1 //===- Inliner.cpp - Code common to all inliners --------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the mechanics required to implement inlining without
10 // missing any calls and updating the call graph.  The decisions of which calls
11 // are profitable to inline are implemented elsewhere.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/IPO/Inliner.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/None.h"
18 #include "llvm/ADT/Optional.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/Analysis/AliasAnalysis.h"
26 #include "llvm/Analysis/AssumptionCache.h"
27 #include "llvm/Analysis/BasicAliasAnalysis.h"
28 #include "llvm/Analysis/BlockFrequencyInfo.h"
29 #include "llvm/Analysis/CGSCCPassManager.h"
30 #include "llvm/Analysis/CallGraph.h"
31 #include "llvm/Analysis/InlineCost.h"
32 #include "llvm/Analysis/LazyCallGraph.h"
33 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
34 #include "llvm/Analysis/ProfileSummaryInfo.h"
35 #include "llvm/Analysis/TargetLibraryInfo.h"
36 #include "llvm/Analysis/TargetTransformInfo.h"
37 #include "llvm/Transforms/Utils/Local.h"
38 #include "llvm/Transforms/Utils/CallPromotionUtils.h"
39 #include "llvm/IR/Attributes.h"
40 #include "llvm/IR/BasicBlock.h"
41 #include "llvm/IR/CallSite.h"
42 #include "llvm/IR/DataLayout.h"
43 #include "llvm/IR/DebugLoc.h"
44 #include "llvm/IR/DerivedTypes.h"
45 #include "llvm/IR/DiagnosticInfo.h"
46 #include "llvm/IR/Function.h"
47 #include "llvm/IR/InstIterator.h"
48 #include "llvm/IR/Instruction.h"
49 #include "llvm/IR/Instructions.h"
50 #include "llvm/IR/IntrinsicInst.h"
51 #include "llvm/IR/Metadata.h"
52 #include "llvm/IR/Module.h"
53 #include "llvm/IR/PassManager.h"
54 #include "llvm/IR/User.h"
55 #include "llvm/IR/Value.h"
56 #include "llvm/Pass.h"
57 #include "llvm/Support/Casting.h"
58 #include "llvm/Support/CommandLine.h"
59 #include "llvm/Support/Debug.h"
60 #include "llvm/Support/raw_ostream.h"
61 #include "llvm/Transforms/Utils/Cloning.h"
62 #include "llvm/Transforms/Utils/ImportedFunctionsInliningStatistics.h"
63 #include "llvm/Transforms/Utils/ModuleUtils.h"
64 #include <algorithm>
65 #include <cassert>
66 #include <functional>
67 #include <sstream>
68 #include <tuple>
69 #include <utility>
70 #include <vector>
71 
72 using namespace llvm;
73 
74 #define DEBUG_TYPE "inline"
75 
76 STATISTIC(NumInlined, "Number of functions inlined");
77 STATISTIC(NumCallsDeleted, "Number of call sites deleted, not inlined");
78 STATISTIC(NumDeleted, "Number of functions deleted because all callers found");
79 STATISTIC(NumMergedAllocas, "Number of allocas merged together");
80 
81 // This weirdly named statistic tracks the number of times that, when attempting
82 // to inline a function A into B, we analyze the callers of B in order to see
83 // if those would be more profitable and blocked inline steps.
84 STATISTIC(NumCallerCallersAnalyzed, "Number of caller-callers analyzed");
85 
86 /// Flag to disable manual alloca merging.
87 ///
88 /// Merging of allocas was originally done as a stack-size saving technique
89 /// prior to LLVM's code generator having support for stack coloring based on
90 /// lifetime markers. It is now in the process of being removed. To experiment
91 /// with disabling it and relying fully on lifetime marker based stack
92 /// coloring, you can pass this flag to LLVM.
93 static cl::opt<bool>
94     DisableInlinedAllocaMerging("disable-inlined-alloca-merging",
95                                 cl::init(false), cl::Hidden);
96 
97 namespace {
98 
99 enum class InlinerFunctionImportStatsOpts {
100   No = 0,
101   Basic = 1,
102   Verbose = 2,
103 };
104 
105 } // end anonymous namespace
106 
107 static cl::opt<InlinerFunctionImportStatsOpts> InlinerFunctionImportStats(
108     "inliner-function-import-stats",
109     cl::init(InlinerFunctionImportStatsOpts::No),
110     cl::values(clEnumValN(InlinerFunctionImportStatsOpts::Basic, "basic",
111                           "basic statistics"),
112                clEnumValN(InlinerFunctionImportStatsOpts::Verbose, "verbose",
113                           "printing of statistics for each inlined function")),
114     cl::Hidden, cl::desc("Enable inliner stats for imported functions"));
115 
116 /// Flag to add inline messages as callsite attributes 'inline-remark'.
117 static cl::opt<bool>
118     InlineRemarkAttribute("inline-remark-attribute", cl::init(false),
119                           cl::Hidden,
120                           cl::desc("Enable adding inline-remark attribute to"
121                                    " callsites processed by inliner but decided"
122                                    " to be not inlined"));
123 
124 LegacyInlinerBase::LegacyInlinerBase(char &ID) : CallGraphSCCPass(ID) {}
125 
126 LegacyInlinerBase::LegacyInlinerBase(char &ID, bool InsertLifetime)
127     : CallGraphSCCPass(ID), InsertLifetime(InsertLifetime) {}
128 
129 /// For this class, we declare that we require and preserve the call graph.
130 /// If the derived class implements this method, it should
131 /// always explicitly call the implementation here.
132 void LegacyInlinerBase::getAnalysisUsage(AnalysisUsage &AU) const {
133   AU.addRequired<AssumptionCacheTracker>();
134   AU.addRequired<ProfileSummaryInfoWrapperPass>();
135   AU.addRequired<TargetLibraryInfoWrapperPass>();
136   getAAResultsAnalysisUsage(AU);
137   CallGraphSCCPass::getAnalysisUsage(AU);
138 }
139 
140 using InlinedArrayAllocasTy = DenseMap<ArrayType *, std::vector<AllocaInst *>>;
141 
142 /// Look at all of the allocas that we inlined through this call site.  If we
143 /// have already inlined other allocas through other calls into this function,
144 /// then we know that they have disjoint lifetimes and that we can merge them.
145 ///
146 /// There are many heuristics possible for merging these allocas, and the
147 /// different options have different tradeoffs.  One thing that we *really*
148 /// don't want to hurt is SRoA: once inlining happens, often allocas are no
149 /// longer address taken and so they can be promoted.
150 ///
151 /// Our "solution" for that is to only merge allocas whose outermost type is an
152 /// array type.  These are usually not promoted because someone is using a
153 /// variable index into them.  These are also often the most important ones to
154 /// merge.
155 ///
156 /// A better solution would be to have real memory lifetime markers in the IR
157 /// and not have the inliner do any merging of allocas at all.  This would
158 /// allow the backend to do proper stack slot coloring of all allocas that
159 /// *actually make it to the backend*, which is really what we want.
160 ///
161 /// Because we don't have this information, we do this simple and useful hack.
162 static void mergeInlinedArrayAllocas(
163     Function *Caller, InlineFunctionInfo &IFI,
164     InlinedArrayAllocasTy &InlinedArrayAllocas, int InlineHistory) {
165   SmallPtrSet<AllocaInst *, 16> UsedAllocas;
166 
167   // When processing our SCC, check to see if CS was inlined from some other
168   // call site.  For example, if we're processing "A" in this code:
169   //   A() { B() }
170   //   B() { x = alloca ... C() }
171   //   C() { y = alloca ... }
172   // Assume that C was not inlined into B initially, and so we're processing A
173   // and decide to inline B into A.  Doing this makes an alloca available for
174   // reuse and makes a callsite (C) available for inlining.  When we process
175   // the C call site we don't want to do any alloca merging between X and Y
176   // because their scopes are not disjoint.  We could make this smarter by
177   // keeping track of the inline history for each alloca in the
178   // InlinedArrayAllocas but this isn't likely to be a significant win.
179   if (InlineHistory != -1) // Only do merging for top-level call sites in SCC.
180     return;
181 
182   // Loop over all the allocas we have so far and see if they can be merged with
183   // a previously inlined alloca.  If not, remember that we had it.
184   for (unsigned AllocaNo = 0, E = IFI.StaticAllocas.size(); AllocaNo != E;
185        ++AllocaNo) {
186     AllocaInst *AI = IFI.StaticAllocas[AllocaNo];
187 
188     // Don't bother trying to merge array allocations (they will usually be
189     // canonicalized to be an allocation *of* an array), or allocations whose
190     // type is not itself an array (because we're afraid of pessimizing SRoA).
191     ArrayType *ATy = dyn_cast<ArrayType>(AI->getAllocatedType());
192     if (!ATy || AI->isArrayAllocation())
193       continue;
194 
195     // Get the list of all available allocas for this array type.
196     std::vector<AllocaInst *> &AllocasForType = InlinedArrayAllocas[ATy];
197 
198     // Loop over the allocas in AllocasForType to see if we can reuse one.  Note
199     // that we have to be careful not to reuse the same "available" alloca for
200     // multiple different allocas that we just inlined, we use the 'UsedAllocas'
201     // set to keep track of which "available" allocas are being used by this
202     // function.  Also, AllocasForType can be empty of course!
203     bool MergedAwayAlloca = false;
204     for (AllocaInst *AvailableAlloca : AllocasForType) {
205       unsigned Align1 = AI->getAlignment(),
206                Align2 = AvailableAlloca->getAlignment();
207 
208       // The available alloca has to be in the right function, not in some other
209       // function in this SCC.
210       if (AvailableAlloca->getParent() != AI->getParent())
211         continue;
212 
213       // If the inlined function already uses this alloca then we can't reuse
214       // it.
215       if (!UsedAllocas.insert(AvailableAlloca).second)
216         continue;
217 
218       // Otherwise, we *can* reuse it, RAUW AI into AvailableAlloca and declare
219       // success!
220       LLVM_DEBUG(dbgs() << "    ***MERGED ALLOCA: " << *AI
221                         << "\n\t\tINTO: " << *AvailableAlloca << '\n');
222 
223       // Move affected dbg.declare calls immediately after the new alloca to
224       // avoid the situation when a dbg.declare precedes its alloca.
225       if (auto *L = LocalAsMetadata::getIfExists(AI))
226         if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L))
227           for (User *U : MDV->users())
228             if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(U))
229               DDI->moveBefore(AvailableAlloca->getNextNode());
230 
231       AI->replaceAllUsesWith(AvailableAlloca);
232 
233       if (Align1 != Align2) {
234         if (!Align1 || !Align2) {
235           const DataLayout &DL = Caller->getParent()->getDataLayout();
236           unsigned TypeAlign = DL.getABITypeAlignment(AI->getAllocatedType());
237 
238           Align1 = Align1 ? Align1 : TypeAlign;
239           Align2 = Align2 ? Align2 : TypeAlign;
240         }
241 
242         if (Align1 > Align2)
243           AvailableAlloca->setAlignment(MaybeAlign(AI->getAlignment()));
244       }
245 
246       AI->eraseFromParent();
247       MergedAwayAlloca = true;
248       ++NumMergedAllocas;
249       IFI.StaticAllocas[AllocaNo] = nullptr;
250       break;
251     }
252 
253     // If we already nuked the alloca, we're done with it.
254     if (MergedAwayAlloca)
255       continue;
256 
257     // If we were unable to merge away the alloca either because there are no
258     // allocas of the right type available or because we reused them all
259     // already, remember that this alloca came from an inlined function and mark
260     // it used so we don't reuse it for other allocas from this inline
261     // operation.
262     AllocasForType.push_back(AI);
263     UsedAllocas.insert(AI);
264   }
265 }
266 
267 /// If it is possible to inline the specified call site,
268 /// do so and update the CallGraph for this operation.
269 ///
270 /// This function also does some basic book-keeping to update the IR.  The
271 /// InlinedArrayAllocas map keeps track of any allocas that are already
272 /// available from other functions inlined into the caller.  If we are able to
273 /// inline this call site we attempt to reuse already available allocas or add
274 /// any new allocas to the set if not possible.
275 static InlineResult inlineCallIfPossible(
276     CallBase &CS, InlineFunctionInfo &IFI,
277     InlinedArrayAllocasTy &InlinedArrayAllocas, int InlineHistory,
278     bool InsertLifetime, function_ref<AAResults &(Function &)> &AARGetter,
279     ImportedFunctionsInliningStatistics &ImportedFunctionsStats) {
280   Function *Callee = CS.getCalledFunction();
281   Function *Caller = CS.getCaller();
282 
283   AAResults &AAR = AARGetter(*Callee);
284 
285   // Try to inline the function.  Get the list of static allocas that were
286   // inlined.
287   InlineResult IR = InlineFunction(&CS, IFI, &AAR, InsertLifetime);
288   if (!IR.isSuccess())
289     return IR;
290 
291   if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No)
292     ImportedFunctionsStats.recordInline(*Caller, *Callee);
293 
294   AttributeFuncs::mergeAttributesForInlining(*Caller, *Callee);
295 
296   if (!DisableInlinedAllocaMerging)
297     mergeInlinedArrayAllocas(Caller, IFI, InlinedArrayAllocas, InlineHistory);
298 
299   return IR; // success
300 }
301 
302 /// Return true if inlining of CS can block the caller from being
303 /// inlined which is proved to be more beneficial. \p IC is the
304 /// estimated inline cost associated with callsite \p CS.
305 /// \p TotalSecondaryCost will be set to the estimated cost of inlining the
306 /// caller if \p CS is suppressed for inlining.
307 static bool
308 shouldBeDeferred(Function *Caller, InlineCost IC, int &TotalSecondaryCost,
309                  function_ref<InlineCost(CallBase &CS)> GetInlineCost) {
310   // For now we only handle local or inline functions.
311   if (!Caller->hasLocalLinkage() && !Caller->hasLinkOnceODRLinkage())
312     return false;
313   // If the cost of inlining CS is non-positive, it is not going to prevent the
314   // caller from being inlined into its callers and hence we don't need to
315   // defer.
316   if (IC.getCost() <= 0)
317     return false;
318   // Try to detect the case where the current inlining candidate caller (call
319   // it B) is a static or linkonce-ODR function and is an inlining candidate
320   // elsewhere, and the current candidate callee (call it C) is large enough
321   // that inlining it into B would make B too big to inline later. In these
322   // circumstances it may be best not to inline C into B, but to inline B into
323   // its callers.
324   //
325   // This only applies to static and linkonce-ODR functions because those are
326   // expected to be available for inlining in the translation units where they
327   // are used. Thus we will always have the opportunity to make local inlining
328   // decisions. Importantly the linkonce-ODR linkage covers inline functions
329   // and templates in C++.
330   //
331   // FIXME: All of this logic should be sunk into getInlineCost. It relies on
332   // the internal implementation of the inline cost metrics rather than
333   // treating them as truly abstract units etc.
334   TotalSecondaryCost = 0;
335   // The candidate cost to be imposed upon the current function.
336   int CandidateCost = IC.getCost() - 1;
337   // If the caller has local linkage and can be inlined to all its callers, we
338   // can apply a huge negative bonus to TotalSecondaryCost.
339   bool ApplyLastCallBonus = Caller->hasLocalLinkage() && !Caller->hasOneUse();
340   // This bool tracks what happens if we DO inline C into B.
341   bool InliningPreventsSomeOuterInline = false;
342   for (User *U : Caller->users()) {
343     // If the caller will not be removed (either because it does not have a
344     // local linkage or because the LastCallToStaticBonus has been already
345     // applied), then we can exit the loop early.
346     if (!ApplyLastCallBonus && TotalSecondaryCost >= IC.getCost())
347       return false;
348     CallBase *CS2 = dyn_cast<CallBase>(U);
349 
350     // If this isn't a call to Caller (it could be some other sort
351     // of reference) skip it.  Such references will prevent the caller
352     // from being removed.
353     if (!CS2 || CS2->getCalledFunction() != Caller) {
354       ApplyLastCallBonus = false;
355       continue;
356     }
357 
358     InlineCost IC2 = GetInlineCost(*CS2);
359     ++NumCallerCallersAnalyzed;
360     if (!IC2) {
361       ApplyLastCallBonus = false;
362       continue;
363     }
364     if (IC2.isAlways())
365       continue;
366 
367     // See if inlining of the original callsite would erase the cost delta of
368     // this callsite. We subtract off the penalty for the call instruction,
369     // which we would be deleting.
370     if (IC2.getCostDelta() <= CandidateCost) {
371       InliningPreventsSomeOuterInline = true;
372       TotalSecondaryCost += IC2.getCost();
373     }
374   }
375   // If all outer calls to Caller would get inlined, the cost for the last
376   // one is set very low by getInlineCost, in anticipation that Caller will
377   // be removed entirely.  We did not account for this above unless there
378   // is only one caller of Caller.
379   if (ApplyLastCallBonus)
380     TotalSecondaryCost -= InlineConstants::LastCallToStaticBonus;
381 
382   return InliningPreventsSomeOuterInline && TotalSecondaryCost < IC.getCost();
383 }
384 
385 static std::basic_ostream<char> &operator<<(std::basic_ostream<char> &R,
386                                             const ore::NV &Arg) {
387   return R << Arg.Val;
388 }
389 
390 template <class RemarkT>
391 RemarkT &operator<<(RemarkT &&R, const InlineCost &IC) {
392   using namespace ore;
393   if (IC.isAlways()) {
394     R << "(cost=always)";
395   } else if (IC.isNever()) {
396     R << "(cost=never)";
397   } else {
398     R << "(cost=" << ore::NV("Cost", IC.getCost())
399       << ", threshold=" << ore::NV("Threshold", IC.getThreshold()) << ")";
400   }
401   if (const char *Reason = IC.getReason())
402     R << ": " << ore::NV("Reason", Reason);
403   return R;
404 }
405 
406 static std::string inlineCostStr(const InlineCost &IC) {
407   std::stringstream Remark;
408   Remark << IC;
409   return Remark.str();
410 }
411 
412 /// Return the cost only if the inliner should attempt to inline at the given
413 /// CallSite. If we return the cost, we will emit an optimisation remark later
414 /// using that cost, so we won't do so from this function.
415 static Optional<InlineCost>
416 shouldInline(CallBase &CS, function_ref<InlineCost(CallBase &CS)> GetInlineCost,
417              OptimizationRemarkEmitter &ORE) {
418   using namespace ore;
419 
420   InlineCost IC = GetInlineCost(CS);
421   Instruction *Call = &CS;
422   Function *Callee = CS.getCalledFunction();
423   Function *Caller = CS.getCaller();
424 
425   if (IC.isAlways()) {
426     LLVM_DEBUG(dbgs() << "    Inlining " << inlineCostStr(IC)
427                       << ", Call: " << CS << "\n");
428     return IC;
429   }
430 
431   if (IC.isNever()) {
432     LLVM_DEBUG(dbgs() << "    NOT Inlining " << inlineCostStr(IC)
433                       << ", Call: " << CS << "\n");
434     ORE.emit([&]() {
435       return OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline", Call)
436              << NV("Callee", Callee) << " not inlined into "
437              << NV("Caller", Caller) << " because it should never be inlined "
438              << IC;
439     });
440     return IC;
441   }
442 
443   if (!IC) {
444     LLVM_DEBUG(dbgs() << "    NOT Inlining " << inlineCostStr(IC)
445                       << ", Call: " << CS << "\n");
446     ORE.emit([&]() {
447       return OptimizationRemarkMissed(DEBUG_TYPE, "TooCostly", Call)
448              << NV("Callee", Callee) << " not inlined into "
449              << NV("Caller", Caller) << " because too costly to inline " << IC;
450     });
451     return IC;
452   }
453 
454   int TotalSecondaryCost = 0;
455   if (shouldBeDeferred(Caller, IC, TotalSecondaryCost, GetInlineCost)) {
456     LLVM_DEBUG(dbgs() << "    NOT Inlining: " << CS
457                       << " Cost = " << IC.getCost()
458                       << ", outer Cost = " << TotalSecondaryCost << '\n');
459     ORE.emit([&]() {
460       return OptimizationRemarkMissed(DEBUG_TYPE, "IncreaseCostInOtherContexts",
461                                       Call)
462              << "Not inlining. Cost of inlining " << NV("Callee", Callee)
463              << " increases the cost of inlining " << NV("Caller", Caller)
464              << " in other contexts";
465     });
466 
467     // IC does not bool() to false, so get an InlineCost that will.
468     // This will not be inspected to make an error message.
469     return None;
470   }
471 
472   LLVM_DEBUG(dbgs() << "    Inlining " << inlineCostStr(IC) << ", Call: " << CS
473                     << '\n');
474   return IC;
475 }
476 
477 /// Return true if the specified inline history ID
478 /// indicates an inline history that includes the specified function.
479 static bool inlineHistoryIncludes(
480     Function *F, int InlineHistoryID,
481     const SmallVectorImpl<std::pair<Function *, int>> &InlineHistory) {
482   while (InlineHistoryID != -1) {
483     assert(unsigned(InlineHistoryID) < InlineHistory.size() &&
484            "Invalid inline history ID");
485     if (InlineHistory[InlineHistoryID].first == F)
486       return true;
487     InlineHistoryID = InlineHistory[InlineHistoryID].second;
488   }
489   return false;
490 }
491 
492 bool LegacyInlinerBase::doInitialization(CallGraph &CG) {
493   if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No)
494     ImportedFunctionsStats.setModuleInfo(CG.getModule());
495   return false; // No changes to CallGraph.
496 }
497 
498 bool LegacyInlinerBase::runOnSCC(CallGraphSCC &SCC) {
499   if (skipSCC(SCC))
500     return false;
501   return inlineCalls(SCC);
502 }
503 
504 static void emitInlinedInto(OptimizationRemarkEmitter &ORE, DebugLoc &DLoc,
505                             const BasicBlock *Block, const Function &Callee,
506                             const Function &Caller, const InlineCost &IC) {
507   ORE.emit([&]() {
508     bool AlwaysInline = IC.isAlways();
509     StringRef RemarkName = AlwaysInline ? "AlwaysInline" : "Inlined";
510     return OptimizationRemark(DEBUG_TYPE, RemarkName, DLoc, Block)
511            << ore::NV("Callee", &Callee) << " inlined into "
512            << ore::NV("Caller", &Caller) << " with " << IC;
513   });
514 }
515 
516 static void setInlineRemark(CallBase &CS, StringRef Message) {
517   if (!InlineRemarkAttribute)
518     return;
519 
520   Attribute Attr = Attribute::get(CS.getContext(), "inline-remark", Message);
521   CS.addAttribute(AttributeList::FunctionIndex, Attr);
522 }
523 
524 static bool
525 inlineCallsImpl(CallGraphSCC &SCC, CallGraph &CG,
526                 std::function<AssumptionCache &(Function &)> GetAssumptionCache,
527                 ProfileSummaryInfo *PSI,
528                 std::function<const TargetLibraryInfo &(Function &)> GetTLI,
529                 bool InsertLifetime,
530                 function_ref<InlineCost(CallBase &CS)> GetInlineCost,
531                 function_ref<AAResults &(Function &)> AARGetter,
532                 ImportedFunctionsInliningStatistics &ImportedFunctionsStats) {
533   SmallPtrSet<Function *, 8> SCCFunctions;
534   LLVM_DEBUG(dbgs() << "Inliner visiting SCC:");
535   for (CallGraphNode *Node : SCC) {
536     Function *F = Node->getFunction();
537     if (F)
538       SCCFunctions.insert(F);
539     LLVM_DEBUG(dbgs() << " " << (F ? F->getName() : "INDIRECTNODE"));
540   }
541 
542   // Scan through and identify all call sites ahead of time so that we only
543   // inline call sites in the original functions, not call sites that result
544   // from inlining other functions.
545   SmallVector<std::pair<CallBase *, int>, 16> CallSites;
546 
547   // When inlining a callee produces new call sites, we want to keep track of
548   // the fact that they were inlined from the callee.  This allows us to avoid
549   // infinite inlining in some obscure cases.  To represent this, we use an
550   // index into the InlineHistory vector.
551   SmallVector<std::pair<Function *, int>, 8> InlineHistory;
552 
553   for (CallGraphNode *Node : SCC) {
554     Function *F = Node->getFunction();
555     if (!F || F->isDeclaration())
556       continue;
557 
558     OptimizationRemarkEmitter ORE(F);
559     for (BasicBlock &BB : *F)
560       for (Instruction &I : BB) {
561         auto *CS = dyn_cast<CallBase>(&I);
562         // If this isn't a call, or it is a call to an intrinsic, it can
563         // never be inlined.
564         if (!CS || isa<IntrinsicInst>(I))
565           continue;
566 
567         // If this is a direct call to an external function, we can never inline
568         // it.  If it is an indirect call, inlining may resolve it to be a
569         // direct call, so we keep it.
570         if (Function *Callee = CS->getCalledFunction())
571           if (Callee->isDeclaration()) {
572             using namespace ore;
573 
574             setInlineRemark(*CS, "unavailable definition");
575             ORE.emit([&]() {
576               return OptimizationRemarkMissed(DEBUG_TYPE, "NoDefinition", &I)
577                      << NV("Callee", Callee) << " will not be inlined into "
578                      << NV("Caller", CS->getCaller())
579                      << " because its definition is unavailable"
580                      << setIsVerbose();
581             });
582             continue;
583           }
584 
585         CallSites.push_back(std::make_pair(CS, -1));
586       }
587   }
588 
589   LLVM_DEBUG(dbgs() << ": " << CallSites.size() << " call sites.\n");
590 
591   // If there are no calls in this function, exit early.
592   if (CallSites.empty())
593     return false;
594 
595   // Now that we have all of the call sites, move the ones to functions in the
596   // current SCC to the end of the list.
597   unsigned FirstCallInSCC = CallSites.size();
598   for (unsigned I = 0; I < FirstCallInSCC; ++I)
599     if (Function *F = CallSites[I].first->getCalledFunction())
600       if (SCCFunctions.count(F))
601         std::swap(CallSites[I--], CallSites[--FirstCallInSCC]);
602 
603   InlinedArrayAllocasTy InlinedArrayAllocas;
604   InlineFunctionInfo InlineInfo(&CG, &GetAssumptionCache, PSI);
605 
606   // Now that we have all of the call sites, loop over them and inline them if
607   // it looks profitable to do so.
608   bool Changed = false;
609   bool LocalChange;
610   do {
611     LocalChange = false;
612     // Iterate over the outer loop because inlining functions can cause indirect
613     // calls to become direct calls.
614     // CallSites may be modified inside so ranged for loop can not be used.
615     for (unsigned CSi = 0; CSi != CallSites.size(); ++CSi) {
616       auto &P = CallSites[CSi];
617       CallBase &CS = *P.first;
618       const int InlineHistoryID = P.second;
619 
620       Function *Caller = CS.getCaller();
621       Function *Callee = CS.getCalledFunction();
622 
623       // We can only inline direct calls to non-declarations.
624       if (!Callee || Callee->isDeclaration())
625         continue;
626 
627       bool IsTriviallyDead = isInstructionTriviallyDead(&CS, &GetTLI(*Caller));
628 
629       if (!IsTriviallyDead) {
630         // If this call site was obtained by inlining another function, verify
631         // that the include path for the function did not include the callee
632         // itself.  If so, we'd be recursively inlining the same function,
633         // which would provide the same callsites, which would cause us to
634         // infinitely inline.
635         if (InlineHistoryID != -1 &&
636             inlineHistoryIncludes(Callee, InlineHistoryID, InlineHistory)) {
637           setInlineRemark(CS, "recursive");
638           continue;
639         }
640       }
641 
642       // FIXME for new PM: because of the old PM we currently generate ORE and
643       // in turn BFI on demand.  With the new PM, the ORE dependency should
644       // just become a regular analysis dependency.
645       OptimizationRemarkEmitter ORE(Caller);
646 
647       Optional<InlineCost> OIC = shouldInline(CS, GetInlineCost, ORE);
648       // If the policy determines that we should inline this function,
649       // delete the call instead.
650       if (!OIC.hasValue()) {
651         setInlineRemark(CS, "deferred");
652         continue;
653       }
654 
655       if (!OIC.getValue()) {
656         // shouldInline() call returned a negative inline cost that explains
657         // why this callsite should not be inlined.
658         setInlineRemark(CS, inlineCostStr(*OIC));
659         continue;
660       }
661 
662       // If this call site is dead and it is to a readonly function, we should
663       // just delete the call instead of trying to inline it, regardless of
664       // size.  This happens because IPSCCP propagates the result out of the
665       // call and then we're left with the dead call.
666       if (IsTriviallyDead) {
667         LLVM_DEBUG(dbgs() << "    -> Deleting dead call: " << CS << "\n");
668         // Update the call graph by deleting the edge from Callee to Caller.
669         setInlineRemark(CS, "trivially dead");
670         CG[Caller]->removeCallEdgeFor(CS);
671         CS.eraseFromParent();
672         ++NumCallsDeleted;
673       } else {
674         // Get DebugLoc to report. CS will be invalid after Inliner.
675         DebugLoc DLoc = CS.getDebugLoc();
676         BasicBlock *Block = CS.getParent();
677 
678         // Attempt to inline the function.
679         using namespace ore;
680 
681         InlineResult IR = inlineCallIfPossible(
682             CS, InlineInfo, InlinedArrayAllocas, InlineHistoryID,
683             InsertLifetime, AARGetter, ImportedFunctionsStats);
684         if (!IR.isSuccess()) {
685           setInlineRemark(CS, std::string(IR.getFailureReason()) + "; " +
686                                   inlineCostStr(*OIC));
687           ORE.emit([&]() {
688             return OptimizationRemarkMissed(DEBUG_TYPE, "NotInlined", DLoc,
689                                             Block)
690                    << NV("Callee", Callee) << " will not be inlined into "
691                    << NV("Caller", Caller) << ": "
692                    << NV("Reason", IR.getFailureReason());
693           });
694           continue;
695         }
696         ++NumInlined;
697 
698         emitInlinedInto(ORE, DLoc, Block, *Callee, *Caller, *OIC);
699 
700         // If inlining this function gave us any new call sites, throw them
701         // onto our worklist to process.  They are useful inline candidates.
702         if (!InlineInfo.InlinedCalls.empty()) {
703           // Create a new inline history entry for this, so that we remember
704           // that these new callsites came about due to inlining Callee.
705           int NewHistoryID = InlineHistory.size();
706           InlineHistory.push_back(std::make_pair(Callee, InlineHistoryID));
707 
708 #ifndef NDEBUG
709           // Make sure no dupplicates in the inline candidates. This could
710           // happen when a callsite is simpilfied to reusing the return value
711           // of another callsite during function cloning, thus the other
712           // callsite will be reconsidered here.
713           DenseSet<CallBase *> DbgCallSites;
714           for (auto &II : CallSites)
715             DbgCallSites.insert(II.first);
716 #endif
717 
718           for (Value *Ptr : InlineInfo.InlinedCalls) {
719 #ifndef NDEBUG
720             assert(DbgCallSites.count(dyn_cast<CallBase>(Ptr)) == 0);
721 #endif
722             CallSites.push_back(
723                 std::make_pair(dyn_cast<CallBase>(Ptr), NewHistoryID));
724           }
725         }
726       }
727 
728       // If we inlined or deleted the last possible call site to the function,
729       // delete the function body now.
730       if (Callee && Callee->use_empty() && Callee->hasLocalLinkage() &&
731           // TODO: Can remove if in SCC now.
732           !SCCFunctions.count(Callee) &&
733           // The function may be apparently dead, but if there are indirect
734           // callgraph references to the node, we cannot delete it yet, this
735           // could invalidate the CGSCC iterator.
736           CG[Callee]->getNumReferences() == 0) {
737         LLVM_DEBUG(dbgs() << "    -> Deleting dead function: "
738                           << Callee->getName() << "\n");
739         CallGraphNode *CalleeNode = CG[Callee];
740 
741         // Remove any call graph edges from the callee to its callees.
742         CalleeNode->removeAllCalledFunctions();
743 
744         // Removing the node for callee from the call graph and delete it.
745         delete CG.removeFunctionFromModule(CalleeNode);
746         ++NumDeleted;
747       }
748 
749       // Remove this call site from the list.  If possible, use
750       // swap/pop_back for efficiency, but do not use it if doing so would
751       // move a call site to a function in this SCC before the
752       // 'FirstCallInSCC' barrier.
753       if (SCC.isSingular()) {
754         CallSites[CSi] = CallSites.back();
755         CallSites.pop_back();
756       } else {
757         CallSites.erase(CallSites.begin() + CSi);
758       }
759       --CSi;
760 
761       Changed = true;
762       LocalChange = true;
763     }
764   } while (LocalChange);
765 
766   return Changed;
767 }
768 
769 bool LegacyInlinerBase::inlineCalls(CallGraphSCC &SCC) {
770   CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();
771   ACT = &getAnalysis<AssumptionCacheTracker>();
772   PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
773   GetTLI = [&](Function &F) -> const TargetLibraryInfo & {
774     return getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
775   };
776   auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & {
777     return ACT->getAssumptionCache(F);
778   };
779   return inlineCallsImpl(
780       SCC, CG, GetAssumptionCache, PSI, GetTLI, InsertLifetime,
781       [&](CallBase &CS) { return getInlineCost(CS); }, LegacyAARGetter(*this),
782       ImportedFunctionsStats);
783 }
784 
785 /// Remove now-dead linkonce functions at the end of
786 /// processing to avoid breaking the SCC traversal.
787 bool LegacyInlinerBase::doFinalization(CallGraph &CG) {
788   if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No)
789     ImportedFunctionsStats.dump(InlinerFunctionImportStats ==
790                                 InlinerFunctionImportStatsOpts::Verbose);
791   return removeDeadFunctions(CG);
792 }
793 
794 /// Remove dead functions that are not included in DNR (Do Not Remove) list.
795 bool LegacyInlinerBase::removeDeadFunctions(CallGraph &CG,
796                                             bool AlwaysInlineOnly) {
797   SmallVector<CallGraphNode *, 16> FunctionsToRemove;
798   SmallVector<Function *, 16> DeadFunctionsInComdats;
799 
800   auto RemoveCGN = [&](CallGraphNode *CGN) {
801     // Remove any call graph edges from the function to its callees.
802     CGN->removeAllCalledFunctions();
803 
804     // Remove any edges from the external node to the function's call graph
805     // node.  These edges might have been made irrelegant due to
806     // optimization of the program.
807     CG.getExternalCallingNode()->removeAnyCallEdgeTo(CGN);
808 
809     // Removing the node for callee from the call graph and delete it.
810     FunctionsToRemove.push_back(CGN);
811   };
812 
813   // Scan for all of the functions, looking for ones that should now be removed
814   // from the program.  Insert the dead ones in the FunctionsToRemove set.
815   for (const auto &I : CG) {
816     CallGraphNode *CGN = I.second.get();
817     Function *F = CGN->getFunction();
818     if (!F || F->isDeclaration())
819       continue;
820 
821     // Handle the case when this function is called and we only want to care
822     // about always-inline functions. This is a bit of a hack to share code
823     // between here and the InlineAlways pass.
824     if (AlwaysInlineOnly && !F->hasFnAttribute(Attribute::AlwaysInline))
825       continue;
826 
827     // If the only remaining users of the function are dead constants, remove
828     // them.
829     F->removeDeadConstantUsers();
830 
831     if (!F->isDefTriviallyDead())
832       continue;
833 
834     // It is unsafe to drop a function with discardable linkage from a COMDAT
835     // without also dropping the other members of the COMDAT.
836     // The inliner doesn't visit non-function entities which are in COMDAT
837     // groups so it is unsafe to do so *unless* the linkage is local.
838     if (!F->hasLocalLinkage()) {
839       if (F->hasComdat()) {
840         DeadFunctionsInComdats.push_back(F);
841         continue;
842       }
843     }
844 
845     RemoveCGN(CGN);
846   }
847   if (!DeadFunctionsInComdats.empty()) {
848     // Filter out the functions whose comdats remain alive.
849     filterDeadComdatFunctions(CG.getModule(), DeadFunctionsInComdats);
850     // Remove the rest.
851     for (Function *F : DeadFunctionsInComdats)
852       RemoveCGN(CG[F]);
853   }
854 
855   if (FunctionsToRemove.empty())
856     return false;
857 
858   // Now that we know which functions to delete, do so.  We didn't want to do
859   // this inline, because that would invalidate our CallGraph::iterator
860   // objects. :(
861   //
862   // Note that it doesn't matter that we are iterating over a non-stable order
863   // here to do this, it doesn't matter which order the functions are deleted
864   // in.
865   array_pod_sort(FunctionsToRemove.begin(), FunctionsToRemove.end());
866   FunctionsToRemove.erase(
867       std::unique(FunctionsToRemove.begin(), FunctionsToRemove.end()),
868       FunctionsToRemove.end());
869   for (CallGraphNode *CGN : FunctionsToRemove) {
870     delete CG.removeFunctionFromModule(CGN);
871     ++NumDeleted;
872   }
873   return true;
874 }
875 
876 InlinerPass::~InlinerPass() {
877   if (ImportedFunctionsStats) {
878     assert(InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No);
879     ImportedFunctionsStats->dump(InlinerFunctionImportStats ==
880                                  InlinerFunctionImportStatsOpts::Verbose);
881   }
882 }
883 
884 PreservedAnalyses InlinerPass::run(LazyCallGraph::SCC &InitialC,
885                                    CGSCCAnalysisManager &AM, LazyCallGraph &CG,
886                                    CGSCCUpdateResult &UR) {
887   const ModuleAnalysisManager &MAM =
888       AM.getResult<ModuleAnalysisManagerCGSCCProxy>(InitialC, CG).getManager();
889   bool Changed = false;
890 
891   assert(InitialC.size() > 0 && "Cannot handle an empty SCC!");
892   Module &M = *InitialC.begin()->getFunction().getParent();
893   ProfileSummaryInfo *PSI = MAM.getCachedResult<ProfileSummaryAnalysis>(M);
894 
895   if (!ImportedFunctionsStats &&
896       InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No) {
897     ImportedFunctionsStats =
898         std::make_unique<ImportedFunctionsInliningStatistics>();
899     ImportedFunctionsStats->setModuleInfo(M);
900   }
901 
902   // We use a single common worklist for calls across the entire SCC. We
903   // process these in-order and append new calls introduced during inlining to
904   // the end.
905   //
906   // Note that this particular order of processing is actually critical to
907   // avoid very bad behaviors. Consider *highly connected* call graphs where
908   // each function contains a small amonut of code and a couple of calls to
909   // other functions. Because the LLVM inliner is fundamentally a bottom-up
910   // inliner, it can handle gracefully the fact that these all appear to be
911   // reasonable inlining candidates as it will flatten things until they become
912   // too big to inline, and then move on and flatten another batch.
913   //
914   // However, when processing call edges *within* an SCC we cannot rely on this
915   // bottom-up behavior. As a consequence, with heavily connected *SCCs* of
916   // functions we can end up incrementally inlining N calls into each of
917   // N functions because each incremental inlining decision looks good and we
918   // don't have a topological ordering to prevent explosions.
919   //
920   // To compensate for this, we don't process transitive edges made immediate
921   // by inlining until we've done one pass of inlining across the entire SCC.
922   // Large, highly connected SCCs still lead to some amount of code bloat in
923   // this model, but it is uniformly spread across all the functions in the SCC
924   // and eventually they all become too large to inline, rather than
925   // incrementally maknig a single function grow in a super linear fashion.
926   SmallVector<std::pair<CallBase *, int>, 16> Calls;
927 
928   FunctionAnalysisManager &FAM =
929       AM.getResult<FunctionAnalysisManagerCGSCCProxy>(InitialC, CG)
930           .getManager();
931 
932   // Populate the initial list of calls in this SCC.
933   for (auto &N : InitialC) {
934     auto &ORE =
935         FAM.getResult<OptimizationRemarkEmitterAnalysis>(N.getFunction());
936     // We want to generally process call sites top-down in order for
937     // simplifications stemming from replacing the call with the returned value
938     // after inlining to be visible to subsequent inlining decisions.
939     // FIXME: Using instructions sequence is a really bad way to do this.
940     // Instead we should do an actual RPO walk of the function body.
941     for (Instruction &I : instructions(N.getFunction()))
942       if (auto *CS = dyn_cast<CallBase>(&I))
943         if (Function *Callee = CS->getCalledFunction()) {
944           if (!Callee->isDeclaration())
945             Calls.push_back({CS, -1});
946           else if (!isa<IntrinsicInst>(I)) {
947             using namespace ore;
948             setInlineRemark(*CS, "unavailable definition");
949             ORE.emit([&]() {
950               return OptimizationRemarkMissed(DEBUG_TYPE, "NoDefinition", &I)
951                      << NV("Callee", Callee) << " will not be inlined into "
952                      << NV("Caller", CS->getCaller())
953                      << " because its definition is unavailable"
954                      << setIsVerbose();
955             });
956           }
957         }
958   }
959   if (Calls.empty())
960     return PreservedAnalyses::all();
961 
962   // Capture updatable variables for the current SCC and RefSCC.
963   auto *C = &InitialC;
964   auto *RC = &C->getOuterRefSCC();
965 
966   // When inlining a callee produces new call sites, we want to keep track of
967   // the fact that they were inlined from the callee.  This allows us to avoid
968   // infinite inlining in some obscure cases.  To represent this, we use an
969   // index into the InlineHistory vector.
970   SmallVector<std::pair<Function *, int>, 16> InlineHistory;
971 
972   // Track a set vector of inlined callees so that we can augment the caller
973   // with all of their edges in the call graph before pruning out the ones that
974   // got simplified away.
975   SmallSetVector<Function *, 4> InlinedCallees;
976 
977   // Track the dead functions to delete once finished with inlining calls. We
978   // defer deleting these to make it easier to handle the call graph updates.
979   SmallVector<Function *, 4> DeadFunctions;
980 
981   // Loop forward over all of the calls. Note that we cannot cache the size as
982   // inlining can introduce new calls that need to be processed.
983   for (int I = 0; I < (int)Calls.size(); ++I) {
984     // We expect the calls to typically be batched with sequences of calls that
985     // have the same caller, so we first set up some shared infrastructure for
986     // this caller. We also do any pruning we can at this layer on the caller
987     // alone.
988     Function &F = *Calls[I].first->getCaller();
989     LazyCallGraph::Node &N = *CG.lookup(F);
990     if (CG.lookupSCC(N) != C)
991       continue;
992     if (F.hasOptNone()) {
993       setInlineRemark(*Calls[I].first, "optnone attribute");
994       continue;
995     }
996 
997     LLVM_DEBUG(dbgs() << "Inlining calls in: " << F.getName() << "\n");
998 
999     // Get a FunctionAnalysisManager via a proxy for this particular node. We
1000     // do this each time we visit a node as the SCC may have changed and as
1001     // we're going to mutate this particular function we want to make sure the
1002     // proxy is in place to forward any invalidation events. We can use the
1003     // manager we get here for looking up results for functions other than this
1004     // node however because those functions aren't going to be mutated by this
1005     // pass.
1006     FunctionAnalysisManager &FAM =
1007         AM.getResult<FunctionAnalysisManagerCGSCCProxy>(*C, CG)
1008             .getManager();
1009 
1010     // Get the remarks emission analysis for the caller.
1011     auto &ORE = FAM.getResult<OptimizationRemarkEmitterAnalysis>(F);
1012 
1013     std::function<AssumptionCache &(Function &)> GetAssumptionCache =
1014         [&](Function &F) -> AssumptionCache & {
1015       return FAM.getResult<AssumptionAnalysis>(F);
1016     };
1017     auto GetBFI = [&](Function &F) -> BlockFrequencyInfo & {
1018       return FAM.getResult<BlockFrequencyAnalysis>(F);
1019     };
1020     auto GetTLI = [&](Function &F) -> const TargetLibraryInfo & {
1021       return FAM.getResult<TargetLibraryAnalysis>(F);
1022     };
1023 
1024     auto GetInlineCost = [&](CallBase &CS) {
1025       Function &Callee = *CS.getCalledFunction();
1026       auto &CalleeTTI = FAM.getResult<TargetIRAnalysis>(Callee);
1027       bool RemarksEnabled =
1028           Callee.getContext().getDiagHandlerPtr()->isMissedOptRemarkEnabled(
1029               DEBUG_TYPE);
1030       return getInlineCost(CS, Params, CalleeTTI, GetAssumptionCache, {GetBFI},
1031                            GetTLI, PSI, RemarksEnabled ? &ORE : nullptr);
1032     };
1033 
1034     // Now process as many calls as we have within this caller in the sequnece.
1035     // We bail out as soon as the caller has to change so we can update the
1036     // call graph and prepare the context of that new caller.
1037     bool DidInline = false;
1038     for (; I < (int)Calls.size() && Calls[I].first->getCaller() == &F; ++I) {
1039       auto &P = Calls[I];
1040       CallBase *CS = P.first;
1041       const int InlineHistoryID = P.second;
1042       Function &Callee = *CS->getCalledFunction();
1043 
1044       if (InlineHistoryID != -1 &&
1045           inlineHistoryIncludes(&Callee, InlineHistoryID, InlineHistory)) {
1046         setInlineRemark(*CS, "recursive");
1047         continue;
1048       }
1049 
1050       // Check if this inlining may repeat breaking an SCC apart that has
1051       // already been split once before. In that case, inlining here may
1052       // trigger infinite inlining, much like is prevented within the inliner
1053       // itself by the InlineHistory above, but spread across CGSCC iterations
1054       // and thus hidden from the full inline history.
1055       if (CG.lookupSCC(*CG.lookup(Callee)) == C &&
1056           UR.InlinedInternalEdges.count({&N, C})) {
1057         LLVM_DEBUG(dbgs() << "Skipping inlining internal SCC edge from a node "
1058                              "previously split out of this SCC by inlining: "
1059                           << F.getName() << " -> " << Callee.getName() << "\n");
1060         setInlineRemark(*CS, "recursive SCC split");
1061         continue;
1062       }
1063 
1064       Optional<InlineCost> OIC = shouldInline(*CS, GetInlineCost, ORE);
1065       // Check whether we want to inline this callsite.
1066       if (!OIC.hasValue()) {
1067         setInlineRemark(*CS, "deferred");
1068         continue;
1069       }
1070 
1071       if (!OIC.getValue()) {
1072         // shouldInline() call returned a negative inline cost that explains
1073         // why this callsite should not be inlined.
1074         setInlineRemark(*CS, inlineCostStr(*OIC));
1075         continue;
1076       }
1077 
1078       // Setup the data structure used to plumb customization into the
1079       // `InlineFunction` routine.
1080       InlineFunctionInfo IFI(
1081           /*cg=*/nullptr, &GetAssumptionCache, PSI,
1082           &FAM.getResult<BlockFrequencyAnalysis>(*(CS->getCaller())),
1083           &FAM.getResult<BlockFrequencyAnalysis>(Callee));
1084 
1085       // Get DebugLoc to report. CS will be invalid after Inliner.
1086       DebugLoc DLoc = CS->getDebugLoc();
1087       BasicBlock *Block = CS->getParent();
1088 
1089       using namespace ore;
1090 
1091       InlineResult IR = InlineFunction(CS, IFI);
1092       if (!IR.isSuccess()) {
1093         setInlineRemark(*CS, std::string(IR.getFailureReason()) + "; " +
1094                                  inlineCostStr(*OIC));
1095         ORE.emit([&]() {
1096           return OptimizationRemarkMissed(DEBUG_TYPE, "NotInlined", DLoc, Block)
1097                  << NV("Callee", &Callee) << " will not be inlined into "
1098                  << NV("Caller", &F) << ": "
1099                  << NV("Reason", IR.getFailureReason());
1100         });
1101         continue;
1102       }
1103       DidInline = true;
1104       InlinedCallees.insert(&Callee);
1105 
1106       ++NumInlined;
1107 
1108       emitInlinedInto(ORE, DLoc, Block, Callee, F, *OIC);
1109 
1110       // Add any new callsites to defined functions to the worklist.
1111       if (!IFI.InlinedCallSites.empty()) {
1112         int NewHistoryID = InlineHistory.size();
1113         InlineHistory.push_back({&Callee, InlineHistoryID});
1114 
1115         // FIXME(mtrofin): refactor IFI.InlinedCallSites to be CallBase-based
1116         for (CallSite &CS : reverse(IFI.InlinedCallSites)) {
1117           Function *NewCallee = CS.getCalledFunction();
1118           if (!NewCallee) {
1119             // Try to promote an indirect (virtual) call without waiting for the
1120             // post-inline cleanup and the next DevirtSCCRepeatedPass iteration
1121             // because the next iteration may not happen and we may miss
1122             // inlining it.
1123             if (tryPromoteCall(CS))
1124               NewCallee = CS.getCalledFunction();
1125           }
1126           if (NewCallee)
1127             if (!NewCallee->isDeclaration())
1128               Calls.push_back(
1129                   {cast<CallBase>(CS.getInstruction()), NewHistoryID});
1130         }
1131       }
1132 
1133       if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No)
1134         ImportedFunctionsStats->recordInline(F, Callee);
1135 
1136       // Merge the attributes based on the inlining.
1137       AttributeFuncs::mergeAttributesForInlining(F, Callee);
1138 
1139       // For local functions, check whether this makes the callee trivially
1140       // dead. In that case, we can drop the body of the function eagerly
1141       // which may reduce the number of callers of other functions to one,
1142       // changing inline cost thresholds.
1143       if (Callee.hasLocalLinkage()) {
1144         // To check this we also need to nuke any dead constant uses (perhaps
1145         // made dead by this operation on other functions).
1146         Callee.removeDeadConstantUsers();
1147         if (Callee.use_empty() && !CG.isLibFunction(Callee)) {
1148           Calls.erase(
1149               std::remove_if(Calls.begin() + I + 1, Calls.end(),
1150                              [&](const std::pair<CallBase *, int> &Call) {
1151                                return Call.first->getCaller() == &Callee;
1152                              }),
1153               Calls.end());
1154           // Clear the body and queue the function itself for deletion when we
1155           // finish inlining and call graph updates.
1156           // Note that after this point, it is an error to do anything other
1157           // than use the callee's address or delete it.
1158           Callee.dropAllReferences();
1159           assert(find(DeadFunctions, &Callee) == DeadFunctions.end() &&
1160                  "Cannot put cause a function to become dead twice!");
1161           DeadFunctions.push_back(&Callee);
1162         }
1163       }
1164     }
1165 
1166     // Back the call index up by one to put us in a good position to go around
1167     // the outer loop.
1168     --I;
1169 
1170     if (!DidInline)
1171       continue;
1172     Changed = true;
1173 
1174     // Add all the inlined callees' edges as ref edges to the caller. These are
1175     // by definition trivial edges as we always have *some* transitive ref edge
1176     // chain. While in some cases these edges are direct calls inside the
1177     // callee, they have to be modeled in the inliner as reference edges as
1178     // there may be a reference edge anywhere along the chain from the current
1179     // caller to the callee that causes the whole thing to appear like
1180     // a (transitive) reference edge that will require promotion to a call edge
1181     // below.
1182     for (Function *InlinedCallee : InlinedCallees) {
1183       LazyCallGraph::Node &CalleeN = *CG.lookup(*InlinedCallee);
1184       for (LazyCallGraph::Edge &E : *CalleeN)
1185         RC->insertTrivialRefEdge(N, E.getNode());
1186     }
1187 
1188     // At this point, since we have made changes we have at least removed
1189     // a call instruction. However, in the process we do some incremental
1190     // simplification of the surrounding code. This simplification can
1191     // essentially do all of the same things as a function pass and we can
1192     // re-use the exact same logic for updating the call graph to reflect the
1193     // change.
1194     LazyCallGraph::SCC *OldC = C;
1195     C = &updateCGAndAnalysisManagerForFunctionPass(CG, *C, N, AM, UR);
1196     LLVM_DEBUG(dbgs() << "Updated inlining SCC: " << *C << "\n");
1197     RC = &C->getOuterRefSCC();
1198 
1199     // If this causes an SCC to split apart into multiple smaller SCCs, there
1200     // is a subtle risk we need to prepare for. Other transformations may
1201     // expose an "infinite inlining" opportunity later, and because of the SCC
1202     // mutation, we will revisit this function and potentially re-inline. If we
1203     // do, and that re-inlining also has the potentially to mutate the SCC
1204     // structure, the infinite inlining problem can manifest through infinite
1205     // SCC splits and merges. To avoid this, we capture the originating caller
1206     // node and the SCC containing the call edge. This is a slight over
1207     // approximation of the possible inlining decisions that must be avoided,
1208     // but is relatively efficient to store. We use C != OldC to know when
1209     // a new SCC is generated and the original SCC may be generated via merge
1210     // in later iterations.
1211     //
1212     // It is also possible that even if no new SCC is generated
1213     // (i.e., C == OldC), the original SCC could be split and then merged
1214     // into the same one as itself. and the original SCC will be added into
1215     // UR.CWorklist again, we want to catch such cases too.
1216     //
1217     // FIXME: This seems like a very heavyweight way of retaining the inline
1218     // history, we should look for a more efficient way of tracking it.
1219     if ((C != OldC || UR.CWorklist.count(OldC)) &&
1220         llvm::any_of(InlinedCallees, [&](Function *Callee) {
1221           return CG.lookupSCC(*CG.lookup(*Callee)) == OldC;
1222         })) {
1223       LLVM_DEBUG(dbgs() << "Inlined an internal call edge and split an SCC, "
1224                            "retaining this to avoid infinite inlining.\n");
1225       UR.InlinedInternalEdges.insert({&N, OldC});
1226     }
1227     InlinedCallees.clear();
1228   }
1229 
1230   // Now that we've finished inlining all of the calls across this SCC, delete
1231   // all of the trivially dead functions, updating the call graph and the CGSCC
1232   // pass manager in the process.
1233   //
1234   // Note that this walks a pointer set which has non-deterministic order but
1235   // that is OK as all we do is delete things and add pointers to unordered
1236   // sets.
1237   for (Function *DeadF : DeadFunctions) {
1238     // Get the necessary information out of the call graph and nuke the
1239     // function there. Also, cclear out any cached analyses.
1240     auto &DeadC = *CG.lookupSCC(*CG.lookup(*DeadF));
1241     FunctionAnalysisManager &FAM =
1242         AM.getResult<FunctionAnalysisManagerCGSCCProxy>(DeadC, CG)
1243             .getManager();
1244     FAM.clear(*DeadF, DeadF->getName());
1245     AM.clear(DeadC, DeadC.getName());
1246     auto &DeadRC = DeadC.getOuterRefSCC();
1247     CG.removeDeadFunction(*DeadF);
1248 
1249     // Mark the relevant parts of the call graph as invalid so we don't visit
1250     // them.
1251     UR.InvalidatedSCCs.insert(&DeadC);
1252     UR.InvalidatedRefSCCs.insert(&DeadRC);
1253 
1254     // And delete the actual function from the module.
1255     M.getFunctionList().erase(DeadF);
1256     ++NumDeleted;
1257   }
1258 
1259   if (!Changed)
1260     return PreservedAnalyses::all();
1261 
1262   // Even if we change the IR, we update the core CGSCC data structures and so
1263   // can preserve the proxy to the function analysis manager.
1264   PreservedAnalyses PA;
1265   PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
1266   return PA;
1267 }
1268