1 //===- Inliner.cpp - Code common to all inliners --------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the mechanics required to implement inlining without 11 // missing any calls and updating the call graph. The decisions of which calls 12 // are profitable to inline are implemented elsewhere. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Transforms/IPO/InlinerPass.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/Analysis/AssumptionCache.h" 21 #include "llvm/Analysis/BasicAliasAnalysis.h" 22 #include "llvm/Analysis/CallGraph.h" 23 #include "llvm/Analysis/InlineCost.h" 24 #include "llvm/Analysis/TargetLibraryInfo.h" 25 #include "llvm/IR/CallSite.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/DiagnosticInfo.h" 28 #include "llvm/IR/Instructions.h" 29 #include "llvm/IR/IntrinsicInst.h" 30 #include "llvm/IR/Module.h" 31 #include "llvm/Support/CommandLine.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/raw_ostream.h" 34 #include "llvm/Transforms/Utils/Cloning.h" 35 #include "llvm/Transforms/Utils/Local.h" 36 using namespace llvm; 37 38 #define DEBUG_TYPE "inline" 39 40 STATISTIC(NumInlined, "Number of functions inlined"); 41 STATISTIC(NumCallsDeleted, "Number of call sites deleted, not inlined"); 42 STATISTIC(NumDeleted, "Number of functions deleted because all callers found"); 43 STATISTIC(NumMergedAllocas, "Number of allocas merged together"); 44 45 // This weirdly named statistic tracks the number of times that, when attempting 46 // to inline a function A into B, we analyze the callers of B in order to see 47 // if those would be more profitable and blocked inline steps. 48 STATISTIC(NumCallerCallersAnalyzed, "Number of caller-callers analyzed"); 49 50 static cl::opt<int> 51 InlineLimit("inline-threshold", cl::Hidden, cl::init(225), cl::ZeroOrMore, 52 cl::desc("Control the amount of inlining to perform (default = 225)")); 53 54 static cl::opt<int> 55 HintThreshold("inlinehint-threshold", cl::Hidden, cl::init(325), 56 cl::desc("Threshold for inlining functions with inline hint")); 57 58 // We instroduce this threshold to help performance of instrumentation based 59 // PGO before we actually hook up inliner with analysis passes such as BPI and 60 // BFI. 61 static cl::opt<int> 62 ColdThreshold("inlinecold-threshold", cl::Hidden, cl::init(225), 63 cl::desc("Threshold for inlining functions with cold attribute")); 64 65 // Threshold to use when optsize is specified (and there is no -inline-limit). 66 const int OptSizeThreshold = 75; 67 68 Inliner::Inliner(char &ID) 69 : CallGraphSCCPass(ID), InlineThreshold(InlineLimit), InsertLifetime(true) {} 70 71 Inliner::Inliner(char &ID, int Threshold, bool InsertLifetime) 72 : CallGraphSCCPass(ID), InlineThreshold(InlineLimit.getNumOccurrences() > 0 ? 73 InlineLimit : Threshold), 74 InsertLifetime(InsertLifetime) {} 75 76 /// For this class, we declare that we require and preserve the call graph. 77 /// If the derived class implements this method, it should 78 /// always explicitly call the implementation here. 79 void Inliner::getAnalysisUsage(AnalysisUsage &AU) const { 80 AU.addRequired<AssumptionCacheTracker>(); 81 AU.addRequired<TargetLibraryInfoWrapperPass>(); 82 CallGraphSCCPass::getAnalysisUsage(AU); 83 } 84 85 86 typedef DenseMap<ArrayType*, std::vector<AllocaInst*> > 87 InlinedArrayAllocasTy; 88 89 /// \brief If the inlined function had a higher stack protection level than the 90 /// calling function, then bump up the caller's stack protection level. 91 static void AdjustCallerSSPLevel(Function *Caller, Function *Callee) { 92 // If upgrading the SSP attribute, clear out the old SSP Attributes first. 93 // Having multiple SSP attributes doesn't actually hurt, but it adds useless 94 // clutter to the IR. 95 AttrBuilder B; 96 B.addAttribute(Attribute::StackProtect) 97 .addAttribute(Attribute::StackProtectStrong) 98 .addAttribute(Attribute::StackProtectReq); 99 AttributeSet OldSSPAttr = AttributeSet::get(Caller->getContext(), 100 AttributeSet::FunctionIndex, 101 B); 102 103 if (Callee->hasFnAttribute(Attribute::SafeStack)) { 104 Caller->removeAttributes(AttributeSet::FunctionIndex, OldSSPAttr); 105 Caller->addFnAttr(Attribute::SafeStack); 106 } else if (Callee->hasFnAttribute(Attribute::StackProtectReq) && 107 !Caller->hasFnAttribute(Attribute::SafeStack)) { 108 Caller->removeAttributes(AttributeSet::FunctionIndex, OldSSPAttr); 109 Caller->addFnAttr(Attribute::StackProtectReq); 110 } else if (Callee->hasFnAttribute(Attribute::StackProtectStrong) && 111 !Caller->hasFnAttribute(Attribute::SafeStack) && 112 !Caller->hasFnAttribute(Attribute::StackProtectReq)) { 113 Caller->removeAttributes(AttributeSet::FunctionIndex, OldSSPAttr); 114 Caller->addFnAttr(Attribute::StackProtectStrong); 115 } else if (Callee->hasFnAttribute(Attribute::StackProtect) && 116 !Caller->hasFnAttribute(Attribute::SafeStack) && 117 !Caller->hasFnAttribute(Attribute::StackProtectReq) && 118 !Caller->hasFnAttribute(Attribute::StackProtectStrong)) 119 Caller->addFnAttr(Attribute::StackProtect); 120 } 121 122 /// If it is possible to inline the specified call site, 123 /// do so and update the CallGraph for this operation. 124 /// 125 /// This function also does some basic book-keeping to update the IR. The 126 /// InlinedArrayAllocas map keeps track of any allocas that are already 127 /// available from other functions inlined into the caller. If we are able to 128 /// inline this call site we attempt to reuse already available allocas or add 129 /// any new allocas to the set if not possible. 130 static bool InlineCallIfPossible(Pass &P, CallSite CS, InlineFunctionInfo &IFI, 131 InlinedArrayAllocasTy &InlinedArrayAllocas, 132 int InlineHistory, bool InsertLifetime) { 133 Function *Callee = CS.getCalledFunction(); 134 Function *Caller = CS.getCaller(); 135 136 // We need to manually construct BasicAA directly in order to disable 137 // its use of other function analyses. 138 BasicAAResult BAR(createLegacyPMBasicAAResult(P, *Callee)); 139 140 // Construct our own AA results for this function. We do this manually to 141 // work around the limitations of the legacy pass manager. 142 AAResults AAR(createLegacyPMAAResults(P, *Callee, BAR)); 143 144 // Try to inline the function. Get the list of static allocas that were 145 // inlined. 146 if (!InlineFunction(CS, IFI, &AAR, InsertLifetime)) 147 return false; 148 149 AdjustCallerSSPLevel(Caller, Callee); 150 151 // Look at all of the allocas that we inlined through this call site. If we 152 // have already inlined other allocas through other calls into this function, 153 // then we know that they have disjoint lifetimes and that we can merge them. 154 // 155 // There are many heuristics possible for merging these allocas, and the 156 // different options have different tradeoffs. One thing that we *really* 157 // don't want to hurt is SRoA: once inlining happens, often allocas are no 158 // longer address taken and so they can be promoted. 159 // 160 // Our "solution" for that is to only merge allocas whose outermost type is an 161 // array type. These are usually not promoted because someone is using a 162 // variable index into them. These are also often the most important ones to 163 // merge. 164 // 165 // A better solution would be to have real memory lifetime markers in the IR 166 // and not have the inliner do any merging of allocas at all. This would 167 // allow the backend to do proper stack slot coloring of all allocas that 168 // *actually make it to the backend*, which is really what we want. 169 // 170 // Because we don't have this information, we do this simple and useful hack. 171 // 172 SmallPtrSet<AllocaInst*, 16> UsedAllocas; 173 174 // When processing our SCC, check to see if CS was inlined from some other 175 // call site. For example, if we're processing "A" in this code: 176 // A() { B() } 177 // B() { x = alloca ... C() } 178 // C() { y = alloca ... } 179 // Assume that C was not inlined into B initially, and so we're processing A 180 // and decide to inline B into A. Doing this makes an alloca available for 181 // reuse and makes a callsite (C) available for inlining. When we process 182 // the C call site we don't want to do any alloca merging between X and Y 183 // because their scopes are not disjoint. We could make this smarter by 184 // keeping track of the inline history for each alloca in the 185 // InlinedArrayAllocas but this isn't likely to be a significant win. 186 if (InlineHistory != -1) // Only do merging for top-level call sites in SCC. 187 return true; 188 189 // Loop over all the allocas we have so far and see if they can be merged with 190 // a previously inlined alloca. If not, remember that we had it. 191 for (unsigned AllocaNo = 0, e = IFI.StaticAllocas.size(); 192 AllocaNo != e; ++AllocaNo) { 193 AllocaInst *AI = IFI.StaticAllocas[AllocaNo]; 194 195 // Don't bother trying to merge array allocations (they will usually be 196 // canonicalized to be an allocation *of* an array), or allocations whose 197 // type is not itself an array (because we're afraid of pessimizing SRoA). 198 ArrayType *ATy = dyn_cast<ArrayType>(AI->getAllocatedType()); 199 if (!ATy || AI->isArrayAllocation()) 200 continue; 201 202 // Get the list of all available allocas for this array type. 203 std::vector<AllocaInst*> &AllocasForType = InlinedArrayAllocas[ATy]; 204 205 // Loop over the allocas in AllocasForType to see if we can reuse one. Note 206 // that we have to be careful not to reuse the same "available" alloca for 207 // multiple different allocas that we just inlined, we use the 'UsedAllocas' 208 // set to keep track of which "available" allocas are being used by this 209 // function. Also, AllocasForType can be empty of course! 210 bool MergedAwayAlloca = false; 211 for (AllocaInst *AvailableAlloca : AllocasForType) { 212 213 unsigned Align1 = AI->getAlignment(), 214 Align2 = AvailableAlloca->getAlignment(); 215 216 // The available alloca has to be in the right function, not in some other 217 // function in this SCC. 218 if (AvailableAlloca->getParent() != AI->getParent()) 219 continue; 220 221 // If the inlined function already uses this alloca then we can't reuse 222 // it. 223 if (!UsedAllocas.insert(AvailableAlloca).second) 224 continue; 225 226 // Otherwise, we *can* reuse it, RAUW AI into AvailableAlloca and declare 227 // success! 228 DEBUG(dbgs() << " ***MERGED ALLOCA: " << *AI << "\n\t\tINTO: " 229 << *AvailableAlloca << '\n'); 230 231 AI->replaceAllUsesWith(AvailableAlloca); 232 233 if (Align1 != Align2) { 234 if (!Align1 || !Align2) { 235 const DataLayout &DL = Caller->getParent()->getDataLayout(); 236 unsigned TypeAlign = DL.getABITypeAlignment(AI->getAllocatedType()); 237 238 Align1 = Align1 ? Align1 : TypeAlign; 239 Align2 = Align2 ? Align2 : TypeAlign; 240 } 241 242 if (Align1 > Align2) 243 AvailableAlloca->setAlignment(AI->getAlignment()); 244 } 245 246 AI->eraseFromParent(); 247 MergedAwayAlloca = true; 248 ++NumMergedAllocas; 249 IFI.StaticAllocas[AllocaNo] = nullptr; 250 break; 251 } 252 253 // If we already nuked the alloca, we're done with it. 254 if (MergedAwayAlloca) 255 continue; 256 257 // If we were unable to merge away the alloca either because there are no 258 // allocas of the right type available or because we reused them all 259 // already, remember that this alloca came from an inlined function and mark 260 // it used so we don't reuse it for other allocas from this inline 261 // operation. 262 AllocasForType.push_back(AI); 263 UsedAllocas.insert(AI); 264 } 265 266 return true; 267 } 268 269 unsigned Inliner::getInlineThreshold(CallSite CS) const { 270 int Threshold = InlineThreshold; // -inline-threshold or else selected by 271 // overall opt level 272 273 // If -inline-threshold is not given, listen to the optsize attribute when it 274 // would decrease the threshold. 275 Function *Caller = CS.getCaller(); 276 bool OptSize = Caller && !Caller->isDeclaration() && 277 // FIXME: Use Function::optForSize(). 278 Caller->hasFnAttribute(Attribute::OptimizeForSize); 279 if (!(InlineLimit.getNumOccurrences() > 0) && OptSize && 280 OptSizeThreshold < Threshold) 281 Threshold = OptSizeThreshold; 282 283 // Listen to the inlinehint attribute when it would increase the threshold 284 // and the caller does not need to minimize its size. 285 Function *Callee = CS.getCalledFunction(); 286 bool InlineHint = Callee && !Callee->isDeclaration() && 287 Callee->hasFnAttribute(Attribute::InlineHint); 288 if (InlineHint && HintThreshold > Threshold && 289 !Caller->hasFnAttribute(Attribute::MinSize)) 290 Threshold = HintThreshold; 291 292 // Listen to the cold attribute when it would decrease the threshold. 293 bool ColdCallee = Callee && !Callee->isDeclaration() && 294 Callee->hasFnAttribute(Attribute::Cold); 295 // Command line argument for InlineLimit will override the default 296 // ColdThreshold. If we have -inline-threshold but no -inlinecold-threshold, 297 // do not use the default cold threshold even if it is smaller. 298 if ((InlineLimit.getNumOccurrences() == 0 || 299 ColdThreshold.getNumOccurrences() > 0) && ColdCallee && 300 ColdThreshold < Threshold) 301 Threshold = ColdThreshold; 302 303 return Threshold; 304 } 305 306 static void emitAnalysis(CallSite CS, const Twine &Msg) { 307 Function *Caller = CS.getCaller(); 308 LLVMContext &Ctx = Caller->getContext(); 309 DebugLoc DLoc = CS.getInstruction()->getDebugLoc(); 310 emitOptimizationRemarkAnalysis(Ctx, DEBUG_TYPE, *Caller, DLoc, Msg); 311 } 312 313 /// Return true if the inliner should attempt to inline at the given CallSite. 314 bool Inliner::shouldInline(CallSite CS) { 315 InlineCost IC = getInlineCost(CS); 316 317 if (IC.isAlways()) { 318 DEBUG(dbgs() << " Inlining: cost=always" 319 << ", Call: " << *CS.getInstruction() << "\n"); 320 emitAnalysis(CS, Twine(CS.getCalledFunction()->getName()) + 321 " should always be inlined (cost=always)"); 322 return true; 323 } 324 325 if (IC.isNever()) { 326 DEBUG(dbgs() << " NOT Inlining: cost=never" 327 << ", Call: " << *CS.getInstruction() << "\n"); 328 emitAnalysis(CS, Twine(CS.getCalledFunction()->getName() + 329 " should never be inlined (cost=never)")); 330 return false; 331 } 332 333 Function *Caller = CS.getCaller(); 334 if (!IC) { 335 DEBUG(dbgs() << " NOT Inlining: cost=" << IC.getCost() 336 << ", thres=" << (IC.getCostDelta() + IC.getCost()) 337 << ", Call: " << *CS.getInstruction() << "\n"); 338 emitAnalysis(CS, Twine(CS.getCalledFunction()->getName() + 339 " too costly to inline (cost=") + 340 Twine(IC.getCost()) + ", threshold=" + 341 Twine(IC.getCostDelta() + IC.getCost()) + ")"); 342 return false; 343 } 344 345 // Try to detect the case where the current inlining candidate caller (call 346 // it B) is a static or linkonce-ODR function and is an inlining candidate 347 // elsewhere, and the current candidate callee (call it C) is large enough 348 // that inlining it into B would make B too big to inline later. In these 349 // circumstances it may be best not to inline C into B, but to inline B into 350 // its callers. 351 // 352 // This only applies to static and linkonce-ODR functions because those are 353 // expected to be available for inlining in the translation units where they 354 // are used. Thus we will always have the opportunity to make local inlining 355 // decisions. Importantly the linkonce-ODR linkage covers inline functions 356 // and templates in C++. 357 // 358 // FIXME: All of this logic should be sunk into getInlineCost. It relies on 359 // the internal implementation of the inline cost metrics rather than 360 // treating them as truly abstract units etc. 361 if (Caller->hasLocalLinkage() || Caller->hasLinkOnceODRLinkage()) { 362 int TotalSecondaryCost = 0; 363 // The candidate cost to be imposed upon the current function. 364 int CandidateCost = IC.getCost() - (InlineConstants::CallPenalty + 1); 365 // This bool tracks what happens if we do NOT inline C into B. 366 bool callerWillBeRemoved = Caller->hasLocalLinkage(); 367 // This bool tracks what happens if we DO inline C into B. 368 bool inliningPreventsSomeOuterInline = false; 369 for (User *U : Caller->users()) { 370 CallSite CS2(U); 371 372 // If this isn't a call to Caller (it could be some other sort 373 // of reference) skip it. Such references will prevent the caller 374 // from being removed. 375 if (!CS2 || CS2.getCalledFunction() != Caller) { 376 callerWillBeRemoved = false; 377 continue; 378 } 379 380 InlineCost IC2 = getInlineCost(CS2); 381 ++NumCallerCallersAnalyzed; 382 if (!IC2) { 383 callerWillBeRemoved = false; 384 continue; 385 } 386 if (IC2.isAlways()) 387 continue; 388 389 // See if inlining or original callsite would erase the cost delta of 390 // this callsite. We subtract off the penalty for the call instruction, 391 // which we would be deleting. 392 if (IC2.getCostDelta() <= CandidateCost) { 393 inliningPreventsSomeOuterInline = true; 394 TotalSecondaryCost += IC2.getCost(); 395 } 396 } 397 // If all outer calls to Caller would get inlined, the cost for the last 398 // one is set very low by getInlineCost, in anticipation that Caller will 399 // be removed entirely. We did not account for this above unless there 400 // is only one caller of Caller. 401 if (callerWillBeRemoved && !Caller->use_empty()) 402 TotalSecondaryCost += InlineConstants::LastCallToStaticBonus; 403 404 if (inliningPreventsSomeOuterInline && TotalSecondaryCost < IC.getCost()) { 405 DEBUG(dbgs() << " NOT Inlining: " << *CS.getInstruction() << 406 " Cost = " << IC.getCost() << 407 ", outer Cost = " << TotalSecondaryCost << '\n'); 408 emitAnalysis( 409 CS, Twine("Not inlining. Cost of inlining " + 410 CS.getCalledFunction()->getName() + 411 " increases the cost of inlining " + 412 CS.getCaller()->getName() + " in other contexts")); 413 return false; 414 } 415 } 416 417 DEBUG(dbgs() << " Inlining: cost=" << IC.getCost() 418 << ", thres=" << (IC.getCostDelta() + IC.getCost()) 419 << ", Call: " << *CS.getInstruction() << '\n'); 420 emitAnalysis( 421 CS, CS.getCalledFunction()->getName() + Twine(" can be inlined into ") + 422 CS.getCaller()->getName() + " with cost=" + Twine(IC.getCost()) + 423 " (threshold=" + Twine(IC.getCostDelta() + IC.getCost()) + ")"); 424 return true; 425 } 426 427 /// Return true if the specified inline history ID 428 /// indicates an inline history that includes the specified function. 429 static bool InlineHistoryIncludes(Function *F, int InlineHistoryID, 430 const SmallVectorImpl<std::pair<Function*, int> > &InlineHistory) { 431 while (InlineHistoryID != -1) { 432 assert(unsigned(InlineHistoryID) < InlineHistory.size() && 433 "Invalid inline history ID"); 434 if (InlineHistory[InlineHistoryID].first == F) 435 return true; 436 InlineHistoryID = InlineHistory[InlineHistoryID].second; 437 } 438 return false; 439 } 440 441 bool Inliner::runOnSCC(CallGraphSCC &SCC) { 442 CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph(); 443 AssumptionCacheTracker *ACT = &getAnalysis<AssumptionCacheTracker>(); 444 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 445 446 SmallPtrSet<Function*, 8> SCCFunctions; 447 DEBUG(dbgs() << "Inliner visiting SCC:"); 448 for (CallGraphNode *Node : SCC) { 449 Function *F = Node->getFunction(); 450 if (F) SCCFunctions.insert(F); 451 DEBUG(dbgs() << " " << (F ? F->getName() : "INDIRECTNODE")); 452 } 453 454 // Scan through and identify all call sites ahead of time so that we only 455 // inline call sites in the original functions, not call sites that result 456 // from inlining other functions. 457 SmallVector<std::pair<CallSite, int>, 16> CallSites; 458 459 // When inlining a callee produces new call sites, we want to keep track of 460 // the fact that they were inlined from the callee. This allows us to avoid 461 // infinite inlining in some obscure cases. To represent this, we use an 462 // index into the InlineHistory vector. 463 SmallVector<std::pair<Function*, int>, 8> InlineHistory; 464 465 for (CallGraphNode *Node : SCC) { 466 Function *F = Node->getFunction(); 467 if (!F) continue; 468 469 for (BasicBlock &BB : *F) 470 for (Instruction &I : BB) { 471 CallSite CS(cast<Value>(&I)); 472 // If this isn't a call, or it is a call to an intrinsic, it can 473 // never be inlined. 474 if (!CS || isa<IntrinsicInst>(I)) 475 continue; 476 477 // If this is a direct call to an external function, we can never inline 478 // it. If it is an indirect call, inlining may resolve it to be a 479 // direct call, so we keep it. 480 if (Function *Callee = CS.getCalledFunction()) 481 if (Callee->isDeclaration()) 482 continue; 483 484 CallSites.push_back(std::make_pair(CS, -1)); 485 } 486 } 487 488 DEBUG(dbgs() << ": " << CallSites.size() << " call sites.\n"); 489 490 // If there are no calls in this function, exit early. 491 if (CallSites.empty()) 492 return false; 493 494 // Now that we have all of the call sites, move the ones to functions in the 495 // current SCC to the end of the list. 496 unsigned FirstCallInSCC = CallSites.size(); 497 for (unsigned i = 0; i < FirstCallInSCC; ++i) 498 if (Function *F = CallSites[i].first.getCalledFunction()) 499 if (SCCFunctions.count(F)) 500 std::swap(CallSites[i--], CallSites[--FirstCallInSCC]); 501 502 503 InlinedArrayAllocasTy InlinedArrayAllocas; 504 InlineFunctionInfo InlineInfo(&CG, ACT); 505 506 // Now that we have all of the call sites, loop over them and inline them if 507 // it looks profitable to do so. 508 bool Changed = false; 509 bool LocalChange; 510 do { 511 LocalChange = false; 512 // Iterate over the outer loop because inlining functions can cause indirect 513 // calls to become direct calls. 514 // CallSites may be modified inside so ranged for loop can not be used. 515 for (unsigned CSi = 0; CSi != CallSites.size(); ++CSi) { 516 CallSite CS = CallSites[CSi].first; 517 518 Function *Caller = CS.getCaller(); 519 Function *Callee = CS.getCalledFunction(); 520 521 // If this call site is dead and it is to a readonly function, we should 522 // just delete the call instead of trying to inline it, regardless of 523 // size. This happens because IPSCCP propagates the result out of the 524 // call and then we're left with the dead call. 525 if (isInstructionTriviallyDead(CS.getInstruction(), &TLI)) { 526 DEBUG(dbgs() << " -> Deleting dead call: " 527 << *CS.getInstruction() << "\n"); 528 // Update the call graph by deleting the edge from Callee to Caller. 529 CG[Caller]->removeCallEdgeFor(CS); 530 CS.getInstruction()->eraseFromParent(); 531 ++NumCallsDeleted; 532 } else { 533 // We can only inline direct calls to non-declarations. 534 if (!Callee || Callee->isDeclaration()) continue; 535 536 // If this call site was obtained by inlining another function, verify 537 // that the include path for the function did not include the callee 538 // itself. If so, we'd be recursively inlining the same function, 539 // which would provide the same callsites, which would cause us to 540 // infinitely inline. 541 int InlineHistoryID = CallSites[CSi].second; 542 if (InlineHistoryID != -1 && 543 InlineHistoryIncludes(Callee, InlineHistoryID, InlineHistory)) 544 continue; 545 546 LLVMContext &CallerCtx = Caller->getContext(); 547 548 // Get DebugLoc to report. CS will be invalid after Inliner. 549 DebugLoc DLoc = CS.getInstruction()->getDebugLoc(); 550 551 // If the policy determines that we should inline this function, 552 // try to do so. 553 if (!shouldInline(CS)) { 554 emitOptimizationRemarkMissed(CallerCtx, DEBUG_TYPE, *Caller, DLoc, 555 Twine(Callee->getName() + 556 " will not be inlined into " + 557 Caller->getName())); 558 continue; 559 } 560 561 // Attempt to inline the function. 562 if (!InlineCallIfPossible(*this, CS, InlineInfo, InlinedArrayAllocas, 563 InlineHistoryID, InsertLifetime)) { 564 emitOptimizationRemarkMissed(CallerCtx, DEBUG_TYPE, *Caller, DLoc, 565 Twine(Callee->getName() + 566 " will not be inlined into " + 567 Caller->getName())); 568 continue; 569 } 570 ++NumInlined; 571 572 // Report the inline decision. 573 emitOptimizationRemark( 574 CallerCtx, DEBUG_TYPE, *Caller, DLoc, 575 Twine(Callee->getName() + " inlined into " + Caller->getName())); 576 577 // If inlining this function gave us any new call sites, throw them 578 // onto our worklist to process. They are useful inline candidates. 579 if (!InlineInfo.InlinedCalls.empty()) { 580 // Create a new inline history entry for this, so that we remember 581 // that these new callsites came about due to inlining Callee. 582 int NewHistoryID = InlineHistory.size(); 583 InlineHistory.push_back(std::make_pair(Callee, InlineHistoryID)); 584 585 for (Value *Ptr : InlineInfo.InlinedCalls) 586 CallSites.push_back(std::make_pair(CallSite(Ptr), NewHistoryID)); 587 } 588 } 589 590 // If we inlined or deleted the last possible call site to the function, 591 // delete the function body now. 592 if (Callee && Callee->use_empty() && Callee->hasLocalLinkage() && 593 // TODO: Can remove if in SCC now. 594 !SCCFunctions.count(Callee) && 595 596 // The function may be apparently dead, but if there are indirect 597 // callgraph references to the node, we cannot delete it yet, this 598 // could invalidate the CGSCC iterator. 599 CG[Callee]->getNumReferences() == 0) { 600 DEBUG(dbgs() << " -> Deleting dead function: " 601 << Callee->getName() << "\n"); 602 CallGraphNode *CalleeNode = CG[Callee]; 603 604 // Remove any call graph edges from the callee to its callees. 605 CalleeNode->removeAllCalledFunctions(); 606 607 // Removing the node for callee from the call graph and delete it. 608 delete CG.removeFunctionFromModule(CalleeNode); 609 ++NumDeleted; 610 } 611 612 // Remove this call site from the list. If possible, use 613 // swap/pop_back for efficiency, but do not use it if doing so would 614 // move a call site to a function in this SCC before the 615 // 'FirstCallInSCC' barrier. 616 if (SCC.isSingular()) { 617 CallSites[CSi] = CallSites.back(); 618 CallSites.pop_back(); 619 } else { 620 CallSites.erase(CallSites.begin()+CSi); 621 } 622 --CSi; 623 624 Changed = true; 625 LocalChange = true; 626 } 627 } while (LocalChange); 628 629 return Changed; 630 } 631 632 /// Remove now-dead linkonce functions at the end of 633 /// processing to avoid breaking the SCC traversal. 634 bool Inliner::doFinalization(CallGraph &CG) { 635 return removeDeadFunctions(CG); 636 } 637 638 /// Remove dead functions that are not included in DNR (Do Not Remove) list. 639 bool Inliner::removeDeadFunctions(CallGraph &CG, bool AlwaysInlineOnly) { 640 SmallVector<CallGraphNode*, 16> FunctionsToRemove; 641 SmallVector<CallGraphNode *, 16> DeadFunctionsInComdats; 642 SmallDenseMap<const Comdat *, int, 16> ComdatEntriesAlive; 643 644 auto RemoveCGN = [&](CallGraphNode *CGN) { 645 // Remove any call graph edges from the function to its callees. 646 CGN->removeAllCalledFunctions(); 647 648 // Remove any edges from the external node to the function's call graph 649 // node. These edges might have been made irrelegant due to 650 // optimization of the program. 651 CG.getExternalCallingNode()->removeAnyCallEdgeTo(CGN); 652 653 // Removing the node for callee from the call graph and delete it. 654 FunctionsToRemove.push_back(CGN); 655 }; 656 657 // Scan for all of the functions, looking for ones that should now be removed 658 // from the program. Insert the dead ones in the FunctionsToRemove set. 659 for (const auto &I : CG) { 660 CallGraphNode *CGN = I.second.get(); 661 Function *F = CGN->getFunction(); 662 if (!F || F->isDeclaration()) 663 continue; 664 665 // Handle the case when this function is called and we only want to care 666 // about always-inline functions. This is a bit of a hack to share code 667 // between here and the InlineAlways pass. 668 if (AlwaysInlineOnly && !F->hasFnAttribute(Attribute::AlwaysInline)) 669 continue; 670 671 // If the only remaining users of the function are dead constants, remove 672 // them. 673 F->removeDeadConstantUsers(); 674 675 if (!F->isDefTriviallyDead()) 676 continue; 677 678 // It is unsafe to drop a function with discardable linkage from a COMDAT 679 // without also dropping the other members of the COMDAT. 680 // The inliner doesn't visit non-function entities which are in COMDAT 681 // groups so it is unsafe to do so *unless* the linkage is local. 682 if (!F->hasLocalLinkage()) { 683 if (const Comdat *C = F->getComdat()) { 684 --ComdatEntriesAlive[C]; 685 DeadFunctionsInComdats.push_back(CGN); 686 continue; 687 } 688 } 689 690 RemoveCGN(CGN); 691 } 692 if (!DeadFunctionsInComdats.empty()) { 693 // Count up all the entities in COMDAT groups 694 auto ComdatGroupReferenced = [&](const Comdat *C) { 695 auto I = ComdatEntriesAlive.find(C); 696 if (I != ComdatEntriesAlive.end()) 697 ++(I->getSecond()); 698 }; 699 for (const Function &F : CG.getModule()) 700 if (const Comdat *C = F.getComdat()) 701 ComdatGroupReferenced(C); 702 for (const GlobalVariable &GV : CG.getModule().globals()) 703 if (const Comdat *C = GV.getComdat()) 704 ComdatGroupReferenced(C); 705 for (const GlobalAlias &GA : CG.getModule().aliases()) 706 if (const Comdat *C = GA.getComdat()) 707 ComdatGroupReferenced(C); 708 for (CallGraphNode *CGN : DeadFunctionsInComdats) { 709 Function *F = CGN->getFunction(); 710 const Comdat *C = F->getComdat(); 711 int NumAlive = ComdatEntriesAlive[C]; 712 // We can remove functions in a COMDAT group if the entire group is dead. 713 assert(NumAlive >= 0); 714 if (NumAlive > 0) 715 continue; 716 717 RemoveCGN(CGN); 718 } 719 } 720 721 if (FunctionsToRemove.empty()) 722 return false; 723 724 // Now that we know which functions to delete, do so. We didn't want to do 725 // this inline, because that would invalidate our CallGraph::iterator 726 // objects. :( 727 // 728 // Note that it doesn't matter that we are iterating over a non-stable order 729 // here to do this, it doesn't matter which order the functions are deleted 730 // in. 731 array_pod_sort(FunctionsToRemove.begin(), FunctionsToRemove.end()); 732 FunctionsToRemove.erase(std::unique(FunctionsToRemove.begin(), 733 FunctionsToRemove.end()), 734 FunctionsToRemove.end()); 735 for (CallGraphNode *CGN : FunctionsToRemove) { 736 delete CG.removeFunctionFromModule(CGN); 737 ++NumDeleted; 738 } 739 return true; 740 } 741