1 //===- HotColdSplitting.cpp -- Outline Cold Regions -------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// The goal of hot/cold splitting is to improve the memory locality of code. 11 /// The splitting pass does this by identifying cold blocks and moving them into 12 /// separate functions. 13 /// 14 /// When the splitting pass finds a cold block (referred to as "the sink"), it 15 /// grows a maximal cold region around that block. The maximal region contains 16 /// all blocks (post-)dominated by the sink [*]. In theory, these blocks are as 17 /// cold as the sink. Once a region is found, it's split out of the original 18 /// function provided it's profitable to do so. 19 /// 20 /// [*] In practice, there is some added complexity because some blocks are not 21 /// safe to extract. 22 /// 23 /// TODO: Use the PM to get domtrees, and preserve BFI/BPI. 24 /// TODO: Reorder outlined functions. 25 /// 26 //===----------------------------------------------------------------------===// 27 28 #include "llvm/Transforms/IPO/HotColdSplitting.h" 29 #include "llvm/ADT/PostOrderIterator.h" 30 #include "llvm/ADT/SmallVector.h" 31 #include "llvm/ADT/Statistic.h" 32 #include "llvm/Analysis/BlockFrequencyInfo.h" 33 #include "llvm/Analysis/BranchProbabilityInfo.h" 34 #include "llvm/Analysis/CFG.h" 35 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 36 #include "llvm/Analysis/PostDominators.h" 37 #include "llvm/Analysis/ProfileSummaryInfo.h" 38 #include "llvm/Analysis/TargetTransformInfo.h" 39 #include "llvm/IR/BasicBlock.h" 40 #include "llvm/IR/CFG.h" 41 #include "llvm/IR/DataLayout.h" 42 #include "llvm/IR/DiagnosticInfo.h" 43 #include "llvm/IR/Dominators.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/Instruction.h" 46 #include "llvm/IR/Instructions.h" 47 #include "llvm/IR/IntrinsicInst.h" 48 #include "llvm/IR/Metadata.h" 49 #include "llvm/IR/Module.h" 50 #include "llvm/IR/PassManager.h" 51 #include "llvm/IR/Type.h" 52 #include "llvm/IR/Use.h" 53 #include "llvm/IR/User.h" 54 #include "llvm/IR/Value.h" 55 #include "llvm/InitializePasses.h" 56 #include "llvm/Pass.h" 57 #include "llvm/Support/BlockFrequency.h" 58 #include "llvm/Support/BranchProbability.h" 59 #include "llvm/Support/CommandLine.h" 60 #include "llvm/Support/Debug.h" 61 #include "llvm/Support/raw_ostream.h" 62 #include "llvm/Transforms/IPO.h" 63 #include "llvm/Transforms/Scalar.h" 64 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 65 #include "llvm/Transforms/Utils/Cloning.h" 66 #include "llvm/Transforms/Utils/CodeExtractor.h" 67 #include "llvm/Transforms/Utils/Local.h" 68 #include "llvm/Transforms/Utils/ValueMapper.h" 69 #include <algorithm> 70 #include <cassert> 71 #include <string> 72 73 #define DEBUG_TYPE "hotcoldsplit" 74 75 STATISTIC(NumColdRegionsFound, "Number of cold regions found."); 76 STATISTIC(NumColdRegionsOutlined, "Number of cold regions outlined."); 77 78 using namespace llvm; 79 80 static cl::opt<bool> EnableStaticAnalysis("hot-cold-static-analysis", 81 cl::init(true), cl::Hidden); 82 83 static cl::opt<int> 84 SplittingThreshold("hotcoldsplit-threshold", cl::init(2), cl::Hidden, 85 cl::desc("Base penalty for splitting cold code (as a " 86 "multiple of TCC_Basic)")); 87 88 static cl::opt<bool> EnableColdSection( 89 "enable-cold-section", cl::init(false), cl::Hidden, 90 cl::desc("Enable placement of extracted cold functions" 91 " into a separate section after hot-cold splitting.")); 92 93 static cl::opt<std::string> 94 ColdSectionName("hotcoldsplit-cold-section-name", cl::init("__llvm_cold"), 95 cl::Hidden, 96 cl::desc("Name for the section containing cold functions " 97 "extracted by hot-cold splitting.")); 98 99 namespace { 100 // Same as blockEndsInUnreachable in CodeGen/BranchFolding.cpp. Do not modify 101 // this function unless you modify the MBB version as well. 102 // 103 /// A no successor, non-return block probably ends in unreachable and is cold. 104 /// Also consider a block that ends in an indirect branch to be a return block, 105 /// since many targets use plain indirect branches to return. 106 bool blockEndsInUnreachable(const BasicBlock &BB) { 107 if (!succ_empty(&BB)) 108 return false; 109 if (BB.empty()) 110 return true; 111 const Instruction *I = BB.getTerminator(); 112 return !(isa<ReturnInst>(I) || isa<IndirectBrInst>(I)); 113 } 114 115 bool unlikelyExecuted(BasicBlock &BB) { 116 // Exception handling blocks are unlikely executed. 117 if (BB.isEHPad() || isa<ResumeInst>(BB.getTerminator())) 118 return true; 119 120 // The block is cold if it calls/invokes a cold function. However, do not 121 // mark sanitizer traps as cold. 122 for (Instruction &I : BB) 123 if (auto *CB = dyn_cast<CallBase>(&I)) 124 if (CB->hasFnAttr(Attribute::Cold) && !CB->getMetadata("nosanitize")) 125 return true; 126 127 // The block is cold if it has an unreachable terminator, unless it's 128 // preceded by a call to a (possibly warm) noreturn call (e.g. longjmp). 129 if (blockEndsInUnreachable(BB)) { 130 if (auto *CI = 131 dyn_cast_or_null<CallInst>(BB.getTerminator()->getPrevNode())) 132 if (CI->hasFnAttr(Attribute::NoReturn)) 133 return false; 134 return true; 135 } 136 137 return false; 138 } 139 140 /// Check whether it's safe to outline \p BB. 141 static bool mayExtractBlock(const BasicBlock &BB) { 142 // EH pads are unsafe to outline because doing so breaks EH type tables. It 143 // follows that invoke instructions cannot be extracted, because CodeExtractor 144 // requires unwind destinations to be within the extraction region. 145 // 146 // Resumes that are not reachable from a cleanup landing pad are considered to 147 // be unreachable. It’s not safe to split them out either. 148 auto Term = BB.getTerminator(); 149 return !BB.hasAddressTaken() && !BB.isEHPad() && !isa<InvokeInst>(Term) && 150 !isa<ResumeInst>(Term); 151 } 152 153 /// Mark \p F cold. Based on this assumption, also optimize it for minimum size. 154 /// If \p UpdateEntryCount is true (set when this is a new split function and 155 /// module has profile data), set entry count to 0 to ensure treated as cold. 156 /// Return true if the function is changed. 157 static bool markFunctionCold(Function &F, bool UpdateEntryCount = false) { 158 assert(!F.hasOptNone() && "Can't mark this cold"); 159 bool Changed = false; 160 if (!F.hasFnAttribute(Attribute::Cold)) { 161 F.addFnAttr(Attribute::Cold); 162 Changed = true; 163 } 164 if (!F.hasFnAttribute(Attribute::MinSize)) { 165 F.addFnAttr(Attribute::MinSize); 166 Changed = true; 167 } 168 if (UpdateEntryCount) { 169 // Set the entry count to 0 to ensure it is placed in the unlikely text 170 // section when function sections are enabled. 171 F.setEntryCount(0); 172 Changed = true; 173 } 174 175 return Changed; 176 } 177 178 class HotColdSplittingLegacyPass : public ModulePass { 179 public: 180 static char ID; 181 HotColdSplittingLegacyPass() : ModulePass(ID) { 182 initializeHotColdSplittingLegacyPassPass(*PassRegistry::getPassRegistry()); 183 } 184 185 void getAnalysisUsage(AnalysisUsage &AU) const override { 186 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 187 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 188 AU.addRequired<TargetTransformInfoWrapperPass>(); 189 AU.addUsedIfAvailable<AssumptionCacheTracker>(); 190 } 191 192 bool runOnModule(Module &M) override; 193 }; 194 195 } // end anonymous namespace 196 197 /// Check whether \p F is inherently cold. 198 bool HotColdSplitting::isFunctionCold(const Function &F) const { 199 if (F.hasFnAttribute(Attribute::Cold)) 200 return true; 201 202 if (F.getCallingConv() == CallingConv::Cold) 203 return true; 204 205 if (PSI->isFunctionEntryCold(&F)) 206 return true; 207 208 return false; 209 } 210 211 // Returns false if the function should not be considered for hot-cold split 212 // optimization. 213 bool HotColdSplitting::shouldOutlineFrom(const Function &F) const { 214 if (F.hasFnAttribute(Attribute::AlwaysInline)) 215 return false; 216 217 if (F.hasFnAttribute(Attribute::NoInline)) 218 return false; 219 220 // A function marked `noreturn` may contain unreachable terminators: these 221 // should not be considered cold, as the function may be a trampoline. 222 if (F.hasFnAttribute(Attribute::NoReturn)) 223 return false; 224 225 if (F.hasFnAttribute(Attribute::SanitizeAddress) || 226 F.hasFnAttribute(Attribute::SanitizeHWAddress) || 227 F.hasFnAttribute(Attribute::SanitizeThread) || 228 F.hasFnAttribute(Attribute::SanitizeMemory)) 229 return false; 230 231 return true; 232 } 233 234 /// Get the benefit score of outlining \p Region. 235 static InstructionCost getOutliningBenefit(ArrayRef<BasicBlock *> Region, 236 TargetTransformInfo &TTI) { 237 // Sum up the code size costs of non-terminator instructions. Tight coupling 238 // with \ref getOutliningPenalty is needed to model the costs of terminators. 239 InstructionCost Benefit = 0; 240 for (BasicBlock *BB : Region) 241 for (Instruction &I : BB->instructionsWithoutDebug()) 242 if (&I != BB->getTerminator()) 243 Benefit += 244 TTI.getInstructionCost(&I, TargetTransformInfo::TCK_CodeSize); 245 246 return Benefit; 247 } 248 249 /// Get the penalty score for outlining \p Region. 250 static int getOutliningPenalty(ArrayRef<BasicBlock *> Region, 251 unsigned NumInputs, unsigned NumOutputs) { 252 int Penalty = SplittingThreshold; 253 LLVM_DEBUG(dbgs() << "Applying penalty for splitting: " << Penalty << "\n"); 254 255 // If the splitting threshold is set at or below zero, skip the usual 256 // profitability check. 257 if (SplittingThreshold <= 0) 258 return Penalty; 259 260 // The typical code size cost for materializing an argument for the outlined 261 // call. 262 LLVM_DEBUG(dbgs() << "Applying penalty for: " << NumInputs << " inputs\n"); 263 const int CostForArgMaterialization = TargetTransformInfo::TCC_Basic; 264 Penalty += CostForArgMaterialization * NumInputs; 265 266 // The typical code size cost for an output alloca, its associated store, and 267 // its associated reload. 268 LLVM_DEBUG(dbgs() << "Applying penalty for: " << NumOutputs << " outputs\n"); 269 const int CostForRegionOutput = 3 * TargetTransformInfo::TCC_Basic; 270 Penalty += CostForRegionOutput * NumOutputs; 271 272 // Find the number of distinct exit blocks for the region. Use a conservative 273 // check to determine whether control returns from the region. 274 bool NoBlocksReturn = true; 275 SmallPtrSet<BasicBlock *, 2> SuccsOutsideRegion; 276 for (BasicBlock *BB : Region) { 277 // If a block has no successors, only assume it does not return if it's 278 // unreachable. 279 if (succ_empty(BB)) { 280 NoBlocksReturn &= isa<UnreachableInst>(BB->getTerminator()); 281 continue; 282 } 283 284 for (BasicBlock *SuccBB : successors(BB)) { 285 if (!is_contained(Region, SuccBB)) { 286 NoBlocksReturn = false; 287 SuccsOutsideRegion.insert(SuccBB); 288 } 289 } 290 } 291 292 // Apply a `noreturn` bonus. 293 if (NoBlocksReturn) { 294 LLVM_DEBUG(dbgs() << "Applying bonus for: " << Region.size() 295 << " non-returning terminators\n"); 296 Penalty -= Region.size(); 297 } 298 299 // Apply a penalty for having more than one successor outside of the region. 300 // This penalty accounts for the switch needed in the caller. 301 if (!SuccsOutsideRegion.empty()) { 302 LLVM_DEBUG(dbgs() << "Applying penalty for: " << SuccsOutsideRegion.size() 303 << " non-region successors\n"); 304 Penalty += (SuccsOutsideRegion.size() - 1) * TargetTransformInfo::TCC_Basic; 305 } 306 307 return Penalty; 308 } 309 310 Function *HotColdSplitting::extractColdRegion( 311 const BlockSequence &Region, const CodeExtractorAnalysisCache &CEAC, 312 DominatorTree &DT, BlockFrequencyInfo *BFI, TargetTransformInfo &TTI, 313 OptimizationRemarkEmitter &ORE, AssumptionCache *AC, unsigned Count) { 314 assert(!Region.empty()); 315 316 // TODO: Pass BFI and BPI to update profile information. 317 CodeExtractor CE(Region, &DT, /* AggregateArgs */ false, /* BFI */ nullptr, 318 /* BPI */ nullptr, AC, /* AllowVarArgs */ false, 319 /* AllowAlloca */ false, 320 /* Suffix */ "cold." + std::to_string(Count)); 321 322 // Perform a simple cost/benefit analysis to decide whether or not to permit 323 // splitting. 324 SetVector<Value *> Inputs, Outputs, Sinks; 325 CE.findInputsOutputs(Inputs, Outputs, Sinks); 326 InstructionCost OutliningBenefit = getOutliningBenefit(Region, TTI); 327 int OutliningPenalty = 328 getOutliningPenalty(Region, Inputs.size(), Outputs.size()); 329 LLVM_DEBUG(dbgs() << "Split profitability: benefit = " << OutliningBenefit 330 << ", penalty = " << OutliningPenalty << "\n"); 331 if (!OutliningBenefit.isValid() || OutliningBenefit <= OutliningPenalty) 332 return nullptr; 333 334 Function *OrigF = Region[0]->getParent(); 335 if (Function *OutF = CE.extractCodeRegion(CEAC)) { 336 User *U = *OutF->user_begin(); 337 CallInst *CI = cast<CallInst>(U); 338 NumColdRegionsOutlined++; 339 if (TTI.useColdCCForColdCall(*OutF)) { 340 OutF->setCallingConv(CallingConv::Cold); 341 CI->setCallingConv(CallingConv::Cold); 342 } 343 CI->setIsNoInline(); 344 345 if (EnableColdSection) 346 OutF->setSection(ColdSectionName); 347 else { 348 if (OrigF->hasSection()) 349 OutF->setSection(OrigF->getSection()); 350 } 351 352 markFunctionCold(*OutF, BFI != nullptr); 353 354 LLVM_DEBUG(llvm::dbgs() << "Outlined Region: " << *OutF); 355 ORE.emit([&]() { 356 return OptimizationRemark(DEBUG_TYPE, "HotColdSplit", 357 &*Region[0]->begin()) 358 << ore::NV("Original", OrigF) << " split cold code into " 359 << ore::NV("Split", OutF); 360 }); 361 return OutF; 362 } 363 364 ORE.emit([&]() { 365 return OptimizationRemarkMissed(DEBUG_TYPE, "ExtractFailed", 366 &*Region[0]->begin()) 367 << "Failed to extract region at block " 368 << ore::NV("Block", Region.front()); 369 }); 370 return nullptr; 371 } 372 373 /// A pair of (basic block, score). 374 using BlockTy = std::pair<BasicBlock *, unsigned>; 375 376 namespace { 377 /// A maximal outlining region. This contains all blocks post-dominated by a 378 /// sink block, the sink block itself, and all blocks dominated by the sink. 379 /// If sink-predecessors and sink-successors cannot be extracted in one region, 380 /// the static constructor returns a list of suitable extraction regions. 381 class OutliningRegion { 382 /// A list of (block, score) pairs. A block's score is non-zero iff it's a 383 /// viable sub-region entry point. Blocks with higher scores are better entry 384 /// points (i.e. they are more distant ancestors of the sink block). 385 SmallVector<BlockTy, 0> Blocks = {}; 386 387 /// The suggested entry point into the region. If the region has multiple 388 /// entry points, all blocks within the region may not be reachable from this 389 /// entry point. 390 BasicBlock *SuggestedEntryPoint = nullptr; 391 392 /// Whether the entire function is cold. 393 bool EntireFunctionCold = false; 394 395 /// If \p BB is a viable entry point, return \p Score. Return 0 otherwise. 396 static unsigned getEntryPointScore(BasicBlock &BB, unsigned Score) { 397 return mayExtractBlock(BB) ? Score : 0; 398 } 399 400 /// These scores should be lower than the score for predecessor blocks, 401 /// because regions starting at predecessor blocks are typically larger. 402 static constexpr unsigned ScoreForSuccBlock = 1; 403 static constexpr unsigned ScoreForSinkBlock = 1; 404 405 OutliningRegion(const OutliningRegion &) = delete; 406 OutliningRegion &operator=(const OutliningRegion &) = delete; 407 408 public: 409 OutliningRegion() = default; 410 OutliningRegion(OutliningRegion &&) = default; 411 OutliningRegion &operator=(OutliningRegion &&) = default; 412 413 static std::vector<OutliningRegion> create(BasicBlock &SinkBB, 414 const DominatorTree &DT, 415 const PostDominatorTree &PDT) { 416 std::vector<OutliningRegion> Regions; 417 SmallPtrSet<BasicBlock *, 4> RegionBlocks; 418 419 Regions.emplace_back(); 420 OutliningRegion *ColdRegion = &Regions.back(); 421 422 auto addBlockToRegion = [&](BasicBlock *BB, unsigned Score) { 423 RegionBlocks.insert(BB); 424 ColdRegion->Blocks.emplace_back(BB, Score); 425 }; 426 427 // The ancestor farthest-away from SinkBB, and also post-dominated by it. 428 unsigned SinkScore = getEntryPointScore(SinkBB, ScoreForSinkBlock); 429 ColdRegion->SuggestedEntryPoint = (SinkScore > 0) ? &SinkBB : nullptr; 430 unsigned BestScore = SinkScore; 431 432 // Visit SinkBB's ancestors using inverse DFS. 433 auto PredIt = ++idf_begin(&SinkBB); 434 auto PredEnd = idf_end(&SinkBB); 435 while (PredIt != PredEnd) { 436 BasicBlock &PredBB = **PredIt; 437 bool SinkPostDom = PDT.dominates(&SinkBB, &PredBB); 438 439 // If the predecessor is cold and has no predecessors, the entire 440 // function must be cold. 441 if (SinkPostDom && pred_empty(&PredBB)) { 442 ColdRegion->EntireFunctionCold = true; 443 return Regions; 444 } 445 446 // If SinkBB does not post-dominate a predecessor, do not mark the 447 // predecessor (or any of its predecessors) cold. 448 if (!SinkPostDom || !mayExtractBlock(PredBB)) { 449 PredIt.skipChildren(); 450 continue; 451 } 452 453 // Keep track of the post-dominated ancestor farthest away from the sink. 454 // The path length is always >= 2, ensuring that predecessor blocks are 455 // considered as entry points before the sink block. 456 unsigned PredScore = getEntryPointScore(PredBB, PredIt.getPathLength()); 457 if (PredScore > BestScore) { 458 ColdRegion->SuggestedEntryPoint = &PredBB; 459 BestScore = PredScore; 460 } 461 462 addBlockToRegion(&PredBB, PredScore); 463 ++PredIt; 464 } 465 466 // If the sink can be added to the cold region, do so. It's considered as 467 // an entry point before any sink-successor blocks. 468 // 469 // Otherwise, split cold sink-successor blocks using a separate region. 470 // This satisfies the requirement that all extraction blocks other than the 471 // first have predecessors within the extraction region. 472 if (mayExtractBlock(SinkBB)) { 473 addBlockToRegion(&SinkBB, SinkScore); 474 if (pred_empty(&SinkBB)) { 475 ColdRegion->EntireFunctionCold = true; 476 return Regions; 477 } 478 } else { 479 Regions.emplace_back(); 480 ColdRegion = &Regions.back(); 481 BestScore = 0; 482 } 483 484 // Find all successors of SinkBB dominated by SinkBB using DFS. 485 auto SuccIt = ++df_begin(&SinkBB); 486 auto SuccEnd = df_end(&SinkBB); 487 while (SuccIt != SuccEnd) { 488 BasicBlock &SuccBB = **SuccIt; 489 bool SinkDom = DT.dominates(&SinkBB, &SuccBB); 490 491 // Don't allow the backwards & forwards DFSes to mark the same block. 492 bool DuplicateBlock = RegionBlocks.count(&SuccBB); 493 494 // If SinkBB does not dominate a successor, do not mark the successor (or 495 // any of its successors) cold. 496 if (DuplicateBlock || !SinkDom || !mayExtractBlock(SuccBB)) { 497 SuccIt.skipChildren(); 498 continue; 499 } 500 501 unsigned SuccScore = getEntryPointScore(SuccBB, ScoreForSuccBlock); 502 if (SuccScore > BestScore) { 503 ColdRegion->SuggestedEntryPoint = &SuccBB; 504 BestScore = SuccScore; 505 } 506 507 addBlockToRegion(&SuccBB, SuccScore); 508 ++SuccIt; 509 } 510 511 return Regions; 512 } 513 514 /// Whether this region has nothing to extract. 515 bool empty() const { return !SuggestedEntryPoint; } 516 517 /// The blocks in this region. 518 ArrayRef<std::pair<BasicBlock *, unsigned>> blocks() const { return Blocks; } 519 520 /// Whether the entire function containing this region is cold. 521 bool isEntireFunctionCold() const { return EntireFunctionCold; } 522 523 /// Remove a sub-region from this region and return it as a block sequence. 524 BlockSequence takeSingleEntrySubRegion(DominatorTree &DT) { 525 assert(!empty() && !isEntireFunctionCold() && "Nothing to extract"); 526 527 // Remove blocks dominated by the suggested entry point from this region. 528 // During the removal, identify the next best entry point into the region. 529 // Ensure that the first extracted block is the suggested entry point. 530 BlockSequence SubRegion = {SuggestedEntryPoint}; 531 BasicBlock *NextEntryPoint = nullptr; 532 unsigned NextScore = 0; 533 auto RegionEndIt = Blocks.end(); 534 auto RegionStartIt = remove_if(Blocks, [&](const BlockTy &Block) { 535 BasicBlock *BB = Block.first; 536 unsigned Score = Block.second; 537 bool InSubRegion = 538 BB == SuggestedEntryPoint || DT.dominates(SuggestedEntryPoint, BB); 539 if (!InSubRegion && Score > NextScore) { 540 NextEntryPoint = BB; 541 NextScore = Score; 542 } 543 if (InSubRegion && BB != SuggestedEntryPoint) 544 SubRegion.push_back(BB); 545 return InSubRegion; 546 }); 547 Blocks.erase(RegionStartIt, RegionEndIt); 548 549 // Update the suggested entry point. 550 SuggestedEntryPoint = NextEntryPoint; 551 552 return SubRegion; 553 } 554 }; 555 } // namespace 556 557 bool HotColdSplitting::outlineColdRegions(Function &F, bool HasProfileSummary) { 558 bool Changed = false; 559 560 // The set of cold blocks. 561 SmallPtrSet<BasicBlock *, 4> ColdBlocks; 562 563 // The worklist of non-intersecting regions left to outline. 564 SmallVector<OutliningRegion, 2> OutliningWorklist; 565 566 // Set up an RPO traversal. Experimentally, this performs better (outlines 567 // more) than a PO traversal, because we prevent region overlap by keeping 568 // the first region to contain a block. 569 ReversePostOrderTraversal<Function *> RPOT(&F); 570 571 // Calculate domtrees lazily. This reduces compile-time significantly. 572 std::unique_ptr<DominatorTree> DT; 573 std::unique_ptr<PostDominatorTree> PDT; 574 575 // Calculate BFI lazily (it's only used to query ProfileSummaryInfo). This 576 // reduces compile-time significantly. TODO: When we *do* use BFI, we should 577 // be able to salvage its domtrees instead of recomputing them. 578 BlockFrequencyInfo *BFI = nullptr; 579 if (HasProfileSummary) 580 BFI = GetBFI(F); 581 582 TargetTransformInfo &TTI = GetTTI(F); 583 OptimizationRemarkEmitter &ORE = (*GetORE)(F); 584 AssumptionCache *AC = LookupAC(F); 585 586 // Find all cold regions. 587 for (BasicBlock *BB : RPOT) { 588 // This block is already part of some outlining region. 589 if (ColdBlocks.count(BB)) 590 continue; 591 592 bool Cold = (BFI && PSI->isColdBlock(BB, BFI)) || 593 (EnableStaticAnalysis && unlikelyExecuted(*BB)); 594 if (!Cold) 595 continue; 596 597 LLVM_DEBUG({ 598 dbgs() << "Found a cold block:\n"; 599 BB->dump(); 600 }); 601 602 if (!DT) 603 DT = std::make_unique<DominatorTree>(F); 604 if (!PDT) 605 PDT = std::make_unique<PostDominatorTree>(F); 606 607 auto Regions = OutliningRegion::create(*BB, *DT, *PDT); 608 for (OutliningRegion &Region : Regions) { 609 if (Region.empty()) 610 continue; 611 612 if (Region.isEntireFunctionCold()) { 613 LLVM_DEBUG(dbgs() << "Entire function is cold\n"); 614 return markFunctionCold(F); 615 } 616 617 // If this outlining region intersects with another, drop the new region. 618 // 619 // TODO: It's theoretically possible to outline more by only keeping the 620 // largest region which contains a block, but the extra bookkeeping to do 621 // this is tricky/expensive. 622 bool RegionsOverlap = any_of(Region.blocks(), [&](const BlockTy &Block) { 623 return !ColdBlocks.insert(Block.first).second; 624 }); 625 if (RegionsOverlap) 626 continue; 627 628 OutliningWorklist.emplace_back(std::move(Region)); 629 ++NumColdRegionsFound; 630 } 631 } 632 633 if (OutliningWorklist.empty()) 634 return Changed; 635 636 // Outline single-entry cold regions, splitting up larger regions as needed. 637 unsigned OutlinedFunctionID = 1; 638 // Cache and recycle the CodeExtractor analysis to avoid O(n^2) compile-time. 639 CodeExtractorAnalysisCache CEAC(F); 640 do { 641 OutliningRegion Region = OutliningWorklist.pop_back_val(); 642 assert(!Region.empty() && "Empty outlining region in worklist"); 643 do { 644 BlockSequence SubRegion = Region.takeSingleEntrySubRegion(*DT); 645 LLVM_DEBUG({ 646 dbgs() << "Hot/cold splitting attempting to outline these blocks:\n"; 647 for (BasicBlock *BB : SubRegion) 648 BB->dump(); 649 }); 650 651 Function *Outlined = extractColdRegion(SubRegion, CEAC, *DT, BFI, TTI, 652 ORE, AC, OutlinedFunctionID); 653 if (Outlined) { 654 ++OutlinedFunctionID; 655 Changed = true; 656 } 657 } while (!Region.empty()); 658 } while (!OutliningWorklist.empty()); 659 660 return Changed; 661 } 662 663 bool HotColdSplitting::run(Module &M) { 664 bool Changed = false; 665 bool HasProfileSummary = (M.getProfileSummary(/* IsCS */ false) != nullptr); 666 for (auto It = M.begin(), End = M.end(); It != End; ++It) { 667 Function &F = *It; 668 669 // Do not touch declarations. 670 if (F.isDeclaration()) 671 continue; 672 673 // Do not modify `optnone` functions. 674 if (F.hasOptNone()) 675 continue; 676 677 // Detect inherently cold functions and mark them as such. 678 if (isFunctionCold(F)) { 679 Changed |= markFunctionCold(F); 680 continue; 681 } 682 683 if (!shouldOutlineFrom(F)) { 684 LLVM_DEBUG(llvm::dbgs() << "Skipping " << F.getName() << "\n"); 685 continue; 686 } 687 688 LLVM_DEBUG(llvm::dbgs() << "Outlining in " << F.getName() << "\n"); 689 Changed |= outlineColdRegions(F, HasProfileSummary); 690 } 691 return Changed; 692 } 693 694 bool HotColdSplittingLegacyPass::runOnModule(Module &M) { 695 if (skipModule(M)) 696 return false; 697 ProfileSummaryInfo *PSI = 698 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 699 auto GTTI = [this](Function &F) -> TargetTransformInfo & { 700 return this->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 701 }; 702 auto GBFI = [this](Function &F) { 703 return &this->getAnalysis<BlockFrequencyInfoWrapperPass>(F).getBFI(); 704 }; 705 std::unique_ptr<OptimizationRemarkEmitter> ORE; 706 std::function<OptimizationRemarkEmitter &(Function &)> GetORE = 707 [&ORE](Function &F) -> OptimizationRemarkEmitter & { 708 ORE.reset(new OptimizationRemarkEmitter(&F)); 709 return *ORE.get(); 710 }; 711 auto LookupAC = [this](Function &F) -> AssumptionCache * { 712 if (auto *ACT = getAnalysisIfAvailable<AssumptionCacheTracker>()) 713 return ACT->lookupAssumptionCache(F); 714 return nullptr; 715 }; 716 717 return HotColdSplitting(PSI, GBFI, GTTI, &GetORE, LookupAC).run(M); 718 } 719 720 PreservedAnalyses 721 HotColdSplittingPass::run(Module &M, ModuleAnalysisManager &AM) { 722 auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 723 724 auto LookupAC = [&FAM](Function &F) -> AssumptionCache * { 725 return FAM.getCachedResult<AssumptionAnalysis>(F); 726 }; 727 728 auto GBFI = [&FAM](Function &F) { 729 return &FAM.getResult<BlockFrequencyAnalysis>(F); 730 }; 731 732 std::function<TargetTransformInfo &(Function &)> GTTI = 733 [&FAM](Function &F) -> TargetTransformInfo & { 734 return FAM.getResult<TargetIRAnalysis>(F); 735 }; 736 737 std::unique_ptr<OptimizationRemarkEmitter> ORE; 738 std::function<OptimizationRemarkEmitter &(Function &)> GetORE = 739 [&ORE](Function &F) -> OptimizationRemarkEmitter & { 740 ORE.reset(new OptimizationRemarkEmitter(&F)); 741 return *ORE.get(); 742 }; 743 744 ProfileSummaryInfo *PSI = &AM.getResult<ProfileSummaryAnalysis>(M); 745 746 if (HotColdSplitting(PSI, GBFI, GTTI, &GetORE, LookupAC).run(M)) 747 return PreservedAnalyses::none(); 748 return PreservedAnalyses::all(); 749 } 750 751 char HotColdSplittingLegacyPass::ID = 0; 752 INITIALIZE_PASS_BEGIN(HotColdSplittingLegacyPass, "hotcoldsplit", 753 "Hot Cold Splitting", false, false) 754 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 755 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 756 INITIALIZE_PASS_END(HotColdSplittingLegacyPass, "hotcoldsplit", 757 "Hot Cold Splitting", false, false) 758 759 ModulePass *llvm::createHotColdSplittingPass() { 760 return new HotColdSplittingLegacyPass(); 761 } 762