1 //===- HotColdSplitting.cpp -- Outline Cold Regions -------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// The goal of hot/cold splitting is to improve the memory locality of code. 11 /// The splitting pass does this by identifying cold blocks and moving them into 12 /// separate functions. 13 /// 14 /// When the splitting pass finds a cold block (referred to as "the sink"), it 15 /// grows a maximal cold region around that block. The maximal region contains 16 /// all blocks (post-)dominated by the sink [*]. In theory, these blocks are as 17 /// cold as the sink. Once a region is found, it's split out of the original 18 /// function provided it's profitable to do so. 19 /// 20 /// [*] In practice, there is some added complexity because some blocks are not 21 /// safe to extract. 22 /// 23 /// TODO: Use the PM to get domtrees, and preserve BFI/BPI. 24 /// TODO: Reorder outlined functions. 25 /// 26 //===----------------------------------------------------------------------===// 27 28 #include "llvm/Transforms/IPO/HotColdSplitting.h" 29 #include "llvm/ADT/PostOrderIterator.h" 30 #include "llvm/ADT/SmallVector.h" 31 #include "llvm/ADT/Statistic.h" 32 #include "llvm/Analysis/AliasAnalysis.h" 33 #include "llvm/Analysis/BlockFrequencyInfo.h" 34 #include "llvm/Analysis/BranchProbabilityInfo.h" 35 #include "llvm/Analysis/CFG.h" 36 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 37 #include "llvm/Analysis/PostDominators.h" 38 #include "llvm/Analysis/ProfileSummaryInfo.h" 39 #include "llvm/Analysis/TargetTransformInfo.h" 40 #include "llvm/IR/BasicBlock.h" 41 #include "llvm/IR/CFG.h" 42 #include "llvm/IR/DataLayout.h" 43 #include "llvm/IR/DiagnosticInfo.h" 44 #include "llvm/IR/Dominators.h" 45 #include "llvm/IR/Function.h" 46 #include "llvm/IR/Instruction.h" 47 #include "llvm/IR/Instructions.h" 48 #include "llvm/IR/IntrinsicInst.h" 49 #include "llvm/IR/Metadata.h" 50 #include "llvm/IR/Module.h" 51 #include "llvm/IR/PassManager.h" 52 #include "llvm/IR/Type.h" 53 #include "llvm/IR/Use.h" 54 #include "llvm/IR/User.h" 55 #include "llvm/IR/Value.h" 56 #include "llvm/InitializePasses.h" 57 #include "llvm/Pass.h" 58 #include "llvm/Support/BlockFrequency.h" 59 #include "llvm/Support/BranchProbability.h" 60 #include "llvm/Support/CommandLine.h" 61 #include "llvm/Support/Debug.h" 62 #include "llvm/Support/raw_ostream.h" 63 #include "llvm/Transforms/IPO.h" 64 #include "llvm/Transforms/Scalar.h" 65 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 66 #include "llvm/Transforms/Utils/Cloning.h" 67 #include "llvm/Transforms/Utils/CodeExtractor.h" 68 #include "llvm/Transforms/Utils/Local.h" 69 #include "llvm/Transforms/Utils/ValueMapper.h" 70 #include <algorithm> 71 #include <cassert> 72 73 #define DEBUG_TYPE "hotcoldsplit" 74 75 STATISTIC(NumColdRegionsFound, "Number of cold regions found."); 76 STATISTIC(NumColdRegionsOutlined, "Number of cold regions outlined."); 77 78 using namespace llvm; 79 80 static cl::opt<bool> EnableStaticAnalyis("hot-cold-static-analysis", 81 cl::init(true), cl::Hidden); 82 83 static cl::opt<int> 84 SplittingThreshold("hotcoldsplit-threshold", cl::init(2), cl::Hidden, 85 cl::desc("Base penalty for splitting cold code (as a " 86 "multiple of TCC_Basic)")); 87 88 namespace { 89 // Same as blockEndsInUnreachable in CodeGen/BranchFolding.cpp. Do not modify 90 // this function unless you modify the MBB version as well. 91 // 92 /// A no successor, non-return block probably ends in unreachable and is cold. 93 /// Also consider a block that ends in an indirect branch to be a return block, 94 /// since many targets use plain indirect branches to return. 95 bool blockEndsInUnreachable(const BasicBlock &BB) { 96 if (!succ_empty(&BB)) 97 return false; 98 if (BB.empty()) 99 return true; 100 const Instruction *I = BB.getTerminator(); 101 return !(isa<ReturnInst>(I) || isa<IndirectBrInst>(I)); 102 } 103 104 bool unlikelyExecuted(BasicBlock &BB, ProfileSummaryInfo *PSI, 105 BlockFrequencyInfo *BFI) { 106 // Exception handling blocks are unlikely executed. 107 if (BB.isEHPad() || isa<ResumeInst>(BB.getTerminator())) 108 return true; 109 110 // The block is cold if it calls/invokes a cold function. However, do not 111 // mark sanitizer traps as cold. 112 for (Instruction &I : BB) 113 if (auto *CB = dyn_cast<CallBase>(&I)) 114 if (CB->hasFnAttr(Attribute::Cold) && !CB->getMetadata("nosanitize")) 115 return true; 116 117 // The block is cold if it has an unreachable terminator, unless it's 118 // preceded by a call to a (possibly warm) noreturn call (e.g. longjmp); 119 // in the case of a longjmp, if the block is cold according to 120 // profile information, we mark it as unlikely to be executed as well. 121 if (blockEndsInUnreachable(BB)) { 122 if (auto *CI = 123 dyn_cast_or_null<CallInst>(BB.getTerminator()->getPrevNode())) 124 if (CI->hasFnAttr(Attribute::NoReturn)) { 125 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) 126 return (II->getIntrinsicID() != Intrinsic::eh_sjlj_longjmp) || 127 (BFI && PSI->isColdBlock(&BB, BFI)); 128 return !CI->getCalledFunction()->getName().contains("longjmp") || 129 (BFI && PSI->isColdBlock(&BB, BFI)); 130 } 131 return true; 132 } 133 134 return false; 135 } 136 137 /// Check whether it's safe to outline \p BB. 138 static bool mayExtractBlock(const BasicBlock &BB) { 139 // EH pads are unsafe to outline because doing so breaks EH type tables. It 140 // follows that invoke instructions cannot be extracted, because CodeExtractor 141 // requires unwind destinations to be within the extraction region. 142 // 143 // Resumes that are not reachable from a cleanup landing pad are considered to 144 // be unreachable. It’s not safe to split them out either. 145 auto Term = BB.getTerminator(); 146 return !BB.hasAddressTaken() && !BB.isEHPad() && !isa<InvokeInst>(Term) && 147 !isa<ResumeInst>(Term); 148 } 149 150 /// Mark \p F cold. Based on this assumption, also optimize it for minimum size. 151 /// If \p UpdateEntryCount is true (set when this is a new split function and 152 /// module has profile data), set entry count to 0 to ensure treated as cold. 153 /// Return true if the function is changed. 154 static bool markFunctionCold(Function &F, bool UpdateEntryCount = false) { 155 assert(!F.hasOptNone() && "Can't mark this cold"); 156 bool Changed = false; 157 if (!F.hasFnAttribute(Attribute::Cold)) { 158 F.addFnAttr(Attribute::Cold); 159 Changed = true; 160 } 161 if (!F.hasFnAttribute(Attribute::MinSize)) { 162 F.addFnAttr(Attribute::MinSize); 163 Changed = true; 164 } 165 if (UpdateEntryCount) { 166 // Set the entry count to 0 to ensure it is placed in the unlikely text 167 // section when function sections are enabled. 168 F.setEntryCount(0); 169 Changed = true; 170 } 171 172 return Changed; 173 } 174 175 class HotColdSplittingLegacyPass : public ModulePass { 176 public: 177 static char ID; 178 HotColdSplittingLegacyPass() : ModulePass(ID) { 179 initializeHotColdSplittingLegacyPassPass(*PassRegistry::getPassRegistry()); 180 } 181 182 void getAnalysisUsage(AnalysisUsage &AU) const override { 183 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 184 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 185 AU.addRequired<TargetTransformInfoWrapperPass>(); 186 AU.addUsedIfAvailable<AssumptionCacheTracker>(); 187 } 188 189 bool runOnModule(Module &M) override; 190 }; 191 192 } // end anonymous namespace 193 194 /// Check whether \p F is inherently cold. 195 bool HotColdSplitting::isFunctionCold(const Function &F) const { 196 if (F.hasFnAttribute(Attribute::Cold)) 197 return true; 198 199 if (F.getCallingConv() == CallingConv::Cold) 200 return true; 201 202 if (PSI->isFunctionEntryCold(&F)) 203 return true; 204 205 return false; 206 } 207 208 // Returns false if the function should not be considered for hot-cold split 209 // optimization. 210 bool HotColdSplitting::shouldOutlineFrom(const Function &F) const { 211 if (F.hasFnAttribute(Attribute::AlwaysInline)) 212 return false; 213 214 if (F.hasFnAttribute(Attribute::NoInline)) 215 return false; 216 217 // A function marked `noreturn` may contain unreachable terminators: these 218 // should not be considered cold, as the function may be a trampoline. 219 if (F.hasFnAttribute(Attribute::NoReturn)) 220 return false; 221 222 if (F.hasFnAttribute(Attribute::SanitizeAddress) || 223 F.hasFnAttribute(Attribute::SanitizeHWAddress) || 224 F.hasFnAttribute(Attribute::SanitizeThread) || 225 F.hasFnAttribute(Attribute::SanitizeMemory)) 226 return false; 227 228 return true; 229 } 230 231 /// Get the benefit score of outlining \p Region. 232 static int getOutliningBenefit(ArrayRef<BasicBlock *> Region, 233 TargetTransformInfo &TTI) { 234 // Sum up the code size costs of non-terminator instructions. Tight coupling 235 // with \ref getOutliningPenalty is needed to model the costs of terminators. 236 int Benefit = 0; 237 for (BasicBlock *BB : Region) 238 for (Instruction &I : BB->instructionsWithoutDebug()) 239 if (&I != BB->getTerminator()) 240 Benefit += 241 TTI.getInstructionCost(&I, TargetTransformInfo::TCK_CodeSize); 242 243 return Benefit; 244 } 245 246 /// Get the penalty score for outlining \p Region. 247 static int getOutliningPenalty(ArrayRef<BasicBlock *> Region, 248 unsigned NumInputs, unsigned NumOutputs) { 249 int Penalty = SplittingThreshold; 250 LLVM_DEBUG(dbgs() << "Applying penalty for splitting: " << Penalty << "\n"); 251 252 // If the splitting threshold is set at or below zero, skip the usual 253 // profitability check. 254 if (SplittingThreshold <= 0) 255 return Penalty; 256 257 // The typical code size cost for materializing an argument for the outlined 258 // call. 259 LLVM_DEBUG(dbgs() << "Applying penalty for: " << NumInputs << " inputs\n"); 260 const int CostForArgMaterialization = TargetTransformInfo::TCC_Basic; 261 Penalty += CostForArgMaterialization * NumInputs; 262 263 // The typical code size cost for an output alloca, its associated store, and 264 // its associated reload. 265 LLVM_DEBUG(dbgs() << "Applying penalty for: " << NumOutputs << " outputs\n"); 266 const int CostForRegionOutput = 3 * TargetTransformInfo::TCC_Basic; 267 Penalty += CostForRegionOutput * NumOutputs; 268 269 // Find the number of distinct exit blocks for the region. Use a conservative 270 // check to determine whether control returns from the region. 271 bool NoBlocksReturn = true; 272 SmallPtrSet<BasicBlock *, 2> SuccsOutsideRegion; 273 for (BasicBlock *BB : Region) { 274 // If a block has no successors, only assume it does not return if it's 275 // unreachable. 276 if (succ_empty(BB)) { 277 NoBlocksReturn &= isa<UnreachableInst>(BB->getTerminator()); 278 continue; 279 } 280 281 for (BasicBlock *SuccBB : successors(BB)) { 282 if (find(Region, SuccBB) == Region.end()) { 283 NoBlocksReturn = false; 284 SuccsOutsideRegion.insert(SuccBB); 285 } 286 } 287 } 288 289 // Apply a `noreturn` bonus. 290 if (NoBlocksReturn) { 291 LLVM_DEBUG(dbgs() << "Applying bonus for: " << Region.size() 292 << " non-returning terminators\n"); 293 Penalty -= Region.size(); 294 } 295 296 // Apply a penalty for having more than one successor outside of the region. 297 // This penalty accounts for the switch needed in the caller. 298 if (!SuccsOutsideRegion.empty()) { 299 LLVM_DEBUG(dbgs() << "Applying penalty for: " << SuccsOutsideRegion.size() 300 << " non-region successors\n"); 301 Penalty += (SuccsOutsideRegion.size() - 1) * TargetTransformInfo::TCC_Basic; 302 } 303 304 return Penalty; 305 } 306 307 Function *HotColdSplitting::extractColdRegion( 308 const BlockSequence &Region, const CodeExtractorAnalysisCache &CEAC, 309 DominatorTree &DT, BlockFrequencyInfo *BFI, TargetTransformInfo &TTI, 310 OptimizationRemarkEmitter &ORE, AssumptionCache *AC, unsigned Count) { 311 assert(!Region.empty()); 312 313 // TODO: Pass BFI and BPI to update profile information. 314 CodeExtractor CE(Region, &DT, /* AggregateArgs */ false, /* BFI */ nullptr, 315 /* BPI */ nullptr, AC, /* AllowVarArgs */ false, 316 /* AllowAlloca */ false, 317 /* Suffix */ "cold." + std::to_string(Count)); 318 319 // Perform a simple cost/benefit analysis to decide whether or not to permit 320 // splitting. 321 SetVector<Value *> Inputs, Outputs, Sinks; 322 CE.findInputsOutputs(Inputs, Outputs, Sinks); 323 int OutliningBenefit = getOutliningBenefit(Region, TTI); 324 int OutliningPenalty = 325 getOutliningPenalty(Region, Inputs.size(), Outputs.size()); 326 LLVM_DEBUG(dbgs() << "Split profitability: benefit = " << OutliningBenefit 327 << ", penalty = " << OutliningPenalty << "\n"); 328 if (OutliningBenefit <= OutliningPenalty) 329 return nullptr; 330 331 Function *OrigF = Region[0]->getParent(); 332 if (Function *OutF = CE.extractCodeRegion(CEAC)) { 333 User *U = *OutF->user_begin(); 334 CallInst *CI = cast<CallInst>(U); 335 NumColdRegionsOutlined++; 336 if (TTI.useColdCCForColdCall(*OutF)) { 337 OutF->setCallingConv(CallingConv::Cold); 338 CI->setCallingConv(CallingConv::Cold); 339 } 340 CI->setIsNoInline(); 341 342 if (OrigF->hasSection()) 343 OutF->setSection(OrigF->getSection()); 344 345 markFunctionCold(*OutF, BFI != nullptr); 346 347 LLVM_DEBUG(llvm::dbgs() << "Outlined Region: " << *OutF); 348 ORE.emit([&]() { 349 return OptimizationRemark(DEBUG_TYPE, "HotColdSplit", 350 &*Region[0]->begin()) 351 << ore::NV("Original", OrigF) << " split cold code into " 352 << ore::NV("Split", OutF); 353 }); 354 return OutF; 355 } 356 357 ORE.emit([&]() { 358 return OptimizationRemarkMissed(DEBUG_TYPE, "ExtractFailed", 359 &*Region[0]->begin()) 360 << "Failed to extract region at block " 361 << ore::NV("Block", Region.front()); 362 }); 363 return nullptr; 364 } 365 366 /// A pair of (basic block, score). 367 using BlockTy = std::pair<BasicBlock *, unsigned>; 368 369 namespace { 370 /// A maximal outlining region. This contains all blocks post-dominated by a 371 /// sink block, the sink block itself, and all blocks dominated by the sink. 372 /// If sink-predecessors and sink-successors cannot be extracted in one region, 373 /// the static constructor returns a list of suitable extraction regions. 374 class OutliningRegion { 375 /// A list of (block, score) pairs. A block's score is non-zero iff it's a 376 /// viable sub-region entry point. Blocks with higher scores are better entry 377 /// points (i.e. they are more distant ancestors of the sink block). 378 SmallVector<BlockTy, 0> Blocks = {}; 379 380 /// The suggested entry point into the region. If the region has multiple 381 /// entry points, all blocks within the region may not be reachable from this 382 /// entry point. 383 BasicBlock *SuggestedEntryPoint = nullptr; 384 385 /// Whether the entire function is cold. 386 bool EntireFunctionCold = false; 387 388 /// If \p BB is a viable entry point, return \p Score. Return 0 otherwise. 389 static unsigned getEntryPointScore(BasicBlock &BB, unsigned Score) { 390 return mayExtractBlock(BB) ? Score : 0; 391 } 392 393 /// These scores should be lower than the score for predecessor blocks, 394 /// because regions starting at predecessor blocks are typically larger. 395 static constexpr unsigned ScoreForSuccBlock = 1; 396 static constexpr unsigned ScoreForSinkBlock = 1; 397 398 OutliningRegion(const OutliningRegion &) = delete; 399 OutliningRegion &operator=(const OutliningRegion &) = delete; 400 401 public: 402 OutliningRegion() = default; 403 OutliningRegion(OutliningRegion &&) = default; 404 OutliningRegion &operator=(OutliningRegion &&) = default; 405 406 static std::vector<OutliningRegion> create(BasicBlock &SinkBB, 407 const DominatorTree &DT, 408 const PostDominatorTree &PDT) { 409 std::vector<OutliningRegion> Regions; 410 SmallPtrSet<BasicBlock *, 4> RegionBlocks; 411 412 Regions.emplace_back(); 413 OutliningRegion *ColdRegion = &Regions.back(); 414 415 auto addBlockToRegion = [&](BasicBlock *BB, unsigned Score) { 416 RegionBlocks.insert(BB); 417 ColdRegion->Blocks.emplace_back(BB, Score); 418 }; 419 420 // The ancestor farthest-away from SinkBB, and also post-dominated by it. 421 unsigned SinkScore = getEntryPointScore(SinkBB, ScoreForSinkBlock); 422 ColdRegion->SuggestedEntryPoint = (SinkScore > 0) ? &SinkBB : nullptr; 423 unsigned BestScore = SinkScore; 424 425 // Visit SinkBB's ancestors using inverse DFS. 426 auto PredIt = ++idf_begin(&SinkBB); 427 auto PredEnd = idf_end(&SinkBB); 428 while (PredIt != PredEnd) { 429 BasicBlock &PredBB = **PredIt; 430 bool SinkPostDom = PDT.dominates(&SinkBB, &PredBB); 431 432 // If the predecessor is cold and has no predecessors, the entire 433 // function must be cold. 434 if (SinkPostDom && pred_empty(&PredBB)) { 435 ColdRegion->EntireFunctionCold = true; 436 return Regions; 437 } 438 439 // If SinkBB does not post-dominate a predecessor, do not mark the 440 // predecessor (or any of its predecessors) cold. 441 if (!SinkPostDom || !mayExtractBlock(PredBB)) { 442 PredIt.skipChildren(); 443 continue; 444 } 445 446 // Keep track of the post-dominated ancestor farthest away from the sink. 447 // The path length is always >= 2, ensuring that predecessor blocks are 448 // considered as entry points before the sink block. 449 unsigned PredScore = getEntryPointScore(PredBB, PredIt.getPathLength()); 450 if (PredScore > BestScore) { 451 ColdRegion->SuggestedEntryPoint = &PredBB; 452 BestScore = PredScore; 453 } 454 455 addBlockToRegion(&PredBB, PredScore); 456 ++PredIt; 457 } 458 459 // If the sink can be added to the cold region, do so. It's considered as 460 // an entry point before any sink-successor blocks. 461 // 462 // Otherwise, split cold sink-successor blocks using a separate region. 463 // This satisfies the requirement that all extraction blocks other than the 464 // first have predecessors within the extraction region. 465 if (mayExtractBlock(SinkBB)) { 466 addBlockToRegion(&SinkBB, SinkScore); 467 if (pred_empty(&SinkBB)) { 468 ColdRegion->EntireFunctionCold = true; 469 return Regions; 470 } 471 } else { 472 Regions.emplace_back(); 473 ColdRegion = &Regions.back(); 474 BestScore = 0; 475 } 476 477 // Find all successors of SinkBB dominated by SinkBB using DFS. 478 auto SuccIt = ++df_begin(&SinkBB); 479 auto SuccEnd = df_end(&SinkBB); 480 while (SuccIt != SuccEnd) { 481 BasicBlock &SuccBB = **SuccIt; 482 bool SinkDom = DT.dominates(&SinkBB, &SuccBB); 483 484 // Don't allow the backwards & forwards DFSes to mark the same block. 485 bool DuplicateBlock = RegionBlocks.count(&SuccBB); 486 487 // If SinkBB does not dominate a successor, do not mark the successor (or 488 // any of its successors) cold. 489 if (DuplicateBlock || !SinkDom || !mayExtractBlock(SuccBB)) { 490 SuccIt.skipChildren(); 491 continue; 492 } 493 494 unsigned SuccScore = getEntryPointScore(SuccBB, ScoreForSuccBlock); 495 if (SuccScore > BestScore) { 496 ColdRegion->SuggestedEntryPoint = &SuccBB; 497 BestScore = SuccScore; 498 } 499 500 addBlockToRegion(&SuccBB, SuccScore); 501 ++SuccIt; 502 } 503 504 return Regions; 505 } 506 507 /// Whether this region has nothing to extract. 508 bool empty() const { return !SuggestedEntryPoint; } 509 510 /// The blocks in this region. 511 ArrayRef<std::pair<BasicBlock *, unsigned>> blocks() const { return Blocks; } 512 513 /// Whether the entire function containing this region is cold. 514 bool isEntireFunctionCold() const { return EntireFunctionCold; } 515 516 /// Remove a sub-region from this region and return it as a block sequence. 517 BlockSequence takeSingleEntrySubRegion(DominatorTree &DT) { 518 assert(!empty() && !isEntireFunctionCold() && "Nothing to extract"); 519 520 // Remove blocks dominated by the suggested entry point from this region. 521 // During the removal, identify the next best entry point into the region. 522 // Ensure that the first extracted block is the suggested entry point. 523 BlockSequence SubRegion = {SuggestedEntryPoint}; 524 BasicBlock *NextEntryPoint = nullptr; 525 unsigned NextScore = 0; 526 auto RegionEndIt = Blocks.end(); 527 auto RegionStartIt = remove_if(Blocks, [&](const BlockTy &Block) { 528 BasicBlock *BB = Block.first; 529 unsigned Score = Block.second; 530 bool InSubRegion = 531 BB == SuggestedEntryPoint || DT.dominates(SuggestedEntryPoint, BB); 532 if (!InSubRegion && Score > NextScore) { 533 NextEntryPoint = BB; 534 NextScore = Score; 535 } 536 if (InSubRegion && BB != SuggestedEntryPoint) 537 SubRegion.push_back(BB); 538 return InSubRegion; 539 }); 540 Blocks.erase(RegionStartIt, RegionEndIt); 541 542 // Update the suggested entry point. 543 SuggestedEntryPoint = NextEntryPoint; 544 545 return SubRegion; 546 } 547 }; 548 } // namespace 549 550 bool HotColdSplitting::outlineColdRegions(Function &F, bool HasProfileSummary) { 551 bool Changed = false; 552 553 // The set of cold blocks. 554 SmallPtrSet<BasicBlock *, 4> ColdBlocks; 555 556 // The worklist of non-intersecting regions left to outline. 557 SmallVector<OutliningRegion, 2> OutliningWorklist; 558 559 // Set up an RPO traversal. Experimentally, this performs better (outlines 560 // more) than a PO traversal, because we prevent region overlap by keeping 561 // the first region to contain a block. 562 ReversePostOrderTraversal<Function *> RPOT(&F); 563 564 // Calculate domtrees lazily. This reduces compile-time significantly. 565 std::unique_ptr<DominatorTree> DT; 566 std::unique_ptr<PostDominatorTree> PDT; 567 568 // Calculate BFI lazily (it's only used to query ProfileSummaryInfo). This 569 // reduces compile-time significantly. TODO: When we *do* use BFI, we should 570 // be able to salvage its domtrees instead of recomputing them. 571 BlockFrequencyInfo *BFI = nullptr; 572 if (HasProfileSummary) 573 BFI = GetBFI(F); 574 575 TargetTransformInfo &TTI = GetTTI(F); 576 OptimizationRemarkEmitter &ORE = (*GetORE)(F); 577 AssumptionCache *AC = LookupAC(F); 578 579 // Find all cold regions. 580 for (BasicBlock *BB : RPOT) { 581 // This block is already part of some outlining region. 582 if (ColdBlocks.count(BB)) 583 continue; 584 585 bool Cold = (BFI && PSI->isColdBlock(BB, BFI)) || 586 (EnableStaticAnalyis && unlikelyExecuted(*BB, PSI, BFI)); 587 if (!Cold) 588 continue; 589 590 LLVM_DEBUG({ 591 dbgs() << "Found a cold block:\n"; 592 BB->dump(); 593 }); 594 595 if (!DT) 596 DT = std::make_unique<DominatorTree>(F); 597 if (!PDT) 598 PDT = std::make_unique<PostDominatorTree>(F); 599 600 auto Regions = OutliningRegion::create(*BB, *DT, *PDT); 601 for (OutliningRegion &Region : Regions) { 602 if (Region.empty()) 603 continue; 604 605 if (Region.isEntireFunctionCold()) { 606 LLVM_DEBUG(dbgs() << "Entire function is cold\n"); 607 return markFunctionCold(F); 608 } 609 610 // If this outlining region intersects with another, drop the new region. 611 // 612 // TODO: It's theoretically possible to outline more by only keeping the 613 // largest region which contains a block, but the extra bookkeeping to do 614 // this is tricky/expensive. 615 bool RegionsOverlap = any_of(Region.blocks(), [&](const BlockTy &Block) { 616 return !ColdBlocks.insert(Block.first).second; 617 }); 618 if (RegionsOverlap) 619 continue; 620 621 OutliningWorklist.emplace_back(std::move(Region)); 622 ++NumColdRegionsFound; 623 } 624 } 625 626 if (OutliningWorklist.empty()) 627 return Changed; 628 629 // Outline single-entry cold regions, splitting up larger regions as needed. 630 unsigned OutlinedFunctionID = 1; 631 // Cache and recycle the CodeExtractor analysis to avoid O(n^2) compile-time. 632 CodeExtractorAnalysisCache CEAC(F); 633 do { 634 OutliningRegion Region = OutliningWorklist.pop_back_val(); 635 assert(!Region.empty() && "Empty outlining region in worklist"); 636 do { 637 BlockSequence SubRegion = Region.takeSingleEntrySubRegion(*DT); 638 LLVM_DEBUG({ 639 dbgs() << "Hot/cold splitting attempting to outline these blocks:\n"; 640 for (BasicBlock *BB : SubRegion) 641 BB->dump(); 642 }); 643 644 Function *Outlined = extractColdRegion(SubRegion, CEAC, *DT, BFI, TTI, 645 ORE, AC, OutlinedFunctionID); 646 if (Outlined) { 647 ++OutlinedFunctionID; 648 Changed = true; 649 } 650 } while (!Region.empty()); 651 } while (!OutliningWorklist.empty()); 652 653 return Changed; 654 } 655 656 bool HotColdSplitting::run(Module &M) { 657 bool Changed = false; 658 bool HasProfileSummary = (M.getProfileSummary(/* IsCS */ false) != nullptr); 659 for (auto It = M.begin(), End = M.end(); It != End; ++It) { 660 Function &F = *It; 661 662 // Do not touch declarations. 663 if (F.isDeclaration()) 664 continue; 665 666 // Do not modify `optnone` functions. 667 if (F.hasOptNone()) 668 continue; 669 670 // Detect inherently cold functions and mark them as such. 671 if (isFunctionCold(F)) { 672 Changed |= markFunctionCold(F); 673 continue; 674 } 675 676 if (!shouldOutlineFrom(F)) { 677 LLVM_DEBUG(llvm::dbgs() << "Skipping " << F.getName() << "\n"); 678 continue; 679 } 680 681 LLVM_DEBUG(llvm::dbgs() << "Outlining in " << F.getName() << "\n"); 682 Changed |= outlineColdRegions(F, HasProfileSummary); 683 } 684 return Changed; 685 } 686 687 bool HotColdSplittingLegacyPass::runOnModule(Module &M) { 688 if (skipModule(M)) 689 return false; 690 ProfileSummaryInfo *PSI = 691 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 692 auto GTTI = [this](Function &F) -> TargetTransformInfo & { 693 return this->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 694 }; 695 auto GBFI = [this](Function &F) { 696 return &this->getAnalysis<BlockFrequencyInfoWrapperPass>(F).getBFI(); 697 }; 698 std::unique_ptr<OptimizationRemarkEmitter> ORE; 699 std::function<OptimizationRemarkEmitter &(Function &)> GetORE = 700 [&ORE](Function &F) -> OptimizationRemarkEmitter & { 701 ORE.reset(new OptimizationRemarkEmitter(&F)); 702 return *ORE.get(); 703 }; 704 auto LookupAC = [this](Function &F) -> AssumptionCache * { 705 if (auto *ACT = getAnalysisIfAvailable<AssumptionCacheTracker>()) 706 return ACT->lookupAssumptionCache(F); 707 return nullptr; 708 }; 709 710 return HotColdSplitting(PSI, GBFI, GTTI, &GetORE, LookupAC).run(M); 711 } 712 713 PreservedAnalyses 714 HotColdSplittingPass::run(Module &M, ModuleAnalysisManager &AM) { 715 auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 716 717 auto LookupAC = [&FAM](Function &F) -> AssumptionCache * { 718 return FAM.getCachedResult<AssumptionAnalysis>(F); 719 }; 720 721 auto GBFI = [&FAM](Function &F) { 722 return &FAM.getResult<BlockFrequencyAnalysis>(F); 723 }; 724 725 std::function<TargetTransformInfo &(Function &)> GTTI = 726 [&FAM](Function &F) -> TargetTransformInfo & { 727 return FAM.getResult<TargetIRAnalysis>(F); 728 }; 729 730 std::unique_ptr<OptimizationRemarkEmitter> ORE; 731 std::function<OptimizationRemarkEmitter &(Function &)> GetORE = 732 [&ORE](Function &F) -> OptimizationRemarkEmitter & { 733 ORE.reset(new OptimizationRemarkEmitter(&F)); 734 return *ORE.get(); 735 }; 736 737 ProfileSummaryInfo *PSI = &AM.getResult<ProfileSummaryAnalysis>(M); 738 739 if (HotColdSplitting(PSI, GBFI, GTTI, &GetORE, LookupAC).run(M)) 740 return PreservedAnalyses::none(); 741 return PreservedAnalyses::all(); 742 } 743 744 char HotColdSplittingLegacyPass::ID = 0; 745 INITIALIZE_PASS_BEGIN(HotColdSplittingLegacyPass, "hotcoldsplit", 746 "Hot Cold Splitting", false, false) 747 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 748 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 749 INITIALIZE_PASS_END(HotColdSplittingLegacyPass, "hotcoldsplit", 750 "Hot Cold Splitting", false, false) 751 752 ModulePass *llvm::createHotColdSplittingPass() { 753 return new HotColdSplittingLegacyPass(); 754 } 755