1 //===- Inliner.cpp - Code common to all inliners --------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the mechanics required to implement inlining without 10 // missing any calls and updating the call graph. The decisions of which calls 11 // are profitable to inline are implemented elsewhere. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/IPO/Inliner.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/None.h" 18 #include "llvm/ADT/Optional.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/ScopeExit.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/Analysis/AssumptionCache.h" 27 #include "llvm/Analysis/BasicAliasAnalysis.h" 28 #include "llvm/Analysis/BlockFrequencyInfo.h" 29 #include "llvm/Analysis/CGSCCPassManager.h" 30 #include "llvm/Analysis/CallGraph.h" 31 #include "llvm/Analysis/GlobalsModRef.h" 32 #include "llvm/Analysis/InlineAdvisor.h" 33 #include "llvm/Analysis/InlineCost.h" 34 #include "llvm/Analysis/LazyCallGraph.h" 35 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 36 #include "llvm/Analysis/ProfileSummaryInfo.h" 37 #include "llvm/Analysis/TargetLibraryInfo.h" 38 #include "llvm/Analysis/TargetTransformInfo.h" 39 #include "llvm/Analysis/Utils/ImportedFunctionsInliningStatistics.h" 40 #include "llvm/IR/Attributes.h" 41 #include "llvm/IR/BasicBlock.h" 42 #include "llvm/IR/DataLayout.h" 43 #include "llvm/IR/DebugLoc.h" 44 #include "llvm/IR/DerivedTypes.h" 45 #include "llvm/IR/DiagnosticInfo.h" 46 #include "llvm/IR/Function.h" 47 #include "llvm/IR/InstIterator.h" 48 #include "llvm/IR/Instruction.h" 49 #include "llvm/IR/Instructions.h" 50 #include "llvm/IR/IntrinsicInst.h" 51 #include "llvm/IR/Metadata.h" 52 #include "llvm/IR/Module.h" 53 #include "llvm/IR/PassManager.h" 54 #include "llvm/IR/User.h" 55 #include "llvm/IR/Value.h" 56 #include "llvm/Pass.h" 57 #include "llvm/Support/Casting.h" 58 #include "llvm/Support/CommandLine.h" 59 #include "llvm/Support/Debug.h" 60 #include "llvm/Support/raw_ostream.h" 61 #include "llvm/Transforms/Utils/CallPromotionUtils.h" 62 #include "llvm/Transforms/Utils/Cloning.h" 63 #include "llvm/Transforms/Utils/Local.h" 64 #include "llvm/Transforms/Utils/ModuleUtils.h" 65 #include <algorithm> 66 #include <cassert> 67 #include <functional> 68 #include <sstream> 69 #include <tuple> 70 #include <utility> 71 #include <vector> 72 73 using namespace llvm; 74 75 #define DEBUG_TYPE "inline" 76 77 STATISTIC(NumInlined, "Number of functions inlined"); 78 STATISTIC(NumCallsDeleted, "Number of call sites deleted, not inlined"); 79 STATISTIC(NumDeleted, "Number of functions deleted because all callers found"); 80 STATISTIC(NumMergedAllocas, "Number of allocas merged together"); 81 82 /// Flag to disable manual alloca merging. 83 /// 84 /// Merging of allocas was originally done as a stack-size saving technique 85 /// prior to LLVM's code generator having support for stack coloring based on 86 /// lifetime markers. It is now in the process of being removed. To experiment 87 /// with disabling it and relying fully on lifetime marker based stack 88 /// coloring, you can pass this flag to LLVM. 89 static cl::opt<bool> 90 DisableInlinedAllocaMerging("disable-inlined-alloca-merging", 91 cl::init(false), cl::Hidden); 92 93 extern cl::opt<InlinerFunctionImportStatsOpts> InlinerFunctionImportStats; 94 95 LegacyInlinerBase::LegacyInlinerBase(char &ID) : CallGraphSCCPass(ID) {} 96 97 LegacyInlinerBase::LegacyInlinerBase(char &ID, bool InsertLifetime) 98 : CallGraphSCCPass(ID), InsertLifetime(InsertLifetime) {} 99 100 /// For this class, we declare that we require and preserve the call graph. 101 /// If the derived class implements this method, it should 102 /// always explicitly call the implementation here. 103 void LegacyInlinerBase::getAnalysisUsage(AnalysisUsage &AU) const { 104 AU.addRequired<AssumptionCacheTracker>(); 105 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 106 AU.addRequired<TargetLibraryInfoWrapperPass>(); 107 getAAResultsAnalysisUsage(AU); 108 CallGraphSCCPass::getAnalysisUsage(AU); 109 } 110 111 using InlinedArrayAllocasTy = DenseMap<ArrayType *, std::vector<AllocaInst *>>; 112 113 /// Look at all of the allocas that we inlined through this call site. If we 114 /// have already inlined other allocas through other calls into this function, 115 /// then we know that they have disjoint lifetimes and that we can merge them. 116 /// 117 /// There are many heuristics possible for merging these allocas, and the 118 /// different options have different tradeoffs. One thing that we *really* 119 /// don't want to hurt is SRoA: once inlining happens, often allocas are no 120 /// longer address taken and so they can be promoted. 121 /// 122 /// Our "solution" for that is to only merge allocas whose outermost type is an 123 /// array type. These are usually not promoted because someone is using a 124 /// variable index into them. These are also often the most important ones to 125 /// merge. 126 /// 127 /// A better solution would be to have real memory lifetime markers in the IR 128 /// and not have the inliner do any merging of allocas at all. This would 129 /// allow the backend to do proper stack slot coloring of all allocas that 130 /// *actually make it to the backend*, which is really what we want. 131 /// 132 /// Because we don't have this information, we do this simple and useful hack. 133 static void mergeInlinedArrayAllocas(Function *Caller, InlineFunctionInfo &IFI, 134 InlinedArrayAllocasTy &InlinedArrayAllocas, 135 int InlineHistory) { 136 SmallPtrSet<AllocaInst *, 16> UsedAllocas; 137 138 // When processing our SCC, check to see if the call site was inlined from 139 // some other call site. For example, if we're processing "A" in this code: 140 // A() { B() } 141 // B() { x = alloca ... C() } 142 // C() { y = alloca ... } 143 // Assume that C was not inlined into B initially, and so we're processing A 144 // and decide to inline B into A. Doing this makes an alloca available for 145 // reuse and makes a callsite (C) available for inlining. When we process 146 // the C call site we don't want to do any alloca merging between X and Y 147 // because their scopes are not disjoint. We could make this smarter by 148 // keeping track of the inline history for each alloca in the 149 // InlinedArrayAllocas but this isn't likely to be a significant win. 150 if (InlineHistory != -1) // Only do merging for top-level call sites in SCC. 151 return; 152 153 // Loop over all the allocas we have so far and see if they can be merged with 154 // a previously inlined alloca. If not, remember that we had it. 155 for (unsigned AllocaNo = 0, E = IFI.StaticAllocas.size(); AllocaNo != E; 156 ++AllocaNo) { 157 AllocaInst *AI = IFI.StaticAllocas[AllocaNo]; 158 159 // Don't bother trying to merge array allocations (they will usually be 160 // canonicalized to be an allocation *of* an array), or allocations whose 161 // type is not itself an array (because we're afraid of pessimizing SRoA). 162 ArrayType *ATy = dyn_cast<ArrayType>(AI->getAllocatedType()); 163 if (!ATy || AI->isArrayAllocation()) 164 continue; 165 166 // Get the list of all available allocas for this array type. 167 std::vector<AllocaInst *> &AllocasForType = InlinedArrayAllocas[ATy]; 168 169 // Loop over the allocas in AllocasForType to see if we can reuse one. Note 170 // that we have to be careful not to reuse the same "available" alloca for 171 // multiple different allocas that we just inlined, we use the 'UsedAllocas' 172 // set to keep track of which "available" allocas are being used by this 173 // function. Also, AllocasForType can be empty of course! 174 bool MergedAwayAlloca = false; 175 for (AllocaInst *AvailableAlloca : AllocasForType) { 176 Align Align1 = AI->getAlign(); 177 Align Align2 = AvailableAlloca->getAlign(); 178 179 // The available alloca has to be in the right function, not in some other 180 // function in this SCC. 181 if (AvailableAlloca->getParent() != AI->getParent()) 182 continue; 183 184 // If the inlined function already uses this alloca then we can't reuse 185 // it. 186 if (!UsedAllocas.insert(AvailableAlloca).second) 187 continue; 188 189 // Otherwise, we *can* reuse it, RAUW AI into AvailableAlloca and declare 190 // success! 191 LLVM_DEBUG(dbgs() << " ***MERGED ALLOCA: " << *AI 192 << "\n\t\tINTO: " << *AvailableAlloca << '\n'); 193 194 // Move affected dbg.declare calls immediately after the new alloca to 195 // avoid the situation when a dbg.declare precedes its alloca. 196 if (auto *L = LocalAsMetadata::getIfExists(AI)) 197 if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L)) 198 for (User *U : MDV->users()) 199 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(U)) 200 DDI->moveBefore(AvailableAlloca->getNextNode()); 201 202 AI->replaceAllUsesWith(AvailableAlloca); 203 204 if (Align1 > Align2) 205 AvailableAlloca->setAlignment(AI->getAlign()); 206 207 AI->eraseFromParent(); 208 MergedAwayAlloca = true; 209 ++NumMergedAllocas; 210 IFI.StaticAllocas[AllocaNo] = nullptr; 211 break; 212 } 213 214 // If we already nuked the alloca, we're done with it. 215 if (MergedAwayAlloca) 216 continue; 217 218 // If we were unable to merge away the alloca either because there are no 219 // allocas of the right type available or because we reused them all 220 // already, remember that this alloca came from an inlined function and mark 221 // it used so we don't reuse it for other allocas from this inline 222 // operation. 223 AllocasForType.push_back(AI); 224 UsedAllocas.insert(AI); 225 } 226 } 227 228 /// If it is possible to inline the specified call site, 229 /// do so and update the CallGraph for this operation. 230 /// 231 /// This function also does some basic book-keeping to update the IR. The 232 /// InlinedArrayAllocas map keeps track of any allocas that are already 233 /// available from other functions inlined into the caller. If we are able to 234 /// inline this call site we attempt to reuse already available allocas or add 235 /// any new allocas to the set if not possible. 236 static InlineResult inlineCallIfPossible( 237 CallBase &CB, InlineFunctionInfo &IFI, 238 InlinedArrayAllocasTy &InlinedArrayAllocas, int InlineHistory, 239 bool InsertLifetime, function_ref<AAResults &(Function &)> &AARGetter, 240 ImportedFunctionsInliningStatistics &ImportedFunctionsStats) { 241 Function *Callee = CB.getCalledFunction(); 242 Function *Caller = CB.getCaller(); 243 244 AAResults &AAR = AARGetter(*Callee); 245 246 // Try to inline the function. Get the list of static allocas that were 247 // inlined. 248 InlineResult IR = InlineFunction(CB, IFI, &AAR, InsertLifetime); 249 if (!IR.isSuccess()) 250 return IR; 251 252 if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No) 253 ImportedFunctionsStats.recordInline(*Caller, *Callee); 254 255 AttributeFuncs::mergeAttributesForInlining(*Caller, *Callee); 256 257 if (!DisableInlinedAllocaMerging) 258 mergeInlinedArrayAllocas(Caller, IFI, InlinedArrayAllocas, InlineHistory); 259 260 return IR; // success 261 } 262 263 /// Return true if the specified inline history ID 264 /// indicates an inline history that includes the specified function. 265 static bool inlineHistoryIncludes( 266 Function *F, int InlineHistoryID, 267 const SmallVectorImpl<std::pair<Function *, int>> &InlineHistory) { 268 while (InlineHistoryID != -1) { 269 assert(unsigned(InlineHistoryID) < InlineHistory.size() && 270 "Invalid inline history ID"); 271 if (InlineHistory[InlineHistoryID].first == F) 272 return true; 273 InlineHistoryID = InlineHistory[InlineHistoryID].second; 274 } 275 return false; 276 } 277 278 bool LegacyInlinerBase::doInitialization(CallGraph &CG) { 279 if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No) 280 ImportedFunctionsStats.setModuleInfo(CG.getModule()); 281 return false; // No changes to CallGraph. 282 } 283 284 bool LegacyInlinerBase::runOnSCC(CallGraphSCC &SCC) { 285 if (skipSCC(SCC)) 286 return false; 287 return inlineCalls(SCC); 288 } 289 290 static bool 291 inlineCallsImpl(CallGraphSCC &SCC, CallGraph &CG, 292 std::function<AssumptionCache &(Function &)> GetAssumptionCache, 293 ProfileSummaryInfo *PSI, 294 std::function<const TargetLibraryInfo &(Function &)> GetTLI, 295 bool InsertLifetime, 296 function_ref<InlineCost(CallBase &CB)> GetInlineCost, 297 function_ref<AAResults &(Function &)> AARGetter, 298 ImportedFunctionsInliningStatistics &ImportedFunctionsStats) { 299 SmallPtrSet<Function *, 8> SCCFunctions; 300 LLVM_DEBUG(dbgs() << "Inliner visiting SCC:"); 301 for (CallGraphNode *Node : SCC) { 302 Function *F = Node->getFunction(); 303 if (F) 304 SCCFunctions.insert(F); 305 LLVM_DEBUG(dbgs() << " " << (F ? F->getName() : "INDIRECTNODE")); 306 } 307 308 // Scan through and identify all call sites ahead of time so that we only 309 // inline call sites in the original functions, not call sites that result 310 // from inlining other functions. 311 SmallVector<std::pair<CallBase *, int>, 16> CallSites; 312 313 // When inlining a callee produces new call sites, we want to keep track of 314 // the fact that they were inlined from the callee. This allows us to avoid 315 // infinite inlining in some obscure cases. To represent this, we use an 316 // index into the InlineHistory vector. 317 SmallVector<std::pair<Function *, int>, 8> InlineHistory; 318 319 for (CallGraphNode *Node : SCC) { 320 Function *F = Node->getFunction(); 321 if (!F || F->isDeclaration()) 322 continue; 323 324 OptimizationRemarkEmitter ORE(F); 325 for (BasicBlock &BB : *F) 326 for (Instruction &I : BB) { 327 auto *CB = dyn_cast<CallBase>(&I); 328 // If this isn't a call, or it is a call to an intrinsic, it can 329 // never be inlined. 330 if (!CB || isa<IntrinsicInst>(I)) 331 continue; 332 333 // If this is a direct call to an external function, we can never inline 334 // it. If it is an indirect call, inlining may resolve it to be a 335 // direct call, so we keep it. 336 if (Function *Callee = CB->getCalledFunction()) 337 if (Callee->isDeclaration()) { 338 using namespace ore; 339 340 setInlineRemark(*CB, "unavailable definition"); 341 ORE.emit([&]() { 342 return OptimizationRemarkMissed(DEBUG_TYPE, "NoDefinition", &I) 343 << NV("Callee", Callee) << " will not be inlined into " 344 << NV("Caller", CB->getCaller()) 345 << " because its definition is unavailable" 346 << setIsVerbose(); 347 }); 348 continue; 349 } 350 351 CallSites.push_back(std::make_pair(CB, -1)); 352 } 353 } 354 355 LLVM_DEBUG(dbgs() << ": " << CallSites.size() << " call sites.\n"); 356 357 // If there are no calls in this function, exit early. 358 if (CallSites.empty()) 359 return false; 360 361 // Now that we have all of the call sites, move the ones to functions in the 362 // current SCC to the end of the list. 363 unsigned FirstCallInSCC = CallSites.size(); 364 for (unsigned I = 0; I < FirstCallInSCC; ++I) 365 if (Function *F = CallSites[I].first->getCalledFunction()) 366 if (SCCFunctions.count(F)) 367 std::swap(CallSites[I--], CallSites[--FirstCallInSCC]); 368 369 InlinedArrayAllocasTy InlinedArrayAllocas; 370 InlineFunctionInfo InlineInfo(&CG, GetAssumptionCache, PSI); 371 372 // Now that we have all of the call sites, loop over them and inline them if 373 // it looks profitable to do so. 374 bool Changed = false; 375 bool LocalChange; 376 do { 377 LocalChange = false; 378 // Iterate over the outer loop because inlining functions can cause indirect 379 // calls to become direct calls. 380 // CallSites may be modified inside so ranged for loop can not be used. 381 for (unsigned CSi = 0; CSi != CallSites.size(); ++CSi) { 382 auto &P = CallSites[CSi]; 383 CallBase &CB = *P.first; 384 const int InlineHistoryID = P.second; 385 386 Function *Caller = CB.getCaller(); 387 Function *Callee = CB.getCalledFunction(); 388 389 // We can only inline direct calls to non-declarations. 390 if (!Callee || Callee->isDeclaration()) 391 continue; 392 393 bool IsTriviallyDead = isInstructionTriviallyDead(&CB, &GetTLI(*Caller)); 394 395 if (!IsTriviallyDead) { 396 // If this call site was obtained by inlining another function, verify 397 // that the include path for the function did not include the callee 398 // itself. If so, we'd be recursively inlining the same function, 399 // which would provide the same callsites, which would cause us to 400 // infinitely inline. 401 if (InlineHistoryID != -1 && 402 inlineHistoryIncludes(Callee, InlineHistoryID, InlineHistory)) { 403 setInlineRemark(CB, "recursive"); 404 continue; 405 } 406 } 407 408 // FIXME for new PM: because of the old PM we currently generate ORE and 409 // in turn BFI on demand. With the new PM, the ORE dependency should 410 // just become a regular analysis dependency. 411 OptimizationRemarkEmitter ORE(Caller); 412 413 auto OIC = shouldInline(CB, GetInlineCost, ORE); 414 // If the policy determines that we should inline this function, 415 // delete the call instead. 416 if (!OIC) 417 continue; 418 419 // If this call site is dead and it is to a readonly function, we should 420 // just delete the call instead of trying to inline it, regardless of 421 // size. This happens because IPSCCP propagates the result out of the 422 // call and then we're left with the dead call. 423 if (IsTriviallyDead) { 424 LLVM_DEBUG(dbgs() << " -> Deleting dead call: " << CB << "\n"); 425 // Update the call graph by deleting the edge from Callee to Caller. 426 setInlineRemark(CB, "trivially dead"); 427 CG[Caller]->removeCallEdgeFor(CB); 428 CB.eraseFromParent(); 429 ++NumCallsDeleted; 430 } else { 431 // Get DebugLoc to report. CB will be invalid after Inliner. 432 DebugLoc DLoc = CB.getDebugLoc(); 433 BasicBlock *Block = CB.getParent(); 434 435 // Attempt to inline the function. 436 using namespace ore; 437 438 InlineResult IR = inlineCallIfPossible( 439 CB, InlineInfo, InlinedArrayAllocas, InlineHistoryID, 440 InsertLifetime, AARGetter, ImportedFunctionsStats); 441 if (!IR.isSuccess()) { 442 setInlineRemark(CB, std::string(IR.getFailureReason()) + "; " + 443 inlineCostStr(*OIC)); 444 ORE.emit([&]() { 445 return OptimizationRemarkMissed(DEBUG_TYPE, "NotInlined", DLoc, 446 Block) 447 << NV("Callee", Callee) << " will not be inlined into " 448 << NV("Caller", Caller) << ": " 449 << NV("Reason", IR.getFailureReason()); 450 }); 451 continue; 452 } 453 ++NumInlined; 454 455 emitInlinedInto(ORE, DLoc, Block, *Callee, *Caller, *OIC); 456 457 // If inlining this function gave us any new call sites, throw them 458 // onto our worklist to process. They are useful inline candidates. 459 if (!InlineInfo.InlinedCalls.empty()) { 460 // Create a new inline history entry for this, so that we remember 461 // that these new callsites came about due to inlining Callee. 462 int NewHistoryID = InlineHistory.size(); 463 InlineHistory.push_back(std::make_pair(Callee, InlineHistoryID)); 464 465 #ifndef NDEBUG 466 // Make sure no dupplicates in the inline candidates. This could 467 // happen when a callsite is simpilfied to reusing the return value 468 // of another callsite during function cloning, thus the other 469 // callsite will be reconsidered here. 470 DenseSet<CallBase *> DbgCallSites; 471 for (auto &II : CallSites) 472 DbgCallSites.insert(II.first); 473 #endif 474 475 for (Value *Ptr : InlineInfo.InlinedCalls) { 476 #ifndef NDEBUG 477 assert(DbgCallSites.count(dyn_cast<CallBase>(Ptr)) == 0); 478 #endif 479 CallSites.push_back( 480 std::make_pair(dyn_cast<CallBase>(Ptr), NewHistoryID)); 481 } 482 } 483 } 484 485 // If we inlined or deleted the last possible call site to the function, 486 // delete the function body now. 487 if (Callee && Callee->use_empty() && Callee->hasLocalLinkage() && 488 // TODO: Can remove if in SCC now. 489 !SCCFunctions.count(Callee) && 490 // The function may be apparently dead, but if there are indirect 491 // callgraph references to the node, we cannot delete it yet, this 492 // could invalidate the CGSCC iterator. 493 CG[Callee]->getNumReferences() == 0) { 494 LLVM_DEBUG(dbgs() << " -> Deleting dead function: " 495 << Callee->getName() << "\n"); 496 CallGraphNode *CalleeNode = CG[Callee]; 497 498 // Remove any call graph edges from the callee to its callees. 499 CalleeNode->removeAllCalledFunctions(); 500 501 // Removing the node for callee from the call graph and delete it. 502 delete CG.removeFunctionFromModule(CalleeNode); 503 ++NumDeleted; 504 } 505 506 // Remove this call site from the list. If possible, use 507 // swap/pop_back for efficiency, but do not use it if doing so would 508 // move a call site to a function in this SCC before the 509 // 'FirstCallInSCC' barrier. 510 if (SCC.isSingular()) { 511 CallSites[CSi] = CallSites.back(); 512 CallSites.pop_back(); 513 } else { 514 CallSites.erase(CallSites.begin() + CSi); 515 } 516 --CSi; 517 518 Changed = true; 519 LocalChange = true; 520 } 521 } while (LocalChange); 522 523 return Changed; 524 } 525 526 bool LegacyInlinerBase::inlineCalls(CallGraphSCC &SCC) { 527 CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph(); 528 ACT = &getAnalysis<AssumptionCacheTracker>(); 529 PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 530 GetTLI = [&](Function &F) -> const TargetLibraryInfo & { 531 return getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 532 }; 533 auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & { 534 return ACT->getAssumptionCache(F); 535 }; 536 return inlineCallsImpl( 537 SCC, CG, GetAssumptionCache, PSI, GetTLI, InsertLifetime, 538 [&](CallBase &CB) { return getInlineCost(CB); }, LegacyAARGetter(*this), 539 ImportedFunctionsStats); 540 } 541 542 /// Remove now-dead linkonce functions at the end of 543 /// processing to avoid breaking the SCC traversal. 544 bool LegacyInlinerBase::doFinalization(CallGraph &CG) { 545 if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No) 546 ImportedFunctionsStats.dump(InlinerFunctionImportStats == 547 InlinerFunctionImportStatsOpts::Verbose); 548 return removeDeadFunctions(CG); 549 } 550 551 /// Remove dead functions that are not included in DNR (Do Not Remove) list. 552 bool LegacyInlinerBase::removeDeadFunctions(CallGraph &CG, 553 bool AlwaysInlineOnly) { 554 SmallVector<CallGraphNode *, 16> FunctionsToRemove; 555 SmallVector<Function *, 16> DeadFunctionsInComdats; 556 557 auto RemoveCGN = [&](CallGraphNode *CGN) { 558 // Remove any call graph edges from the function to its callees. 559 CGN->removeAllCalledFunctions(); 560 561 // Remove any edges from the external node to the function's call graph 562 // node. These edges might have been made irrelegant due to 563 // optimization of the program. 564 CG.getExternalCallingNode()->removeAnyCallEdgeTo(CGN); 565 566 // Removing the node for callee from the call graph and delete it. 567 FunctionsToRemove.push_back(CGN); 568 }; 569 570 // Scan for all of the functions, looking for ones that should now be removed 571 // from the program. Insert the dead ones in the FunctionsToRemove set. 572 for (const auto &I : CG) { 573 CallGraphNode *CGN = I.second.get(); 574 Function *F = CGN->getFunction(); 575 if (!F || F->isDeclaration()) 576 continue; 577 578 // Handle the case when this function is called and we only want to care 579 // about always-inline functions. This is a bit of a hack to share code 580 // between here and the InlineAlways pass. 581 if (AlwaysInlineOnly && !F->hasFnAttribute(Attribute::AlwaysInline)) 582 continue; 583 584 // If the only remaining users of the function are dead constants, remove 585 // them. 586 F->removeDeadConstantUsers(); 587 588 if (!F->isDefTriviallyDead()) 589 continue; 590 591 // It is unsafe to drop a function with discardable linkage from a COMDAT 592 // without also dropping the other members of the COMDAT. 593 // The inliner doesn't visit non-function entities which are in COMDAT 594 // groups so it is unsafe to do so *unless* the linkage is local. 595 if (!F->hasLocalLinkage()) { 596 if (F->hasComdat()) { 597 DeadFunctionsInComdats.push_back(F); 598 continue; 599 } 600 } 601 602 RemoveCGN(CGN); 603 } 604 if (!DeadFunctionsInComdats.empty()) { 605 // Filter out the functions whose comdats remain alive. 606 filterDeadComdatFunctions(CG.getModule(), DeadFunctionsInComdats); 607 // Remove the rest. 608 for (Function *F : DeadFunctionsInComdats) 609 RemoveCGN(CG[F]); 610 } 611 612 if (FunctionsToRemove.empty()) 613 return false; 614 615 // Now that we know which functions to delete, do so. We didn't want to do 616 // this inline, because that would invalidate our CallGraph::iterator 617 // objects. :( 618 // 619 // Note that it doesn't matter that we are iterating over a non-stable order 620 // here to do this, it doesn't matter which order the functions are deleted 621 // in. 622 array_pod_sort(FunctionsToRemove.begin(), FunctionsToRemove.end()); 623 FunctionsToRemove.erase( 624 std::unique(FunctionsToRemove.begin(), FunctionsToRemove.end()), 625 FunctionsToRemove.end()); 626 for (CallGraphNode *CGN : FunctionsToRemove) { 627 delete CG.removeFunctionFromModule(CGN); 628 ++NumDeleted; 629 } 630 return true; 631 } 632 633 InlineAdvisor & 634 InlinerPass::getAdvisor(const ModuleAnalysisManagerCGSCCProxy::Result &MAM, 635 FunctionAnalysisManager &FAM, Module &M) { 636 if (OwnedDefaultAdvisor) 637 return *OwnedDefaultAdvisor; 638 639 auto *IAA = MAM.getCachedResult<InlineAdvisorAnalysis>(M); 640 if (!IAA) { 641 // It should still be possible to run the inliner as a stand-alone SCC pass, 642 // for test scenarios. In that case, we default to the 643 // DefaultInlineAdvisor, which doesn't need to keep state between SCC pass 644 // runs. It also uses just the default InlineParams. 645 // In this case, we need to use the provided FAM, which is valid for the 646 // duration of the inliner pass, and thus the lifetime of the owned advisor. 647 // The one we would get from the MAM can be invalidated as a result of the 648 // inliner's activity. 649 OwnedDefaultAdvisor = 650 std::make_unique<DefaultInlineAdvisor>(M, FAM, getInlineParams()); 651 return *OwnedDefaultAdvisor; 652 } 653 assert(IAA->getAdvisor() && 654 "Expected a present InlineAdvisorAnalysis also have an " 655 "InlineAdvisor initialized"); 656 return *IAA->getAdvisor(); 657 } 658 659 PreservedAnalyses InlinerPass::run(LazyCallGraph::SCC &InitialC, 660 CGSCCAnalysisManager &AM, LazyCallGraph &CG, 661 CGSCCUpdateResult &UR) { 662 const auto &MAMProxy = 663 AM.getResult<ModuleAnalysisManagerCGSCCProxy>(InitialC, CG); 664 bool Changed = false; 665 666 assert(InitialC.size() > 0 && "Cannot handle an empty SCC!"); 667 Module &M = *InitialC.begin()->getFunction().getParent(); 668 ProfileSummaryInfo *PSI = MAMProxy.getCachedResult<ProfileSummaryAnalysis>(M); 669 670 FunctionAnalysisManager &FAM = 671 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(InitialC, CG) 672 .getManager(); 673 674 InlineAdvisor &Advisor = getAdvisor(MAMProxy, FAM, M); 675 Advisor.onPassEntry(); 676 677 auto AdvisorOnExit = make_scope_exit([&] { Advisor.onPassExit(); }); 678 679 // We use a single common worklist for calls across the entire SCC. We 680 // process these in-order and append new calls introduced during inlining to 681 // the end. 682 // 683 // Note that this particular order of processing is actually critical to 684 // avoid very bad behaviors. Consider *highly connected* call graphs where 685 // each function contains a small amount of code and a couple of calls to 686 // other functions. Because the LLVM inliner is fundamentally a bottom-up 687 // inliner, it can handle gracefully the fact that these all appear to be 688 // reasonable inlining candidates as it will flatten things until they become 689 // too big to inline, and then move on and flatten another batch. 690 // 691 // However, when processing call edges *within* an SCC we cannot rely on this 692 // bottom-up behavior. As a consequence, with heavily connected *SCCs* of 693 // functions we can end up incrementally inlining N calls into each of 694 // N functions because each incremental inlining decision looks good and we 695 // don't have a topological ordering to prevent explosions. 696 // 697 // To compensate for this, we don't process transitive edges made immediate 698 // by inlining until we've done one pass of inlining across the entire SCC. 699 // Large, highly connected SCCs still lead to some amount of code bloat in 700 // this model, but it is uniformly spread across all the functions in the SCC 701 // and eventually they all become too large to inline, rather than 702 // incrementally maknig a single function grow in a super linear fashion. 703 SmallVector<std::pair<CallBase *, int>, 16> Calls; 704 705 // Populate the initial list of calls in this SCC. 706 for (auto &N : InitialC) { 707 auto &ORE = 708 FAM.getResult<OptimizationRemarkEmitterAnalysis>(N.getFunction()); 709 // We want to generally process call sites top-down in order for 710 // simplifications stemming from replacing the call with the returned value 711 // after inlining to be visible to subsequent inlining decisions. 712 // FIXME: Using instructions sequence is a really bad way to do this. 713 // Instead we should do an actual RPO walk of the function body. 714 for (Instruction &I : instructions(N.getFunction())) 715 if (auto *CB = dyn_cast<CallBase>(&I)) 716 if (Function *Callee = CB->getCalledFunction()) { 717 if (!Callee->isDeclaration()) 718 Calls.push_back({CB, -1}); 719 else if (!isa<IntrinsicInst>(I)) { 720 using namespace ore; 721 setInlineRemark(*CB, "unavailable definition"); 722 ORE.emit([&]() { 723 return OptimizationRemarkMissed(DEBUG_TYPE, "NoDefinition", &I) 724 << NV("Callee", Callee) << " will not be inlined into " 725 << NV("Caller", CB->getCaller()) 726 << " because its definition is unavailable" 727 << setIsVerbose(); 728 }); 729 } 730 } 731 } 732 if (Calls.empty()) 733 return PreservedAnalyses::all(); 734 735 // Capture updatable variable for the current SCC. 736 auto *C = &InitialC; 737 738 // When inlining a callee produces new call sites, we want to keep track of 739 // the fact that they were inlined from the callee. This allows us to avoid 740 // infinite inlining in some obscure cases. To represent this, we use an 741 // index into the InlineHistory vector. 742 SmallVector<std::pair<Function *, int>, 16> InlineHistory; 743 744 // Track a set vector of inlined callees so that we can augment the caller 745 // with all of their edges in the call graph before pruning out the ones that 746 // got simplified away. 747 SmallSetVector<Function *, 4> InlinedCallees; 748 749 // Track the dead functions to delete once finished with inlining calls. We 750 // defer deleting these to make it easier to handle the call graph updates. 751 SmallVector<Function *, 4> DeadFunctions; 752 753 // Loop forward over all of the calls. Note that we cannot cache the size as 754 // inlining can introduce new calls that need to be processed. 755 for (int I = 0; I < (int)Calls.size(); ++I) { 756 // We expect the calls to typically be batched with sequences of calls that 757 // have the same caller, so we first set up some shared infrastructure for 758 // this caller. We also do any pruning we can at this layer on the caller 759 // alone. 760 Function &F = *Calls[I].first->getCaller(); 761 LazyCallGraph::Node &N = *CG.lookup(F); 762 if (CG.lookupSCC(N) != C) 763 continue; 764 765 LLVM_DEBUG(dbgs() << "Inlining calls in: " << F.getName() << "\n"); 766 767 auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & { 768 return FAM.getResult<AssumptionAnalysis>(F); 769 }; 770 771 // Now process as many calls as we have within this caller in the sequence. 772 // We bail out as soon as the caller has to change so we can update the 773 // call graph and prepare the context of that new caller. 774 bool DidInline = false; 775 for (; I < (int)Calls.size() && Calls[I].first->getCaller() == &F; ++I) { 776 auto &P = Calls[I]; 777 CallBase *CB = P.first; 778 const int InlineHistoryID = P.second; 779 Function &Callee = *CB->getCalledFunction(); 780 781 if (InlineHistoryID != -1 && 782 inlineHistoryIncludes(&Callee, InlineHistoryID, InlineHistory)) { 783 setInlineRemark(*CB, "recursive"); 784 continue; 785 } 786 787 // Check if this inlining may repeat breaking an SCC apart that has 788 // already been split once before. In that case, inlining here may 789 // trigger infinite inlining, much like is prevented within the inliner 790 // itself by the InlineHistory above, but spread across CGSCC iterations 791 // and thus hidden from the full inline history. 792 if (CG.lookupSCC(*CG.lookup(Callee)) == C && 793 UR.InlinedInternalEdges.count({&N, C})) { 794 LLVM_DEBUG(dbgs() << "Skipping inlining internal SCC edge from a node " 795 "previously split out of this SCC by inlining: " 796 << F.getName() << " -> " << Callee.getName() << "\n"); 797 setInlineRemark(*CB, "recursive SCC split"); 798 continue; 799 } 800 801 auto Advice = Advisor.getAdvice(*CB, OnlyMandatory); 802 // Check whether we want to inline this callsite. 803 if (!Advice->isInliningRecommended()) { 804 Advice->recordUnattemptedInlining(); 805 continue; 806 } 807 808 // Setup the data structure used to plumb customization into the 809 // `InlineFunction` routine. 810 InlineFunctionInfo IFI( 811 /*cg=*/nullptr, GetAssumptionCache, PSI, 812 &FAM.getResult<BlockFrequencyAnalysis>(*(CB->getCaller())), 813 &FAM.getResult<BlockFrequencyAnalysis>(Callee)); 814 815 InlineResult IR = 816 InlineFunction(*CB, IFI, &FAM.getResult<AAManager>(*CB->getCaller())); 817 if (!IR.isSuccess()) { 818 Advice->recordUnsuccessfulInlining(IR); 819 continue; 820 } 821 822 DidInline = true; 823 InlinedCallees.insert(&Callee); 824 ++NumInlined; 825 826 // Add any new callsites to defined functions to the worklist. 827 if (!IFI.InlinedCallSites.empty()) { 828 int NewHistoryID = InlineHistory.size(); 829 InlineHistory.push_back({&Callee, InlineHistoryID}); 830 831 for (CallBase *ICB : reverse(IFI.InlinedCallSites)) { 832 Function *NewCallee = ICB->getCalledFunction(); 833 if (!NewCallee) { 834 // Try to promote an indirect (virtual) call without waiting for 835 // the post-inline cleanup and the next DevirtSCCRepeatedPass 836 // iteration because the next iteration may not happen and we may 837 // miss inlining it. 838 if (tryPromoteCall(*ICB)) 839 NewCallee = ICB->getCalledFunction(); 840 } 841 if (NewCallee) 842 if (!NewCallee->isDeclaration()) 843 Calls.push_back({ICB, NewHistoryID}); 844 } 845 } 846 847 // Merge the attributes based on the inlining. 848 AttributeFuncs::mergeAttributesForInlining(F, Callee); 849 850 // For local functions, check whether this makes the callee trivially 851 // dead. In that case, we can drop the body of the function eagerly 852 // which may reduce the number of callers of other functions to one, 853 // changing inline cost thresholds. 854 bool CalleeWasDeleted = false; 855 if (Callee.hasLocalLinkage()) { 856 // To check this we also need to nuke any dead constant uses (perhaps 857 // made dead by this operation on other functions). 858 Callee.removeDeadConstantUsers(); 859 if (Callee.use_empty() && !CG.isLibFunction(Callee)) { 860 Calls.erase( 861 std::remove_if(Calls.begin() + I + 1, Calls.end(), 862 [&](const std::pair<CallBase *, int> &Call) { 863 return Call.first->getCaller() == &Callee; 864 }), 865 Calls.end()); 866 // Clear the body and queue the function itself for deletion when we 867 // finish inlining and call graph updates. 868 // Note that after this point, it is an error to do anything other 869 // than use the callee's address or delete it. 870 Callee.dropAllReferences(); 871 assert(!is_contained(DeadFunctions, &Callee) && 872 "Cannot put cause a function to become dead twice!"); 873 DeadFunctions.push_back(&Callee); 874 CalleeWasDeleted = true; 875 } 876 } 877 if (CalleeWasDeleted) 878 Advice->recordInliningWithCalleeDeleted(); 879 else 880 Advice->recordInlining(); 881 } 882 883 // Back the call index up by one to put us in a good position to go around 884 // the outer loop. 885 --I; 886 887 if (!DidInline) 888 continue; 889 Changed = true; 890 891 // At this point, since we have made changes we have at least removed 892 // a call instruction. However, in the process we do some incremental 893 // simplification of the surrounding code. This simplification can 894 // essentially do all of the same things as a function pass and we can 895 // re-use the exact same logic for updating the call graph to reflect the 896 // change. 897 898 // Inside the update, we also update the FunctionAnalysisManager in the 899 // proxy for this particular SCC. We do this as the SCC may have changed and 900 // as we're going to mutate this particular function we want to make sure 901 // the proxy is in place to forward any invalidation events. 902 LazyCallGraph::SCC *OldC = C; 903 C = &updateCGAndAnalysisManagerForCGSCCPass(CG, *C, N, AM, UR, FAM); 904 LLVM_DEBUG(dbgs() << "Updated inlining SCC: " << *C << "\n"); 905 906 // If this causes an SCC to split apart into multiple smaller SCCs, there 907 // is a subtle risk we need to prepare for. Other transformations may 908 // expose an "infinite inlining" opportunity later, and because of the SCC 909 // mutation, we will revisit this function and potentially re-inline. If we 910 // do, and that re-inlining also has the potentially to mutate the SCC 911 // structure, the infinite inlining problem can manifest through infinite 912 // SCC splits and merges. To avoid this, we capture the originating caller 913 // node and the SCC containing the call edge. This is a slight over 914 // approximation of the possible inlining decisions that must be avoided, 915 // but is relatively efficient to store. We use C != OldC to know when 916 // a new SCC is generated and the original SCC may be generated via merge 917 // in later iterations. 918 // 919 // It is also possible that even if no new SCC is generated 920 // (i.e., C == OldC), the original SCC could be split and then merged 921 // into the same one as itself. and the original SCC will be added into 922 // UR.CWorklist again, we want to catch such cases too. 923 // 924 // FIXME: This seems like a very heavyweight way of retaining the inline 925 // history, we should look for a more efficient way of tracking it. 926 if ((C != OldC || UR.CWorklist.count(OldC)) && 927 llvm::any_of(InlinedCallees, [&](Function *Callee) { 928 return CG.lookupSCC(*CG.lookup(*Callee)) == OldC; 929 })) { 930 LLVM_DEBUG(dbgs() << "Inlined an internal call edge and split an SCC, " 931 "retaining this to avoid infinite inlining.\n"); 932 UR.InlinedInternalEdges.insert({&N, OldC}); 933 } 934 InlinedCallees.clear(); 935 } 936 937 // Now that we've finished inlining all of the calls across this SCC, delete 938 // all of the trivially dead functions, updating the call graph and the CGSCC 939 // pass manager in the process. 940 // 941 // Note that this walks a pointer set which has non-deterministic order but 942 // that is OK as all we do is delete things and add pointers to unordered 943 // sets. 944 for (Function *DeadF : DeadFunctions) { 945 // Get the necessary information out of the call graph and nuke the 946 // function there. Also, clear out any cached analyses. 947 auto &DeadC = *CG.lookupSCC(*CG.lookup(*DeadF)); 948 FAM.clear(*DeadF, DeadF->getName()); 949 AM.clear(DeadC, DeadC.getName()); 950 auto &DeadRC = DeadC.getOuterRefSCC(); 951 CG.removeDeadFunction(*DeadF); 952 953 // Mark the relevant parts of the call graph as invalid so we don't visit 954 // them. 955 UR.InvalidatedSCCs.insert(&DeadC); 956 UR.InvalidatedRefSCCs.insert(&DeadRC); 957 958 // And delete the actual function from the module. 959 // The Advisor may use Function pointers to efficiently index various 960 // internal maps, e.g. for memoization. Function cleanup passes like 961 // argument promotion create new functions. It is possible for a new 962 // function to be allocated at the address of a deleted function. We could 963 // index using names, but that's inefficient. Alternatively, we let the 964 // Advisor free the functions when it sees fit. 965 DeadF->getBasicBlockList().clear(); 966 M.getFunctionList().remove(DeadF); 967 968 ++NumDeleted; 969 } 970 971 if (!Changed) 972 return PreservedAnalyses::all(); 973 974 // Even if we change the IR, we update the core CGSCC data structures and so 975 // can preserve the proxy to the function analysis manager. 976 PreservedAnalyses PA; 977 PA.preserve<FunctionAnalysisManagerCGSCCProxy>(); 978 return PA; 979 } 980 981 ModuleInlinerWrapperPass::ModuleInlinerWrapperPass(InlineParams Params, 982 bool Debugging, 983 bool MandatoryFirst, 984 InliningAdvisorMode Mode, 985 unsigned MaxDevirtIterations) 986 : Params(Params), Mode(Mode), MaxDevirtIterations(MaxDevirtIterations), 987 PM(Debugging), MPM(Debugging) { 988 // Run the inliner first. The theory is that we are walking bottom-up and so 989 // the callees have already been fully optimized, and we want to inline them 990 // into the callers so that our optimizations can reflect that. 991 // For PreLinkThinLTO pass, we disable hot-caller heuristic for sample PGO 992 // because it makes profile annotation in the backend inaccurate. 993 if (MandatoryFirst) 994 PM.addPass(InlinerPass(/*OnlyMandatory*/ true)); 995 PM.addPass(InlinerPass()); 996 } 997 998 PreservedAnalyses ModuleInlinerWrapperPass::run(Module &M, 999 ModuleAnalysisManager &MAM) { 1000 auto &IAA = MAM.getResult<InlineAdvisorAnalysis>(M); 1001 if (!IAA.tryCreate(Params, Mode)) { 1002 M.getContext().emitError( 1003 "Could not setup Inlining Advisor for the requested " 1004 "mode and/or options"); 1005 return PreservedAnalyses::all(); 1006 } 1007 1008 // We wrap the CGSCC pipeline in a devirtualization repeater. This will try 1009 // to detect when we devirtualize indirect calls and iterate the SCC passes 1010 // in that case to try and catch knock-on inlining or function attrs 1011 // opportunities. Then we add it to the module pipeline by walking the SCCs 1012 // in postorder (or bottom-up). 1013 // If MaxDevirtIterations is 0, we just don't use the devirtualization 1014 // wrapper. 1015 if (MaxDevirtIterations == 0) 1016 MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(PM))); 1017 else 1018 MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor( 1019 createDevirtSCCRepeatedPass(std::move(PM), MaxDevirtIterations))); 1020 auto Ret = MPM.run(M, MAM); 1021 1022 IAA.clear(); 1023 return Ret; 1024 } 1025