1 //===- Inliner.cpp - Code common to all inliners --------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the mechanics required to implement inlining without 11 // missing any calls and updating the call graph. The decisions of which calls 12 // are profitable to inline are implemented elsewhere. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Transforms/IPO/InlinerPass.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/Analysis/AssumptionCache.h" 21 #include "llvm/Analysis/CallGraph.h" 22 #include "llvm/Analysis/InlineCost.h" 23 #include "llvm/Analysis/TargetLibraryInfo.h" 24 #include "llvm/IR/CallSite.h" 25 #include "llvm/IR/DataLayout.h" 26 #include "llvm/IR/DiagnosticInfo.h" 27 #include "llvm/IR/Instructions.h" 28 #include "llvm/IR/IntrinsicInst.h" 29 #include "llvm/IR/Module.h" 30 #include "llvm/Support/CommandLine.h" 31 #include "llvm/Support/Debug.h" 32 #include "llvm/Support/raw_ostream.h" 33 #include "llvm/Transforms/Utils/Cloning.h" 34 #include "llvm/Transforms/Utils/Local.h" 35 using namespace llvm; 36 37 #define DEBUG_TYPE "inline" 38 39 STATISTIC(NumInlined, "Number of functions inlined"); 40 STATISTIC(NumCallsDeleted, "Number of call sites deleted, not inlined"); 41 STATISTIC(NumDeleted, "Number of functions deleted because all callers found"); 42 STATISTIC(NumMergedAllocas, "Number of allocas merged together"); 43 44 // This weirdly named statistic tracks the number of times that, when attempting 45 // to inline a function A into B, we analyze the callers of B in order to see 46 // if those would be more profitable and blocked inline steps. 47 STATISTIC(NumCallerCallersAnalyzed, "Number of caller-callers analyzed"); 48 49 static cl::opt<int> 50 InlineLimit("inline-threshold", cl::Hidden, cl::init(225), cl::ZeroOrMore, 51 cl::desc("Control the amount of inlining to perform (default = 225)")); 52 53 static cl::opt<int> 54 HintThreshold("inlinehint-threshold", cl::Hidden, cl::init(325), 55 cl::desc("Threshold for inlining functions with inline hint")); 56 57 // We instroduce this threshold to help performance of instrumentation based 58 // PGO before we actually hook up inliner with analysis passes such as BPI and 59 // BFI. 60 static cl::opt<int> 61 ColdThreshold("inlinecold-threshold", cl::Hidden, cl::init(225), 62 cl::desc("Threshold for inlining functions with cold attribute")); 63 64 // Threshold to use when optsize is specified (and there is no -inline-limit). 65 const int OptSizeThreshold = 75; 66 67 Inliner::Inliner(char &ID) 68 : CallGraphSCCPass(ID), InlineThreshold(InlineLimit), InsertLifetime(true) {} 69 70 Inliner::Inliner(char &ID, int Threshold, bool InsertLifetime) 71 : CallGraphSCCPass(ID), InlineThreshold(InlineLimit.getNumOccurrences() > 0 ? 72 InlineLimit : Threshold), 73 InsertLifetime(InsertLifetime) {} 74 75 /// For this class, we declare that we require and preserve the call graph. 76 /// If the derived class implements this method, it should 77 /// always explicitly call the implementation here. 78 void Inliner::getAnalysisUsage(AnalysisUsage &AU) const { 79 AU.addRequired<AliasAnalysis>(); 80 AU.addRequired<AssumptionCacheTracker>(); 81 CallGraphSCCPass::getAnalysisUsage(AU); 82 } 83 84 85 typedef DenseMap<ArrayType*, std::vector<AllocaInst*> > 86 InlinedArrayAllocasTy; 87 88 /// \brief If the inlined function had a higher stack protection level than the 89 /// calling function, then bump up the caller's stack protection level. 90 static void AdjustCallerSSPLevel(Function *Caller, Function *Callee) { 91 // If upgrading the SSP attribute, clear out the old SSP Attributes first. 92 // Having multiple SSP attributes doesn't actually hurt, but it adds useless 93 // clutter to the IR. 94 AttrBuilder B; 95 B.addAttribute(Attribute::StackProtect) 96 .addAttribute(Attribute::StackProtectStrong) 97 .addAttribute(Attribute::StackProtectReq); 98 AttributeSet OldSSPAttr = AttributeSet::get(Caller->getContext(), 99 AttributeSet::FunctionIndex, 100 B); 101 102 if (Callee->hasFnAttribute(Attribute::SafeStack)) { 103 Caller->removeAttributes(AttributeSet::FunctionIndex, OldSSPAttr); 104 Caller->addFnAttr(Attribute::SafeStack); 105 } else if (Callee->hasFnAttribute(Attribute::StackProtectReq) && 106 !Caller->hasFnAttribute(Attribute::SafeStack)) { 107 Caller->removeAttributes(AttributeSet::FunctionIndex, OldSSPAttr); 108 Caller->addFnAttr(Attribute::StackProtectReq); 109 } else if (Callee->hasFnAttribute(Attribute::StackProtectStrong) && 110 !Caller->hasFnAttribute(Attribute::SafeStack) && 111 !Caller->hasFnAttribute(Attribute::StackProtectReq)) { 112 Caller->removeAttributes(AttributeSet::FunctionIndex, OldSSPAttr); 113 Caller->addFnAttr(Attribute::StackProtectStrong); 114 } else if (Callee->hasFnAttribute(Attribute::StackProtect) && 115 !Caller->hasFnAttribute(Attribute::SafeStack) && 116 !Caller->hasFnAttribute(Attribute::StackProtectReq) && 117 !Caller->hasFnAttribute(Attribute::StackProtectStrong)) 118 Caller->addFnAttr(Attribute::StackProtect); 119 } 120 121 /// If it is possible to inline the specified call site, 122 /// do so and update the CallGraph for this operation. 123 /// 124 /// This function also does some basic book-keeping to update the IR. The 125 /// InlinedArrayAllocas map keeps track of any allocas that are already 126 /// available from other functions inlined into the caller. If we are able to 127 /// inline this call site we attempt to reuse already available allocas or add 128 /// any new allocas to the set if not possible. 129 static bool InlineCallIfPossible(CallSite CS, InlineFunctionInfo &IFI, 130 InlinedArrayAllocasTy &InlinedArrayAllocas, 131 int InlineHistory, bool InsertLifetime) { 132 Function *Callee = CS.getCalledFunction(); 133 Function *Caller = CS.getCaller(); 134 135 // Try to inline the function. Get the list of static allocas that were 136 // inlined. 137 if (!InlineFunction(CS, IFI, InsertLifetime)) 138 return false; 139 140 AdjustCallerSSPLevel(Caller, Callee); 141 142 // Look at all of the allocas that we inlined through this call site. If we 143 // have already inlined other allocas through other calls into this function, 144 // then we know that they have disjoint lifetimes and that we can merge them. 145 // 146 // There are many heuristics possible for merging these allocas, and the 147 // different options have different tradeoffs. One thing that we *really* 148 // don't want to hurt is SRoA: once inlining happens, often allocas are no 149 // longer address taken and so they can be promoted. 150 // 151 // Our "solution" for that is to only merge allocas whose outermost type is an 152 // array type. These are usually not promoted because someone is using a 153 // variable index into them. These are also often the most important ones to 154 // merge. 155 // 156 // A better solution would be to have real memory lifetime markers in the IR 157 // and not have the inliner do any merging of allocas at all. This would 158 // allow the backend to do proper stack slot coloring of all allocas that 159 // *actually make it to the backend*, which is really what we want. 160 // 161 // Because we don't have this information, we do this simple and useful hack. 162 // 163 SmallPtrSet<AllocaInst*, 16> UsedAllocas; 164 165 // When processing our SCC, check to see if CS was inlined from some other 166 // call site. For example, if we're processing "A" in this code: 167 // A() { B() } 168 // B() { x = alloca ... C() } 169 // C() { y = alloca ... } 170 // Assume that C was not inlined into B initially, and so we're processing A 171 // and decide to inline B into A. Doing this makes an alloca available for 172 // reuse and makes a callsite (C) available for inlining. When we process 173 // the C call site we don't want to do any alloca merging between X and Y 174 // because their scopes are not disjoint. We could make this smarter by 175 // keeping track of the inline history for each alloca in the 176 // InlinedArrayAllocas but this isn't likely to be a significant win. 177 if (InlineHistory != -1) // Only do merging for top-level call sites in SCC. 178 return true; 179 180 // Loop over all the allocas we have so far and see if they can be merged with 181 // a previously inlined alloca. If not, remember that we had it. 182 for (unsigned AllocaNo = 0, e = IFI.StaticAllocas.size(); 183 AllocaNo != e; ++AllocaNo) { 184 AllocaInst *AI = IFI.StaticAllocas[AllocaNo]; 185 186 // Don't bother trying to merge array allocations (they will usually be 187 // canonicalized to be an allocation *of* an array), or allocations whose 188 // type is not itself an array (because we're afraid of pessimizing SRoA). 189 ArrayType *ATy = dyn_cast<ArrayType>(AI->getAllocatedType()); 190 if (!ATy || AI->isArrayAllocation()) 191 continue; 192 193 // Get the list of all available allocas for this array type. 194 std::vector<AllocaInst*> &AllocasForType = InlinedArrayAllocas[ATy]; 195 196 // Loop over the allocas in AllocasForType to see if we can reuse one. Note 197 // that we have to be careful not to reuse the same "available" alloca for 198 // multiple different allocas that we just inlined, we use the 'UsedAllocas' 199 // set to keep track of which "available" allocas are being used by this 200 // function. Also, AllocasForType can be empty of course! 201 bool MergedAwayAlloca = false; 202 for (AllocaInst *AvailableAlloca : AllocasForType) { 203 204 unsigned Align1 = AI->getAlignment(), 205 Align2 = AvailableAlloca->getAlignment(); 206 207 // The available alloca has to be in the right function, not in some other 208 // function in this SCC. 209 if (AvailableAlloca->getParent() != AI->getParent()) 210 continue; 211 212 // If the inlined function already uses this alloca then we can't reuse 213 // it. 214 if (!UsedAllocas.insert(AvailableAlloca).second) 215 continue; 216 217 // Otherwise, we *can* reuse it, RAUW AI into AvailableAlloca and declare 218 // success! 219 DEBUG(dbgs() << " ***MERGED ALLOCA: " << *AI << "\n\t\tINTO: " 220 << *AvailableAlloca << '\n'); 221 222 AI->replaceAllUsesWith(AvailableAlloca); 223 224 if (Align1 != Align2) { 225 if (!Align1 || !Align2) { 226 const DataLayout &DL = Caller->getParent()->getDataLayout(); 227 unsigned TypeAlign = DL.getABITypeAlignment(AI->getAllocatedType()); 228 229 Align1 = Align1 ? Align1 : TypeAlign; 230 Align2 = Align2 ? Align2 : TypeAlign; 231 } 232 233 if (Align1 > Align2) 234 AvailableAlloca->setAlignment(AI->getAlignment()); 235 } 236 237 AI->eraseFromParent(); 238 MergedAwayAlloca = true; 239 ++NumMergedAllocas; 240 IFI.StaticAllocas[AllocaNo] = nullptr; 241 break; 242 } 243 244 // If we already nuked the alloca, we're done with it. 245 if (MergedAwayAlloca) 246 continue; 247 248 // If we were unable to merge away the alloca either because there are no 249 // allocas of the right type available or because we reused them all 250 // already, remember that this alloca came from an inlined function and mark 251 // it used so we don't reuse it for other allocas from this inline 252 // operation. 253 AllocasForType.push_back(AI); 254 UsedAllocas.insert(AI); 255 } 256 257 return true; 258 } 259 260 unsigned Inliner::getInlineThreshold(CallSite CS) const { 261 int thres = InlineThreshold; // -inline-threshold or else selected by 262 // overall opt level 263 264 // If -inline-threshold is not given, listen to the optsize attribute when it 265 // would decrease the threshold. 266 Function *Caller = CS.getCaller(); 267 bool OptSize = Caller && !Caller->isDeclaration() && 268 Caller->hasFnAttribute(Attribute::OptimizeForSize); 269 if (!(InlineLimit.getNumOccurrences() > 0) && OptSize && 270 OptSizeThreshold < thres) 271 thres = OptSizeThreshold; 272 273 // Listen to the inlinehint attribute when it would increase the threshold 274 // and the caller does not need to minimize its size. 275 Function *Callee = CS.getCalledFunction(); 276 bool InlineHint = Callee && !Callee->isDeclaration() && 277 Callee->hasFnAttribute(Attribute::InlineHint); 278 if (InlineHint && HintThreshold > thres && 279 !Caller->hasFnAttribute(Attribute::MinSize)) 280 thres = HintThreshold; 281 282 // Listen to the cold attribute when it would decrease the threshold. 283 bool ColdCallee = Callee && !Callee->isDeclaration() && 284 Callee->hasFnAttribute(Attribute::Cold); 285 // Command line argument for InlineLimit will override the default 286 // ColdThreshold. If we have -inline-threshold but no -inlinecold-threshold, 287 // do not use the default cold threshold even if it is smaller. 288 if ((InlineLimit.getNumOccurrences() == 0 || 289 ColdThreshold.getNumOccurrences() > 0) && ColdCallee && 290 ColdThreshold < thres) 291 thres = ColdThreshold; 292 293 return thres; 294 } 295 296 static void emitAnalysis(CallSite CS, const Twine &Msg) { 297 Function *Caller = CS.getCaller(); 298 LLVMContext &Ctx = Caller->getContext(); 299 DebugLoc DLoc = CS.getInstruction()->getDebugLoc(); 300 emitOptimizationRemarkAnalysis(Ctx, DEBUG_TYPE, *Caller, DLoc, Msg); 301 } 302 303 /// Return true if the inliner should attempt to inline at the given CallSite. 304 bool Inliner::shouldInline(CallSite CS) { 305 InlineCost IC = getInlineCost(CS); 306 307 if (IC.isAlways()) { 308 DEBUG(dbgs() << " Inlining: cost=always" 309 << ", Call: " << *CS.getInstruction() << "\n"); 310 emitAnalysis(CS, Twine(CS.getCalledFunction()->getName()) + 311 " should always be inlined (cost=always)"); 312 return true; 313 } 314 315 if (IC.isNever()) { 316 DEBUG(dbgs() << " NOT Inlining: cost=never" 317 << ", Call: " << *CS.getInstruction() << "\n"); 318 emitAnalysis(CS, Twine(CS.getCalledFunction()->getName() + 319 " should never be inlined (cost=never)")); 320 return false; 321 } 322 323 Function *Caller = CS.getCaller(); 324 if (!IC) { 325 DEBUG(dbgs() << " NOT Inlining: cost=" << IC.getCost() 326 << ", thres=" << (IC.getCostDelta() + IC.getCost()) 327 << ", Call: " << *CS.getInstruction() << "\n"); 328 emitAnalysis(CS, Twine(CS.getCalledFunction()->getName() + 329 " too costly to inline (cost=") + 330 Twine(IC.getCost()) + ", threshold=" + 331 Twine(IC.getCostDelta() + IC.getCost()) + ")"); 332 return false; 333 } 334 335 // Try to detect the case where the current inlining candidate caller (call 336 // it B) is a static or linkonce-ODR function and is an inlining candidate 337 // elsewhere, and the current candidate callee (call it C) is large enough 338 // that inlining it into B would make B too big to inline later. In these 339 // circumstances it may be best not to inline C into B, but to inline B into 340 // its callers. 341 // 342 // This only applies to static and linkonce-ODR functions because those are 343 // expected to be available for inlining in the translation units where they 344 // are used. Thus we will always have the opportunity to make local inlining 345 // decisions. Importantly the linkonce-ODR linkage covers inline functions 346 // and templates in C++. 347 // 348 // FIXME: All of this logic should be sunk into getInlineCost. It relies on 349 // the internal implementation of the inline cost metrics rather than 350 // treating them as truly abstract units etc. 351 if (Caller->hasLocalLinkage() || Caller->hasLinkOnceODRLinkage()) { 352 int TotalSecondaryCost = 0; 353 // The candidate cost to be imposed upon the current function. 354 int CandidateCost = IC.getCost() - (InlineConstants::CallPenalty + 1); 355 // This bool tracks what happens if we do NOT inline C into B. 356 bool callerWillBeRemoved = Caller->hasLocalLinkage(); 357 // This bool tracks what happens if we DO inline C into B. 358 bool inliningPreventsSomeOuterInline = false; 359 for (User *U : Caller->users()) { 360 CallSite CS2(U); 361 362 // If this isn't a call to Caller (it could be some other sort 363 // of reference) skip it. Such references will prevent the caller 364 // from being removed. 365 if (!CS2 || CS2.getCalledFunction() != Caller) { 366 callerWillBeRemoved = false; 367 continue; 368 } 369 370 InlineCost IC2 = getInlineCost(CS2); 371 ++NumCallerCallersAnalyzed; 372 if (!IC2) { 373 callerWillBeRemoved = false; 374 continue; 375 } 376 if (IC2.isAlways()) 377 continue; 378 379 // See if inlining or original callsite would erase the cost delta of 380 // this callsite. We subtract off the penalty for the call instruction, 381 // which we would be deleting. 382 if (IC2.getCostDelta() <= CandidateCost) { 383 inliningPreventsSomeOuterInline = true; 384 TotalSecondaryCost += IC2.getCost(); 385 } 386 } 387 // If all outer calls to Caller would get inlined, the cost for the last 388 // one is set very low by getInlineCost, in anticipation that Caller will 389 // be removed entirely. We did not account for this above unless there 390 // is only one caller of Caller. 391 if (callerWillBeRemoved && !Caller->use_empty()) 392 TotalSecondaryCost += InlineConstants::LastCallToStaticBonus; 393 394 if (inliningPreventsSomeOuterInline && TotalSecondaryCost < IC.getCost()) { 395 DEBUG(dbgs() << " NOT Inlining: " << *CS.getInstruction() << 396 " Cost = " << IC.getCost() << 397 ", outer Cost = " << TotalSecondaryCost << '\n'); 398 emitAnalysis( 399 CS, Twine("Not inlining. Cost of inlining " + 400 CS.getCalledFunction()->getName() + 401 " increases the cost of inlining " + 402 CS.getCaller()->getName() + " in other contexts")); 403 return false; 404 } 405 } 406 407 DEBUG(dbgs() << " Inlining: cost=" << IC.getCost() 408 << ", thres=" << (IC.getCostDelta() + IC.getCost()) 409 << ", Call: " << *CS.getInstruction() << '\n'); 410 emitAnalysis( 411 CS, CS.getCalledFunction()->getName() + Twine(" can be inlined into ") + 412 CS.getCaller()->getName() + " with cost=" + Twine(IC.getCost()) + 413 " (threshold=" + Twine(IC.getCostDelta() + IC.getCost()) + ")"); 414 return true; 415 } 416 417 /// Return true if the specified inline history ID 418 /// indicates an inline history that includes the specified function. 419 static bool InlineHistoryIncludes(Function *F, int InlineHistoryID, 420 const SmallVectorImpl<std::pair<Function*, int> > &InlineHistory) { 421 while (InlineHistoryID != -1) { 422 assert(unsigned(InlineHistoryID) < InlineHistory.size() && 423 "Invalid inline history ID"); 424 if (InlineHistory[InlineHistoryID].first == F) 425 return true; 426 InlineHistoryID = InlineHistory[InlineHistoryID].second; 427 } 428 return false; 429 } 430 431 bool Inliner::runOnSCC(CallGraphSCC &SCC) { 432 CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph(); 433 AssumptionCacheTracker *ACT = &getAnalysis<AssumptionCacheTracker>(); 434 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 435 const TargetLibraryInfo *TLI = TLIP ? &TLIP->getTLI() : nullptr; 436 AliasAnalysis *AA = &getAnalysis<AliasAnalysis>(); 437 438 SmallPtrSet<Function*, 8> SCCFunctions; 439 DEBUG(dbgs() << "Inliner visiting SCC:"); 440 for (CallGraphNode *Node : SCC) { 441 Function *F = Node->getFunction(); 442 if (F) SCCFunctions.insert(F); 443 DEBUG(dbgs() << " " << (F ? F->getName() : "INDIRECTNODE")); 444 } 445 446 // Scan through and identify all call sites ahead of time so that we only 447 // inline call sites in the original functions, not call sites that result 448 // from inlining other functions. 449 SmallVector<std::pair<CallSite, int>, 16> CallSites; 450 451 // When inlining a callee produces new call sites, we want to keep track of 452 // the fact that they were inlined from the callee. This allows us to avoid 453 // infinite inlining in some obscure cases. To represent this, we use an 454 // index into the InlineHistory vector. 455 SmallVector<std::pair<Function*, int>, 8> InlineHistory; 456 457 for (CallGraphNode *Node : SCC) { 458 Function *F = Node->getFunction(); 459 if (!F) continue; 460 461 for (BasicBlock &BB : *F) 462 for (Instruction &I : BB) { 463 CallSite CS(cast<Value>(&I)); 464 // If this isn't a call, or it is a call to an intrinsic, it can 465 // never be inlined. 466 if (!CS || isa<IntrinsicInst>(I)) 467 continue; 468 469 // If this is a direct call to an external function, we can never inline 470 // it. If it is an indirect call, inlining may resolve it to be a 471 // direct call, so we keep it. 472 if (CS.getCalledFunction() && CS.getCalledFunction()->isDeclaration()) 473 continue; 474 475 CallSites.push_back(std::make_pair(CS, -1)); 476 } 477 } 478 479 DEBUG(dbgs() << ": " << CallSites.size() << " call sites.\n"); 480 481 // If there are no calls in this function, exit early. 482 if (CallSites.empty()) 483 return false; 484 485 // Now that we have all of the call sites, move the ones to functions in the 486 // current SCC to the end of the list. 487 unsigned FirstCallInSCC = CallSites.size(); 488 for (unsigned i = 0; i < FirstCallInSCC; ++i) 489 if (Function *F = CallSites[i].first.getCalledFunction()) 490 if (SCCFunctions.count(F)) 491 std::swap(CallSites[i--], CallSites[--FirstCallInSCC]); 492 493 494 InlinedArrayAllocasTy InlinedArrayAllocas; 495 InlineFunctionInfo InlineInfo(&CG, AA, ACT); 496 497 // Now that we have all of the call sites, loop over them and inline them if 498 // it looks profitable to do so. 499 bool Changed = false; 500 bool LocalChange; 501 do { 502 LocalChange = false; 503 // Iterate over the outer loop because inlining functions can cause indirect 504 // calls to become direct calls. 505 // CallSites may be modified inside so ranged for loop can not be used. 506 for (unsigned CSi = 0; CSi != CallSites.size(); ++CSi) { 507 CallSite CS = CallSites[CSi].first; 508 509 Function *Caller = CS.getCaller(); 510 Function *Callee = CS.getCalledFunction(); 511 512 // If this call site is dead and it is to a readonly function, we should 513 // just delete the call instead of trying to inline it, regardless of 514 // size. This happens because IPSCCP propagates the result out of the 515 // call and then we're left with the dead call. 516 if (isInstructionTriviallyDead(CS.getInstruction(), TLI)) { 517 DEBUG(dbgs() << " -> Deleting dead call: " 518 << *CS.getInstruction() << "\n"); 519 // Update the call graph by deleting the edge from Callee to Caller. 520 CG[Caller]->removeCallEdgeFor(CS); 521 CS.getInstruction()->eraseFromParent(); 522 ++NumCallsDeleted; 523 } else { 524 // We can only inline direct calls to non-declarations. 525 if (!Callee || Callee->isDeclaration()) continue; 526 527 // If this call site was obtained by inlining another function, verify 528 // that the include path for the function did not include the callee 529 // itself. If so, we'd be recursively inlining the same function, 530 // which would provide the same callsites, which would cause us to 531 // infinitely inline. 532 int InlineHistoryID = CallSites[CSi].second; 533 if (InlineHistoryID != -1 && 534 InlineHistoryIncludes(Callee, InlineHistoryID, InlineHistory)) 535 continue; 536 537 LLVMContext &CallerCtx = Caller->getContext(); 538 539 // Get DebugLoc to report. CS will be invalid after Inliner. 540 DebugLoc DLoc = CS.getInstruction()->getDebugLoc(); 541 542 // If the policy determines that we should inline this function, 543 // try to do so. 544 if (!shouldInline(CS)) { 545 emitOptimizationRemarkMissed(CallerCtx, DEBUG_TYPE, *Caller, DLoc, 546 Twine(Callee->getName() + 547 " will not be inlined into " + 548 Caller->getName())); 549 continue; 550 } 551 552 // Attempt to inline the function. 553 if (!InlineCallIfPossible(CS, InlineInfo, InlinedArrayAllocas, 554 InlineHistoryID, InsertLifetime)) { 555 emitOptimizationRemarkMissed(CallerCtx, DEBUG_TYPE, *Caller, DLoc, 556 Twine(Callee->getName() + 557 " will not be inlined into " + 558 Caller->getName())); 559 continue; 560 } 561 ++NumInlined; 562 563 // Report the inline decision. 564 emitOptimizationRemark( 565 CallerCtx, DEBUG_TYPE, *Caller, DLoc, 566 Twine(Callee->getName() + " inlined into " + Caller->getName())); 567 568 // If inlining this function gave us any new call sites, throw them 569 // onto our worklist to process. They are useful inline candidates. 570 if (!InlineInfo.InlinedCalls.empty()) { 571 // Create a new inline history entry for this, so that we remember 572 // that these new callsites came about due to inlining Callee. 573 int NewHistoryID = InlineHistory.size(); 574 InlineHistory.push_back(std::make_pair(Callee, InlineHistoryID)); 575 576 for (Value *Ptr : InlineInfo.InlinedCalls) 577 CallSites.push_back(std::make_pair(CallSite(Ptr), NewHistoryID)); 578 } 579 } 580 581 // If we inlined or deleted the last possible call site to the function, 582 // delete the function body now. 583 if (Callee && Callee->use_empty() && Callee->hasLocalLinkage() && 584 // TODO: Can remove if in SCC now. 585 !SCCFunctions.count(Callee) && 586 587 // The function may be apparently dead, but if there are indirect 588 // callgraph references to the node, we cannot delete it yet, this 589 // could invalidate the CGSCC iterator. 590 CG[Callee]->getNumReferences() == 0) { 591 DEBUG(dbgs() << " -> Deleting dead function: " 592 << Callee->getName() << "\n"); 593 CallGraphNode *CalleeNode = CG[Callee]; 594 595 // Remove any call graph edges from the callee to its callees. 596 CalleeNode->removeAllCalledFunctions(); 597 598 // Removing the node for callee from the call graph and delete it. 599 delete CG.removeFunctionFromModule(CalleeNode); 600 ++NumDeleted; 601 } 602 603 // Remove this call site from the list. If possible, use 604 // swap/pop_back for efficiency, but do not use it if doing so would 605 // move a call site to a function in this SCC before the 606 // 'FirstCallInSCC' barrier. 607 if (SCC.isSingular()) { 608 CallSites[CSi] = CallSites.back(); 609 CallSites.pop_back(); 610 } else { 611 CallSites.erase(CallSites.begin()+CSi); 612 } 613 --CSi; 614 615 Changed = true; 616 LocalChange = true; 617 } 618 } while (LocalChange); 619 620 return Changed; 621 } 622 623 /// Remove now-dead linkonce functions at the end of 624 /// processing to avoid breaking the SCC traversal. 625 bool Inliner::doFinalization(CallGraph &CG) { 626 return removeDeadFunctions(CG); 627 } 628 629 /// Remove dead functions that are not included in DNR (Do Not Remove) list. 630 bool Inliner::removeDeadFunctions(CallGraph &CG, bool AlwaysInlineOnly) { 631 SmallVector<CallGraphNode*, 16> FunctionsToRemove; 632 SmallVector<CallGraphNode *, 16> DeadFunctionsInComdats; 633 SmallDenseMap<const Comdat *, int, 16> ComdatEntriesAlive; 634 635 auto RemoveCGN = [&](CallGraphNode *CGN) { 636 // Remove any call graph edges from the function to its callees. 637 CGN->removeAllCalledFunctions(); 638 639 // Remove any edges from the external node to the function's call graph 640 // node. These edges might have been made irrelegant due to 641 // optimization of the program. 642 CG.getExternalCallingNode()->removeAnyCallEdgeTo(CGN); 643 644 // Removing the node for callee from the call graph and delete it. 645 FunctionsToRemove.push_back(CGN); 646 }; 647 648 // Scan for all of the functions, looking for ones that should now be removed 649 // from the program. Insert the dead ones in the FunctionsToRemove set. 650 for (auto I : CG) { 651 CallGraphNode *CGN = I.second; 652 Function *F = CGN->getFunction(); 653 if (!F || F->isDeclaration()) 654 continue; 655 656 // Handle the case when this function is called and we only want to care 657 // about always-inline functions. This is a bit of a hack to share code 658 // between here and the InlineAlways pass. 659 if (AlwaysInlineOnly && !F->hasFnAttribute(Attribute::AlwaysInline)) 660 continue; 661 662 // If the only remaining users of the function are dead constants, remove 663 // them. 664 F->removeDeadConstantUsers(); 665 666 if (!F->isDefTriviallyDead()) 667 continue; 668 669 // It is unsafe to drop a function with discardable linkage from a COMDAT 670 // without also dropping the other members of the COMDAT. 671 // The inliner doesn't visit non-function entities which are in COMDAT 672 // groups so it is unsafe to do so *unless* the linkage is local. 673 if (!F->hasLocalLinkage()) { 674 if (const Comdat *C = F->getComdat()) { 675 --ComdatEntriesAlive[C]; 676 DeadFunctionsInComdats.push_back(CGN); 677 continue; 678 } 679 } 680 681 RemoveCGN(CGN); 682 } 683 if (!DeadFunctionsInComdats.empty()) { 684 // Count up all the entities in COMDAT groups 685 auto ComdatGroupReferenced = [&](const Comdat *C) { 686 auto I = ComdatEntriesAlive.find(C); 687 if (I != ComdatEntriesAlive.end()) 688 ++(I->getSecond()); 689 }; 690 for (const Function &F : CG.getModule()) 691 if (const Comdat *C = F.getComdat()) 692 ComdatGroupReferenced(C); 693 for (const GlobalVariable &GV : CG.getModule().globals()) 694 if (const Comdat *C = GV.getComdat()) 695 ComdatGroupReferenced(C); 696 for (const GlobalAlias &GA : CG.getModule().aliases()) 697 if (const Comdat *C = GA.getComdat()) 698 ComdatGroupReferenced(C); 699 for (CallGraphNode *CGN : DeadFunctionsInComdats) { 700 Function *F = CGN->getFunction(); 701 const Comdat *C = F->getComdat(); 702 int NumAlive = ComdatEntriesAlive[C]; 703 // We can remove functions in a COMDAT group if the entire group is dead. 704 assert(NumAlive >= 0); 705 if (NumAlive > 0) 706 continue; 707 708 RemoveCGN(CGN); 709 } 710 } 711 712 if (FunctionsToRemove.empty()) 713 return false; 714 715 // Now that we know which functions to delete, do so. We didn't want to do 716 // this inline, because that would invalidate our CallGraph::iterator 717 // objects. :( 718 // 719 // Note that it doesn't matter that we are iterating over a non-stable order 720 // here to do this, it doesn't matter which order the functions are deleted 721 // in. 722 array_pod_sort(FunctionsToRemove.begin(), FunctionsToRemove.end()); 723 FunctionsToRemove.erase(std::unique(FunctionsToRemove.begin(), 724 FunctionsToRemove.end()), 725 FunctionsToRemove.end()); 726 for (CallGraphNode *CGN : FunctionsToRemove) { 727 delete CG.removeFunctionFromModule(CGN); 728 ++NumDeleted; 729 } 730 return true; 731 } 732