1 //===- Inliner.cpp - Code common to all inliners --------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the mechanics required to implement inlining without 11 // missing any calls and updating the call graph. The decisions of which calls 12 // are profitable to inline are implemented elsewhere. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Transforms/IPO/InlinerPass.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/CallGraph.h" 20 #include "llvm/Analysis/InlineCost.h" 21 #include "llvm/IR/CallSite.h" 22 #include "llvm/IR/DataLayout.h" 23 #include "llvm/IR/DiagnosticInfo.h" 24 #include "llvm/IR/Instructions.h" 25 #include "llvm/IR/IntrinsicInst.h" 26 #include "llvm/IR/Module.h" 27 #include "llvm/Support/CommandLine.h" 28 #include "llvm/Support/Debug.h" 29 #include "llvm/Support/raw_ostream.h" 30 #include "llvm/Target/TargetLibraryInfo.h" 31 #include "llvm/Transforms/Utils/Cloning.h" 32 #include "llvm/Transforms/Utils/Local.h" 33 using namespace llvm; 34 35 #define DEBUG_TYPE "inline" 36 37 STATISTIC(NumInlined, "Number of functions inlined"); 38 STATISTIC(NumCallsDeleted, "Number of call sites deleted, not inlined"); 39 STATISTIC(NumDeleted, "Number of functions deleted because all callers found"); 40 STATISTIC(NumMergedAllocas, "Number of allocas merged together"); 41 42 // This weirdly named statistic tracks the number of times that, when attempting 43 // to inline a function A into B, we analyze the callers of B in order to see 44 // if those would be more profitable and blocked inline steps. 45 STATISTIC(NumCallerCallersAnalyzed, "Number of caller-callers analyzed"); 46 47 static cl::opt<int> 48 InlineLimit("inline-threshold", cl::Hidden, cl::init(225), cl::ZeroOrMore, 49 cl::desc("Control the amount of inlining to perform (default = 225)")); 50 51 static cl::opt<int> 52 HintThreshold("inlinehint-threshold", cl::Hidden, cl::init(325), 53 cl::desc("Threshold for inlining functions with inline hint")); 54 55 // We instroduce this threshold to help performance of instrumentation based 56 // PGO before we actually hook up inliner with analysis passes such as BPI and 57 // BFI. 58 static cl::opt<int> 59 ColdThreshold("inlinecold-threshold", cl::Hidden, cl::init(225), 60 cl::desc("Threshold for inlining functions with cold attribute")); 61 62 // Threshold to use when optsize is specified (and there is no -inline-limit). 63 const int OptSizeThreshold = 75; 64 65 Inliner::Inliner(char &ID) 66 : CallGraphSCCPass(ID), InlineThreshold(InlineLimit), InsertLifetime(true) {} 67 68 Inliner::Inliner(char &ID, int Threshold, bool InsertLifetime) 69 : CallGraphSCCPass(ID), InlineThreshold(InlineLimit.getNumOccurrences() > 0 ? 70 InlineLimit : Threshold), 71 InsertLifetime(InsertLifetime) {} 72 73 /// getAnalysisUsage - For this class, we declare that we require and preserve 74 /// the call graph. If the derived class implements this method, it should 75 /// always explicitly call the implementation here. 76 void Inliner::getAnalysisUsage(AnalysisUsage &AU) const { 77 CallGraphSCCPass::getAnalysisUsage(AU); 78 } 79 80 81 typedef DenseMap<ArrayType*, std::vector<AllocaInst*> > 82 InlinedArrayAllocasTy; 83 84 /// \brief If the inlined function had a higher stack protection level than the 85 /// calling function, then bump up the caller's stack protection level. 86 static void AdjustCallerSSPLevel(Function *Caller, Function *Callee) { 87 // If upgrading the SSP attribute, clear out the old SSP Attributes first. 88 // Having multiple SSP attributes doesn't actually hurt, but it adds useless 89 // clutter to the IR. 90 AttrBuilder B; 91 B.addAttribute(Attribute::StackProtect) 92 .addAttribute(Attribute::StackProtectStrong); 93 AttributeSet OldSSPAttr = AttributeSet::get(Caller->getContext(), 94 AttributeSet::FunctionIndex, 95 B); 96 AttributeSet CallerAttr = Caller->getAttributes(), 97 CalleeAttr = Callee->getAttributes(); 98 99 if (CalleeAttr.hasAttribute(AttributeSet::FunctionIndex, 100 Attribute::StackProtectReq)) { 101 Caller->removeAttributes(AttributeSet::FunctionIndex, OldSSPAttr); 102 Caller->addFnAttr(Attribute::StackProtectReq); 103 } else if (CalleeAttr.hasAttribute(AttributeSet::FunctionIndex, 104 Attribute::StackProtectStrong) && 105 !CallerAttr.hasAttribute(AttributeSet::FunctionIndex, 106 Attribute::StackProtectReq)) { 107 Caller->removeAttributes(AttributeSet::FunctionIndex, OldSSPAttr); 108 Caller->addFnAttr(Attribute::StackProtectStrong); 109 } else if (CalleeAttr.hasAttribute(AttributeSet::FunctionIndex, 110 Attribute::StackProtect) && 111 !CallerAttr.hasAttribute(AttributeSet::FunctionIndex, 112 Attribute::StackProtectReq) && 113 !CallerAttr.hasAttribute(AttributeSet::FunctionIndex, 114 Attribute::StackProtectStrong)) 115 Caller->addFnAttr(Attribute::StackProtect); 116 } 117 118 /// InlineCallIfPossible - If it is possible to inline the specified call site, 119 /// do so and update the CallGraph for this operation. 120 /// 121 /// This function also does some basic book-keeping to update the IR. The 122 /// InlinedArrayAllocas map keeps track of any allocas that are already 123 /// available from other functions inlined into the caller. If we are able to 124 /// inline this call site we attempt to reuse already available allocas or add 125 /// any new allocas to the set if not possible. 126 static bool InlineCallIfPossible(CallSite CS, InlineFunctionInfo &IFI, 127 InlinedArrayAllocasTy &InlinedArrayAllocas, 128 int InlineHistory, bool InsertLifetime, 129 const DataLayout *DL) { 130 Function *Callee = CS.getCalledFunction(); 131 Function *Caller = CS.getCaller(); 132 133 // Try to inline the function. Get the list of static allocas that were 134 // inlined. 135 if (!InlineFunction(CS, IFI, InsertLifetime)) 136 return false; 137 138 AdjustCallerSSPLevel(Caller, Callee); 139 140 // Look at all of the allocas that we inlined through this call site. If we 141 // have already inlined other allocas through other calls into this function, 142 // then we know that they have disjoint lifetimes and that we can merge them. 143 // 144 // There are many heuristics possible for merging these allocas, and the 145 // different options have different tradeoffs. One thing that we *really* 146 // don't want to hurt is SRoA: once inlining happens, often allocas are no 147 // longer address taken and so they can be promoted. 148 // 149 // Our "solution" for that is to only merge allocas whose outermost type is an 150 // array type. These are usually not promoted because someone is using a 151 // variable index into them. These are also often the most important ones to 152 // merge. 153 // 154 // A better solution would be to have real memory lifetime markers in the IR 155 // and not have the inliner do any merging of allocas at all. This would 156 // allow the backend to do proper stack slot coloring of all allocas that 157 // *actually make it to the backend*, which is really what we want. 158 // 159 // Because we don't have this information, we do this simple and useful hack. 160 // 161 SmallPtrSet<AllocaInst*, 16> UsedAllocas; 162 163 // When processing our SCC, check to see if CS was inlined from some other 164 // call site. For example, if we're processing "A" in this code: 165 // A() { B() } 166 // B() { x = alloca ... C() } 167 // C() { y = alloca ... } 168 // Assume that C was not inlined into B initially, and so we're processing A 169 // and decide to inline B into A. Doing this makes an alloca available for 170 // reuse and makes a callsite (C) available for inlining. When we process 171 // the C call site we don't want to do any alloca merging between X and Y 172 // because their scopes are not disjoint. We could make this smarter by 173 // keeping track of the inline history for each alloca in the 174 // InlinedArrayAllocas but this isn't likely to be a significant win. 175 if (InlineHistory != -1) // Only do merging for top-level call sites in SCC. 176 return true; 177 178 // Loop over all the allocas we have so far and see if they can be merged with 179 // a previously inlined alloca. If not, remember that we had it. 180 for (unsigned AllocaNo = 0, e = IFI.StaticAllocas.size(); 181 AllocaNo != e; ++AllocaNo) { 182 AllocaInst *AI = IFI.StaticAllocas[AllocaNo]; 183 184 // Don't bother trying to merge array allocations (they will usually be 185 // canonicalized to be an allocation *of* an array), or allocations whose 186 // type is not itself an array (because we're afraid of pessimizing SRoA). 187 ArrayType *ATy = dyn_cast<ArrayType>(AI->getAllocatedType()); 188 if (!ATy || AI->isArrayAllocation()) 189 continue; 190 191 // Get the list of all available allocas for this array type. 192 std::vector<AllocaInst*> &AllocasForType = InlinedArrayAllocas[ATy]; 193 194 // Loop over the allocas in AllocasForType to see if we can reuse one. Note 195 // that we have to be careful not to reuse the same "available" alloca for 196 // multiple different allocas that we just inlined, we use the 'UsedAllocas' 197 // set to keep track of which "available" allocas are being used by this 198 // function. Also, AllocasForType can be empty of course! 199 bool MergedAwayAlloca = false; 200 for (unsigned i = 0, e = AllocasForType.size(); i != e; ++i) { 201 AllocaInst *AvailableAlloca = AllocasForType[i]; 202 203 unsigned Align1 = AI->getAlignment(), 204 Align2 = AvailableAlloca->getAlignment(); 205 // If we don't have data layout information, and only one alloca is using 206 // the target default, then we can't safely merge them because we can't 207 // pick the greater alignment. 208 if (!DL && (!Align1 || !Align2) && Align1 != Align2) 209 continue; 210 211 // The available alloca has to be in the right function, not in some other 212 // function in this SCC. 213 if (AvailableAlloca->getParent() != AI->getParent()) 214 continue; 215 216 // If the inlined function already uses this alloca then we can't reuse 217 // it. 218 if (!UsedAllocas.insert(AvailableAlloca)) 219 continue; 220 221 // Otherwise, we *can* reuse it, RAUW AI into AvailableAlloca and declare 222 // success! 223 DEBUG(dbgs() << " ***MERGED ALLOCA: " << *AI << "\n\t\tINTO: " 224 << *AvailableAlloca << '\n'); 225 226 AI->replaceAllUsesWith(AvailableAlloca); 227 228 if (Align1 != Align2) { 229 if (!Align1 || !Align2) { 230 assert(DL && "DataLayout required to compare default alignments"); 231 unsigned TypeAlign = DL->getABITypeAlignment(AI->getAllocatedType()); 232 233 Align1 = Align1 ? Align1 : TypeAlign; 234 Align2 = Align2 ? Align2 : TypeAlign; 235 } 236 237 if (Align1 > Align2) 238 AvailableAlloca->setAlignment(AI->getAlignment()); 239 } 240 241 AI->eraseFromParent(); 242 MergedAwayAlloca = true; 243 ++NumMergedAllocas; 244 IFI.StaticAllocas[AllocaNo] = nullptr; 245 break; 246 } 247 248 // If we already nuked the alloca, we're done with it. 249 if (MergedAwayAlloca) 250 continue; 251 252 // If we were unable to merge away the alloca either because there are no 253 // allocas of the right type available or because we reused them all 254 // already, remember that this alloca came from an inlined function and mark 255 // it used so we don't reuse it for other allocas from this inline 256 // operation. 257 AllocasForType.push_back(AI); 258 UsedAllocas.insert(AI); 259 } 260 261 return true; 262 } 263 264 unsigned Inliner::getInlineThreshold(CallSite CS) const { 265 int thres = InlineThreshold; // -inline-threshold or else selected by 266 // overall opt level 267 268 // If -inline-threshold is not given, listen to the optsize attribute when it 269 // would decrease the threshold. 270 Function *Caller = CS.getCaller(); 271 bool OptSize = Caller && !Caller->isDeclaration() && 272 Caller->getAttributes().hasAttribute(AttributeSet::FunctionIndex, 273 Attribute::OptimizeForSize); 274 if (!(InlineLimit.getNumOccurrences() > 0) && OptSize && 275 OptSizeThreshold < thres) 276 thres = OptSizeThreshold; 277 278 // Listen to the inlinehint attribute when it would increase the threshold 279 // and the caller does not need to minimize its size. 280 Function *Callee = CS.getCalledFunction(); 281 bool InlineHint = Callee && !Callee->isDeclaration() && 282 Callee->getAttributes().hasAttribute(AttributeSet::FunctionIndex, 283 Attribute::InlineHint); 284 if (InlineHint && HintThreshold > thres 285 && !Caller->getAttributes().hasAttribute(AttributeSet::FunctionIndex, 286 Attribute::MinSize)) 287 thres = HintThreshold; 288 289 // Listen to the cold attribute when it would decrease the threshold. 290 bool ColdCallee = Callee && !Callee->isDeclaration() && 291 Callee->getAttributes().hasAttribute(AttributeSet::FunctionIndex, 292 Attribute::Cold); 293 // Command line argument for InlineLimit will override the default 294 // ColdThreshold. If we have -inline-threshold but no -inlinecold-threshold, 295 // do not use the default cold threshold even if it is smaller. 296 if ((InlineLimit.getNumOccurrences() == 0 || 297 ColdThreshold.getNumOccurrences() > 0) && ColdCallee && 298 ColdThreshold < thres) 299 thres = ColdThreshold; 300 301 return thres; 302 } 303 304 static void emitAnalysis(CallSite CS, const Twine &Msg) { 305 Function *Caller = CS.getCaller(); 306 LLVMContext &Ctx = Caller->getContext(); 307 DebugLoc DLoc = CS.getInstruction()->getDebugLoc(); 308 emitOptimizationRemarkAnalysis(Ctx, DEBUG_TYPE, *Caller, DLoc, Msg); 309 } 310 311 /// shouldInline - Return true if the inliner should attempt to inline 312 /// at the given CallSite. 313 bool Inliner::shouldInline(CallSite CS) { 314 InlineCost IC = getInlineCost(CS); 315 316 if (IC.isAlways()) { 317 DEBUG(dbgs() << " Inlining: cost=always" 318 << ", Call: " << *CS.getInstruction() << "\n"); 319 emitAnalysis(CS, Twine(CS.getCalledFunction()->getName()) + 320 " should always be inlined (cost=always)"); 321 return true; 322 } 323 324 if (IC.isNever()) { 325 DEBUG(dbgs() << " NOT Inlining: cost=never" 326 << ", Call: " << *CS.getInstruction() << "\n"); 327 emitAnalysis(CS, Twine(CS.getCalledFunction()->getName() + 328 " should never be inlined (cost=never)")); 329 return false; 330 } 331 332 Function *Caller = CS.getCaller(); 333 if (!IC) { 334 DEBUG(dbgs() << " NOT Inlining: cost=" << IC.getCost() 335 << ", thres=" << (IC.getCostDelta() + IC.getCost()) 336 << ", Call: " << *CS.getInstruction() << "\n"); 337 emitAnalysis(CS, Twine(CS.getCalledFunction()->getName() + 338 " too costly to inline (cost=") + 339 Twine(IC.getCost()) + ", threshold=" + 340 Twine(IC.getCostDelta() + IC.getCost()) + ")"); 341 return false; 342 } 343 344 // Try to detect the case where the current inlining candidate caller (call 345 // it B) is a static or linkonce-ODR function and is an inlining candidate 346 // elsewhere, and the current candidate callee (call it C) is large enough 347 // that inlining it into B would make B too big to inline later. In these 348 // circumstances it may be best not to inline C into B, but to inline B into 349 // its callers. 350 // 351 // This only applies to static and linkonce-ODR functions because those are 352 // expected to be available for inlining in the translation units where they 353 // are used. Thus we will always have the opportunity to make local inlining 354 // decisions. Importantly the linkonce-ODR linkage covers inline functions 355 // and templates in C++. 356 // 357 // FIXME: All of this logic should be sunk into getInlineCost. It relies on 358 // the internal implementation of the inline cost metrics rather than 359 // treating them as truly abstract units etc. 360 if (Caller->hasLocalLinkage() || Caller->hasLinkOnceODRLinkage()) { 361 int TotalSecondaryCost = 0; 362 // The candidate cost to be imposed upon the current function. 363 int CandidateCost = IC.getCost() - (InlineConstants::CallPenalty + 1); 364 // This bool tracks what happens if we do NOT inline C into B. 365 bool callerWillBeRemoved = Caller->hasLocalLinkage(); 366 // This bool tracks what happens if we DO inline C into B. 367 bool inliningPreventsSomeOuterInline = false; 368 for (User *U : Caller->users()) { 369 CallSite CS2(U); 370 371 // If this isn't a call to Caller (it could be some other sort 372 // of reference) skip it. Such references will prevent the caller 373 // from being removed. 374 if (!CS2 || CS2.getCalledFunction() != Caller) { 375 callerWillBeRemoved = false; 376 continue; 377 } 378 379 InlineCost IC2 = getInlineCost(CS2); 380 ++NumCallerCallersAnalyzed; 381 if (!IC2) { 382 callerWillBeRemoved = false; 383 continue; 384 } 385 if (IC2.isAlways()) 386 continue; 387 388 // See if inlining or original callsite would erase the cost delta of 389 // this callsite. We subtract off the penalty for the call instruction, 390 // which we would be deleting. 391 if (IC2.getCostDelta() <= CandidateCost) { 392 inliningPreventsSomeOuterInline = true; 393 TotalSecondaryCost += IC2.getCost(); 394 } 395 } 396 // If all outer calls to Caller would get inlined, the cost for the last 397 // one is set very low by getInlineCost, in anticipation that Caller will 398 // be removed entirely. We did not account for this above unless there 399 // is only one caller of Caller. 400 if (callerWillBeRemoved && !Caller->use_empty()) 401 TotalSecondaryCost += InlineConstants::LastCallToStaticBonus; 402 403 if (inliningPreventsSomeOuterInline && TotalSecondaryCost < IC.getCost()) { 404 DEBUG(dbgs() << " NOT Inlining: " << *CS.getInstruction() << 405 " Cost = " << IC.getCost() << 406 ", outer Cost = " << TotalSecondaryCost << '\n'); 407 emitAnalysis( 408 CS, Twine("Not inlining. Cost of inlining " + 409 CS.getCalledFunction()->getName() + 410 " increases the cost of inlining " + 411 CS.getCaller()->getName() + " in other contexts")); 412 return false; 413 } 414 } 415 416 DEBUG(dbgs() << " Inlining: cost=" << IC.getCost() 417 << ", thres=" << (IC.getCostDelta() + IC.getCost()) 418 << ", Call: " << *CS.getInstruction() << '\n'); 419 emitAnalysis( 420 CS, CS.getCalledFunction()->getName() + Twine(" can be inlined into ") + 421 CS.getCaller()->getName() + " with cost=" + Twine(IC.getCost()) + 422 " (threshold=" + Twine(IC.getCostDelta() + IC.getCost()) + ")"); 423 return true; 424 } 425 426 /// InlineHistoryIncludes - Return true if the specified inline history ID 427 /// indicates an inline history that includes the specified function. 428 static bool InlineHistoryIncludes(Function *F, int InlineHistoryID, 429 const SmallVectorImpl<std::pair<Function*, int> > &InlineHistory) { 430 while (InlineHistoryID != -1) { 431 assert(unsigned(InlineHistoryID) < InlineHistory.size() && 432 "Invalid inline history ID"); 433 if (InlineHistory[InlineHistoryID].first == F) 434 return true; 435 InlineHistoryID = InlineHistory[InlineHistoryID].second; 436 } 437 return false; 438 } 439 440 bool Inliner::runOnSCC(CallGraphSCC &SCC) { 441 CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph(); 442 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>(); 443 const DataLayout *DL = DLP ? &DLP->getDataLayout() : nullptr; 444 const TargetLibraryInfo *TLI = getAnalysisIfAvailable<TargetLibraryInfo>(); 445 446 SmallPtrSet<Function*, 8> SCCFunctions; 447 DEBUG(dbgs() << "Inliner visiting SCC:"); 448 for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) { 449 Function *F = (*I)->getFunction(); 450 if (F) SCCFunctions.insert(F); 451 DEBUG(dbgs() << " " << (F ? F->getName() : "INDIRECTNODE")); 452 } 453 454 // Scan through and identify all call sites ahead of time so that we only 455 // inline call sites in the original functions, not call sites that result 456 // from inlining other functions. 457 SmallVector<std::pair<CallSite, int>, 16> CallSites; 458 459 // When inlining a callee produces new call sites, we want to keep track of 460 // the fact that they were inlined from the callee. This allows us to avoid 461 // infinite inlining in some obscure cases. To represent this, we use an 462 // index into the InlineHistory vector. 463 SmallVector<std::pair<Function*, int>, 8> InlineHistory; 464 465 for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) { 466 Function *F = (*I)->getFunction(); 467 if (!F) continue; 468 469 for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) 470 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 471 CallSite CS(cast<Value>(I)); 472 // If this isn't a call, or it is a call to an intrinsic, it can 473 // never be inlined. 474 if (!CS || isa<IntrinsicInst>(I)) 475 continue; 476 477 // If this is a direct call to an external function, we can never inline 478 // it. If it is an indirect call, inlining may resolve it to be a 479 // direct call, so we keep it. 480 if (CS.getCalledFunction() && CS.getCalledFunction()->isDeclaration()) 481 continue; 482 483 CallSites.push_back(std::make_pair(CS, -1)); 484 } 485 } 486 487 DEBUG(dbgs() << ": " << CallSites.size() << " call sites.\n"); 488 489 // If there are no calls in this function, exit early. 490 if (CallSites.empty()) 491 return false; 492 493 // Now that we have all of the call sites, move the ones to functions in the 494 // current SCC to the end of the list. 495 unsigned FirstCallInSCC = CallSites.size(); 496 for (unsigned i = 0; i < FirstCallInSCC; ++i) 497 if (Function *F = CallSites[i].first.getCalledFunction()) 498 if (SCCFunctions.count(F)) 499 std::swap(CallSites[i--], CallSites[--FirstCallInSCC]); 500 501 502 InlinedArrayAllocasTy InlinedArrayAllocas; 503 InlineFunctionInfo InlineInfo(&CG, DL); 504 505 // Now that we have all of the call sites, loop over them and inline them if 506 // it looks profitable to do so. 507 bool Changed = false; 508 bool LocalChange; 509 do { 510 LocalChange = false; 511 // Iterate over the outer loop because inlining functions can cause indirect 512 // calls to become direct calls. 513 for (unsigned CSi = 0; CSi != CallSites.size(); ++CSi) { 514 CallSite CS = CallSites[CSi].first; 515 516 Function *Caller = CS.getCaller(); 517 Function *Callee = CS.getCalledFunction(); 518 519 // If this call site is dead and it is to a readonly function, we should 520 // just delete the call instead of trying to inline it, regardless of 521 // size. This happens because IPSCCP propagates the result out of the 522 // call and then we're left with the dead call. 523 if (isInstructionTriviallyDead(CS.getInstruction(), TLI)) { 524 DEBUG(dbgs() << " -> Deleting dead call: " 525 << *CS.getInstruction() << "\n"); 526 // Update the call graph by deleting the edge from Callee to Caller. 527 CG[Caller]->removeCallEdgeFor(CS); 528 CS.getInstruction()->eraseFromParent(); 529 ++NumCallsDeleted; 530 } else { 531 // We can only inline direct calls to non-declarations. 532 if (!Callee || Callee->isDeclaration()) continue; 533 534 // If this call site was obtained by inlining another function, verify 535 // that the include path for the function did not include the callee 536 // itself. If so, we'd be recursively inlining the same function, 537 // which would provide the same callsites, which would cause us to 538 // infinitely inline. 539 int InlineHistoryID = CallSites[CSi].second; 540 if (InlineHistoryID != -1 && 541 InlineHistoryIncludes(Callee, InlineHistoryID, InlineHistory)) 542 continue; 543 544 LLVMContext &CallerCtx = Caller->getContext(); 545 546 // Get DebugLoc to report. CS will be invalid after Inliner. 547 DebugLoc DLoc = CS.getInstruction()->getDebugLoc(); 548 549 // If the policy determines that we should inline this function, 550 // try to do so. 551 if (!shouldInline(CS)) { 552 emitOptimizationRemarkMissed(CallerCtx, DEBUG_TYPE, *Caller, DLoc, 553 Twine(Callee->getName() + 554 " will not be inlined into " + 555 Caller->getName())); 556 continue; 557 } 558 559 // Attempt to inline the function. 560 if (!InlineCallIfPossible(CS, InlineInfo, InlinedArrayAllocas, 561 InlineHistoryID, InsertLifetime, DL)) { 562 emitOptimizationRemarkMissed(CallerCtx, DEBUG_TYPE, *Caller, DLoc, 563 Twine(Callee->getName() + 564 " will not be inlined into " + 565 Caller->getName())); 566 continue; 567 } 568 ++NumInlined; 569 570 // Report the inline decision. 571 emitOptimizationRemark( 572 CallerCtx, DEBUG_TYPE, *Caller, DLoc, 573 Twine(Callee->getName() + " inlined into " + Caller->getName())); 574 575 // If inlining this function gave us any new call sites, throw them 576 // onto our worklist to process. They are useful inline candidates. 577 if (!InlineInfo.InlinedCalls.empty()) { 578 // Create a new inline history entry for this, so that we remember 579 // that these new callsites came about due to inlining Callee. 580 int NewHistoryID = InlineHistory.size(); 581 InlineHistory.push_back(std::make_pair(Callee, InlineHistoryID)); 582 583 for (unsigned i = 0, e = InlineInfo.InlinedCalls.size(); 584 i != e; ++i) { 585 Value *Ptr = InlineInfo.InlinedCalls[i]; 586 CallSites.push_back(std::make_pair(CallSite(Ptr), NewHistoryID)); 587 } 588 } 589 } 590 591 // If we inlined or deleted the last possible call site to the function, 592 // delete the function body now. 593 if (Callee && Callee->use_empty() && Callee->hasLocalLinkage() && 594 // TODO: Can remove if in SCC now. 595 !SCCFunctions.count(Callee) && 596 597 // The function may be apparently dead, but if there are indirect 598 // callgraph references to the node, we cannot delete it yet, this 599 // could invalidate the CGSCC iterator. 600 CG[Callee]->getNumReferences() == 0) { 601 DEBUG(dbgs() << " -> Deleting dead function: " 602 << Callee->getName() << "\n"); 603 CallGraphNode *CalleeNode = CG[Callee]; 604 605 // Remove any call graph edges from the callee to its callees. 606 CalleeNode->removeAllCalledFunctions(); 607 608 // Removing the node for callee from the call graph and delete it. 609 delete CG.removeFunctionFromModule(CalleeNode); 610 ++NumDeleted; 611 } 612 613 // Remove this call site from the list. If possible, use 614 // swap/pop_back for efficiency, but do not use it if doing so would 615 // move a call site to a function in this SCC before the 616 // 'FirstCallInSCC' barrier. 617 if (SCC.isSingular()) { 618 CallSites[CSi] = CallSites.back(); 619 CallSites.pop_back(); 620 } else { 621 CallSites.erase(CallSites.begin()+CSi); 622 } 623 --CSi; 624 625 Changed = true; 626 LocalChange = true; 627 } 628 } while (LocalChange); 629 630 return Changed; 631 } 632 633 // doFinalization - Remove now-dead linkonce functions at the end of 634 // processing to avoid breaking the SCC traversal. 635 bool Inliner::doFinalization(CallGraph &CG) { 636 return removeDeadFunctions(CG); 637 } 638 639 /// removeDeadFunctions - Remove dead functions that are not included in 640 /// DNR (Do Not Remove) list. 641 bool Inliner::removeDeadFunctions(CallGraph &CG, bool AlwaysInlineOnly) { 642 SmallVector<CallGraphNode*, 16> FunctionsToRemove; 643 644 // Scan for all of the functions, looking for ones that should now be removed 645 // from the program. Insert the dead ones in the FunctionsToRemove set. 646 for (CallGraph::iterator I = CG.begin(), E = CG.end(); I != E; ++I) { 647 CallGraphNode *CGN = I->second; 648 Function *F = CGN->getFunction(); 649 if (!F || F->isDeclaration()) 650 continue; 651 652 // Handle the case when this function is called and we only want to care 653 // about always-inline functions. This is a bit of a hack to share code 654 // between here and the InlineAlways pass. 655 if (AlwaysInlineOnly && 656 !F->getAttributes().hasAttribute(AttributeSet::FunctionIndex, 657 Attribute::AlwaysInline)) 658 continue; 659 660 // If the only remaining users of the function are dead constants, remove 661 // them. 662 F->removeDeadConstantUsers(); 663 664 if (!F->isDefTriviallyDead()) 665 continue; 666 667 // Remove any call graph edges from the function to its callees. 668 CGN->removeAllCalledFunctions(); 669 670 // Remove any edges from the external node to the function's call graph 671 // node. These edges might have been made irrelegant due to 672 // optimization of the program. 673 CG.getExternalCallingNode()->removeAnyCallEdgeTo(CGN); 674 675 // Removing the node for callee from the call graph and delete it. 676 FunctionsToRemove.push_back(CGN); 677 } 678 if (FunctionsToRemove.empty()) 679 return false; 680 681 // Now that we know which functions to delete, do so. We didn't want to do 682 // this inline, because that would invalidate our CallGraph::iterator 683 // objects. :( 684 // 685 // Note that it doesn't matter that we are iterating over a non-stable order 686 // here to do this, it doesn't matter which order the functions are deleted 687 // in. 688 array_pod_sort(FunctionsToRemove.begin(), FunctionsToRemove.end()); 689 FunctionsToRemove.erase(std::unique(FunctionsToRemove.begin(), 690 FunctionsToRemove.end()), 691 FunctionsToRemove.end()); 692 for (SmallVectorImpl<CallGraphNode *>::iterator I = FunctionsToRemove.begin(), 693 E = FunctionsToRemove.end(); 694 I != E; ++I) { 695 delete CG.removeFunctionFromModule(*I); 696 ++NumDeleted; 697 } 698 return true; 699 } 700