InlinerPass::run(LazyCallGraph::SCC &InitialC,
736                                    CGSCCAnalysisManager &AM, LazyCallGraph &CG,
737                                    CGSCCUpdateResult &UR) {
738   const auto &MAMProxy =
739       AM.getResult<ModuleAnalysisManagerCGSCCProxy>(InitialC, CG);
740   bool Changed = false;
741 
742   assert(InitialC.size() > 0 && "Cannot handle an empty SCC!");
743   Module &M = *InitialC.begin()->getFunction().getParent();
744   ProfileSummaryInfo *PSI = MAMProxy.getCachedResult<ProfileSummaryAnalysis>(M);
745 
746   FunctionAnalysisManager &FAM =
747       AM.getResult<FunctionAnalysisManagerCGSCCProxy>(InitialC, CG)
748           .getManager();
749 
750   InlineAdvisor &Advisor = getAdvisor(MAMProxy, FAM, M);
751   Advisor.onPassEntry();
752 
753   auto AdvisorOnExit = make_scope_exit([&] { Advisor.onPassExit(&InitialC); });
754 
755   // We use a single common worklist for calls across the entire SCC. We
756   // process these in-order and append new calls introduced during inlining to
757   // the end. The PriorityInlineOrder is optional here, in which the smaller
758   // callee would have a higher priority to inline.
759   //
760   // Note that this particular order of processing is actually critical to
761   // avoid very bad behaviors. Consider *highly connected* call graphs where
762   // each function contains a small amount of code and a couple of calls to
763   // other functions. Because the LLVM inliner is fundamentally a bottom-up
764   // inliner, it can handle gracefully the fact that these all appear to be
765   // reasonable inlining candidates as it will flatten things until they become
766   // too big to inline, and then move on and flatten another batch.
767   //
768   // However, when processing call edges *within* an SCC we cannot rely on this
769   // bottom-up behavior. As a consequence, with heavily connected *SCCs* of
770   // functions we can end up incrementally inlining N calls into each of
771   // N functions because each incremental inlining decision looks good and we
772   // don't have a topological ordering to prevent explosions.
773   //
774   // To compensate for this, we don't process transitive edges made immediate
775   // by inlining until we've done one pass of inlining across the entire SCC.
776   // Large, highly connected SCCs still lead to some amount of code bloat in
777   // this model, but it is uniformly spread across all the functions in the SCC
778   // and eventually they all become too large to inline, rather than
779   // incrementally maknig a single function grow in a super linear fashion.
780   DefaultInlineOrder<std::pair<CallBase *, int>> Calls;
781 
782   // Populate the initial list of calls in this SCC.
783   for (auto &N : InitialC) {
784     auto &ORE =
785         FAM.getResult<OptimizationRemarkEmitterAnalysis>(N.getFunction());
786     // We want to generally process call sites top-down in order for
787     // simplifications stemming from replacing the call with the returned value
788     // after inlining to be visible to subsequent inlining decisions.
789     // FIXME: Using instructions sequence is a really bad way to do this.
790     // Instead we should do an actual RPO walk of the function body.
791     for (Instruction &I : instructions(N.getFunction()))
792       if (auto *CB = dyn_cast<CallBase>(&I))
793         if (Function *Callee = CB->getCalledFunction()) {
794           if (!Callee->isDeclaration())
795             Calls.push({CB, -1});
796           else if (!isa<IntrinsicInst>(I)) {
797             using namespace ore;
798             setInlineRemark(*CB, "unavailable definition");
799             ORE.emit([&]() {
800               return OptimizationRemarkMissed(DEBUG_TYPE, "NoDefinition", &I)
801                      << NV("Callee", Callee) << " will not be inlined into "
802                      << NV("Caller", CB->getCaller())
803                      << " because its definition is unavailable"
804                      << setIsVerbose();
805             });
806           }
807         }
808   }
809   if (Calls.empty())
810     return PreservedAnalyses::all();
811 
812   // Capture updatable variable for the current SCC.
813   auto *C = &InitialC;
814 
815   // When inlining a callee produces new call sites, we want to keep track of
816   // the fact that they were inlined from the callee.  This allows us to avoid
817   // infinite inlining in some obscure cases.  To represent this, we use an
818   // index into the InlineHistory vector.
819   SmallVector<std::pair<Function *, int>, 16> InlineHistory;
820 
821   // Track a set vector of inlined callees so that we can augment the caller
822   // with all of their edges in the call graph before pruning out the ones that
823   // got simplified away.
824   SmallSetVector<Function *, 4> InlinedCallees;
825 
826   // Track the dead functions to delete once finished with inlining calls. We
827   // defer deleting these to make it easier to handle the call graph updates.
828   SmallVector<Function *, 4> DeadFunctions;
829 
830   // Track potentially dead non-local functions with comdats to see if they can
831   // be deleted as a batch after inlining.
832   SmallVector<Function *, 4> DeadFunctionsInComdats;
833 
834   // Loop forward over all of the calls.
835   while (!Calls.empty()) {
836     // We expect the calls to typically be batched with sequences of calls that
837     // have the same caller, so we first set up some shared infrastructure for
838     // this caller. We also do any pruning we can at this layer on the caller
839     // alone.
840     Function &F = *Calls.front().first->getCaller();
841     LazyCallGraph::Node &N = *CG.lookup(F);
842     if (CG.lookupSCC(N) != C) {
843       Calls.pop();
844       continue;
845     }
846 
847     LLVM_DEBUG(dbgs() << "Inlining calls in: " << F.getName() << "\n"
848                       << "    Function size: " << F.getInstructionCount()
849                       << "\n");
850 
851     auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & {
852       return FAM.getResult<AssumptionAnalysis>(F);
853     };
854 
855     // Now process as many calls as we have within this caller in the sequence.
856     // We bail out as soon as the caller has to change so we can update the
857     // call graph and prepare the context of that new caller.
858     bool DidInline = false;
859     while (!Calls.empty() && Calls.front().first->getCaller() == &F) {
860       auto P = Calls.pop();
861       CallBase *CB = P.first;
862       const int InlineHistoryID = P.second;
863       Function &Callee = *CB->getCalledFunction();
864 
865       if (InlineHistoryID != -1 &&
866           inlineHistoryIncludes(&Callee, InlineHistoryID, InlineHistory)) {
867         LLVM_DEBUG(dbgs() << "Skipping inlining due to history: "
868                           << F.getName() << " -> " << Callee.getName() << "\n");
869         setInlineRemark(*CB, "recursive");
870         continue;
871       }
872 
873       // Check if this inlining may repeat breaking an SCC apart that has
874       // already been split once before. In that case, inlining here may
875       // trigger infinite inlining, much like is prevented within the inliner
876       // itself by the InlineHistory above, but spread across CGSCC iterations
877       // and thus hidden from the full inline history.
878       LazyCallGraph::SCC *CalleeSCC = CG.lookupSCC(*CG.lookup(Callee));
879       if (CalleeSCC == C && UR.InlinedInternalEdges.count({&N, C})) {
880         LLVM_DEBUG(dbgs() << "Skipping inlining internal SCC edge from a node "
881                              "previously split out of this SCC by inlining: "
882                           << F.getName() << " -> " << Callee.getName() << "\n");
883         setInlineRemark(*CB, "recursive SCC split");
884         continue;
885       }
886 
887       std::unique_ptr<InlineAdvice> Advice =
888           Advisor.getAdvice(*CB, OnlyMandatory);
889 
890       // Check whether we want to inline this callsite.
891       if (!Advice)
892         continue;
893 
894       if (!Advice->isInliningRecommended()) {
895         Advice->recordUnattemptedInlining();
896         continue;
897       }
898 
899       int CBCostMult =
900           getStringFnAttrAsInt(
901               *CB, InlineConstants::FunctionInlineCostMultiplierAttributeName)
902               .getValueOr(1);
903 
904       // Setup the data structure used to plumb customization into the
905       // `InlineFunction` routine.
906       InlineFunctionInfo IFI(
907           /*cg=*/nullptr, GetAssumptionCache, PSI,
908           &FAM.getResult<BlockFrequencyAnalysis>(*(CB->getCaller())),
909           &FAM.getResult<BlockFrequencyAnalysis>(Callee));
910 
911       InlineResult IR =
912           InlineFunction(*CB, IFI, &FAM.getResult<AAManager>(*CB->getCaller()));
913       if (!IR.isSuccess()) {
914         Advice->recordUnsuccessfulInlining(IR);
915         continue;
916       }
917 
918       DidInline = true;
919       InlinedCallees.insert(&Callee);
920       ++NumInlined;
921 
922       LLVM_DEBUG(dbgs() << "    Size after inlining: "
923                         << F.getInstructionCount() << "\n");
924 
925       // Add any new callsites to defined functions to the worklist.
926       if (!IFI.InlinedCallSites.empty()) {
927         int NewHistoryID = InlineHistory.size();
928         InlineHistory.push_back({&Callee, InlineHistoryID});
929 
930         for (CallBase *ICB : reverse(IFI.InlinedCallSites)) {
931           Function *NewCallee = ICB->getCalledFunction();
932           assert(!(NewCallee && NewCallee->isIntrinsic()) &&
933                  "Intrinsic calls should not be tracked.");
934           if (!NewCallee) {
935             // Try to promote an indirect (virtual) call without waiting for
936             // the post-inline cleanup and the next DevirtSCCRepeatedPass
937             // iteration because the next iteration may not happen and we may
938             // miss inlining it.
939             if (tryPromoteCall(*ICB))
940               NewCallee = ICB->getCalledFunction();
941           }
942           if (NewCallee) {
943             if (!NewCallee->isDeclaration()) {
944               Calls.push({ICB, NewHistoryID});
945               // Continually inlining through an SCC can result in huge compile
946               // times and bloated code since we arbitrarily stop at some point
947               // when the inliner decides it's not profitable to inline anymore.
948               // We attempt to mitigate this by making these calls exponentially
949               // more expensive.
950               // This doesn't apply to calls in the same SCC since if we do
951               // inline through the SCC the function will end up being
952               // self-recursive which the inliner bails out on, and inlining
953               // within an SCC is necessary for performance.
954               if (CalleeSCC != C &&
955                   CalleeSCC == CG.lookupSCC(CG.get(*NewCallee))) {
956                 Attribute NewCBCostMult = Attribute::get(
957                     M.getContext(),
958                     InlineConstants::FunctionInlineCostMultiplierAttributeName,
959                     itostr(CBCostMult * IntraSCCCostMultiplier));
960                 ICB->addFnAttr(NewCBCostMult);
961               }
962             }
963           }
964         }
965       }
966 
967       // Merge the attributes based on the inlining.
968       AttributeFuncs::mergeAttributesForInlining(F, Callee);
969 
970       // For local functions or discardable functions without comdats, check
971       // whether this makes the callee trivially dead. In that case, we can drop
972       // the body of the function eagerly which may reduce the number of callers
973       // of other functions to one, changing inline cost thresholds. Non-local
974       // discardable functions with comdats are checked later on.
975       bool CalleeWasDeleted = false;
976       if (Callee.isDiscardableIfUnused() && Callee.hasZeroLiveUses() &&
977           !CG.isLibFunction(Callee)) {
978         if (Callee.hasLocalLinkage() || !Callee.hasComdat()) {
979           Calls.erase_if([&](const std::pair<CallBase *, int> &Call) {
980             return Call.first->getCaller() == &Callee;
981           });
982           // Clear the body and queue the function itself for deletion when we
983           // finish inlining and call graph updates.
984           // Note that after this point, it is an error to do anything other
985           // than use the callee's address or delete it.
986           Callee.dropAllReferences();
987           assert(!is_contained(DeadFunctions, &Callee) &&
988                  "Cannot put cause a function to become dead twice!");
989           DeadFunctions.push_back(&Callee);
990           CalleeWasDeleted = true;
991         } else {
992           DeadFunctionsInComdats.push_back(&Callee);
993         }
994       }
995       if (CalleeWasDeleted)
996         Advice->recordInliningWithCalleeDeleted();
997       else
998         Advice->recordInlining();
999     }
1000 
1001     if (!DidInline)
1002       continue;
1003     Changed = true;
1004 
1005     // At this point, since we have made changes we have at least removed
1006     // a call instruction. However, in the process we do some incremental
1007     // simplification of the surrounding code. This simplification can
1008     // essentially do all of the same things as a function pass and we can
1009     // re-use the exact same logic for updating the call graph to reflect the
1010     // change.
1011 
1012     // Inside the update, we also update the FunctionAnalysisManager in the
1013     // proxy for this particular SCC. We do this as the SCC may have changed and
1014     // as we're going to mutate this particular function we want to make sure
1015     // the proxy is in place to forward any invalidation events.
1016     LazyCallGraph::SCC *OldC = C;
1017     C = &updateCGAndAnalysisManagerForCGSCCPass(CG, *C, N, AM, UR, FAM);
1018     LLVM_DEBUG(dbgs() << "Updated inlining SCC: " << *C << "\n");
1019 
1020     // If this causes an SCC to split apart into multiple smaller SCCs, there
1021     // is a subtle risk we need to prepare for. Other transformations may
1022     // expose an "infinite inlining" opportunity later, and because of the SCC
1023     // mutation, we will revisit this function and potentially re-inline. If we
1024     // do, and that re-inlining also has the potentially to mutate the SCC
1025     // structure, the infinite inlining problem can manifest through infinite
1026     // SCC splits and merges. To avoid this, we capture the originating caller
1027     // node and the SCC containing the call edge. This is a slight over
1028     // approximation of the possible inlining decisions that must be avoided,
1029     // but is relatively efficient to store. We use C != OldC to know when
1030     // a new SCC is generated and the original SCC may be generated via merge
1031     // in later iterations.
1032     //
1033     // It is also possible that even if no new SCC is generated
1034     // (i.e., C == OldC), the original SCC could be split and then merged
1035     // into the same one as itself. and the original SCC will be added into
1036     // UR.CWorklist again, we want to catch such cases too.
1037     //
1038     // FIXME: This seems like a very heavyweight way of retaining the inline
1039     // history, we should look for a more efficient way of tracking it.
1040     if ((C != OldC || UR.CWorklist.count(OldC)) &&
1041         llvm::any_of(InlinedCallees, [&](Function *Callee) {
1042           return CG.lookupSCC(*CG.lookup(*Callee)) == OldC;
1043         })) {
1044       LLVM_DEBUG(dbgs() << "Inlined an internal call edge and split an SCC, "
1045                            "retaining this to avoid infinite inlining.\n");
1046       UR.InlinedInternalEdges.insert({&N, OldC});
1047     }
1048     InlinedCallees.clear();
1049 
1050     // Invalidate analyses for this function now so that we don't have to
1051     // invalidate analyses for all functions in this SCC later.
1052     FAM.invalidate(F, PreservedAnalyses::none());
1053   }
1054 
1055   // We must ensure that we only delete functions with comdats if every function
1056   // in the comdat is going to be deleted.
1057   if (!DeadFunctionsInComdats.empty()) {
1058     filterDeadComdatFunctions(DeadFunctionsInComdats);
1059     for (auto *Callee : DeadFunctionsInComdats)
1060       Callee->dropAllReferences();
1061     DeadFunctions.append(DeadFunctionsInComdats);
1062   }
1063 
1064   // Now that we've finished inlining all of the calls across this SCC, delete
1065   // all of the trivially dead functions, updating the call graph and the CGSCC
1066   // pass manager in the process.
1067   //
1068   // Note that this walks a pointer set which has non-deterministic order but
1069   // that is OK as all we do is delete things and add pointers to unordered
1070   // sets.
1071   for (Function *DeadF : DeadFunctions) {
1072     // Get the necessary information out of the call graph and nuke the
1073     // function there. Also, clear out any cached analyses.
1074     auto &DeadC = *CG.lookupSCC(*CG.lookup(*DeadF));
1075     FAM.clear(*DeadF, DeadF->getName());
1076     AM.clear(DeadC, DeadC.getName());
1077     auto &DeadRC = DeadC.getOuterRefSCC();
1078     CG.removeDeadFunction(*DeadF);
1079 
1080     // Mark the relevant parts of the call graph as invalid so we don't visit
1081     // them.
1082     UR.InvalidatedSCCs.insert(&DeadC);
1083     UR.InvalidatedRefSCCs.insert(&DeadRC);
1084 
1085     // If the updated SCC was the one containing the deleted function, clear it.
1086     if (&DeadC == UR.UpdatedC)
1087       UR.UpdatedC = nullptr;
1088 
1089     // And delete the actual function from the module.
1090     M.getFunctionList().erase(DeadF);
1091 
1092     ++NumDeleted;
1093   }
1094 
1095   if (!Changed)
1096     return PreservedAnalyses::all();
1097 
1098   PreservedAnalyses PA;
1099   // Even if we change the IR, we update the core CGSCC data structures and so
1100   // can preserve the proxy to the function analysis manager.
1101   PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
1102   // We have already invalidated all analyses on modified functions.
1103   PA.preserveSet<AllAnalysesOn<Function>>();
1104   return PA;
1105 }
1106 
1107 ModuleInlinerWrapperPass::ModuleInlinerWrapperPass(InlineParams Params,
1108                                                    bool MandatoryFirst,
1109                                                    InliningAdvisorMode Mode,
1110                                                    unsigned MaxDevirtIterations)
1111     : Params(Params), Mode(Mode), MaxDevirtIterations(MaxDevirtIterations) {
1112   // Run the inliner first. The theory is that we are walking bottom-up and so
1113   // the callees have already been fully optimized, and we want to inline them
1114   // into the callers so that our optimizations can reflect that.
1115   // For PreLinkThinLTO pass, we disable hot-caller heuristic for sample PGO
1116   // because it makes profile annotation in the backend inaccurate.
1117   if (MandatoryFirst)
1118     PM.addPass(InlinerPass(/*OnlyMandatory*/ true));
1119   PM.addPass(InlinerPass());
1120 }
1121 
1122 PreservedAnalyses ModuleInlinerWrapperPass::run(Module &M,
1123                                                 ModuleAnalysisManager &MAM) {
1124   auto &IAA = MAM.getResult<InlineAdvisorAnalysis>(M);
1125   if (!IAA.tryCreate(Params, Mode,
1126                      {CGSCCInlineReplayFile,
1127                       CGSCCInlineReplayScope,
1128                       CGSCCInlineReplayFallback,
1129                       {CGSCCInlineReplayFormat}})) {
1130     M.getContext().emitError(
1131         "Could not setup Inlining Advisor for the requested "
1132         "mode and/or options");
1133     return PreservedAnalyses::all();
1134   }
1135 
1136   // We wrap the CGSCC pipeline in a devirtualization repeater. This will try
1137   // to detect when we devirtualize indirect calls and iterate the SCC passes
1138   // in that case to try and catch knock-on inlining or function attrs
1139   // opportunities. Then we add it to the module pipeline by walking the SCCs
1140   // in postorder (or bottom-up).
1141   // If MaxDevirtIterations is 0, we just don't use the devirtualization
1142   // wrapper.
1143   if (MaxDevirtIterations == 0)
1144     MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(PM)));
1145   else
1146     MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(
1147         createDevirtSCCRepeatedPass(std::move(PM), MaxDevirtIterations)));
1148 
1149   MPM.addPass(std::move(AfterCGMPM));
1150   MPM.run(M, MAM);
1151 
1152   // Discard the InlineAdvisor, a subsequent inlining session should construct
1153   // its own.
1154   auto PA = PreservedAnalyses::all();
1155   if (!KeepAdvisorForPrinting)
1156     PA.abandon<InlineAdvisorAnalysis>();
1157   return PA;
1158 }
1159 
1160 void InlinerPass::printPipeline(
1161     raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
1162   static_cast<PassInfoMixin<InlinerPass> *>(this)->printPipeline(
1163       OS, MapClassName2PassName);
1164   if (OnlyMandatory)
1165     OS << "<only-mandatory>";
1166 }
1167 
1168 void ModuleInlinerWrapperPass::printPipeline(
1169     raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
1170   // Print some info about passes added to the wrapper. This is however
1171   // incomplete as InlineAdvisorAnalysis part isn't included (which also depends
1172   // on Params and Mode).
1173   if (!MPM.isEmpty()) {
1174     MPM.printPipeline(OS, MapClassName2PassName);
1175     OS << ",";
1176   }
1177   OS << "cgscc(";
1178   if (MaxDevirtIterations != 0)
1179     OS << "devirt<" << MaxDevirtIterations << ">(";
1180   PM.printPipeline(OS, MapClassName2PassName);
1181   if (MaxDevirtIterations != 0)
1182     OS << ")";
1183   OS << ")";
1184 }
1185