1 //===- Inliner.cpp - Code common to all inliners --------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the mechanics required to implement inlining without 10 // missing any calls and updating the call graph. The decisions of which calls 11 // are profitable to inline are implemented elsewhere. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/IPO/Inliner.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/None.h" 18 #include "llvm/ADT/Optional.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/Analysis/AliasAnalysis.h" 26 #include "llvm/Analysis/AssumptionCache.h" 27 #include "llvm/Analysis/BasicAliasAnalysis.h" 28 #include "llvm/Analysis/BlockFrequencyInfo.h" 29 #include "llvm/Analysis/CGSCCPassManager.h" 30 #include "llvm/Analysis/CallGraph.h" 31 #include "llvm/Analysis/InlineCost.h" 32 #include "llvm/Analysis/LazyCallGraph.h" 33 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 34 #include "llvm/Analysis/ProfileSummaryInfo.h" 35 #include "llvm/Analysis/TargetLibraryInfo.h" 36 #include "llvm/Analysis/TargetTransformInfo.h" 37 #include "llvm/Transforms/Utils/Local.h" 38 #include "llvm/Transforms/Utils/CallPromotionUtils.h" 39 #include "llvm/IR/Attributes.h" 40 #include "llvm/IR/BasicBlock.h" 41 #include "llvm/IR/CallSite.h" 42 #include "llvm/IR/DataLayout.h" 43 #include "llvm/IR/DebugLoc.h" 44 #include "llvm/IR/DerivedTypes.h" 45 #include "llvm/IR/DiagnosticInfo.h" 46 #include "llvm/IR/Function.h" 47 #include "llvm/IR/InstIterator.h" 48 #include "llvm/IR/Instruction.h" 49 #include "llvm/IR/Instructions.h" 50 #include "llvm/IR/IntrinsicInst.h" 51 #include "llvm/IR/Metadata.h" 52 #include "llvm/IR/Module.h" 53 #include "llvm/IR/PassManager.h" 54 #include "llvm/IR/User.h" 55 #include "llvm/IR/Value.h" 56 #include "llvm/Pass.h" 57 #include "llvm/Support/Casting.h" 58 #include "llvm/Support/CommandLine.h" 59 #include "llvm/Support/Debug.h" 60 #include "llvm/Support/raw_ostream.h" 61 #include "llvm/Transforms/Utils/Cloning.h" 62 #include "llvm/Transforms/Utils/ImportedFunctionsInliningStatistics.h" 63 #include "llvm/Transforms/Utils/ModuleUtils.h" 64 #include <algorithm> 65 #include <cassert> 66 #include <functional> 67 #include <sstream> 68 #include <tuple> 69 #include <utility> 70 #include <vector> 71 72 using namespace llvm; 73 74 #define DEBUG_TYPE "inline" 75 76 STATISTIC(NumInlined, "Number of functions inlined"); 77 STATISTIC(NumCallsDeleted, "Number of call sites deleted, not inlined"); 78 STATISTIC(NumDeleted, "Number of functions deleted because all callers found"); 79 STATISTIC(NumMergedAllocas, "Number of allocas merged together"); 80 81 // This weirdly named statistic tracks the number of times that, when attempting 82 // to inline a function A into B, we analyze the callers of B in order to see 83 // if those would be more profitable and blocked inline steps. 84 STATISTIC(NumCallerCallersAnalyzed, "Number of caller-callers analyzed"); 85 86 /// Flag to disable manual alloca merging. 87 /// 88 /// Merging of allocas was originally done as a stack-size saving technique 89 /// prior to LLVM's code generator having support for stack coloring based on 90 /// lifetime markers. It is now in the process of being removed. To experiment 91 /// with disabling it and relying fully on lifetime marker based stack 92 /// coloring, you can pass this flag to LLVM. 93 static cl::opt<bool> 94 DisableInlinedAllocaMerging("disable-inlined-alloca-merging", 95 cl::init(false), cl::Hidden); 96 97 namespace { 98 99 enum class InlinerFunctionImportStatsOpts { 100 No = 0, 101 Basic = 1, 102 Verbose = 2, 103 }; 104 105 } // end anonymous namespace 106 107 static cl::opt<InlinerFunctionImportStatsOpts> InlinerFunctionImportStats( 108 "inliner-function-import-stats", 109 cl::init(InlinerFunctionImportStatsOpts::No), 110 cl::values(clEnumValN(InlinerFunctionImportStatsOpts::Basic, "basic", 111 "basic statistics"), 112 clEnumValN(InlinerFunctionImportStatsOpts::Verbose, "verbose", 113 "printing of statistics for each inlined function")), 114 cl::Hidden, cl::desc("Enable inliner stats for imported functions")); 115 116 /// Flag to add inline messages as callsite attributes 'inline-remark'. 117 static cl::opt<bool> 118 InlineRemarkAttribute("inline-remark-attribute", cl::init(false), 119 cl::Hidden, 120 cl::desc("Enable adding inline-remark attribute to" 121 " callsites processed by inliner but decided" 122 " to be not inlined")); 123 124 LegacyInlinerBase::LegacyInlinerBase(char &ID) : CallGraphSCCPass(ID) {} 125 126 LegacyInlinerBase::LegacyInlinerBase(char &ID, bool InsertLifetime) 127 : CallGraphSCCPass(ID), InsertLifetime(InsertLifetime) {} 128 129 /// For this class, we declare that we require and preserve the call graph. 130 /// If the derived class implements this method, it should 131 /// always explicitly call the implementation here. 132 void LegacyInlinerBase::getAnalysisUsage(AnalysisUsage &AU) const { 133 AU.addRequired<AssumptionCacheTracker>(); 134 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 135 AU.addRequired<TargetLibraryInfoWrapperPass>(); 136 getAAResultsAnalysisUsage(AU); 137 CallGraphSCCPass::getAnalysisUsage(AU); 138 } 139 140 using InlinedArrayAllocasTy = DenseMap<ArrayType *, std::vector<AllocaInst *>>; 141 142 /// Look at all of the allocas that we inlined through this call site. If we 143 /// have already inlined other allocas through other calls into this function, 144 /// then we know that they have disjoint lifetimes and that we can merge them. 145 /// 146 /// There are many heuristics possible for merging these allocas, and the 147 /// different options have different tradeoffs. One thing that we *really* 148 /// don't want to hurt is SRoA: once inlining happens, often allocas are no 149 /// longer address taken and so they can be promoted. 150 /// 151 /// Our "solution" for that is to only merge allocas whose outermost type is an 152 /// array type. These are usually not promoted because someone is using a 153 /// variable index into them. These are also often the most important ones to 154 /// merge. 155 /// 156 /// A better solution would be to have real memory lifetime markers in the IR 157 /// and not have the inliner do any merging of allocas at all. This would 158 /// allow the backend to do proper stack slot coloring of all allocas that 159 /// *actually make it to the backend*, which is really what we want. 160 /// 161 /// Because we don't have this information, we do this simple and useful hack. 162 static void mergeInlinedArrayAllocas( 163 Function *Caller, InlineFunctionInfo &IFI, 164 InlinedArrayAllocasTy &InlinedArrayAllocas, int InlineHistory) { 165 SmallPtrSet<AllocaInst *, 16> UsedAllocas; 166 167 // When processing our SCC, check to see if CS was inlined from some other 168 // call site. For example, if we're processing "A" in this code: 169 // A() { B() } 170 // B() { x = alloca ... C() } 171 // C() { y = alloca ... } 172 // Assume that C was not inlined into B initially, and so we're processing A 173 // and decide to inline B into A. Doing this makes an alloca available for 174 // reuse and makes a callsite (C) available for inlining. When we process 175 // the C call site we don't want to do any alloca merging between X and Y 176 // because their scopes are not disjoint. We could make this smarter by 177 // keeping track of the inline history for each alloca in the 178 // InlinedArrayAllocas but this isn't likely to be a significant win. 179 if (InlineHistory != -1) // Only do merging for top-level call sites in SCC. 180 return; 181 182 // Loop over all the allocas we have so far and see if they can be merged with 183 // a previously inlined alloca. If not, remember that we had it. 184 for (unsigned AllocaNo = 0, E = IFI.StaticAllocas.size(); AllocaNo != E; 185 ++AllocaNo) { 186 AllocaInst *AI = IFI.StaticAllocas[AllocaNo]; 187 188 // Don't bother trying to merge array allocations (they will usually be 189 // canonicalized to be an allocation *of* an array), or allocations whose 190 // type is not itself an array (because we're afraid of pessimizing SRoA). 191 ArrayType *ATy = dyn_cast<ArrayType>(AI->getAllocatedType()); 192 if (!ATy || AI->isArrayAllocation()) 193 continue; 194 195 // Get the list of all available allocas for this array type. 196 std::vector<AllocaInst *> &AllocasForType = InlinedArrayAllocas[ATy]; 197 198 // Loop over the allocas in AllocasForType to see if we can reuse one. Note 199 // that we have to be careful not to reuse the same "available" alloca for 200 // multiple different allocas that we just inlined, we use the 'UsedAllocas' 201 // set to keep track of which "available" allocas are being used by this 202 // function. Also, AllocasForType can be empty of course! 203 bool MergedAwayAlloca = false; 204 for (AllocaInst *AvailableAlloca : AllocasForType) { 205 unsigned Align1 = AI->getAlignment(), 206 Align2 = AvailableAlloca->getAlignment(); 207 208 // The available alloca has to be in the right function, not in some other 209 // function in this SCC. 210 if (AvailableAlloca->getParent() != AI->getParent()) 211 continue; 212 213 // If the inlined function already uses this alloca then we can't reuse 214 // it. 215 if (!UsedAllocas.insert(AvailableAlloca).second) 216 continue; 217 218 // Otherwise, we *can* reuse it, RAUW AI into AvailableAlloca and declare 219 // success! 220 LLVM_DEBUG(dbgs() << " ***MERGED ALLOCA: " << *AI 221 << "\n\t\tINTO: " << *AvailableAlloca << '\n'); 222 223 // Move affected dbg.declare calls immediately after the new alloca to 224 // avoid the situation when a dbg.declare precedes its alloca. 225 if (auto *L = LocalAsMetadata::getIfExists(AI)) 226 if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L)) 227 for (User *U : MDV->users()) 228 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(U)) 229 DDI->moveBefore(AvailableAlloca->getNextNode()); 230 231 AI->replaceAllUsesWith(AvailableAlloca); 232 233 if (Align1 != Align2) { 234 if (!Align1 || !Align2) { 235 const DataLayout &DL = Caller->getParent()->getDataLayout(); 236 unsigned TypeAlign = DL.getABITypeAlignment(AI->getAllocatedType()); 237 238 Align1 = Align1 ? Align1 : TypeAlign; 239 Align2 = Align2 ? Align2 : TypeAlign; 240 } 241 242 if (Align1 > Align2) 243 AvailableAlloca->setAlignment(MaybeAlign(AI->getAlignment())); 244 } 245 246 AI->eraseFromParent(); 247 MergedAwayAlloca = true; 248 ++NumMergedAllocas; 249 IFI.StaticAllocas[AllocaNo] = nullptr; 250 break; 251 } 252 253 // If we already nuked the alloca, we're done with it. 254 if (MergedAwayAlloca) 255 continue; 256 257 // If we were unable to merge away the alloca either because there are no 258 // allocas of the right type available or because we reused them all 259 // already, remember that this alloca came from an inlined function and mark 260 // it used so we don't reuse it for other allocas from this inline 261 // operation. 262 AllocasForType.push_back(AI); 263 UsedAllocas.insert(AI); 264 } 265 } 266 267 /// If it is possible to inline the specified call site, 268 /// do so and update the CallGraph for this operation. 269 /// 270 /// This function also does some basic book-keeping to update the IR. The 271 /// InlinedArrayAllocas map keeps track of any allocas that are already 272 /// available from other functions inlined into the caller. If we are able to 273 /// inline this call site we attempt to reuse already available allocas or add 274 /// any new allocas to the set if not possible. 275 static InlineResult inlineCallIfPossible( 276 CallBase &CS, InlineFunctionInfo &IFI, 277 InlinedArrayAllocasTy &InlinedArrayAllocas, int InlineHistory, 278 bool InsertLifetime, function_ref<AAResults &(Function &)> &AARGetter, 279 ImportedFunctionsInliningStatistics &ImportedFunctionsStats) { 280 Function *Callee = CS.getCalledFunction(); 281 Function *Caller = CS.getCaller(); 282 283 AAResults &AAR = AARGetter(*Callee); 284 285 // Try to inline the function. Get the list of static allocas that were 286 // inlined. 287 InlineResult IR = InlineFunction(&CS, IFI, &AAR, InsertLifetime); 288 if (!IR.isSuccess()) 289 return IR; 290 291 if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No) 292 ImportedFunctionsStats.recordInline(*Caller, *Callee); 293 294 AttributeFuncs::mergeAttributesForInlining(*Caller, *Callee); 295 296 if (!DisableInlinedAllocaMerging) 297 mergeInlinedArrayAllocas(Caller, IFI, InlinedArrayAllocas, InlineHistory); 298 299 return IR; // success 300 } 301 302 /// Return true if inlining of CS can block the caller from being 303 /// inlined which is proved to be more beneficial. \p IC is the 304 /// estimated inline cost associated with callsite \p CS. 305 /// \p TotalSecondaryCost will be set to the estimated cost of inlining the 306 /// caller if \p CS is suppressed for inlining. 307 static bool 308 shouldBeDeferred(Function *Caller, InlineCost IC, int &TotalSecondaryCost, 309 function_ref<InlineCost(CallBase &CS)> GetInlineCost) { 310 // For now we only handle local or inline functions. 311 if (!Caller->hasLocalLinkage() && !Caller->hasLinkOnceODRLinkage()) 312 return false; 313 // If the cost of inlining CS is non-positive, it is not going to prevent the 314 // caller from being inlined into its callers and hence we don't need to 315 // defer. 316 if (IC.getCost() <= 0) 317 return false; 318 // Try to detect the case where the current inlining candidate caller (call 319 // it B) is a static or linkonce-ODR function and is an inlining candidate 320 // elsewhere, and the current candidate callee (call it C) is large enough 321 // that inlining it into B would make B too big to inline later. In these 322 // circumstances it may be best not to inline C into B, but to inline B into 323 // its callers. 324 // 325 // This only applies to static and linkonce-ODR functions because those are 326 // expected to be available for inlining in the translation units where they 327 // are used. Thus we will always have the opportunity to make local inlining 328 // decisions. Importantly the linkonce-ODR linkage covers inline functions 329 // and templates in C++. 330 // 331 // FIXME: All of this logic should be sunk into getInlineCost. It relies on 332 // the internal implementation of the inline cost metrics rather than 333 // treating them as truly abstract units etc. 334 TotalSecondaryCost = 0; 335 // The candidate cost to be imposed upon the current function. 336 int CandidateCost = IC.getCost() - 1; 337 // If the caller has local linkage and can be inlined to all its callers, we 338 // can apply a huge negative bonus to TotalSecondaryCost. 339 bool ApplyLastCallBonus = Caller->hasLocalLinkage() && !Caller->hasOneUse(); 340 // This bool tracks what happens if we DO inline C into B. 341 bool InliningPreventsSomeOuterInline = false; 342 for (User *U : Caller->users()) { 343 // If the caller will not be removed (either because it does not have a 344 // local linkage or because the LastCallToStaticBonus has been already 345 // applied), then we can exit the loop early. 346 if (!ApplyLastCallBonus && TotalSecondaryCost >= IC.getCost()) 347 return false; 348 CallBase *CS2 = dyn_cast<CallBase>(U); 349 350 // If this isn't a call to Caller (it could be some other sort 351 // of reference) skip it. Such references will prevent the caller 352 // from being removed. 353 if (!CS2 || CS2->getCalledFunction() != Caller) { 354 ApplyLastCallBonus = false; 355 continue; 356 } 357 358 InlineCost IC2 = GetInlineCost(*CS2); 359 ++NumCallerCallersAnalyzed; 360 if (!IC2) { 361 ApplyLastCallBonus = false; 362 continue; 363 } 364 if (IC2.isAlways()) 365 continue; 366 367 // See if inlining of the original callsite would erase the cost delta of 368 // this callsite. We subtract off the penalty for the call instruction, 369 // which we would be deleting. 370 if (IC2.getCostDelta() <= CandidateCost) { 371 InliningPreventsSomeOuterInline = true; 372 TotalSecondaryCost += IC2.getCost(); 373 } 374 } 375 // If all outer calls to Caller would get inlined, the cost for the last 376 // one is set very low by getInlineCost, in anticipation that Caller will 377 // be removed entirely. We did not account for this above unless there 378 // is only one caller of Caller. 379 if (ApplyLastCallBonus) 380 TotalSecondaryCost -= InlineConstants::LastCallToStaticBonus; 381 382 return InliningPreventsSomeOuterInline && TotalSecondaryCost < IC.getCost(); 383 } 384 385 static std::basic_ostream<char> &operator<<(std::basic_ostream<char> &R, 386 const ore::NV &Arg) { 387 return R << Arg.Val; 388 } 389 390 template <class RemarkT> 391 RemarkT &operator<<(RemarkT &&R, const InlineCost &IC) { 392 using namespace ore; 393 if (IC.isAlways()) { 394 R << "(cost=always)"; 395 } else if (IC.isNever()) { 396 R << "(cost=never)"; 397 } else { 398 R << "(cost=" << ore::NV("Cost", IC.getCost()) 399 << ", threshold=" << ore::NV("Threshold", IC.getThreshold()) << ")"; 400 } 401 if (const char *Reason = IC.getReason()) 402 R << ": " << ore::NV("Reason", Reason); 403 return R; 404 } 405 406 static std::string inlineCostStr(const InlineCost &IC) { 407 std::stringstream Remark; 408 Remark << IC; 409 return Remark.str(); 410 } 411 412 /// Return the cost only if the inliner should attempt to inline at the given 413 /// CallSite. If we return the cost, we will emit an optimisation remark later 414 /// using that cost, so we won't do so from this function. 415 static Optional<InlineCost> 416 shouldInline(CallBase &CS, function_ref<InlineCost(CallBase &CS)> GetInlineCost, 417 OptimizationRemarkEmitter &ORE) { 418 using namespace ore; 419 420 InlineCost IC = GetInlineCost(CS); 421 Instruction *Call = &CS; 422 Function *Callee = CS.getCalledFunction(); 423 Function *Caller = CS.getCaller(); 424 425 if (IC.isAlways()) { 426 LLVM_DEBUG(dbgs() << " Inlining " << inlineCostStr(IC) 427 << ", Call: " << CS << "\n"); 428 return IC; 429 } 430 431 if (IC.isNever()) { 432 LLVM_DEBUG(dbgs() << " NOT Inlining " << inlineCostStr(IC) 433 << ", Call: " << CS << "\n"); 434 ORE.emit([&]() { 435 return OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline", Call) 436 << NV("Callee", Callee) << " not inlined into " 437 << NV("Caller", Caller) << " because it should never be inlined " 438 << IC; 439 }); 440 return IC; 441 } 442 443 if (!IC) { 444 LLVM_DEBUG(dbgs() << " NOT Inlining " << inlineCostStr(IC) 445 << ", Call: " << CS << "\n"); 446 ORE.emit([&]() { 447 return OptimizationRemarkMissed(DEBUG_TYPE, "TooCostly", Call) 448 << NV("Callee", Callee) << " not inlined into " 449 << NV("Caller", Caller) << " because too costly to inline " << IC; 450 }); 451 return IC; 452 } 453 454 int TotalSecondaryCost = 0; 455 if (shouldBeDeferred(Caller, IC, TotalSecondaryCost, GetInlineCost)) { 456 LLVM_DEBUG(dbgs() << " NOT Inlining: " << CS 457 << " Cost = " << IC.getCost() 458 << ", outer Cost = " << TotalSecondaryCost << '\n'); 459 ORE.emit([&]() { 460 return OptimizationRemarkMissed(DEBUG_TYPE, "IncreaseCostInOtherContexts", 461 Call) 462 << "Not inlining. Cost of inlining " << NV("Callee", Callee) 463 << " increases the cost of inlining " << NV("Caller", Caller) 464 << " in other contexts"; 465 }); 466 467 // IC does not bool() to false, so get an InlineCost that will. 468 // This will not be inspected to make an error message. 469 return None; 470 } 471 472 LLVM_DEBUG(dbgs() << " Inlining " << inlineCostStr(IC) << ", Call: " << CS 473 << '\n'); 474 return IC; 475 } 476 477 /// Return true if the specified inline history ID 478 /// indicates an inline history that includes the specified function. 479 static bool inlineHistoryIncludes( 480 Function *F, int InlineHistoryID, 481 const SmallVectorImpl<std::pair<Function *, int>> &InlineHistory) { 482 while (InlineHistoryID != -1) { 483 assert(unsigned(InlineHistoryID) < InlineHistory.size() && 484 "Invalid inline history ID"); 485 if (InlineHistory[InlineHistoryID].first == F) 486 return true; 487 InlineHistoryID = InlineHistory[InlineHistoryID].second; 488 } 489 return false; 490 } 491 492 bool LegacyInlinerBase::doInitialization(CallGraph &CG) { 493 if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No) 494 ImportedFunctionsStats.setModuleInfo(CG.getModule()); 495 return false; // No changes to CallGraph. 496 } 497 498 bool LegacyInlinerBase::runOnSCC(CallGraphSCC &SCC) { 499 if (skipSCC(SCC)) 500 return false; 501 return inlineCalls(SCC); 502 } 503 504 static void emitInlinedInto(OptimizationRemarkEmitter &ORE, DebugLoc &DLoc, 505 const BasicBlock *Block, const Function &Callee, 506 const Function &Caller, const InlineCost &IC) { 507 ORE.emit([&]() { 508 bool AlwaysInline = IC.isAlways(); 509 StringRef RemarkName = AlwaysInline ? "AlwaysInline" : "Inlined"; 510 return OptimizationRemark(DEBUG_TYPE, RemarkName, DLoc, Block) 511 << ore::NV("Callee", &Callee) << " inlined into " 512 << ore::NV("Caller", &Caller) << " with " << IC; 513 }); 514 } 515 516 static void setInlineRemark(CallBase &CS, StringRef Message) { 517 if (!InlineRemarkAttribute) 518 return; 519 520 Attribute Attr = Attribute::get(CS.getContext(), "inline-remark", Message); 521 CS.addAttribute(AttributeList::FunctionIndex, Attr); 522 } 523 524 static bool 525 inlineCallsImpl(CallGraphSCC &SCC, CallGraph &CG, 526 std::function<AssumptionCache &(Function &)> GetAssumptionCache, 527 ProfileSummaryInfo *PSI, 528 std::function<const TargetLibraryInfo &(Function &)> GetTLI, 529 bool InsertLifetime, 530 function_ref<InlineCost(CallBase &CS)> GetInlineCost, 531 function_ref<AAResults &(Function &)> AARGetter, 532 ImportedFunctionsInliningStatistics &ImportedFunctionsStats) { 533 SmallPtrSet<Function *, 8> SCCFunctions; 534 LLVM_DEBUG(dbgs() << "Inliner visiting SCC:"); 535 for (CallGraphNode *Node : SCC) { 536 Function *F = Node->getFunction(); 537 if (F) 538 SCCFunctions.insert(F); 539 LLVM_DEBUG(dbgs() << " " << (F ? F->getName() : "INDIRECTNODE")); 540 } 541 542 // Scan through and identify all call sites ahead of time so that we only 543 // inline call sites in the original functions, not call sites that result 544 // from inlining other functions. 545 SmallVector<std::pair<CallBase *, int>, 16> CallSites; 546 547 // When inlining a callee produces new call sites, we want to keep track of 548 // the fact that they were inlined from the callee. This allows us to avoid 549 // infinite inlining in some obscure cases. To represent this, we use an 550 // index into the InlineHistory vector. 551 SmallVector<std::pair<Function *, int>, 8> InlineHistory; 552 553 for (CallGraphNode *Node : SCC) { 554 Function *F = Node->getFunction(); 555 if (!F || F->isDeclaration()) 556 continue; 557 558 OptimizationRemarkEmitter ORE(F); 559 for (BasicBlock &BB : *F) 560 for (Instruction &I : BB) { 561 auto *CS = dyn_cast<CallBase>(&I); 562 // If this isn't a call, or it is a call to an intrinsic, it can 563 // never be inlined. 564 if (!CS || isa<IntrinsicInst>(I)) 565 continue; 566 567 // If this is a direct call to an external function, we can never inline 568 // it. If it is an indirect call, inlining may resolve it to be a 569 // direct call, so we keep it. 570 if (Function *Callee = CS->getCalledFunction()) 571 if (Callee->isDeclaration()) { 572 using namespace ore; 573 574 setInlineRemark(*CS, "unavailable definition"); 575 ORE.emit([&]() { 576 return OptimizationRemarkMissed(DEBUG_TYPE, "NoDefinition", &I) 577 << NV("Callee", Callee) << " will not be inlined into " 578 << NV("Caller", CS->getCaller()) 579 << " because its definition is unavailable" 580 << setIsVerbose(); 581 }); 582 continue; 583 } 584 585 CallSites.push_back(std::make_pair(CS, -1)); 586 } 587 } 588 589 LLVM_DEBUG(dbgs() << ": " << CallSites.size() << " call sites.\n"); 590 591 // If there are no calls in this function, exit early. 592 if (CallSites.empty()) 593 return false; 594 595 // Now that we have all of the call sites, move the ones to functions in the 596 // current SCC to the end of the list. 597 unsigned FirstCallInSCC = CallSites.size(); 598 for (unsigned I = 0; I < FirstCallInSCC; ++I) 599 if (Function *F = CallSites[I].first->getCalledFunction()) 600 if (SCCFunctions.count(F)) 601 std::swap(CallSites[I--], CallSites[--FirstCallInSCC]); 602 603 InlinedArrayAllocasTy InlinedArrayAllocas; 604 InlineFunctionInfo InlineInfo(&CG, &GetAssumptionCache, PSI); 605 606 // Now that we have all of the call sites, loop over them and inline them if 607 // it looks profitable to do so. 608 bool Changed = false; 609 bool LocalChange; 610 do { 611 LocalChange = false; 612 // Iterate over the outer loop because inlining functions can cause indirect 613 // calls to become direct calls. 614 // CallSites may be modified inside so ranged for loop can not be used. 615 for (unsigned CSi = 0; CSi != CallSites.size(); ++CSi) { 616 CallBase &CS = *CallSites[CSi].first; 617 618 Function *Caller = CS.getCaller(); 619 Function *Callee = CS.getCalledFunction(); 620 621 // We can only inline direct calls to non-declarations. 622 if (!Callee || Callee->isDeclaration()) 623 continue; 624 625 Instruction *Instr = &CS; 626 627 bool IsTriviallyDead = 628 isInstructionTriviallyDead(Instr, &GetTLI(*Caller)); 629 630 int InlineHistoryID; 631 if (!IsTriviallyDead) { 632 // If this call site was obtained by inlining another function, verify 633 // that the include path for the function did not include the callee 634 // itself. If so, we'd be recursively inlining the same function, 635 // which would provide the same callsites, which would cause us to 636 // infinitely inline. 637 InlineHistoryID = CallSites[CSi].second; 638 if (InlineHistoryID != -1 && 639 inlineHistoryIncludes(Callee, InlineHistoryID, InlineHistory)) { 640 setInlineRemark(CS, "recursive"); 641 continue; 642 } 643 } 644 645 // FIXME for new PM: because of the old PM we currently generate ORE and 646 // in turn BFI on demand. With the new PM, the ORE dependency should 647 // just become a regular analysis dependency. 648 OptimizationRemarkEmitter ORE(Caller); 649 650 Optional<InlineCost> OIC = shouldInline(CS, GetInlineCost, ORE); 651 // If the policy determines that we should inline this function, 652 // delete the call instead. 653 if (!OIC.hasValue()) { 654 setInlineRemark(CS, "deferred"); 655 continue; 656 } 657 658 if (!OIC.getValue()) { 659 // shouldInline() call returned a negative inline cost that explains 660 // why this callsite should not be inlined. 661 setInlineRemark(CS, inlineCostStr(*OIC)); 662 continue; 663 } 664 665 // If this call site is dead and it is to a readonly function, we should 666 // just delete the call instead of trying to inline it, regardless of 667 // size. This happens because IPSCCP propagates the result out of the 668 // call and then we're left with the dead call. 669 if (IsTriviallyDead) { 670 LLVM_DEBUG(dbgs() << " -> Deleting dead call: " << *Instr << "\n"); 671 // Update the call graph by deleting the edge from Callee to Caller. 672 setInlineRemark(CS, "trivially dead"); 673 CG[Caller]->removeCallEdgeFor(CS); 674 Instr->eraseFromParent(); 675 ++NumCallsDeleted; 676 } else { 677 // Get DebugLoc to report. CS will be invalid after Inliner. 678 DebugLoc DLoc = CS.getDebugLoc(); 679 BasicBlock *Block = CS.getParent(); 680 681 // Attempt to inline the function. 682 using namespace ore; 683 684 InlineResult IR = inlineCallIfPossible( 685 CS, InlineInfo, InlinedArrayAllocas, InlineHistoryID, 686 InsertLifetime, AARGetter, ImportedFunctionsStats); 687 if (!IR.isSuccess()) { 688 setInlineRemark(CS, std::string(IR.getFailureReason()) + "; " + 689 inlineCostStr(*OIC)); 690 ORE.emit([&]() { 691 return OptimizationRemarkMissed(DEBUG_TYPE, "NotInlined", DLoc, 692 Block) 693 << NV("Callee", Callee) << " will not be inlined into " 694 << NV("Caller", Caller) << ": " 695 << NV("Reason", IR.getFailureReason()); 696 }); 697 continue; 698 } 699 ++NumInlined; 700 701 emitInlinedInto(ORE, DLoc, Block, *Callee, *Caller, *OIC); 702 703 // If inlining this function gave us any new call sites, throw them 704 // onto our worklist to process. They are useful inline candidates. 705 if (!InlineInfo.InlinedCalls.empty()) { 706 // Create a new inline history entry for this, so that we remember 707 // that these new callsites came about due to inlining Callee. 708 int NewHistoryID = InlineHistory.size(); 709 InlineHistory.push_back(std::make_pair(Callee, InlineHistoryID)); 710 711 #ifndef NDEBUG 712 // Make sure no dupplicates in the inline candidates. This could 713 // happen when a callsite is simpilfied to reusing the return value 714 // of another callsite during function cloning, thus the other 715 // callsite will be reconsidered here. 716 DenseSet<CallBase *> DbgCallSites; 717 for (auto &II : CallSites) 718 DbgCallSites.insert(II.first); 719 #endif 720 721 for (Value *Ptr : InlineInfo.InlinedCalls) { 722 #ifndef NDEBUG 723 assert(DbgCallSites.count(dyn_cast<CallBase>(Ptr)) == 0); 724 #endif 725 CallSites.push_back( 726 std::make_pair(dyn_cast<CallBase>(Ptr), NewHistoryID)); 727 } 728 } 729 } 730 731 // If we inlined or deleted the last possible call site to the function, 732 // delete the function body now. 733 if (Callee && Callee->use_empty() && Callee->hasLocalLinkage() && 734 // TODO: Can remove if in SCC now. 735 !SCCFunctions.count(Callee) && 736 // The function may be apparently dead, but if there are indirect 737 // callgraph references to the node, we cannot delete it yet, this 738 // could invalidate the CGSCC iterator. 739 CG[Callee]->getNumReferences() == 0) { 740 LLVM_DEBUG(dbgs() << " -> Deleting dead function: " 741 << Callee->getName() << "\n"); 742 CallGraphNode *CalleeNode = CG[Callee]; 743 744 // Remove any call graph edges from the callee to its callees. 745 CalleeNode->removeAllCalledFunctions(); 746 747 // Removing the node for callee from the call graph and delete it. 748 delete CG.removeFunctionFromModule(CalleeNode); 749 ++NumDeleted; 750 } 751 752 // Remove this call site from the list. If possible, use 753 // swap/pop_back for efficiency, but do not use it if doing so would 754 // move a call site to a function in this SCC before the 755 // 'FirstCallInSCC' barrier. 756 if (SCC.isSingular()) { 757 CallSites[CSi] = CallSites.back(); 758 CallSites.pop_back(); 759 } else { 760 CallSites.erase(CallSites.begin() + CSi); 761 } 762 --CSi; 763 764 Changed = true; 765 LocalChange = true; 766 } 767 } while (LocalChange); 768 769 return Changed; 770 } 771 772 bool LegacyInlinerBase::inlineCalls(CallGraphSCC &SCC) { 773 CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph(); 774 ACT = &getAnalysis<AssumptionCacheTracker>(); 775 PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 776 GetTLI = [&](Function &F) -> const TargetLibraryInfo & { 777 return getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 778 }; 779 auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & { 780 return ACT->getAssumptionCache(F); 781 }; 782 return inlineCallsImpl( 783 SCC, CG, GetAssumptionCache, PSI, GetTLI, InsertLifetime, 784 [&](CallBase &CS) { return getInlineCost(CS); }, LegacyAARGetter(*this), 785 ImportedFunctionsStats); 786 } 787 788 /// Remove now-dead linkonce functions at the end of 789 /// processing to avoid breaking the SCC traversal. 790 bool LegacyInlinerBase::doFinalization(CallGraph &CG) { 791 if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No) 792 ImportedFunctionsStats.dump(InlinerFunctionImportStats == 793 InlinerFunctionImportStatsOpts::Verbose); 794 return removeDeadFunctions(CG); 795 } 796 797 /// Remove dead functions that are not included in DNR (Do Not Remove) list. 798 bool LegacyInlinerBase::removeDeadFunctions(CallGraph &CG, 799 bool AlwaysInlineOnly) { 800 SmallVector<CallGraphNode *, 16> FunctionsToRemove; 801 SmallVector<Function *, 16> DeadFunctionsInComdats; 802 803 auto RemoveCGN = [&](CallGraphNode *CGN) { 804 // Remove any call graph edges from the function to its callees. 805 CGN->removeAllCalledFunctions(); 806 807 // Remove any edges from the external node to the function's call graph 808 // node. These edges might have been made irrelegant due to 809 // optimization of the program. 810 CG.getExternalCallingNode()->removeAnyCallEdgeTo(CGN); 811 812 // Removing the node for callee from the call graph and delete it. 813 FunctionsToRemove.push_back(CGN); 814 }; 815 816 // Scan for all of the functions, looking for ones that should now be removed 817 // from the program. Insert the dead ones in the FunctionsToRemove set. 818 for (const auto &I : CG) { 819 CallGraphNode *CGN = I.second.get(); 820 Function *F = CGN->getFunction(); 821 if (!F || F->isDeclaration()) 822 continue; 823 824 // Handle the case when this function is called and we only want to care 825 // about always-inline functions. This is a bit of a hack to share code 826 // between here and the InlineAlways pass. 827 if (AlwaysInlineOnly && !F->hasFnAttribute(Attribute::AlwaysInline)) 828 continue; 829 830 // If the only remaining users of the function are dead constants, remove 831 // them. 832 F->removeDeadConstantUsers(); 833 834 if (!F->isDefTriviallyDead()) 835 continue; 836 837 // It is unsafe to drop a function with discardable linkage from a COMDAT 838 // without also dropping the other members of the COMDAT. 839 // The inliner doesn't visit non-function entities which are in COMDAT 840 // groups so it is unsafe to do so *unless* the linkage is local. 841 if (!F->hasLocalLinkage()) { 842 if (F->hasComdat()) { 843 DeadFunctionsInComdats.push_back(F); 844 continue; 845 } 846 } 847 848 RemoveCGN(CGN); 849 } 850 if (!DeadFunctionsInComdats.empty()) { 851 // Filter out the functions whose comdats remain alive. 852 filterDeadComdatFunctions(CG.getModule(), DeadFunctionsInComdats); 853 // Remove the rest. 854 for (Function *F : DeadFunctionsInComdats) 855 RemoveCGN(CG[F]); 856 } 857 858 if (FunctionsToRemove.empty()) 859 return false; 860 861 // Now that we know which functions to delete, do so. We didn't want to do 862 // this inline, because that would invalidate our CallGraph::iterator 863 // objects. :( 864 // 865 // Note that it doesn't matter that we are iterating over a non-stable order 866 // here to do this, it doesn't matter which order the functions are deleted 867 // in. 868 array_pod_sort(FunctionsToRemove.begin(), FunctionsToRemove.end()); 869 FunctionsToRemove.erase( 870 std::unique(FunctionsToRemove.begin(), FunctionsToRemove.end()), 871 FunctionsToRemove.end()); 872 for (CallGraphNode *CGN : FunctionsToRemove) { 873 delete CG.removeFunctionFromModule(CGN); 874 ++NumDeleted; 875 } 876 return true; 877 } 878 879 InlinerPass::~InlinerPass() { 880 if (ImportedFunctionsStats) { 881 assert(InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No); 882 ImportedFunctionsStats->dump(InlinerFunctionImportStats == 883 InlinerFunctionImportStatsOpts::Verbose); 884 } 885 } 886 887 PreservedAnalyses InlinerPass::run(LazyCallGraph::SCC &InitialC, 888 CGSCCAnalysisManager &AM, LazyCallGraph &CG, 889 CGSCCUpdateResult &UR) { 890 const ModuleAnalysisManager &MAM = 891 AM.getResult<ModuleAnalysisManagerCGSCCProxy>(InitialC, CG).getManager(); 892 bool Changed = false; 893 894 assert(InitialC.size() > 0 && "Cannot handle an empty SCC!"); 895 Module &M = *InitialC.begin()->getFunction().getParent(); 896 ProfileSummaryInfo *PSI = MAM.getCachedResult<ProfileSummaryAnalysis>(M); 897 898 if (!ImportedFunctionsStats && 899 InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No) { 900 ImportedFunctionsStats = 901 std::make_unique<ImportedFunctionsInliningStatistics>(); 902 ImportedFunctionsStats->setModuleInfo(M); 903 } 904 905 // We use a single common worklist for calls across the entire SCC. We 906 // process these in-order and append new calls introduced during inlining to 907 // the end. 908 // 909 // Note that this particular order of processing is actually critical to 910 // avoid very bad behaviors. Consider *highly connected* call graphs where 911 // each function contains a small amonut of code and a couple of calls to 912 // other functions. Because the LLVM inliner is fundamentally a bottom-up 913 // inliner, it can handle gracefully the fact that these all appear to be 914 // reasonable inlining candidates as it will flatten things until they become 915 // too big to inline, and then move on and flatten another batch. 916 // 917 // However, when processing call edges *within* an SCC we cannot rely on this 918 // bottom-up behavior. As a consequence, with heavily connected *SCCs* of 919 // functions we can end up incrementally inlining N calls into each of 920 // N functions because each incremental inlining decision looks good and we 921 // don't have a topological ordering to prevent explosions. 922 // 923 // To compensate for this, we don't process transitive edges made immediate 924 // by inlining until we've done one pass of inlining across the entire SCC. 925 // Large, highly connected SCCs still lead to some amount of code bloat in 926 // this model, but it is uniformly spread across all the functions in the SCC 927 // and eventually they all become too large to inline, rather than 928 // incrementally maknig a single function grow in a super linear fashion. 929 SmallVector<std::pair<CallBase *, int>, 16> Calls; 930 931 FunctionAnalysisManager &FAM = 932 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(InitialC, CG) 933 .getManager(); 934 935 // Populate the initial list of calls in this SCC. 936 for (auto &N : InitialC) { 937 auto &ORE = 938 FAM.getResult<OptimizationRemarkEmitterAnalysis>(N.getFunction()); 939 // We want to generally process call sites top-down in order for 940 // simplifications stemming from replacing the call with the returned value 941 // after inlining to be visible to subsequent inlining decisions. 942 // FIXME: Using instructions sequence is a really bad way to do this. 943 // Instead we should do an actual RPO walk of the function body. 944 for (Instruction &I : instructions(N.getFunction())) 945 if (auto *CS = dyn_cast<CallBase>(&I)) 946 if (Function *Callee = CS->getCalledFunction()) { 947 if (!Callee->isDeclaration()) 948 Calls.push_back({CS, -1}); 949 else if (!isa<IntrinsicInst>(I)) { 950 using namespace ore; 951 setInlineRemark(*CS, "unavailable definition"); 952 ORE.emit([&]() { 953 return OptimizationRemarkMissed(DEBUG_TYPE, "NoDefinition", &I) 954 << NV("Callee", Callee) << " will not be inlined into " 955 << NV("Caller", CS->getCaller()) 956 << " because its definition is unavailable" 957 << setIsVerbose(); 958 }); 959 } 960 } 961 } 962 if (Calls.empty()) 963 return PreservedAnalyses::all(); 964 965 // Capture updatable variables for the current SCC and RefSCC. 966 auto *C = &InitialC; 967 auto *RC = &C->getOuterRefSCC(); 968 969 // When inlining a callee produces new call sites, we want to keep track of 970 // the fact that they were inlined from the callee. This allows us to avoid 971 // infinite inlining in some obscure cases. To represent this, we use an 972 // index into the InlineHistory vector. 973 SmallVector<std::pair<Function *, int>, 16> InlineHistory; 974 975 // Track a set vector of inlined callees so that we can augment the caller 976 // with all of their edges in the call graph before pruning out the ones that 977 // got simplified away. 978 SmallSetVector<Function *, 4> InlinedCallees; 979 980 // Track the dead functions to delete once finished with inlining calls. We 981 // defer deleting these to make it easier to handle the call graph updates. 982 SmallVector<Function *, 4> DeadFunctions; 983 984 // Loop forward over all of the calls. Note that we cannot cache the size as 985 // inlining can introduce new calls that need to be processed. 986 for (int I = 0; I < (int)Calls.size(); ++I) { 987 // We expect the calls to typically be batched with sequences of calls that 988 // have the same caller, so we first set up some shared infrastructure for 989 // this caller. We also do any pruning we can at this layer on the caller 990 // alone. 991 Function &F = *Calls[I].first->getCaller(); 992 LazyCallGraph::Node &N = *CG.lookup(F); 993 if (CG.lookupSCC(N) != C) 994 continue; 995 if (F.hasOptNone()) { 996 setInlineRemark(*Calls[I].first, "optnone attribute"); 997 continue; 998 } 999 1000 LLVM_DEBUG(dbgs() << "Inlining calls in: " << F.getName() << "\n"); 1001 1002 // Get a FunctionAnalysisManager via a proxy for this particular node. We 1003 // do this each time we visit a node as the SCC may have changed and as 1004 // we're going to mutate this particular function we want to make sure the 1005 // proxy is in place to forward any invalidation events. We can use the 1006 // manager we get here for looking up results for functions other than this 1007 // node however because those functions aren't going to be mutated by this 1008 // pass. 1009 FunctionAnalysisManager &FAM = 1010 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(*C, CG) 1011 .getManager(); 1012 1013 // Get the remarks emission analysis for the caller. 1014 auto &ORE = FAM.getResult<OptimizationRemarkEmitterAnalysis>(F); 1015 1016 std::function<AssumptionCache &(Function &)> GetAssumptionCache = 1017 [&](Function &F) -> AssumptionCache & { 1018 return FAM.getResult<AssumptionAnalysis>(F); 1019 }; 1020 auto GetBFI = [&](Function &F) -> BlockFrequencyInfo & { 1021 return FAM.getResult<BlockFrequencyAnalysis>(F); 1022 }; 1023 auto GetTLI = [&](Function &F) -> const TargetLibraryInfo & { 1024 return FAM.getResult<TargetLibraryAnalysis>(F); 1025 }; 1026 1027 auto GetInlineCost = [&](CallBase &CS) { 1028 Function &Callee = *CS.getCalledFunction(); 1029 auto &CalleeTTI = FAM.getResult<TargetIRAnalysis>(Callee); 1030 bool RemarksEnabled = 1031 Callee.getContext().getDiagHandlerPtr()->isMissedOptRemarkEnabled( 1032 DEBUG_TYPE); 1033 return getInlineCost(CS, Params, CalleeTTI, GetAssumptionCache, {GetBFI}, 1034 GetTLI, PSI, RemarksEnabled ? &ORE : nullptr); 1035 }; 1036 1037 // Now process as many calls as we have within this caller in the sequnece. 1038 // We bail out as soon as the caller has to change so we can update the 1039 // call graph and prepare the context of that new caller. 1040 bool DidInline = false; 1041 for (; I < (int)Calls.size() && Calls[I].first->getCaller() == &F; ++I) { 1042 int InlineHistoryID; 1043 CallBase *CS = nullptr; 1044 std::tie(CS, InlineHistoryID) = Calls[I]; 1045 Function &Callee = *CS->getCalledFunction(); 1046 1047 if (InlineHistoryID != -1 && 1048 inlineHistoryIncludes(&Callee, InlineHistoryID, InlineHistory)) { 1049 setInlineRemark(*CS, "recursive"); 1050 continue; 1051 } 1052 1053 // Check if this inlining may repeat breaking an SCC apart that has 1054 // already been split once before. In that case, inlining here may 1055 // trigger infinite inlining, much like is prevented within the inliner 1056 // itself by the InlineHistory above, but spread across CGSCC iterations 1057 // and thus hidden from the full inline history. 1058 if (CG.lookupSCC(*CG.lookup(Callee)) == C && 1059 UR.InlinedInternalEdges.count({&N, C})) { 1060 LLVM_DEBUG(dbgs() << "Skipping inlining internal SCC edge from a node " 1061 "previously split out of this SCC by inlining: " 1062 << F.getName() << " -> " << Callee.getName() << "\n"); 1063 setInlineRemark(*CS, "recursive SCC split"); 1064 continue; 1065 } 1066 1067 Optional<InlineCost> OIC = shouldInline(*CS, GetInlineCost, ORE); 1068 // Check whether we want to inline this callsite. 1069 if (!OIC.hasValue()) { 1070 setInlineRemark(*CS, "deferred"); 1071 continue; 1072 } 1073 1074 if (!OIC.getValue()) { 1075 // shouldInline() call returned a negative inline cost that explains 1076 // why this callsite should not be inlined. 1077 setInlineRemark(*CS, inlineCostStr(*OIC)); 1078 continue; 1079 } 1080 1081 // Setup the data structure used to plumb customization into the 1082 // `InlineFunction` routine. 1083 InlineFunctionInfo IFI( 1084 /*cg=*/nullptr, &GetAssumptionCache, PSI, 1085 &FAM.getResult<BlockFrequencyAnalysis>(*(CS->getCaller())), 1086 &FAM.getResult<BlockFrequencyAnalysis>(Callee)); 1087 1088 // Get DebugLoc to report. CS will be invalid after Inliner. 1089 DebugLoc DLoc = CS->getDebugLoc(); 1090 BasicBlock *Block = CS->getParent(); 1091 1092 using namespace ore; 1093 1094 InlineResult IR = InlineFunction(CS, IFI); 1095 if (!IR.isSuccess()) { 1096 setInlineRemark(*CS, std::string(IR.getFailureReason()) + "; " + 1097 inlineCostStr(*OIC)); 1098 ORE.emit([&]() { 1099 return OptimizationRemarkMissed(DEBUG_TYPE, "NotInlined", DLoc, Block) 1100 << NV("Callee", &Callee) << " will not be inlined into " 1101 << NV("Caller", &F) << ": " 1102 << NV("Reason", IR.getFailureReason()); 1103 }); 1104 continue; 1105 } 1106 DidInline = true; 1107 InlinedCallees.insert(&Callee); 1108 1109 ++NumInlined; 1110 1111 emitInlinedInto(ORE, DLoc, Block, Callee, F, *OIC); 1112 1113 // Add any new callsites to defined functions to the worklist. 1114 if (!IFI.InlinedCallSites.empty()) { 1115 int NewHistoryID = InlineHistory.size(); 1116 InlineHistory.push_back({&Callee, InlineHistoryID}); 1117 1118 // FIXME(mtrofin): refactor IFI.InlinedCallSites to be CallBase-based 1119 for (CallSite &CS : reverse(IFI.InlinedCallSites)) { 1120 Function *NewCallee = CS.getCalledFunction(); 1121 if (!NewCallee) { 1122 // Try to promote an indirect (virtual) call without waiting for the 1123 // post-inline cleanup and the next DevirtSCCRepeatedPass iteration 1124 // because the next iteration may not happen and we may miss 1125 // inlining it. 1126 if (tryPromoteCall(CS)) 1127 NewCallee = CS.getCalledFunction(); 1128 } 1129 if (NewCallee) 1130 if (!NewCallee->isDeclaration()) 1131 Calls.push_back( 1132 {cast<CallBase>(CS.getInstruction()), NewHistoryID}); 1133 } 1134 } 1135 1136 if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No) 1137 ImportedFunctionsStats->recordInline(F, Callee); 1138 1139 // Merge the attributes based on the inlining. 1140 AttributeFuncs::mergeAttributesForInlining(F, Callee); 1141 1142 // For local functions, check whether this makes the callee trivially 1143 // dead. In that case, we can drop the body of the function eagerly 1144 // which may reduce the number of callers of other functions to one, 1145 // changing inline cost thresholds. 1146 if (Callee.hasLocalLinkage()) { 1147 // To check this we also need to nuke any dead constant uses (perhaps 1148 // made dead by this operation on other functions). 1149 Callee.removeDeadConstantUsers(); 1150 if (Callee.use_empty() && !CG.isLibFunction(Callee)) { 1151 Calls.erase( 1152 std::remove_if(Calls.begin() + I + 1, Calls.end(), 1153 [&](const std::pair<CallBase *, int> &Call) { 1154 return Call.first->getCaller() == &Callee; 1155 }), 1156 Calls.end()); 1157 // Clear the body and queue the function itself for deletion when we 1158 // finish inlining and call graph updates. 1159 // Note that after this point, it is an error to do anything other 1160 // than use the callee's address or delete it. 1161 Callee.dropAllReferences(); 1162 assert(find(DeadFunctions, &Callee) == DeadFunctions.end() && 1163 "Cannot put cause a function to become dead twice!"); 1164 DeadFunctions.push_back(&Callee); 1165 } 1166 } 1167 } 1168 1169 // Back the call index up by one to put us in a good position to go around 1170 // the outer loop. 1171 --I; 1172 1173 if (!DidInline) 1174 continue; 1175 Changed = true; 1176 1177 // Add all the inlined callees' edges as ref edges to the caller. These are 1178 // by definition trivial edges as we always have *some* transitive ref edge 1179 // chain. While in some cases these edges are direct calls inside the 1180 // callee, they have to be modeled in the inliner as reference edges as 1181 // there may be a reference edge anywhere along the chain from the current 1182 // caller to the callee that causes the whole thing to appear like 1183 // a (transitive) reference edge that will require promotion to a call edge 1184 // below. 1185 for (Function *InlinedCallee : InlinedCallees) { 1186 LazyCallGraph::Node &CalleeN = *CG.lookup(*InlinedCallee); 1187 for (LazyCallGraph::Edge &E : *CalleeN) 1188 RC->insertTrivialRefEdge(N, E.getNode()); 1189 } 1190 1191 // At this point, since we have made changes we have at least removed 1192 // a call instruction. However, in the process we do some incremental 1193 // simplification of the surrounding code. This simplification can 1194 // essentially do all of the same things as a function pass and we can 1195 // re-use the exact same logic for updating the call graph to reflect the 1196 // change. 1197 LazyCallGraph::SCC *OldC = C; 1198 C = &updateCGAndAnalysisManagerForFunctionPass(CG, *C, N, AM, UR); 1199 LLVM_DEBUG(dbgs() << "Updated inlining SCC: " << *C << "\n"); 1200 RC = &C->getOuterRefSCC(); 1201 1202 // If this causes an SCC to split apart into multiple smaller SCCs, there 1203 // is a subtle risk we need to prepare for. Other transformations may 1204 // expose an "infinite inlining" opportunity later, and because of the SCC 1205 // mutation, we will revisit this function and potentially re-inline. If we 1206 // do, and that re-inlining also has the potentially to mutate the SCC 1207 // structure, the infinite inlining problem can manifest through infinite 1208 // SCC splits and merges. To avoid this, we capture the originating caller 1209 // node and the SCC containing the call edge. This is a slight over 1210 // approximation of the possible inlining decisions that must be avoided, 1211 // but is relatively efficient to store. We use C != OldC to know when 1212 // a new SCC is generated and the original SCC may be generated via merge 1213 // in later iterations. 1214 // 1215 // It is also possible that even if no new SCC is generated 1216 // (i.e., C == OldC), the original SCC could be split and then merged 1217 // into the same one as itself. and the original SCC will be added into 1218 // UR.CWorklist again, we want to catch such cases too. 1219 // 1220 // FIXME: This seems like a very heavyweight way of retaining the inline 1221 // history, we should look for a more efficient way of tracking it. 1222 if ((C != OldC || UR.CWorklist.count(OldC)) && 1223 llvm::any_of(InlinedCallees, [&](Function *Callee) { 1224 return CG.lookupSCC(*CG.lookup(*Callee)) == OldC; 1225 })) { 1226 LLVM_DEBUG(dbgs() << "Inlined an internal call edge and split an SCC, " 1227 "retaining this to avoid infinite inlining.\n"); 1228 UR.InlinedInternalEdges.insert({&N, OldC}); 1229 } 1230 InlinedCallees.clear(); 1231 } 1232 1233 // Now that we've finished inlining all of the calls across this SCC, delete 1234 // all of the trivially dead functions, updating the call graph and the CGSCC 1235 // pass manager in the process. 1236 // 1237 // Note that this walks a pointer set which has non-deterministic order but 1238 // that is OK as all we do is delete things and add pointers to unordered 1239 // sets. 1240 for (Function *DeadF : DeadFunctions) { 1241 // Get the necessary information out of the call graph and nuke the 1242 // function there. Also, cclear out any cached analyses. 1243 auto &DeadC = *CG.lookupSCC(*CG.lookup(*DeadF)); 1244 FunctionAnalysisManager &FAM = 1245 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(DeadC, CG) 1246 .getManager(); 1247 FAM.clear(*DeadF, DeadF->getName()); 1248 AM.clear(DeadC, DeadC.getName()); 1249 auto &DeadRC = DeadC.getOuterRefSCC(); 1250 CG.removeDeadFunction(*DeadF); 1251 1252 // Mark the relevant parts of the call graph as invalid so we don't visit 1253 // them. 1254 UR.InvalidatedSCCs.insert(&DeadC); 1255 UR.InvalidatedRefSCCs.insert(&DeadRC); 1256 1257 // And delete the actual function from the module. 1258 M.getFunctionList().erase(DeadF); 1259 ++NumDeleted; 1260 } 1261 1262 if (!Changed) 1263 return PreservedAnalyses::all(); 1264 1265 // Even if we change the IR, we update the core CGSCC data structures and so 1266 // can preserve the proxy to the function analysis manager. 1267 PreservedAnalyses PA; 1268 PA.preserve<FunctionAnalysisManagerCGSCCProxy>(); 1269 return PA; 1270 } 1271