1 //===- Inliner.cpp - Code common to all inliners --------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the mechanics required to implement inlining without 11 // missing any calls and updating the call graph. The decisions of which calls 12 // are profitable to inline are implemented elsewhere. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Transforms/IPO/Inliner.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/Analysis/AssumptionCache.h" 21 #include "llvm/Analysis/BasicAliasAnalysis.h" 22 #include "llvm/Analysis/BlockFrequencyInfo.h" 23 #include "llvm/Analysis/CallGraph.h" 24 #include "llvm/Analysis/InlineCost.h" 25 #include "llvm/Analysis/OptimizationDiagnosticInfo.h" 26 #include "llvm/Analysis/ProfileSummaryInfo.h" 27 #include "llvm/Analysis/TargetLibraryInfo.h" 28 #include "llvm/IR/CallSite.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/DiagnosticInfo.h" 31 #include "llvm/IR/InstIterator.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/IntrinsicInst.h" 34 #include "llvm/IR/Module.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include "llvm/Transforms/Utils/Cloning.h" 38 #include "llvm/Transforms/Utils/Local.h" 39 #include "llvm/Transforms/Utils/ModuleUtils.h" 40 using namespace llvm; 41 42 #define DEBUG_TYPE "inline" 43 44 STATISTIC(NumInlined, "Number of functions inlined"); 45 STATISTIC(NumCallsDeleted, "Number of call sites deleted, not inlined"); 46 STATISTIC(NumDeleted, "Number of functions deleted because all callers found"); 47 STATISTIC(NumMergedAllocas, "Number of allocas merged together"); 48 49 // This weirdly named statistic tracks the number of times that, when attempting 50 // to inline a function A into B, we analyze the callers of B in order to see 51 // if those would be more profitable and blocked inline steps. 52 STATISTIC(NumCallerCallersAnalyzed, "Number of caller-callers analyzed"); 53 54 /// Flag to disable manual alloca merging. 55 /// 56 /// Merging of allocas was originally done as a stack-size saving technique 57 /// prior to LLVM's code generator having support for stack coloring based on 58 /// lifetime markers. It is now in the process of being removed. To experiment 59 /// with disabling it and relying fully on lifetime marker based stack 60 /// coloring, you can pass this flag to LLVM. 61 static cl::opt<bool> 62 DisableInlinedAllocaMerging("disable-inlined-alloca-merging", 63 cl::init(false), cl::Hidden); 64 65 namespace { 66 enum class InlinerFunctionImportStatsOpts { 67 No = 0, 68 Basic = 1, 69 Verbose = 2, 70 }; 71 72 cl::opt<InlinerFunctionImportStatsOpts> InlinerFunctionImportStats( 73 "inliner-function-import-stats", 74 cl::init(InlinerFunctionImportStatsOpts::No), 75 cl::values(clEnumValN(InlinerFunctionImportStatsOpts::Basic, "basic", 76 "basic statistics"), 77 clEnumValN(InlinerFunctionImportStatsOpts::Verbose, "verbose", 78 "printing of statistics for each inlined function")), 79 cl::Hidden, cl::desc("Enable inliner stats for imported functions")); 80 } // namespace 81 82 LegacyInlinerBase::LegacyInlinerBase(char &ID) 83 : CallGraphSCCPass(ID), InsertLifetime(true) {} 84 85 LegacyInlinerBase::LegacyInlinerBase(char &ID, bool InsertLifetime) 86 : CallGraphSCCPass(ID), InsertLifetime(InsertLifetime) {} 87 88 /// For this class, we declare that we require and preserve the call graph. 89 /// If the derived class implements this method, it should 90 /// always explicitly call the implementation here. 91 void LegacyInlinerBase::getAnalysisUsage(AnalysisUsage &AU) const { 92 AU.addRequired<AssumptionCacheTracker>(); 93 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 94 AU.addRequired<TargetLibraryInfoWrapperPass>(); 95 getAAResultsAnalysisUsage(AU); 96 CallGraphSCCPass::getAnalysisUsage(AU); 97 } 98 99 typedef DenseMap<ArrayType *, std::vector<AllocaInst *>> InlinedArrayAllocasTy; 100 101 /// Look at all of the allocas that we inlined through this call site. If we 102 /// have already inlined other allocas through other calls into this function, 103 /// then we know that they have disjoint lifetimes and that we can merge them. 104 /// 105 /// There are many heuristics possible for merging these allocas, and the 106 /// different options have different tradeoffs. One thing that we *really* 107 /// don't want to hurt is SRoA: once inlining happens, often allocas are no 108 /// longer address taken and so they can be promoted. 109 /// 110 /// Our "solution" for that is to only merge allocas whose outermost type is an 111 /// array type. These are usually not promoted because someone is using a 112 /// variable index into them. These are also often the most important ones to 113 /// merge. 114 /// 115 /// A better solution would be to have real memory lifetime markers in the IR 116 /// and not have the inliner do any merging of allocas at all. This would 117 /// allow the backend to do proper stack slot coloring of all allocas that 118 /// *actually make it to the backend*, which is really what we want. 119 /// 120 /// Because we don't have this information, we do this simple and useful hack. 121 static void mergeInlinedArrayAllocas( 122 Function *Caller, InlineFunctionInfo &IFI, 123 InlinedArrayAllocasTy &InlinedArrayAllocas, int InlineHistory) { 124 SmallPtrSet<AllocaInst *, 16> UsedAllocas; 125 126 // When processing our SCC, check to see if CS was inlined from some other 127 // call site. For example, if we're processing "A" in this code: 128 // A() { B() } 129 // B() { x = alloca ... C() } 130 // C() { y = alloca ... } 131 // Assume that C was not inlined into B initially, and so we're processing A 132 // and decide to inline B into A. Doing this makes an alloca available for 133 // reuse and makes a callsite (C) available for inlining. When we process 134 // the C call site we don't want to do any alloca merging between X and Y 135 // because their scopes are not disjoint. We could make this smarter by 136 // keeping track of the inline history for each alloca in the 137 // InlinedArrayAllocas but this isn't likely to be a significant win. 138 if (InlineHistory != -1) // Only do merging for top-level call sites in SCC. 139 return; 140 141 // Loop over all the allocas we have so far and see if they can be merged with 142 // a previously inlined alloca. If not, remember that we had it. 143 for (unsigned AllocaNo = 0, e = IFI.StaticAllocas.size(); AllocaNo != e; 144 ++AllocaNo) { 145 AllocaInst *AI = IFI.StaticAllocas[AllocaNo]; 146 147 // Don't bother trying to merge array allocations (they will usually be 148 // canonicalized to be an allocation *of* an array), or allocations whose 149 // type is not itself an array (because we're afraid of pessimizing SRoA). 150 ArrayType *ATy = dyn_cast<ArrayType>(AI->getAllocatedType()); 151 if (!ATy || AI->isArrayAllocation()) 152 continue; 153 154 // Get the list of all available allocas for this array type. 155 std::vector<AllocaInst *> &AllocasForType = InlinedArrayAllocas[ATy]; 156 157 // Loop over the allocas in AllocasForType to see if we can reuse one. Note 158 // that we have to be careful not to reuse the same "available" alloca for 159 // multiple different allocas that we just inlined, we use the 'UsedAllocas' 160 // set to keep track of which "available" allocas are being used by this 161 // function. Also, AllocasForType can be empty of course! 162 bool MergedAwayAlloca = false; 163 for (AllocaInst *AvailableAlloca : AllocasForType) { 164 165 unsigned Align1 = AI->getAlignment(), 166 Align2 = AvailableAlloca->getAlignment(); 167 168 // The available alloca has to be in the right function, not in some other 169 // function in this SCC. 170 if (AvailableAlloca->getParent() != AI->getParent()) 171 continue; 172 173 // If the inlined function already uses this alloca then we can't reuse 174 // it. 175 if (!UsedAllocas.insert(AvailableAlloca).second) 176 continue; 177 178 // Otherwise, we *can* reuse it, RAUW AI into AvailableAlloca and declare 179 // success! 180 DEBUG(dbgs() << " ***MERGED ALLOCA: " << *AI 181 << "\n\t\tINTO: " << *AvailableAlloca << '\n'); 182 183 // Move affected dbg.declare calls immediately after the new alloca to 184 // avoid the situation when a dbg.declare precedes its alloca. 185 if (auto *L = LocalAsMetadata::getIfExists(AI)) 186 if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L)) 187 for (User *U : MDV->users()) 188 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(U)) 189 DDI->moveBefore(AvailableAlloca->getNextNode()); 190 191 AI->replaceAllUsesWith(AvailableAlloca); 192 193 if (Align1 != Align2) { 194 if (!Align1 || !Align2) { 195 const DataLayout &DL = Caller->getParent()->getDataLayout(); 196 unsigned TypeAlign = DL.getABITypeAlignment(AI->getAllocatedType()); 197 198 Align1 = Align1 ? Align1 : TypeAlign; 199 Align2 = Align2 ? Align2 : TypeAlign; 200 } 201 202 if (Align1 > Align2) 203 AvailableAlloca->setAlignment(AI->getAlignment()); 204 } 205 206 AI->eraseFromParent(); 207 MergedAwayAlloca = true; 208 ++NumMergedAllocas; 209 IFI.StaticAllocas[AllocaNo] = nullptr; 210 break; 211 } 212 213 // If we already nuked the alloca, we're done with it. 214 if (MergedAwayAlloca) 215 continue; 216 217 // If we were unable to merge away the alloca either because there are no 218 // allocas of the right type available or because we reused them all 219 // already, remember that this alloca came from an inlined function and mark 220 // it used so we don't reuse it for other allocas from this inline 221 // operation. 222 AllocasForType.push_back(AI); 223 UsedAllocas.insert(AI); 224 } 225 } 226 227 /// If it is possible to inline the specified call site, 228 /// do so and update the CallGraph for this operation. 229 /// 230 /// This function also does some basic book-keeping to update the IR. The 231 /// InlinedArrayAllocas map keeps track of any allocas that are already 232 /// available from other functions inlined into the caller. If we are able to 233 /// inline this call site we attempt to reuse already available allocas or add 234 /// any new allocas to the set if not possible. 235 static bool InlineCallIfPossible( 236 CallSite CS, InlineFunctionInfo &IFI, 237 InlinedArrayAllocasTy &InlinedArrayAllocas, int InlineHistory, 238 bool InsertLifetime, function_ref<AAResults &(Function &)> &AARGetter, 239 ImportedFunctionsInliningStatistics &ImportedFunctionsStats) { 240 Function *Callee = CS.getCalledFunction(); 241 Function *Caller = CS.getCaller(); 242 243 AAResults &AAR = AARGetter(*Callee); 244 245 // Try to inline the function. Get the list of static allocas that were 246 // inlined. 247 if (!InlineFunction(CS, IFI, &AAR, InsertLifetime)) 248 return false; 249 250 if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No) 251 ImportedFunctionsStats.recordInline(*Caller, *Callee); 252 253 AttributeFuncs::mergeAttributesForInlining(*Caller, *Callee); 254 255 if (!DisableInlinedAllocaMerging) 256 mergeInlinedArrayAllocas(Caller, IFI, InlinedArrayAllocas, InlineHistory); 257 258 return true; 259 } 260 261 /// Return true if inlining of CS can block the caller from being 262 /// inlined which is proved to be more beneficial. \p IC is the 263 /// estimated inline cost associated with callsite \p CS. 264 /// \p TotalAltCost will be set to the estimated cost of inlining the caller 265 /// if \p CS is suppressed for inlining. 266 static bool 267 shouldBeDeferred(Function *Caller, CallSite CS, InlineCost IC, 268 int &TotalSecondaryCost, 269 function_ref<InlineCost(CallSite CS)> GetInlineCost) { 270 271 // For now we only handle local or inline functions. 272 if (!Caller->hasLocalLinkage() && !Caller->hasLinkOnceODRLinkage()) 273 return false; 274 // Try to detect the case where the current inlining candidate caller (call 275 // it B) is a static or linkonce-ODR function and is an inlining candidate 276 // elsewhere, and the current candidate callee (call it C) is large enough 277 // that inlining it into B would make B too big to inline later. In these 278 // circumstances it may be best not to inline C into B, but to inline B into 279 // its callers. 280 // 281 // This only applies to static and linkonce-ODR functions because those are 282 // expected to be available for inlining in the translation units where they 283 // are used. Thus we will always have the opportunity to make local inlining 284 // decisions. Importantly the linkonce-ODR linkage covers inline functions 285 // and templates in C++. 286 // 287 // FIXME: All of this logic should be sunk into getInlineCost. It relies on 288 // the internal implementation of the inline cost metrics rather than 289 // treating them as truly abstract units etc. 290 TotalSecondaryCost = 0; 291 // The candidate cost to be imposed upon the current function. 292 int CandidateCost = IC.getCost() - (InlineConstants::CallPenalty + 1); 293 // This bool tracks what happens if we do NOT inline C into B. 294 bool callerWillBeRemoved = Caller->hasLocalLinkage(); 295 // This bool tracks what happens if we DO inline C into B. 296 bool inliningPreventsSomeOuterInline = false; 297 for (User *U : Caller->users()) { 298 CallSite CS2(U); 299 300 // If this isn't a call to Caller (it could be some other sort 301 // of reference) skip it. Such references will prevent the caller 302 // from being removed. 303 if (!CS2 || CS2.getCalledFunction() != Caller) { 304 callerWillBeRemoved = false; 305 continue; 306 } 307 308 InlineCost IC2 = GetInlineCost(CS2); 309 ++NumCallerCallersAnalyzed; 310 if (!IC2) { 311 callerWillBeRemoved = false; 312 continue; 313 } 314 if (IC2.isAlways()) 315 continue; 316 317 // See if inlining of the original callsite would erase the cost delta of 318 // this callsite. We subtract off the penalty for the call instruction, 319 // which we would be deleting. 320 if (IC2.getCostDelta() <= CandidateCost) { 321 inliningPreventsSomeOuterInline = true; 322 TotalSecondaryCost += IC2.getCost(); 323 } 324 } 325 // If all outer calls to Caller would get inlined, the cost for the last 326 // one is set very low by getInlineCost, in anticipation that Caller will 327 // be removed entirely. We did not account for this above unless there 328 // is only one caller of Caller. 329 if (callerWillBeRemoved && !Caller->use_empty()) 330 TotalSecondaryCost -= InlineConstants::LastCallToStaticBonus; 331 332 if (inliningPreventsSomeOuterInline && TotalSecondaryCost < IC.getCost()) 333 return true; 334 335 return false; 336 } 337 338 /// Return true if the inliner should attempt to inline at the given CallSite. 339 static bool shouldInline(CallSite CS, 340 function_ref<InlineCost(CallSite CS)> GetInlineCost, 341 OptimizationRemarkEmitter &ORE) { 342 using namespace ore; 343 InlineCost IC = GetInlineCost(CS); 344 Instruction *Call = CS.getInstruction(); 345 Function *Callee = CS.getCalledFunction(); 346 347 if (IC.isAlways()) { 348 DEBUG(dbgs() << " Inlining: cost=always" 349 << ", Call: " << *CS.getInstruction() << "\n"); 350 ORE.emit(OptimizationRemarkAnalysis(DEBUG_TYPE, "AlwaysInline", Call) 351 << NV("Callee", Callee) 352 << " should always be inlined (cost=always)"); 353 return true; 354 } 355 356 if (IC.isNever()) { 357 DEBUG(dbgs() << " NOT Inlining: cost=never" 358 << ", Call: " << *CS.getInstruction() << "\n"); 359 ORE.emit(OptimizationRemarkAnalysis(DEBUG_TYPE, "NeverInline", Call) 360 << NV("Callee", Callee) 361 << " should never be inlined (cost=never)"); 362 return false; 363 } 364 365 Function *Caller = CS.getCaller(); 366 if (!IC) { 367 DEBUG(dbgs() << " NOT Inlining: cost=" << IC.getCost() 368 << ", thres=" << (IC.getCostDelta() + IC.getCost()) 369 << ", Call: " << *CS.getInstruction() << "\n"); 370 ORE.emit(OptimizationRemarkAnalysis(DEBUG_TYPE, "TooCostly", Call) 371 << NV("Callee", Callee) << " too costly to inline (cost=" 372 << NV("Cost", IC.getCost()) << ", threshold=" 373 << NV("Threshold", IC.getCostDelta() + IC.getCost()) << ")"); 374 return false; 375 } 376 377 int TotalSecondaryCost = 0; 378 if (shouldBeDeferred(Caller, CS, IC, TotalSecondaryCost, GetInlineCost)) { 379 DEBUG(dbgs() << " NOT Inlining: " << *CS.getInstruction() 380 << " Cost = " << IC.getCost() 381 << ", outer Cost = " << TotalSecondaryCost << '\n'); 382 ORE.emit(OptimizationRemarkAnalysis(DEBUG_TYPE, 383 "IncreaseCostInOtherContexts", Call) 384 << "Not inlining. Cost of inlining " << NV("Callee", Callee) 385 << " increases the cost of inlining " << NV("Caller", Caller) 386 << " in other contexts"); 387 return false; 388 } 389 390 DEBUG(dbgs() << " Inlining: cost=" << IC.getCost() 391 << ", thres=" << (IC.getCostDelta() + IC.getCost()) 392 << ", Call: " << *CS.getInstruction() << '\n'); 393 ORE.emit(OptimizationRemarkAnalysis(DEBUG_TYPE, "CanBeInlined", Call) 394 << NV("Callee", Callee) << " can be inlined into " 395 << NV("Caller", Caller) << " with cost=" << NV("Cost", IC.getCost()) 396 << " (threshold=" 397 << NV("Threshold", IC.getCostDelta() + IC.getCost()) << ")"); 398 return true; 399 } 400 401 /// Return true if the specified inline history ID 402 /// indicates an inline history that includes the specified function. 403 static bool InlineHistoryIncludes( 404 Function *F, int InlineHistoryID, 405 const SmallVectorImpl<std::pair<Function *, int>> &InlineHistory) { 406 while (InlineHistoryID != -1) { 407 assert(unsigned(InlineHistoryID) < InlineHistory.size() && 408 "Invalid inline history ID"); 409 if (InlineHistory[InlineHistoryID].first == F) 410 return true; 411 InlineHistoryID = InlineHistory[InlineHistoryID].second; 412 } 413 return false; 414 } 415 416 bool LegacyInlinerBase::doInitialization(CallGraph &CG) { 417 if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No) 418 ImportedFunctionsStats.setModuleInfo(CG.getModule()); 419 return false; // No changes to CallGraph. 420 } 421 422 bool LegacyInlinerBase::runOnSCC(CallGraphSCC &SCC) { 423 if (skipSCC(SCC)) 424 return false; 425 return inlineCalls(SCC); 426 } 427 428 static bool 429 inlineCallsImpl(CallGraphSCC &SCC, CallGraph &CG, 430 std::function<AssumptionCache &(Function &)> GetAssumptionCache, 431 ProfileSummaryInfo *PSI, TargetLibraryInfo &TLI, 432 bool InsertLifetime, 433 function_ref<InlineCost(CallSite CS)> GetInlineCost, 434 function_ref<AAResults &(Function &)> AARGetter, 435 ImportedFunctionsInliningStatistics &ImportedFunctionsStats) { 436 SmallPtrSet<Function *, 8> SCCFunctions; 437 DEBUG(dbgs() << "Inliner visiting SCC:"); 438 for (CallGraphNode *Node : SCC) { 439 Function *F = Node->getFunction(); 440 if (F) 441 SCCFunctions.insert(F); 442 DEBUG(dbgs() << " " << (F ? F->getName() : "INDIRECTNODE")); 443 } 444 445 // Scan through and identify all call sites ahead of time so that we only 446 // inline call sites in the original functions, not call sites that result 447 // from inlining other functions. 448 SmallVector<std::pair<CallSite, int>, 16> CallSites; 449 450 // When inlining a callee produces new call sites, we want to keep track of 451 // the fact that they were inlined from the callee. This allows us to avoid 452 // infinite inlining in some obscure cases. To represent this, we use an 453 // index into the InlineHistory vector. 454 SmallVector<std::pair<Function *, int>, 8> InlineHistory; 455 456 for (CallGraphNode *Node : SCC) { 457 Function *F = Node->getFunction(); 458 if (!F || F->isDeclaration()) 459 continue; 460 461 OptimizationRemarkEmitter ORE(F); 462 for (BasicBlock &BB : *F) 463 for (Instruction &I : BB) { 464 CallSite CS(cast<Value>(&I)); 465 // If this isn't a call, or it is a call to an intrinsic, it can 466 // never be inlined. 467 if (!CS || isa<IntrinsicInst>(I)) 468 continue; 469 470 // If this is a direct call to an external function, we can never inline 471 // it. If it is an indirect call, inlining may resolve it to be a 472 // direct call, so we keep it. 473 if (Function *Callee = CS.getCalledFunction()) 474 if (Callee->isDeclaration()) { 475 using namespace ore; 476 ORE.emit(OptimizationRemarkMissed(DEBUG_TYPE, "NoDefinition", &I) 477 << NV("Callee", Callee) << " will not be inlined into " 478 << NV("Caller", CS.getCaller()) 479 << " because its definition is unavailable" 480 << setIsVerbose()); 481 continue; 482 } 483 484 CallSites.push_back(std::make_pair(CS, -1)); 485 } 486 } 487 488 DEBUG(dbgs() << ": " << CallSites.size() << " call sites.\n"); 489 490 // If there are no calls in this function, exit early. 491 if (CallSites.empty()) 492 return false; 493 494 // Now that we have all of the call sites, move the ones to functions in the 495 // current SCC to the end of the list. 496 unsigned FirstCallInSCC = CallSites.size(); 497 for (unsigned i = 0; i < FirstCallInSCC; ++i) 498 if (Function *F = CallSites[i].first.getCalledFunction()) 499 if (SCCFunctions.count(F)) 500 std::swap(CallSites[i--], CallSites[--FirstCallInSCC]); 501 502 InlinedArrayAllocasTy InlinedArrayAllocas; 503 InlineFunctionInfo InlineInfo(&CG, &GetAssumptionCache); 504 505 // Now that we have all of the call sites, loop over them and inline them if 506 // it looks profitable to do so. 507 bool Changed = false; 508 bool LocalChange; 509 do { 510 LocalChange = false; 511 // Iterate over the outer loop because inlining functions can cause indirect 512 // calls to become direct calls. 513 // CallSites may be modified inside so ranged for loop can not be used. 514 for (unsigned CSi = 0; CSi != CallSites.size(); ++CSi) { 515 CallSite CS = CallSites[CSi].first; 516 517 Function *Caller = CS.getCaller(); 518 Function *Callee = CS.getCalledFunction(); 519 520 // If this call site is dead and it is to a readonly function, we should 521 // just delete the call instead of trying to inline it, regardless of 522 // size. This happens because IPSCCP propagates the result out of the 523 // call and then we're left with the dead call. 524 if (isInstructionTriviallyDead(CS.getInstruction(), &TLI)) { 525 DEBUG(dbgs() << " -> Deleting dead call: " << *CS.getInstruction() 526 << "\n"); 527 // Update the call graph by deleting the edge from Callee to Caller. 528 CG[Caller]->removeCallEdgeFor(CS); 529 CS.getInstruction()->eraseFromParent(); 530 ++NumCallsDeleted; 531 } else { 532 // We can only inline direct calls to non-declarations. 533 if (!Callee || Callee->isDeclaration()) 534 continue; 535 536 // If this call site was obtained by inlining another function, verify 537 // that the include path for the function did not include the callee 538 // itself. If so, we'd be recursively inlining the same function, 539 // which would provide the same callsites, which would cause us to 540 // infinitely inline. 541 int InlineHistoryID = CallSites[CSi].second; 542 if (InlineHistoryID != -1 && 543 InlineHistoryIncludes(Callee, InlineHistoryID, InlineHistory)) 544 continue; 545 546 // Get DebugLoc to report. CS will be invalid after Inliner. 547 DebugLoc DLoc = CS.getInstruction()->getDebugLoc(); 548 BasicBlock *Block = CS.getParent(); 549 // FIXME for new PM: because of the old PM we currently generate ORE and 550 // in turn BFI on demand. With the new PM, the ORE dependency should 551 // just become a regular analysis dependency. 552 OptimizationRemarkEmitter ORE(Caller); 553 554 // If the policy determines that we should inline this function, 555 // try to do so. 556 using namespace ore; 557 if (!shouldInline(CS, GetInlineCost, ORE)) { 558 ORE.emit( 559 OptimizationRemarkMissed(DEBUG_TYPE, "NotInlined", DLoc, Block) 560 << NV("Callee", Callee) << " will not be inlined into " 561 << NV("Caller", Caller)); 562 continue; 563 } 564 565 // Attempt to inline the function. 566 if (!InlineCallIfPossible(CS, InlineInfo, InlinedArrayAllocas, 567 InlineHistoryID, InsertLifetime, AARGetter, 568 ImportedFunctionsStats)) { 569 ORE.emit( 570 OptimizationRemarkMissed(DEBUG_TYPE, "NotInlined", DLoc, Block) 571 << NV("Callee", Callee) << " will not be inlined into " 572 << NV("Caller", Caller)); 573 continue; 574 } 575 ++NumInlined; 576 577 // Report the inline decision. 578 ORE.emit(OptimizationRemark(DEBUG_TYPE, "Inlined", DLoc, Block) 579 << NV("Callee", Callee) << " inlined into " 580 << NV("Caller", Caller)); 581 582 // If inlining this function gave us any new call sites, throw them 583 // onto our worklist to process. They are useful inline candidates. 584 if (!InlineInfo.InlinedCalls.empty()) { 585 // Create a new inline history entry for this, so that we remember 586 // that these new callsites came about due to inlining Callee. 587 int NewHistoryID = InlineHistory.size(); 588 InlineHistory.push_back(std::make_pair(Callee, InlineHistoryID)); 589 590 for (Value *Ptr : InlineInfo.InlinedCalls) 591 CallSites.push_back(std::make_pair(CallSite(Ptr), NewHistoryID)); 592 } 593 } 594 595 // If we inlined or deleted the last possible call site to the function, 596 // delete the function body now. 597 if (Callee && Callee->use_empty() && Callee->hasLocalLinkage() && 598 // TODO: Can remove if in SCC now. 599 !SCCFunctions.count(Callee) && 600 601 // The function may be apparently dead, but if there are indirect 602 // callgraph references to the node, we cannot delete it yet, this 603 // could invalidate the CGSCC iterator. 604 CG[Callee]->getNumReferences() == 0) { 605 DEBUG(dbgs() << " -> Deleting dead function: " << Callee->getName() 606 << "\n"); 607 CallGraphNode *CalleeNode = CG[Callee]; 608 609 // Remove any call graph edges from the callee to its callees. 610 CalleeNode->removeAllCalledFunctions(); 611 612 // Removing the node for callee from the call graph and delete it. 613 delete CG.removeFunctionFromModule(CalleeNode); 614 ++NumDeleted; 615 } 616 617 // Remove this call site from the list. If possible, use 618 // swap/pop_back for efficiency, but do not use it if doing so would 619 // move a call site to a function in this SCC before the 620 // 'FirstCallInSCC' barrier. 621 if (SCC.isSingular()) { 622 CallSites[CSi] = CallSites.back(); 623 CallSites.pop_back(); 624 } else { 625 CallSites.erase(CallSites.begin() + CSi); 626 } 627 --CSi; 628 629 Changed = true; 630 LocalChange = true; 631 } 632 } while (LocalChange); 633 634 return Changed; 635 } 636 637 bool LegacyInlinerBase::inlineCalls(CallGraphSCC &SCC) { 638 CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph(); 639 ACT = &getAnalysis<AssumptionCacheTracker>(); 640 PSI = getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 641 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 642 // We compute dedicated AA results for each function in the SCC as needed. We 643 // use a lambda referencing external objects so that they live long enough to 644 // be queried, but we re-use them each time. 645 Optional<BasicAAResult> BAR; 646 Optional<AAResults> AAR; 647 auto AARGetter = [&](Function &F) -> AAResults & { 648 BAR.emplace(createLegacyPMBasicAAResult(*this, F)); 649 AAR.emplace(createLegacyPMAAResults(*this, F, *BAR)); 650 return *AAR; 651 }; 652 auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & { 653 return ACT->getAssumptionCache(F); 654 }; 655 return inlineCallsImpl(SCC, CG, GetAssumptionCache, PSI, TLI, InsertLifetime, 656 [this](CallSite CS) { return getInlineCost(CS); }, 657 AARGetter, ImportedFunctionsStats); 658 } 659 660 /// Remove now-dead linkonce functions at the end of 661 /// processing to avoid breaking the SCC traversal. 662 bool LegacyInlinerBase::doFinalization(CallGraph &CG) { 663 if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No) 664 ImportedFunctionsStats.dump(InlinerFunctionImportStats == 665 InlinerFunctionImportStatsOpts::Verbose); 666 return removeDeadFunctions(CG); 667 } 668 669 /// Remove dead functions that are not included in DNR (Do Not Remove) list. 670 bool LegacyInlinerBase::removeDeadFunctions(CallGraph &CG, 671 bool AlwaysInlineOnly) { 672 SmallVector<CallGraphNode *, 16> FunctionsToRemove; 673 SmallVector<Function *, 16> DeadFunctionsInComdats; 674 675 auto RemoveCGN = [&](CallGraphNode *CGN) { 676 // Remove any call graph edges from the function to its callees. 677 CGN->removeAllCalledFunctions(); 678 679 // Remove any edges from the external node to the function's call graph 680 // node. These edges might have been made irrelegant due to 681 // optimization of the program. 682 CG.getExternalCallingNode()->removeAnyCallEdgeTo(CGN); 683 684 // Removing the node for callee from the call graph and delete it. 685 FunctionsToRemove.push_back(CGN); 686 }; 687 688 // Scan for all of the functions, looking for ones that should now be removed 689 // from the program. Insert the dead ones in the FunctionsToRemove set. 690 for (const auto &I : CG) { 691 CallGraphNode *CGN = I.second.get(); 692 Function *F = CGN->getFunction(); 693 if (!F || F->isDeclaration()) 694 continue; 695 696 // Handle the case when this function is called and we only want to care 697 // about always-inline functions. This is a bit of a hack to share code 698 // between here and the InlineAlways pass. 699 if (AlwaysInlineOnly && !F->hasFnAttribute(Attribute::AlwaysInline)) 700 continue; 701 702 // If the only remaining users of the function are dead constants, remove 703 // them. 704 F->removeDeadConstantUsers(); 705 706 if (!F->isDefTriviallyDead()) 707 continue; 708 709 // It is unsafe to drop a function with discardable linkage from a COMDAT 710 // without also dropping the other members of the COMDAT. 711 // The inliner doesn't visit non-function entities which are in COMDAT 712 // groups so it is unsafe to do so *unless* the linkage is local. 713 if (!F->hasLocalLinkage()) { 714 if (F->hasComdat()) { 715 DeadFunctionsInComdats.push_back(F); 716 continue; 717 } 718 } 719 720 RemoveCGN(CGN); 721 } 722 if (!DeadFunctionsInComdats.empty()) { 723 // Filter out the functions whose comdats remain alive. 724 filterDeadComdatFunctions(CG.getModule(), DeadFunctionsInComdats); 725 // Remove the rest. 726 for (Function *F : DeadFunctionsInComdats) 727 RemoveCGN(CG[F]); 728 } 729 730 if (FunctionsToRemove.empty()) 731 return false; 732 733 // Now that we know which functions to delete, do so. We didn't want to do 734 // this inline, because that would invalidate our CallGraph::iterator 735 // objects. :( 736 // 737 // Note that it doesn't matter that we are iterating over a non-stable order 738 // here to do this, it doesn't matter which order the functions are deleted 739 // in. 740 array_pod_sort(FunctionsToRemove.begin(), FunctionsToRemove.end()); 741 FunctionsToRemove.erase( 742 std::unique(FunctionsToRemove.begin(), FunctionsToRemove.end()), 743 FunctionsToRemove.end()); 744 for (CallGraphNode *CGN : FunctionsToRemove) { 745 delete CG.removeFunctionFromModule(CGN); 746 ++NumDeleted; 747 } 748 return true; 749 } 750 751 PreservedAnalyses InlinerPass::run(LazyCallGraph::SCC &InitialC, 752 CGSCCAnalysisManager &AM, LazyCallGraph &CG, 753 CGSCCUpdateResult &UR) { 754 const ModuleAnalysisManager &MAM = 755 AM.getResult<ModuleAnalysisManagerCGSCCProxy>(InitialC, CG).getManager(); 756 bool Changed = false; 757 758 assert(InitialC.size() > 0 && "Cannot handle an empty SCC!"); 759 Module &M = *InitialC.begin()->getFunction().getParent(); 760 ProfileSummaryInfo *PSI = MAM.getCachedResult<ProfileSummaryAnalysis>(M); 761 762 // We use a worklist of nodes to process so that we can handle if the SCC 763 // structure changes and some nodes are no longer part of the current SCC. We 764 // also need to use an updatable pointer for the SCC as a consequence. 765 SmallVector<LazyCallGraph::Node *, 16> Nodes; 766 for (auto &N : InitialC) 767 Nodes.push_back(&N); 768 auto *C = &InitialC; 769 auto *RC = &C->getOuterRefSCC(); 770 771 // We also use a secondary worklist of call sites within a particular node to 772 // allow quickly continuing to inline through newly inlined call sites where 773 // possible. 774 SmallVector<std::pair<CallSite, int>, 16> Calls; 775 776 // When inlining a callee produces new call sites, we want to keep track of 777 // the fact that they were inlined from the callee. This allows us to avoid 778 // infinite inlining in some obscure cases. To represent this, we use an 779 // index into the InlineHistory vector. 780 SmallVector<std::pair<Function *, int>, 16> InlineHistory; 781 782 // Track a set vector of inlined callees so that we can augment the caller 783 // with all of their edges in the call graph before pruning out the ones that 784 // got simplified away. 785 SmallSetVector<Function *, 4> InlinedCallees; 786 787 // Track the dead functions to delete once finished with inlining calls. We 788 // defer deleting these to make it easier to handle the call graph updates. 789 SmallVector<Function *, 4> DeadFunctions; 790 791 do { 792 auto &N = *Nodes.pop_back_val(); 793 if (CG.lookupSCC(N) != C) 794 continue; 795 Function &F = N.getFunction(); 796 if (F.hasFnAttribute(Attribute::OptimizeNone)) 797 continue; 798 799 DEBUG(dbgs() << "Inlining calls in: " << F.getName() << "\n"); 800 801 // Get a FunctionAnalysisManager via a proxy for this particular node. We 802 // do this each time we visit a node as the SCC may have changed and as 803 // we're going to mutate this particular function we want to make sure the 804 // proxy is in place to forward any invalidation events. We can use the 805 // manager we get here for looking up results for functions other than this 806 // node however because those functions aren't going to be mutated by this 807 // pass. 808 FunctionAnalysisManager &FAM = 809 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(*C, CG) 810 .getManager(); 811 std::function<AssumptionCache &(Function &)> GetAssumptionCache = 812 [&](Function &F) -> AssumptionCache & { 813 return FAM.getResult<AssumptionAnalysis>(F); 814 }; 815 auto GetBFI = [&](Function &F) -> BlockFrequencyInfo & { 816 return FAM.getResult<BlockFrequencyAnalysis>(F); 817 }; 818 819 auto GetInlineCost = [&](CallSite CS) { 820 Function &Callee = *CS.getCalledFunction(); 821 auto &CalleeTTI = FAM.getResult<TargetIRAnalysis>(Callee); 822 return getInlineCost(CS, Params, CalleeTTI, GetAssumptionCache, {GetBFI}, 823 PSI); 824 }; 825 826 // Get the remarks emission analysis for the caller. 827 auto &ORE = FAM.getResult<OptimizationRemarkEmitterAnalysis>(F); 828 829 // We want to generally process call sites top-down in order for 830 // simplifications stemming from replacing the call with the returned value 831 // after inlining to be visible to subsequent inlining decisions. So we 832 // walk the function backwards and then process the back of the vector. 833 // FIXME: Using reverse is a really bad way to do this. Instead we should 834 // do an actual PO walk of the function body. 835 for (Instruction &I : reverse(instructions(F))) 836 if (auto CS = CallSite(&I)) 837 if (Function *Callee = CS.getCalledFunction()) 838 if (!Callee->isDeclaration()) 839 Calls.push_back({CS, -1}); 840 841 bool DidInline = false; 842 while (!Calls.empty()) { 843 int InlineHistoryID; 844 CallSite CS; 845 std::tie(CS, InlineHistoryID) = Calls.pop_back_val(); 846 Function &Callee = *CS.getCalledFunction(); 847 848 if (InlineHistoryID != -1 && 849 InlineHistoryIncludes(&Callee, InlineHistoryID, InlineHistory)) 850 continue; 851 852 // Check whether we want to inline this callsite. 853 if (!shouldInline(CS, GetInlineCost, ORE)) 854 continue; 855 856 // Setup the data structure used to plumb customization into the 857 // `InlineFunction` routine. 858 InlineFunctionInfo IFI( 859 /*cg=*/nullptr, &GetAssumptionCache, 860 &FAM.getResult<BlockFrequencyAnalysis>(*(CS.getCaller())), 861 &FAM.getResult<BlockFrequencyAnalysis>(Callee)); 862 863 if (!InlineFunction(CS, IFI)) 864 continue; 865 DidInline = true; 866 InlinedCallees.insert(&Callee); 867 868 // Add any new callsites to defined functions to the worklist. 869 if (!IFI.InlinedCallSites.empty()) { 870 int NewHistoryID = InlineHistory.size(); 871 InlineHistory.push_back({&Callee, InlineHistoryID}); 872 for (CallSite &CS : reverse(IFI.InlinedCallSites)) 873 if (Function *NewCallee = CS.getCalledFunction()) 874 if (!NewCallee->isDeclaration()) 875 Calls.push_back({CS, NewHistoryID}); 876 } 877 878 // Merge the attributes based on the inlining. 879 AttributeFuncs::mergeAttributesForInlining(F, Callee); 880 881 // For local functions, check whether this makes the callee trivially 882 // dead. In that case, we can drop the body of the function eagerly 883 // which may reduce the number of callers of other functions to one, 884 // changing inline cost thresholds. 885 if (Callee.hasLocalLinkage()) { 886 // To check this we also need to nuke any dead constant uses (perhaps 887 // made dead by this operation on other functions). 888 Callee.removeDeadConstantUsers(); 889 if (Callee.use_empty()) { 890 // Clear the body and queue the function itself for deletion when we 891 // finish inlining and call graph updates. 892 // Note that after this point, it is an error to do anything other 893 // than use the callee's address or delete it. 894 Callee.dropAllReferences(); 895 assert(find(DeadFunctions, &Callee) == DeadFunctions.end() && 896 "Cannot put cause a function to become dead twice!"); 897 DeadFunctions.push_back(&Callee); 898 } 899 } 900 } 901 902 if (!DidInline) 903 continue; 904 Changed = true; 905 906 // Add all the inlined callees' edges as ref edges to the caller. These are 907 // by definition trivial edges as we always have *some* transitive ref edge 908 // chain. While in some cases these edges are direct calls inside the 909 // callee, they have to be modeled in the inliner as reference edges as 910 // there may be a reference edge anywhere along the chain from the current 911 // caller to the callee that causes the whole thing to appear like 912 // a (transitive) reference edge that will require promotion to a call edge 913 // below. 914 for (Function *InlinedCallee : InlinedCallees) { 915 LazyCallGraph::Node &CalleeN = *CG.lookup(*InlinedCallee); 916 for (LazyCallGraph::Edge &E : CalleeN) 917 RC->insertTrivialRefEdge(N, *E.getNode()); 918 } 919 InlinedCallees.clear(); 920 921 // At this point, since we have made changes we have at least removed 922 // a call instruction. However, in the process we do some incremental 923 // simplification of the surrounding code. This simplification can 924 // essentially do all of the same things as a function pass and we can 925 // re-use the exact same logic for updating the call graph to reflect the 926 // change.. 927 C = &updateCGAndAnalysisManagerForFunctionPass(CG, *C, N, AM, UR); 928 DEBUG(dbgs() << "Updated inlining SCC: " << *C << "\n"); 929 RC = &C->getOuterRefSCC(); 930 } while (!Nodes.empty()); 931 932 // Now that we've finished inlining all of the calls across this SCC, delete 933 // all of the trivially dead functions, updating the call graph and the CGSCC 934 // pass manager in the process. 935 // 936 // Note that this walks a pointer set which has non-deterministic order but 937 // that is OK as all we do is delete things and add pointers to unordered 938 // sets. 939 for (Function *DeadF : DeadFunctions) { 940 // Get the necessary information out of the call graph and nuke the 941 // function there. Also, cclear out any cached analyses. 942 auto &DeadC = *CG.lookupSCC(*CG.lookup(*DeadF)); 943 FunctionAnalysisManager &FAM = 944 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(DeadC, CG) 945 .getManager(); 946 FAM.clear(*DeadF); 947 AM.clear(DeadC); 948 auto &DeadRC = DeadC.getOuterRefSCC(); 949 CG.removeDeadFunction(*DeadF); 950 951 // Mark the relevant parts of the call graph as invalid so we don't visit 952 // them. 953 UR.InvalidatedSCCs.insert(&DeadC); 954 UR.InvalidatedRefSCCs.insert(&DeadRC); 955 956 // And delete the actual function from the module. 957 M.getFunctionList().erase(DeadF); 958 } 959 return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all(); 960 } 961