1 //===- HotColdSplitting.cpp -- Outline Cold Regions -------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// The goal of hot/cold splitting is to improve the memory locality of code. 11 /// The splitting pass does this by identifying cold blocks and moving them into 12 /// separate functions. 13 /// 14 /// When the splitting pass finds a cold block (referred to as "the sink"), it 15 /// grows a maximal cold region around that block. The maximal region contains 16 /// all blocks (post-)dominated by the sink [*]. In theory, these blocks are as 17 /// cold as the sink. Once a region is found, it's split out of the original 18 /// function provided it's profitable to do so. 19 /// 20 /// [*] In practice, there is some added complexity because some blocks are not 21 /// safe to extract. 22 /// 23 /// TODO: Use the PM to get domtrees, and preserve BFI/BPI. 24 /// TODO: Reorder outlined functions. 25 /// 26 //===----------------------------------------------------------------------===// 27 28 #include "llvm/Transforms/IPO/HotColdSplitting.h" 29 #include "llvm/ADT/PostOrderIterator.h" 30 #include "llvm/ADT/SmallVector.h" 31 #include "llvm/ADT/Statistic.h" 32 #include "llvm/Analysis/AliasAnalysis.h" 33 #include "llvm/Analysis/BlockFrequencyInfo.h" 34 #include "llvm/Analysis/BranchProbabilityInfo.h" 35 #include "llvm/Analysis/CFG.h" 36 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 37 #include "llvm/Analysis/PostDominators.h" 38 #include "llvm/Analysis/ProfileSummaryInfo.h" 39 #include "llvm/Analysis/TargetTransformInfo.h" 40 #include "llvm/IR/BasicBlock.h" 41 #include "llvm/IR/CFG.h" 42 #include "llvm/IR/CallSite.h" 43 #include "llvm/IR/DataLayout.h" 44 #include "llvm/IR/DiagnosticInfo.h" 45 #include "llvm/IR/Dominators.h" 46 #include "llvm/IR/Function.h" 47 #include "llvm/IR/Instruction.h" 48 #include "llvm/IR/Instructions.h" 49 #include "llvm/IR/IntrinsicInst.h" 50 #include "llvm/IR/Metadata.h" 51 #include "llvm/IR/Module.h" 52 #include "llvm/IR/PassManager.h" 53 #include "llvm/IR/Type.h" 54 #include "llvm/IR/Use.h" 55 #include "llvm/IR/User.h" 56 #include "llvm/IR/Value.h" 57 #include "llvm/InitializePasses.h" 58 #include "llvm/Pass.h" 59 #include "llvm/Support/BlockFrequency.h" 60 #include "llvm/Support/BranchProbability.h" 61 #include "llvm/Support/CommandLine.h" 62 #include "llvm/Support/Debug.h" 63 #include "llvm/Support/raw_ostream.h" 64 #include "llvm/Transforms/IPO.h" 65 #include "llvm/Transforms/Scalar.h" 66 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 67 #include "llvm/Transforms/Utils/Cloning.h" 68 #include "llvm/Transforms/Utils/CodeExtractor.h" 69 #include "llvm/Transforms/Utils/Local.h" 70 #include "llvm/Transforms/Utils/ValueMapper.h" 71 #include <algorithm> 72 #include <cassert> 73 74 #define DEBUG_TYPE "hotcoldsplit" 75 76 STATISTIC(NumColdRegionsFound, "Number of cold regions found."); 77 STATISTIC(NumColdRegionsOutlined, "Number of cold regions outlined."); 78 79 using namespace llvm; 80 81 static cl::opt<bool> EnableStaticAnalyis("hot-cold-static-analysis", 82 cl::init(true), cl::Hidden); 83 84 static cl::opt<int> 85 SplittingThreshold("hotcoldsplit-threshold", cl::init(2), cl::Hidden, 86 cl::desc("Base penalty for splitting cold code (as a " 87 "multiple of TCC_Basic)")); 88 89 namespace { 90 // Same as blockEndsInUnreachable in CodeGen/BranchFolding.cpp. Do not modify 91 // this function unless you modify the MBB version as well. 92 // 93 /// A no successor, non-return block probably ends in unreachable and is cold. 94 /// Also consider a block that ends in an indirect branch to be a return block, 95 /// since many targets use plain indirect branches to return. 96 bool blockEndsInUnreachable(const BasicBlock &BB) { 97 if (!succ_empty(&BB)) 98 return false; 99 if (BB.empty()) 100 return true; 101 const Instruction *I = BB.getTerminator(); 102 return !(isa<ReturnInst>(I) || isa<IndirectBrInst>(I)); 103 } 104 105 bool unlikelyExecuted(BasicBlock &BB) { 106 // Exception handling blocks are unlikely executed. 107 if (BB.isEHPad() || isa<ResumeInst>(BB.getTerminator())) 108 return true; 109 110 // The block is cold if it calls/invokes a cold function. However, do not 111 // mark sanitizer traps as cold. 112 for (Instruction &I : BB) 113 if (auto CS = CallSite(&I)) 114 if (CS.hasFnAttr(Attribute::Cold) && !CS->getMetadata("nosanitize")) 115 return true; 116 117 // The block is cold if it has an unreachable terminator, unless it's 118 // preceded by a call to a (possibly warm) noreturn call (e.g. longjmp). 119 if (blockEndsInUnreachable(BB)) { 120 if (auto *CI = 121 dyn_cast_or_null<CallInst>(BB.getTerminator()->getPrevNode())) 122 if (CI->hasFnAttr(Attribute::NoReturn)) 123 return false; 124 return true; 125 } 126 127 return false; 128 } 129 130 /// Check whether it's safe to outline \p BB. 131 static bool mayExtractBlock(const BasicBlock &BB) { 132 // EH pads are unsafe to outline because doing so breaks EH type tables. It 133 // follows that invoke instructions cannot be extracted, because CodeExtractor 134 // requires unwind destinations to be within the extraction region. 135 // 136 // Resumes that are not reachable from a cleanup landing pad are considered to 137 // be unreachable. It’s not safe to split them out either. 138 auto Term = BB.getTerminator(); 139 return !BB.hasAddressTaken() && !BB.isEHPad() && !isa<InvokeInst>(Term) && 140 !isa<ResumeInst>(Term); 141 } 142 143 /// Mark \p F cold. Based on this assumption, also optimize it for minimum size. 144 /// If \p UpdateEntryCount is true (set when this is a new split function and 145 /// module has profile data), set entry count to 0 to ensure treated as cold. 146 /// Return true if the function is changed. 147 static bool markFunctionCold(Function &F, bool UpdateEntryCount = false) { 148 assert(!F.hasOptNone() && "Can't mark this cold"); 149 bool Changed = false; 150 if (!F.hasFnAttribute(Attribute::Cold)) { 151 F.addFnAttr(Attribute::Cold); 152 Changed = true; 153 } 154 if (!F.hasFnAttribute(Attribute::MinSize)) { 155 F.addFnAttr(Attribute::MinSize); 156 Changed = true; 157 } 158 if (UpdateEntryCount) { 159 // Set the entry count to 0 to ensure it is placed in the unlikely text 160 // section when function sections are enabled. 161 F.setEntryCount(0); 162 Changed = true; 163 } 164 165 return Changed; 166 } 167 168 class HotColdSplittingLegacyPass : public ModulePass { 169 public: 170 static char ID; 171 HotColdSplittingLegacyPass() : ModulePass(ID) { 172 initializeHotColdSplittingLegacyPassPass(*PassRegistry::getPassRegistry()); 173 } 174 175 void getAnalysisUsage(AnalysisUsage &AU) const override { 176 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 177 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 178 AU.addRequired<TargetTransformInfoWrapperPass>(); 179 AU.addUsedIfAvailable<AssumptionCacheTracker>(); 180 } 181 182 bool runOnModule(Module &M) override; 183 }; 184 185 } // end anonymous namespace 186 187 /// Check whether \p F is inherently cold. 188 bool HotColdSplitting::isFunctionCold(const Function &F) const { 189 if (F.hasFnAttribute(Attribute::Cold)) 190 return true; 191 192 if (F.getCallingConv() == CallingConv::Cold) 193 return true; 194 195 if (PSI->isFunctionEntryCold(&F)) 196 return true; 197 198 return false; 199 } 200 201 // Returns false if the function should not be considered for hot-cold split 202 // optimization. 203 bool HotColdSplitting::shouldOutlineFrom(const Function &F) const { 204 if (F.hasFnAttribute(Attribute::AlwaysInline)) 205 return false; 206 207 if (F.hasFnAttribute(Attribute::NoInline)) 208 return false; 209 210 if (F.hasFnAttribute(Attribute::SanitizeAddress) || 211 F.hasFnAttribute(Attribute::SanitizeHWAddress) || 212 F.hasFnAttribute(Attribute::SanitizeThread) || 213 F.hasFnAttribute(Attribute::SanitizeMemory)) 214 return false; 215 216 return true; 217 } 218 219 /// Get the benefit score of outlining \p Region. 220 static int getOutliningBenefit(ArrayRef<BasicBlock *> Region, 221 TargetTransformInfo &TTI) { 222 // Sum up the code size costs of non-terminator instructions. Tight coupling 223 // with \ref getOutliningPenalty is needed to model the costs of terminators. 224 int Benefit = 0; 225 for (BasicBlock *BB : Region) 226 for (Instruction &I : BB->instructionsWithoutDebug()) 227 if (&I != BB->getTerminator()) 228 Benefit += 229 TTI.getInstructionCost(&I, TargetTransformInfo::TCK_CodeSize); 230 231 return Benefit; 232 } 233 234 /// Get the penalty score for outlining \p Region. 235 static int getOutliningPenalty(ArrayRef<BasicBlock *> Region, 236 unsigned NumInputs, unsigned NumOutputs) { 237 int Penalty = SplittingThreshold; 238 LLVM_DEBUG(dbgs() << "Applying penalty for splitting: " << Penalty << "\n"); 239 240 // If the splitting threshold is set at or below zero, skip the usual 241 // profitability check. 242 if (SplittingThreshold <= 0) 243 return Penalty; 244 245 // The typical code size cost for materializing an argument for the outlined 246 // call. 247 LLVM_DEBUG(dbgs() << "Applying penalty for: " << NumInputs << " inputs\n"); 248 const int CostForArgMaterialization = TargetTransformInfo::TCC_Basic; 249 Penalty += CostForArgMaterialization * NumInputs; 250 251 // The typical code size cost for an output alloca, its associated store, and 252 // its associated reload. 253 LLVM_DEBUG(dbgs() << "Applying penalty for: " << NumOutputs << " outputs\n"); 254 const int CostForRegionOutput = 3 * TargetTransformInfo::TCC_Basic; 255 Penalty += CostForRegionOutput * NumOutputs; 256 257 // Find the number of distinct exit blocks for the region. Use a conservative 258 // check to determine whether control returns from the region. 259 bool NoBlocksReturn = true; 260 SmallPtrSet<BasicBlock *, 2> SuccsOutsideRegion; 261 for (BasicBlock *BB : Region) { 262 // If a block has no successors, only assume it does not return if it's 263 // unreachable. 264 if (succ_empty(BB)) { 265 NoBlocksReturn &= isa<UnreachableInst>(BB->getTerminator()); 266 continue; 267 } 268 269 for (BasicBlock *SuccBB : successors(BB)) { 270 if (find(Region, SuccBB) == Region.end()) { 271 NoBlocksReturn = false; 272 SuccsOutsideRegion.insert(SuccBB); 273 } 274 } 275 } 276 277 // Apply a `noreturn` bonus. 278 if (NoBlocksReturn) { 279 LLVM_DEBUG(dbgs() << "Applying bonus for: " << Region.size() 280 << " non-returning terminators\n"); 281 Penalty -= Region.size(); 282 } 283 284 // Apply a penalty for having more than one successor outside of the region. 285 // This penalty accounts for the switch needed in the caller. 286 if (!SuccsOutsideRegion.empty()) { 287 LLVM_DEBUG(dbgs() << "Applying penalty for: " << SuccsOutsideRegion.size() 288 << " non-region successors\n"); 289 Penalty += (SuccsOutsideRegion.size() - 1) * TargetTransformInfo::TCC_Basic; 290 } 291 292 return Penalty; 293 } 294 295 Function *HotColdSplitting::extractColdRegion( 296 const BlockSequence &Region, const CodeExtractorAnalysisCache &CEAC, 297 DominatorTree &DT, BlockFrequencyInfo *BFI, TargetTransformInfo &TTI, 298 OptimizationRemarkEmitter &ORE, AssumptionCache *AC, unsigned Count) { 299 assert(!Region.empty()); 300 301 // TODO: Pass BFI and BPI to update profile information. 302 CodeExtractor CE(Region, &DT, /* AggregateArgs */ false, /* BFI */ nullptr, 303 /* BPI */ nullptr, AC, /* AllowVarArgs */ false, 304 /* AllowAlloca */ false, 305 /* Suffix */ "cold." + std::to_string(Count)); 306 307 // Perform a simple cost/benefit analysis to decide whether or not to permit 308 // splitting. 309 SetVector<Value *> Inputs, Outputs, Sinks; 310 CE.findInputsOutputs(Inputs, Outputs, Sinks); 311 int OutliningBenefit = getOutliningBenefit(Region, TTI); 312 int OutliningPenalty = 313 getOutliningPenalty(Region, Inputs.size(), Outputs.size()); 314 LLVM_DEBUG(dbgs() << "Split profitability: benefit = " << OutliningBenefit 315 << ", penalty = " << OutliningPenalty << "\n"); 316 if (OutliningBenefit <= OutliningPenalty) 317 return nullptr; 318 319 Function *OrigF = Region[0]->getParent(); 320 if (Function *OutF = CE.extractCodeRegion(CEAC)) { 321 User *U = *OutF->user_begin(); 322 CallInst *CI = cast<CallInst>(U); 323 CallSite CS(CI); 324 NumColdRegionsOutlined++; 325 if (TTI.useColdCCForColdCall(*OutF)) { 326 OutF->setCallingConv(CallingConv::Cold); 327 CS.setCallingConv(CallingConv::Cold); 328 } 329 CI->setIsNoInline(); 330 331 markFunctionCold(*OutF, BFI != nullptr); 332 333 LLVM_DEBUG(llvm::dbgs() << "Outlined Region: " << *OutF); 334 ORE.emit([&]() { 335 return OptimizationRemark(DEBUG_TYPE, "HotColdSplit", 336 &*Region[0]->begin()) 337 << ore::NV("Original", OrigF) << " split cold code into " 338 << ore::NV("Split", OutF); 339 }); 340 return OutF; 341 } 342 343 ORE.emit([&]() { 344 return OptimizationRemarkMissed(DEBUG_TYPE, "ExtractFailed", 345 &*Region[0]->begin()) 346 << "Failed to extract region at block " 347 << ore::NV("Block", Region.front()); 348 }); 349 return nullptr; 350 } 351 352 /// A pair of (basic block, score). 353 using BlockTy = std::pair<BasicBlock *, unsigned>; 354 355 namespace { 356 /// A maximal outlining region. This contains all blocks post-dominated by a 357 /// sink block, the sink block itself, and all blocks dominated by the sink. 358 /// If sink-predecessors and sink-successors cannot be extracted in one region, 359 /// the static constructor returns a list of suitable extraction regions. 360 class OutliningRegion { 361 /// A list of (block, score) pairs. A block's score is non-zero iff it's a 362 /// viable sub-region entry point. Blocks with higher scores are better entry 363 /// points (i.e. they are more distant ancestors of the sink block). 364 SmallVector<BlockTy, 0> Blocks = {}; 365 366 /// The suggested entry point into the region. If the region has multiple 367 /// entry points, all blocks within the region may not be reachable from this 368 /// entry point. 369 BasicBlock *SuggestedEntryPoint = nullptr; 370 371 /// Whether the entire function is cold. 372 bool EntireFunctionCold = false; 373 374 /// If \p BB is a viable entry point, return \p Score. Return 0 otherwise. 375 static unsigned getEntryPointScore(BasicBlock &BB, unsigned Score) { 376 return mayExtractBlock(BB) ? Score : 0; 377 } 378 379 /// These scores should be lower than the score for predecessor blocks, 380 /// because regions starting at predecessor blocks are typically larger. 381 static constexpr unsigned ScoreForSuccBlock = 1; 382 static constexpr unsigned ScoreForSinkBlock = 1; 383 384 OutliningRegion(const OutliningRegion &) = delete; 385 OutliningRegion &operator=(const OutliningRegion &) = delete; 386 387 public: 388 OutliningRegion() = default; 389 OutliningRegion(OutliningRegion &&) = default; 390 OutliningRegion &operator=(OutliningRegion &&) = default; 391 392 static std::vector<OutliningRegion> create(BasicBlock &SinkBB, 393 const DominatorTree &DT, 394 const PostDominatorTree &PDT) { 395 std::vector<OutliningRegion> Regions; 396 SmallPtrSet<BasicBlock *, 4> RegionBlocks; 397 398 Regions.emplace_back(); 399 OutliningRegion *ColdRegion = &Regions.back(); 400 401 auto addBlockToRegion = [&](BasicBlock *BB, unsigned Score) { 402 RegionBlocks.insert(BB); 403 ColdRegion->Blocks.emplace_back(BB, Score); 404 }; 405 406 // The ancestor farthest-away from SinkBB, and also post-dominated by it. 407 unsigned SinkScore = getEntryPointScore(SinkBB, ScoreForSinkBlock); 408 ColdRegion->SuggestedEntryPoint = (SinkScore > 0) ? &SinkBB : nullptr; 409 unsigned BestScore = SinkScore; 410 411 // Visit SinkBB's ancestors using inverse DFS. 412 auto PredIt = ++idf_begin(&SinkBB); 413 auto PredEnd = idf_end(&SinkBB); 414 while (PredIt != PredEnd) { 415 BasicBlock &PredBB = **PredIt; 416 bool SinkPostDom = PDT.dominates(&SinkBB, &PredBB); 417 418 // If the predecessor is cold and has no predecessors, the entire 419 // function must be cold. 420 if (SinkPostDom && pred_empty(&PredBB)) { 421 ColdRegion->EntireFunctionCold = true; 422 return Regions; 423 } 424 425 // If SinkBB does not post-dominate a predecessor, do not mark the 426 // predecessor (or any of its predecessors) cold. 427 if (!SinkPostDom || !mayExtractBlock(PredBB)) { 428 PredIt.skipChildren(); 429 continue; 430 } 431 432 // Keep track of the post-dominated ancestor farthest away from the sink. 433 // The path length is always >= 2, ensuring that predecessor blocks are 434 // considered as entry points before the sink block. 435 unsigned PredScore = getEntryPointScore(PredBB, PredIt.getPathLength()); 436 if (PredScore > BestScore) { 437 ColdRegion->SuggestedEntryPoint = &PredBB; 438 BestScore = PredScore; 439 } 440 441 addBlockToRegion(&PredBB, PredScore); 442 ++PredIt; 443 } 444 445 // If the sink can be added to the cold region, do so. It's considered as 446 // an entry point before any sink-successor blocks. 447 // 448 // Otherwise, split cold sink-successor blocks using a separate region. 449 // This satisfies the requirement that all extraction blocks other than the 450 // first have predecessors within the extraction region. 451 if (mayExtractBlock(SinkBB)) { 452 addBlockToRegion(&SinkBB, SinkScore); 453 } else { 454 Regions.emplace_back(); 455 ColdRegion = &Regions.back(); 456 BestScore = 0; 457 } 458 459 // Find all successors of SinkBB dominated by SinkBB using DFS. 460 auto SuccIt = ++df_begin(&SinkBB); 461 auto SuccEnd = df_end(&SinkBB); 462 while (SuccIt != SuccEnd) { 463 BasicBlock &SuccBB = **SuccIt; 464 bool SinkDom = DT.dominates(&SinkBB, &SuccBB); 465 466 // Don't allow the backwards & forwards DFSes to mark the same block. 467 bool DuplicateBlock = RegionBlocks.count(&SuccBB); 468 469 // If SinkBB does not dominate a successor, do not mark the successor (or 470 // any of its successors) cold. 471 if (DuplicateBlock || !SinkDom || !mayExtractBlock(SuccBB)) { 472 SuccIt.skipChildren(); 473 continue; 474 } 475 476 unsigned SuccScore = getEntryPointScore(SuccBB, ScoreForSuccBlock); 477 if (SuccScore > BestScore) { 478 ColdRegion->SuggestedEntryPoint = &SuccBB; 479 BestScore = SuccScore; 480 } 481 482 addBlockToRegion(&SuccBB, SuccScore); 483 ++SuccIt; 484 } 485 486 return Regions; 487 } 488 489 /// Whether this region has nothing to extract. 490 bool empty() const { return !SuggestedEntryPoint; } 491 492 /// The blocks in this region. 493 ArrayRef<std::pair<BasicBlock *, unsigned>> blocks() const { return Blocks; } 494 495 /// Whether the entire function containing this region is cold. 496 bool isEntireFunctionCold() const { return EntireFunctionCold; } 497 498 /// Remove a sub-region from this region and return it as a block sequence. 499 BlockSequence takeSingleEntrySubRegion(DominatorTree &DT) { 500 assert(!empty() && !isEntireFunctionCold() && "Nothing to extract"); 501 502 // Remove blocks dominated by the suggested entry point from this region. 503 // During the removal, identify the next best entry point into the region. 504 // Ensure that the first extracted block is the suggested entry point. 505 BlockSequence SubRegion = {SuggestedEntryPoint}; 506 BasicBlock *NextEntryPoint = nullptr; 507 unsigned NextScore = 0; 508 auto RegionEndIt = Blocks.end(); 509 auto RegionStartIt = remove_if(Blocks, [&](const BlockTy &Block) { 510 BasicBlock *BB = Block.first; 511 unsigned Score = Block.second; 512 bool InSubRegion = 513 BB == SuggestedEntryPoint || DT.dominates(SuggestedEntryPoint, BB); 514 if (!InSubRegion && Score > NextScore) { 515 NextEntryPoint = BB; 516 NextScore = Score; 517 } 518 if (InSubRegion && BB != SuggestedEntryPoint) 519 SubRegion.push_back(BB); 520 return InSubRegion; 521 }); 522 Blocks.erase(RegionStartIt, RegionEndIt); 523 524 // Update the suggested entry point. 525 SuggestedEntryPoint = NextEntryPoint; 526 527 return SubRegion; 528 } 529 }; 530 } // namespace 531 532 bool HotColdSplitting::outlineColdRegions(Function &F, bool HasProfileSummary) { 533 bool Changed = false; 534 535 // The set of cold blocks. 536 SmallPtrSet<BasicBlock *, 4> ColdBlocks; 537 538 // The worklist of non-intersecting regions left to outline. 539 SmallVector<OutliningRegion, 2> OutliningWorklist; 540 541 // Set up an RPO traversal. Experimentally, this performs better (outlines 542 // more) than a PO traversal, because we prevent region overlap by keeping 543 // the first region to contain a block. 544 ReversePostOrderTraversal<Function *> RPOT(&F); 545 546 // Calculate domtrees lazily. This reduces compile-time significantly. 547 std::unique_ptr<DominatorTree> DT; 548 std::unique_ptr<PostDominatorTree> PDT; 549 550 // Calculate BFI lazily (it's only used to query ProfileSummaryInfo). This 551 // reduces compile-time significantly. TODO: When we *do* use BFI, we should 552 // be able to salvage its domtrees instead of recomputing them. 553 BlockFrequencyInfo *BFI = nullptr; 554 if (HasProfileSummary) 555 BFI = GetBFI(F); 556 557 TargetTransformInfo &TTI = GetTTI(F); 558 OptimizationRemarkEmitter &ORE = (*GetORE)(F); 559 AssumptionCache *AC = LookupAC(F); 560 561 // Find all cold regions. 562 for (BasicBlock *BB : RPOT) { 563 // This block is already part of some outlining region. 564 if (ColdBlocks.count(BB)) 565 continue; 566 567 bool Cold = (BFI && PSI->isColdBlock(BB, BFI)) || 568 (EnableStaticAnalyis && unlikelyExecuted(*BB)); 569 if (!Cold) 570 continue; 571 572 LLVM_DEBUG({ 573 dbgs() << "Found a cold block:\n"; 574 BB->dump(); 575 }); 576 577 if (!DT) 578 DT = std::make_unique<DominatorTree>(F); 579 if (!PDT) 580 PDT = std::make_unique<PostDominatorTree>(F); 581 582 auto Regions = OutliningRegion::create(*BB, *DT, *PDT); 583 for (OutliningRegion &Region : Regions) { 584 if (Region.empty()) 585 continue; 586 587 if (Region.isEntireFunctionCold()) { 588 LLVM_DEBUG(dbgs() << "Entire function is cold\n"); 589 return markFunctionCold(F); 590 } 591 592 // If this outlining region intersects with another, drop the new region. 593 // 594 // TODO: It's theoretically possible to outline more by only keeping the 595 // largest region which contains a block, but the extra bookkeeping to do 596 // this is tricky/expensive. 597 bool RegionsOverlap = any_of(Region.blocks(), [&](const BlockTy &Block) { 598 return !ColdBlocks.insert(Block.first).second; 599 }); 600 if (RegionsOverlap) 601 continue; 602 603 OutliningWorklist.emplace_back(std::move(Region)); 604 ++NumColdRegionsFound; 605 } 606 } 607 608 if (OutliningWorklist.empty()) 609 return Changed; 610 611 // Outline single-entry cold regions, splitting up larger regions as needed. 612 unsigned OutlinedFunctionID = 1; 613 // Cache and recycle the CodeExtractor analysis to avoid O(n^2) compile-time. 614 CodeExtractorAnalysisCache CEAC(F); 615 do { 616 OutliningRegion Region = OutliningWorklist.pop_back_val(); 617 assert(!Region.empty() && "Empty outlining region in worklist"); 618 do { 619 BlockSequence SubRegion = Region.takeSingleEntrySubRegion(*DT); 620 LLVM_DEBUG({ 621 dbgs() << "Hot/cold splitting attempting to outline these blocks:\n"; 622 for (BasicBlock *BB : SubRegion) 623 BB->dump(); 624 }); 625 626 Function *Outlined = extractColdRegion(SubRegion, CEAC, *DT, BFI, TTI, 627 ORE, AC, OutlinedFunctionID); 628 if (Outlined) { 629 ++OutlinedFunctionID; 630 Changed = true; 631 } 632 } while (!Region.empty()); 633 } while (!OutliningWorklist.empty()); 634 635 return Changed; 636 } 637 638 bool HotColdSplitting::run(Module &M) { 639 bool Changed = false; 640 bool HasProfileSummary = (M.getProfileSummary(/* IsCS */ false) != nullptr); 641 for (auto It = M.begin(), End = M.end(); It != End; ++It) { 642 Function &F = *It; 643 644 // Do not touch declarations. 645 if (F.isDeclaration()) 646 continue; 647 648 // Do not modify `optnone` functions. 649 if (F.hasOptNone()) 650 continue; 651 652 // Detect inherently cold functions and mark them as such. 653 if (isFunctionCold(F)) { 654 Changed |= markFunctionCold(F); 655 continue; 656 } 657 658 if (!shouldOutlineFrom(F)) { 659 LLVM_DEBUG(llvm::dbgs() << "Skipping " << F.getName() << "\n"); 660 continue; 661 } 662 663 LLVM_DEBUG(llvm::dbgs() << "Outlining in " << F.getName() << "\n"); 664 Changed |= outlineColdRegions(F, HasProfileSummary); 665 } 666 return Changed; 667 } 668 669 bool HotColdSplittingLegacyPass::runOnModule(Module &M) { 670 if (skipModule(M)) 671 return false; 672 ProfileSummaryInfo *PSI = 673 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 674 auto GTTI = [this](Function &F) -> TargetTransformInfo & { 675 return this->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 676 }; 677 auto GBFI = [this](Function &F) { 678 return &this->getAnalysis<BlockFrequencyInfoWrapperPass>(F).getBFI(); 679 }; 680 std::unique_ptr<OptimizationRemarkEmitter> ORE; 681 std::function<OptimizationRemarkEmitter &(Function &)> GetORE = 682 [&ORE](Function &F) -> OptimizationRemarkEmitter & { 683 ORE.reset(new OptimizationRemarkEmitter(&F)); 684 return *ORE.get(); 685 }; 686 auto LookupAC = [this](Function &F) -> AssumptionCache * { 687 if (auto *ACT = getAnalysisIfAvailable<AssumptionCacheTracker>()) 688 return ACT->lookupAssumptionCache(F); 689 return nullptr; 690 }; 691 692 return HotColdSplitting(PSI, GBFI, GTTI, &GetORE, LookupAC).run(M); 693 } 694 695 PreservedAnalyses 696 HotColdSplittingPass::run(Module &M, ModuleAnalysisManager &AM) { 697 auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 698 699 auto LookupAC = [&FAM](Function &F) -> AssumptionCache * { 700 return FAM.getCachedResult<AssumptionAnalysis>(F); 701 }; 702 703 auto GBFI = [&FAM](Function &F) { 704 return &FAM.getResult<BlockFrequencyAnalysis>(F); 705 }; 706 707 std::function<TargetTransformInfo &(Function &)> GTTI = 708 [&FAM](Function &F) -> TargetTransformInfo & { 709 return FAM.getResult<TargetIRAnalysis>(F); 710 }; 711 712 std::unique_ptr<OptimizationRemarkEmitter> ORE; 713 std::function<OptimizationRemarkEmitter &(Function &)> GetORE = 714 [&ORE](Function &F) -> OptimizationRemarkEmitter & { 715 ORE.reset(new OptimizationRemarkEmitter(&F)); 716 return *ORE.get(); 717 }; 718 719 ProfileSummaryInfo *PSI = &AM.getResult<ProfileSummaryAnalysis>(M); 720 721 if (HotColdSplitting(PSI, GBFI, GTTI, &GetORE, LookupAC).run(M)) 722 return PreservedAnalyses::none(); 723 return PreservedAnalyses::all(); 724 } 725 726 char HotColdSplittingLegacyPass::ID = 0; 727 INITIALIZE_PASS_BEGIN(HotColdSplittingLegacyPass, "hotcoldsplit", 728 "Hot Cold Splitting", false, false) 729 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 730 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 731 INITIALIZE_PASS_END(HotColdSplittingLegacyPass, "hotcoldsplit", 732 "Hot Cold Splitting", false, false) 733 734 ModulePass *llvm::createHotColdSplittingPass() { 735 return new HotColdSplittingLegacyPass(); 736 } 737