1 //===- Inliner.cpp - Code common to all inliners --------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the mechanics required to implement inlining without
11 // missing any calls and updating the call graph.  The decisions of which calls
12 // are profitable to inline are implemented elsewhere.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/Transforms/IPO/Inliner.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/AliasAnalysis.h"
20 #include "llvm/Analysis/AssumptionCache.h"
21 #include "llvm/Analysis/BasicAliasAnalysis.h"
22 #include "llvm/Analysis/BlockFrequencyInfo.h"
23 #include "llvm/Analysis/CallGraph.h"
24 #include "llvm/Analysis/InlineCost.h"
25 #include "llvm/Analysis/OptimizationDiagnosticInfo.h"
26 #include "llvm/Analysis/ProfileSummaryInfo.h"
27 #include "llvm/Analysis/TargetLibraryInfo.h"
28 #include "llvm/IR/CallSite.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/DiagnosticInfo.h"
31 #include "llvm/IR/InstIterator.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/IntrinsicInst.h"
34 #include "llvm/IR/Module.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/raw_ostream.h"
37 #include "llvm/Transforms/Utils/Cloning.h"
38 #include "llvm/Transforms/Utils/Local.h"
39 #include "llvm/Transforms/Utils/ModuleUtils.h"
40 using namespace llvm;
41 
42 #define DEBUG_TYPE "inline"
43 
44 STATISTIC(NumInlined, "Number of functions inlined");
45 STATISTIC(NumCallsDeleted, "Number of call sites deleted, not inlined");
46 STATISTIC(NumDeleted, "Number of functions deleted because all callers found");
47 STATISTIC(NumMergedAllocas, "Number of allocas merged together");
48 
49 // This weirdly named statistic tracks the number of times that, when attempting
50 // to inline a function A into B, we analyze the callers of B in order to see
51 // if those would be more profitable and blocked inline steps.
52 STATISTIC(NumCallerCallersAnalyzed, "Number of caller-callers analyzed");
53 
54 /// Flag to disable manual alloca merging.
55 ///
56 /// Merging of allocas was originally done as a stack-size saving technique
57 /// prior to LLVM's code generator having support for stack coloring based on
58 /// lifetime markers. It is now in the process of being removed. To experiment
59 /// with disabling it and relying fully on lifetime marker based stack
60 /// coloring, you can pass this flag to LLVM.
61 static cl::opt<bool>
62     DisableInlinedAllocaMerging("disable-inlined-alloca-merging",
63                                 cl::init(false), cl::Hidden);
64 
65 namespace {
66 enum class InlinerFunctionImportStatsOpts {
67   No = 0,
68   Basic = 1,
69   Verbose = 2,
70 };
71 
72 cl::opt<InlinerFunctionImportStatsOpts> InlinerFunctionImportStats(
73     "inliner-function-import-stats",
74     cl::init(InlinerFunctionImportStatsOpts::No),
75     cl::values(clEnumValN(InlinerFunctionImportStatsOpts::Basic, "basic",
76                           "basic statistics"),
77                clEnumValN(InlinerFunctionImportStatsOpts::Verbose, "verbose",
78                           "printing of statistics for each inlined function")),
79     cl::Hidden, cl::desc("Enable inliner stats for imported functions"));
80 } // namespace
81 
82 LegacyInlinerBase::LegacyInlinerBase(char &ID)
83     : CallGraphSCCPass(ID), InsertLifetime(true) {}
84 
85 LegacyInlinerBase::LegacyInlinerBase(char &ID, bool InsertLifetime)
86     : CallGraphSCCPass(ID), InsertLifetime(InsertLifetime) {}
87 
88 /// For this class, we declare that we require and preserve the call graph.
89 /// If the derived class implements this method, it should
90 /// always explicitly call the implementation here.
91 void LegacyInlinerBase::getAnalysisUsage(AnalysisUsage &AU) const {
92   AU.addRequired<AssumptionCacheTracker>();
93   AU.addRequired<ProfileSummaryInfoWrapperPass>();
94   AU.addRequired<TargetLibraryInfoWrapperPass>();
95   getAAResultsAnalysisUsage(AU);
96   CallGraphSCCPass::getAnalysisUsage(AU);
97 }
98 
99 typedef DenseMap<ArrayType *, std::vector<AllocaInst *>> InlinedArrayAllocasTy;
100 
101 /// Look at all of the allocas that we inlined through this call site.  If we
102 /// have already inlined other allocas through other calls into this function,
103 /// then we know that they have disjoint lifetimes and that we can merge them.
104 ///
105 /// There are many heuristics possible for merging these allocas, and the
106 /// different options have different tradeoffs.  One thing that we *really*
107 /// don't want to hurt is SRoA: once inlining happens, often allocas are no
108 /// longer address taken and so they can be promoted.
109 ///
110 /// Our "solution" for that is to only merge allocas whose outermost type is an
111 /// array type.  These are usually not promoted because someone is using a
112 /// variable index into them.  These are also often the most important ones to
113 /// merge.
114 ///
115 /// A better solution would be to have real memory lifetime markers in the IR
116 /// and not have the inliner do any merging of allocas at all.  This would
117 /// allow the backend to do proper stack slot coloring of all allocas that
118 /// *actually make it to the backend*, which is really what we want.
119 ///
120 /// Because we don't have this information, we do this simple and useful hack.
121 static void mergeInlinedArrayAllocas(
122     Function *Caller, InlineFunctionInfo &IFI,
123     InlinedArrayAllocasTy &InlinedArrayAllocas, int InlineHistory) {
124   SmallPtrSet<AllocaInst *, 16> UsedAllocas;
125 
126   // When processing our SCC, check to see if CS was inlined from some other
127   // call site.  For example, if we're processing "A" in this code:
128   //   A() { B() }
129   //   B() { x = alloca ... C() }
130   //   C() { y = alloca ... }
131   // Assume that C was not inlined into B initially, and so we're processing A
132   // and decide to inline B into A.  Doing this makes an alloca available for
133   // reuse and makes a callsite (C) available for inlining.  When we process
134   // the C call site we don't want to do any alloca merging between X and Y
135   // because their scopes are not disjoint.  We could make this smarter by
136   // keeping track of the inline history for each alloca in the
137   // InlinedArrayAllocas but this isn't likely to be a significant win.
138   if (InlineHistory != -1) // Only do merging for top-level call sites in SCC.
139     return;
140 
141   // Loop over all the allocas we have so far and see if they can be merged with
142   // a previously inlined alloca.  If not, remember that we had it.
143   for (unsigned AllocaNo = 0, e = IFI.StaticAllocas.size(); AllocaNo != e;
144        ++AllocaNo) {
145     AllocaInst *AI = IFI.StaticAllocas[AllocaNo];
146 
147     // Don't bother trying to merge array allocations (they will usually be
148     // canonicalized to be an allocation *of* an array), or allocations whose
149     // type is not itself an array (because we're afraid of pessimizing SRoA).
150     ArrayType *ATy = dyn_cast<ArrayType>(AI->getAllocatedType());
151     if (!ATy || AI->isArrayAllocation())
152       continue;
153 
154     // Get the list of all available allocas for this array type.
155     std::vector<AllocaInst *> &AllocasForType = InlinedArrayAllocas[ATy];
156 
157     // Loop over the allocas in AllocasForType to see if we can reuse one.  Note
158     // that we have to be careful not to reuse the same "available" alloca for
159     // multiple different allocas that we just inlined, we use the 'UsedAllocas'
160     // set to keep track of which "available" allocas are being used by this
161     // function.  Also, AllocasForType can be empty of course!
162     bool MergedAwayAlloca = false;
163     for (AllocaInst *AvailableAlloca : AllocasForType) {
164 
165       unsigned Align1 = AI->getAlignment(),
166                Align2 = AvailableAlloca->getAlignment();
167 
168       // The available alloca has to be in the right function, not in some other
169       // function in this SCC.
170       if (AvailableAlloca->getParent() != AI->getParent())
171         continue;
172 
173       // If the inlined function already uses this alloca then we can't reuse
174       // it.
175       if (!UsedAllocas.insert(AvailableAlloca).second)
176         continue;
177 
178       // Otherwise, we *can* reuse it, RAUW AI into AvailableAlloca and declare
179       // success!
180       DEBUG(dbgs() << "    ***MERGED ALLOCA: " << *AI
181                    << "\n\t\tINTO: " << *AvailableAlloca << '\n');
182 
183       // Move affected dbg.declare calls immediately after the new alloca to
184       // avoid the situation when a dbg.declare precedes its alloca.
185       if (auto *L = LocalAsMetadata::getIfExists(AI))
186         if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L))
187           for (User *U : MDV->users())
188             if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(U))
189               DDI->moveBefore(AvailableAlloca->getNextNode());
190 
191       AI->replaceAllUsesWith(AvailableAlloca);
192 
193       if (Align1 != Align2) {
194         if (!Align1 || !Align2) {
195           const DataLayout &DL = Caller->getParent()->getDataLayout();
196           unsigned TypeAlign = DL.getABITypeAlignment(AI->getAllocatedType());
197 
198           Align1 = Align1 ? Align1 : TypeAlign;
199           Align2 = Align2 ? Align2 : TypeAlign;
200         }
201 
202         if (Align1 > Align2)
203           AvailableAlloca->setAlignment(AI->getAlignment());
204       }
205 
206       AI->eraseFromParent();
207       MergedAwayAlloca = true;
208       ++NumMergedAllocas;
209       IFI.StaticAllocas[AllocaNo] = nullptr;
210       break;
211     }
212 
213     // If we already nuked the alloca, we're done with it.
214     if (MergedAwayAlloca)
215       continue;
216 
217     // If we were unable to merge away the alloca either because there are no
218     // allocas of the right type available or because we reused them all
219     // already, remember that this alloca came from an inlined function and mark
220     // it used so we don't reuse it for other allocas from this inline
221     // operation.
222     AllocasForType.push_back(AI);
223     UsedAllocas.insert(AI);
224   }
225 }
226 
227 /// If it is possible to inline the specified call site,
228 /// do so and update the CallGraph for this operation.
229 ///
230 /// This function also does some basic book-keeping to update the IR.  The
231 /// InlinedArrayAllocas map keeps track of any allocas that are already
232 /// available from other functions inlined into the caller.  If we are able to
233 /// inline this call site we attempt to reuse already available allocas or add
234 /// any new allocas to the set if not possible.
235 static bool InlineCallIfPossible(
236     CallSite CS, InlineFunctionInfo &IFI,
237     InlinedArrayAllocasTy &InlinedArrayAllocas, int InlineHistory,
238     bool InsertLifetime, function_ref<AAResults &(Function &)> &AARGetter,
239     ImportedFunctionsInliningStatistics &ImportedFunctionsStats) {
240   Function *Callee = CS.getCalledFunction();
241   Function *Caller = CS.getCaller();
242 
243   AAResults &AAR = AARGetter(*Callee);
244 
245   // Try to inline the function.  Get the list of static allocas that were
246   // inlined.
247   if (!InlineFunction(CS, IFI, &AAR, InsertLifetime))
248     return false;
249 
250   if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No)
251     ImportedFunctionsStats.recordInline(*Caller, *Callee);
252 
253   AttributeFuncs::mergeAttributesForInlining(*Caller, *Callee);
254 
255   if (!DisableInlinedAllocaMerging)
256     mergeInlinedArrayAllocas(Caller, IFI, InlinedArrayAllocas, InlineHistory);
257 
258   return true;
259 }
260 
261 /// Return true if inlining of CS can block the caller from being
262 /// inlined which is proved to be more beneficial. \p IC is the
263 /// estimated inline cost associated with callsite \p CS.
264 /// \p TotalAltCost will be set to the estimated cost of inlining the caller
265 /// if \p CS is suppressed for inlining.
266 static bool
267 shouldBeDeferred(Function *Caller, CallSite CS, InlineCost IC,
268                  int &TotalSecondaryCost,
269                  function_ref<InlineCost(CallSite CS)> GetInlineCost) {
270 
271   // For now we only handle local or inline functions.
272   if (!Caller->hasLocalLinkage() && !Caller->hasLinkOnceODRLinkage())
273     return false;
274   // Try to detect the case where the current inlining candidate caller (call
275   // it B) is a static or linkonce-ODR function and is an inlining candidate
276   // elsewhere, and the current candidate callee (call it C) is large enough
277   // that inlining it into B would make B too big to inline later. In these
278   // circumstances it may be best not to inline C into B, but to inline B into
279   // its callers.
280   //
281   // This only applies to static and linkonce-ODR functions because those are
282   // expected to be available for inlining in the translation units where they
283   // are used. Thus we will always have the opportunity to make local inlining
284   // decisions. Importantly the linkonce-ODR linkage covers inline functions
285   // and templates in C++.
286   //
287   // FIXME: All of this logic should be sunk into getInlineCost. It relies on
288   // the internal implementation of the inline cost metrics rather than
289   // treating them as truly abstract units etc.
290   TotalSecondaryCost = 0;
291   // The candidate cost to be imposed upon the current function.
292   int CandidateCost = IC.getCost() - (InlineConstants::CallPenalty + 1);
293   // This bool tracks what happens if we do NOT inline C into B.
294   bool callerWillBeRemoved = Caller->hasLocalLinkage();
295   // This bool tracks what happens if we DO inline C into B.
296   bool inliningPreventsSomeOuterInline = false;
297   for (User *U : Caller->users()) {
298     CallSite CS2(U);
299 
300     // If this isn't a call to Caller (it could be some other sort
301     // of reference) skip it.  Such references will prevent the caller
302     // from being removed.
303     if (!CS2 || CS2.getCalledFunction() != Caller) {
304       callerWillBeRemoved = false;
305       continue;
306     }
307 
308     InlineCost IC2 = GetInlineCost(CS2);
309     ++NumCallerCallersAnalyzed;
310     if (!IC2) {
311       callerWillBeRemoved = false;
312       continue;
313     }
314     if (IC2.isAlways())
315       continue;
316 
317     // See if inlining of the original callsite would erase the cost delta of
318     // this callsite. We subtract off the penalty for the call instruction,
319     // which we would be deleting.
320     if (IC2.getCostDelta() <= CandidateCost) {
321       inliningPreventsSomeOuterInline = true;
322       TotalSecondaryCost += IC2.getCost();
323     }
324   }
325   // If all outer calls to Caller would get inlined, the cost for the last
326   // one is set very low by getInlineCost, in anticipation that Caller will
327   // be removed entirely.  We did not account for this above unless there
328   // is only one caller of Caller.
329   if (callerWillBeRemoved && !Caller->use_empty())
330     TotalSecondaryCost -= InlineConstants::LastCallToStaticBonus;
331 
332   if (inliningPreventsSomeOuterInline && TotalSecondaryCost < IC.getCost())
333     return true;
334 
335   return false;
336 }
337 
338 /// Return true if the inliner should attempt to inline at the given CallSite.
339 static bool shouldInline(CallSite CS,
340                          function_ref<InlineCost(CallSite CS)> GetInlineCost,
341                          OptimizationRemarkEmitter &ORE) {
342   using namespace ore;
343   InlineCost IC = GetInlineCost(CS);
344   Instruction *Call = CS.getInstruction();
345   Function *Callee = CS.getCalledFunction();
346 
347   if (IC.isAlways()) {
348     DEBUG(dbgs() << "    Inlining: cost=always"
349                  << ", Call: " << *CS.getInstruction() << "\n");
350     ORE.emit(OptimizationRemarkAnalysis(DEBUG_TYPE, "AlwaysInline", Call)
351              << NV("Callee", Callee)
352              << " should always be inlined (cost=always)");
353     return true;
354   }
355 
356   if (IC.isNever()) {
357     DEBUG(dbgs() << "    NOT Inlining: cost=never"
358                  << ", Call: " << *CS.getInstruction() << "\n");
359     ORE.emit(OptimizationRemarkAnalysis(DEBUG_TYPE, "NeverInline", Call)
360              << NV("Callee", Callee)
361              << " should never be inlined (cost=never)");
362     return false;
363   }
364 
365   Function *Caller = CS.getCaller();
366   if (!IC) {
367     DEBUG(dbgs() << "    NOT Inlining: cost=" << IC.getCost()
368                  << ", thres=" << (IC.getCostDelta() + IC.getCost())
369                  << ", Call: " << *CS.getInstruction() << "\n");
370     ORE.emit(OptimizationRemarkAnalysis(DEBUG_TYPE, "TooCostly", Call)
371              << NV("Callee", Callee) << " too costly to inline (cost="
372              << NV("Cost", IC.getCost()) << ", threshold="
373              << NV("Threshold", IC.getCostDelta() + IC.getCost()) << ")");
374     return false;
375   }
376 
377   int TotalSecondaryCost = 0;
378   if (shouldBeDeferred(Caller, CS, IC, TotalSecondaryCost, GetInlineCost)) {
379     DEBUG(dbgs() << "    NOT Inlining: " << *CS.getInstruction()
380                  << " Cost = " << IC.getCost()
381                  << ", outer Cost = " << TotalSecondaryCost << '\n');
382     ORE.emit(OptimizationRemarkAnalysis(DEBUG_TYPE,
383                                         "IncreaseCostInOtherContexts", Call)
384              << "Not inlining. Cost of inlining " << NV("Callee", Callee)
385              << " increases the cost of inlining " << NV("Caller", Caller)
386              << " in other contexts");
387     return false;
388   }
389 
390   DEBUG(dbgs() << "    Inlining: cost=" << IC.getCost()
391                << ", thres=" << (IC.getCostDelta() + IC.getCost())
392                << ", Call: " << *CS.getInstruction() << '\n');
393   ORE.emit(OptimizationRemarkAnalysis(DEBUG_TYPE, "CanBeInlined", Call)
394            << NV("Callee", Callee) << " can be inlined into "
395            << NV("Caller", Caller) << " with cost=" << NV("Cost", IC.getCost())
396            << " (threshold="
397            << NV("Threshold", IC.getCostDelta() + IC.getCost()) << ")");
398   return true;
399 }
400 
401 /// Return true if the specified inline history ID
402 /// indicates an inline history that includes the specified function.
403 static bool InlineHistoryIncludes(
404     Function *F, int InlineHistoryID,
405     const SmallVectorImpl<std::pair<Function *, int>> &InlineHistory) {
406   while (InlineHistoryID != -1) {
407     assert(unsigned(InlineHistoryID) < InlineHistory.size() &&
408            "Invalid inline history ID");
409     if (InlineHistory[InlineHistoryID].first == F)
410       return true;
411     InlineHistoryID = InlineHistory[InlineHistoryID].second;
412   }
413   return false;
414 }
415 
416 bool LegacyInlinerBase::doInitialization(CallGraph &CG) {
417   if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No)
418     ImportedFunctionsStats.setModuleInfo(CG.getModule());
419   return false; // No changes to CallGraph.
420 }
421 
422 bool LegacyInlinerBase::runOnSCC(CallGraphSCC &SCC) {
423   if (skipSCC(SCC))
424     return false;
425   return inlineCalls(SCC);
426 }
427 
428 static bool
429 inlineCallsImpl(CallGraphSCC &SCC, CallGraph &CG,
430                 std::function<AssumptionCache &(Function &)> GetAssumptionCache,
431                 ProfileSummaryInfo *PSI, TargetLibraryInfo &TLI,
432                 bool InsertLifetime,
433                 function_ref<InlineCost(CallSite CS)> GetInlineCost,
434                 function_ref<AAResults &(Function &)> AARGetter,
435                 ImportedFunctionsInliningStatistics &ImportedFunctionsStats) {
436   SmallPtrSet<Function *, 8> SCCFunctions;
437   DEBUG(dbgs() << "Inliner visiting SCC:");
438   for (CallGraphNode *Node : SCC) {
439     Function *F = Node->getFunction();
440     if (F)
441       SCCFunctions.insert(F);
442     DEBUG(dbgs() << " " << (F ? F->getName() : "INDIRECTNODE"));
443   }
444 
445   // Scan through and identify all call sites ahead of time so that we only
446   // inline call sites in the original functions, not call sites that result
447   // from inlining other functions.
448   SmallVector<std::pair<CallSite, int>, 16> CallSites;
449 
450   // When inlining a callee produces new call sites, we want to keep track of
451   // the fact that they were inlined from the callee.  This allows us to avoid
452   // infinite inlining in some obscure cases.  To represent this, we use an
453   // index into the InlineHistory vector.
454   SmallVector<std::pair<Function *, int>, 8> InlineHistory;
455 
456   for (CallGraphNode *Node : SCC) {
457     Function *F = Node->getFunction();
458     if (!F || F->isDeclaration())
459       continue;
460 
461     OptimizationRemarkEmitter ORE(F);
462     for (BasicBlock &BB : *F)
463       for (Instruction &I : BB) {
464         CallSite CS(cast<Value>(&I));
465         // If this isn't a call, or it is a call to an intrinsic, it can
466         // never be inlined.
467         if (!CS || isa<IntrinsicInst>(I))
468           continue;
469 
470         // If this is a direct call to an external function, we can never inline
471         // it.  If it is an indirect call, inlining may resolve it to be a
472         // direct call, so we keep it.
473         if (Function *Callee = CS.getCalledFunction())
474           if (Callee->isDeclaration()) {
475             using namespace ore;
476             ORE.emit(OptimizationRemarkMissed(DEBUG_TYPE, "NoDefinition", &I)
477                      << NV("Callee", Callee) << " will not be inlined into "
478                      << NV("Caller", CS.getCaller())
479                      << " because its definition is unavailable"
480                      << setIsVerbose());
481             continue;
482           }
483 
484         CallSites.push_back(std::make_pair(CS, -1));
485       }
486   }
487 
488   DEBUG(dbgs() << ": " << CallSites.size() << " call sites.\n");
489 
490   // If there are no calls in this function, exit early.
491   if (CallSites.empty())
492     return false;
493 
494   // Now that we have all of the call sites, move the ones to functions in the
495   // current SCC to the end of the list.
496   unsigned FirstCallInSCC = CallSites.size();
497   for (unsigned i = 0; i < FirstCallInSCC; ++i)
498     if (Function *F = CallSites[i].first.getCalledFunction())
499       if (SCCFunctions.count(F))
500         std::swap(CallSites[i--], CallSites[--FirstCallInSCC]);
501 
502   InlinedArrayAllocasTy InlinedArrayAllocas;
503   InlineFunctionInfo InlineInfo(&CG, &GetAssumptionCache);
504 
505   // Now that we have all of the call sites, loop over them and inline them if
506   // it looks profitable to do so.
507   bool Changed = false;
508   bool LocalChange;
509   do {
510     LocalChange = false;
511     // Iterate over the outer loop because inlining functions can cause indirect
512     // calls to become direct calls.
513     // CallSites may be modified inside so ranged for loop can not be used.
514     for (unsigned CSi = 0; CSi != CallSites.size(); ++CSi) {
515       CallSite CS = CallSites[CSi].first;
516 
517       Function *Caller = CS.getCaller();
518       Function *Callee = CS.getCalledFunction();
519 
520       // If this call site is dead and it is to a readonly function, we should
521       // just delete the call instead of trying to inline it, regardless of
522       // size.  This happens because IPSCCP propagates the result out of the
523       // call and then we're left with the dead call.
524       if (isInstructionTriviallyDead(CS.getInstruction(), &TLI)) {
525         DEBUG(dbgs() << "    -> Deleting dead call: " << *CS.getInstruction()
526                      << "\n");
527         // Update the call graph by deleting the edge from Callee to Caller.
528         CG[Caller]->removeCallEdgeFor(CS);
529         CS.getInstruction()->eraseFromParent();
530         ++NumCallsDeleted;
531       } else {
532         // We can only inline direct calls to non-declarations.
533         if (!Callee || Callee->isDeclaration())
534           continue;
535 
536         // If this call site was obtained by inlining another function, verify
537         // that the include path for the function did not include the callee
538         // itself.  If so, we'd be recursively inlining the same function,
539         // which would provide the same callsites, which would cause us to
540         // infinitely inline.
541         int InlineHistoryID = CallSites[CSi].second;
542         if (InlineHistoryID != -1 &&
543             InlineHistoryIncludes(Callee, InlineHistoryID, InlineHistory))
544           continue;
545 
546         // Get DebugLoc to report. CS will be invalid after Inliner.
547         DebugLoc DLoc = CS.getInstruction()->getDebugLoc();
548         BasicBlock *Block = CS.getParent();
549         // FIXME for new PM: because of the old PM we currently generate ORE and
550         // in turn BFI on demand.  With the new PM, the ORE dependency should
551         // just become a regular analysis dependency.
552         OptimizationRemarkEmitter ORE(Caller);
553 
554         // If the policy determines that we should inline this function,
555         // try to do so.
556         using namespace ore;
557         if (!shouldInline(CS, GetInlineCost, ORE)) {
558           ORE.emit(
559               OptimizationRemarkMissed(DEBUG_TYPE, "NotInlined", DLoc, Block)
560               << NV("Callee", Callee) << " will not be inlined into "
561               << NV("Caller", Caller));
562           continue;
563         }
564 
565         // Attempt to inline the function.
566         if (!InlineCallIfPossible(CS, InlineInfo, InlinedArrayAllocas,
567                                   InlineHistoryID, InsertLifetime, AARGetter,
568                                   ImportedFunctionsStats)) {
569           ORE.emit(
570               OptimizationRemarkMissed(DEBUG_TYPE, "NotInlined", DLoc, Block)
571               << NV("Callee", Callee) << " will not be inlined into "
572               << NV("Caller", Caller));
573           continue;
574         }
575         ++NumInlined;
576 
577         // Report the inline decision.
578         ORE.emit(OptimizationRemark(DEBUG_TYPE, "Inlined", DLoc, Block)
579                  << NV("Callee", Callee) << " inlined into "
580                  << NV("Caller", Caller));
581 
582         // If inlining this function gave us any new call sites, throw them
583         // onto our worklist to process.  They are useful inline candidates.
584         if (!InlineInfo.InlinedCalls.empty()) {
585           // Create a new inline history entry for this, so that we remember
586           // that these new callsites came about due to inlining Callee.
587           int NewHistoryID = InlineHistory.size();
588           InlineHistory.push_back(std::make_pair(Callee, InlineHistoryID));
589 
590           for (Value *Ptr : InlineInfo.InlinedCalls)
591             CallSites.push_back(std::make_pair(CallSite(Ptr), NewHistoryID));
592         }
593       }
594 
595       // If we inlined or deleted the last possible call site to the function,
596       // delete the function body now.
597       if (Callee && Callee->use_empty() && Callee->hasLocalLinkage() &&
598           // TODO: Can remove if in SCC now.
599           !SCCFunctions.count(Callee) &&
600 
601           // The function may be apparently dead, but if there are indirect
602           // callgraph references to the node, we cannot delete it yet, this
603           // could invalidate the CGSCC iterator.
604           CG[Callee]->getNumReferences() == 0) {
605         DEBUG(dbgs() << "    -> Deleting dead function: " << Callee->getName()
606                      << "\n");
607         CallGraphNode *CalleeNode = CG[Callee];
608 
609         // Remove any call graph edges from the callee to its callees.
610         CalleeNode->removeAllCalledFunctions();
611 
612         // Removing the node for callee from the call graph and delete it.
613         delete CG.removeFunctionFromModule(CalleeNode);
614         ++NumDeleted;
615       }
616 
617       // Remove this call site from the list.  If possible, use
618       // swap/pop_back for efficiency, but do not use it if doing so would
619       // move a call site to a function in this SCC before the
620       // 'FirstCallInSCC' barrier.
621       if (SCC.isSingular()) {
622         CallSites[CSi] = CallSites.back();
623         CallSites.pop_back();
624       } else {
625         CallSites.erase(CallSites.begin() + CSi);
626       }
627       --CSi;
628 
629       Changed = true;
630       LocalChange = true;
631     }
632   } while (LocalChange);
633 
634   return Changed;
635 }
636 
637 bool LegacyInlinerBase::inlineCalls(CallGraphSCC &SCC) {
638   CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();
639   ACT = &getAnalysis<AssumptionCacheTracker>();
640   PSI = getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
641   auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
642   // We compute dedicated AA results for each function in the SCC as needed. We
643   // use a lambda referencing external objects so that they live long enough to
644   // be queried, but we re-use them each time.
645   Optional<BasicAAResult> BAR;
646   Optional<AAResults> AAR;
647   auto AARGetter = [&](Function &F) -> AAResults & {
648     BAR.emplace(createLegacyPMBasicAAResult(*this, F));
649     AAR.emplace(createLegacyPMAAResults(*this, F, *BAR));
650     return *AAR;
651   };
652   auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & {
653     return ACT->getAssumptionCache(F);
654   };
655   return inlineCallsImpl(SCC, CG, GetAssumptionCache, PSI, TLI, InsertLifetime,
656                          [this](CallSite CS) { return getInlineCost(CS); },
657                          AARGetter, ImportedFunctionsStats);
658 }
659 
660 /// Remove now-dead linkonce functions at the end of
661 /// processing to avoid breaking the SCC traversal.
662 bool LegacyInlinerBase::doFinalization(CallGraph &CG) {
663   if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No)
664     ImportedFunctionsStats.dump(InlinerFunctionImportStats ==
665                                 InlinerFunctionImportStatsOpts::Verbose);
666   return removeDeadFunctions(CG);
667 }
668 
669 /// Remove dead functions that are not included in DNR (Do Not Remove) list.
670 bool LegacyInlinerBase::removeDeadFunctions(CallGraph &CG,
671                                             bool AlwaysInlineOnly) {
672   SmallVector<CallGraphNode *, 16> FunctionsToRemove;
673   SmallVector<Function *, 16> DeadFunctionsInComdats;
674 
675   auto RemoveCGN = [&](CallGraphNode *CGN) {
676     // Remove any call graph edges from the function to its callees.
677     CGN->removeAllCalledFunctions();
678 
679     // Remove any edges from the external node to the function's call graph
680     // node.  These edges might have been made irrelegant due to
681     // optimization of the program.
682     CG.getExternalCallingNode()->removeAnyCallEdgeTo(CGN);
683 
684     // Removing the node for callee from the call graph and delete it.
685     FunctionsToRemove.push_back(CGN);
686   };
687 
688   // Scan for all of the functions, looking for ones that should now be removed
689   // from the program.  Insert the dead ones in the FunctionsToRemove set.
690   for (const auto &I : CG) {
691     CallGraphNode *CGN = I.second.get();
692     Function *F = CGN->getFunction();
693     if (!F || F->isDeclaration())
694       continue;
695 
696     // Handle the case when this function is called and we only want to care
697     // about always-inline functions. This is a bit of a hack to share code
698     // between here and the InlineAlways pass.
699     if (AlwaysInlineOnly && !F->hasFnAttribute(Attribute::AlwaysInline))
700       continue;
701 
702     // If the only remaining users of the function are dead constants, remove
703     // them.
704     F->removeDeadConstantUsers();
705 
706     if (!F->isDefTriviallyDead())
707       continue;
708 
709     // It is unsafe to drop a function with discardable linkage from a COMDAT
710     // without also dropping the other members of the COMDAT.
711     // The inliner doesn't visit non-function entities which are in COMDAT
712     // groups so it is unsafe to do so *unless* the linkage is local.
713     if (!F->hasLocalLinkage()) {
714       if (F->hasComdat()) {
715         DeadFunctionsInComdats.push_back(F);
716         continue;
717       }
718     }
719 
720     RemoveCGN(CGN);
721   }
722   if (!DeadFunctionsInComdats.empty()) {
723     // Filter out the functions whose comdats remain alive.
724     filterDeadComdatFunctions(CG.getModule(), DeadFunctionsInComdats);
725     // Remove the rest.
726     for (Function *F : DeadFunctionsInComdats)
727       RemoveCGN(CG[F]);
728   }
729 
730   if (FunctionsToRemove.empty())
731     return false;
732 
733   // Now that we know which functions to delete, do so.  We didn't want to do
734   // this inline, because that would invalidate our CallGraph::iterator
735   // objects. :(
736   //
737   // Note that it doesn't matter that we are iterating over a non-stable order
738   // here to do this, it doesn't matter which order the functions are deleted
739   // in.
740   array_pod_sort(FunctionsToRemove.begin(), FunctionsToRemove.end());
741   FunctionsToRemove.erase(
742       std::unique(FunctionsToRemove.begin(), FunctionsToRemove.end()),
743       FunctionsToRemove.end());
744   for (CallGraphNode *CGN : FunctionsToRemove) {
745     delete CG.removeFunctionFromModule(CGN);
746     ++NumDeleted;
747   }
748   return true;
749 }
750 
751 PreservedAnalyses InlinerPass::run(LazyCallGraph::SCC &InitialC,
752                                    CGSCCAnalysisManager &AM, LazyCallGraph &CG,
753                                    CGSCCUpdateResult &UR) {
754   const ModuleAnalysisManager &MAM =
755       AM.getResult<ModuleAnalysisManagerCGSCCProxy>(InitialC, CG).getManager();
756   bool Changed = false;
757 
758   assert(InitialC.size() > 0 && "Cannot handle an empty SCC!");
759   Module &M = *InitialC.begin()->getFunction().getParent();
760   ProfileSummaryInfo *PSI = MAM.getCachedResult<ProfileSummaryAnalysis>(M);
761 
762   // We use a worklist of nodes to process so that we can handle if the SCC
763   // structure changes and some nodes are no longer part of the current SCC. We
764   // also need to use an updatable pointer for the SCC as a consequence.
765   SmallVector<LazyCallGraph::Node *, 16> Nodes;
766   for (auto &N : InitialC)
767     Nodes.push_back(&N);
768   auto *C = &InitialC;
769   auto *RC = &C->getOuterRefSCC();
770 
771   // We also use a secondary worklist of call sites within a particular node to
772   // allow quickly continuing to inline through newly inlined call sites where
773   // possible.
774   SmallVector<std::pair<CallSite, int>, 16> Calls;
775 
776   // When inlining a callee produces new call sites, we want to keep track of
777   // the fact that they were inlined from the callee.  This allows us to avoid
778   // infinite inlining in some obscure cases.  To represent this, we use an
779   // index into the InlineHistory vector.
780   SmallVector<std::pair<Function *, int>, 16> InlineHistory;
781 
782   // Track a set vector of inlined callees so that we can augment the caller
783   // with all of their edges in the call graph before pruning out the ones that
784   // got simplified away.
785   SmallSetVector<Function *, 4> InlinedCallees;
786 
787   // Track the dead functions to delete once finished with inlining calls. We
788   // defer deleting these to make it easier to handle the call graph updates.
789   SmallVector<Function *, 4> DeadFunctions;
790 
791   do {
792     auto &N = *Nodes.pop_back_val();
793     if (CG.lookupSCC(N) != C)
794       continue;
795     Function &F = N.getFunction();
796     if (F.hasFnAttribute(Attribute::OptimizeNone))
797       continue;
798 
799     DEBUG(dbgs() << "Inlining calls in: " << F.getName() << "\n");
800 
801     // Get a FunctionAnalysisManager via a proxy for this particular node. We
802     // do this each time we visit a node as the SCC may have changed and as
803     // we're going to mutate this particular function we want to make sure the
804     // proxy is in place to forward any invalidation events. We can use the
805     // manager we get here for looking up results for functions other than this
806     // node however because those functions aren't going to be mutated by this
807     // pass.
808     FunctionAnalysisManager &FAM =
809         AM.getResult<FunctionAnalysisManagerCGSCCProxy>(*C, CG)
810             .getManager();
811     std::function<AssumptionCache &(Function &)> GetAssumptionCache =
812         [&](Function &F) -> AssumptionCache & {
813       return FAM.getResult<AssumptionAnalysis>(F);
814     };
815     auto GetBFI = [&](Function &F) -> BlockFrequencyInfo & {
816       return FAM.getResult<BlockFrequencyAnalysis>(F);
817     };
818 
819     auto GetInlineCost = [&](CallSite CS) {
820       Function &Callee = *CS.getCalledFunction();
821       auto &CalleeTTI = FAM.getResult<TargetIRAnalysis>(Callee);
822       return getInlineCost(CS, Params, CalleeTTI, GetAssumptionCache, {GetBFI},
823                            PSI);
824     };
825 
826     // Get the remarks emission analysis for the caller.
827     auto &ORE = FAM.getResult<OptimizationRemarkEmitterAnalysis>(F);
828 
829     // We want to generally process call sites top-down in order for
830     // simplifications stemming from replacing the call with the returned value
831     // after inlining to be visible to subsequent inlining decisions. So we
832     // walk the function backwards and then process the back of the vector.
833     // FIXME: Using reverse is a really bad way to do this. Instead we should
834     // do an actual PO walk of the function body.
835     for (Instruction &I : reverse(instructions(F)))
836       if (auto CS = CallSite(&I))
837         if (Function *Callee = CS.getCalledFunction())
838           if (!Callee->isDeclaration())
839             Calls.push_back({CS, -1});
840 
841     bool DidInline = false;
842     while (!Calls.empty()) {
843       int InlineHistoryID;
844       CallSite CS;
845       std::tie(CS, InlineHistoryID) = Calls.pop_back_val();
846       Function &Callee = *CS.getCalledFunction();
847 
848       if (InlineHistoryID != -1 &&
849           InlineHistoryIncludes(&Callee, InlineHistoryID, InlineHistory))
850         continue;
851 
852       // Check whether we want to inline this callsite.
853       if (!shouldInline(CS, GetInlineCost, ORE))
854         continue;
855 
856       // Setup the data structure used to plumb customization into the
857       // `InlineFunction` routine.
858       InlineFunctionInfo IFI(
859           /*cg=*/nullptr, &GetAssumptionCache,
860           &FAM.getResult<BlockFrequencyAnalysis>(*(CS.getCaller())),
861           &FAM.getResult<BlockFrequencyAnalysis>(Callee));
862 
863       if (!InlineFunction(CS, IFI))
864         continue;
865       DidInline = true;
866       InlinedCallees.insert(&Callee);
867 
868       // Add any new callsites to defined functions to the worklist.
869       if (!IFI.InlinedCallSites.empty()) {
870         int NewHistoryID = InlineHistory.size();
871         InlineHistory.push_back({&Callee, InlineHistoryID});
872         for (CallSite &CS : reverse(IFI.InlinedCallSites))
873           if (Function *NewCallee = CS.getCalledFunction())
874             if (!NewCallee->isDeclaration())
875               Calls.push_back({CS, NewHistoryID});
876       }
877 
878       // Merge the attributes based on the inlining.
879       AttributeFuncs::mergeAttributesForInlining(F, Callee);
880 
881       // For local functions, check whether this makes the callee trivially
882       // dead. In that case, we can drop the body of the function eagerly
883       // which may reduce the number of callers of other functions to one,
884       // changing inline cost thresholds.
885       if (Callee.hasLocalLinkage()) {
886         // To check this we also need to nuke any dead constant uses (perhaps
887         // made dead by this operation on other functions).
888         Callee.removeDeadConstantUsers();
889         if (Callee.use_empty()) {
890           // Clear the body and queue the function itself for deletion when we
891           // finish inlining and call graph updates.
892           // Note that after this point, it is an error to do anything other
893           // than use the callee's address or delete it.
894           Callee.dropAllReferences();
895           assert(find(DeadFunctions, &Callee) == DeadFunctions.end() &&
896                  "Cannot put cause a function to become dead twice!");
897           DeadFunctions.push_back(&Callee);
898         }
899       }
900     }
901 
902     if (!DidInline)
903       continue;
904     Changed = true;
905 
906     // Add all the inlined callees' edges as ref edges to the caller. These are
907     // by definition trivial edges as we always have *some* transitive ref edge
908     // chain. While in some cases these edges are direct calls inside the
909     // callee, they have to be modeled in the inliner as reference edges as
910     // there may be a reference edge anywhere along the chain from the current
911     // caller to the callee that causes the whole thing to appear like
912     // a (transitive) reference edge that will require promotion to a call edge
913     // below.
914     for (Function *InlinedCallee : InlinedCallees) {
915       LazyCallGraph::Node &CalleeN = *CG.lookup(*InlinedCallee);
916       for (LazyCallGraph::Edge &E : CalleeN)
917         RC->insertTrivialRefEdge(N, *E.getNode());
918     }
919     InlinedCallees.clear();
920 
921     // At this point, since we have made changes we have at least removed
922     // a call instruction. However, in the process we do some incremental
923     // simplification of the surrounding code. This simplification can
924     // essentially do all of the same things as a function pass and we can
925     // re-use the exact same logic for updating the call graph to reflect the
926     // change..
927     C = &updateCGAndAnalysisManagerForFunctionPass(CG, *C, N, AM, UR);
928     DEBUG(dbgs() << "Updated inlining SCC: " << *C << "\n");
929     RC = &C->getOuterRefSCC();
930   } while (!Nodes.empty());
931 
932   // Now that we've finished inlining all of the calls across this SCC, delete
933   // all of the trivially dead functions, updating the call graph and the CGSCC
934   // pass manager in the process.
935   //
936   // Note that this walks a pointer set which has non-deterministic order but
937   // that is OK as all we do is delete things and add pointers to unordered
938   // sets.
939   for (Function *DeadF : DeadFunctions) {
940     // Get the necessary information out of the call graph and nuke the
941     // function there. Also, cclear out any cached analyses.
942     auto &DeadC = *CG.lookupSCC(*CG.lookup(*DeadF));
943     FunctionAnalysisManager &FAM =
944         AM.getResult<FunctionAnalysisManagerCGSCCProxy>(DeadC, CG)
945             .getManager();
946     FAM.clear(*DeadF);
947     AM.clear(DeadC);
948     auto &DeadRC = DeadC.getOuterRefSCC();
949     CG.removeDeadFunction(*DeadF);
950 
951     // Mark the relevant parts of the call graph as invalid so we don't visit
952     // them.
953     UR.InvalidatedSCCs.insert(&DeadC);
954     UR.InvalidatedRefSCCs.insert(&DeadRC);
955 
956     // And delete the actual function from the module.
957     M.getFunctionList().erase(DeadF);
958   }
959   return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all();
960 }
961