1 //===- HotColdSplitting.cpp -- Outline Cold Regions -------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// The goal of hot/cold splitting is to improve the memory locality of code. 11 /// The splitting pass does this by identifying cold blocks and moving them into 12 /// separate functions. 13 /// 14 /// When the splitting pass finds a cold block (referred to as "the sink"), it 15 /// grows a maximal cold region around that block. The maximal region contains 16 /// all blocks (post-)dominated by the sink [*]. In theory, these blocks are as 17 /// cold as the sink. Once a region is found, it's split out of the original 18 /// function provided it's profitable to do so. 19 /// 20 /// [*] In practice, there is some added complexity because some blocks are not 21 /// safe to extract. 22 /// 23 /// TODO: Use the PM to get domtrees, and preserve BFI/BPI. 24 /// TODO: Reorder outlined functions. 25 /// 26 //===----------------------------------------------------------------------===// 27 28 #include "llvm/Transforms/IPO/HotColdSplitting.h" 29 #include "llvm/ADT/PostOrderIterator.h" 30 #include "llvm/ADT/SmallVector.h" 31 #include "llvm/ADT/Statistic.h" 32 #include "llvm/Analysis/AssumptionCache.h" 33 #include "llvm/Analysis/BlockFrequencyInfo.h" 34 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 35 #include "llvm/Analysis/PostDominators.h" 36 #include "llvm/Analysis/ProfileSummaryInfo.h" 37 #include "llvm/Analysis/TargetTransformInfo.h" 38 #include "llvm/IR/BasicBlock.h" 39 #include "llvm/IR/CFG.h" 40 #include "llvm/IR/DiagnosticInfo.h" 41 #include "llvm/IR/Dominators.h" 42 #include "llvm/IR/Function.h" 43 #include "llvm/IR/Instruction.h" 44 #include "llvm/IR/Instructions.h" 45 #include "llvm/IR/Module.h" 46 #include "llvm/IR/PassManager.h" 47 #include "llvm/IR/User.h" 48 #include "llvm/IR/Value.h" 49 #include "llvm/InitializePasses.h" 50 #include "llvm/Pass.h" 51 #include "llvm/Support/CommandLine.h" 52 #include "llvm/Support/Debug.h" 53 #include "llvm/Support/raw_ostream.h" 54 #include "llvm/Transforms/IPO.h" 55 #include "llvm/Transforms/Utils/CodeExtractor.h" 56 #include <algorithm> 57 #include <cassert> 58 #include <limits> 59 #include <string> 60 61 #define DEBUG_TYPE "hotcoldsplit" 62 63 STATISTIC(NumColdRegionsFound, "Number of cold regions found."); 64 STATISTIC(NumColdRegionsOutlined, "Number of cold regions outlined."); 65 66 using namespace llvm; 67 68 static cl::opt<bool> EnableStaticAnalysis("hot-cold-static-analysis", 69 cl::init(true), cl::Hidden); 70 71 static cl::opt<int> 72 SplittingThreshold("hotcoldsplit-threshold", cl::init(2), cl::Hidden, 73 cl::desc("Base penalty for splitting cold code (as a " 74 "multiple of TCC_Basic)")); 75 76 static cl::opt<bool> EnableColdSection( 77 "enable-cold-section", cl::init(false), cl::Hidden, 78 cl::desc("Enable placement of extracted cold functions" 79 " into a separate section after hot-cold splitting.")); 80 81 static cl::opt<std::string> 82 ColdSectionName("hotcoldsplit-cold-section-name", cl::init("__llvm_cold"), 83 cl::Hidden, 84 cl::desc("Name for the section containing cold functions " 85 "extracted by hot-cold splitting.")); 86 87 static cl::opt<int> MaxParametersForSplit( 88 "hotcoldsplit-max-params", cl::init(4), cl::Hidden, 89 cl::desc("Maximum number of parameters for a split function")); 90 91 namespace { 92 // Same as blockEndsInUnreachable in CodeGen/BranchFolding.cpp. Do not modify 93 // this function unless you modify the MBB version as well. 94 // 95 /// A no successor, non-return block probably ends in unreachable and is cold. 96 /// Also consider a block that ends in an indirect branch to be a return block, 97 /// since many targets use plain indirect branches to return. 98 bool blockEndsInUnreachable(const BasicBlock &BB) { 99 if (!succ_empty(&BB)) 100 return false; 101 if (BB.empty()) 102 return true; 103 const Instruction *I = BB.getTerminator(); 104 return !(isa<ReturnInst>(I) || isa<IndirectBrInst>(I)); 105 } 106 107 bool unlikelyExecuted(BasicBlock &BB) { 108 // Exception handling blocks are unlikely executed. 109 if (BB.isEHPad() || isa<ResumeInst>(BB.getTerminator())) 110 return true; 111 112 // The block is cold if it calls/invokes a cold function. However, do not 113 // mark sanitizer traps as cold. 114 for (Instruction &I : BB) 115 if (auto *CB = dyn_cast<CallBase>(&I)) 116 if (CB->hasFnAttr(Attribute::Cold) && !CB->getMetadata("nosanitize")) 117 return true; 118 119 // The block is cold if it has an unreachable terminator, unless it's 120 // preceded by a call to a (possibly warm) noreturn call (e.g. longjmp). 121 if (blockEndsInUnreachable(BB)) { 122 if (auto *CI = 123 dyn_cast_or_null<CallInst>(BB.getTerminator()->getPrevNode())) 124 if (CI->hasFnAttr(Attribute::NoReturn)) 125 return false; 126 return true; 127 } 128 129 return false; 130 } 131 132 /// Check whether it's safe to outline \p BB. 133 static bool mayExtractBlock(const BasicBlock &BB) { 134 // EH pads are unsafe to outline because doing so breaks EH type tables. It 135 // follows that invoke instructions cannot be extracted, because CodeExtractor 136 // requires unwind destinations to be within the extraction region. 137 // 138 // Resumes that are not reachable from a cleanup landing pad are considered to 139 // be unreachable. It’s not safe to split them out either. 140 if (BB.hasAddressTaken() || BB.isEHPad()) 141 return false; 142 auto Term = BB.getTerminator(); 143 return !isa<InvokeInst>(Term) && !isa<ResumeInst>(Term); 144 } 145 146 /// Mark \p F cold. Based on this assumption, also optimize it for minimum size. 147 /// If \p UpdateEntryCount is true (set when this is a new split function and 148 /// module has profile data), set entry count to 0 to ensure treated as cold. 149 /// Return true if the function is changed. 150 static bool markFunctionCold(Function &F, bool UpdateEntryCount = false) { 151 assert(!F.hasOptNone() && "Can't mark this cold"); 152 bool Changed = false; 153 if (!F.hasFnAttribute(Attribute::Cold)) { 154 F.addFnAttr(Attribute::Cold); 155 Changed = true; 156 } 157 if (!F.hasFnAttribute(Attribute::MinSize)) { 158 F.addFnAttr(Attribute::MinSize); 159 Changed = true; 160 } 161 if (UpdateEntryCount) { 162 // Set the entry count to 0 to ensure it is placed in the unlikely text 163 // section when function sections are enabled. 164 F.setEntryCount(0); 165 Changed = true; 166 } 167 168 return Changed; 169 } 170 171 class HotColdSplittingLegacyPass : public ModulePass { 172 public: 173 static char ID; 174 HotColdSplittingLegacyPass() : ModulePass(ID) { 175 initializeHotColdSplittingLegacyPassPass(*PassRegistry::getPassRegistry()); 176 } 177 178 void getAnalysisUsage(AnalysisUsage &AU) const override { 179 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 180 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 181 AU.addRequired<TargetTransformInfoWrapperPass>(); 182 AU.addUsedIfAvailable<AssumptionCacheTracker>(); 183 } 184 185 bool runOnModule(Module &M) override; 186 }; 187 188 } // end anonymous namespace 189 190 /// Check whether \p F is inherently cold. 191 bool HotColdSplitting::isFunctionCold(const Function &F) const { 192 if (F.hasFnAttribute(Attribute::Cold)) 193 return true; 194 195 if (F.getCallingConv() == CallingConv::Cold) 196 return true; 197 198 if (PSI->isFunctionEntryCold(&F)) 199 return true; 200 201 return false; 202 } 203 204 // Returns false if the function should not be considered for hot-cold split 205 // optimization. 206 bool HotColdSplitting::shouldOutlineFrom(const Function &F) const { 207 if (F.hasFnAttribute(Attribute::AlwaysInline)) 208 return false; 209 210 if (F.hasFnAttribute(Attribute::NoInline)) 211 return false; 212 213 // A function marked `noreturn` may contain unreachable terminators: these 214 // should not be considered cold, as the function may be a trampoline. 215 if (F.hasFnAttribute(Attribute::NoReturn)) 216 return false; 217 218 if (F.hasFnAttribute(Attribute::SanitizeAddress) || 219 F.hasFnAttribute(Attribute::SanitizeHWAddress) || 220 F.hasFnAttribute(Attribute::SanitizeThread) || 221 F.hasFnAttribute(Attribute::SanitizeMemory)) 222 return false; 223 224 return true; 225 } 226 227 /// Get the benefit score of outlining \p Region. 228 static InstructionCost getOutliningBenefit(ArrayRef<BasicBlock *> Region, 229 TargetTransformInfo &TTI) { 230 // Sum up the code size costs of non-terminator instructions. Tight coupling 231 // with \ref getOutliningPenalty is needed to model the costs of terminators. 232 InstructionCost Benefit = 0; 233 for (BasicBlock *BB : Region) 234 for (Instruction &I : BB->instructionsWithoutDebug()) 235 if (&I != BB->getTerminator()) 236 Benefit += 237 TTI.getInstructionCost(&I, TargetTransformInfo::TCK_CodeSize); 238 239 return Benefit; 240 } 241 242 /// Get the penalty score for outlining \p Region. 243 static int getOutliningPenalty(ArrayRef<BasicBlock *> Region, 244 unsigned NumInputs, unsigned NumOutputs) { 245 int Penalty = SplittingThreshold; 246 LLVM_DEBUG(dbgs() << "Applying penalty for splitting: " << Penalty << "\n"); 247 248 // If the splitting threshold is set at or below zero, skip the usual 249 // profitability check. 250 if (SplittingThreshold <= 0) 251 return Penalty; 252 253 // Find the number of distinct exit blocks for the region. Use a conservative 254 // check to determine whether control returns from the region. 255 bool NoBlocksReturn = true; 256 SmallPtrSet<BasicBlock *, 2> SuccsOutsideRegion; 257 for (BasicBlock *BB : Region) { 258 // If a block has no successors, only assume it does not return if it's 259 // unreachable. 260 if (succ_empty(BB)) { 261 NoBlocksReturn &= isa<UnreachableInst>(BB->getTerminator()); 262 continue; 263 } 264 265 for (BasicBlock *SuccBB : successors(BB)) { 266 if (!is_contained(Region, SuccBB)) { 267 NoBlocksReturn = false; 268 SuccsOutsideRegion.insert(SuccBB); 269 } 270 } 271 } 272 273 // Count the number of phis in exit blocks with >= 2 incoming values from the 274 // outlining region. These phis are split (\ref severSplitPHINodesOfExits), 275 // and new outputs are created to supply the split phis. CodeExtractor can't 276 // report these new outputs until extraction begins, but it's important to 277 // factor the cost of the outputs into the cost calculation. 278 unsigned NumSplitExitPhis = 0; 279 for (BasicBlock *ExitBB : SuccsOutsideRegion) { 280 for (PHINode &PN : ExitBB->phis()) { 281 // Find all incoming values from the outlining region. 282 int NumIncomingVals = 0; 283 for (unsigned i = 0; i < PN.getNumIncomingValues(); ++i) 284 if (llvm::is_contained(Region, PN.getIncomingBlock(i))) { 285 ++NumIncomingVals; 286 if (NumIncomingVals > 1) { 287 ++NumSplitExitPhis; 288 break; 289 } 290 } 291 } 292 } 293 294 // Apply a penalty for calling the split function. Factor in the cost of 295 // materializing all of the parameters. 296 int NumOutputsAndSplitPhis = NumOutputs + NumSplitExitPhis; 297 int NumParams = NumInputs + NumOutputsAndSplitPhis; 298 if (NumParams > MaxParametersForSplit) { 299 LLVM_DEBUG(dbgs() << NumInputs << " inputs and " << NumOutputsAndSplitPhis 300 << " outputs exceeds parameter limit (" 301 << MaxParametersForSplit << ")\n"); 302 return std::numeric_limits<int>::max(); 303 } 304 const int CostForArgMaterialization = 2 * TargetTransformInfo::TCC_Basic; 305 LLVM_DEBUG(dbgs() << "Applying penalty for: " << NumParams << " params\n"); 306 Penalty += CostForArgMaterialization * NumParams; 307 308 // Apply the typical code size cost for an output alloca and its associated 309 // reload in the caller. Also penalize the associated store in the callee. 310 LLVM_DEBUG(dbgs() << "Applying penalty for: " << NumOutputsAndSplitPhis 311 << " outputs/split phis\n"); 312 const int CostForRegionOutput = 3 * TargetTransformInfo::TCC_Basic; 313 Penalty += CostForRegionOutput * NumOutputsAndSplitPhis; 314 315 // Apply a `noreturn` bonus. 316 if (NoBlocksReturn) { 317 LLVM_DEBUG(dbgs() << "Applying bonus for: " << Region.size() 318 << " non-returning terminators\n"); 319 Penalty -= Region.size(); 320 } 321 322 // Apply a penalty for having more than one successor outside of the region. 323 // This penalty accounts for the switch needed in the caller. 324 if (SuccsOutsideRegion.size() > 1) { 325 LLVM_DEBUG(dbgs() << "Applying penalty for: " << SuccsOutsideRegion.size() 326 << " non-region successors\n"); 327 Penalty += (SuccsOutsideRegion.size() - 1) * TargetTransformInfo::TCC_Basic; 328 } 329 330 return Penalty; 331 } 332 333 Function *HotColdSplitting::extractColdRegion( 334 const BlockSequence &Region, const CodeExtractorAnalysisCache &CEAC, 335 DominatorTree &DT, BlockFrequencyInfo *BFI, TargetTransformInfo &TTI, 336 OptimizationRemarkEmitter &ORE, AssumptionCache *AC, unsigned Count) { 337 assert(!Region.empty()); 338 339 // TODO: Pass BFI and BPI to update profile information. 340 CodeExtractor CE(Region, &DT, /* AggregateArgs */ false, /* BFI */ nullptr, 341 /* BPI */ nullptr, AC, /* AllowVarArgs */ false, 342 /* AllowAlloca */ false, /* AllocaBlock */ nullptr, 343 /* Suffix */ "cold." + std::to_string(Count)); 344 345 // Perform a simple cost/benefit analysis to decide whether or not to permit 346 // splitting. 347 SetVector<Value *> Inputs, Outputs, Sinks; 348 CE.findInputsOutputs(Inputs, Outputs, Sinks); 349 InstructionCost OutliningBenefit = getOutliningBenefit(Region, TTI); 350 int OutliningPenalty = 351 getOutliningPenalty(Region, Inputs.size(), Outputs.size()); 352 LLVM_DEBUG(dbgs() << "Split profitability: benefit = " << OutliningBenefit 353 << ", penalty = " << OutliningPenalty << "\n"); 354 if (!OutliningBenefit.isValid() || OutliningBenefit <= OutliningPenalty) 355 return nullptr; 356 357 Function *OrigF = Region[0]->getParent(); 358 if (Function *OutF = CE.extractCodeRegion(CEAC)) { 359 User *U = *OutF->user_begin(); 360 CallInst *CI = cast<CallInst>(U); 361 NumColdRegionsOutlined++; 362 if (TTI.useColdCCForColdCall(*OutF)) { 363 OutF->setCallingConv(CallingConv::Cold); 364 CI->setCallingConv(CallingConv::Cold); 365 } 366 CI->setIsNoInline(); 367 368 if (EnableColdSection) 369 OutF->setSection(ColdSectionName); 370 else { 371 if (OrigF->hasSection()) 372 OutF->setSection(OrigF->getSection()); 373 } 374 375 markFunctionCold(*OutF, BFI != nullptr); 376 377 LLVM_DEBUG(llvm::dbgs() << "Outlined Region: " << *OutF); 378 ORE.emit([&]() { 379 return OptimizationRemark(DEBUG_TYPE, "HotColdSplit", 380 &*Region[0]->begin()) 381 << ore::NV("Original", OrigF) << " split cold code into " 382 << ore::NV("Split", OutF); 383 }); 384 return OutF; 385 } 386 387 ORE.emit([&]() { 388 return OptimizationRemarkMissed(DEBUG_TYPE, "ExtractFailed", 389 &*Region[0]->begin()) 390 << "Failed to extract region at block " 391 << ore::NV("Block", Region.front()); 392 }); 393 return nullptr; 394 } 395 396 /// A pair of (basic block, score). 397 using BlockTy = std::pair<BasicBlock *, unsigned>; 398 399 namespace { 400 /// A maximal outlining region. This contains all blocks post-dominated by a 401 /// sink block, the sink block itself, and all blocks dominated by the sink. 402 /// If sink-predecessors and sink-successors cannot be extracted in one region, 403 /// the static constructor returns a list of suitable extraction regions. 404 class OutliningRegion { 405 /// A list of (block, score) pairs. A block's score is non-zero iff it's a 406 /// viable sub-region entry point. Blocks with higher scores are better entry 407 /// points (i.e. they are more distant ancestors of the sink block). 408 SmallVector<BlockTy, 0> Blocks = {}; 409 410 /// The suggested entry point into the region. If the region has multiple 411 /// entry points, all blocks within the region may not be reachable from this 412 /// entry point. 413 BasicBlock *SuggestedEntryPoint = nullptr; 414 415 /// Whether the entire function is cold. 416 bool EntireFunctionCold = false; 417 418 /// If \p BB is a viable entry point, return \p Score. Return 0 otherwise. 419 static unsigned getEntryPointScore(BasicBlock &BB, unsigned Score) { 420 return mayExtractBlock(BB) ? Score : 0; 421 } 422 423 /// These scores should be lower than the score for predecessor blocks, 424 /// because regions starting at predecessor blocks are typically larger. 425 static constexpr unsigned ScoreForSuccBlock = 1; 426 static constexpr unsigned ScoreForSinkBlock = 1; 427 428 OutliningRegion(const OutliningRegion &) = delete; 429 OutliningRegion &operator=(const OutliningRegion &) = delete; 430 431 public: 432 OutliningRegion() = default; 433 OutliningRegion(OutliningRegion &&) = default; 434 OutliningRegion &operator=(OutliningRegion &&) = default; 435 436 static std::vector<OutliningRegion> create(BasicBlock &SinkBB, 437 const DominatorTree &DT, 438 const PostDominatorTree &PDT) { 439 std::vector<OutliningRegion> Regions; 440 SmallPtrSet<BasicBlock *, 4> RegionBlocks; 441 442 Regions.emplace_back(); 443 OutliningRegion *ColdRegion = &Regions.back(); 444 445 auto addBlockToRegion = [&](BasicBlock *BB, unsigned Score) { 446 RegionBlocks.insert(BB); 447 ColdRegion->Blocks.emplace_back(BB, Score); 448 }; 449 450 // The ancestor farthest-away from SinkBB, and also post-dominated by it. 451 unsigned SinkScore = getEntryPointScore(SinkBB, ScoreForSinkBlock); 452 ColdRegion->SuggestedEntryPoint = (SinkScore > 0) ? &SinkBB : nullptr; 453 unsigned BestScore = SinkScore; 454 455 // Visit SinkBB's ancestors using inverse DFS. 456 auto PredIt = ++idf_begin(&SinkBB); 457 auto PredEnd = idf_end(&SinkBB); 458 while (PredIt != PredEnd) { 459 BasicBlock &PredBB = **PredIt; 460 bool SinkPostDom = PDT.dominates(&SinkBB, &PredBB); 461 462 // If the predecessor is cold and has no predecessors, the entire 463 // function must be cold. 464 if (SinkPostDom && pred_empty(&PredBB)) { 465 ColdRegion->EntireFunctionCold = true; 466 return Regions; 467 } 468 469 // If SinkBB does not post-dominate a predecessor, do not mark the 470 // predecessor (or any of its predecessors) cold. 471 if (!SinkPostDom || !mayExtractBlock(PredBB)) { 472 PredIt.skipChildren(); 473 continue; 474 } 475 476 // Keep track of the post-dominated ancestor farthest away from the sink. 477 // The path length is always >= 2, ensuring that predecessor blocks are 478 // considered as entry points before the sink block. 479 unsigned PredScore = getEntryPointScore(PredBB, PredIt.getPathLength()); 480 if (PredScore > BestScore) { 481 ColdRegion->SuggestedEntryPoint = &PredBB; 482 BestScore = PredScore; 483 } 484 485 addBlockToRegion(&PredBB, PredScore); 486 ++PredIt; 487 } 488 489 // If the sink can be added to the cold region, do so. It's considered as 490 // an entry point before any sink-successor blocks. 491 // 492 // Otherwise, split cold sink-successor blocks using a separate region. 493 // This satisfies the requirement that all extraction blocks other than the 494 // first have predecessors within the extraction region. 495 if (mayExtractBlock(SinkBB)) { 496 addBlockToRegion(&SinkBB, SinkScore); 497 if (pred_empty(&SinkBB)) { 498 ColdRegion->EntireFunctionCold = true; 499 return Regions; 500 } 501 } else { 502 Regions.emplace_back(); 503 ColdRegion = &Regions.back(); 504 BestScore = 0; 505 } 506 507 // Find all successors of SinkBB dominated by SinkBB using DFS. 508 auto SuccIt = ++df_begin(&SinkBB); 509 auto SuccEnd = df_end(&SinkBB); 510 while (SuccIt != SuccEnd) { 511 BasicBlock &SuccBB = **SuccIt; 512 bool SinkDom = DT.dominates(&SinkBB, &SuccBB); 513 514 // Don't allow the backwards & forwards DFSes to mark the same block. 515 bool DuplicateBlock = RegionBlocks.count(&SuccBB); 516 517 // If SinkBB does not dominate a successor, do not mark the successor (or 518 // any of its successors) cold. 519 if (DuplicateBlock || !SinkDom || !mayExtractBlock(SuccBB)) { 520 SuccIt.skipChildren(); 521 continue; 522 } 523 524 unsigned SuccScore = getEntryPointScore(SuccBB, ScoreForSuccBlock); 525 if (SuccScore > BestScore) { 526 ColdRegion->SuggestedEntryPoint = &SuccBB; 527 BestScore = SuccScore; 528 } 529 530 addBlockToRegion(&SuccBB, SuccScore); 531 ++SuccIt; 532 } 533 534 return Regions; 535 } 536 537 /// Whether this region has nothing to extract. 538 bool empty() const { return !SuggestedEntryPoint; } 539 540 /// The blocks in this region. 541 ArrayRef<std::pair<BasicBlock *, unsigned>> blocks() const { return Blocks; } 542 543 /// Whether the entire function containing this region is cold. 544 bool isEntireFunctionCold() const { return EntireFunctionCold; } 545 546 /// Remove a sub-region from this region and return it as a block sequence. 547 BlockSequence takeSingleEntrySubRegion(DominatorTree &DT) { 548 assert(!empty() && !isEntireFunctionCold() && "Nothing to extract"); 549 550 // Remove blocks dominated by the suggested entry point from this region. 551 // During the removal, identify the next best entry point into the region. 552 // Ensure that the first extracted block is the suggested entry point. 553 BlockSequence SubRegion = {SuggestedEntryPoint}; 554 BasicBlock *NextEntryPoint = nullptr; 555 unsigned NextScore = 0; 556 auto RegionEndIt = Blocks.end(); 557 auto RegionStartIt = remove_if(Blocks, [&](const BlockTy &Block) { 558 BasicBlock *BB = Block.first; 559 unsigned Score = Block.second; 560 bool InSubRegion = 561 BB == SuggestedEntryPoint || DT.dominates(SuggestedEntryPoint, BB); 562 if (!InSubRegion && Score > NextScore) { 563 NextEntryPoint = BB; 564 NextScore = Score; 565 } 566 if (InSubRegion && BB != SuggestedEntryPoint) 567 SubRegion.push_back(BB); 568 return InSubRegion; 569 }); 570 Blocks.erase(RegionStartIt, RegionEndIt); 571 572 // Update the suggested entry point. 573 SuggestedEntryPoint = NextEntryPoint; 574 575 return SubRegion; 576 } 577 }; 578 } // namespace 579 580 bool HotColdSplitting::outlineColdRegions(Function &F, bool HasProfileSummary) { 581 bool Changed = false; 582 583 // The set of cold blocks. 584 SmallPtrSet<BasicBlock *, 4> ColdBlocks; 585 586 // The worklist of non-intersecting regions left to outline. 587 SmallVector<OutliningRegion, 2> OutliningWorklist; 588 589 // Set up an RPO traversal. Experimentally, this performs better (outlines 590 // more) than a PO traversal, because we prevent region overlap by keeping 591 // the first region to contain a block. 592 ReversePostOrderTraversal<Function *> RPOT(&F); 593 594 // Calculate domtrees lazily. This reduces compile-time significantly. 595 std::unique_ptr<DominatorTree> DT; 596 std::unique_ptr<PostDominatorTree> PDT; 597 598 // Calculate BFI lazily (it's only used to query ProfileSummaryInfo). This 599 // reduces compile-time significantly. TODO: When we *do* use BFI, we should 600 // be able to salvage its domtrees instead of recomputing them. 601 BlockFrequencyInfo *BFI = nullptr; 602 if (HasProfileSummary) 603 BFI = GetBFI(F); 604 605 TargetTransformInfo &TTI = GetTTI(F); 606 OptimizationRemarkEmitter &ORE = (*GetORE)(F); 607 AssumptionCache *AC = LookupAC(F); 608 609 // Find all cold regions. 610 for (BasicBlock *BB : RPOT) { 611 // This block is already part of some outlining region. 612 if (ColdBlocks.count(BB)) 613 continue; 614 615 bool Cold = (BFI && PSI->isColdBlock(BB, BFI)) || 616 (EnableStaticAnalysis && unlikelyExecuted(*BB)); 617 if (!Cold) 618 continue; 619 620 LLVM_DEBUG({ 621 dbgs() << "Found a cold block:\n"; 622 BB->dump(); 623 }); 624 625 if (!DT) 626 DT = std::make_unique<DominatorTree>(F); 627 if (!PDT) 628 PDT = std::make_unique<PostDominatorTree>(F); 629 630 auto Regions = OutliningRegion::create(*BB, *DT, *PDT); 631 for (OutliningRegion &Region : Regions) { 632 if (Region.empty()) 633 continue; 634 635 if (Region.isEntireFunctionCold()) { 636 LLVM_DEBUG(dbgs() << "Entire function is cold\n"); 637 return markFunctionCold(F); 638 } 639 640 // If this outlining region intersects with another, drop the new region. 641 // 642 // TODO: It's theoretically possible to outline more by only keeping the 643 // largest region which contains a block, but the extra bookkeeping to do 644 // this is tricky/expensive. 645 bool RegionsOverlap = any_of(Region.blocks(), [&](const BlockTy &Block) { 646 return !ColdBlocks.insert(Block.first).second; 647 }); 648 if (RegionsOverlap) 649 continue; 650 651 OutliningWorklist.emplace_back(std::move(Region)); 652 ++NumColdRegionsFound; 653 } 654 } 655 656 if (OutliningWorklist.empty()) 657 return Changed; 658 659 // Outline single-entry cold regions, splitting up larger regions as needed. 660 unsigned OutlinedFunctionID = 1; 661 // Cache and recycle the CodeExtractor analysis to avoid O(n^2) compile-time. 662 CodeExtractorAnalysisCache CEAC(F); 663 do { 664 OutliningRegion Region = OutliningWorklist.pop_back_val(); 665 assert(!Region.empty() && "Empty outlining region in worklist"); 666 do { 667 BlockSequence SubRegion = Region.takeSingleEntrySubRegion(*DT); 668 LLVM_DEBUG({ 669 dbgs() << "Hot/cold splitting attempting to outline these blocks:\n"; 670 for (BasicBlock *BB : SubRegion) 671 BB->dump(); 672 }); 673 674 Function *Outlined = extractColdRegion(SubRegion, CEAC, *DT, BFI, TTI, 675 ORE, AC, OutlinedFunctionID); 676 if (Outlined) { 677 ++OutlinedFunctionID; 678 Changed = true; 679 } 680 } while (!Region.empty()); 681 } while (!OutliningWorklist.empty()); 682 683 return Changed; 684 } 685 686 bool HotColdSplitting::run(Module &M) { 687 bool Changed = false; 688 bool HasProfileSummary = (M.getProfileSummary(/* IsCS */ false) != nullptr); 689 for (Function &F : M) { 690 // Do not touch declarations. 691 if (F.isDeclaration()) 692 continue; 693 694 // Do not modify `optnone` functions. 695 if (F.hasOptNone()) 696 continue; 697 698 // Detect inherently cold functions and mark them as such. 699 if (isFunctionCold(F)) { 700 Changed |= markFunctionCold(F); 701 continue; 702 } 703 704 if (!shouldOutlineFrom(F)) { 705 LLVM_DEBUG(llvm::dbgs() << "Skipping " << F.getName() << "\n"); 706 continue; 707 } 708 709 LLVM_DEBUG(llvm::dbgs() << "Outlining in " << F.getName() << "\n"); 710 Changed |= outlineColdRegions(F, HasProfileSummary); 711 } 712 return Changed; 713 } 714 715 bool HotColdSplittingLegacyPass::runOnModule(Module &M) { 716 if (skipModule(M)) 717 return false; 718 ProfileSummaryInfo *PSI = 719 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 720 auto GTTI = [this](Function &F) -> TargetTransformInfo & { 721 return this->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 722 }; 723 auto GBFI = [this](Function &F) { 724 return &this->getAnalysis<BlockFrequencyInfoWrapperPass>(F).getBFI(); 725 }; 726 std::unique_ptr<OptimizationRemarkEmitter> ORE; 727 std::function<OptimizationRemarkEmitter &(Function &)> GetORE = 728 [&ORE](Function &F) -> OptimizationRemarkEmitter & { 729 ORE.reset(new OptimizationRemarkEmitter(&F)); 730 return *ORE; 731 }; 732 auto LookupAC = [this](Function &F) -> AssumptionCache * { 733 if (auto *ACT = getAnalysisIfAvailable<AssumptionCacheTracker>()) 734 return ACT->lookupAssumptionCache(F); 735 return nullptr; 736 }; 737 738 return HotColdSplitting(PSI, GBFI, GTTI, &GetORE, LookupAC).run(M); 739 } 740 741 PreservedAnalyses 742 HotColdSplittingPass::run(Module &M, ModuleAnalysisManager &AM) { 743 auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 744 745 auto LookupAC = [&FAM](Function &F) -> AssumptionCache * { 746 return FAM.getCachedResult<AssumptionAnalysis>(F); 747 }; 748 749 auto GBFI = [&FAM](Function &F) { 750 return &FAM.getResult<BlockFrequencyAnalysis>(F); 751 }; 752 753 std::function<TargetTransformInfo &(Function &)> GTTI = 754 [&FAM](Function &F) -> TargetTransformInfo & { 755 return FAM.getResult<TargetIRAnalysis>(F); 756 }; 757 758 std::unique_ptr<OptimizationRemarkEmitter> ORE; 759 std::function<OptimizationRemarkEmitter &(Function &)> GetORE = 760 [&ORE](Function &F) -> OptimizationRemarkEmitter & { 761 ORE.reset(new OptimizationRemarkEmitter(&F)); 762 return *ORE; 763 }; 764 765 ProfileSummaryInfo *PSI = &AM.getResult<ProfileSummaryAnalysis>(M); 766 767 if (HotColdSplitting(PSI, GBFI, GTTI, &GetORE, LookupAC).run(M)) 768 return PreservedAnalyses::none(); 769 return PreservedAnalyses::all(); 770 } 771 772 char HotColdSplittingLegacyPass::ID = 0; 773 INITIALIZE_PASS_BEGIN(HotColdSplittingLegacyPass, "hotcoldsplit", 774 "Hot Cold Splitting", false, false) 775 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 776 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 777 INITIALIZE_PASS_END(HotColdSplittingLegacyPass, "hotcoldsplit", 778 "Hot Cold Splitting", false, false) 779 780 ModulePass *llvm::createHotColdSplittingPass() { 781 return new HotColdSplittingLegacyPass(); 782 } 783