1 //===- Inliner.cpp - Code common to all inliners --------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the mechanics required to implement inlining without 11 // missing any calls and updating the call graph. The decisions of which calls 12 // are profitable to inline are implemented elsewhere. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Transforms/IPO/Inliner.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/Analysis/AssumptionCache.h" 21 #include "llvm/Analysis/BasicAliasAnalysis.h" 22 #include "llvm/Analysis/BlockFrequencyInfo.h" 23 #include "llvm/Analysis/CallGraph.h" 24 #include "llvm/Analysis/InlineCost.h" 25 #include "llvm/Analysis/OptimizationDiagnosticInfo.h" 26 #include "llvm/Analysis/ProfileSummaryInfo.h" 27 #include "llvm/Analysis/TargetLibraryInfo.h" 28 #include "llvm/IR/CallSite.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/DiagnosticInfo.h" 31 #include "llvm/IR/InstIterator.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/IntrinsicInst.h" 34 #include "llvm/IR/Module.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include "llvm/Transforms/Utils/Cloning.h" 38 #include "llvm/Transforms/Utils/Local.h" 39 #include "llvm/Transforms/Utils/ModuleUtils.h" 40 using namespace llvm; 41 42 #define DEBUG_TYPE "inline" 43 44 STATISTIC(NumInlined, "Number of functions inlined"); 45 STATISTIC(NumCallsDeleted, "Number of call sites deleted, not inlined"); 46 STATISTIC(NumDeleted, "Number of functions deleted because all callers found"); 47 STATISTIC(NumMergedAllocas, "Number of allocas merged together"); 48 49 // This weirdly named statistic tracks the number of times that, when attempting 50 // to inline a function A into B, we analyze the callers of B in order to see 51 // if those would be more profitable and blocked inline steps. 52 STATISTIC(NumCallerCallersAnalyzed, "Number of caller-callers analyzed"); 53 54 /// Flag to disable manual alloca merging. 55 /// 56 /// Merging of allocas was originally done as a stack-size saving technique 57 /// prior to LLVM's code generator having support for stack coloring based on 58 /// lifetime markers. It is now in the process of being removed. To experiment 59 /// with disabling it and relying fully on lifetime marker based stack 60 /// coloring, you can pass this flag to LLVM. 61 static cl::opt<bool> 62 DisableInlinedAllocaMerging("disable-inlined-alloca-merging", 63 cl::init(false), cl::Hidden); 64 65 namespace { 66 enum class InlinerFunctionImportStatsOpts { 67 No = 0, 68 Basic = 1, 69 Verbose = 2, 70 }; 71 72 cl::opt<InlinerFunctionImportStatsOpts> InlinerFunctionImportStats( 73 "inliner-function-import-stats", 74 cl::init(InlinerFunctionImportStatsOpts::No), 75 cl::values(clEnumValN(InlinerFunctionImportStatsOpts::Basic, "basic", 76 "basic statistics"), 77 clEnumValN(InlinerFunctionImportStatsOpts::Verbose, "verbose", 78 "printing of statistics for each inlined function")), 79 cl::Hidden, cl::desc("Enable inliner stats for imported functions")); 80 } // namespace 81 82 LegacyInlinerBase::LegacyInlinerBase(char &ID) 83 : CallGraphSCCPass(ID), InsertLifetime(true) {} 84 85 LegacyInlinerBase::LegacyInlinerBase(char &ID, bool InsertLifetime) 86 : CallGraphSCCPass(ID), InsertLifetime(InsertLifetime) {} 87 88 /// For this class, we declare that we require and preserve the call graph. 89 /// If the derived class implements this method, it should 90 /// always explicitly call the implementation here. 91 void LegacyInlinerBase::getAnalysisUsage(AnalysisUsage &AU) const { 92 AU.addRequired<AssumptionCacheTracker>(); 93 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 94 AU.addRequired<TargetLibraryInfoWrapperPass>(); 95 getAAResultsAnalysisUsage(AU); 96 CallGraphSCCPass::getAnalysisUsage(AU); 97 } 98 99 typedef DenseMap<ArrayType *, std::vector<AllocaInst *>> InlinedArrayAllocasTy; 100 101 /// Look at all of the allocas that we inlined through this call site. If we 102 /// have already inlined other allocas through other calls into this function, 103 /// then we know that they have disjoint lifetimes and that we can merge them. 104 /// 105 /// There are many heuristics possible for merging these allocas, and the 106 /// different options have different tradeoffs. One thing that we *really* 107 /// don't want to hurt is SRoA: once inlining happens, often allocas are no 108 /// longer address taken and so they can be promoted. 109 /// 110 /// Our "solution" for that is to only merge allocas whose outermost type is an 111 /// array type. These are usually not promoted because someone is using a 112 /// variable index into them. These are also often the most important ones to 113 /// merge. 114 /// 115 /// A better solution would be to have real memory lifetime markers in the IR 116 /// and not have the inliner do any merging of allocas at all. This would 117 /// allow the backend to do proper stack slot coloring of all allocas that 118 /// *actually make it to the backend*, which is really what we want. 119 /// 120 /// Because we don't have this information, we do this simple and useful hack. 121 static void mergeInlinedArrayAllocas( 122 Function *Caller, InlineFunctionInfo &IFI, 123 InlinedArrayAllocasTy &InlinedArrayAllocas, int InlineHistory) { 124 SmallPtrSet<AllocaInst *, 16> UsedAllocas; 125 126 // When processing our SCC, check to see if CS was inlined from some other 127 // call site. For example, if we're processing "A" in this code: 128 // A() { B() } 129 // B() { x = alloca ... C() } 130 // C() { y = alloca ... } 131 // Assume that C was not inlined into B initially, and so we're processing A 132 // and decide to inline B into A. Doing this makes an alloca available for 133 // reuse and makes a callsite (C) available for inlining. When we process 134 // the C call site we don't want to do any alloca merging between X and Y 135 // because their scopes are not disjoint. We could make this smarter by 136 // keeping track of the inline history for each alloca in the 137 // InlinedArrayAllocas but this isn't likely to be a significant win. 138 if (InlineHistory != -1) // Only do merging for top-level call sites in SCC. 139 return; 140 141 // Loop over all the allocas we have so far and see if they can be merged with 142 // a previously inlined alloca. If not, remember that we had it. 143 for (unsigned AllocaNo = 0, e = IFI.StaticAllocas.size(); AllocaNo != e; 144 ++AllocaNo) { 145 AllocaInst *AI = IFI.StaticAllocas[AllocaNo]; 146 147 // Don't bother trying to merge array allocations (they will usually be 148 // canonicalized to be an allocation *of* an array), or allocations whose 149 // type is not itself an array (because we're afraid of pessimizing SRoA). 150 ArrayType *ATy = dyn_cast<ArrayType>(AI->getAllocatedType()); 151 if (!ATy || AI->isArrayAllocation()) 152 continue; 153 154 // Get the list of all available allocas for this array type. 155 std::vector<AllocaInst *> &AllocasForType = InlinedArrayAllocas[ATy]; 156 157 // Loop over the allocas in AllocasForType to see if we can reuse one. Note 158 // that we have to be careful not to reuse the same "available" alloca for 159 // multiple different allocas that we just inlined, we use the 'UsedAllocas' 160 // set to keep track of which "available" allocas are being used by this 161 // function. Also, AllocasForType can be empty of course! 162 bool MergedAwayAlloca = false; 163 for (AllocaInst *AvailableAlloca : AllocasForType) { 164 165 unsigned Align1 = AI->getAlignment(), 166 Align2 = AvailableAlloca->getAlignment(); 167 168 // The available alloca has to be in the right function, not in some other 169 // function in this SCC. 170 if (AvailableAlloca->getParent() != AI->getParent()) 171 continue; 172 173 // If the inlined function already uses this alloca then we can't reuse 174 // it. 175 if (!UsedAllocas.insert(AvailableAlloca).second) 176 continue; 177 178 // Otherwise, we *can* reuse it, RAUW AI into AvailableAlloca and declare 179 // success! 180 DEBUG(dbgs() << " ***MERGED ALLOCA: " << *AI 181 << "\n\t\tINTO: " << *AvailableAlloca << '\n'); 182 183 // Move affected dbg.declare calls immediately after the new alloca to 184 // avoid the situation when a dbg.declare precedes its alloca. 185 if (auto *L = LocalAsMetadata::getIfExists(AI)) 186 if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L)) 187 for (User *U : MDV->users()) 188 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(U)) 189 DDI->moveBefore(AvailableAlloca->getNextNode()); 190 191 AI->replaceAllUsesWith(AvailableAlloca); 192 193 if (Align1 != Align2) { 194 if (!Align1 || !Align2) { 195 const DataLayout &DL = Caller->getParent()->getDataLayout(); 196 unsigned TypeAlign = DL.getABITypeAlignment(AI->getAllocatedType()); 197 198 Align1 = Align1 ? Align1 : TypeAlign; 199 Align2 = Align2 ? Align2 : TypeAlign; 200 } 201 202 if (Align1 > Align2) 203 AvailableAlloca->setAlignment(AI->getAlignment()); 204 } 205 206 AI->eraseFromParent(); 207 MergedAwayAlloca = true; 208 ++NumMergedAllocas; 209 IFI.StaticAllocas[AllocaNo] = nullptr; 210 break; 211 } 212 213 // If we already nuked the alloca, we're done with it. 214 if (MergedAwayAlloca) 215 continue; 216 217 // If we were unable to merge away the alloca either because there are no 218 // allocas of the right type available or because we reused them all 219 // already, remember that this alloca came from an inlined function and mark 220 // it used so we don't reuse it for other allocas from this inline 221 // operation. 222 AllocasForType.push_back(AI); 223 UsedAllocas.insert(AI); 224 } 225 } 226 227 /// If it is possible to inline the specified call site, 228 /// do so and update the CallGraph for this operation. 229 /// 230 /// This function also does some basic book-keeping to update the IR. The 231 /// InlinedArrayAllocas map keeps track of any allocas that are already 232 /// available from other functions inlined into the caller. If we are able to 233 /// inline this call site we attempt to reuse already available allocas or add 234 /// any new allocas to the set if not possible. 235 static bool InlineCallIfPossible( 236 CallSite CS, InlineFunctionInfo &IFI, 237 InlinedArrayAllocasTy &InlinedArrayAllocas, int InlineHistory, 238 bool InsertLifetime, function_ref<AAResults &(Function &)> &AARGetter, 239 ImportedFunctionsInliningStatistics &ImportedFunctionsStats) { 240 Function *Callee = CS.getCalledFunction(); 241 Function *Caller = CS.getCaller(); 242 243 AAResults &AAR = AARGetter(*Callee); 244 245 // Try to inline the function. Get the list of static allocas that were 246 // inlined. 247 if (!InlineFunction(CS, IFI, &AAR, InsertLifetime)) 248 return false; 249 250 if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No) 251 ImportedFunctionsStats.recordInline(*Caller, *Callee); 252 253 AttributeFuncs::mergeAttributesForInlining(*Caller, *Callee); 254 255 if (!DisableInlinedAllocaMerging) 256 mergeInlinedArrayAllocas(Caller, IFI, InlinedArrayAllocas, InlineHistory); 257 258 return true; 259 } 260 261 /// Return true if inlining of CS can block the caller from being 262 /// inlined which is proved to be more beneficial. \p IC is the 263 /// estimated inline cost associated with callsite \p CS. 264 /// \p TotalSecondaryCost will be set to the estimated cost of inlining the 265 /// caller if \p CS is suppressed for inlining. 266 static bool 267 shouldBeDeferred(Function *Caller, CallSite CS, InlineCost IC, 268 int &TotalSecondaryCost, 269 function_ref<InlineCost(CallSite CS)> GetInlineCost) { 270 271 // For now we only handle local or inline functions. 272 if (!Caller->hasLocalLinkage() && !Caller->hasLinkOnceODRLinkage()) 273 return false; 274 // Try to detect the case where the current inlining candidate caller (call 275 // it B) is a static or linkonce-ODR function and is an inlining candidate 276 // elsewhere, and the current candidate callee (call it C) is large enough 277 // that inlining it into B would make B too big to inline later. In these 278 // circumstances it may be best not to inline C into B, but to inline B into 279 // its callers. 280 // 281 // This only applies to static and linkonce-ODR functions because those are 282 // expected to be available for inlining in the translation units where they 283 // are used. Thus we will always have the opportunity to make local inlining 284 // decisions. Importantly the linkonce-ODR linkage covers inline functions 285 // and templates in C++. 286 // 287 // FIXME: All of this logic should be sunk into getInlineCost. It relies on 288 // the internal implementation of the inline cost metrics rather than 289 // treating them as truly abstract units etc. 290 TotalSecondaryCost = 0; 291 // The candidate cost to be imposed upon the current function. 292 int CandidateCost = IC.getCost() - 1; 293 // This bool tracks what happens if we do NOT inline C into B. 294 bool callerWillBeRemoved = Caller->hasLocalLinkage(); 295 // This bool tracks what happens if we DO inline C into B. 296 bool inliningPreventsSomeOuterInline = false; 297 for (User *U : Caller->users()) { 298 CallSite CS2(U); 299 300 // If this isn't a call to Caller (it could be some other sort 301 // of reference) skip it. Such references will prevent the caller 302 // from being removed. 303 if (!CS2 || CS2.getCalledFunction() != Caller) { 304 callerWillBeRemoved = false; 305 continue; 306 } 307 308 InlineCost IC2 = GetInlineCost(CS2); 309 ++NumCallerCallersAnalyzed; 310 if (!IC2) { 311 callerWillBeRemoved = false; 312 continue; 313 } 314 if (IC2.isAlways()) 315 continue; 316 317 // See if inlining of the original callsite would erase the cost delta of 318 // this callsite. We subtract off the penalty for the call instruction, 319 // which we would be deleting. 320 if (IC2.getCostDelta() <= CandidateCost) { 321 inliningPreventsSomeOuterInline = true; 322 TotalSecondaryCost += IC2.getCost(); 323 } 324 } 325 // If all outer calls to Caller would get inlined, the cost for the last 326 // one is set very low by getInlineCost, in anticipation that Caller will 327 // be removed entirely. We did not account for this above unless there 328 // is only one caller of Caller. 329 if (callerWillBeRemoved && !Caller->hasOneUse()) 330 TotalSecondaryCost -= InlineConstants::LastCallToStaticBonus; 331 332 if (inliningPreventsSomeOuterInline && TotalSecondaryCost < IC.getCost()) 333 return true; 334 335 return false; 336 } 337 338 /// Return true if the inliner should attempt to inline at the given CallSite. 339 static bool shouldInline(CallSite CS, 340 function_ref<InlineCost(CallSite CS)> GetInlineCost, 341 OptimizationRemarkEmitter &ORE) { 342 using namespace ore; 343 InlineCost IC = GetInlineCost(CS); 344 Instruction *Call = CS.getInstruction(); 345 Function *Callee = CS.getCalledFunction(); 346 Function *Caller = CS.getCaller(); 347 348 if (IC.isAlways()) { 349 DEBUG(dbgs() << " Inlining: cost=always" 350 << ", Call: " << *CS.getInstruction() << "\n"); 351 ORE.emit(OptimizationRemarkAnalysis(DEBUG_TYPE, "AlwaysInline", Call) 352 << NV("Callee", Callee) 353 << " should always be inlined (cost=always)"); 354 return true; 355 } 356 357 if (IC.isNever()) { 358 DEBUG(dbgs() << " NOT Inlining: cost=never" 359 << ", Call: " << *CS.getInstruction() << "\n"); 360 ORE.emit(OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline", Call) 361 << NV("Callee", Callee) << " not inlined into " 362 << NV("Caller", Caller) 363 << " because it should never be inlined (cost=never)"); 364 return false; 365 } 366 367 if (!IC) { 368 DEBUG(dbgs() << " NOT Inlining: cost=" << IC.getCost() 369 << ", thres=" << (IC.getCostDelta() + IC.getCost()) 370 << ", Call: " << *CS.getInstruction() << "\n"); 371 ORE.emit(OptimizationRemarkMissed(DEBUG_TYPE, "TooCostly", Call) 372 << NV("Callee", Callee) << " not inlined into " 373 << NV("Caller", Caller) << " because too costly to inline (cost=" 374 << NV("Cost", IC.getCost()) << ", threshold=" 375 << NV("Threshold", IC.getCostDelta() + IC.getCost()) << ")"); 376 return false; 377 } 378 379 int TotalSecondaryCost = 0; 380 if (shouldBeDeferred(Caller, CS, IC, TotalSecondaryCost, GetInlineCost)) { 381 DEBUG(dbgs() << " NOT Inlining: " << *CS.getInstruction() 382 << " Cost = " << IC.getCost() 383 << ", outer Cost = " << TotalSecondaryCost << '\n'); 384 ORE.emit(OptimizationRemarkMissed(DEBUG_TYPE, "IncreaseCostInOtherContexts", 385 Call) 386 << "Not inlining. Cost of inlining " << NV("Callee", Callee) 387 << " increases the cost of inlining " << NV("Caller", Caller) 388 << " in other contexts"); 389 return false; 390 } 391 392 DEBUG(dbgs() << " Inlining: cost=" << IC.getCost() 393 << ", thres=" << (IC.getCostDelta() + IC.getCost()) 394 << ", Call: " << *CS.getInstruction() << '\n'); 395 ORE.emit(OptimizationRemarkAnalysis(DEBUG_TYPE, "CanBeInlined", Call) 396 << NV("Callee", Callee) << " can be inlined into " 397 << NV("Caller", Caller) << " with cost=" << NV("Cost", IC.getCost()) 398 << " (threshold=" 399 << NV("Threshold", IC.getCostDelta() + IC.getCost()) << ")"); 400 return true; 401 } 402 403 /// Return true if the specified inline history ID 404 /// indicates an inline history that includes the specified function. 405 static bool InlineHistoryIncludes( 406 Function *F, int InlineHistoryID, 407 const SmallVectorImpl<std::pair<Function *, int>> &InlineHistory) { 408 while (InlineHistoryID != -1) { 409 assert(unsigned(InlineHistoryID) < InlineHistory.size() && 410 "Invalid inline history ID"); 411 if (InlineHistory[InlineHistoryID].first == F) 412 return true; 413 InlineHistoryID = InlineHistory[InlineHistoryID].second; 414 } 415 return false; 416 } 417 418 bool LegacyInlinerBase::doInitialization(CallGraph &CG) { 419 if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No) 420 ImportedFunctionsStats.setModuleInfo(CG.getModule()); 421 return false; // No changes to CallGraph. 422 } 423 424 bool LegacyInlinerBase::runOnSCC(CallGraphSCC &SCC) { 425 if (skipSCC(SCC)) 426 return false; 427 return inlineCalls(SCC); 428 } 429 430 static bool 431 inlineCallsImpl(CallGraphSCC &SCC, CallGraph &CG, 432 std::function<AssumptionCache &(Function &)> GetAssumptionCache, 433 ProfileSummaryInfo *PSI, TargetLibraryInfo &TLI, 434 bool InsertLifetime, 435 function_ref<InlineCost(CallSite CS)> GetInlineCost, 436 function_ref<AAResults &(Function &)> AARGetter, 437 ImportedFunctionsInliningStatistics &ImportedFunctionsStats) { 438 SmallPtrSet<Function *, 8> SCCFunctions; 439 DEBUG(dbgs() << "Inliner visiting SCC:"); 440 for (CallGraphNode *Node : SCC) { 441 Function *F = Node->getFunction(); 442 if (F) 443 SCCFunctions.insert(F); 444 DEBUG(dbgs() << " " << (F ? F->getName() : "INDIRECTNODE")); 445 } 446 447 // Scan through and identify all call sites ahead of time so that we only 448 // inline call sites in the original functions, not call sites that result 449 // from inlining other functions. 450 SmallVector<std::pair<CallSite, int>, 16> CallSites; 451 452 // When inlining a callee produces new call sites, we want to keep track of 453 // the fact that they were inlined from the callee. This allows us to avoid 454 // infinite inlining in some obscure cases. To represent this, we use an 455 // index into the InlineHistory vector. 456 SmallVector<std::pair<Function *, int>, 8> InlineHistory; 457 458 for (CallGraphNode *Node : SCC) { 459 Function *F = Node->getFunction(); 460 if (!F || F->isDeclaration()) 461 continue; 462 463 OptimizationRemarkEmitter ORE(F); 464 for (BasicBlock &BB : *F) 465 for (Instruction &I : BB) { 466 CallSite CS(cast<Value>(&I)); 467 // If this isn't a call, or it is a call to an intrinsic, it can 468 // never be inlined. 469 if (!CS || isa<IntrinsicInst>(I)) 470 continue; 471 472 // If this is a direct call to an external function, we can never inline 473 // it. If it is an indirect call, inlining may resolve it to be a 474 // direct call, so we keep it. 475 if (Function *Callee = CS.getCalledFunction()) 476 if (Callee->isDeclaration()) { 477 using namespace ore; 478 ORE.emit(OptimizationRemarkMissed(DEBUG_TYPE, "NoDefinition", &I) 479 << NV("Callee", Callee) << " will not be inlined into " 480 << NV("Caller", CS.getCaller()) 481 << " because its definition is unavailable" 482 << setIsVerbose()); 483 continue; 484 } 485 486 CallSites.push_back(std::make_pair(CS, -1)); 487 } 488 } 489 490 DEBUG(dbgs() << ": " << CallSites.size() << " call sites.\n"); 491 492 // If there are no calls in this function, exit early. 493 if (CallSites.empty()) 494 return false; 495 496 // Now that we have all of the call sites, move the ones to functions in the 497 // current SCC to the end of the list. 498 unsigned FirstCallInSCC = CallSites.size(); 499 for (unsigned i = 0; i < FirstCallInSCC; ++i) 500 if (Function *F = CallSites[i].first.getCalledFunction()) 501 if (SCCFunctions.count(F)) 502 std::swap(CallSites[i--], CallSites[--FirstCallInSCC]); 503 504 InlinedArrayAllocasTy InlinedArrayAllocas; 505 InlineFunctionInfo InlineInfo(&CG, &GetAssumptionCache, PSI); 506 507 // Now that we have all of the call sites, loop over them and inline them if 508 // it looks profitable to do so. 509 bool Changed = false; 510 bool LocalChange; 511 do { 512 LocalChange = false; 513 // Iterate over the outer loop because inlining functions can cause indirect 514 // calls to become direct calls. 515 // CallSites may be modified inside so ranged for loop can not be used. 516 for (unsigned CSi = 0; CSi != CallSites.size(); ++CSi) { 517 CallSite CS = CallSites[CSi].first; 518 519 Function *Caller = CS.getCaller(); 520 Function *Callee = CS.getCalledFunction(); 521 522 // If this call site is dead and it is to a readonly function, we should 523 // just delete the call instead of trying to inline it, regardless of 524 // size. This happens because IPSCCP propagates the result out of the 525 // call and then we're left with the dead call. 526 if (isInstructionTriviallyDead(CS.getInstruction(), &TLI)) { 527 DEBUG(dbgs() << " -> Deleting dead call: " << *CS.getInstruction() 528 << "\n"); 529 // Update the call graph by deleting the edge from Callee to Caller. 530 CG[Caller]->removeCallEdgeFor(CS); 531 CS.getInstruction()->eraseFromParent(); 532 ++NumCallsDeleted; 533 } else { 534 // We can only inline direct calls to non-declarations. 535 if (!Callee || Callee->isDeclaration()) 536 continue; 537 538 // If this call site was obtained by inlining another function, verify 539 // that the include path for the function did not include the callee 540 // itself. If so, we'd be recursively inlining the same function, 541 // which would provide the same callsites, which would cause us to 542 // infinitely inline. 543 int InlineHistoryID = CallSites[CSi].second; 544 if (InlineHistoryID != -1 && 545 InlineHistoryIncludes(Callee, InlineHistoryID, InlineHistory)) 546 continue; 547 548 // Get DebugLoc to report. CS will be invalid after Inliner. 549 DebugLoc DLoc = CS.getInstruction()->getDebugLoc(); 550 BasicBlock *Block = CS.getParent(); 551 // FIXME for new PM: because of the old PM we currently generate ORE and 552 // in turn BFI on demand. With the new PM, the ORE dependency should 553 // just become a regular analysis dependency. 554 OptimizationRemarkEmitter ORE(Caller); 555 556 // If the policy determines that we should inline this function, 557 // try to do so. 558 if (!shouldInline(CS, GetInlineCost, ORE)) 559 continue; 560 561 // Attempt to inline the function. 562 using namespace ore; 563 if (!InlineCallIfPossible(CS, InlineInfo, InlinedArrayAllocas, 564 InlineHistoryID, InsertLifetime, AARGetter, 565 ImportedFunctionsStats)) { 566 ORE.emit( 567 OptimizationRemarkMissed(DEBUG_TYPE, "NotInlined", DLoc, Block) 568 << NV("Callee", Callee) << " will not be inlined into " 569 << NV("Caller", Caller)); 570 continue; 571 } 572 ++NumInlined; 573 574 // Report the inline decision. 575 ORE.emit(OptimizationRemark(DEBUG_TYPE, "Inlined", DLoc, Block) 576 << NV("Callee", Callee) << " inlined into " 577 << NV("Caller", Caller)); 578 579 // If inlining this function gave us any new call sites, throw them 580 // onto our worklist to process. They are useful inline candidates. 581 if (!InlineInfo.InlinedCalls.empty()) { 582 // Create a new inline history entry for this, so that we remember 583 // that these new callsites came about due to inlining Callee. 584 int NewHistoryID = InlineHistory.size(); 585 InlineHistory.push_back(std::make_pair(Callee, InlineHistoryID)); 586 587 for (Value *Ptr : InlineInfo.InlinedCalls) 588 CallSites.push_back(std::make_pair(CallSite(Ptr), NewHistoryID)); 589 } 590 } 591 592 // If we inlined or deleted the last possible call site to the function, 593 // delete the function body now. 594 if (Callee && Callee->use_empty() && Callee->hasLocalLinkage() && 595 // TODO: Can remove if in SCC now. 596 !SCCFunctions.count(Callee) && 597 598 // The function may be apparently dead, but if there are indirect 599 // callgraph references to the node, we cannot delete it yet, this 600 // could invalidate the CGSCC iterator. 601 CG[Callee]->getNumReferences() == 0) { 602 DEBUG(dbgs() << " -> Deleting dead function: " << Callee->getName() 603 << "\n"); 604 CallGraphNode *CalleeNode = CG[Callee]; 605 606 // Remove any call graph edges from the callee to its callees. 607 CalleeNode->removeAllCalledFunctions(); 608 609 // Removing the node for callee from the call graph and delete it. 610 delete CG.removeFunctionFromModule(CalleeNode); 611 ++NumDeleted; 612 } 613 614 // Remove this call site from the list. If possible, use 615 // swap/pop_back for efficiency, but do not use it if doing so would 616 // move a call site to a function in this SCC before the 617 // 'FirstCallInSCC' barrier. 618 if (SCC.isSingular()) { 619 CallSites[CSi] = CallSites.back(); 620 CallSites.pop_back(); 621 } else { 622 CallSites.erase(CallSites.begin() + CSi); 623 } 624 --CSi; 625 626 Changed = true; 627 LocalChange = true; 628 } 629 } while (LocalChange); 630 631 return Changed; 632 } 633 634 bool LegacyInlinerBase::inlineCalls(CallGraphSCC &SCC) { 635 CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph(); 636 ACT = &getAnalysis<AssumptionCacheTracker>(); 637 PSI = getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 638 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 639 auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & { 640 return ACT->getAssumptionCache(F); 641 }; 642 return inlineCallsImpl(SCC, CG, GetAssumptionCache, PSI, TLI, InsertLifetime, 643 [this](CallSite CS) { return getInlineCost(CS); }, 644 LegacyAARGetter(*this), ImportedFunctionsStats); 645 } 646 647 /// Remove now-dead linkonce functions at the end of 648 /// processing to avoid breaking the SCC traversal. 649 bool LegacyInlinerBase::doFinalization(CallGraph &CG) { 650 if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No) 651 ImportedFunctionsStats.dump(InlinerFunctionImportStats == 652 InlinerFunctionImportStatsOpts::Verbose); 653 return removeDeadFunctions(CG); 654 } 655 656 /// Remove dead functions that are not included in DNR (Do Not Remove) list. 657 bool LegacyInlinerBase::removeDeadFunctions(CallGraph &CG, 658 bool AlwaysInlineOnly) { 659 SmallVector<CallGraphNode *, 16> FunctionsToRemove; 660 SmallVector<Function *, 16> DeadFunctionsInComdats; 661 662 auto RemoveCGN = [&](CallGraphNode *CGN) { 663 // Remove any call graph edges from the function to its callees. 664 CGN->removeAllCalledFunctions(); 665 666 // Remove any edges from the external node to the function's call graph 667 // node. These edges might have been made irrelegant due to 668 // optimization of the program. 669 CG.getExternalCallingNode()->removeAnyCallEdgeTo(CGN); 670 671 // Removing the node for callee from the call graph and delete it. 672 FunctionsToRemove.push_back(CGN); 673 }; 674 675 // Scan for all of the functions, looking for ones that should now be removed 676 // from the program. Insert the dead ones in the FunctionsToRemove set. 677 for (const auto &I : CG) { 678 CallGraphNode *CGN = I.second.get(); 679 Function *F = CGN->getFunction(); 680 if (!F || F->isDeclaration()) 681 continue; 682 683 // Handle the case when this function is called and we only want to care 684 // about always-inline functions. This is a bit of a hack to share code 685 // between here and the InlineAlways pass. 686 if (AlwaysInlineOnly && !F->hasFnAttribute(Attribute::AlwaysInline)) 687 continue; 688 689 // If the only remaining users of the function are dead constants, remove 690 // them. 691 F->removeDeadConstantUsers(); 692 693 if (!F->isDefTriviallyDead()) 694 continue; 695 696 // It is unsafe to drop a function with discardable linkage from a COMDAT 697 // without also dropping the other members of the COMDAT. 698 // The inliner doesn't visit non-function entities which are in COMDAT 699 // groups so it is unsafe to do so *unless* the linkage is local. 700 if (!F->hasLocalLinkage()) { 701 if (F->hasComdat()) { 702 DeadFunctionsInComdats.push_back(F); 703 continue; 704 } 705 } 706 707 RemoveCGN(CGN); 708 } 709 if (!DeadFunctionsInComdats.empty()) { 710 // Filter out the functions whose comdats remain alive. 711 filterDeadComdatFunctions(CG.getModule(), DeadFunctionsInComdats); 712 // Remove the rest. 713 for (Function *F : DeadFunctionsInComdats) 714 RemoveCGN(CG[F]); 715 } 716 717 if (FunctionsToRemove.empty()) 718 return false; 719 720 // Now that we know which functions to delete, do so. We didn't want to do 721 // this inline, because that would invalidate our CallGraph::iterator 722 // objects. :( 723 // 724 // Note that it doesn't matter that we are iterating over a non-stable order 725 // here to do this, it doesn't matter which order the functions are deleted 726 // in. 727 array_pod_sort(FunctionsToRemove.begin(), FunctionsToRemove.end()); 728 FunctionsToRemove.erase( 729 std::unique(FunctionsToRemove.begin(), FunctionsToRemove.end()), 730 FunctionsToRemove.end()); 731 for (CallGraphNode *CGN : FunctionsToRemove) { 732 delete CG.removeFunctionFromModule(CGN); 733 ++NumDeleted; 734 } 735 return true; 736 } 737 738 PreservedAnalyses InlinerPass::run(LazyCallGraph::SCC &InitialC, 739 CGSCCAnalysisManager &AM, LazyCallGraph &CG, 740 CGSCCUpdateResult &UR) { 741 const ModuleAnalysisManager &MAM = 742 AM.getResult<ModuleAnalysisManagerCGSCCProxy>(InitialC, CG).getManager(); 743 bool Changed = false; 744 745 assert(InitialC.size() > 0 && "Cannot handle an empty SCC!"); 746 Module &M = *InitialC.begin()->getFunction().getParent(); 747 ProfileSummaryInfo *PSI = MAM.getCachedResult<ProfileSummaryAnalysis>(M); 748 749 // We use a single common worklist for calls across the entire SCC. We 750 // process these in-order and append new calls introduced during inlining to 751 // the end. 752 // 753 // Note that this particular order of processing is actually critical to 754 // avoid very bad behaviors. Consider *highly connected* call graphs where 755 // each function contains a small amonut of code and a couple of calls to 756 // other functions. Because the LLVM inliner is fundamentally a bottom-up 757 // inliner, it can handle gracefully the fact that these all appear to be 758 // reasonable inlining candidates as it will flatten things until they become 759 // too big to inline, and then move on and flatten another batch. 760 // 761 // However, when processing call edges *within* an SCC we cannot rely on this 762 // bottom-up behavior. As a consequence, with heavily connected *SCCs* of 763 // functions we can end up incrementally inlining N calls into each of 764 // N functions because each incremental inlining decision looks good and we 765 // don't have a topological ordering to prevent explosions. 766 // 767 // To compensate for this, we don't process transitive edges made immediate 768 // by inlining until we've done one pass of inlining across the entire SCC. 769 // Large, highly connected SCCs still lead to some amount of code bloat in 770 // this model, but it is uniformly spread across all the functions in the SCC 771 // and eventually they all become too large to inline, rather than 772 // incrementally maknig a single function grow in a super linear fashion. 773 SmallVector<std::pair<CallSite, int>, 16> Calls; 774 775 // Populate the initial list of calls in this SCC. 776 for (auto &N : InitialC) { 777 // We want to generally process call sites top-down in order for 778 // simplifications stemming from replacing the call with the returned value 779 // after inlining to be visible to subsequent inlining decisions. 780 // FIXME: Using instructions sequence is a really bad way to do this. 781 // Instead we should do an actual RPO walk of the function body. 782 for (Instruction &I : instructions(N.getFunction())) 783 if (auto CS = CallSite(&I)) 784 if (Function *Callee = CS.getCalledFunction()) 785 if (!Callee->isDeclaration()) 786 Calls.push_back({CS, -1}); 787 } 788 if (Calls.empty()) 789 return PreservedAnalyses::all(); 790 791 // Capture updatable variables for the current SCC and RefSCC. 792 auto *C = &InitialC; 793 auto *RC = &C->getOuterRefSCC(); 794 795 // When inlining a callee produces new call sites, we want to keep track of 796 // the fact that they were inlined from the callee. This allows us to avoid 797 // infinite inlining in some obscure cases. To represent this, we use an 798 // index into the InlineHistory vector. 799 SmallVector<std::pair<Function *, int>, 16> InlineHistory; 800 801 // Track a set vector of inlined callees so that we can augment the caller 802 // with all of their edges in the call graph before pruning out the ones that 803 // got simplified away. 804 SmallSetVector<Function *, 4> InlinedCallees; 805 806 // Track the dead functions to delete once finished with inlining calls. We 807 // defer deleting these to make it easier to handle the call graph updates. 808 SmallVector<Function *, 4> DeadFunctions; 809 810 // Loop forward over all of the calls. Note that we cannot cache the size as 811 // inlining can introduce new calls that need to be processed. 812 for (int i = 0; i < (int)Calls.size(); ++i) { 813 // We expect the calls to typically be batched with sequences of calls that 814 // have the same caller, so we first set up some shared infrastructure for 815 // this caller. We also do any pruning we can at this layer on the caller 816 // alone. 817 Function &F = *Calls[i].first.getCaller(); 818 LazyCallGraph::Node &N = *CG.lookup(F); 819 if (CG.lookupSCC(N) != C) 820 continue; 821 if (F.hasFnAttribute(Attribute::OptimizeNone)) 822 continue; 823 824 DEBUG(dbgs() << "Inlining calls in: " << F.getName() << "\n"); 825 826 // Get a FunctionAnalysisManager via a proxy for this particular node. We 827 // do this each time we visit a node as the SCC may have changed and as 828 // we're going to mutate this particular function we want to make sure the 829 // proxy is in place to forward any invalidation events. We can use the 830 // manager we get here for looking up results for functions other than this 831 // node however because those functions aren't going to be mutated by this 832 // pass. 833 FunctionAnalysisManager &FAM = 834 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(*C, CG) 835 .getManager(); 836 std::function<AssumptionCache &(Function &)> GetAssumptionCache = 837 [&](Function &F) -> AssumptionCache & { 838 return FAM.getResult<AssumptionAnalysis>(F); 839 }; 840 auto GetBFI = [&](Function &F) -> BlockFrequencyInfo & { 841 return FAM.getResult<BlockFrequencyAnalysis>(F); 842 }; 843 844 auto GetInlineCost = [&](CallSite CS) { 845 Function &Callee = *CS.getCalledFunction(); 846 auto &CalleeTTI = FAM.getResult<TargetIRAnalysis>(Callee); 847 return getInlineCost(CS, Params, CalleeTTI, GetAssumptionCache, {GetBFI}, 848 PSI); 849 }; 850 851 // Get the remarks emission analysis for the caller. 852 auto &ORE = FAM.getResult<OptimizationRemarkEmitterAnalysis>(F); 853 854 // Now process as many calls as we have within this caller in the sequnece. 855 // We bail out as soon as the caller has to change so we can update the 856 // call graph and prepare the context of that new caller. 857 bool DidInline = false; 858 for (; i < (int)Calls.size() && Calls[i].first.getCaller() == &F; ++i) { 859 int InlineHistoryID; 860 CallSite CS; 861 std::tie(CS, InlineHistoryID) = Calls[i]; 862 Function &Callee = *CS.getCalledFunction(); 863 864 if (InlineHistoryID != -1 && 865 InlineHistoryIncludes(&Callee, InlineHistoryID, InlineHistory)) 866 continue; 867 868 // Check whether we want to inline this callsite. 869 if (!shouldInline(CS, GetInlineCost, ORE)) 870 continue; 871 872 // Setup the data structure used to plumb customization into the 873 // `InlineFunction` routine. 874 InlineFunctionInfo IFI( 875 /*cg=*/nullptr, &GetAssumptionCache, PSI, 876 &FAM.getResult<BlockFrequencyAnalysis>(*(CS.getCaller())), 877 &FAM.getResult<BlockFrequencyAnalysis>(Callee)); 878 879 if (!InlineFunction(CS, IFI)) 880 continue; 881 DidInline = true; 882 InlinedCallees.insert(&Callee); 883 884 // Add any new callsites to defined functions to the worklist. 885 if (!IFI.InlinedCallSites.empty()) { 886 int NewHistoryID = InlineHistory.size(); 887 InlineHistory.push_back({&Callee, InlineHistoryID}); 888 for (CallSite &CS : reverse(IFI.InlinedCallSites)) 889 if (Function *NewCallee = CS.getCalledFunction()) 890 if (!NewCallee->isDeclaration()) 891 Calls.push_back({CS, NewHistoryID}); 892 } 893 894 // Merge the attributes based on the inlining. 895 AttributeFuncs::mergeAttributesForInlining(F, Callee); 896 897 // For local functions, check whether this makes the callee trivially 898 // dead. In that case, we can drop the body of the function eagerly 899 // which may reduce the number of callers of other functions to one, 900 // changing inline cost thresholds. 901 if (Callee.hasLocalLinkage()) { 902 // To check this we also need to nuke any dead constant uses (perhaps 903 // made dead by this operation on other functions). 904 Callee.removeDeadConstantUsers(); 905 if (Callee.use_empty()) { 906 Calls.erase( 907 std::remove_if(Calls.begin() + i + 1, Calls.end(), 908 [&Callee](const std::pair<CallSite, int> &Call) { 909 return Call.first.getCaller() == &Callee; 910 }), 911 Calls.end()); 912 // Clear the body and queue the function itself for deletion when we 913 // finish inlining and call graph updates. 914 // Note that after this point, it is an error to do anything other 915 // than use the callee's address or delete it. 916 Callee.dropAllReferences(); 917 assert(find(DeadFunctions, &Callee) == DeadFunctions.end() && 918 "Cannot put cause a function to become dead twice!"); 919 DeadFunctions.push_back(&Callee); 920 } 921 } 922 } 923 924 // Back the call index up by one to put us in a good position to go around 925 // the outer loop. 926 --i; 927 928 if (!DidInline) 929 continue; 930 Changed = true; 931 932 // Add all the inlined callees' edges as ref edges to the caller. These are 933 // by definition trivial edges as we always have *some* transitive ref edge 934 // chain. While in some cases these edges are direct calls inside the 935 // callee, they have to be modeled in the inliner as reference edges as 936 // there may be a reference edge anywhere along the chain from the current 937 // caller to the callee that causes the whole thing to appear like 938 // a (transitive) reference edge that will require promotion to a call edge 939 // below. 940 for (Function *InlinedCallee : InlinedCallees) { 941 LazyCallGraph::Node &CalleeN = *CG.lookup(*InlinedCallee); 942 for (LazyCallGraph::Edge &E : *CalleeN) 943 RC->insertTrivialRefEdge(N, E.getNode()); 944 } 945 InlinedCallees.clear(); 946 947 // At this point, since we have made changes we have at least removed 948 // a call instruction. However, in the process we do some incremental 949 // simplification of the surrounding code. This simplification can 950 // essentially do all of the same things as a function pass and we can 951 // re-use the exact same logic for updating the call graph to reflect the 952 // change.. 953 C = &updateCGAndAnalysisManagerForFunctionPass(CG, *C, N, AM, UR); 954 DEBUG(dbgs() << "Updated inlining SCC: " << *C << "\n"); 955 RC = &C->getOuterRefSCC(); 956 } 957 958 // Now that we've finished inlining all of the calls across this SCC, delete 959 // all of the trivially dead functions, updating the call graph and the CGSCC 960 // pass manager in the process. 961 // 962 // Note that this walks a pointer set which has non-deterministic order but 963 // that is OK as all we do is delete things and add pointers to unordered 964 // sets. 965 for (Function *DeadF : DeadFunctions) { 966 // Get the necessary information out of the call graph and nuke the 967 // function there. Also, cclear out any cached analyses. 968 auto &DeadC = *CG.lookupSCC(*CG.lookup(*DeadF)); 969 FunctionAnalysisManager &FAM = 970 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(DeadC, CG) 971 .getManager(); 972 FAM.clear(*DeadF); 973 AM.clear(DeadC); 974 auto &DeadRC = DeadC.getOuterRefSCC(); 975 CG.removeDeadFunction(*DeadF); 976 977 // Mark the relevant parts of the call graph as invalid so we don't visit 978 // them. 979 UR.InvalidatedSCCs.insert(&DeadC); 980 UR.InvalidatedRefSCCs.insert(&DeadRC); 981 982 // And delete the actual function from the module. 983 M.getFunctionList().erase(DeadF); 984 } 985 return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all(); 986 } 987