1 //===- Inliner.cpp - Code common to all inliners --------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the mechanics required to implement inlining without 10 // missing any calls and updating the call graph. The decisions of which calls 11 // are profitable to inline are implemented elsewhere. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/IPO/Inliner.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/None.h" 18 #include "llvm/ADT/Optional.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/ScopeExit.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/Analysis/AssumptionCache.h" 27 #include "llvm/Analysis/BasicAliasAnalysis.h" 28 #include "llvm/Analysis/BlockFrequencyInfo.h" 29 #include "llvm/Analysis/CGSCCPassManager.h" 30 #include "llvm/Analysis/CallGraph.h" 31 #include "llvm/Analysis/GlobalsModRef.h" 32 #include "llvm/Analysis/InlineAdvisor.h" 33 #include "llvm/Analysis/InlineCost.h" 34 #include "llvm/Analysis/LazyCallGraph.h" 35 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 36 #include "llvm/Analysis/ProfileSummaryInfo.h" 37 #include "llvm/Analysis/TargetLibraryInfo.h" 38 #include "llvm/Analysis/TargetTransformInfo.h" 39 #include "llvm/IR/Attributes.h" 40 #include "llvm/IR/BasicBlock.h" 41 #include "llvm/IR/DataLayout.h" 42 #include "llvm/IR/DebugLoc.h" 43 #include "llvm/IR/DerivedTypes.h" 44 #include "llvm/IR/DiagnosticInfo.h" 45 #include "llvm/IR/Function.h" 46 #include "llvm/IR/InstIterator.h" 47 #include "llvm/IR/Instruction.h" 48 #include "llvm/IR/Instructions.h" 49 #include "llvm/IR/IntrinsicInst.h" 50 #include "llvm/IR/Metadata.h" 51 #include "llvm/IR/Module.h" 52 #include "llvm/IR/PassManager.h" 53 #include "llvm/IR/User.h" 54 #include "llvm/IR/Value.h" 55 #include "llvm/Pass.h" 56 #include "llvm/Support/Casting.h" 57 #include "llvm/Support/CommandLine.h" 58 #include "llvm/Support/Debug.h" 59 #include "llvm/Support/raw_ostream.h" 60 #include "llvm/Transforms/Utils/CallPromotionUtils.h" 61 #include "llvm/Transforms/Utils/Cloning.h" 62 #include "llvm/Transforms/Utils/ImportedFunctionsInliningStatistics.h" 63 #include "llvm/Transforms/Utils/Local.h" 64 #include "llvm/Transforms/Utils/ModuleUtils.h" 65 #include <algorithm> 66 #include <cassert> 67 #include <functional> 68 #include <sstream> 69 #include <tuple> 70 #include <utility> 71 #include <vector> 72 73 using namespace llvm; 74 75 #define DEBUG_TYPE "inline" 76 77 STATISTIC(NumInlined, "Number of functions inlined"); 78 STATISTIC(NumCallsDeleted, "Number of call sites deleted, not inlined"); 79 STATISTIC(NumDeleted, "Number of functions deleted because all callers found"); 80 STATISTIC(NumMergedAllocas, "Number of allocas merged together"); 81 82 /// Flag to disable manual alloca merging. 83 /// 84 /// Merging of allocas was originally done as a stack-size saving technique 85 /// prior to LLVM's code generator having support for stack coloring based on 86 /// lifetime markers. It is now in the process of being removed. To experiment 87 /// with disabling it and relying fully on lifetime marker based stack 88 /// coloring, you can pass this flag to LLVM. 89 static cl::opt<bool> 90 DisableInlinedAllocaMerging("disable-inlined-alloca-merging", 91 cl::init(false), cl::Hidden); 92 93 namespace { 94 95 enum class InlinerFunctionImportStatsOpts { 96 No = 0, 97 Basic = 1, 98 Verbose = 2, 99 }; 100 101 } // end anonymous namespace 102 103 static cl::opt<InlinerFunctionImportStatsOpts> InlinerFunctionImportStats( 104 "inliner-function-import-stats", 105 cl::init(InlinerFunctionImportStatsOpts::No), 106 cl::values(clEnumValN(InlinerFunctionImportStatsOpts::Basic, "basic", 107 "basic statistics"), 108 clEnumValN(InlinerFunctionImportStatsOpts::Verbose, "verbose", 109 "printing of statistics for each inlined function")), 110 cl::Hidden, cl::desc("Enable inliner stats for imported functions")); 111 112 LegacyInlinerBase::LegacyInlinerBase(char &ID) : CallGraphSCCPass(ID) {} 113 114 LegacyInlinerBase::LegacyInlinerBase(char &ID, bool InsertLifetime) 115 : CallGraphSCCPass(ID), InsertLifetime(InsertLifetime) {} 116 117 /// For this class, we declare that we require and preserve the call graph. 118 /// If the derived class implements this method, it should 119 /// always explicitly call the implementation here. 120 void LegacyInlinerBase::getAnalysisUsage(AnalysisUsage &AU) const { 121 AU.addRequired<AssumptionCacheTracker>(); 122 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 123 AU.addRequired<TargetLibraryInfoWrapperPass>(); 124 getAAResultsAnalysisUsage(AU); 125 CallGraphSCCPass::getAnalysisUsage(AU); 126 } 127 128 using InlinedArrayAllocasTy = DenseMap<ArrayType *, std::vector<AllocaInst *>>; 129 130 /// Look at all of the allocas that we inlined through this call site. If we 131 /// have already inlined other allocas through other calls into this function, 132 /// then we know that they have disjoint lifetimes and that we can merge them. 133 /// 134 /// There are many heuristics possible for merging these allocas, and the 135 /// different options have different tradeoffs. One thing that we *really* 136 /// don't want to hurt is SRoA: once inlining happens, often allocas are no 137 /// longer address taken and so they can be promoted. 138 /// 139 /// Our "solution" for that is to only merge allocas whose outermost type is an 140 /// array type. These are usually not promoted because someone is using a 141 /// variable index into them. These are also often the most important ones to 142 /// merge. 143 /// 144 /// A better solution would be to have real memory lifetime markers in the IR 145 /// and not have the inliner do any merging of allocas at all. This would 146 /// allow the backend to do proper stack slot coloring of all allocas that 147 /// *actually make it to the backend*, which is really what we want. 148 /// 149 /// Because we don't have this information, we do this simple and useful hack. 150 static void mergeInlinedArrayAllocas(Function *Caller, InlineFunctionInfo &IFI, 151 InlinedArrayAllocasTy &InlinedArrayAllocas, 152 int InlineHistory) { 153 SmallPtrSet<AllocaInst *, 16> UsedAllocas; 154 155 // When processing our SCC, check to see if the call site was inlined from 156 // some other call site. For example, if we're processing "A" in this code: 157 // A() { B() } 158 // B() { x = alloca ... C() } 159 // C() { y = alloca ... } 160 // Assume that C was not inlined into B initially, and so we're processing A 161 // and decide to inline B into A. Doing this makes an alloca available for 162 // reuse and makes a callsite (C) available for inlining. When we process 163 // the C call site we don't want to do any alloca merging between X and Y 164 // because their scopes are not disjoint. We could make this smarter by 165 // keeping track of the inline history for each alloca in the 166 // InlinedArrayAllocas but this isn't likely to be a significant win. 167 if (InlineHistory != -1) // Only do merging for top-level call sites in SCC. 168 return; 169 170 // Loop over all the allocas we have so far and see if they can be merged with 171 // a previously inlined alloca. If not, remember that we had it. 172 for (unsigned AllocaNo = 0, E = IFI.StaticAllocas.size(); AllocaNo != E; 173 ++AllocaNo) { 174 AllocaInst *AI = IFI.StaticAllocas[AllocaNo]; 175 176 // Don't bother trying to merge array allocations (they will usually be 177 // canonicalized to be an allocation *of* an array), or allocations whose 178 // type is not itself an array (because we're afraid of pessimizing SRoA). 179 ArrayType *ATy = dyn_cast<ArrayType>(AI->getAllocatedType()); 180 if (!ATy || AI->isArrayAllocation()) 181 continue; 182 183 // Get the list of all available allocas for this array type. 184 std::vector<AllocaInst *> &AllocasForType = InlinedArrayAllocas[ATy]; 185 186 // Loop over the allocas in AllocasForType to see if we can reuse one. Note 187 // that we have to be careful not to reuse the same "available" alloca for 188 // multiple different allocas that we just inlined, we use the 'UsedAllocas' 189 // set to keep track of which "available" allocas are being used by this 190 // function. Also, AllocasForType can be empty of course! 191 bool MergedAwayAlloca = false; 192 for (AllocaInst *AvailableAlloca : AllocasForType) { 193 Align Align1 = AI->getAlign(); 194 Align Align2 = AvailableAlloca->getAlign(); 195 196 // The available alloca has to be in the right function, not in some other 197 // function in this SCC. 198 if (AvailableAlloca->getParent() != AI->getParent()) 199 continue; 200 201 // If the inlined function already uses this alloca then we can't reuse 202 // it. 203 if (!UsedAllocas.insert(AvailableAlloca).second) 204 continue; 205 206 // Otherwise, we *can* reuse it, RAUW AI into AvailableAlloca and declare 207 // success! 208 LLVM_DEBUG(dbgs() << " ***MERGED ALLOCA: " << *AI 209 << "\n\t\tINTO: " << *AvailableAlloca << '\n'); 210 211 // Move affected dbg.declare calls immediately after the new alloca to 212 // avoid the situation when a dbg.declare precedes its alloca. 213 if (auto *L = LocalAsMetadata::getIfExists(AI)) 214 if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L)) 215 for (User *U : MDV->users()) 216 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(U)) 217 DDI->moveBefore(AvailableAlloca->getNextNode()); 218 219 AI->replaceAllUsesWith(AvailableAlloca); 220 221 if (Align1 > Align2) 222 AvailableAlloca->setAlignment(AI->getAlign()); 223 224 AI->eraseFromParent(); 225 MergedAwayAlloca = true; 226 ++NumMergedAllocas; 227 IFI.StaticAllocas[AllocaNo] = nullptr; 228 break; 229 } 230 231 // If we already nuked the alloca, we're done with it. 232 if (MergedAwayAlloca) 233 continue; 234 235 // If we were unable to merge away the alloca either because there are no 236 // allocas of the right type available or because we reused them all 237 // already, remember that this alloca came from an inlined function and mark 238 // it used so we don't reuse it for other allocas from this inline 239 // operation. 240 AllocasForType.push_back(AI); 241 UsedAllocas.insert(AI); 242 } 243 } 244 245 /// If it is possible to inline the specified call site, 246 /// do so and update the CallGraph for this operation. 247 /// 248 /// This function also does some basic book-keeping to update the IR. The 249 /// InlinedArrayAllocas map keeps track of any allocas that are already 250 /// available from other functions inlined into the caller. If we are able to 251 /// inline this call site we attempt to reuse already available allocas or add 252 /// any new allocas to the set if not possible. 253 static InlineResult inlineCallIfPossible( 254 CallBase &CB, InlineFunctionInfo &IFI, 255 InlinedArrayAllocasTy &InlinedArrayAllocas, int InlineHistory, 256 bool InsertLifetime, function_ref<AAResults &(Function &)> &AARGetter, 257 ImportedFunctionsInliningStatistics &ImportedFunctionsStats) { 258 Function *Callee = CB.getCalledFunction(); 259 Function *Caller = CB.getCaller(); 260 261 AAResults &AAR = AARGetter(*Callee); 262 263 // Try to inline the function. Get the list of static allocas that were 264 // inlined. 265 InlineResult IR = InlineFunction(CB, IFI, &AAR, InsertLifetime); 266 if (!IR.isSuccess()) 267 return IR; 268 269 if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No) 270 ImportedFunctionsStats.recordInline(*Caller, *Callee); 271 272 AttributeFuncs::mergeAttributesForInlining(*Caller, *Callee); 273 274 if (!DisableInlinedAllocaMerging) 275 mergeInlinedArrayAllocas(Caller, IFI, InlinedArrayAllocas, InlineHistory); 276 277 return IR; // success 278 } 279 280 /// Return true if the specified inline history ID 281 /// indicates an inline history that includes the specified function. 282 static bool inlineHistoryIncludes( 283 Function *F, int InlineHistoryID, 284 const SmallVectorImpl<std::pair<Function *, int>> &InlineHistory) { 285 while (InlineHistoryID != -1) { 286 assert(unsigned(InlineHistoryID) < InlineHistory.size() && 287 "Invalid inline history ID"); 288 if (InlineHistory[InlineHistoryID].first == F) 289 return true; 290 InlineHistoryID = InlineHistory[InlineHistoryID].second; 291 } 292 return false; 293 } 294 295 bool LegacyInlinerBase::doInitialization(CallGraph &CG) { 296 if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No) 297 ImportedFunctionsStats.setModuleInfo(CG.getModule()); 298 return false; // No changes to CallGraph. 299 } 300 301 bool LegacyInlinerBase::runOnSCC(CallGraphSCC &SCC) { 302 if (skipSCC(SCC)) 303 return false; 304 return inlineCalls(SCC); 305 } 306 307 static bool 308 inlineCallsImpl(CallGraphSCC &SCC, CallGraph &CG, 309 std::function<AssumptionCache &(Function &)> GetAssumptionCache, 310 ProfileSummaryInfo *PSI, 311 std::function<const TargetLibraryInfo &(Function &)> GetTLI, 312 bool InsertLifetime, 313 function_ref<InlineCost(CallBase &CB)> GetInlineCost, 314 function_ref<AAResults &(Function &)> AARGetter, 315 ImportedFunctionsInliningStatistics &ImportedFunctionsStats) { 316 SmallPtrSet<Function *, 8> SCCFunctions; 317 LLVM_DEBUG(dbgs() << "Inliner visiting SCC:"); 318 for (CallGraphNode *Node : SCC) { 319 Function *F = Node->getFunction(); 320 if (F) 321 SCCFunctions.insert(F); 322 LLVM_DEBUG(dbgs() << " " << (F ? F->getName() : "INDIRECTNODE")); 323 } 324 325 // Scan through and identify all call sites ahead of time so that we only 326 // inline call sites in the original functions, not call sites that result 327 // from inlining other functions. 328 SmallVector<std::pair<CallBase *, int>, 16> CallSites; 329 330 // When inlining a callee produces new call sites, we want to keep track of 331 // the fact that they were inlined from the callee. This allows us to avoid 332 // infinite inlining in some obscure cases. To represent this, we use an 333 // index into the InlineHistory vector. 334 SmallVector<std::pair<Function *, int>, 8> InlineHistory; 335 336 for (CallGraphNode *Node : SCC) { 337 Function *F = Node->getFunction(); 338 if (!F || F->isDeclaration()) 339 continue; 340 341 OptimizationRemarkEmitter ORE(F); 342 for (BasicBlock &BB : *F) 343 for (Instruction &I : BB) { 344 auto *CB = dyn_cast<CallBase>(&I); 345 // If this isn't a call, or it is a call to an intrinsic, it can 346 // never be inlined. 347 if (!CB || isa<IntrinsicInst>(I)) 348 continue; 349 350 // If this is a direct call to an external function, we can never inline 351 // it. If it is an indirect call, inlining may resolve it to be a 352 // direct call, so we keep it. 353 if (Function *Callee = CB->getCalledFunction()) 354 if (Callee->isDeclaration()) { 355 using namespace ore; 356 357 setInlineRemark(*CB, "unavailable definition"); 358 ORE.emit([&]() { 359 return OptimizationRemarkMissed(DEBUG_TYPE, "NoDefinition", &I) 360 << NV("Callee", Callee) << " will not be inlined into " 361 << NV("Caller", CB->getCaller()) 362 << " because its definition is unavailable" 363 << setIsVerbose(); 364 }); 365 continue; 366 } 367 368 CallSites.push_back(std::make_pair(CB, -1)); 369 } 370 } 371 372 LLVM_DEBUG(dbgs() << ": " << CallSites.size() << " call sites.\n"); 373 374 // If there are no calls in this function, exit early. 375 if (CallSites.empty()) 376 return false; 377 378 // Now that we have all of the call sites, move the ones to functions in the 379 // current SCC to the end of the list. 380 unsigned FirstCallInSCC = CallSites.size(); 381 for (unsigned I = 0; I < FirstCallInSCC; ++I) 382 if (Function *F = CallSites[I].first->getCalledFunction()) 383 if (SCCFunctions.count(F)) 384 std::swap(CallSites[I--], CallSites[--FirstCallInSCC]); 385 386 InlinedArrayAllocasTy InlinedArrayAllocas; 387 InlineFunctionInfo InlineInfo(&CG, GetAssumptionCache, PSI); 388 389 // Now that we have all of the call sites, loop over them and inline them if 390 // it looks profitable to do so. 391 bool Changed = false; 392 bool LocalChange; 393 do { 394 LocalChange = false; 395 // Iterate over the outer loop because inlining functions can cause indirect 396 // calls to become direct calls. 397 // CallSites may be modified inside so ranged for loop can not be used. 398 for (unsigned CSi = 0; CSi != CallSites.size(); ++CSi) { 399 auto &P = CallSites[CSi]; 400 CallBase &CB = *P.first; 401 const int InlineHistoryID = P.second; 402 403 Function *Caller = CB.getCaller(); 404 Function *Callee = CB.getCalledFunction(); 405 406 // We can only inline direct calls to non-declarations. 407 if (!Callee || Callee->isDeclaration()) 408 continue; 409 410 bool IsTriviallyDead = isInstructionTriviallyDead(&CB, &GetTLI(*Caller)); 411 412 if (!IsTriviallyDead) { 413 // If this call site was obtained by inlining another function, verify 414 // that the include path for the function did not include the callee 415 // itself. If so, we'd be recursively inlining the same function, 416 // which would provide the same callsites, which would cause us to 417 // infinitely inline. 418 if (InlineHistoryID != -1 && 419 inlineHistoryIncludes(Callee, InlineHistoryID, InlineHistory)) { 420 setInlineRemark(CB, "recursive"); 421 continue; 422 } 423 } 424 425 // FIXME for new PM: because of the old PM we currently generate ORE and 426 // in turn BFI on demand. With the new PM, the ORE dependency should 427 // just become a regular analysis dependency. 428 OptimizationRemarkEmitter ORE(Caller); 429 430 auto OIC = shouldInline(CB, GetInlineCost, ORE); 431 // If the policy determines that we should inline this function, 432 // delete the call instead. 433 if (!OIC) 434 continue; 435 436 // If this call site is dead and it is to a readonly function, we should 437 // just delete the call instead of trying to inline it, regardless of 438 // size. This happens because IPSCCP propagates the result out of the 439 // call and then we're left with the dead call. 440 if (IsTriviallyDead) { 441 LLVM_DEBUG(dbgs() << " -> Deleting dead call: " << CB << "\n"); 442 // Update the call graph by deleting the edge from Callee to Caller. 443 setInlineRemark(CB, "trivially dead"); 444 CG[Caller]->removeCallEdgeFor(CB); 445 CB.eraseFromParent(); 446 ++NumCallsDeleted; 447 } else { 448 // Get DebugLoc to report. CB will be invalid after Inliner. 449 DebugLoc DLoc = CB.getDebugLoc(); 450 BasicBlock *Block = CB.getParent(); 451 452 // Attempt to inline the function. 453 using namespace ore; 454 455 InlineResult IR = inlineCallIfPossible( 456 CB, InlineInfo, InlinedArrayAllocas, InlineHistoryID, 457 InsertLifetime, AARGetter, ImportedFunctionsStats); 458 if (!IR.isSuccess()) { 459 setInlineRemark(CB, std::string(IR.getFailureReason()) + "; " + 460 inlineCostStr(*OIC)); 461 ORE.emit([&]() { 462 return OptimizationRemarkMissed(DEBUG_TYPE, "NotInlined", DLoc, 463 Block) 464 << NV("Callee", Callee) << " will not be inlined into " 465 << NV("Caller", Caller) << ": " 466 << NV("Reason", IR.getFailureReason()); 467 }); 468 continue; 469 } 470 ++NumInlined; 471 472 emitInlinedInto(ORE, DLoc, Block, *Callee, *Caller, *OIC); 473 474 // If inlining this function gave us any new call sites, throw them 475 // onto our worklist to process. They are useful inline candidates. 476 if (!InlineInfo.InlinedCalls.empty()) { 477 // Create a new inline history entry for this, so that we remember 478 // that these new callsites came about due to inlining Callee. 479 int NewHistoryID = InlineHistory.size(); 480 InlineHistory.push_back(std::make_pair(Callee, InlineHistoryID)); 481 482 #ifndef NDEBUG 483 // Make sure no dupplicates in the inline candidates. This could 484 // happen when a callsite is simpilfied to reusing the return value 485 // of another callsite during function cloning, thus the other 486 // callsite will be reconsidered here. 487 DenseSet<CallBase *> DbgCallSites; 488 for (auto &II : CallSites) 489 DbgCallSites.insert(II.first); 490 #endif 491 492 for (Value *Ptr : InlineInfo.InlinedCalls) { 493 #ifndef NDEBUG 494 assert(DbgCallSites.count(dyn_cast<CallBase>(Ptr)) == 0); 495 #endif 496 CallSites.push_back( 497 std::make_pair(dyn_cast<CallBase>(Ptr), NewHistoryID)); 498 } 499 } 500 } 501 502 // If we inlined or deleted the last possible call site to the function, 503 // delete the function body now. 504 if (Callee && Callee->use_empty() && Callee->hasLocalLinkage() && 505 // TODO: Can remove if in SCC now. 506 !SCCFunctions.count(Callee) && 507 // The function may be apparently dead, but if there are indirect 508 // callgraph references to the node, we cannot delete it yet, this 509 // could invalidate the CGSCC iterator. 510 CG[Callee]->getNumReferences() == 0) { 511 LLVM_DEBUG(dbgs() << " -> Deleting dead function: " 512 << Callee->getName() << "\n"); 513 CallGraphNode *CalleeNode = CG[Callee]; 514 515 // Remove any call graph edges from the callee to its callees. 516 CalleeNode->removeAllCalledFunctions(); 517 518 // Removing the node for callee from the call graph and delete it. 519 delete CG.removeFunctionFromModule(CalleeNode); 520 ++NumDeleted; 521 } 522 523 // Remove this call site from the list. If possible, use 524 // swap/pop_back for efficiency, but do not use it if doing so would 525 // move a call site to a function in this SCC before the 526 // 'FirstCallInSCC' barrier. 527 if (SCC.isSingular()) { 528 CallSites[CSi] = CallSites.back(); 529 CallSites.pop_back(); 530 } else { 531 CallSites.erase(CallSites.begin() + CSi); 532 } 533 --CSi; 534 535 Changed = true; 536 LocalChange = true; 537 } 538 } while (LocalChange); 539 540 return Changed; 541 } 542 543 bool LegacyInlinerBase::inlineCalls(CallGraphSCC &SCC) { 544 CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph(); 545 ACT = &getAnalysis<AssumptionCacheTracker>(); 546 PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 547 GetTLI = [&](Function &F) -> const TargetLibraryInfo & { 548 return getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 549 }; 550 auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & { 551 return ACT->getAssumptionCache(F); 552 }; 553 return inlineCallsImpl( 554 SCC, CG, GetAssumptionCache, PSI, GetTLI, InsertLifetime, 555 [&](CallBase &CB) { return getInlineCost(CB); }, LegacyAARGetter(*this), 556 ImportedFunctionsStats); 557 } 558 559 /// Remove now-dead linkonce functions at the end of 560 /// processing to avoid breaking the SCC traversal. 561 bool LegacyInlinerBase::doFinalization(CallGraph &CG) { 562 if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No) 563 ImportedFunctionsStats.dump(InlinerFunctionImportStats == 564 InlinerFunctionImportStatsOpts::Verbose); 565 return removeDeadFunctions(CG); 566 } 567 568 /// Remove dead functions that are not included in DNR (Do Not Remove) list. 569 bool LegacyInlinerBase::removeDeadFunctions(CallGraph &CG, 570 bool AlwaysInlineOnly) { 571 SmallVector<CallGraphNode *, 16> FunctionsToRemove; 572 SmallVector<Function *, 16> DeadFunctionsInComdats; 573 574 auto RemoveCGN = [&](CallGraphNode *CGN) { 575 // Remove any call graph edges from the function to its callees. 576 CGN->removeAllCalledFunctions(); 577 578 // Remove any edges from the external node to the function's call graph 579 // node. These edges might have been made irrelegant due to 580 // optimization of the program. 581 CG.getExternalCallingNode()->removeAnyCallEdgeTo(CGN); 582 583 // Removing the node for callee from the call graph and delete it. 584 FunctionsToRemove.push_back(CGN); 585 }; 586 587 // Scan for all of the functions, looking for ones that should now be removed 588 // from the program. Insert the dead ones in the FunctionsToRemove set. 589 for (const auto &I : CG) { 590 CallGraphNode *CGN = I.second.get(); 591 Function *F = CGN->getFunction(); 592 if (!F || F->isDeclaration()) 593 continue; 594 595 // Handle the case when this function is called and we only want to care 596 // about always-inline functions. This is a bit of a hack to share code 597 // between here and the InlineAlways pass. 598 if (AlwaysInlineOnly && !F->hasFnAttribute(Attribute::AlwaysInline)) 599 continue; 600 601 // If the only remaining users of the function are dead constants, remove 602 // them. 603 F->removeDeadConstantUsers(); 604 605 if (!F->isDefTriviallyDead()) 606 continue; 607 608 // It is unsafe to drop a function with discardable linkage from a COMDAT 609 // without also dropping the other members of the COMDAT. 610 // The inliner doesn't visit non-function entities which are in COMDAT 611 // groups so it is unsafe to do so *unless* the linkage is local. 612 if (!F->hasLocalLinkage()) { 613 if (F->hasComdat()) { 614 DeadFunctionsInComdats.push_back(F); 615 continue; 616 } 617 } 618 619 RemoveCGN(CGN); 620 } 621 if (!DeadFunctionsInComdats.empty()) { 622 // Filter out the functions whose comdats remain alive. 623 filterDeadComdatFunctions(CG.getModule(), DeadFunctionsInComdats); 624 // Remove the rest. 625 for (Function *F : DeadFunctionsInComdats) 626 RemoveCGN(CG[F]); 627 } 628 629 if (FunctionsToRemove.empty()) 630 return false; 631 632 // Now that we know which functions to delete, do so. We didn't want to do 633 // this inline, because that would invalidate our CallGraph::iterator 634 // objects. :( 635 // 636 // Note that it doesn't matter that we are iterating over a non-stable order 637 // here to do this, it doesn't matter which order the functions are deleted 638 // in. 639 array_pod_sort(FunctionsToRemove.begin(), FunctionsToRemove.end()); 640 FunctionsToRemove.erase( 641 std::unique(FunctionsToRemove.begin(), FunctionsToRemove.end()), 642 FunctionsToRemove.end()); 643 for (CallGraphNode *CGN : FunctionsToRemove) { 644 delete CG.removeFunctionFromModule(CGN); 645 ++NumDeleted; 646 } 647 return true; 648 } 649 650 InlinerPass::~InlinerPass() { 651 if (ImportedFunctionsStats) { 652 assert(InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No); 653 ImportedFunctionsStats->dump(InlinerFunctionImportStats == 654 InlinerFunctionImportStatsOpts::Verbose); 655 } 656 } 657 658 InlineAdvisor & 659 InlinerPass::getAdvisor(const ModuleAnalysisManagerCGSCCProxy::Result &MAM, 660 FunctionAnalysisManager &FAM, Module &M) { 661 auto *IAA = MAM.getCachedResult<InlineAdvisorAnalysis>(M); 662 if (!IAA) { 663 // It should still be possible to run the inliner as a stand-alone SCC pass, 664 // for test scenarios. In that case, we default to the 665 // DefaultInlineAdvisor, which doesn't need to keep state between SCC pass 666 // runs. It also uses just the default InlineParams. 667 // In this case, we need to use the provided FAM, which is valid for the 668 // duration of the inliner pass, and thus the lifetime of the owned advisor. 669 // The one we would get from the MAM can be invalidated as a result of the 670 // inliner's activity. 671 OwnedDefaultAdvisor.emplace(FAM, getInlineParams()); 672 return *OwnedDefaultAdvisor; 673 } 674 assert(IAA->getAdvisor() && 675 "Expected a present InlineAdvisorAnalysis also have an " 676 "InlineAdvisor initialized"); 677 return *IAA->getAdvisor(); 678 } 679 680 PreservedAnalyses InlinerPass::run(LazyCallGraph::SCC &InitialC, 681 CGSCCAnalysisManager &AM, LazyCallGraph &CG, 682 CGSCCUpdateResult &UR) { 683 const auto &MAMProxy = 684 AM.getResult<ModuleAnalysisManagerCGSCCProxy>(InitialC, CG); 685 bool Changed = false; 686 687 assert(InitialC.size() > 0 && "Cannot handle an empty SCC!"); 688 Module &M = *InitialC.begin()->getFunction().getParent(); 689 ProfileSummaryInfo *PSI = MAMProxy.getCachedResult<ProfileSummaryAnalysis>(M); 690 691 FunctionAnalysisManager &FAM = 692 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(InitialC, CG) 693 .getManager(); 694 695 InlineAdvisor &Advisor = getAdvisor(MAMProxy, FAM, M); 696 Advisor.onPassEntry(); 697 698 auto AdvisorOnExit = make_scope_exit([&] { Advisor.onPassExit(); }); 699 700 if (!ImportedFunctionsStats && 701 InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No) { 702 ImportedFunctionsStats = 703 std::make_unique<ImportedFunctionsInliningStatistics>(); 704 ImportedFunctionsStats->setModuleInfo(M); 705 } 706 707 // We use a single common worklist for calls across the entire SCC. We 708 // process these in-order and append new calls introduced during inlining to 709 // the end. 710 // 711 // Note that this particular order of processing is actually critical to 712 // avoid very bad behaviors. Consider *highly connected* call graphs where 713 // each function contains a small amount of code and a couple of calls to 714 // other functions. Because the LLVM inliner is fundamentally a bottom-up 715 // inliner, it can handle gracefully the fact that these all appear to be 716 // reasonable inlining candidates as it will flatten things until they become 717 // too big to inline, and then move on and flatten another batch. 718 // 719 // However, when processing call edges *within* an SCC we cannot rely on this 720 // bottom-up behavior. As a consequence, with heavily connected *SCCs* of 721 // functions we can end up incrementally inlining N calls into each of 722 // N functions because each incremental inlining decision looks good and we 723 // don't have a topological ordering to prevent explosions. 724 // 725 // To compensate for this, we don't process transitive edges made immediate 726 // by inlining until we've done one pass of inlining across the entire SCC. 727 // Large, highly connected SCCs still lead to some amount of code bloat in 728 // this model, but it is uniformly spread across all the functions in the SCC 729 // and eventually they all become too large to inline, rather than 730 // incrementally maknig a single function grow in a super linear fashion. 731 SmallVector<std::pair<CallBase *, int>, 16> Calls; 732 733 // Populate the initial list of calls in this SCC. 734 for (auto &N : InitialC) { 735 auto &ORE = 736 FAM.getResult<OptimizationRemarkEmitterAnalysis>(N.getFunction()); 737 // We want to generally process call sites top-down in order for 738 // simplifications stemming from replacing the call with the returned value 739 // after inlining to be visible to subsequent inlining decisions. 740 // FIXME: Using instructions sequence is a really bad way to do this. 741 // Instead we should do an actual RPO walk of the function body. 742 for (Instruction &I : instructions(N.getFunction())) 743 if (auto *CB = dyn_cast<CallBase>(&I)) 744 if (Function *Callee = CB->getCalledFunction()) { 745 if (!Callee->isDeclaration()) 746 Calls.push_back({CB, -1}); 747 else if (!isa<IntrinsicInst>(I)) { 748 using namespace ore; 749 setInlineRemark(*CB, "unavailable definition"); 750 ORE.emit([&]() { 751 return OptimizationRemarkMissed(DEBUG_TYPE, "NoDefinition", &I) 752 << NV("Callee", Callee) << " will not be inlined into " 753 << NV("Caller", CB->getCaller()) 754 << " because its definition is unavailable" 755 << setIsVerbose(); 756 }); 757 } 758 } 759 } 760 if (Calls.empty()) 761 return PreservedAnalyses::all(); 762 763 // Capture updatable variable for the current SCC. 764 auto *C = &InitialC; 765 766 // When inlining a callee produces new call sites, we want to keep track of 767 // the fact that they were inlined from the callee. This allows us to avoid 768 // infinite inlining in some obscure cases. To represent this, we use an 769 // index into the InlineHistory vector. 770 SmallVector<std::pair<Function *, int>, 16> InlineHistory; 771 772 // Track a set vector of inlined callees so that we can augment the caller 773 // with all of their edges in the call graph before pruning out the ones that 774 // got simplified away. 775 SmallSetVector<Function *, 4> InlinedCallees; 776 777 // Track the dead functions to delete once finished with inlining calls. We 778 // defer deleting these to make it easier to handle the call graph updates. 779 SmallVector<Function *, 4> DeadFunctions; 780 781 // Loop forward over all of the calls. Note that we cannot cache the size as 782 // inlining can introduce new calls that need to be processed. 783 for (int I = 0; I < (int)Calls.size(); ++I) { 784 // We expect the calls to typically be batched with sequences of calls that 785 // have the same caller, so we first set up some shared infrastructure for 786 // this caller. We also do any pruning we can at this layer on the caller 787 // alone. 788 Function &F = *Calls[I].first->getCaller(); 789 LazyCallGraph::Node &N = *CG.lookup(F); 790 if (CG.lookupSCC(N) != C) 791 continue; 792 if (!Calls[I].first->getCalledFunction()->hasFnAttribute( 793 Attribute::AlwaysInline) && 794 F.hasOptNone()) { 795 setInlineRemark(*Calls[I].first, "optnone attribute"); 796 continue; 797 } 798 799 LLVM_DEBUG(dbgs() << "Inlining calls in: " << F.getName() << "\n"); 800 801 auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & { 802 return FAM.getResult<AssumptionAnalysis>(F); 803 }; 804 805 // Now process as many calls as we have within this caller in the sequence. 806 // We bail out as soon as the caller has to change so we can update the 807 // call graph and prepare the context of that new caller. 808 bool DidInline = false; 809 for (; I < (int)Calls.size() && Calls[I].first->getCaller() == &F; ++I) { 810 auto &P = Calls[I]; 811 CallBase *CB = P.first; 812 const int InlineHistoryID = P.second; 813 Function &Callee = *CB->getCalledFunction(); 814 815 if (InlineHistoryID != -1 && 816 inlineHistoryIncludes(&Callee, InlineHistoryID, InlineHistory)) { 817 setInlineRemark(*CB, "recursive"); 818 continue; 819 } 820 821 // Check if this inlining may repeat breaking an SCC apart that has 822 // already been split once before. In that case, inlining here may 823 // trigger infinite inlining, much like is prevented within the inliner 824 // itself by the InlineHistory above, but spread across CGSCC iterations 825 // and thus hidden from the full inline history. 826 if (CG.lookupSCC(*CG.lookup(Callee)) == C && 827 UR.InlinedInternalEdges.count({&N, C})) { 828 LLVM_DEBUG(dbgs() << "Skipping inlining internal SCC edge from a node " 829 "previously split out of this SCC by inlining: " 830 << F.getName() << " -> " << Callee.getName() << "\n"); 831 setInlineRemark(*CB, "recursive SCC split"); 832 continue; 833 } 834 835 auto Advice = Advisor.getAdvice(*CB); 836 // Check whether we want to inline this callsite. 837 if (!Advice->isInliningRecommended()) { 838 Advice->recordUnattemptedInlining(); 839 continue; 840 } 841 842 // Setup the data structure used to plumb customization into the 843 // `InlineFunction` routine. 844 InlineFunctionInfo IFI( 845 /*cg=*/nullptr, GetAssumptionCache, PSI, 846 &FAM.getResult<BlockFrequencyAnalysis>(*(CB->getCaller())), 847 &FAM.getResult<BlockFrequencyAnalysis>(Callee)); 848 849 InlineResult IR = 850 InlineFunction(*CB, IFI, &FAM.getResult<AAManager>(*CB->getCaller())); 851 if (!IR.isSuccess()) { 852 Advice->recordUnsuccessfulInlining(IR); 853 continue; 854 } 855 856 DidInline = true; 857 InlinedCallees.insert(&Callee); 858 ++NumInlined; 859 860 // Add any new callsites to defined functions to the worklist. 861 if (!IFI.InlinedCallSites.empty()) { 862 int NewHistoryID = InlineHistory.size(); 863 InlineHistory.push_back({&Callee, InlineHistoryID}); 864 865 for (CallBase *ICB : reverse(IFI.InlinedCallSites)) { 866 Function *NewCallee = ICB->getCalledFunction(); 867 if (!NewCallee) { 868 // Try to promote an indirect (virtual) call without waiting for 869 // the post-inline cleanup and the next DevirtSCCRepeatedPass 870 // iteration because the next iteration may not happen and we may 871 // miss inlining it. 872 if (tryPromoteCall(*ICB)) 873 NewCallee = ICB->getCalledFunction(); 874 } 875 if (NewCallee) 876 if (!NewCallee->isDeclaration()) 877 Calls.push_back({ICB, NewHistoryID}); 878 } 879 } 880 881 if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No) 882 ImportedFunctionsStats->recordInline(F, Callee); 883 884 // Merge the attributes based on the inlining. 885 AttributeFuncs::mergeAttributesForInlining(F, Callee); 886 887 // For local functions, check whether this makes the callee trivially 888 // dead. In that case, we can drop the body of the function eagerly 889 // which may reduce the number of callers of other functions to one, 890 // changing inline cost thresholds. 891 bool CalleeWasDeleted = false; 892 if (Callee.hasLocalLinkage()) { 893 // To check this we also need to nuke any dead constant uses (perhaps 894 // made dead by this operation on other functions). 895 Callee.removeDeadConstantUsers(); 896 if (Callee.use_empty() && !CG.isLibFunction(Callee)) { 897 Calls.erase( 898 std::remove_if(Calls.begin() + I + 1, Calls.end(), 899 [&](const std::pair<CallBase *, int> &Call) { 900 return Call.first->getCaller() == &Callee; 901 }), 902 Calls.end()); 903 // Clear the body and queue the function itself for deletion when we 904 // finish inlining and call graph updates. 905 // Note that after this point, it is an error to do anything other 906 // than use the callee's address or delete it. 907 Callee.dropAllReferences(); 908 assert(!is_contained(DeadFunctions, &Callee) && 909 "Cannot put cause a function to become dead twice!"); 910 DeadFunctions.push_back(&Callee); 911 CalleeWasDeleted = true; 912 } 913 } 914 if (CalleeWasDeleted) 915 Advice->recordInliningWithCalleeDeleted(); 916 else 917 Advice->recordInlining(); 918 } 919 920 // Back the call index up by one to put us in a good position to go around 921 // the outer loop. 922 --I; 923 924 if (!DidInline) 925 continue; 926 Changed = true; 927 928 // At this point, since we have made changes we have at least removed 929 // a call instruction. However, in the process we do some incremental 930 // simplification of the surrounding code. This simplification can 931 // essentially do all of the same things as a function pass and we can 932 // re-use the exact same logic for updating the call graph to reflect the 933 // change. 934 935 // Inside the update, we also update the FunctionAnalysisManager in the 936 // proxy for this particular SCC. We do this as the SCC may have changed and 937 // as we're going to mutate this particular function we want to make sure 938 // the proxy is in place to forward any invalidation events. 939 LazyCallGraph::SCC *OldC = C; 940 C = &updateCGAndAnalysisManagerForCGSCCPass(CG, *C, N, AM, UR, FAM); 941 LLVM_DEBUG(dbgs() << "Updated inlining SCC: " << *C << "\n"); 942 943 // If this causes an SCC to split apart into multiple smaller SCCs, there 944 // is a subtle risk we need to prepare for. Other transformations may 945 // expose an "infinite inlining" opportunity later, and because of the SCC 946 // mutation, we will revisit this function and potentially re-inline. If we 947 // do, and that re-inlining also has the potentially to mutate the SCC 948 // structure, the infinite inlining problem can manifest through infinite 949 // SCC splits and merges. To avoid this, we capture the originating caller 950 // node and the SCC containing the call edge. This is a slight over 951 // approximation of the possible inlining decisions that must be avoided, 952 // but is relatively efficient to store. We use C != OldC to know when 953 // a new SCC is generated and the original SCC may be generated via merge 954 // in later iterations. 955 // 956 // It is also possible that even if no new SCC is generated 957 // (i.e., C == OldC), the original SCC could be split and then merged 958 // into the same one as itself. and the original SCC will be added into 959 // UR.CWorklist again, we want to catch such cases too. 960 // 961 // FIXME: This seems like a very heavyweight way of retaining the inline 962 // history, we should look for a more efficient way of tracking it. 963 if ((C != OldC || UR.CWorklist.count(OldC)) && 964 llvm::any_of(InlinedCallees, [&](Function *Callee) { 965 return CG.lookupSCC(*CG.lookup(*Callee)) == OldC; 966 })) { 967 LLVM_DEBUG(dbgs() << "Inlined an internal call edge and split an SCC, " 968 "retaining this to avoid infinite inlining.\n"); 969 UR.InlinedInternalEdges.insert({&N, OldC}); 970 } 971 InlinedCallees.clear(); 972 } 973 974 // Now that we've finished inlining all of the calls across this SCC, delete 975 // all of the trivially dead functions, updating the call graph and the CGSCC 976 // pass manager in the process. 977 // 978 // Note that this walks a pointer set which has non-deterministic order but 979 // that is OK as all we do is delete things and add pointers to unordered 980 // sets. 981 for (Function *DeadF : DeadFunctions) { 982 // Get the necessary information out of the call graph and nuke the 983 // function there. Also, clear out any cached analyses. 984 auto &DeadC = *CG.lookupSCC(*CG.lookup(*DeadF)); 985 FAM.clear(*DeadF, DeadF->getName()); 986 AM.clear(DeadC, DeadC.getName()); 987 auto &DeadRC = DeadC.getOuterRefSCC(); 988 CG.removeDeadFunction(*DeadF); 989 990 // Mark the relevant parts of the call graph as invalid so we don't visit 991 // them. 992 UR.InvalidatedSCCs.insert(&DeadC); 993 UR.InvalidatedRefSCCs.insert(&DeadRC); 994 995 // And delete the actual function from the module. 996 // The Advisor may use Function pointers to efficiently index various 997 // internal maps, e.g. for memoization. Function cleanup passes like 998 // argument promotion create new functions. It is possible for a new 999 // function to be allocated at the address of a deleted function. We could 1000 // index using names, but that's inefficient. Alternatively, we let the 1001 // Advisor free the functions when it sees fit. 1002 DeadF->getBasicBlockList().clear(); 1003 M.getFunctionList().remove(DeadF); 1004 1005 ++NumDeleted; 1006 } 1007 1008 if (!Changed) 1009 return PreservedAnalyses::all(); 1010 1011 // Even if we change the IR, we update the core CGSCC data structures and so 1012 // can preserve the proxy to the function analysis manager. 1013 PreservedAnalyses PA; 1014 PA.preserve<FunctionAnalysisManagerCGSCCProxy>(); 1015 return PA; 1016 } 1017 1018 ModuleInlinerWrapperPass::ModuleInlinerWrapperPass(InlineParams Params, 1019 bool Debugging, 1020 InliningAdvisorMode Mode, 1021 unsigned MaxDevirtIterations) 1022 : Params(Params), Mode(Mode), MaxDevirtIterations(MaxDevirtIterations), 1023 PM(Debugging), MPM(Debugging) { 1024 // Run the inliner first. The theory is that we are walking bottom-up and so 1025 // the callees have already been fully optimized, and we want to inline them 1026 // into the callers so that our optimizations can reflect that. 1027 // For PreLinkThinLTO pass, we disable hot-caller heuristic for sample PGO 1028 // because it makes profile annotation in the backend inaccurate. 1029 PM.addPass(InlinerPass()); 1030 } 1031 1032 PreservedAnalyses ModuleInlinerWrapperPass::run(Module &M, 1033 ModuleAnalysisManager &MAM) { 1034 auto &IAA = MAM.getResult<InlineAdvisorAnalysis>(M); 1035 if (!IAA.tryCreate(Params, Mode)) { 1036 M.getContext().emitError( 1037 "Could not setup Inlining Advisor for the requested " 1038 "mode and/or options"); 1039 return PreservedAnalyses::all(); 1040 } 1041 1042 // We wrap the CGSCC pipeline in a devirtualization repeater. This will try 1043 // to detect when we devirtualize indirect calls and iterate the SCC passes 1044 // in that case to try and catch knock-on inlining or function attrs 1045 // opportunities. Then we add it to the module pipeline by walking the SCCs 1046 // in postorder (or bottom-up). 1047 // If MaxDevirtIterations is 0, we just don't use the devirtualization 1048 // wrapper. 1049 if (MaxDevirtIterations == 0) 1050 MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(PM))); 1051 else 1052 MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor( 1053 createDevirtSCCRepeatedPass(std::move(PM), MaxDevirtIterations))); 1054 auto Ret = MPM.run(M, MAM); 1055 1056 IAA.clear(); 1057 return Ret; 1058 } 1059